Understanding Coarsened Factors in cvam

Joseph L. Schafer”

February 22, 2023

Abstract

Coarsened data permits values that convey intermediate amounts of informa-
tion between fully observed and fully missing (e.g., values that are censored,
truncated or top-coded). Categorical variables in R, known as factors, provide
only one code for missing values, with no convenient way to express other
coarsened states. The cvam package extends R’s factor mechanism to allow
categorical variables with arbitary types of coarsening. This document intro-
duces the coarsened factor and describes functions in cvam for creating and
manipulating them. The package’s modeling procedures are described in a sep-
arate document Log-Linear Modeling with Missing and Coarsened Values Using
the cvam Package.

*Office of the Associate Director for Research and Methodology, United States Census Bureau,
Washington, DC 20233, joseph.l.schafer@census.gov. This article is released to inform inter-
ested parties of ongoing research and to encourage discussion. The views expressed are those of the
author and not necessarily those of the U.S. Census Bureau.

This work was produced at the U.S. Census Bureau in the course of official duties
and, pursuant to Title 17 Section 105 of the United States Code, is not subject to
copyright protection within the United States. Therefore, there is no copyright to assign
or license and this work may be used, reproduced or distributed within the United
States. This work may be modified provided that any derivative works bear notice that
they are derived from it, and any modified versions bear some notice that they have
been modified, as required by Title 17, Section 403 of the United States Code. The
U.S. Census Bureau may assert copyright internationally. To this end, this work may
be reproduced and disseminated outside of the United States, provided that the work
distributed or published internationally provide the notice: “International copyright,
2016, U.S. Census Bureau, U.S. Government”. The author and the Census Bureau
assume no responsibility whatsoever for the use of this work by other parties, and
makes no guarantees, expressed or implied, about its quality, reliability, or any other
characteristic. The author and the Census Bureau are not obligated to assist users or to
fix reported problems with this work. For additional information, refer to GNU General
Public License Version 3 (GPLv3).

1 REVIEW OF CATEGORICAL VARIABLES IN R

1 Review of categorical variables in R

1.1 Factors and their uses

In the statistical programmming language R (R Core Team, 2018), a categorical
variable is called a factor. For example, consider the ChickWeight dataset dis-
tributed with R as part of its datasets package. These data came from a ran-
domized experiment concerning the effects of diet on the growth of newly hatched
chicks. The variable Diet is a factor with four possible values (levels), which are
unceremoniously labeled "1", "2" "3" and "4".

> library(datasets) # attach the library, if needed
> data(ChickWeight) # load dataset into R workspace
> ChickWeight[1:3,] # look at first three rows

weight Time Chick Diet
1 42 0 1 1
2 51 2 1 1
3 59 4 1 1

> str(ChickWeight$Diet) # examine structure of the variable Diet

Factor w/ 4 levels "1","2","3","4": 1111111111 ...

In exploratory data analyses, factors are used to define classification bins for
generating tables and plots. Examples using the ChickWeight data are shown below,
and the resulting plot is shown in Figure 1.

> # compute mean final weight at day 21 by Diet
> aggregate(weight ~ Diet, data = subset(ChickWeight, Time==21),
+ FUN = mean)

Diet weight
1 177.7500
2 214.7000
3 270.3000
4 238.5556

W N e

> # side-by-side boxplots of final weight at day 21 by Diet
> plot(weight ~ Diet, data = subset(ChickWeight, Time==21))

Factors are often used as predictors in regression models. When a k-level fac-
tor appears on the right-hand side of a model formula, R automatically expresses
the factor as a set of & — 1 variables to contrast the effects of the different levels
(Chambers and Hastie, 1992). In the example below, Diet is expressed as dummy
indicators for levels "2", "3", and "4", so that 1 becomes the reference level.

1 REVIEW OF CATEGORICAL VARIABLES IN R

350
|

300
|

250
|

weight

200
|

150
|

100
|

Diet

Figure 1: Boxplots of chick final weight, classified by diet.

> # regress final weight at day 21 on Diet
> result <- 1m(weight ~ Diet, data = subset(ChickWeight, Time==21))
> summary (result) $coef

Estimate Std. Error t value Pr(>ltl)
(Intercept) 177.75000 15.99540 11.112571 6.068920e-14
Diet2 36.95000 25.79181 1.432626 1.595459e-01
Diet3 92.55000 25.79181 3.588349 8.796253e-04
Diet4 60.80556 26.65900 2.280864 2.782256e-02

A few R modeling functions will accept a factor on the left-hand side of a for-
mula, treating the variable as the outcome in a multinomial regression. For exam-
ple, the multinom function in the package nnet fits baseline-category logistic models
(Venables and Ripley, 2013).

> library(nnet)
> # regress Diet on initial weight to check for balance
> resultA <- multinom(Diet ~ weight,

1 REVIEW OF CATEGORICAL VARIABLES IN R

data = subset(ChickWeight, Time==0), trace=FALSE)
compare fit to that of a null (intercept-only) model
resultB <- multinom(Diet ~ 1,

data = subset (ChickWeight, Time==0), trace=FALSE)
resultB$deviance - resultA$deviance # df = 3

vV + Vv Vv +

[1] 3.56337

Factors may serve as identifiers for grouping observations in longitudinal and
clustered analyses. In the example below, the 1mer function from the package 1me4
(Bates et al., 2015) is used to fit a linear mixed-effects growth model with a random
interecpt and slope for each chick.

> library(1me4)

> # Linear growth model with random intercepts and slopes
> result <- lmer(weight ~ Time + (Time | Chick),

+ data = ChickWeight)

Data stored as factors are often rearranged into other forms for summarizing
and modeling, and many R functions are available for those manipulations. For
example, consider the HairEyeColor dataset from the datasets package, which
classifies 592 statistics students by hair color, eye color and sex. The data are stored
as a table, a three-dimensional array that records the number of students in each
cell of the three-way classification.

> HairEyeColor

, » Sex = Male
Eye
Hair Brown Blue Hazel Green
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

, » Sex = Female

Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

At an earlier stage, these data may have existed as a rectangular data frame with
592 rows (one per student) and factor variables named Hair, Eye and Sex. Those
factor variables may have been processed into HairEyeColor’s present form by the
function table or xtabs.

1 REVIEW OF CATEGORICAL VARIABLES IN R

1.2 Creating a factor

The most common way to create a factor variable in R is by calling the function
factor. The primary argument to this function is a vector of data, typically numeric
or character. By default, factor will return a factor variable with one level for each
distinct value found in the vector, and the levels will be arranged in ascending
alphanumeric order.

> weather <- c("clear", "rain", "clear", "cloudy", "snow", "clear", "rain")
> weather <- factor (weather)
> table(weather)

weather
clear cloudy rain snow
3 1 2 1

Another commonly used function for creating a factor is cut, which bins numeric
data into categories according to user-defined break points.

generate 1,000 U(0,1) random variates, then

classify them as low, medium, and high

uniform <- runif(1000)

Imh <- cut(uniform, breaks=c(0, .333, .667, 1),
labels=c("low", "medium", "high"))

table (1mh)

vV + VvV Vv Vv Vv

1mh
low medium high
331 349 320

1.3 Factor levels

If x is a factor, then nlevels(x) returns its number of levels. Internally, the factor’s
data values are stored as positive integers 1, 2, ..., nlevels(x). For the most
part, however, those integers are hidden from the user. Instead, the user typically
sees character strings defined by the attribute levels, a character vector of length
nlevels(x). For example, let’s look at chickwts, another chick-related dataset
from the datasets package. This data frame has a factor variable feed with six
descriptively named levels.

> str(chickwts)
'data.frame': 71 obs. of 2 variables:

$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horsebean",..: 2222222222 ...

> levels(chickwts$feed)

1 REVIEW OF CATEGORICAL VARIABLES IN R

[1] "casein" "horsebean" "linseed" "meatmeal" "soybean" "sunflower"

This variable’s storage .mode is "integer".

> storage.mode(chickwts$feed)

[1] "integer"

However, it is the character strings in levels that are seen when the variable is
displayed using the print function, and when it is tabulated using table or xtabs.

> chickwts$feed[1:5] # implicitly calling print

[1] horsebean horsebean horsebean horsebean horsebean
Levels: casein horsebean linseed meatmeal soybean sunflower

> table(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower
12 10 12 11 14 12

> xtabs(~ feed, data=chickwts)
feed

casein horsebean linseed meatmeal soybean sunflower
12 10 12 11 14 12

Moreover, the relational operators == and != compare the strings, not the integers.

> sum(chickwts$feed == "meatmeal")
[1] 11
> chickwts$weight[chickwts$feed == "horsebean"]

[1] 179 160 136 227 217 168 108 124 143 140

If you want to work with a factor’s integer codes rather than its character-string
levels, wrap the factor with unclass. This function strips away the object’s class
attribute, so that R no longer calls any of the special methods for factors, but treats
the variable as if it were a just a vector of integers.

> unclass(chickwts$feed)

[1122222222223333333333335555555555555566668666
[44 6 6 6 6644444444444111111111111
attr(,"levels")

[1] "casein" "horsebean" "linseed" "meatmeal" "soybean" "sunflower"

1 REVIEW OF CATEGORICAL VARIABLES IN R

1.4 Extracting and replacing portions of a factor

If you extract portions of a factor using the subsetting operator [, the result is
another factor. By default, the new factor has the same levels as the original, even
if some of those levels have no obervations in them.

> chickwts$feed[1:22]

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean horsebean
[9] horsebean horsebean linseed linseed linseed linseed linseed linseed
[17] linseed 1linseed 1linseed 1linseed linseed linseed
Levels: casein horsebean linseed meatmeal soybean sunflower

Empty levels can be eliminated by the droplevels function, or by supplying the
argument drop=TRUE when using [.

> droplevels(chickwts$feed[1:22])

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean horsebean
[9] horsebean horsebean linseed linseed linseed linseed linseed linseed
[17] linseed 1linseed 1linseed 1linseed linseed linseed
Levels: horsebean linseed

> chickwts$feed[1:22, drop=TRUE] # does the same thing

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean horsebean
[9] horsebean horsebean linseed linseed linseed linseed linseed linseed
[17] linseed 1linseed 1linseed 1linseed linseed linseed
Levels: horsebean linseed

The replacement version of [does not allow you to replace elements of a factor
with values that are not already present among its levels. To do that, you would
need to first modify the levels attribute.

> chickwts$feed[2] <- "HotDogs" # this produces a missing value
> chickwts$feed[1:5]

[1] horsebean <NA> horsebean horsebean horsebean
Levels: casein horsebean linseed meatmeal soybean sunflower

> levels(chickwts$feed) <- c(levels(chickwts$feed), "HotDogs")
> chickwts$feed[2] <- "HotDogs" # now it works
> chickwts$feed[1:5]

[1] horsebean HotDogs horsebean horsebean horsebean
Levels: casein horsebean linseed meatmeal soybean sunflower HotDogs

1 REVIEW OF CATEGORICAL VARIABLES IN R

1.5 Other factor attributes

To determine whether or not an object is a factor, R examines its class attribute.
A factor’s class is either "factor" or c("ordered", "factor"), depending on
whether the variable is assumed to be nominal (whose categories have no intrinsic
ordering) or ordinal (having categories that are ordered). An ordered factor may
be created by the ordered function, or by calling factor or cut with the argument
ordered=TRUE.

Some modeling functions will handle ordered and unordered factors differently.
If a k-level unordered factor appears on the right-hand side of a regression formula,
then by default R will create a set of £ — 1 dummy indicators that contrast levels
2, 3, ..., k against level 1. If the factor is ordered, then by default R will compute
orthogonal contrasts for fitting a polynomial function of degree k£ — 1. This behavior
is controlled by the factor’s attribute contrasts, a & x (k — 1) matrix that shows
how the regressors are defined.

> # For an unordered factor, default contrasts use dummy indicators
> contrasts(chickwts$feed)

horsebean linseed meatmeal soybean sunflower HotDogs

casein 0 0 0 0 0 0
horsebean 1 0 0 0 0 0
linseed 0 1 0 0 0 0
meatmeal 0 0 1 0 0 0
soybean 0 0 0 1 0 0
sunflower 0 0 0 0 1 0
HotDogs 0 0 0 0 0 1
> # For an ordered factor, the default is orthogonal polynomials;
> # in the example below, they are linear and quadratic
> uniform <- runif(1000)
> 1mh <- cut(uniform, breaks=c(0, .333, .667, 1),
+ labels=c("low", "medium", "high"), ordered=TRUE)
> contrasts (1mh)

L Q

[1,] -7.071068e-01 0.4082483
[2,] -7.850462e-17 -0.8164966
[3,] 7.071068e-01 0.4082483

Other types of contrasts are available; see ?contrasts for details.

1.6 Missing values in factors
1.6.1 The ordinary NA

A missing value in a factor variable is displayed as NA when the factor is summarized
or printed. Depending on the context, however, the NA can mean two very different

1 REVIEW OF CATEGORICAL VARIABLES IN R

things, and it is crucial to understand the difference.

In the ordinary situation, NA is not an element of levels. An NA in a factor
means that the datum belongs to one of the levels, but we do not know which one.
This type of missing value is stored as the R constant NA_integer_ in the vector of
integer codes, and its presence is detectable by the function is.na.

> # create a factor with a missing value

> party <- factor(c("Dem", "Ind", "Rep", NA, "Rep", "Ind", "Dem"))
> # Note that NA is not one of the levels

> party

[1] Dem Ind Rep <NA> Rep Ind Dem

Levels: Dem Ind Rep

> # The missing value appears in the integer codes
> unclass(party)

[1] 1 2 3 NA 3 2 1
attr(,"levels")
[1] "Demll l|Indll llRep"

> # is.na returns TRUE if the value is missing, FALSE otherwise
> is.na(party)

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE

When NAs are represented in this fashion, most R functions understand them to
be missing in the conventional sense, and the system handles them in ways that
depend on the function being invoked. For example, with the table function, by
default NAs will not be reported in the resulting frequency table; to see them, supply
the argument exclude=NULL.

> table(party)

party
Dem Ind Rep
2 2 2

> table(party, exclude=NULL)

party
Dem Ind Rep <NA>
2 2 2 1

With the modeling functions 1m and glm, if a factor with missing values appears in
a regression formula, R may attempt to remove the incomplete cases from the anal-
ysis, or the model-fitting procedure may fail. Treatment of missing values in those
functions is determined by function arguments or by the global option na.action;
see 7options.

As already mentioned, the function droplevels will remove empty levels (i.e.,
levels with no obervations in them) from a factor. The optional argument exclude

10 10

1 REVIEW OF CATEGORICAL VARIABLES IN R

can be used to remove additional levels even if they are non-empty. Any observation
within an excluded level becomes a missing value.

> party <- droplevels(party, exclude=c("Ind",NA))
> party

[1] Dem <NA> Rep <NA> Rep <NA> Dem
Levels: Dem Rep

Notice that NA was explicitly included among the values supplied to exclude. If it
were not, then droplevels would have put NAs into a level, as we now describe.

1.6.2 NA as a factor level

As an alternative to the usual way of handling missing values, we can instruct R
to classify NAs into a level of their own. This will happen if we call factor with
exclude=NULL,

> party <- factor(c("Dem", "Ind", "Rep", NA, "Rep", "Ind", "Dem"),
+ exclude=NULL)
> party

[1] Dem Ind Rep <NA> Rep Ind Dem
Levels: Dem Ind Rep <NA>

or if we pass a factor to the function addNA.

> party <- factor(c("Dem", "Ind", "Rep", NA, "Rep", "Ind", "Dem"))
> party

[1] Dem Ind Rep <NA> Rep Ind Dem
Levels: Dem Ind Rep

> party <- addNA(party)
> party

[1] Dem Ind Rep <NA> Rep Ind Dem
Levels: Dem Ind Rep <NA>

The inverse operation to addNA is droplevels with exclude=NA.

> party <- droplevels(party, exclude=NA)
> party

[1] Dem Ind Rep <NA> Rep Ind Dem
Levels: Dem Ind Rep

When NA is a factor level, the factor contains no missing values in the traditional
sense. None of the integer codes are NA_integer_, and is.na always returns FALSE.

11 11

1 REVIEW OF CATEGORICAL VARIABLES IN R

> party <- addNA(party)
> unclass (party)

[1] 1234321
attr(,"levels")
[1] "Demll n Ind" llRep" NA

> is.na(party)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

When a factor with NA as a level appears on the right-hand side of a model formula,
the regression functions 1m and glm will include the NA cases in the analysis, creating
a dummy code or other contrast term to distinguish NA from the other levels. That
approach may be sensible if the model is intended only for prediction, but it often
leads to unintended or undesirable consequences and should be used only with
caution.

1.7 Manipulating factor levels

The replacement version of the function levels, known to R as levels<-, can be
used to change a factor’s levels attribute. Often it will not affect the underlying
integer codes, but sometimes it will. If x is a factor, then replacing levels(x) with
another character vector of the same length simply renames the categories without
changing the integer codes.

> # draw 25 values of red, green, or blue with equal probabilities
> myFac <- cut(runif(25), breaks=c(0, .333, .667, 1),

+ labels=c("red", "green", "blue"))

> table(myFac)

myFac
red green blue
5 10 10

> # change three colors to Three Stooges

> levels(myFac) <- c("Larry", "Curly", "Moe")
> table (myFac)

myFac

Larry Curly Moe
5 10 10

It does not matter if the replacement levels happen to be a permutation of the
existing ones; the categories are merely renamed.

> # replace "Larry" with "Moe", "Curly with "Larry", "Moe" with "Curly"
> levels(myFac) <- c("Moe","Larry", "Curly")
> table (myFac)

12 12

1 REVIEW OF CATEGORICAL VARIABLES IN R

myFac
Moe Larry Curly
5 10 10

Replacing levels by a longer vector will introduce empty levels.

> # add the mysterious fourth Stooge, creating an empty level
> levels(myFac) <- c("Moe","Larry", "Curly", "Shemp")
> table(myFac)

myFac
Moe Larry Curly Shemp
5 10 10 0

And replacing a single element of levels with another, existing level will change
the integer codes, collapsing the two categories into one.

This will replace every occurrence of "Curly" with "Shemp"...
levels(myFac) [3] <- "Shemp"

...causing "Curly" to be dropped from the levels

table (myFac)

vV VvV Vv Vv

myFac
Moe Larry Shemp
5 10 10

If we try to replace levels with a shorter vector, R will report an error, because it
has not been told how the existing levels relate to the new ones. When reducing the
number of levels, we can specify these relationships via a list. For example, suppose
we have a factor with three levels, and we want to combine two levels into one,
producing a new factor with two levels.

> party <- factor(c("Dem", "Ind", "Rep", "Dem", "Rep", "Ind", "Dem"))
> table(party)

party
Dem Ind Rep
3 2 2

> # leave "Rep" alone, but combine "Dem" and "Ind" into "notRep"
> levels(party) <- list(Rep = "Rep", notRep = c("Dem", "Ind"))
> table(party)

party
Rep notRep
2 5

The names of the provided list become the 1levels of the new factor.

Other useful functions for manipulating factor levels include relevel and reorder,
which may change the integer codes; see ?relevel and ?reorder for details.

13 13

2 COARSENED CATEGORICAL VARIABLES

2 Coarsened categorical variables

2.1 What are coarsened data?

Coarsened data is a general term for quantities that may be fully observed, entirely
missing, or somewhere in between. Instead of obtaining a random variable’s re-
alized value, we are told that the value lies in a subset of the random variable’s
support.

Coarsened data are common in survival analysis. Suppose V; ia a continuously
distributed positive outcome (e.g., survival time) for observational unit i. Ideally,
the analyst is told the actual value V; = v;, in which case the datum is fully observed.
In lieu of that, the analyst may be told

S
m

0, a;) for some a; > 0, said to be left-censored;

b;, 00) for some b; > 0, said to be right-censored,;

° °
INSEEEAS
m m

a;, b;) for a; < b;, said to be interval-censored; or

0, o), which corresponds to a traditional missing value.

Procedures for survival analysis may accept any or all of these types, but special data
structures might be needed. A continuous variable with all these types of censoring
cannot be stored as a numeric vector with a single missing-value code. To analyze
such data, we need to extend the usual objects to hold extra information.

2.2 Theory of coarsened data

A general paradigm for describing and analyzing coarsened data was developed by
Heitjan and Rubin (1991) and Heitjan (1994). That framework built upon theory
of missing data begun by Rubin (1976), and key concepts from the literature on
missing data extend to coarsened data in natural ways.

In the missing-data literature, a missing-data mechanism is a process that oper-
ates on a sample of complete data to determine which data values will be observed
and which ones will be missing. If we assume that the probabilities of missingness
do not depend on any missing quantities, the missing values are said to be missing
at random (MAR), and in those cases, explicit modeling of the missing-data mech-
anism is (usually) not necessary. With coarsened data, there is a coarsening mech-
anism, a process that operates on the realized data to determine if and how they
are being coarsened. The analogue of MAR is coarsened at random (CAR), which

14 14

2 COARSENED CATEGORICAL VARIABLES

allows us to forego building a model for the coarsening mechanism. For extended
discussion of these topics and more references, see Little and Rubin (2002).

Some areas of applied statistics have developed special terminology for coars-
ened data, but the concepts are similar to those in the general theory of Heitjan and
Rubin (1991) and Heitjan (1994). A prime example is noninformative censoring in
survival analysis, which essentially means that the censored values are CAR.

2.3 Notation for coarsened categorical variables

Imagine a dataset with J categorical variables. Let V;; denote the jth categorical
variable for individual or observational unit i. Denote its set of possible values by

vV, = {1,2,...,#V,}.

(The symbol ‘#’ is the cardinality operator. When applied to a set, it returns the
number of elements in the set. We use this symbol to avoid adding unnecessary let-
ters to our notation.) The elements of V; are called base-level codes; these are all the
possible responses that would be seen if there were no nonresponse or coarsening.

Let V;; denote the observed, coarsened version of V;;. The possible values of V;}
lie in the expanded set

Vi = {1,2,..,#V,,... #Vi},
where #V5 > #V;. The extra codes not found in V;,
VIV = {#V+1,... #Vi}

are called coarse-level codes. (The symbol ‘\’ is the set difference operator.)

If V7 happens to be one of the base-level codes, then Vj; is fully known and is
equal to V7,

V;j:]_ = ‘/ij:]-y

Vi =#Y; = Vi, = #V,.

However, if V7 happens to be one of the coarse-level codes, the exact value of Vj;
cannot be deduced from it. In that case, V;; is known to lie within a given subset of
the base-level codes, a set denoted by M;(V}3). That is,

Vi=v =V, € M;(v%),

15 15

2 COARSENED CATEGORICAL VARIABLES

where M is the mapping, a one-to-many relation that maps elements of V* onto
non-empty subsets of V;. By convention, we will use the last coarse-level code to
denote a traditional missing value,

M;(v*) = V; whenv® = #V7.

For example, suppose that V;; denotes a trichotomous political party affiliation
with possible values 1=Democrat, 2=Republican, and 3=Independent. If individual
i provides her exact affiliation, then V;; will be 1, 2, or 3, and V}; will coincide with
V;;. For those responses, the mappings are one-to-one,

M;(1) = {1},
M;(2) = {2},
M;(3) = {3}.

Now suppose she indicates that she is not a Democrat, but declines to say whether
she is Republican or Independent. If we code that event as V7 = 4, then the map-
ping is

M,(4) = {2,3}.
Similarly, if she only indicates that she is not a Republican, and we code the event
as V7 = 5, then

M;(5) = {1,3}.
If she indicates she is not an Independent, then V;} = 6, and
M;(6) = {1,2}.

Finally, if she declines to provide any information at all, then the coding is V;} = 7,
and the mapping is

MJ(7) = {17 2, 3}7
which corresponds to a traditional missing value.

As the number of base-level codes increases, the number of possible coarse-level
codes expands rapidly. If we were to include all possible coarsenings, #V? would
be (two raised to the power of #V;, minus one). In practice, we do not need to
create a coarse-level code for every possible subset of the base-level codes, but only
for groupings that actually happen. Continuing the previous example, suppose that
party affiliation is measured by two items on a questionnaire. The first item is, “Do
you consider yourself to be Independent?” If the response is “Yes,” then the second
item is skipped. If the response is “No,” then the participant is presented with the
second item, “Do you consider yourself to be Democrat or Republican?” Nonre-
sponse to the second item produces a coarsened value of {Democrat, Republican},
and nonresponse to both items gives {Democrat, Republican, Independent}, which
is a traditional missing value. The combinations {Democrat, Independent} and {Re-
publican, Independent} do not occur in this study and therefore do not need to be
represented in V7.

16 16

3 WORKING WITH COARSENED FACTORS

2.4 Where do coarsened categorical variables come from?

In a trivial sense, every dataset with missing values has coarsened data, because
traditional missing values are a particular type of coarsening. As shown by in the
previous discussion, coarsened values can arise when variables are created from
multiple items on a questionnaire, if participants respond to some questions but
not others. Coarsening may also result from attempts to harmonize data from mul-
tiple sources, when those sources attempt to measure similar constructs but with
different levels of granularity.

Apart from certain areas of statistics (e.g., survival analysis), however, methods
for coarsened variables are not widely used, lending the impression that coarsened
values ought to be eliminated by editing them out of a dataset or recoding them
as missing. As techniques and software become available, coarsened values can
be incorporated into analyses in more principled manner, leading to more efficient
results, because partial information is better than none.

3 Working with coarsened factors

3.1 How to create a coarsened factor

In the cvam package, coarsened factors are created by the function coarsened. Let
us begin with a trivial example.

> myFac <- factor(c("red", "green", NA, "yellow",

+ "notRed", "green", "notGreen"))
> table(myFac, exclude=NULL)

myFac
green notGreen notRed red yellow <NA>
2 1 1 1 1 1

This factor, which R does not yet understand to be a coarsened factor, has five levels.

> levels(myFac)

[1] "green" "notGreen" "notRed" "red" "yellow"

Based on their names, it appears to us that

e "green", "red" and "yellow" are base levels,

* "notGreen" is a coarse level that maps to c("red", "yellow"), and

17 17

3 WORKING WITH COARSENED FACTORS

* "notRed" is a coarse level that maps to c("green", "yellow").
Moreover, the missing value NA is a coarse level that maps to c("green", "red",
"yellow").

To turn this factor into a coarsened factor, we load the cvam package and call
the coarsened function.

> library(cvam)
> myCoarsenedFac <- coarsened(myFac, levelsList
+ list(notGreen = c("red", "yellow"), notRed = c("green", "yellow")))

The result is a factor,

> is.factor (myCoarsenedFac)

[1] TRUE

with all the usual factor properties,

> storage.mode (myCoarsenedFac)
[1] "integer"

> nlevels (myCoarsenedFac)

(11 6

> levels(myCoarsenedFac)

[1] "green" "red" "yellow" "notGreen" "notRed" NA

plus some new properties which are displayed by the print function.

> myCoarsenedFac

[1] red green <NA> yellow notRed green notGreen
Base levels: green red yellow
Coarse levels: notGreen notRed <NA>

Mapping:

green red yellow
notGreen 0 1 1
notRed 1 0 1
<NA> 1 1 1

The levelsList argument that we supplied to coarsened instructed the function
to

* interpret "notGreen" as a combination of "red" and "yellow", and

18 18

3 WORKING WITH COARSENED FACTORS

* interpret "notRed" as a combination of "green" and "yellow".

Notice that we did not explicitly tell coarsened that "green", "red" and "yellow"
were base levels. The function discerned the base levels by looking at 1evels (myFac)
and eliminating everything in names(levelsList). Notice also that we did not ex-
plicitly say that NA was a combination of "green", "red" and "yellow". Once the
function identified the base levels, it automatically interpreted NA as a combination
of all of them.

The coarsened function has only three arguments.

coarsened(obj, levelsList = 1list(), warnIfCoarsened = TRUE)

obj: a factor to be turned into a coarsened factor. This factor may have missing
values, but it should not have NA as a level.

levelsList: a list that identifies each coarse level (except NA) and its mapping
to the base levels.

warnIfCoarsened: if TRUE, a warning will be provided if obj is already a coars-
ened factor

The default value of levelsList is an empty list, which tells coarsened to treat
every level in 1levels(obj) as a base level, and to create NA as the only coarse level.

3.2 Attributes of a coarsened factor

The coarsened factor that we created has the following attributes.

> attributes(myCoarsenedFac)

$levels
[1] "green" "red" "yellow" "notGreen" "notRed" NA
g y

$class
[1] "coarsened" "factor"

$mapping

green red yellow
notGreen 0 1 1
notRed 1 0 1
<NA> 1 1 1
$baselevels
[1] "green" ‘"red" "yellow"
$coarseLevels

[1] "notGreen" "notRed" NA

19 19

3 WORKING WITH COARSENED FACTORS

$nBaseLlevels
[1] 3

$nCoarselLevels
[1] 3

$baseLevelCodes
[11 123

$coarseLevelCodes
[11] 4 5 6

$latent
[1] FALSE

$contrasts

[,11 [,2]
green 1 0
red 0 1
yellow -1 -1
notGreen 0 0
notRed 0 0
<NA> 0 0

* The class of coarsened factor is either c ("coarsened", "factor") or c("coarsened",
"ordered", "factor"), depending on whether the main argument to coarsened
was ordered.

e The levels attribute includes the base levels and the coarse levels. The base
levels are listed first, and NA always comes last.

* The mapping attribute is an integer matrix with elements 0 and 1, showing the
combination of base levels for each coarse level.

* The contrasts attribute is designed to facilitate log-linear modeling, as ex-
plained in the document Log-Linear Modeling with Missing and Coarsened Val-
ues Using the cvam Package. It is not intended for use by functions outside of
the cvam package, e.g., regression analyses with 1m or glm. Using a coarsened
factor on the right-hand side of a model formula with those functions can
produce nonsensical results.

Some attributes can be retrieved by functions of the same name. For example,

> baseLevels(myCoarsenedFac)

[1] "green" ‘"reqd" "yellow"

is a convenient shorthand for attr (myCoarsenedFac, "baseLevels").

Please note that, with very few exceptions, the attributes of a coarsened factor
should only be set by the coarsened function and should not be directly changed
by the user.

20 20

3 WORKING WITH COARSENED FACTORS

3.3 Example: Race and Hispanic origin

Over the last half century, it has become standard practice in the United States for
census and survey questionnaires to include separate items for race and Hispanic
origin. In the year 2000, the General Social Survey (GSS) (Smith et al., 2019)
included an item based on the race question from the U.S. Census. Participants
could choose from over a dozen race categories, or they could select “Some other
race” and provide their own. This item was given to a random half-sample, so it
is missing for about 50% of participants. A separate question on Hispanic origin
was given to the full sample. These two items are provided in the data frame
abortion2000 distributed with the cvam package. A cross-tabulation for these two
items is shown below.

> str(abortion2000)

'data.frame': 2817 obs. of 19 variables:

$ Age : Ord.factor w/ 4 levels "18-29"<"30-49"<..: 1242112222 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 111112122 ...

$ Race : Factor w/ 3 levels "White","Black",..: 1111111111 ...

$ CenRace : Factor w/ 4 levels "White","Black",..: NANANA 1111 1NAZ1 ...
$ Hisp : Factor w/ 2 levels "nonHisp","Hisp": 1 211111111 ...

$ Degree : Ord.factor w/ 5 levels "<HS"<"HS"<"JunCol"<..: 4 222322354 ...
$ Relig : Factor w/ 5 levels "Prot","Cath",..: 1115415111 ...

$ Party : Factor w/ 3 levels "Dem","Rep","Ind/Oth": 2232112112,

$ PolViews: Ord.factor w/ 3 levels "Con"<"Mod"<"Lib": 1 11133 2331.

$ AbDefect: Factor w/ 3 levels "Yes","No","DK": 1 1 NA NA NA 1 1 1 NA NA

$ AbNoMore: Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA

$ AbHealth: Factor w/ 3 levels "Yes","No","DK": 1 2 NA NA NA 1 1 1 NA NA

$ AbPoor : Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA

$ AbRape : Factor w/ 3 levels "Yes","No","DK": 1 2 NA NA NA 1 1 1 NA NA

$ AbSingle: Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA

$ AbAny : Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA

$ WTSSALL : num 1.099 0.549 0.549 0.549 0.549 ...

$ VSTRAT : int 1687 1687 1687 1687 1687 1687 1687 1687 1687 1687 ...

$ VPSU cint 1111111122 ...

> CenRace <- abortion2000$CenRace
> Hisp <- abortion2000$Hisp
> table(CenRace, Hisp, exclude=NULL)

Hisp
CenRace nonHisp Hisp <NA>
White 1042 50 1
Black 198 3 0
Hisp 0 41 0
Other 44 19 0
<NA> 1320 99 0

Notice that 41 persons (about 3% of the half-sample) have a value of "Hisp" for
CenRace. Hispanic ancestry is viewed by some to be both an ethnicity and a race.
These persons selected “Some other race” and described themselves as Hispanic,
Latina, Latino, or something similar.

21 21

3 WORKING WITH COARSENED FACTORS

Data analysts often combine race and Hispanic origin into a single variable.
Consider a classification into four levels,

1 = non-Hispanic White,
2 = non-Hispanic Black,
3 = non-Hispanic Other,
4 = Hispanic.

In R, the colon operator ‘:’ combines two factors into a single factor with a level
for every possible combination of the operands’ levels. Observe what happens if we
apply this operator to CenRace and Hisp, both of which have missing values.

> RH <- Hisp:CenRace
> table(RH, exclude=NULL)

RH
nonHisp:White nonHisp:Black nonHisp:Hisp nonHisp:Other Hisp:White Hisp:Black

1042 198 0 44 50 3
Hisp:Hisp Hisp:0ther <NA>
41 19 1420

Every case with a missing value for either of the two variables received a missing
value in the result, and a large amount of useful information has been needlessly
discarded. Notice that 99 missing values came from Hispanic persons with missing
race; we may assume that they are Hispanic and manually assign them to level
4. But 1,320 missing values came from non-Hispanic persons with missing race;
these are more problematic, because each of them could belong to any of the levels
1, 2, or 3. An ordinary factor in R cannot handle that partial information, but a
coarsened factor can.

To create our coarsened factor, we first apply addNA to each factor, combine them
with “:’, and drop the empty levels.

> CenRace <- addNA(CenRace)
> Hisp <- addNA(Hisp)

> RH <- Hisp:CenRace

> table (RH)

RH
nonHisp:White nonHisp:Black nonHisp:Hisp nonHisp:Other nonHisp:NA Hisp:White

1042 198 0 44 1320 50
Hisp:Black Hisp:Hisp Hisp:0Other Hisp:NA NA:White NA:Black
3 41 19 99 1 0

NA:Hisp NA:Other NA:NA

0 0 0

> RH <- droplevels (RH)
> table(RH)

22 22

3 WORKING WITH COARSENED FACTORS

RH
nonHisp:White nonHisp:Black nonHisp:0Other nonHisp:NA Hisp:White Hisp:Black
1042 198 44 1320 50 3
Hisp:Hisp Hisp:0ther Hisp:NA NA:White
41 19 99 1

In this example, there happen to be no observations with missing values for both
CenRace and Hisp. If there were, they would belong to a level named "NA:NA", and
at this point we would want to set them to NA and drop the empty "NA:NA" level,
like this:

> RH[RH == "NA:NA"] <- NA
> RH <- droplevels(RH)

Before applying the coarsened function, we reorder and combine levels using
the levels<- function with a list, as described in Section 1.7.

> levels(RH) <- list(

+ nonHispWhite = "nonHisp:White",

+ nonHispBlack = "nonHisp:Black",

+ nonHispOther = "nonHisp:Other",

+ Hisp = c("Hisp:White", "Hisp:Black", "Hisp:Hisp", "Hisp:Other", "Hisp:NA"),
+ nonHispNA = "nonHisp:NA",

+ NAWhite = "NA:White")

> table (RH)

RH
nonHispWhite nonHispBlack nonHispOther Hisp nonHispNA NAWhite
1042 198 44 212 1320 1

The factor now has six levels. The first four will become base levels, and the last
two will become coarse levels. We are ready to create the coarsened factor.

> RH <- coarsened(RH, levelsList = list(

+ nonHispNA = c("nonHispWhite", "nonHispBlack", "nonHispOther"),
+ NAWhite = c("nonHispWhite", "Hisp")))

> table(RH)

RH
nonHispWhite nonHispBlack nonHispOther Hisp nonHispNA NAWhite
1042 198 44 212 1320 1
<NA>
0

It’s a good idea to examine the mapping matrix to make sure everything looks cor-
rect.

> mapping (RH)

23 23

3 WORKING WITH COARSENED FACTORS

nonHispWhite nonHispBlack nonHispOther Hisp

nonHispNA 1 1 1 0
NAWhite 1 0 0 1
<NA> 1 1 1 1

Notice that coarsened automatically added an extra coarse level called NA, which
in this example happens to be empty.

Because RH has the same length as the other variables in abortion2000, it may
be put into the data frame.

> abortion2000 <- data.frame (abortion2000, RH)
> abortion2000$RH <- RH # does the same thing

When a coarsened factor is put into a data frame, all of its attributes are preserved.

> identical(attributes(abortion2000$RH), attributes(RH))

[1] TRUE

These attributes are needed by cvam’s modeling functions, which are described in
the companion document Log-Linear Modeling with Missing and Coarsened Values
Using the cvam Package.

3.4 Tabulating coarsened factors

Because a coarsened factor inherits from class "factor", it can be passed to any R
function that accepts factors. If that function is not part of the cvam package, it will
treat coarse levels no differently from base levels. For example, the table function,
which is called by summary, displays frequencies for all base levels and all coarse
levels, including NA.

> summary (RH) # essentially the same as table(RH)

nonHispWhite nonHispBlack nonHispOther Hisp nonHispNA NAWhite
1042 198 44 212 1320 1

<NA>

0

When applied to ordinary factors, however, the table function omits ordinary NAs
by default. So if a coarsened and ordinary factor are cross-tabulated, the default
behavior is to treat NA as a level for the coarsened factor but omit NAs from the
ordinary factor.

24 24

3 WORKING WITH COARSENED FACTORS

> # from abortion2000, a three-level factor
> PolViews <- abortion2000$PolViews

> # there are some missing values

> table(is.na(PolViews))

FALSE TRUE
2644 173

> # but the NAs don't show up in a table
> table(RH, PolViews)

PolViews
RH Con Mod Lib
nonHispWhite 337 373 274
nonHispBlack 44 90 45
nonHispOther 9 21 11

Hisp 59 74 63
nonHispNA 440 496 307
NAWhite 1 0 o0
<NA> 0o 0 ©

To display NAs for the ordinary factor, you can

* call table with the argument exclude=NULL,
* explicitly turn NA into a level of the ordinary factor by calling addNA, or

* turn the ordinary factor into a coarsened factor, which does essentially the
same thing as addNA.

> table(RH, PolViews, exclude=NULL)

PolViews
RH Con Mod Lib <NA>
nonHispWhite 337 373 274 58
nonHispBlack 44 90 45 19
nonHispOther 9 21 11 3

Hisp 59 74 63 16
nonHispNA 440 496 307 77
NAWhite 1 0 o0 0
<NA> o 0 O 0

> table(RH, PolViews = addNA(PolViews))

PolViews
RH Con Mod Lib <NA>
nonHispWhite 337 373 274 58
nonHispBlack 44 90 45 19
nonHispOther 9 21 11 3

Hisp 59 74 63 16
nonHispNA 440 496 307 77
NAWhite 1 0 o0 0
<NA> 0 0 o0 0

> table(RH, PolViews = coarsened(PolViews))

25 25

3 WORKING WITH COARSENED FACTORS

PolViews
RH Con Mod Lib <NA>
nonHispWhite 337 373 274 58
nonHispBlack 44 90 45 19
nonHispOther 9 21 11 3

Hisp 59 74 63 16
nonHispNA 440 496 307 77
NAWhite i 0 O 0
<NA> 0o 0 o0 0

The xtabs function is similar to table, but the variables to be tabulated are specified
in a formula. To instruct xtabs to display NAs in an ordinary factor, use the argument
addNA=TRUE,

> xtabs(~ RH + PolViews, addNA=TRUE)

PolViews
RH Con Mod Lib <NA>
nonHispWhite 337 373 274 58
nonHispBlack 44 90 45 19
nonHispOther 9 21 11 3

Hisp 59 74 63 16
nonHispNA 440 496 307 77
NAWhite 1 0 o0 0
<NA> o 0 O 0

or wrap the ordinary factor with addNA or coarsened. Coarse levels are also dis-
played in flat tables, which are two-dimensional displays of multiway frequency
tables created by the function ftable. To display NAs in an ordinary factor, wrap
the factor with addNA and call ftable with exclude=NULL.

> # display a flat version of a three-way table, with Sex:RH as

> # the row and PolViews as the column, showing the NAs in PolViews
> Sex <- abortion2000$Sex

> ftable(addNA(PolViews) ~ Sex + RH, exclude=NULL)

addNA (PolViews) Con Mod Lib NA

Sex RH

Female nonHispWhite 163 214 154 41
nonHispBlack 34 52 26 10
nonHispOther 4 15 6 1
Hisp 29 41 45 9
nonHispNA 214 299 177 53
NAWhite 1 0 0 O
NA o o0 o0 o

Male nonHispWhite 174 159 120 17
nonHispBlack 10 38 19 9
nonHispOther 5 6 5 2
Hisp 30 33 18 7
nonHispNA 226 197 130 24
NAWhite o o0 o0 o
NA o o0 o0 o

To tabulate a coarsened factor without displaying its coarse levels, use the cvam
function dropCoarseLevels. This function removes the coarse levels from a coars-
ened factor, sets the coarsened values to NA, and returns an ordinary factor as its
result.

26 26

3 WORKING WITH COARSENED FACTORS

> table(RH=dropCoarseLevels(RH), PolViews)

PolViews
RH Con Mod Lib
nonHispWhite 337 373 274
nonHispBlack 44 90 45
nonHispOther 9 21 11
Hisp 59 74 63

If the only coarse level is NA, then no information is lost when dropCoarseLevels is
applied. If other non-empty coarse levels are present, however, the partial informa-
tion carried by those observations is effectively discarded.

3.5 Creating coarsened factors from tabulated or grouped data

In Section 3.3, we created RH from a data frame with one row per individual in
the survey. Datasets with rows for individual units are called microdata. For the
most part, any procedure for creating coarsened factors from microdata can also be
applied to tabulated or grouped data, if those data exist in a data frame.

To illustrate, let’s create a grouped dataset from the demographic variables Age,
Sex, CenRace, and Hisp.

> groupedData = as.data.frame(xtabs(~ Age + Sex + CenRace + Hisp,
+ data=abortion2000, addNA=TRUE))
> dim(groupedData)

[1] 150 5

> head(groupedData)

Age Sex CenRace Hisp Freq

1 18-29 Female White nonHisp 96

2 30-49 Female White nonHisp 244

3 50-64 Female White nonHisp 114

4 65+ Female White nonHisp 115

5 <NA> Female White nonHisp 3

6 18-29 Male White nonHisp 91

> # eliminate rows with Freq == 0

> groupedData <- subset(groupedData, Freq > 0)
> dim(groupedData)

[11 69 5

The xtabs function created a four-dimensional array of frequencies, and the option
addNA=TRUE ensured that missing values in the factors were retained. The number
of cells in that four-dimensional array is 5 x 2 x 5 x 3 = 150. Wrapping xtabs
with as.data.frame reshaped the array into a data frame with 150 rows and five
variables: one factor for each of the four dimensions, plus an integer-valued vari-
able Freq containing the cell counts. Many cells in the four-dimensional table were

27 27

3 WORKING WITH COARSENED FACTORS

empty, and removing rows of the data frame with frequencies of zero reduced its
size to 69 by 5.

From this grouped dataset, we may now form the coarsened factor RH using
exactly the same procedure that we used with microdata.

CenRace <- addNA(groupedData$CenRace)
Hisp <- addNA(groupedData$Hisp)
RH <- Hisp:CenRace
RH <- droplevels(RH)
levels(RH) <- list(
nonHispWhite = "nonHisp:White",
nonHispBlack "nonHisp:Black",
nonHispOther = "nonHisp:Other",
Hisp = c("Hisp:White", "Hisp:Black", "Hisp:Hisp", "Hisp:Other", "Hisp:NA"),
nonHispNA = "nonHisp:NA",
NAWhite = "NA:White")
RH <- coarsened(RH, levelsList = list(
nonHispNA = c("nonHispWhite", "nonHispBlack", "nonHispOther"),
NAWhite = c("nonHispWhite", "Hisp")))
copy the coarsened factor into the grouped data frame
groupedData$RH <- RH

VV+ +V+++ + + +V VYV VYV

To produce a one-way classification by RH from this grouped dataset, we sum the
variable Freq within levels of RH using aggregate.

> aggregate(Freq ~ RH, FUN=sum, data=groupedData)

RH Freq
1 nonHispWhite 1042
2 nonHispBlack 198
3 nonHispOther 44

4 Hisp 212
5 nonHispNA 1320
6 NAWhite 1

3.6 Retaining coarsened factor attributes

Standard R functions for manipulating and reshaping data were not designed for
coarsened factors. The cvam package provides versions of the extraction functions
[and [[, and versions of the replacement functions [<- and [[<-, to preserve the
special attributes of coarsened factors through subsetting and replacement. For
example, consider what happens when we extract rows from a data frame using [
or subset.

> # list the attributes of our coarsened factor RH
> names(attributes(abortion2000$RH))

28 28

4 LOOKING AHEAD

[1] "levels" "class" "mapping" "baseLevels"
[5] "coarseLevels" "nBaseLevels" "nCoarselLevels" "baseLevelCodes"
[9] "coarseLevelCodes" "latent" "contrasts"

> # extract females using [and list the attributes
> femOnly <- abortion2000[abortion2000$Sex == "Female",]
> names(attributes(femOnly$RH))

[1] "levels" "class" "mapping" "baseLevels"
[5] "coarseLevels" "nBaseLevels" "nCoarseLevels" "baseLevelCodes"
[9] "coarseLevelCodes" "latent" "contrasts"

> # do the same thing with subset
> femOnly <- subset(abortion2000, Sex == "Female")
> names(attributes(femOnly$RH))

[1] "levels" "class" "mapping" "baseLevels"
[6] "coarseLevels" "nBaseLevels" "nCoarseLevels" "baseLevelCodes"
[9] "coarseLevelCodes" "latent" "contrasts"

Unfortunately, when coarsened factors are subjected to other manipulations,
their special attributes are sometimes lost. For example, none of the special at-
tributes persist through an application of xtabs and as.data.frame:

> newGrouped <- as.data.frame(xtabs(~ Age + Sex + RH, data=abortion2000,
+ addNA = TRUE))

> newGrouped <- subset(newGrouped, Freq > 0)

> names(attributes(newGrouped$RH))

[1] "levels" "class"

In this case, the attributes can be restored manually:

> attributes(newGrouped$RH) <- attributes(abortion2000$RH)

An experimental R package named sticky (Brown, 2017) was created for this pur-
pose. If we apply the sticky function to a coarsened factor, its class is modified
to c("sticky", "coarsened", "factor"), and the sticky package works silently
behind the scenes to help retain the extra attributes. This package does not solve
every problem, however, and in certain cases you may still need to restore the at-
tributes yourself.

4 Looking ahead

At this point, we have introduced coarsened factors and explained how to create and
manipulate them, but readers may still be wondering why anyone should bother
with these new objects. Handling NAs is difficult enough, and coarsened values are

29 29

REFERENCES

yet another inconvenience that analysts would rather avoid. In typical applications,
the base levels of variables are important, and observations at the coarse levels are
worth paying attention to only if they improve our understanding what is happening
at the base levels. That is precisely why cvam was created. This package allows us to
fit models that describe the base levels using the information in coarsened values.

Returning to the notation of Section 2.3, our goal is to describe the categorical
variables (V;i, ..., V;;) and the relationships among them, but the available data are
coarsened versions (V;i, ..., V.%). The cvam package allows a user to model the joint
distribution of (V;i,...,V,;) from observations of (V;;,..., V). To compute proper
answers, special procedures are needed; we cannot simply discard the coarsened
values, even in the univariate (J = 1) case. The modeling functions in cvam pro-
vides those answers an efficient and hassle-free manner.

To see why this matters, suppose we try to estimate proportions within the cat-
egories of race and Hispanic origin defined in Section 3.3,
1 = non-Hispanic White,
2 = non-Hispanic Black,
3 = non-Hispanic Other,
4 = Hispanic,

from the frequencies in our coarsened factor RH. Dropping the coarsened values, we
obtain these sample proportions.

> dropRH <- dropCoarseLevels(abortion2000$RH)

> round(table(dropRH) / sum(table(dropRH)), 4)

dropRH

nonHispWhite nonHispBlack nonHispOther Hisp
0.6965 0.1324 0.0294 0.1417

However, the maximum-likelihood (ML) estimates based on the full data are starkly
different:

nonHispWhite nonHispBlack nonHispOther Hisp
0.7506 0.1425 0.0317 0.0753

Using ML reduces the estimated proportion of Hispanics by nearly one half. We
explain how to obtain these results in the companion vignette Log-Linear Modeling
with Missing and Coarsened Values Using the cvam Package.

References

Bates, D., Machler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, 67(1):1-48.

30 30

REFERENCES

Brown, C. (2017). sticky: Persist Attributes Across Data Operations. R package
version 0.5.2.

Chambers, J. M. and Hastie, T. J., editors (1992). Statistical Models in S, volume
251. Wadsworth & Brooks/Cole Advanced Books & Software Pacific Grove, CA.

Heitjan, D. F. (1994). Ignorability in general incomplete-data models. Biometrika,
81(4):701-708.

Heitjan, D. F. and Rubin, D. B. (1991). Ignorability and coarse data. The Annals of
Statistics, 19(4):2244-2253.

Little, R. J. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, Second
Edition. John Wiley & Sons, New York.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581-592.

Smith, T. W., Davern, M., Freese, J., and Morgan, S. L. (2019). General Social
Surveys, 1972-2018. National Data Program for the Social Sciences, No. 25.
NORGC, Chicago. 1 data file (64,814 logical records) + 1 codebook (3,758 pp.).

Venables, W. N. and Ripley, B. D. (2013). Modern Applied Statistics with S. Springer
Science & Business Media, New York, fourth edition.

31 31

