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1 The dyadic model equations
The dyadic model is presented in Section 6.2.2 of the document dmmOvervire.pdf [1]. It results in a set of
equations (the DME’s) which are given in matrix form as equation 12, which is reproduced below

Ψ=WΓ+∆ (1)

It is important to understand each of the matrix components of these equations, so we elaborate as follows
First, the following variables set the size of the problem and the sizes of the above matrices

n number of individuals with data

m number of individuals in pedigree

l number of traits

k number of fixed effects

c number of variance components to be estimated

Now we explain each matrix

Ψ n2 × l2 matrix of dyadic covariances for each pair of individuals (row) and each traitpair (col). Each
covariance needs to be appropriately adjusted for fixed effects. The columns of Ψ become the dependent
variables in a multi-trait multiple regression.

W n2 × c matrix containing the coefficients of the dyadic model equations, which become the independent
variables of a multiple regression. Each column of W has the form Vec(MZcRcZ

′
cM

′) where Vec is
an operator that vectorizes a matrix, M is a matrix from the fixed effect model such that Y −Xα̂ = MY ,
Zc is an incidence matrix relating individuals with data to individuals in the pedigree, and Rc is a
relationship matrix relevant to component c. Note that relationship matrices are used, not their inverse.

Γ c× l2 matrix of (co)variance component parameters to be estimated, which become the partial regression
coefficients of a multiple regression.

∆ n2 × l2 matrix of dyadic model residuals. Note the variance of these is not the individual environmental
variance component - that has to be explicitely fitted as one of the columns of matrix W and appears as
one row of matrix Γ. The ∆ matrix elements are the extent to which each dyadic covariance in matrix
Ψ deviates from its expectation. The (co)variances of the elements of ∆ enter into the standard errors of
variance component estimates, in the same way that the (co)variances of residuals enter into the standard
errors of any regression coefficient estimates.

Matrices Ψ and W have n2 rows, so we are looking at solving n2 equations in c unknowns. This is an
overdetermined system. We can use least squares to obtain an approximate solution.
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2 Dyadic model assumptions
Before attempting a regression fit of model (1), it is worth looking at how well the data conform to the
assumptions made in using using least squares to fit a multiple regression model. The critical assumptions are

• the independent variables ( columns of W ) are uncorrelated

• the residuals (columns of ∆) are uncorrelated with each other and with the independent variates

A least squares fit does not involve assumptions regarding the distribution of residuals, but this does be-
come involved when using residuals to obtain standard errors of parameter estimates.

2.1 The assumption of independence of columns of W
The correlations among independent variables (columns of W ) are returned by dmm() in the attribute dme.correl
of the returned object. These are pairwise correlations between the columns of the W matrix. They are not
quite the same thing as correlations between relationship matrix elements, because the columns of W also
involve M and Z matrices, as defined in dmmOverview.pdf [1] Tables 5 and 6.

The Z matrix simply selects a subset of the relationship matrix corresponding to those individuals which
have observations. The M matrix comes from the fixed effects model, and consists of a set of weights which
adjust for the degrees of freedom involved in each of the fixed effects applicable to each individual. The M
matrix is related to the hat matrix (M = I−H). So the columns of the W matrix are a weighted subset of the
elements of the appropriate relationship matrix. Their correlations are therefore not the same as relationship
matrix element correlations. , but are usually similar

In the case of a dataset with mean only, and all individuals in the pedigree with data, such as the warcolak
dataset, the subset is all of the relationship matrix and the weights in M are all equal, so the correlations of
the columns of W are exactly the same as the correlations of the elements of the relationship matrices, in this
special case.

In regression analysis it is generally considered that if there are collinearities among the independent
variates amounting to correlations greater than around 0.5 then the estimates of regression coefficients are
suspect. Translating this to our dyadic model, the variance component estimates are not likely to achieve
a realistic separation if the columns of W have correlations exceeding 0.5. The option of using principal
component regression (dmeopt="pcr" has been developed as an experimental approach to dealing with serious
collinearities among the components.

If we want to plot these W matrix column correlations ( eg as scatteplots) we need argument dmekeep=T
in calling dmm(). The dafault for dmm() is not to save the DME’s in its return object. This can be overridden
with argument dmekeep=T. This results in 2 attributes dme.psi and dme.wmat being added to the returned
object. Caution, this can result in a very large returned object. The attribute dme.wmat is the W matrix, and
its columns can be plotted with the standard plot() routine.

2.2 The assumptions of independence of dyadic residuals
To check the dyadic residuals ∆, we can use the S3 plot() method included in the dmm package. This will
output histograms, qqnorm plots, and scatterplots of residuals against fitted and observed values. Plots tend to
be more informative for datasets with smaller numbers of individuals.

Dyadic residuals are usually not far from normally distributed, but may be leptokurtic and slightly skewed
to the right.

If dyadic residuals are correlated with fitted values of the components, then there is something wrong with
the model, probably some extra component should be fitted.

One can expect dyadic residuals to be correlated with observed dyadic covariances. It is normal for the
fitted components in a dyadic model to explain only a small fraction of the total variation, (ie the dyadic
residuals ∆ are large ) and this of course leads to the observed covariances being highly correlated with
residuals.
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The question of patterns of correlation among the dyadic residuals themselves is a seriously difficult area.
The covariances (or correlations) among the dyadic residuals for one trait form an n2 × n2 matrix - ie n4

elements. Too many to compute and cant be stored in R, except for very small datasets. This issue is discussed
in the document dmmOverview.pdf [1] in relation to why dmm() is only able to do REML estimates. REML
estimates require that the covariance (or correlation) matrix of the dyadic residuals be constructed and used
to compute a GLS rather than an OLS solution to the DME’s. That is only computationally feasible for very
small datasets.

The covariance structure of dyadic residuals is actually known. It is derived in Searle et al (1992) [2] on
pages 407-413. It involves fourth moments of the observations.

3 Covariance structure of dyadic residuals
Searle et al (1992) [2] give the following for the covariance matrix of the observations, and therefore of the
errors, of a dispersion-mean model.

V = cov(Ψ) (2)
= (B⊗B)(I+S) (3)
= (I+S)(B⊗B) (4)

where

I is an identity matrix of order n2

S is a commutation matrix n2 ×n2

B is the covariance matrix all the observations, after removing fixed effects. The observations after fixed
effects removed by least squares are My and the set of covariances (or products) of these residuals is
My⊗My. Now the covariance matrix of My is B =MV M , where V is cov(y).

The term B⊗B gives the covariance matrix of all the covariances of products of residuals.
So V is the expected value of the covariance of dyadic residuals ∆. Searle’s equation 2 only applies if y

is normally distributed. There are additional terms involving the fourth moments of y if it is not normal.
Searle’s presentation is univariate. There is only one observed trait in the vector y. The term (I +S) is

not trait dependent, but B depends on V which depends on the variance component estimates for a trait as
well as on relationship matrices.

We need to look at each of the components of these errors of the dyadic model in order to understand why
a set of products of data values has correlated errors and why a fit of data to the dyadic model often has a large
amount of unexplained variance. The dyadic model residuals, ∆, need to be understood .

3.1 Covariance structue arising from sets of products of data values
Let there be 4 observations (x,y,u,v) and form the two products xy and uv. The covariance between these two
products is

Cov(xy,uv) = E(x)E(u)Cov(y,v)+E(x)E(v)Cov(y,u)+ (5)
E(y)E(u)Cov(x,v)+E(y)E(v)Cov(x,u)+ (6)
Cov(x,u)Cov(y,v)+Cov(x,v)Cov(y,u) (7)

In our case the data values (x,y,u,v) are all adjusted for fixed effects, so the expected values are all zero and
the formula reduces to

Cov(xy,uv) =Cov(x,u)Cov(y,v)+Cov(x,v)Cov(y,u) (8)
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Table 1: Covariance matrix of products of two independent observations y1 and y2

Product y1y1 y1y2 y2y1 y2y2
y1y1 2Var2(y1) 0 0 0
y1y2 0 Var(y1)Var(y2) Var(y1)Var(y2) 0
y2y1 0 Var(y1)Var(y2) Var(y1)Var(y2) 0
y2y2 0 0 0 2Var2(y2)

We now look at what this implies, using a small example of just 2 data values y1 and y2 leading to a set of
4 products y1y1, y1y2, y2y1 and y2y2. Applying the above formula we have, for the case where y1 and y2 are
independent

Cov(y1y1,y1y1) = 2Cov2(y1,y1) (9)
= 2Var2(y1) (10)

Cov(y1y2,y1y1) = 0 (11)
Cov(y2y2,y1y1) = 0 (12)
Cov(y1y2,y1y2) = Cov(y1,y1)Cov(y2,y2)+Cov(y1,y2)Cov(y2,y1) (13)

= Var(y1)Var(y2) (14)
Cov(y1y2,y2y1) = Cov(y1,y2)Cov(y2,y1)+Cov(y1,y1)Cov(y2,y2) (15)

= Var(y1)Var(y2) (16)

This is a sample of the 16 possible combinations, forming the covariance matrix of all the products of 2 data
values.The pattern should be obvious. Table 1 shows the full pattern for the case of y1 and y2 independent. If
Var(y1) = Var(y2) the entries reduce to 2V2 for the covariances of self products with themselves, and V2 for
the remaining non-zero block diagonal covariances.

This is the pattern specified by the (I+S) part of equation 2 If we construct a commutation matrix of size
4 and add an identity matrix to it we get

kmat <- function(m,n)

# commutation matrix or order m x n

{

K <- matrix(0,m*n,m*n)

for (i in 1 : m){

for (j in 1 : n){

K[i + m*(j - 1), j + n*(i - 1)] <- 1

}

}

return(K)

}

> kmat(2,2)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 0 1 0

[3,] 0 1 0 0

[4,] 0 0 0 1

>

> kmat(2,2) + diag(4)

[,1] [,2] [,3] [,4]

[1,] 2 0 0 0

[2,] 0 1 1 0

[3,] 0 1 1 0
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[4,] 0 0 0 2

>

So the term (I+S) specifies the pattern of covariances of products of observations that are independent
and have unit variance. If these assumptions are removed, we have the set of covariances of products shown
in Table 2
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In interpreting Table 2 we have to remember that covariances like Cov(y1,y2) between observations are
covariances between individuals arising from genetic relationships between individuals. So information from
the relationship matrix enters into the dyadic errors via the covariances in Table 2. Also inbreeding information
enters into the dyadic errors via the variances in Table 2. For example terms such as the covariance of y1y1
with itself contain only variances, and are the same in the independent case of Table 1.

3.2 How does Searle’s equation 2 generate the covariance structure of Table 2
Start with 2 observations on related individuals. After fixed effects, the covariance matrix among individuals
is

V = Aσ
2
A +Iσ

2
E (17)

=

[
1 r
r 1

]
σ

2
A +

[
1 0
0 1

]
σ

2
E (18)

=

[
(σ2

A +σ2
E) rσ2

A
rσ2

A (σ2
A +σ2

E)

]
(19)

where

r is the additive relationship coefficient between the two individuals

σ2
A is additive genetic variance

σ2
E is environmental variance

A is additive relationship matrix

I is identity matrix

V is covariance matrix among individuals

We are interested in matrix B =MV M . Here we ignore M for simplicity which is equivalent to there
being no fixed effects. So B is just V here , and we can form B⊗B as follows

B⊗B =

[
(σ2

A +σ2
E) rσ2

A
rσ2

A (σ2
A +σ2

E)

]
⊗
[
(σ2

A +σ2
E) rσ2

A
rσ2

A (σ2
A +σ2

E)

]
(20)

=


(σ2

A +σ2
E)

2 (σ2
A +σ2

E)rσ2
A (σ2

A +σ2
E)rσ2

A r2σ4
A

(σ2
A +σ2

E)rσ2
A (σ2

A +σ2
E)

2 r2σ4
A (σ2

A +σ2
E)rσ2

A
(σ2

A +σ2
E)rσ2

A r2σ4
A (σ2

A +σ2
E)

2 (σ2
A +σ2

E)rσ2
A

r2σ4
A (σ2

A +σ2
E)rσ2

A (σ2
A +σ2

E)rσ2
A (σ2

A +σ2
E)

2

 (21)

B ⊗B is the covariance matrix among all product combinations of the individual y values, allowing for
relationship matrices among individuals and the variance components estimates, but not allowing for the co-
variance structure of sets of products. We can see how this reduces to a diagonal structure if the additive
relationship coefficient (r) is zero.

We now need to multiply this with the (I+S) matrix, as in equation 2.

V = (I+S)(B⊗B) (22)

=


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




(σ2
A +σ2

E)
2 (σ2

A +σ2
E)rσ2

A (σ2
A +σ2

E)rσ2
A r2σ4

A
(σ2

A +σ2
E)rσ2

A (σ2
A +σ2

E)
2 r2σ4

A (σ2
A +σ2

E)rσ2
A

(σ2
A +σ2

E)rσ2
A r2σ4

A (σ2
A +σ2

E)
2 (σ2

A +σ2
E)rσ2

A
r2σ4

A (σ2
A +σ2

E)rσ2
A (σ2

A +σ2
E)rσ2

A (σ2
A +σ2

E)
2

 (23)

=


2(σ2

A +σ2
E)

2 2(σ2
A +σ2

E)rσ2
A 2(σ2

A +σ2
E)rσ2

A 2r2σ4
A

2(σ2
A +σ2

E)rσ2
A (σ2

A +σ2
E)

2 + r2σ4
A (σ2

A +σ2
E)

2 + r2σ4
A 2(σ2

A +σ2
E)rσ2

A
2(σ2

A +σ2
E)rσ2

A (σ2
A +σ2

E)
2 + r2σ4

A (σ2
A +σ2

E)
2 + r2σ4

A 2(σ2
A +σ2

E)rσ2
A

2r2σ4
A 2(σ2

A +σ2
E)rσ2

A 2(σ2
A +σ2

E)rσ2
A 2(σ2

A +σ2
E)

2

 (24)
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V is the covariance matrix of residuals for the dyadic model, allowing for correlated residuals due to
both the covariance structure of products and the relationships between individuals and the variance com-
ponent estimates. This structure agrees with Table 2 . For example the term r2σ4

A is the equivalent of
Cov(y1,y2)Cov(y2,y1), because only σ2

A contributes to covariance between individuals. So equation 2 is based
on the expected covariances of products with a commutation matrix added to allow for the structure of a set of
products.

It would be possible to dissect V into

• part due to the variance components and relationships only B⊗B

• part due to the covariance structure of a set of all product combinations in adddition to that due to
variance components and relationships (I +S)(B⊗B). This is the REML method. REML is GLS
allowing for all correlated errors, regardless of the cause of the correlations.

• part ignoring relationships (set A to I in calculating B)

So what the covariances of product combinations do is add a term to some of the elements of B⊗B)

4 What part of the variance of sets of products is explained by fitting
the dyadic model

Our dyadic model (Ψ=WΓ+∆) is a multiple regression equation. We need to ask how much of the variance
of Ψ is explained by the regression fit, and what is the source of the residuals ∆.

4.1 OLS
Under the assumptions of ordinary least squares (OLS), ie that errors are N(0,σ2I), the sum of squares of Ψ
is Ψ‘Ψ. Note this is a different thing from the covariance structure of Ψ discussed in the previous sections,
which is ΨΨ‘.

The normal equation for the dyadic model considered as a regression is

W ‘WΓ=W ‘Ψ

which if we multiply both sides by Γ‘ is

Γ‘W ‘WΓ = Γ‘W ‘Ψ

(WΓ)‘(WΓ) = Γ‘W ‘Ψ

= W (W ‘W )−1W ‘

The left hand side is the variance of WΓ (with 1/n omitted), so this is the part of the total sum of squares
Ψ‘Ψ which is explained by the regression fit. The residual sum of squares (∆‘∆) is then the difference
Ψ‘Ψ−Γ‘W ‘Ψ.

For our simple example with 2 observations y1 and y2 forming four products y1y1, y1y2, y2y1, y2y2, the
dyadic model is

Ψ = Vec
[

1 r
r 1

]
σ

2
A +Vec

[
1 0
0 1

]
σ

2
E +Vec∆

y1y1
y1y2
y2y1
y2y2

 =


1 1
r 0
r 0
1 1

[
σ2

A
σ2

E

]
+


δ11
δ12
δ21
δ22


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and the residual sum of squares is

∆‘∆ = Ψ‘Ψ− (WΓ)‘(WΓ)

=
[
y1y1 y1y2 y2y1 y2y2

]
y1y1
y1y2
y2y1
y2y2

−

[
σ2

A +σ2
E rσ2

A rσ2
A σ2

A +σ2
E
]

σ2
A +σ2

E
rσ2

A
rσ2

A
σ2

A +σ2
E


Note that

Ψ‘Ψ = tr(ΨΨ‘)

= tr(V )

so comparison with equation 24 is valid.
We can substitute for Ψ‘Ψ and subtract (WΓ)‘(WΓ) to get

∆‘∆ = 6(σ2
A +σ

2
E)

2 +2(rσ
2
A)

2

= −2(σ2
A +σ

2
E)

2 −2(rσ
2
A)

2

= 4(σ2
A +σ

2
E)

2

So the dyadic residual sum of squares clearly depends on what is in the sum of squares of products of
y1 and y2 that is not explained by the model and its regression fit. The trace of V (equation 24) contains all
of the SS due to regression plus an additional 4((σ2

A +σ2
E)

2. So the regression fit of the dyadic model is not
removing all of the systematic effects. An amount 4(σ2

A +σ2
E)

2 is ending up in the residual sum of squares,
presumably in addition to random residuals such as those due to measurement errors in the Ψ values. This is
puzzling. Perhaps the expectation matrix W should contain more terms.

One can see why the R2 values for a dyadic model fit are typically less than 10 percent.

4.2 GLS
Under the assumptions of generalised least squares, ie that the errors are N(0,V ),the total sum of squares is
Ψ‘R−1Ψ, where R is the correlation matrix corresponding to V

So we have for our simple example

V =

[
(σ2

A +σ2
E) rσ2

A
rσ2

A (σ2
A +σ2

E)

]

R =

 1 rσ2
A

(σ2
A+σ2

E)
rσ2

A
(σ2

A+σ2
E)

1



R−1 =

 1

1−(
rσ2

A
(σ2

A+σ2
E )

)2
−

rσ2
A

(σ2
A+σ2

E )

1−(
rσ2

A
(σ2

A+σ2
E )

)2


A small numerical example is illuminating.

> rmat

[,1] [,2]

[1,] 1.0 0.4
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[2,] 0.4 1.0

> rmatn

[,1] [,2]

[1,] 1.0 -0.4

[2,] -0.4 1.0

> psi

[1] 1 2

> t(psi) %*% psi

[,1]

[1,] 5

> t(psi) %*% solve(rmat) %*% psi

[,1]

[1,] 4.047619

> t(psi) %*% solve(rmatn) %*% psi

[,1]

[1,] 7.857143

>

So a positive correlation reduces the total sum of squares, and a negative correlation increases it. That makes
sense, positively correlatesd variates contribute less total information than independent variates, negatively
correlated variates contribute more.

The normal equations for the dyadic model considered as a regression fitted by GLS are

W ‘V −1WΓ=W ‘V −1Ψ

which if we multiply both sides by Γ‘ is

Γ‘W ‘V −1WΓ = Γ‘W ‘V −1Ψ

(WΓ)‘V −1(WΓ) = Γ‘W ‘V −1Ψ

= W (W ‘V −1W )−W ‘V −1??

The left hand side is the GLS sum of squares of WΓ, so this is the part of the total GLS sum of squares
ΨV −1Ψ which is explained by the regression fit. The residual GLS sum of squares ∆‘∆ is the difference
ΨV −1Ψ−Γ‘W ‘V −1Ψ.
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