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Abstract

Using a real data example (data set aSAH from the package pROC), we illustrate here (1) a novel empirical
likelihood approach to test hypothesis and construct confidence intervals for AUC; (2) We also show how
to test and construct confidence intervals, by empirical likelihood, for the partial AUC (pAUC) using a
nuisance parameter/profile trick.

The empirical likelihood ratio test under our setup yields an asymptotic chi square distribution under
null hypothesis.
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1 Definition and Estimations

Let X and Y , with respective distribution functions F and G, be the results of a continuous-scale test for a
healthy and a disease subject, respectively.

The theoretical AUC of the test resultsX and Y of the above healthy and disease subjects can be represented
by (Hanley and McNeil 1982) [4]:

AUC =

∫ ∞

−∞
(1−G(s))dF (s) = Pr(Y > X) . (1)

Given a random sample X1, · · · , Xm of test results from healthy population and independently another
random sample Y1, · · · , Yn of test results from the disease population, a non-parametric estimate of AUC is

ÂUC =
1

nm

m∑
i=1

n∑
j=1

I[Yj > Xi] + 0.5I[Yj = Xi] . (2)

See for example: [3] or from many books. Good test has a larger AUC value.

To evaluate two diagnostic tests on a portion of ROC curves, the partial AUC is proposed (McClish 1989)
[7]). The theoretical value of a partial AUC, (pAUC(0, p)), where 0 < p < 1, can be written as

pAUC(0, p) =

∫ ∞

τ

(1−G(s))dF (s) = Pr(Y > X > τ) , (3)

where τ = F−1(1− p).

Dodd and Pepe (2003) [3] proposed a non-parametric estimator for the pAUC(0, p):

p̂AUC(0, p) =
1

mn

m∑
i=1

n∑
j=1

{I[Yj > Xi] + 0.5I[Yj = Xi]} I[Xi > τ ] (4)
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where τ is the (1− p)th quantile of X, or equivalently, τ = F−1(1− p). If the quantile τ in (4) is not known,
as is usually the case, Dodd and Pepe (2003) [3] suggested that an empirical quantile estimate be substituted:
τ̂ = F̂−1(1 − p) = inf{s : F̂ (s) ≥ 1 − p}; where F̂ is an empirical distribution based on X1, · · · , Xm. Dodd
and Pepe (2003) [3] also used some linear interpolation technique to improve the empirical quantile estimate.
This is equivalent to smoothing, which we shall discuss next.

2 Smoothing

In the previous section, the estimators of AUC, (2), and estimator of pAUC, (4), were defined using the
indicator function, and we treated the [Yj > Xi] and [Yj = Xi] cases separately. If we replace the indicator
function by a smoothed version, we can handle these [Yj > Xi] and [Yj = Xi] cases with one function.

In addition, the estimator of pAUC, (4), involves the estimated quantile τ = F−1(1 − p). As mentioned
earlier, Dodd and Pepe (2003) [3] have used some smoothing when estimate the quantile before estimating the
pAUC. Indeed, whenever a sample quantile is involved, smoothing is a must.

We hereby specify a typical smoothed indicator function. Since this function is going to replace the
indicator function I[y > x], we shall call it Iϵ(y, x) where the bandwidth parameter ϵ > 0 controls the degree
of smoothing. When ϵ → 0, the function Iϵ(y, x) becomes the original indicator function (except when x = y).

Iϵ(y, x) =


1 , if (x− y) < −ϵ ;

0.5− 3(x−y)
4ϵ + (x−y)3

4ϵ3 , if − ϵ ≤ (x− y) ≤ ϵ ;

0 ; if (x− y) > ϵ .

(5)

This function is implemented in the package as smooth3 or smooth3vec. Other smoothing functions are
also possible and should lead to similar results. We have a function smooth5vec in the R package which is
based on 5th order polynomial. Notice when y = x we have Iϵ(y, x) = 0.5; and when |x − y| > ϵ, we have
Iϵ(y, x) = I[y > x].

Also, using empirical likelihood for testing hypothesis involving quantiles was investigated by Chen and
Hall (1993) [1]. One take away message from Chen and Hall paper is that the sample quantile function needs
to be smoothed. The smoothing makes the empirical likelihood ratio converge faster to the limiting chi square
distribution (thus the empirical likelihood ratio test is more accurate).

The defining equation for quantile τ can be written as F (τ) = 1− p which can also be written as

EI[X ≤ τ ] = 1− p . (6)

We recall F (·) is the unknown distribution function for Xi. We shall also smooth the indicator function in (6)
by Iξ(·, ·) and replace (6) by

EIξ(τ,X) = 1− p . (7)

Here we chose the bandwidth ξ following Chen and Hall’s recommendation. The bandwidth ϵ in (8) and (9)
may follow other guidelines.

To summarize: we shall use the smoothed estimator of AUC

ÂUCϵ =
1

nm

m∑
i=1

n∑
j=1

Iϵ(Yj , Xi) . (8)

A smoothed estimator of pAUC can be similarly defined to (4):

̂pAUCϵ,ξ(0, p) =
1

mn

m∑
i=1

n∑
j=1

Iϵ(Yj , Xi) Iξ(Xi, τ̂) (9)
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where the quantile τ is now defined by (7), the sample version is defined by

τ̂ is the solution to
1

m

m∑
i=1

Iξ(Xi, τ) = p . (10)

3 Empirical Likelihood

Owen (1988) [9] was first to coin the term “empirical likelihood” and made many contributions to the theory
and practice of empirical likelihood method. The first book on this fascinating topic is also by Owen in 2001
[10]. One of the empirical likelihood theorems contained in this book is the two-sample empirical likelihood
theorem (section 11.4). We formulate below a version specific for the inference of AUC (h function in (i)) and
the joint inference of pAUC and τ (h function in (ii)) below.

Theorem 1 (Two Sample Empirical Likelihood Theorem) Suppose X1, · · · , Xm are iid random
variables with distribution F (t). We further suppose, independent of the X’s, that Y1, · · · , Yn are iid random
variables with distribution G(t). Let the true parameter θ ∈ Rr be defined by the equation Eh(X,Y,θ) = 0,
where h is a function with values in Rr specified either in (i) or (ii) below.

(i) For the inference of AUC : here we have r = 1 and θ = AUC; and h(X,Y, θ) = {I[Y >
X] + 0.5I[Y = X]} − θ. We further assume Pr(Y ≥ X) ̸= 1.

(ii) For the joint inference of pAUC(0, p) and the (1− p)th quantile, τ , of X: here we have r = 2
and θ = (θ1, θ2) = (pAUC(0, p), τ); and h = (h1, h2) where

h1(X,Y,θ) = (I[Y > X] + 0.5I[Y = X])I[X > θ2]− θ1

h2(X,Y,θ) = h2(X, θ2) = I[X ≤ θ2]− (1− p) .
(11)

We further assume 0 < p < 1; F ′(τ) > 0 and Pr(Y ≥ X|X > τ) ̸= 1.

Define the two-sample empirical likelihood ratio

R(θ) = sup
ui,vj

{ m∏
i=1

mui

n∏
j=1

nvj ; s.t. ui > 0; vj > 0;

m∑
i=1

ui = 1;

n∑
j=1

vj = 1;

m∑
i=1

n∑
j=1

h(Xi, Yj ,θ)uivj = 0
}
.

(12)

As sample size min(m,n) go to infinite, if θ is the true parameter value, we have

−2 logR(θ)
D−→ χ2

(r)

where χ2
(r) denotes a chi squared distribution with r degrees of freedom.

Proof: The empirical likelihood book of Owen (2001) section 11.4 contains a proof of this theorem for the
case r = 1. The conditions Owen imposed on the h functions are easy to check with our h in (i) or (ii) above.
For the case r = 2 the proof is similar. ■

Remark: We have stated the conditions (i) and (ii) in Theorem 1 without smoothing due to its clear
connections to AUC/pAUC. If we apply the smoothing as detailed in previous section, the h function in (i) or
(ii) of Theorem 1 needs to be modified as follows: all the indicator functions there shall be replaced by either
Iϵ(·, ·) or Iξ(·, ·). Theorem 1 is still valid after this smoothing modification: the chi square limit still hold for
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the −2 log empirical likelihood ratio. However, the convergence to chi square will be faster with smoothing.
When profiling the empirical likelihood (next theorem), smoothing is not only a good idea but a must.

The empirical likelihood theorem above with an h specified in (i) immediately gives us a test of AUC when
sample sizes are reasonably large: for testing H0 : AUC = θ∗ vs. HA : AUC ̸= θ∗ the p-value can be computed
as Pr(χ2

(1) > −2 logR(θ∗)), where χ2
(1) denotes a chi-square random variable with degree of freedom 1. The

95% confidence interval for AUC is

{θ∗| s.t. − 2 logR(θ∗) < 3.84146 = χ2
(1)(0.95)} .

For the test of the pAUC(0, p), however, some more work is needed. The above empirical likelihood theorem,
with h specified in (ii), only gives us a test of pAUC and τ jointly. We, however, are most likely interested
only in testing pAUC alone. This calls for a profiling of the empirical likelihood ratio.

Profile empirical likelihood ratio is studied by Qin and Lawless (1994) [12]. They demonstrated that under
reasonable smoothness conditions (so that certain derivatives exist) the profiling of empirical likelihood just
behave the same as in the (well known) parametric likelihood case. Owen (2001) [10] Chapter 3 also discussed
this topic.

Theorem 2 (Profile Empirical Likelihood) Assume the same conditions specified in Theorem 1 also
hold here. We take the h function as specified in (ii) there (for pAUC and τ) but with smoothed indicator
functions as discussed in the Remark following Theorem 1. Recall in this case r = 2 and θ = (θ1, θ2) =
(pAUC, τ).

Define the profile log empirical likelihood ratio

W (θ1) = inf
θ2

−2 logR(θ) , (13)

where R(θ) is given in Theorem 1.

As sample size min(m,n) → ∞, we have W (θ1)
D−→ χ2

(1) if θ1 is the true pAUC value.

Proof: See a proof in Qin and Lawless (1994) [12] Corollary 5 or Owen (2001) [10] Chapter 3. The proof
was based on a two-term Taylor expansion of the likelihood ratio. The required smoothness conditions can be
easily checked since we used a smoothed indicator function. ■

One consequence of Theorem 2 is that we can use W defined in (13) to test hypothesis and construct
confidence intervals for pAUC similar to those procedures we discussed after Theorem 1, using −2 logR(θ∗)
for AUC.

We shall discuss the computational methods for the empirical likelihood ratio defined in Theorems 1 and
2 later.

4 Example

Here we show the use of package emplikAUC with an illustrative example:

Example Background: As a real data example we analyze the performance of the biomarker s100b in
the blood of patients at hospital admission after aneurysmal subarachnoid haemorrhage (aSAH) as a predictor
of their 6-month outcome. The data is from Robin et al. (2011) [13] and more information can be found in
Turck et al. (2010) [14]. It contains 113 patients, among which 41 are classified as poor outcome (disease) after
6-month. The data values are recorded with precision 0.01. In the below analysis, we used either a smoothing
window ϵ = 0.05 (default value) or 0.005. Notice the smallest difference within recorded data value here is 0.01
and therefore when ϵ = 0.005, the only smoothing is to set the indicator I[y > x] equal to 0.5 when x and y
are identical, otherwise no smoothing is applied.

The quantile smoothing bandwidth ξ is taken to be m−0.75 when analyzing pAUC.

R code for the example. The data set aSAH is from package pROC. We assume, of course, the packages pROC,
emplikAUC version 0.3, rootSolve and emplik2 version 1.32 are installed.
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4.1 R codes for testing AUC and confidence interval

###### Get the data set aSAH for marker s100b ######

library(pROC)

data(aSAH)

Xis <- aSAH$s100b[aSAH$outcome == "Good"]

Yis <- aSAH$s100b[aSAH$outcome == "Poor"]

library(emplikAUC)

############ Compute the estimator of AUC ############

sum(smooth3(x=Xis, y=Yis))/(length(Xis)*length(Yis))

## 0.7321436 #### estimate of AUC, with default smoothing: eps=0.05 #####

#### If we use a smaller (=0.005) window width for smooth3, we get

sum(smooth3(x=Xis, y=Yis, eps=0.005))/(length(Xis)*length(Yis))

## 0.7313686 ##### estimate of AUC with smoothing: eps=0.005 #####

From above, we see the estimated AUC of the ROC curve for s100b is 0.7321436 or 0.7313686, depending
on the smoothing parameter.

Next we test the hypothesis (compute p-value for) H0 : AUC = 0.73; or 0.821502; or 0.623016. We use
either the default smoothing parameter, or eps=0.005.

eltest4aucONE(theta=0.73, x=Xis, y=Yis, ind=smooth3, tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)

## $lambda

## [1] 0.8470956

##

## $u

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] 0.01389148 0.01389553 0.01387525 0.01384887 0.01395442 0.01390413 0.01387525 0.01387525

## ......

## ......

## ......

## $v

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] 0.0244692 0.02455493 0.0244083 0.02449509 0.02430056 0.02425494 0.02427034 0.02465355

## ......

## ......

## ......

## $‘-2LLR‘

## [1] 0.001819299

##

## $Pval

## [1] 0.9659779 #### p-value for testing the H0: AUC = 0.73

##

## $iterNum

## [1] 2

#### More tests. To save space, we only show the "-2LLR" output. This time, we also want to use

#### a different smoothing eps=0.005.

Mysmoo <- function(x,y) {smooth3(x,y,eps=0.005)}

eltest4aucONE(theta=0.821502, x=Xis, y=Yis, ind=Mysmoo, tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)$"-2LLR"

## [1] 3.841464 #### this chi square df1 value gives a p-value of 5 percent.

eltest4aucONE(theta=0.623016, x=Xis, y=Yis, ind=Mysmoo, tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)$"-2LLR"

## [1] 3.841491 #### this leads to a 5 percent p-value.

Next, we compute the 95% confidence interval for AUC using the empirical likelihood method. First with
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smoothing eps=0.005 then again with eps=0.05. The confidence interval for the eps=0.005 case can actually
be read from the above test results.

findULNEW(step=0.03, fun=eltest4aucONE, MLE=0.73, x=Xis, y=Yis, ind=Mysmoo,

tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)

## $Low

## [1] 0.6230165

##

## $Up

## [1] 0.8215019

##

## $FstepL

## [1] 7.450581e-09

##

## $FstepU

## [1] 7.450581e-09

##

## $Lvalue

## [1] 3.841459

##

## $Uvalue

## [1] 3.841459

findULNEW(step=0.03, fun=eltest4aucONE, MLE=0.73, x=Xis, y=Yis, ind=smooth3,

tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)

## $Low

## [1] 0.6262756

##

## $Up

## [1] 0.8210439

##

## $FstepL

## [1] 7.450581e-09

##

## $FstepU

## [1] 9.679001e-09

##

## $Lvalue

## [1] 3.841459

##

## $Uvalue

## [1] 3.841459

We see the 95% confidence interval for AUC, using smoothing eps=0.005, is [0.6230165, 0.8215019]. We
point out that our confidence interval is non-symmetric, i.e. not centered at the estimator: 0.7313686 ̸=
(0.6230165 + 0.8215019)/2 which is a great feature of the Wilks type confidence intervals. Similarly, with
eps=0.05, we get 95% confidence interval [0.6262756, 0.8210439], which is not center at the estimator (with
same eps), 0.7321436 ̸= (0.6262756 + 0.8210439)/2.

The same computation of test and confidence interval can also be achieved by another function in the
package emplikAUC, namely el2test4auc( ) which uses a different computing algorithm (EM) and calling
code from the R package emplik2, as shown below.

temp <- el2test4auc(theta=0.73, x=Xis, y=Yis, ind=smooth3)

temp$"-2LLR"

## $‘-2LLR‘

## [1] 0.001819299
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temp$Pval

## $Pval

## [1] 0.9659779

##### we see that the output "-2LLR" and "Pval" are the same as before. This function

##### also has other outputs.

Mysmoo <- function(x,y) {smooth3(x,y,eps=0.005)}

el2test4auc(theta=0.821502, x=Xis, y=Yis, ind=Mysmoo)$"-2LLR"

## [1] 3.841464 #### this chi square df1 value gives a p-value of 5 percent.

el2test4auc(theta=0.623016, x=Xis, y=Yis, ind=Mysmoo)$"-2LLR"

## [1] 3.841491 #### this leads to a 5 percent p-value.

findULNEW(step=0.03, fun=el2test4auc, MLE=0.73, x=Xis, y=Yis, ind=Mysmoo)

## $Low

## [1] 0.6230165

##

## $Up

## [1] 0.8215019

##

## $FstepL

## [1] 7.450581e-09

##

## $FstepU

## [1] 7.450581e-09

##

## $Lvalue

## [1] 3.841459

##

## $Uvalue

## [1] 3.841459

findULNEW(step=0.03, fun=el2test4auc, MLE=0.73, x=Xis, y=Yis, ind=smooth3)

## $Low

## [1] 0.6262756

##

## $Up

## [1] 0.8210439

##

## $FstepL

## [1] 7.450581e-09

##

## $FstepU

## [1] 9.678999e-09

##

## $Lvalue

## [1] 3.841459

##

## $Uvalue

## [1] 3.841459

This function el2test4auc( ) could be slower compared to eltest4aucONE( ).

As a comparison, the confidence interval for AUC obtained by pROC package ci.auc function is [0.63012,
0.83262] using the ‘DeLong’ method, and using the bootstrap method we got [0.6265, 0.8276]. When computing
the bootstrap confidence interval (here and two more below) we set.seed(123) and used 250,000 bootstrap
repetitions. The ‘Delong’ confidence interval is symmetric about the estimator.
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4.2 R code for pAUC

Patients with poor post-aSAH outcome require specific health care management, therefore the clinical test must
be highly specific. A pAUC with specificity in the 80% to 100% range maybe of interest. This corresponds
to pAUC(0, 0.2). The estimator of pAUC(0, 0.2) here for biomarker s100b is 0.08061155. The 95% empirical
likelihood confidence interval for the pAUC(0, 0.2) is [0.04981071, 0.114224]. As a comparison, the bootstrap
95% confidence interval is [0.05068, 0.1158] using pROC package.

Here comes the code for testing and confidence interval of pAUC(0, 0.2). We first get an estimator of τ and
pAUC(0, 0.2). The quantile estimator τ is by our smoothing definition as in section 3.

##### Use our smooth definition to get an estimators of 80th quantile of F and

##### further, the pAUC(0,0.2) estimator. #####

myEstPaucT(x=Xis, y=Yis, partial=0.2, eps=0.005, epsT=(72)^(-0.75))

## $‘tau(1-partial)‘

## [1] 0.2083062

##

## $‘Pauc(0,partial)‘

## [1] 0.08061155

#### The output value can change a little bit for other smoothing values of eps/epsT.

Now jointly testing F−1(0.8) = tau = 0.2083062 and pAUC(0, 0.2) = 0.08061155. These are NPMLE
values, therefore the returned p-value should be 1 and −2 log likelihood ratio should be zero. Here, the null
distribution is (approximately) chi square with 2DF.

eltest4paucT(tau=0.2083062, true=0.08061155, ind=smooth3, p=0.2, x=Xis, y=Yis, epsxy=0.005,

epsT=(72)^(-0.75), tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)

## $lambda

## [1] 0 0

##

## $u

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]

## [1,] 0.01388889 0.01388889 0.01388889 0.01388889 0.01388889 0.01388889 0.01388889

## ......

## ......

## $v

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]

## [1,] 0.02439024 0.02439024 0.02439024 0.02439024 0.02439024 0.02439024 0.02439024

## ......

## ......

## $‘-2LLR‘

## [1] 0

##

## $IterNum

## [1] 1

###### If we use the alternative function, (using EM algorithm):

el2testPaucT(tau=0.2083062, pauc=0.08061155, ind=smooth3, partial=0.2, x=Xis, y=Yis,

epsxy=0.005, epsT=(72)^(-0.75))

## [1] 2.273737e-13

###### This function only returns the "-2LLR" value. (compare to ’-2LLR’ [1] 0 above)

Let us test a few more pairs of τ, pAUC(0, 0.2) values. We shall only compare the −2 log likelihood ratio
values.
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eltest4paucT(tau=0.2, true=0.09, ind=smooth3, p=0.2, x=Xis, y=Yis, epsxy=0.005,

epsT=(72)^(-0.75), tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)$"-2LLR"

## [1] 0.3163623

el2testPaucT(tau=0.2, pauc=0.09, ind=smooth3, partial=0.2, x=Xis, y=Yis,

epsxy=0.005, epsT=(72)^(-0.75))

## [1] 0.3163862

eltest4paucT(tau=0.2, true=0.1, ind=smooth3, p=0.2, x=Xis, y=Yis, epsxy=0.005,

epsT=(72)^(-0.75), tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)$"-2LLR"

## [1] 1.534045

el2testPaucT(tau=0.2, pauc=0.1, ind=smooth3, partial=0.2, x=Xis, y=Yis,

epsxy=0.005, epsT=(72)^(-0.75))

## [1] 1.534021

###### The returned values are basically the same from two functions. When the

###### parameter values to be tested are too far from the NPMLE, the computation will fail.

eltest4paucT(tau=0.2, true=0.14, ind=smooth3, p=0.2, x=Xis, y=Yis, epsxy=0.005,

epsT=(72)^(-0.75), tol.u=1e-6, tol.v=1e-6, tol.H0=1e-6)

## Error in stode(y, times, func, parms = parms, ...) :

## Model function must return a list of values, of which first element has length =length of y

el2testPaucT(tau=0.2, pauc=0.14, ind=smooth3, partial=0.2, x=Xis, y=Yis, epsxy=0.005,

epsT=(72)^(-0.75))

## Error in solve.default(constraintp, -constraint) :

## system is computationally singular: reciprocal condition number = 7.82754e-17

Next, testing H0 : pAUC(0, 0.2)=0.08 alone. Here the null distribution of the -2LLR should be approxi-
mately chi square with 1DF. In the required inputs are the parameters nuilow and nuiup. This is the interval
we shall search for the nuisance parameter when profiling the empirical likelihood. For pAUC(0, 0.2) values
near NPMLE, this interval can reasonably set centered at NPMLE of tau. When we are testing the pAUC(0,
0.2) values above the NPMLE, this interval should move down; and when testing the pAUC(0, 0.2) values
below NPMLE, this interval should move up.

The output Nupar is the final value of nuisance parameter when search to minimize the -2 log likelihood
ratio. The interval nuilow and nuiup should contain Nupar comfortably.

eltest4paucONE(theta=0.08, x=Xis, y=Yis, ind=smooth3, nuilow=0.15, nuiup=0.25, partial=0.2,

epsxy=0.005, epsT=(72)^(-0.75))

## $‘-2LLR‘

## [1] 0.001175356

##

## $Nupar

## [1] 0.2097241

##

## $Pval

## [1] 0.9726511

el2testPauc(theta=0.08, x=Xis, y=Yis, ind=smooth3, nuilow=0.15, nuiup=0.25, partial=0.2,

epsxy=0.005, epsT=(72)^(-0.75))

## $‘-2LLR‘

## [1] 0.001167056

##

## $Nupar

## [1] 0.2097152
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##

## $Pval

## [1] 0.9727478

Notice the function el2testPauc( ) is slower.

Next, find 95% confidence interval of pAUC(0,0.2) by trial and error. We omit some (un-success trials)
computation.

el2testPauc(theta=0.049810707, x=Xis, y=Yis, ind=smooth3, nuilow=0.2, nuiup=0.39,

partial=0.2, epsxy=0.005, epsT=(72)^(-0.75))

## $‘-2LLR‘

## [1] 3.841459

##

## $Nupar

## [1] 0.3049045

##

## $Pval

## [1] 0.05

el2testPauc(theta=0.114224, x=Xis, y=Yis, ind=smooth3, nuilow=0.1, nuiup=0.25,

partial=0.2,epsxy=0.005, epsT=(72)^(-0.75))

## $‘-2LLR‘

## [1] 3.841459

##

## $Nupar

## [1] 0.1777102

##

## $Pval

## [1] 0.05

##

##### Thus we verified the 95% confidence interval for pAUC(0,0.2): is [0.049810, 0.114224],

##### since testing the upper/lower bound, we get -2log W(.) = chisq(0.95, df=1) ####

###### Same calculetion by using another function. Some small difference, likely due to

###### convergence control.

eltest4paucONE(theta=0.049810707, x=Xis, y=Yis, ind=smooth3, nuilow=0.2, nuiup=0.39, partial=0.2,

epsxy=0.005, epsT=(72)^(-0.75))

## $‘-2LLR‘

## [1] 3.841443

##

## $Nupar

## [1] 0.3049043

##

## $Pval

## [1] 0.05000047

eltest4paucONE(theta=0.114224, x=Xis, y=Yis, ind=smooth3, nuilow=0.11, nuiup=0.22, partial=0.2,

epsxy=0.005, epsT=(72)^(-0.75))

## $‘-2LLR‘

## [1] 3.841376

##

## $Nupar

## [1] 0.1777324

##
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## $Pval

## [1] 0.05000247

Finally, let us try to use the function findUnew( ) and findLnew( ) to find the upper and lower confidence
bound automatically.

findUnew(fun=el2testPauc, MLE=0.0806, x=Xis, y=Yis, ind=smooth3, nuilow=0.1, nuiup=0.3,

partial=0.2,epsxy=0.005, epsT=(72)^(-0.75))

## $Up

## [1] 0.114224 #### Upper bound of 95 percent confidence interval.

##

## $FstepU

## [1] 7.450581e-09

##

## $Uvalue

## [1] 3.841459

findLnew(fun=el2testPauc, MLE=0.0806, x=Xis, y=Yis, ind=smooth3, nuilow=0.2, nuiup=0.4,

partial=0.2,epsxy=0.005, epsT=(72)^(-0.75))

## $Low

## [1] 0.04981071 #### Lower bound of 95 percent confidence interval.

##

## $FstepL

## [1] 7.450581e-09

##

## $Lvalue

## [1] 3.841459

##### We may also use findULNEW( ) to find the upper/lower confidence interval bounds together

findULNEW(fun=el2testPauc, MLE=0.0806, x=Xis, y=Yis, ind=smooth3, nuilow=0.1, nuiup=0.4,

partial=0.2,epsxy=0.005, epsT=(72)^(-0.75))

$Low

[1] 0.04981071

$Up

[1] 0.114224

$FstepL

[1] 7.450581e-09

$FstepU

[1] 7.450581e-09

$Lvalue

[1] 3.841459

$Uvalue

[1] 3.841459

##### When try to find the upper and lower bound of CI together, we must supply the

##### parameters nuilow/nuiup that are wide enough to suit both search. It may not be

##### easy (that is why we try to do upper and lower bound separately), but here it worked.

##### Same computation but using a different function. However this function is more demanding

##### to achieve convergence, and thus needs a narrower interval, [nuilow, nuiup] for
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##### nuisance parameter search. But this function is much faster when convergent.

findUnew(fun=eltest4paucONE, MLE=0.0806, x=Xis, y=Yis, ind=smooth3, nuilow=0.13, nuiup=0.24,

partial=0.2, epsxy=0.005, epsT=(72)^(-0.75))

## $Up

## [1] 0.1142243

##

## $FstepU

## [1] 7.450581e-09

##

## $Uvalue

## [1] 3.841459

findLnew(fun=eltest4paucONE, MLE=0.0806, x=Xis, y=Yis, ind=smooth3, nuilow=0.20, nuiup=0.40,

partial=0.2, epsxy=0.005, epsT=(72)^(-0.75))

## $Low

## [1] 0.04981065

##

## $FstepL

## [1] 7.450581e-09

##

## $Lvalue

## [1] 3.841459

##### Using this function we fail to find the Upper and Lower bound together by using findULNEW( ).

5 Computation Algorithm For Inference of AUC

One way to compute the empirical likelihood ratio in Theorem 1 is to call the functions in the R package
emplik2. However, the computation used there is based on the EM algorithm and can be slow at times. We
developed another (iterative) algorithm for computing the empirical likelihood ratio, which we shall discuss
next.

Using Lagrange multiplier method for the constrained optimization problem of Theorem 1, the Lagrangian
is

L(ui, vj , γ, η, λ) =

m∑
i=1

logmui +

n∑
j=1

log nvj − γ
(∑

ui − 1
)
− η

(∑
vj − 1

)
−λ

∑
i

∑
j

uivjh(Xi, Yj , θ) .

(14)

Taking derivatives and set them to zero leads to

ui(λ, v1, · · · , vn) =
1

m+ λ
∑

j h(Xi, Yj , θ)vj
, i = 1, · · · ,m (15)

vj(λ, u1, · · · , um) =
1

n+ λ
∑

i h(Xi, Yj , θ)ui
, j = 1, · · · , n. (16)

The above two sets of equations plus the following (constraint requirement)∑
i

∑
j

h(Xi, Yj , θ)

[m+ λ
∑

k h(Xi, Yk, θ)vk] [n+ λ
∑

k h(Xk, Yj , θ)uk]
= 0 (17)
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are the system of equations we need to solve to obtain maximized logR(θ). Notice there are m+n+1 equations
for m+n+1 variables (ui, vj , λ). Compared to the situation of Owen (1988) [9], we have m+n more equations
here: namely (15) and (16). A direct solution seems elusive. But the following iterative method works in our
investigations.

Initialize u
(0)
i = 1/m and v

(0)
j = 1/n,

1. Plug u
(s)
i and v

(s)
j into equation (17), solve for λ, call the solution λ(s+1).

2. Using u
(s)
i and v

(s)
j and λ(s+1) obtained above, plug into the right hand side of equations (15) and (20).

This yields u
(s+1)
i , v

(s+1)
j .

3. With u
(s+1)
i and v

(s+1)
j , repeat steps 1–2 to obtain λ(s+2) and u

(s+2)
i , v

(s+2)
j .

4. Iterate until λ converges.

This is the algorithm we used when computing examples and carry out simulations.

An implementation of above is in our package emplikAUC.

6 Computation Algorithm For Inference of pAUC

The first step here is to compute the log empirical likelihood ratio logR(θ) where θ = (θ1, θ2). Here θ and h
are as defined in Theorem 1 equation (11) but with smoothing. This is similar to the calculation detailed in
the above subsection for AUC except one constrain equation, (17), becomes two constrain equations, (18) –
(19) now, and λ = (λ1, λ2), h and θ are now vectors of length two.

m∑
i=1

n∑
j=1

h1(Xi, Yj ,θ)

[m+ λ⊤ ∑
k h(Xi, Yk,θ)vk] [n+ λ⊤ ∑

k h(Xk, Yj ,θ)uk]
= 0 (18)

m∑
i=1

h2(Xi, θ2)

m+ λ⊤ ∑
k h(Xi, Yk,θ)vk

= 0 (19)

The above two constrain equations plus (15) – (16), (with the obvious modification of λ → λ, h → h and
θ → θ), are the system of n+m+ 2 equations for n+m+ 2 unknowns (ui, vj , λ1, λ2) we need to solve. The
iterative algorithm detailed in the previous subsection also works well here.

Now assume we have obtained logR(θ). The second step is the minimization (profiling) of logR(θ) over
θ2. This is an unconstrained minimization problem over one variable and an obvious starting point for θ2 is
the sample quantile τ̂ . In the simulation and examples, we have used R function optimize to accomplish this.

The profile will yield logW (θ1) which can be used to test and construct confidence intervals for pAUC.

7 Remarks

To deal with the inference of pAUC, we view the estimation in the larger framework of a two-parameter
problem, by explicitly include the nuisance parameter τ . This naturally lead to the profile likelihood technique
when statistical inference for only one of the two parameters is needed.

When sample sizes goes to infinite, the Wilks and the Wald type confidence intervals (assume both available)
are equivalent. However, for smaller samples, it is a generally accepted fact that the Wilks confidence intervals
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have several advantages over the Wald confidence intervals, see section 3 of Meeker and Escobar [8] and
additional references there. The disadvantage they mentioned for the Wilks method is the computational
difficulty. But with ever faster computers and publicly available software like R, this is much less of a problem
nowadays.

We list here briefly the advantages of Wilks confidence interval:

1). The Wilks confidence intervals are not necessary symmetric about the MLE, rather, it tries to reflect
the skewness in the given data.

2). The Wilks confidence intervals are always within the parameter space, while a Wald confidence interval
of a probability can include negative values, for example.

3). Once we obtained the Wilks confidence interval for a parameter θ, [a, b] (say), the Wilks confidence
interval for g(θ) is just [g(a), g(b)] (assuming g is increasing).

4). When using Wilks, there is no need to figuring out the variance of the MLE and estimate it.

5). The actual error rates for Wilks intervals are often closer to the nominal than the Wald.

6). Bootstrap re-sampling based procedures rely on the random number generator and the bootstrap
repetitions used. A different seed or different number of repetitions will lead to slightly different confidence
intervals. Our empirical likelihood confidence interval do not have this problem.

7). The Wilks confidence interval is based on likelihoods and there is well developed theory to handle
nuisance parameter in the likelihood analysis. We use this feature to handle nuisance parameter in the inference
of pAUCs.
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