basePlot | Plot a contour of the 2D Gaussian distribution with covariance matrix K. |
boundedTransform | Constrains a parameter. |
CGoptim | Optimise the given function using (scaled) conjugate gradients. |
cgpdisimExpandParam | Update a model structure with new parameters or update the posterior processes. |
cgpdisimExtractParam | Extract the parameters of a model. |
cgpdisimGradient | Model log-likelihood/objective error function and its gradient. |
cgpdisimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
cgpdisimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
cgpdisimObjective | Model log-likelihood/objective error function and its gradient. |
cgpdisimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
cgpsimExpandParam | Update a model structure with new parameters or update the posterior processes. |
cgpsimExtractParam | Extract the parameters of a model. |
cgpsimGradient | Model log-likelihood/objective error function and its gradient. |
cgpsimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
cgpsimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
cgpsimObjective | Model log-likelihood/objective error function and its gradient. |
cgpsimOptimise | Optimise the given function using (scaled) conjugate gradients. |
cgpsimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
cmpndKernCompute | Compute the kernel given the parameters and X. |
cmpndKernDiagCompute | Compute the kernel given the parameters and X. |
cmpndKernDiagGradX | Compute the gradient of the kernel wrt X. |
cmpndKernDisplay | Display a model. |
cmpndKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
cmpndKernExtractParam | Extract the parameters of a model. |
cmpndKernGradient | Compute the gradient wrt the kernel parameters. |
cmpndKernGradX | Compute the gradient of the kernel wrt X. |
cmpndKernParamInit | CMPND kernel parameter initialisation. |
cmpndNoiseParamInit | CMPND noise parameter initialisation. |
demAutoOptimiseGp | Gaussian Process Optimisation Demo |
demGpCov2D | Gaussian Process 2D Covariance Demo |
demGpSample | Gaussian Process Sampling Demo |
demInterpolation | Gaussian Process Interpolation Demo |
demOptimiseGp | Gaussian Process Optimisation Demo |
demRegression | Gaussian Process Regression Demo |
disimKernCompute | Compute the kernel given the parameters and X. |
disimKernDiagCompute | Compute the kernel given the parameters and X. |
disimKernDisplay | Display a model. |
disimKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
disimKernExtractParam | Extract the parameters of a model. |
disimKernGradient | Compute the gradient wrt the kernel parameters. |
disimXdisimKernCompute | Compute the kernel given the parameters and X. |
disimXdisimKernGradient | Compute the gradient wrt the kernel parameters. |
disimXrbfKernCompute | Compute the kernel given the parameters and X. |
disimXrbfKernGradient | Compute the gradient wrt the kernel parameters. |
disimXsimKernCompute | Compute the kernel given the parameters and X. |
disimXsimKernGradient | Compute the gradient wrt the kernel parameters. |
expTransform | Constrains a parameter. |
gaussianNoiseOut | Compute the output of the GAUSSIAN noise given the input mean and variance. |
gaussianNoiseParamInit | GAUSSIAN noise parameter initialisation. |
gaussSamp | Sample from a Gaussian with a given covariance. |
gpBlockIndices | Return indices of given block. |
gpComputeAlpha | Update the vector 'alpha' for computing posterior mean quickly. |
gpComputeM | Compute the matrix m given the model. |
gpCovGrads | Sparse objective function gradients wrt Covariance functions for inducing variables. |
gpCovGradsTest | Test the gradients of the likelihood wrt the covariance. |
gpCreate | Create a GP model with inducing variables/pseudo-inputs. |
gpDataIndices | Return indices of present data. |
gpdisimDisplay | Display a model. |
gpdisimExpandParam | Update a model structure with new parameters or update the posterior processes. |
gpdisimExtractParam | Extract the parameters of a model. |
gpdisimGradient | Model log-likelihood/objective error function and its gradient. |
gpdisimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
gpdisimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
gpdisimObjective | Model log-likelihood/objective error function and its gradient. |
gpdisimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
gpExpandParam | Expand a parameter vector into a GP model. |
gpExtractParam | Extract a parameter vector from a GP model. |
gpGradient | Gradient wrapper for a GP model. |
gpLogLikeGradients | Compute the gradients for the parameters and X. |
gpLogLikelihood | Compute the log likelihood of a GP. |
gpMeanFunctionGradient | Compute the log likelihood gradient wrt the scales. |
gpObjective | Wrapper function for GP objective. |
gpOptimise | Optimise the inducing variable based kernel. |
gpOptions | Return default options for GP model. |
gpOut | Evaluate the output of an Gaussian process model. |
gpPlot | Gaussian Process Plotter |
gpPosteriorMeanVar | Mean and variances of the posterior at points given by X. |
gpPosteriorSample | Plot Samples from a GP Posterior. |
gpSample | Plot Samples from a GP. |
gpScaleBiasGradient | Compute the log likelihood gradient wrt the scales. |
gpsimDisplay | Display a model. |
gpsimExpandParam | Update a model structure with new parameters or update the posterior processes. |
gpsimExtractParam | Extract the parameters of a model. |
gpsimGradient | Model log-likelihood/objective error function and its gradient. |
gpsimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
gpsimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
gpsimObjective | Model log-likelihood/objective error function and its gradient. |
gpsimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
gpTest | Test the gradients of the gpCovGrads function and the gp models. |
gpUpdateAD | Update the representations of A and D associated with the model. |
gpUpdateKernels | Update the kernels that are needed. |
kernCompute | Compute the kernel given the parameters and X. |
kernCreate | Initialise a kernel structure. |
kernDiagCompute | Compute the kernel given the parameters and X. |
kernDiagGradient | Compute the gradient of the kernel's parameters for the diagonal. |
kernDiagGradX | Compute the gradient of the kernel wrt X. |
kernDisplay | Display a model. |
kernExpandParam | Update a model structure with new parameters or update the posterior processes. |
kernExtractParam | Extract the parameters of a model. |
kernGradient | Compute the gradient wrt the kernel parameters. |
kernGradX | Compute the gradient of the kernel wrt X. |
kernParamInit | Kernel parameter initialisation. |
kernTest | Run some tests on the specified kernel. |
localCovarianceGradients | Compute the gradients for the parameters and X. |
localSCovarianceGradients | Compute the gradients for the parameters and X. |
mlpKernCompute | Compute the kernel given the parameters and X. |
mlpKernDiagGradX | Compute the gradient of the kernel wrt X. |
mlpKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
mlpKernExtractParam | Extract the parameters of a model. |
mlpKernGradient | Compute the gradient wrt the kernel parameters. |
mlpKernGradX | Compute the gradient of the kernel wrt X. |
mlpOptions | Return default options for GP model. |
modelDisplay | Display a model. |
modelExpandParam | Update a model structure with new parameters or update the posterior processes. |
modelExtractParam | Extract the parameters of a model. |
modelGradient | Model log-likelihood/objective error function and its gradient. |
modelGradientCheck | Check gradients of given model. |
modelLogLikelihood | Model log-likelihood/objective error function and its gradient. |
modelObjective | Model log-likelihood/objective error function and its gradient. |
modelOptimise | Optimise the given function using (scaled) conjugate gradients. |
modelOut | Give the output of a model for given X. |
modelOutputGrad | Compute derivatives with respect to params of model outputs. |
modelUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
multiKernCompute | Compute the kernel given the parameters and X. |
multiKernDiagCompute | Compute the kernel given the parameters and X. |
multiKernDisplay | Display a model. |
multiKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
multiKernExtractParam | Extract the parameters of a model. |
multiKernGradient | Compute the gradient wrt the kernel parameters. |
multiKernParamInit | MULTI kernel parameter initialisation. |
noiseCreate | Initialise a noise structure. |
noiseOut | Give the output of the noise model given the mean and variance. |
noiseParamInit | Noise model's parameter initialisation. |
optimiDefaultConstraint | Returns function for parameter constraint. |
optimiDefaultOptions | Optimise the given function using (scaled) conjugate gradients. |
rbfKernCompute | Compute the kernel given the parameters and X. |
rbfKernDiagCompute | Compute the kernel given the parameters and X. |
rbfKernDiagGradX | Gradient of RBF kernel's diagonal with respect to X. |
rbfKernDisplay | Display a model. |
rbfKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
rbfKernExtractParam | Extract the parameters of a model. |
rbfKernGradient | Compute the gradient wrt the kernel parameters. |
rbfKernGradX | Gradient of RBF kernel with respect to input locations. |
rbfKernGradXpoint | Gradient of RBF kernel with respect to input locations. |
rbfKernParamInit | RBF kernel parameter initialisation. |
SCGoptim | Optimise the given function using (scaled) conjugate gradients. |
sigmoidTransform | Constrains a parameter. |
simKernCompute | Compute the kernel given the parameters and X. |
simKernDiagCompute | Compute the kernel given the parameters and X. |
simKernDisplay | Display a model. |
simKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
simKernExtractParam | Extract the parameters of a model. |
simKernGradient | Compute the gradient wrt the kernel parameters. |
simXrbfKernCompute | Compute the kernel given the parameters and X. |
simXrbfKernGradient | Compute the gradient wrt the kernel parameters. |
simXsimKernCompute | Compute the kernel given the parameters and X. |
simXsimKernGradient | Compute the gradient wrt the kernel parameters. |
translateKernCompute | Compute the kernel given the parameters and X. |
translateKernDiagCompute | Compute the kernel given the parameters and X. |
translateKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
translateKernExtractParam | Extract the parameters of a model. |
translateKernGradient | Compute the gradient wrt the kernel parameters. |
whiteKernCompute | Compute the kernel given the parameters and X. |
whiteKernDiagCompute | Compute the kernel given the parameters and X. |
whiteKernDiagGradX | Gradient of WHITE kernel's diagonal with respect to X. |
whiteKernDisplay | Display a model. |
whiteKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
whiteKernExtractParam | Extract the parameters of a model. |
whiteKernGradient | Compute the gradient wrt the kernel parameters. |
whiteKernGradX | Gradient of WHITE kernel with respect to input locations. |
whiteKernParamInit | WHITE kernel parameter initialisation. |
whiteXwhiteKernCompute | Compute the kernel given the parameters and X. |
whiteXwhiteKernGradient | Compute the gradient wrt the kernel parameters. |
zeroAxes | A function to move the axes crossing point to the origin. |