add_best_levels | Build efficient features from high-cardinality, multiple-membership factors |
add_SAM_utility_cols | Add SAM utility columns to table |
as.model_list | Make models into model_list object |
build_connection_string | Build a connection string for use with MSSQL and dbConnect |
catalyst_test_deploy_in_prod | Defunct |
control_chart | Create a control chart |
convert_date_cols | Convert character date columns to dates and times |
db_read | Read from a SQL Server database table |
evaluate | Get model performance metrics |
evaluate.model_list | Get model performance metrics |
evaluate.predicted_df | Get model performance metrics |
evaluate_classification | Get performance metrics for classification predictions |
evaluate_multiclass | Get performance metrics for multiclass predictions |
evaluate_regression | Get performance metrics for regression predictions |
explore | Explore a model's "reasoning" via counterfactual predictions |
flash_models | Train models without tuning for performance |
get_best_levels | Build efficient features from high-cardinality, multiple-membership factors |
get_cutoffs | Get cutoff values for group predictions |
get_hyperparameter_defaults | Get hyperparameter values |
get_random_hyperparameters | Get hyperparameter values |
get_supported_models | Supported models and their hyperparameters |
get_thresholds | Get class-separating thresholds for classification predictions |
get_variable_importance | Get variable importances |
hcai_impute | Specify imputation methods for an existing recipe |
healthcareai | Machine Learning Made Easy |
hyperparameters | Get hyperparameter values |
impute | Impute data and return a reusable recipe |
interpret | Interpret a model via regularized coefficient estimates |
is.classification_list | Type checks |
is.model_list | Type checks |
is.multiclass_list | Type checks |
is.predicted_df | Class check |
is.regression_list | Type checks |
load_models | Save models to disk and load models from disk |
machine_learn | Machine learning made easy |
make_na | Replace missingness values with NA and correct columns types |
missingness | Find missingness in each column and search for strings that might represent missing values |
Mode | Mode |
models | Supported models and their hyperparameters |
models_supported | Supported models and their hyperparameters |
pima_diabetes | Patient diabetes dataset |
pima_meds | Patient medications dataset |
pip | Patient Impact Predictor |
pivot | Pivot multiple rows per observation to one row with multiple columns |
plot.explore_df | Plot Counterfactual Predictions |
plot.interpret | Plot regularized model coefficients |
plot.missingness | Plot missingness |
plot.model_list | Plot performance of models |
plot.predicted_df | Plot model predictions vs observed outcomes |
plot.thresholds_df | Plot threshold performance metrics |
plot.variable_importance | Plot variable importance |
plot_classification_predictions | Plot model predictions vs observed outcomes |
plot_multiclass_predictions | Plot model predictions vs observed outcomes |
plot_regression_predictions | Plot model predictions vs observed outcomes |
predict.model_list | Get predictions |
prep_data | Prepare data for machine learning |
rename_with_counts | Adds the category count to each category name in a given variable column |
save_models | Save models to disk and load models from disk |
separate_drgs | Convert MSDRGs into a "base DRG" and complication level |
split_train_test | Split data into training and test data frames |
start_prod_logs | Defunct |
step_add_levels | Add levels to nominal variables |
step_date_hcai | Date and Time Feature Generator |
step_dummy_hcai | Dummy Variables Creation |
step_locfimpute | Last Observation Carried Forward Imputation |
step_missing | Clean NA values from categorical/nominal variables |
stop_prod_logs | Defunct |
summary.missingness | Summarizes data given by 'missingness' |
supported_models | Supported models and their hyperparameters |
tidy.step_add_levels | Add levels to nominal variables |
tidy.step_date_hcai | Date and Time Feature Generator |
tidy.step_dummy_hcai | Dummy Variables Creation |
tidy.step_locfimpute | Last Observation Carried Forward Imputation |
tidy.step_missing | Clean NA values from categorical/nominal variables |
tune_models | Tune multiple machine learning models using cross validation to optimize performance |