
Changes and FAQs for the sommer package

Giovanny Covarrubias-Pazaran

2020-06-25

The sommer package was developed to provide R users a powerful and reliable multivariate mixed model
solver. The package is focused in problems of the type p > n (more effects to estimate than observations)
and its core algorithm is coded in C++ using the Armadillo library. This package allows the user to fit
mixed models with the advantage of specifying the variance-covariance structure for the random effects, and
specify heterogeneous variances, and obtain other parameters such as BLUPs, BLUEs, residuals, fitted values,
variances for fixed and random effects, etc.

Recently, I decided to code the main algorithm (Newton-Raphson & Average-Information) in C++ which
encouraged me to refactor all the machinery including special functions and specification of the models.
For a more in depth explanation of how the machinery works please read the “Quick start for the sommer
package” vignette [i.e. typing vignette(‘sommer.start’)]. Here I will focus in just making a translation of the
old specification to the new specification.

The purpose of this vignette is to first show the changes in sintax for sommer and frequently asked question.

SECTION 1: The new sintax of sommer

1) The specification of multiresponse model
2) The specification of multivariate unknown covariance structures
3) The specification of additional unknown covariance structures
4) The specification of unknown covariance structures in the residuals
5) Special models

SECTION 2: Frequently asked questions

1) I got an error similar to. . .
2) My model runs very slow
3) Can I run both; rrBLUP for markers and GBLUP for individuals in sommer?
4) I am missing BLUPs for individuals even when I provided them in the relationship matrix
5) How can I use the AR1(), CS() and ARMA() functions
6) Can I run GWAS in MET experiments with replicates?
7) How can I constrain the value of specific random effects?

SECTION 1: The new sintax of sommer

1) The specification of multiresponse model

In past versions (depending how old your version) there was an argument called MVM which had to be set to
TRUE if the user wanted to run a true multi-trait model since the specification

fixed= cbind(y1,y2)~x

would by default fit 2 univariate models in parallel. That is no longer the case, the MVM argument doesn’t
exist and if a model like the one above is specified it will run a tru multi-trait model.

1

2) The specification of multivariate unknown covariance structures

In the previous versions when I introduced the multivariate solver I decided to follow the asreml sintax to
specify the unknown covariance structured that needed to be estimated. For example, a diagonal model for
the multitrait model, assuming a random effect called ‘re’ looked something like this:

fixed= cbind(y1,y2)~x

random= ~ diag(trait):re

and an unstructured multitrait model was:

random= ~ us(trait):re

Although this was easier for users adapted to asreml a good thing, it put a lot of limitations on the way
constraints for variance components where specified. The same model in the new versions looks like this:

random= ~ vs(re, Gtc=unsm(2))

where the Gtc argument helps us to indicate what type of structure this random effect represents. Here I
specified an unstructured model with the function unsm() with a number 2 for 2 traits. The user can use
either diag() or uncm(), or any customized matrix with dimensions t x t (t being the number of traits)
containing the number 0,1,2,3 that specify the constraint:

0: not to be estimated 1: estimated and constrained to be positive (i.e. variance component) 2: estimated
and unconstrained (can be negative or positive, i.e. covariance component) 3: not to be estimated but fixed
(value has to be provided in the Gti argument)

All this models fit a model with the following variance for re:

var(u) = T ⊗ A

where:

var(u) =
[
σ2

gt1,t1
σgt1,t2

σgt2,t1
σ2

gt2,t2

]
⊗A

By doing this change now the user has full control on the constraints applied to the estimation of variance
components and can provide initial values easily using the Gti argument.

3) The specification of additional unknown covariance structures

If we focus for a moment in an univariate mixed model we can also have other unknown covariance structures
specified.

var(u) = E ⊗...⊗ F ⊗ A

where:

var(u) =

 σ2
ge1,e1

σge1,e2
σge1,e3

σge2,e1
σ2

ge2,e2
σge2,e3

σge3,e1
σge3,e2

σ2
ge3,e3

 ⊗ ...⊗

[
σ2

g
f1,f1

σg
f1,f2

σg
f2,f1

σ2
g

f2,f2

]
⊗A

If we think in the multi trait model this is very similar but with an additional kroneker product for the
multivariate version:

var(u) = T ⊗ E ⊗...⊗ F ⊗ A

where:

2

var(u) =
[
σ2

gt1,t1
σgt1,t2

σgt2,t1
σ2

gt2,t2

]
⊗

 σ2
ge1,e1

σge1,e2
σge1,e3

σge2,e1
σ2

ge2,e2
σge2,e3

σge3,e1
σge3,e2

σ2
ge3,e3

 ⊗ ...⊗

[
σ2

g
f1,f1

σg
f1,f2

σg
f2,f1

σ2
g

f2,f2

]
⊗A

Going back to the point. The additional unknown covariance structures besides the multi-trait (T) before
where specified with asreml sintax. For example an univariate diagonal and unstructured model, assumed a
random effect called ‘id’ representing the treatments planted in different environments coded in a second
random effect called ‘env’. The model used to look like:

fixed= y1~x

random= ~ diag(env):id or random= ~ us(env):id

and now it would be specified as:

fixed= y1~x

random= ~ vs(ds(env),id) or random= ~ vs(us(env),id)

where the ds() and us() functions specifie a diagonal and unstructured models respectively. Now in addition
cs() for a customized structure is available. The main gain from having changed the formulation is that the
new specification trhough the vs() function allows to contruct more complex moels. For example, assume
individuals specified in a column called ‘id’ tested in three environments in a column called ‘env’ measured at
two different time points specified in a column called ‘time’. We may want something more flexible than:

fixed= y1~x

random= ~ id

We could actually assume that individuals are correlated within the environments for the different time points
but want to consider envrionments indepedent. The variance for such random effects is the following:

var(u) =

 σ2
ge1,e1

σge1,e2
σge1,e3

σge2,e1
σ2

ge2,e2
σge2,e3

σge3,e1
σge3,e2

σ2
ge3,e3

 ⊗

[
σ2

gt1,t1
σgt1,t2

σgt2,t1
σ2

gt2,t2

]
⊗A

which was not possible in previous versions of sommer and now can be specified as:

random= ~ vs(us(env),ds(time),id)

and the same logic can be extended to as many factors interacting as desired.

4) The specification of unknown covariance structures in the residuals

Before sommer was limited to only diagonal models in the residuals (unstructured available only for multi-trait
before). Now all the same applications discussed for the random term also applies for the residual term. Just
keep in mind that the residual term is always called units.

Previous versions:

random= ~ diag(trait):diag(env):units

random= ~ us(trait):diag(env):units # limit

New versions (>3.7):

random= ~ vs(ds(env),units, Gtc=mm) ## can be extended to more interacting factors

random= ~ vs(us(env),units, Gtc=mm) ## can be extended to more interacting factors

random= ~ vs(at(env),units, Gtc=mm) ## can be extended to more interacting factors

3

random= ~ vs(cs(env),units, Gtc=mm) ## can be extended to more interacting factors

where mm can be any matrix specifying the type of multi-trait model (constraints). For example we could
use unsm() diag(), uncm() or any other customized matrix.

5) Special models

In previous version the use of asreml formulation really limited the expansion of sommer to more sophistiated
models. Now there’s many more possible models

Previous versions:

Overlay models Previous version: limited to 2 columns and only random and no covariance structures.

random= ~ x + and(y)

New versions (>3.7): in theory no limits. Can be extended to more interacting factors in the unknown
covariance structures and can overlay as many columns as needed. Plus is fully functional with the multivariate
models.

random=~ vs(..., overlay(x1,...,xn), Gtc=mm)

Random regression models Previous version: Not available before

New versions (>3.7): in theory no limits. Can be extended to more interacting factors in the unknown
covariance structures and only requires the use of the leg() function. Plus is fully functional with the
multivariate models.

random=~ vs(us(leg(v,1)),x)

random=~ vs(ds(leg(v,1)),x)

random=~ vs(leg(v,1),x)

GWAS models Previous version: Only univariate models available

New versions (>3.7): all the power of the mmer function is available plus you can fit multivariate GWAS
models. See details in the sommer.start vignettes.

Spatial models Previous version: It was called directly in the formula

random=~ spl2D(Row,Col,at=?)

New versions (>3.7): It has to be called within the vs() function but now it can be combined with all the
unknown covariance structures available.

random=~ vs(...,spl2D(Row,Col,at=?), Gtc=mm) # being mm any multi-trait constraint-structure.

Customized random effects Previous version: It was provided in the grouping argument

random=~ grp(x),

grouping=list(x=Z)

New versions (>3.7): It has to be called within the vs() function but now it can be combined with all the
unknown covariance structures available.

random=~vs(,..., Z, Gtc=mm) # being mm any multi-trait constraint-structure.

4

SECTION 2: Frequently asked questions

1) I got an error similar to:

iteration LogLik wall cpu(sec) restrained
1 -224.676 18:11:23 3 0
Sistem is singular. Aborting the job. You could try a bigger tolparinv value.

This error indicates that your model is singular (phenotypic variance V matrix is not invertible) and therefore
the model is stopped throwing the error message and returning an empty list. Whether you can try a simpler
model or just modify the argument tolparinv in the mmer function. The default is 1e-3, which means that
it will try to invert V and if it fails it will try to add a small value to the diagonal of V of 1e-3 to make it
invertible and try bigger and biger numbers. If this fails then the program will return the empty list.

Sometimes the model becomes singular when you use variance covariance matrices (i.e. genomic relationship
matrices) that are not full-rank. You can try to make it full-rank and try again.

2) My model runs very slow

Keep in mind that sommer uses direct inversion (DI) algorithm which can be very slow for large datasets.
The package is focused in problems of the type p > n (more random effect levels than observations) and
models with dense covariance structures. For example, for experiment with dense covariance structures
with low-replication (i.e. 2000 records from 1000 individuals replicated twice with a covariance structure of
1000x1000) sommer will be faster than MME-based software. Also for genomic problems with large number
of random effect levels, i.e. 300 individuals (n) with 100,000 genetic markers (p). For highly replicated
trials with small covariance structures or n > p (i.e. 2000 records from 200 individuals replicated 10 times
with covariance structure of 200x200) asreml or other MME-based algorithms will be much faster and we
recommend you to opt for those software.

3) Can I run both; rrBLUP for markers and GBLUP for individuals in sommer?

Both types of models can be fitted in sommer. The only thing that it changes is what is the random effect
of interest; the marker matrix or the identifier for the individual. Here there is a complex example using
multi-trait models but can be used with only one trait.
library(sommer)
rrBLUP for makers
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
mix.rrblup <- mmer(fixed=color~1,

random=~vs(GT,Gtc=unsm(1)) + vs(Rowf,Gtc=diag(1)),
rcov=~vs(units,Gtc=unsm(1)), getPEV = FALSE,
data=DT, verbose = FALSE)

summary(mix.rrblup)

==
Multivariate Linear Mixed Model fit by REML
********************** sommer 4.1 **********************
==
logLik AIC BIC Method Converge
Value -108.1202 218.2403 222.132 NR TRUE

5

==
Variance-Covariance components:
VarComp VarCompSE Zratio Constraint
u:GT.color-color 4.213e-06 8.581e-07 4.909 Positive
u:Rowf.color-color 1.963e-04 1.355e-04 1.449 Positive
u:units.color-color 2.612e-03 2.926e-04 8.928 Positive
==
Fixed effects:
Trait Effect Estimate Std.Error t.value
1 color (Intercept) 0.1692 0.03908 4.329
==
Groups and observations:
color
u:GT 2889
u:Rowf 13
==
Use the '$' sign to access results and parameters
GBLUP for individuals
A <- A.mat(GT)
mix.gblup <- mmer(fixed=color~1,

random=~vs(id,Gu=A, Gtc=unsm(1)) + vs(Rowf,Gtc=diag(1)),
rcov=~vs(units,Gtc=unsm(1)),
data=DT, verbose = FALSE)

summary(mix.gblup)

==
Multivariate Linear Mixed Model fit by REML
********************** sommer 4.1 **********************
==
logLik AIC BIC Method Converge
Value -108.1201 218.2403 222.1319 NR TRUE
==
Variance-Covariance components:
VarComp VarCompSE Zratio Constraint
u:id.color-color 0.0049524 0.0010082 4.912 Positive
u:Rowf.color-color 0.0001965 0.0001359 1.446 Positive
u:units.color-color 0.0026123 0.0002926 8.928 Positive
==
Fixed effects:
Trait Effect Estimate Std.Error t.value
1 color (Intercept) 0.1831 0.004732 38.7
==
Groups and observations:
color
u:id 363
u:Rowf 13
==
Use the '$' sign to access results and parameters
Equivalence
plot(GT%*%mix.rrblupU`u:GT`$color, mix.gblup$U$`u:id`$color)

6

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

15
−

0.
05

0.
05

0.
15

GT %*% mix.rrblupU‘u:GT‘$color

m
ix

.g
bl

up
$U

$‘
u:

id
‘$

co
lo

r

4) I am missing BLUPs for individuals even when I provided them in the relationship matrix

I got this good question in the past: “when I want to fit an animal model with sommer package using additive
relationship matrix(A), this A matrix would contain parents. But the random effects only contains animals in
the random effect but not including parents in the A matrix. How can I get the random effects for parents?”"

Answer: The easy way to do it is to make sure that even if the parents don’t show up in the dataset, you
need to make sure that they are present in the levels of the column that contains the individuals (i.e. animal
IDs), in addition they have to be provided in the relationship matrix and that’s it. They should be returned
in the blups.
library(sommer)

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
look at the data and fit the model
set.seed(12)
DT2 <- droplevels(DT[sample(1:nrow(DT),100),]) # we simulate a dataset with only 100 animals
nrow(DT2); length(levels(DT2$id))

[1] 100

[1] 100
we fit a model with the reduced datatset where only 100 blups will be returned since only
100 levels exist in the "id" column
mix1 <- mmer(Yield~1,

random=~vs(id,Gu=A)
+ Rowf + Colf,

7

rcov=~units,
data=DT2, verbose = FALSE)

summary(mix1)

==
Multivariate Linear Mixed Model fit by REML
********************** sommer 4.1 **********************
==
logLik AIC BIC Method Converge
Value -47.00674 96.01348 98.61865 NR TRUE
==
Variance-Covariance components:
VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 1531.7 1000.9 1.530 Positive
Rowf.Yield-Yield 157.1 297.5 0.528 Positive
Colf.Yield-Yield 0.0 396.4 0.000 Positive
units.Yield-Yield 3358.4 883.6 3.801 Positive
==
Fixed effects:
Trait Effect Estimate Std.Error t.value
1 Yield (Intercept) 127.4 7.214 17.66
==
Groups and observations:
Yield
u:id 100
Rowf 13
Colf 35
==
Use the '$' sign to access results and parameters
length(mix1U`u:id`$Yield) # only 100 levels

[1] 100
we add additional levels to the "id" column and also provide them in the relationship matrix
levels(DT2$id) <- c(levels(DT2$id), setdiff(levels(DT$id), levels(DT2$id)))
mix2 <- mmer(Yield~1,

random=~vs(id,Gu=A)
+ Rowf + Colf,
rcov=~units,
data=DT2, verbose = FALSE)

summary(mix2)

==
Multivariate Linear Mixed Model fit by REML
********************** sommer 4.1 **********************
==
logLik AIC BIC Method Converge
Value -47.00674 96.01348 98.61865 NR TRUE
==
Variance-Covariance components:
VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 1531.7 1000.9 1.530 Positive
Rowf.Yield-Yield 157.1 297.5 0.528 Positive
Colf.Yield-Yield 0.0 396.4 0.000 Positive

8

units.Yield-Yield 3358.4 883.6 3.801 Positive
==
Fixed effects:
Trait Effect Estimate Std.Error t.value
1 Yield (Intercept) 127.4 7.214 17.66
==
Groups and observations:
Yield
u:id 363
Rowf 13
Colf 35
==
Use the '$' sign to access results and parameters
length(mix2U`u:id`$Yield) # now 363 levels

[1] 363

5) How can I use the AR1(), CS() and ARMA() functions

Sommer doesn’t support the estimation of additional correlation components like AR1 in the way asreml
does. Still, if the user know the correlation value or can do an iterative approach to find the best value then
these functions can be used to specify the variance covariance structure for a given random effect.

For example, in the DT_cpdata dataset we have a field with row and column coordinates. This allows to fit
row and column as random effects:
library(sommer)
data(DT_cpdata)
DT <- DT_cpdata
mix1 <- mmer(Yield~1,

random=~ Rowf + Colf,
rcov=~units,
data=DT, verbose = FALSE)

summary(mix1)$varcomp

VarComp VarCompSE Zratio Constraint
Rowf.Yield-Yield 832.2879 393.8951 2.112968 Positive
Colf.Yield-Yield 153.9201 126.7582 1.214281 Positive
units.Yield-Yield 3647.3486 290.4910 12.555804 Positive

If the user wants to relax the independence between rows and define an AR1 covariance structure among
rows then the model could be fitted as:
library(sommer)
data(DT_cpdata)
DT <- DT_cpdata
mixAR1row <- mmer(Yield~1,

random=~ vs(Rowf, Gu=AR1(Rowf, rho=0.3)) + Colf,
rcov=~units,
data=DT, verbose = FALSE)

summary(mixAR1row)$varcomp

VarComp VarCompSE Zratio Constraint
u:Rowf.Yield-Yield 791.8219 387.8695 2.041465 Positive
Colf.Yield-Yield 154.5660 126.8094 1.218885 Positive

9

units.Yield-Yield 3643.6027 290.1689 12.556834 Positive

Same could be done for the column random effect:
library(sommer)
data(DT_cpdata)
DT <- DT_cpdata
mixAR1col <- mmer(Yield~1,

random=~ Rowf + vs(Colf, Gu=AR1(Colf, rho=0.3)),
rcov=~units,
data=DT, verbose = FALSE)

summary(mixAR1col)$varcomp

VarComp VarCompSE Zratio Constraint
Rowf.Yield-Yield 830.3623 392.8264 2.113815 Positive
u:Colf.Yield-Yield 178.7490 134.2703 1.331262 Positive
units.Yield-Yield 3624.6074 287.6072 12.602629 Positive

If on the other hand, you would like to stablish the presence of correlation in row and columns at the same
time the model would look like this:
library(sommer)
data(DT_cpdata)
DT <- DT_cpdata
mixAR1rowcol <- mmer(Yield~1,

random=~ vs(Rowf:Colf,
Gu=kronecker(AR1(Rowf, rho=0.3),AR1(Colf, rho=0.3),make.dimnames = TRUE)
),

rcov=~units,
data=DT, verbose = FALSE)

summary(mixAR1rowcol)$varcomp

VarComp VarCompSE Zratio Constraint
u:Rowf:Colf.Yield-Yield 2474.339 730.1474 3.388821 Positive
units.Yield-Yield 2025.584 622.1023 3.256030 Positive

Notice that if you specify a random effect that is the interaction between 2 random effects the covariance
structure to be specified in the Gu argument has to be built using the kronecker() function. The same
applies to the ARMA() and CS() functions. Please keep in mind that the correlation values (rho argument) is
a fixed value not estimated by REML like asreml does but you can always follow an iterative approach.

6) Can I run GWAS in MET experiments with replicates?

Although the direct-inversion algorithm that sommer uses in the background is not the best choice to solve
GWAS models for the n > p scenario it is still possible to perform GWAS in MET models.

For example, assume a MET model that has 41 lines with 1000 SNP markers, tested in 3 environments. The
genetic term in a MET can be modeled as CS, DIAG or US covariance. The whole point of the GWAS
function in sommer is to provide the name of the gTerm (random effect) that will match the marker data
provided.

We first make up marker data for the MET data for example purposes
library(sommer)
data(DT_example)
DT <- DT_example
A <- A_example
M <- matrix(rep(0,41*1000),1000,41)

10

for (i in 1:41) {
M[,i] <- ifelse(runif(1000)<0.5,-1,1)

}
tM <- t(M)

We then fit the MET model of the type compound simmetry (CS) and evaluate the GWAS for the main
genetic term “Name”:
GWAS for main term in CS model
ansx <- GWAS(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,
data=DT,
M=tM,
gTerm = "Name", verbose = FALSE)

Performing GWAS evaluation
ms <- as.data.frame(t(ansx$scores))
plot(ms$`Yield score`, ylim=c(0,8))

0 200 400 600 800 1000

0
2

4
6

8

Index

m
s$

‘Y
ie

ld
 s

co
re

‘

We could do the same but evaluate the GWAS considering the genetic term as the interaction term “Env:Name”
GWAS for the interaction term in CS model
E <- matrix(1,nrow = length(unique(DT$Env)));E

[,1]
[1,] 1
[2,] 1
[3,] 1
EtM <- kronecker(E,tM)
ansx <- GWAS(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,

11

data=DT,
M=EtM,
gTerm = "Env:Name", verbose = FALSE)

Performing GWAS evaluation
ms <- as.data.frame(t(ansx$scores))
plot(ms$`Yield score`, ylim=c(0,8))

0 200 400 600 800 1000

0
2

4
6

8

Index

m
s$

‘Y
ie

ld
 s

co
re

‘

If the MET is a diagonal model, there’s a variance components and BLUPs for each environment. Therefore
we can evaluate the GWAS at any environment, here for example we evaluate the GWAS at the genetic term
in the environment ‘CA.2011’.
GWAS for the interaction term in DIAG model
E <- matrix(1,nrow = length(unique(DT$Env)));E

[,1]
[1,] 1
[2,] 1
[3,] 1
EtM <- kronecker(E,tM)
ansx <- GWAS(Yield~Env,

random= ~Name + vs(ds(Env),Name),
rcov= ~ vs(ds(Env),units),
data=DT,
M=tM,
gTerm = "CA.2011:Name", verbose = FALSE)

Performing GWAS evaluation
ms <- as.data.frame(t(ansx$scores))
plot(ms$`Yield score`, ylim=c(0,8))

12

0 200 400 600 800 1000

0
2

4
6

8

Index

m
s$

‘Y
ie

ld
 s

co
re

‘

If the MET is an unstructured model, there’s a variance components and BLUPs for each environment and a
covariance component among the different combinations of environments. Therefore we can evaluate the
GWAS at any environment as before, here for example we evaluate the GWAS at the genetic term in the
environment ‘CA.2011’. The difference with the previous model is that here we expect a greater accuracy in
the environment CA.2011 since it has borrowed information from the other environments given the covariance
fitted among environments.
GWAS for main term in US model
ansx <- GWAS(Yield~Env,

random= ~vs(us(Env),Name),
rcov= ~ vs(us(Env),units),
data=DT,
M=tM,
gTerm = "CA.2011:Name", verbose = FALSE)

Performing GWAS evaluation
ms <- as.data.frame(t(ansx$scores))
plot(ms$`Yield score`, ylim=c(0,8))

13

0 200 400 600 800 1000

0
2

4
6

8

Index

m
s$

‘Y
ie

ld
 s

co
re

‘

Same theory applies for the multitrait model:
GWAS for main term in multitrait DIAG model
ansx <- GWAS(cbind(Weight,Yield)~Env,

random= ~vs(ds(Env),Name, Gtc=unsm(2)),
rcov= ~ vs(ds(Env),units, Gtc=diag(2)),
data=DT,
M=tM,
gTerm = "CA.2011:Name", verbose = FALSE)

Performing GWAS evaluation
ms <- as.data.frame(t(ansx$scores))
plot(ms$`Yield score`, ylim=c(0,8))

14

0 200 400 600 800 1000

0
2

4
6

8

Index

m
s$

‘Y
ie

ld
 s

co
re

‘

7) How can I constrain the value of specific random effects?

When using the vs function three additional arguments help to control the following:

Gu: matrix for covariances among levels for the u.th random effect Gti: matrix of initial values for the
variance-covariance components Gtc: matrix of constraints for the variance-covariance components

Since each random effect can be seen as a multi-trait variance covariance structure, the univariate models are
just an extension where the multi-trait variance covariance structure is a 1 x 1 matrix. When inspecting the
results for the mixed models fitted by the mmer() function corresponding to the variance components stored
in the sigma element, you will notice that each random effect contains a t x t matrix which corresponds to
the multi-trait structure we referred to. For example:
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
look at the data and fit the model
mix1 <- mmer(Yield~1,

random=~vs(id,Gu=A),
rcov=~units,
data=DT, verbose = FALSE)

mix1$sigma$`u:id`

Yield
Yield 650.4145

Here the sigma element contains the random effects for id and units (error). Each of these contains a matrix
of 1 by 1, but in a multi trait model would look like this:
data(DT_cpdata)
DT <- DT_cpdata

15

GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
look at the data and fit the model
mix2 <- mmer(cbind(Yield,color)~1,

random=~vs(id,Gu=A, Gtc=unsm(2)),
rcov=~vs(units,Gtc=diag(2)),
data=DT, verbose = FALSE)

mix2$sigma$`u:id`

Yield color
Yield 634.6295932 0.471715518
color 0.4717155 0.005126228

Notice that for 2 traits this becomes a 2 by 2 matrix. In order to put constraints in some of these random
effect matrices you can use the Gtc argument as show above. For the id random effect we have specified
that variance components should be estimated and be positive (diagonals with a 1), whereas covariance
components should be estimated and unsconstrained to be positive or negative (off-diagonals with a 2).
unsm(2)

[,1] [,2]
[1,] 1 2
[2,] 2 1
mix2$sigma$`u:id`

Yield color
Yield 634.6295932 0.471715518
color 0.4717155 0.005126228

On the other hand, for the units (error) random effect we have specified in the Gtc argument that variance
components should be estimated and be positive (diagonals), whereas covariance components should not be
estimated (off-diagonals with a 0)
diag(2)

[,1] [,2]
[1,] 1 0
[2,] 0 1
mix2$sigma$`u:units`

Yield color
Yield 4009.336 0.000000000
color 0.000 0.002563711

If the user would like to constraint a value to be fixed and don’t change through the estimation process of
other random effects the user needs to provide the initial value (scaled with respect to the error variance) of
those variance-covariance components in the Gti argument and use a matrix with the value 3 in the Gtc
constraint matrix.
mm <- matrix(3,1,1) ## matrix to fix the var comp
initialVal <- mix1$sigma_scaled$`u:id`/2 # we want to fix the vc to be half of the previous uinvariate model

mix3 <- mmer(Yield~1,
random=~vs(id, Gu=A, Gti=initialVal, Gtc=mm), # constrained
rcov=~vs(units), # unconstrained

16

data=DT, verbose = FALSE)

analyze variance components
summary(mix1)$varcomp

VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 650.4145 325.5562 1.997856 Positive
units.Yield-Yield 4031.0153 344.6051 11.697493 Positive
summary(mix3)$varcomp

VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 325.2072 259.0889 1.255196 Fixed
u:units.Yield-Yield 4051.3786 352.4804 11.493912 Positive

Literature

Covarrubias-Pazaran G. 2016. Genome assisted prediction of quantitative traits using the R package sommer.
PLoS ONE 11(6):1-15.

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate mixed models
for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390 pp.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter estimation in
linear mixed models. Biometrics 51(4):1440-1450.

Henderson C.R. 1975. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics
vol. 31(2):423-447.

Kang et al. 2008. Efficient control of population structure in model organism association mapping. Genetics
178:1709-1723.

Lee, D.-J., Durban, M., and Eilers, P.H.C. (2013). Efficient two-dimensional smoothing with P-spline ANOVA
mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22 - 37.

Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic
information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

Maier et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia,
bipolar disorder, and major depressive disorder. Am J Hum Genet; 96(2):283-294.

Rodriguez-Alvarez, Maria Xose, et al. Correcting for spatial heterogeneity in plant breeding experiments with
P-splines. Spatial Statistics 23 (2018): 52-71.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance components.
Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of
relatedness. Genetics 38:203-208.

Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS 51(1):15-27.

17

https://doi.org/10.1101/354639
http://dx.doi.org/10.1101/027201

	SECTION 1: The new sintax of sommer
	1) The specification of multiresponse model
	2) The specification of multivariate unknown covariance structures
	3) The specification of additional unknown covariance structures
	4) The specification of unknown covariance structures in the residuals
	5) Special models

	SECTION 2: Frequently asked questions
	1) I got an error similar to:
	2) My model runs very slow
	3) Can I run both; rrBLUP for markers and GBLUP for individuals in sommer?
	4) I am missing BLUPs for individuals even when I provided them in the relationship matrix
	5) How can I use the AR1(), CS() and ARMA() functions
	6) Can I run GWAS in MET experiments with replicates?
	7) How can I constrain the value of specific random effects?

	Literature

