ECL User’s Guide

Giuseppe Attardi
Juan Jose Garcia Ripoll (revised version)
Daniel Kochmariski (revised revised version)

Copyright (©) 1990, Giuseppe Attardi
Copyright (©) 2000, Juan Jose Garcia Ripoll
Copyright (©) 2015, Daniel Kochmanski

Preface

Embeddable Common Lisp is an implementation of Common-Lisp originally designed for
being embeddable into C based applications. This document describes the Embeddable
Common Lisp implementation and how it differs from [ANSI, see [Bibliography], page 199]
and [Steele:84, see [Bibliography]|, page 199]. Chapter 4 [Developer’s guide], page 155, and
Chapter 1 [User’s guide], page 11, for the details about the implementation and how to
interface with other languages.

Table of Contents

Introduction 3
About this book 3
USEr’s UIAE . . oo vttt 3
Developer’s guide. ... 3
Standards 3
EXtensions. 3
What is ECL .. .o 3
Hastory oo 4
Credits . .o e 6
CopYTights . ..ot 7
Copyright of ECLo 7
Copyright of this manual 8

1 User’'sguide.............. 11
1.1 Building ECL 11
1.1.1 Autoconf based configuration 11
1.1.2 Platform specific instructions 12
1.1.2.1 MSVC based configuration........................... 12
1.1.2.2 Android ... 12
11,23 0 . 13

1.2 Entering and leaving Embeddable Common Lisp............... 14
1.3 The break 1o0pot 16
1.4 Embedding ECLo 16
1.4.1 Minimal Example............o i 16
1.4.2 Embedding Reference........... o i 16
1.4.2.1 Starting and Stopping ... 16
1.4.2.2 Catching Errors and Managing Interrupts............ 19

2 Standards.................... 23
2.1 OVEIVIEW . .ttt e et 23
2.1.1 Reading thismanual............ L. 23
2.1.2 CReferenceo 23
2.2 Evaluation and compilation................ ... o oL 25
2.2.1 Compiler declaration optimizeccooeviua... 25
2.2.2 declaimand proclaim...........ccooiiiiiiiiiiiiiiii. 26
223 CReferenceo 27
2.2.3.1 ANSI Dictionaryoeuueeiitei i, 27

2.3 Types and classesottt 27
2.3.1 CReferencecooviuiiiiii e 27
2.3.1.1 ANSI Dictionary........cooueiiiiiniiiininean.. 27

2.4 Data and control flow 27

2.4.1 Shadowed bindings ...t 28

ii

2.4.2 Minimal compilation.............. 28
2.4.3 Function types........oueiiiii i 29
2.4.4 C Calling conventions.c..coveiiiiiiiiiiieaien.. 29
2.4.5 CReferencecoooiiii 30
2.4.5.1 ANSI Dictionary.......c.ooeeiiieeniiieenninenennns. 34

2.5 ODJECtS o ottt 35
2.5.1 CReferenceooouiiii 35
2.5.1.1 ANSI Dictionary.........cceeuiuiiiiiiieeiniinannn.. 35

2.6 SUIUCHUTES i 36
2.6.1 Redefining a defstruct structure................ 36
2.6.2 CReferenceo 36
2.6.2.1 ANSI Dictionary........cooueiiiiiiiiiinnean.. 36

2.7 Conditionsovviii it 36
271 CReferenceoouiiiiii i 36
2.7.1.1 ANSIdictionaryccoiiiiiiiininiinennnn... 38

2.8 Symbols. ... 38
281 CReferenceoooiiii 38
2.8.1.1 ANSI Dictionary.........cceeuiuiiiiiiienniinannn.. 39

2.9 Packages ... 40
2.9.1 CReferenceccooiiiiiiii i 40
2.9.1.1 ANSI Dictionarycooueeiiiiiinininean.. 40

210 NUmbDeIS . ..t 41
2.10.1 NUMETIC BYPeS. . vttt 41
2.10.2 Floating point exceptions.............cooiiiiiiiiiiia.. 42
2.10.3 Random-States............. ...t 42
2.10.4 Infinity and Not a Number 43
2.10.5 Branch cuts and signed zero.............. oL 43
2.10.6 Dictionary.........ouuuuuiii e 44
2.10.7 CReference........ ..o 44
2.10.7.1 Number C types.....covreiiiiiiii it 44
2.10.7.2 Number constructorscouiiiiiiiiinn.. 45
2.10.7.3 Number acCessors.uuviini i 46
2.10.7.4 Number COercionouuuuueiiiinneninnno.. 46
2.10.7.5 ANSI dictionaryc.ooveeiinineniieeninneanns 47

2.11 Characters 50
2.11.1 Unicode vs. POSIX locale 50
2.11.1.1 Character typesouuueee e 50
2.11.1.2 Character NAmeS.ttt 50
2.11.2 #\Newline characters................cooiiiiiieeeeaiiinn. 51
2.11.3 CReference..........iiii i 51
20131 Gy DS e ettt 51
2.11.3.2 Constructors.covviie e 51
2.11.3.3 Predicates........ ... 52
2.11.3.4 Character Case.........coovviiieeeeiiiiiiiiannnnn.. 52
2.11.3.5 ANSI Dictionary..........coooiiiiiiiiiiiiin... 52

2.12 COMSES . vttt 53
2.12.1 CReferencecouiiii i 53

2.12. 1.1 ACCESSOTS . o v v v et e 53

2.12.1.2 ANSI Dictionaryoouueeeiieeiiieenanenns 54

208 AT AYS e 57
2.13.1 Array Hmits . ..o 57
2.13.2 Specializations.o 57
2.13.3 CReference....... ..o 58
2.13.3.1 Typesand constants...............ooiiiieeen.... 58
2.13.3.2 ecl_aet_to_symbol, ecl_symbol to_aet................ 58
2.13.3.3 Constructors.t 59
2.13.3.4 ACCESSOTS .« ettt ettt 60
2.13.3.5 Array properties. ... 60
2.13.3.6 ANSI Dictionary..........coooiiiiiiiiiiiininn... 61

204 SETIIES ¢ o ettt e 62
2.14.1 String types & Unicode............coiiiiiiiiiii... 63
2.14.2 Creference.o 63
2.14.2.1 Base string constructors oo il 63
2.14.2.2 String aCCeSSOTS.ttt ettt i 64
2.14.2.3 Converting Unicode stringso..... 64
2.14.2.4 ANSI dictionaryouviiuiiiiniieaiannn. 65

2,15 SEQUEIICES . .. v vttt et 66
2.15.1 CReference.........cooviuiiiiiiiii i 66
2.15.1.1 ANSI dictionarycouueiiiiiiiiiiinen 66

2.16 Hash tableso e 68
2.16.1 EXtensionsuiiiieiiii 68
2.16.1.1 Weakness in hash tables 68
2.16.1.2 Thread-safe hash tables............................. 68
2.16.1.3 Hash tables serialization 68
2.16.1.4 Custom equivalence predicate....................... 69
2.16.1.5 Example. ... 69
2.16.2 CReference.........ccouuiiiiiiiiiiiiiii .. 69
2.16.2.1 ANSI dictionarycouueiieiie i, 69

2.17 Filenamesoiiiii e 70
2070 SYMBax . oot 70
2.17.2 Wild pathnames and matching........................... 71
2.17.3 CReference.........cocoiiiiiiiiii i 71
2.17.3.1 ANSI dictionaryc.oveeiiin i 71

208 FileS o oot 72
2.18.1 Dictionary.......ooueunui i e 72
2.18.2 CReference..........cooviiiiiiiiiii i, 73
2.18.2.1 ANSI Dictionary..........ooeiiiiiiiiiiiininan.. 73

2,19 SEI@AINS . . o ettt et e e 73
2.19.1 ANSI Streams......... ..o, 73
2.19.1.1 Supported types ... oo 74
2.19.1.2 Element typesouuiiiiiiiiiii 74
2.19.1.3 External formats il 74
2.19.2 DiCtIONary ...ttt 76
2.19.2.1 File Stream Extensionsocoiiia... 76
2.19.2.2 External Format Extensions 76

2.19.2.3 Sequence Streams............oouueeeiiiieennieea.n. 78

iii

iv

2.19.3 CReferencecooiiiiiiii i 78
2.19.3.1 ANSI dictionaryc.oeeiiiiiiiiinennne.n. 78

2.20 Printer. 80
2.20.1 CReference.........coovuiiiiiiiiiiii i 81
2.20.1.1 ANSI Dictionary..........oooiiiiiiniiiininnn... 81

221 Reader. ... 82
2.21.1 *read-—SUPTeSS*oiiiiiiii i 82
2.21.2 CReference....... ..o 82
2.21.2.1 ANSI Dictionary..........oooeiiiiiiniiinnnnan... 82

2.22 System construction........... ...t 83
2.22.1 CReference.........coouiiiiiiii .. 83
2.22.1.1 ANSI Dictionary.........cooiiiiiiiiiiiiiiinn.. 83

2.23 Environment 83
2.23.1 Dictionary.......ooueeiti i e 84
2232 CReference.........cooiiiiiiiiiiiiiii i 86
2.23.2.1 ANSI Dictionary.........coooiiiiiiiiiiiinin.. 86

3 Extensions.............. ..., 89
3.1 System buildingo. i 89
3.1.1 Compiling with ECL....... 89
3.1.1.1 Portable FASL i 90
3.1.1.2 Native FASL. ... e 91
3.1.1.3 Object file.....o.ouiuiii 92
3.1.1.4 Static library i 92
3.1.1.5 Shared library ... 93
3.1.1.6 Executable 93
3LLT SUmMmMAary . ..o 94

3.1.2 Compiling with ASDF 94
3.1.2.1 Examplecodetobuild................o 94
3.1.2.2 Build it as an single executable 94
3.1.2.3 Build it as shared library and use in C............... 95
3.1.2.4 Build it as static library and use in C................ 97

3.1.3 C compiler configuration................... ..ol 97
3.1.3.1 Compiler flags ... 97
3.1.3.2 Compiler & Linker programs......................... 98

3.2 Operating System Interface.............o L. 98
3.2.1 Command line arguments.cooeiiiiieaa... 98
3.2.2 External processes............oiiiiiiiiiiiiiia 100
3.2.3 FIFO files (named pipes)oovvviiiiiiininiinen.. 102
3.2.4 Operating System Interface Reference.................... 102
3.3 Foreign Function Interface............. i il 103
331 Whatisa FFI7.. ... 103
332 Twokindsof FFL..... 103
3.3.3 Foreign objects........ .. i 104
3.3.3.1 CReference..........ooooiiiiiiii i 105

3.3.4 Higher level interfaces il 106
3.3.5 SFFI Reference........ ..o, 108

3.3.6 DFFI Referenceouuui .. 112

3.3.7 UFFI Referenceoooiii .. 112

3.3.7.1 Primitive Typeso, 112
3.3.7.2 Aggregate Types....c..oviiiiiiiiiiiiiiiniiinan.. 114
3.3.7.3 Foreign Objects.o, 117
3.3.7.4 Foreign Stringscouiiiiiiiiiiiiiiiian. 121
3.3.7.5 Functions and Libraries............................. 125

3.4 Native threads 126
3.4.1 Tasks, threads or processesccoiiiiiiiiiin. 126
3.4.2 Processes (native threads) 127
3.4.3 Processes dictionary ... i 127
3.4.4 Locks (mutexes)..........oiiiiiiiiiiiiiiiiiia.. 131
3.4.5 Locks dictionary....... ... 131
3.4.6 Readers-writer locks.......... ... i 132
3.4.7 Read-Write locks dictionary 133
3.4.8 Condition variables............ i 133
3.4.9 Condition variables dictionary 134
3.4.10 Semaphoreso 134
3.4.11 Semaphores dictionary.............cooiiiiiiiiii .. 135
3412 BarTiers 136
3.4.13 Barriers dictionaryo i 136
3.4.14 Atomic Operations.o.ueeeiiiieiiiii i 136
3.4.15 Atomic operations dictionaryl 136
3.5 Signals and Interrupts............co i 140
3.5.1 Problems associated to signals.................. 140
3.5.2 Kindsofsignals.............c o 140
3.5.2.1 Synchronous signals, 140
3.5.2.2 Asynchronous signals.............. ..ot 141

3.5.3 Signals and interrupts in ECL, 141
3.5.3.1 Handling of asynchronous signals 142
3.5.3.2 Handling of synchronous signals..................... 142

3.5.4 Considerations when embedding ECL.................... 143
3.5.5 Signals Reference........ ... 143
3.6 Memory Managementccoiiiiiiiiiiiiiiiiiia.., 144
3.6.1 Introduction........... ..o 144
3.6.2 Boehm-Weiser garbage collector 145
3.6.3 Memory limits........ .o i 145
3.6.4 Memory conditionsl 146
3.6.5 Finalization 146
3.6.6 Memory Management Reference 147
3.7 Meta-Object Protocol (MOP) 149
3.7.1 Introduction........... ... 149
3.8 Gray STreamsttt e 149
3.9 Tree walker 150
3.10 Local package nicknameso, 150
3.10.1 OVEIVIEW . vttt e e 150
3.10.2 Package local nicknames dictionary 151
3.11 Package locks ... 152

3.11.1 Package Locking Overview............ ..., 152

vi

3.11.2 Operations Violating Package Locks 152
3.11.3 Package Lock Dictionary, 153
3.12 CDR EXtensionsooiuiiiiiiiiiiii .. 153
4 Developer’s guide............................. 155
4.1 Sources StrUCTUTE . ..o et ettt e 155
411 SIC/C it 155
4.2 Contributingoiiiiii 158
4.3 Defun preproCessor.ttt e 159
4.4 Manipulating Lisp objects..........coo i 160
4.4.1 Objects representation.............ccooviiiiiiiiiiiin... 160
4.4.2 Constructing objects. ... 163
4.5 Environment implementation.................., 171
4.6 The interpreter.o 171
4.6.1 ECL stacks.o 171
4.6.2 Procedure Call Conventions................coovviiiinan. 171
4.6.3 The lexical environment o i 173
4.6.4 The interpreter stackcoiiiiiii i 173
4.7 The compiler. 175
4.7.1 The compiler translatesto C............................. 175
4.7.2 The compiler mimics human C programmer.............. 175
4.7.3 Implementation of Compiled Closures.................... 177
4.7.4 Use of Declarations to Improve Efficiency 178
4.7.5 Inspecting generated Ccode........... ..., 179
4.8 Porting ECL 180
4.9 Removed featureso 180
Indexes 183
Concept INdeXttt 183
Configure option IndexXoiiiit i 184
Feature index ... 184
Example index 184
Function index 185
Variable index. 190
Type INdex . ..o e 190
Common Lisp symbols. ... 191
C/CH 4 INdEX . oottt 194

Bibliography 199

Introduction

About this book

This manual is part of the ECL software system. It documents deviations of ECL from
various standards ([ANSI, see [Bibliography], page 199], [AMOP, see [Bibliography],
page 199],...), extensions, daily working process (compiling files, loading sources, creating
programs, etc) and the internals of this implementation.

It is not intended as a source to learn Common Lisp. There are other tutorials and text-
books available in the Net which serve this purpose. The homepage of the Common-Lisp.net
(https://common-lisp.net) contains a good list of links of such teaching and learning ma-
terial.

This book is structured into four parts:

User’s guide

We begin with [Chapter 1 [User’s guide], page 11] which provides introductory material
showing the user how to build and use ECL and some of its unique features. This part
assumes some basic Common Lisp knowledge and is suggested as an entry point for new
users who want to start using Embeddable Common Lisp.

Developer’s guide

[Chapter 4 [Developer’s guide], page 155] documents Embeddable Common Lisp implemen-
tation details. This part is not meant for normal users but rather for the ECL developers
and other people who want to contribute to Embeddable Common Lisp. This section is
prone to change due to the dynamic nature of the software. Covered topics include source
code structure, contributing guide, internal implementation details and many other topics
relevant to the development process.

Standards

[Chapter 2 [Standards], page 23] documents all parts of the standard which are left as
implementation specific or to which ECL doesn’t adhere. For instance, precision of floating
point numbers, available character sets, actual input/output protocols, etc.

Section covers also C' Reference as a description of ANSI Common-Lisp from the C/C++
programmer perspective and ANSI Dictionary for Common-Lisp constructs available from
C/C++.

Extensions

[Chapter 3 [Extensions], page 89] introduces all features which are specific to ECL and
which lay outside the standard. This includes configuring, building and installing ECL

multiprocessing capabilities, graphics libraries, interfacing with the operating system, etc.

What is ECL

Common-Lisp is a general purpose programming language. It lays its roots in the LISP pro-
gramming language [LISP1.5, see [Bibliography], page 199] developed by John McCarthy in

https://common-lisp.net
https://common-lisp.net

4 ECL Manual

the 80s. Common-Lisp as we know it ANSI Common-Lisp is the result of an standardization
process aimed at unifying the multiple lisp dialects that were born from that language.

Embeddable Common Lisp is an implementation of the Common-Lisp language. As such
it derives from the implementation of the same name developed by Giuseppe Attardi,
which itself was built using code from the Kyoto Common-Lisp [Yasa:85, see [Bibliography],
page 199]. [History], page 4, for the history of the code you are about to use.

Embeddable Common Lisp (ECL for short) uses standard C calling conventions for Lisp
compiled functions, which allows C programs to easily call Lisp functions and vice versa.
No foreign function interface is required: data can be exchanged between C and Lisp with
no need for conversion.

ECL is based on a Common Runtime Support (CRS) which provides basic facilities for
memory management, dynamic loading and dumping of binary images, support for multiple
threads of execution. The CRS is built into a library that can be linked with the code of the
application. ECL is modular: main modules are the program development tools (top level,
debugger, trace, stepper), the compiler, and CLOS. A native implementation of CLOS is
available in ECL. A runtime version of ECL can be built with just the modules which are
required by the application.

The ECL compiler compiles from Lisp to C, and then invokes the C compiler to produce
binaries. Additionally portable bytecode compiler is provided for machines which doesn’t
have C compiler. While former releases of ECL adhere to the the reference of the language
given in Common-Lisp: The Language2 [Steele90, see [Bibliography|, page 199], the ECL
is now compliant with X3J13 ANSI Common Lisp [ANSI, see [Bibliography], page 199].

History

The ECL project is an implementation of the Common Lisp language inherits from many
other previous projects, as shown in Figure 1.

Introduction 5

Ibuki —— KCL

l / A B) BisaforkofA
Delphi ™, Ahas been
renamed to B
i ", B shares some
/" code with A
AKCL EColisp) ‘
i Obsolete

Maintained

ANSI compliant

Working towards
ANSI compliance

Other (no info or
obsolete)

(C) 2020 Daniel Kochmanski |

Figure 1: ECL’s family tree

The oldest ancestor is the Kyoto Common Lisp (KCL), an implementation developed in
1984 at the the Research Institute for Mathematical Sciences, Kyoto University [Yasa:85,
see [Bibliography], page 199] by Taiichi Yuasa and Masami Hagiya. This implementation
was developed partially in C and partially in Common Lisp itself and featured a lisp to C
translator.

Richard W. Weyhrauch in 1985 founded a company Ibuki to sell its version of KCL called
Ibuki Common Lisp (IBCL) in the USA.

Giuseppe Attardi learned about KCL from Richard Weyhrauch in 1986. At the time he was
working with the company DELPHI. He extended KCL by adding a CLOS implementation

and other improvements. The whole combination was released in 1988 as DELPHI Common
Lisp (DCL).

William F. Schelter in 1987 started improving KCL in several areas and developed Austin
Kyoto Common-Lisp (AKCL). However, those changes had to be distributed as patches
over the proprietary KCL implementation.

Much later in 1994, when KCL became open source (and by extension also AKCL), William
F. Schelter re-released AKCL as GNU Common Lisp (GCL), implementation which primary

6 ECL Manual

purpose at the time was to support the Maxima compute algebra system, which was also
maintained by William F. Schelter.

In 1995 another AKCL descendant called HCL is released. This commercial implementation
is an extension language for the application HP PE/SolidDesigner. A large part of the
application’s user interface is written in Common Lisp.

In 1994 Giuseppe Attardi left DELPHI and went back to the University of Pisa, where
he decided to build a version of DCL that would allow integrating Lisp code with other
languages[Attardi:95, see [Bibliography], page 199]. Since Lisp had become less popular and
Lisp programmers were diminishing in number, he used the acronym ECL, which could be
read as either the Embeddable Common Lisp as well as ECoLisp, as a joke for the ecological
goal of preserving the disappearing species, the Lisp programmer. The implementation
achieved rather good compliance to the informal specification of the language in CLTL2
[Steele:90, see [Bibliography], page 199], and which run on a rather big number of platforms.

The ECL project stagnated a little bit in the coming years. In particular, certain dependen-
cies such as object binary formats, word sizes and some C quirks made it difficult to port
it to new platforms. Furthermore, ECL was not compliant with the ANSI specification, a
goal that other Common Lisps were struggling to achieve.

This is where the ECLS or ECL-Spain project began. Juanjo Garcia-Ripoll took the ECoL-
isp sources and worked on them, with some immediate goals in mind: increase portability,
make the code 64-bit clean, make it able to build itself from scratch, without other imple-
mentation of Common Lisp and restore the ability to link ECL with other C programs.

Those goals were rather quickly achieved. ECL was then ported to a number of platforms
and with time the compatibility with the ANSI specification became a more important goal.
At some point the fork ECLS, with agreement of Prof. Attardi, took over the original ECL
implementation and it became what it is nowadays, a community project.

In 2013 once again project got unmaintained. In 2015 Daniel Kochmanski took the position
of a maintainer with consent of Juanjo Garcia-Ripoll. In 2020 Marius Gerbershagen became
the project co-maintainer.

The ECL project owes a lot to different people who have contributed in many different
aspects, from pointing out bugs and incompatibilities of ECL with other programs and
specifications, to actually solving these bugs and porting ECL to new platforms.

Current development of ECL is still driven by Daniel Kochmanski and Marius Gerbersha-
gen with main focus on improving ANSI compliance and compatibility with the Common
Lisp libraries ecosystem, fixing bugs, improving speed and the portability. The project
homepage is located at https://common-lisp.net/project/ecl/.

Credits

The Embeddable Common Lisp project is an implementation of the Common-Lisp language
that aims to comply with the ANSI Common-Lisp standard. The first ECL implementa-
tions were developed by Giuseppe Attardi’s who produced an interpreter and compiler fully
conformant with the Common-Lisp as reported in Steele:84. ECL derives itself mostly from
Kyoto Common-Lisp, an implementation developed at the Research Institute for Mathe-
matical Sciences (RIMS), Kyoto University, with the cooperation of Nippon Data General

https://common-lisp.net/project/ecl/

Introduction 7

Corporation. The main developers of Kyoto Common-Lisp were Taiichi Yuasa and Masami
Hagiya, of the Research Institute for Mathematical Sciences, at Kyoto University.

We must thank Giuseppe Attardi, Yuasa and Hagiya and Juan Jose Garcia Ripoll for their
wonderful work with preceding implementations and for putting them in the Public Domain
under the GNU General Public License as published by the Free Software Foundation.
Without them this product would have never been possible.

This document is an update of the original ECL documentation, which was based in part
on the material in [Yuasa:85, see [Bibliography]|, page 199]

The following people or organizations must be credited for support in the development
of Kyoto Common-Lisp: Prof. Reiji Nakajima at RIMS, Kyoto University; Nippon Data
General Corporation; Teruo Yabe; Toshiyasu Harada; Takashi Suzuki; Kibo Kurokawa;
Data General Corporation; Richard Gabriel; Daniel Weinreb; Skef Wholey; Carl Hoffman;
Naruhiko Kawamura; Takashi Sakuragawa; Akinori Yonezawa; Etsuya Shibayama; Hagi-
wara Laboratory; Shuji Doshita; Takashi Hattori.

William F. Schelter improved KCL in several areas and developed Austin Kyoto Common-
Lisp (AKCL). Many ideas and code from AKCL have been incorporated in Embeddable
Common Lisp.

The following is the partial list of contributors to ECL: Taiichi Yuasa and Masami Hagiya
(KCL), William F. Schelter (Dynamic loader, conservative GC), Giuseppe Attardi (Top-
level, trace, stepper, compiler, CLOS, multithread), Marcus Daniels (Linux port) Cornelis
van der Laan (FreeBSD port) David Rudloff (NeXT port) Dan Stanger, Don Cohen, and
Brian Spilsbury.

We have to thank for the following pieces of software that have helped in the development
of Embeddable Common Lisp

BRUNO HAIBLE
For the Cltl2-compliance test

PETER VAN EYNDE
For the ANSI-compliance test

SYMBOLIC’S INC.

For the ANSI-compliant LOOP macro.
The Embeddable Common Lisp project also owes a lot to the people who have tested
this program and contributed with suggestions, error messages and documentation: Eric
Marsden, Hannu Koivisto, Jeff Bowden and Yuto Hayamizu, Bo Yao and others whose name

we may have omitted.
Copyrights

Copyright of ECL

ECL is distributed under the GNU LGPL, which allows for commercial uses of the software.
A more precise description is given in the Copyright notice which is shipped with ECL.

—--—— BEGINNING OF COPYRIGHT FOR THE ECL CORE ENVIRONMENT -------——---

ECL Manual

Copyright (c) 2019-2024 Daniel Kochmariski and Marius Gerbershagen
Copyright (c) 2015-2018, Daniel Kochmarski

Copyright (c) 2000-2013, Juan Jose Garcia Ripoll

Copyright (c) 1990, 1991, 1993 Giuseppe Attardi

Copyright (c) 1984 Taiichi Yuasa and Masami Hagiya

A1l Rights Reserved

ECL is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301

PLEASE NOTE THAT:

This license covers all of the ECL program except for the files

src/1lsp/loop.1lsp ; Symbolic’s LOOP macro
src/lsp/pprint.1lsp ; CMUCL’s pretty printer
src/lsp/format.1lsp ; CMUCL’s format

and the directories
contrib/ ; User contributed extensions
examples/ ; Examples for the ECL usage

Look the precise copyright of these extensions in the corresponding
files.

Examples are licensed under: (SPDX-License-Identifier) BSD-2-Clause

Report bugs, comments, suggestions to the ecl mailing list:
ecl-devel@common-lisp.net.

---- END OF COPYRIGHT FOR THE ECL CORE ENVIRONMENT ---------———------

Copyright of this manual

Copyright
Copyright
Copyright
Copyright

Trademark

Daniel Kochmanski and Marius Gerbershagen, 2020
Daniel Kochmanski, 2016

Juan José Garcia-Ripoll, 2006

Kevin M. Rosenberg, 2002-2003 (UFFI Reference)

AllegroCL is a registered trademark of Franz Inc.

USAR

Introduction 9

Trademark Lispworks is a registered trademark of Xanalys Inc.
Trademark Microsoft Windows is a registered trademark of Microsoft Inc.

Trademark Other brand or product names are the registered trademarks or trademarks of their
respective holders.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the no Front-Cover Texts, and
with no Back-Cover Texts. Exact text of the license is available at https://www.gnu.org/
copyleft/fdl.html.

https://www.gnu.org/copyleft/fdl.html
https://www.gnu.org/copyleft/fdl.html

11

1 User’s guide

1.1 Building ECL

Due to its portable nature, ECL works on every (at least) 32-bit architecture which provides
a proper C99 compliant compiler.

Operating systems on which ECL is reported to work: Linux, Darwin (Mac OS X), Solaris,
FreeBSD, NetBSD, OpenBSD, DragonFly BSD, Windows and Android. On each of them
ECL supports native threads.

In the past Juanjo José Garcia-Ripoll maintained a test farm which performed ECL tests for
each release on number of platforms and architectures. Due to lack of the resources we can’t
afford such doing, however each release is tested by volunteers with an excellent package
cl-test-grid (https://common-lisp.net/project/cl-test-grid) created and maintained
by Anton Vodonosov.

1.1.1 Autoconf based configuration

ECL, like many other FOSS programs, can be built and installed with a GNU tool called
Autoconf. This is a set of automatically generated scripts that detect the features of your
machine, such as the compiler type, existing libraries, desired installation path, and con-
figures ECL accordingly. The following procedure describes how to build ECL using this
procedure and it applies to all platforms except for the Windows ports using Microsoft
Visual Studio compilers (however you may build ECL with cygwin or mingw using the
autoconf as described here).

To build Embeddable Common Lisp you need to
1. Extract the source code and enter it’s directory

$ tar -xf ecl-xx.x.x.tgz
$ cd ecl-xx.x.x

2. Run the configuration file, build the program and install it

$./configure --prefix=/usr/local
$ make # -jX if you have X cores
$ make install

3. Make sure the program is installed and ready to run:
$ /usr/local/bin/ecl

ECL (Embeddable Common-Lisp) 16.0.0

Copyright (C) 1984 Taiichi Yuasa and Masami Hagiya

Copyright (C) 1993 Giuseppe Attardi

Copyright (C) 2000 Juan J. Garcia-Ripoll

Copyright (C) 2015 Daniel Kochmanski

ECL is free software, and you are welcome to redistribute it
under certain conditions; see file ’Copyright’ for details.
Type :h for Help.

Top level in: #<process TOP-LEVEL>.

>

https://common-lisp.net/project/cl-test-grid

12 ECL Manual

1.1.2 Platform specific instructions

1.1.2.1 MSVC based configuration

You need Microsoft Visual Studio 2015 or better to compile ECL, which flavor(Professional,
Community, etc) does not matter.

You also need yasm (http://yasm.tortall.net) optionally to build gmp, fetch yasm-1.3.0-
win64.exe and yasm-1.3.0-win32.exe, and put them in your system PATH directory.

In the Visual Studio’s startup menu, click Developer Command Prompt for Vi-
sual Studio (https://docs.microsoft.com/en-us/dotnet/framework/tools/
developer-command-prompt-for-vs) to open the console window. Alternatively, open
the developer console from the start menu through "Visual Studio 20xx" -> "Visual Studio
Tools" -> "VC" and select "x64 Native Tools Command Prompt for VS 20xx" or "x86
Native Tools Command Prompt for VS 20xx", depending on whether you want to build
32 or 64bit versions of ECL.

1. Change to the msvc directory.
2. Run nmake to build ECL.

3. Run nmake install prefix=d:\Software\ECL where the prefix is the directory where
you want to install ECL.

4. If you want to build debug version, add ECL_DEBUG=1 to nmake command line.

5. If you want to build 64bit version, add ECL_WIN64=1 to nmake command line, you
can also set GMP_TYPE=AMD64 to use specific assembly codes.

6. Optionally, if you want to build a self-installing executable, you can install NSIS and
run nmake windows-nsi.

1.1.2.2 Android

Cross compiling ECL for Android requires first building the host ECL program. At present
this host ECL needs to have the same word size and same optional capabilities (e.g. threads,
C99 complex floats) as the target system. Therefore, to build the host ECL for a 32 bit
ARM system, use the following commands:

C99 complex numbers are not fully supported on Android

./configure ABI=32 CFLAGS="-m32 -g -02" LDFLAGS="-m32 -g -02"\
—--prefix=‘pwd‘/ecl-android-host \
--disable-c99complex

make -j9

make install

rm -r build

export ECL_TO_RUN=‘pwd‘/ecl-android-host/bin/ecl

The next step is to configure the cross compilation toolchain. This requires the Android
NDK version 15 or higher.

export NDK_PATH=/opt/android-ndk

export ANDROID_API=23

export TOOLCHAIN_PATH=‘pwd‘/android-toolchain
${NDK_PATH}/build/tools/make_standalone_toolchain.py --arch arm --install-dir ${TOOLCH
export SYSROOT=${TOOLCHAIN_PATH}/sysroot

http://yasm.tortall.net
https://docs.microsoft.com/en-us/dotnet/framework/tools/developer-command-prompt-for-vs
https://docs.microsoft.com/en-us/dotnet/framework/tools/developer-command-prompt-for-vs
https://docs.microsoft.com/en-us/dotnet/framework/tools/developer-command-prompt-for-vs

Chapter 1: User’s guide 13

export PATH=${TOOLCHAIN_PATH}/bin:$PATH

Here, ANDROID_API is the minimum Android API version ECL will run on. Finally, we can
build and install the target ECL:

boehm GC is not compatible with 1ld.gold linker, force use of 1ld.bfd
export LDFLAGS="--sysroot=${SYSROOT} -D__ANDROID_API__=${ANDROID_API} -fuse-1d=bfd"|}
export CPPFLAGS="--sysroot=${SYSROOT} -D__ANDROID_API__=${ANDROID_API} -isystem ${SYSR
export CC=arm-linux-androideabi-clang
./configure --host=arm-linux-androideabi \
--prefix=‘pwd‘/ecl-android \
--disable-c99complex \
--with-cross-config=‘pwd‘/src/util/android-arm.cross_config
make -j9
make install
Library and assets are installed in the "ecl-android" directory and are ready to run on the
Android system.

1.1.2.3 iOS

The cross-compilation steps for i0S are similar to those for Android.
Build the host ECL:

./configure --prefix=‘pwd‘/ecl-i0S-host --disable-c99complex
make -j9

make install

rm -r build

export ECL_TO_RUN=‘pwd‘/ecl-i0S-host/bin/ecl

Configure the toolchain:

export IOS_VERSION_MIN="8.0"
export I0S_SDK_DIR="‘xcode-select --print-path‘/Platforms/iPhone(0S.platform/Developer/

export CC="clang"
export CXX="clang++"

export CFLAGS="-arch arm64 -miphoneos-version-min=${I0S_VERSION_MIN} -isysroot ${IOS_S
export CFLAGS="$CFLAGS -pipe -Wno-trigraphs -Wreturn-type -Wunused-variable"Jj

export CFLAGS="$CFLAGS -fpascal-strings -fasm-blocks -fmessage-length=0 -fvisibility=h
export CFLAGS="$CFLAGS -02 -DNO_ASM"

export LD="1d"
export LDFLAGS="-arch arm64 -pipe -std=c99 -gdwarf-2 -isysroot ${I0S_SDK_DIR}"[
export LIBS="-framework Foundation"
Build and install the target library:
export CFLAGS="$CFLAGS -DGC_DISABLE_INCREMENTAL -DECL_RWLOCK"
export CXXFLAGS="$CFLAGS"
./configure --host=aarch64-apple-darwin \
—--prefix=‘pwd‘/ecl-i0S \
--disable-c99complex \

14 ECL Manual

--disable-shared \
--with-cross-config="‘pwd‘/src/util/i0S-armé4.cross_config
make -j9
make install

Library and assets in the "ecl-iOS" directory are ready to run on the iOS system.

1.2 Entering and leaving Embeddable Common Lisp

Embeddable Common Lisp is invoked by the command ecl

% ecl

ECL (Embeddable Common-Lisp) 0.0e

Copyright (C) 1984 Taiichi Yuasa and Masami Hagiya
Copyright (C) 1993 Giuseppe Attardi

Copyright (C) 2000 Juan J. Garcia-Ripoll

Copyright (C) 2015 Daniel Kochmanski

ECL is free software, and you are welcome to redistribute it
under certain conditions; see file ’Copyright’ for details.
Type :h for Help. Top level.

Top level in: #<process TOP-LEVEL>.

>

When invoked, Embeddable Common Lisp will print the banner and initialize the system.
The number in the Embeddable Common Lisp banner identifies the revision of Embeddable
Common Lisp. 0.0e is the value of the function 1isp-implementation-version.

Unless user specifies ——norc flag when invoking the Embeddable Common Lisp, it will look
for the initialization files “/.ecl and ~/.eclrc. If he wants to load his own file from the
current directory, then he should pass the file path to the --1load parameter:

% ecl --norc --load init.lisp
After the initialization, Embeddable Common Lisp enters the top-level loop and prints the
prompt >’

Type :h for Help. Top level.

>
The prompt indicates that Embeddable Common Lisp is now ready to receive a form from
the terminal and to evaluate it.
Usually, the current package (i.e., the value of *packagex) is the user package, and the
prompt appears as above. If, however, the current package is other than the user package,
then the prompt will be prefixed with the package name.

> (in-package "CL")

#<"COMMON-LISP" package>

COMMON-LISP> (in-package "SYSTEM")

#<"SI" package>

SI>
To exit from Embeddable Common Lisp, call the function ext:quit.

> (quit)
b

Chapter 1: User’s guide 15

Alternatively, you may type "D on UNIX-like operating systems, i.e. press the key D while
pressing down the control key (Ctrl), on Windows, you should use ~Z followed by a return.

> "D

b
The top-level loop of Embeddable Common Lisp is almost the same as that defined in
Section 20.2 of [Steele:84, see [Bibliography], page 199]. Since the input from the terminal
is in line mode, each top-level form should be followed by a newline. If more than one value
is returned by the evaluation of the top-level form, the values will be printed successively.
If no value is returned, then nothing will be printed.

> (values 1 2)
1

2

> (values)

>

When an error is signaled, control will enter the break loop.

> (defun foo (x) (bar x))
foo

> (defun bar (y) (bee y y))

bar

> (foo ’lish)

Condition of type: UNDEFINED-FUNCTION
The function BEE is undefined.

Available restarts:
1. (RESTART-TOPLEVEL) Go back to Top-Level REPL.

Broken at FOO. In: #<process TOP-LEVEL>.
>>

*>>’ in the last line is the prompt of the break loop. Like in the top-level loop, the prompt
will be prefixed by the current package name, if the current package is other than the
cl-user package.

To go back to the top-level loop, type :q
>>:q

Top level in: #<process TOP-LEVEL>.
>

If more restarts are present, user may invoke them with by typing :rN, where N is the restart
number. For instance to pick the restart number two, type :r2.

See [Section 1.3 [The break loop|, page 16] for the details of the break loop.

16 ECL Manual

The terminal interrupt (usually caused by typing ~C (Control-C)) is a kind of error. It
breaks the running program and calls the break level loop.

Example:

> (defun foo () (do () (mnil)))
foo

> (foo)
~C

Condition of type: INTERACTIVE-INTERRUPT
Console interrupt.

Available restarts:

1. (CONTINUE) CONTINUE
2. (RESTART-TOPLEVEL) Go back to Top-Level REPL.

Broken at FOO. In: #<process TOP-LEVEL>.
>>

1.3 The break loop

1.4 Embedding ECL

1.4.1 Minimal Example

An example project is included in the ECL source distribution in the examples/embed/
directory.

This example consists of a Common Lisp library (hello-1lisp.1lisp) and a system definition
(hello-lisp.asd, See Section 3.1.2 [Compiling with ASDF], page 94) that is called from
a C program (hello.c). The example Makefile shows how to build a static library from
the Lisp library and link it with the C program.

1.4.2 Embedding Reference
1.4.2.1 Starting and Stopping

int cl_boot (int argc, char **argv); [Function]
Setup the lisp environment.

argc An integer with the number of arguments to this program.
argv A vector of strings with the arguments to this program.

Description This function must be called before any other function from the ECL
library, including the creation of any lisp object or evaluating any lisp code. The only
exception are ecl_set_option and ecl_get_option.

Chapter 1: User’s guide 17

int cl_shutdown (void); [Function]
Close the lisp environment.

Description This function must be called before exiting a program that uses the ECL
environment. It performs some cleaning, including the execution of any finalizers,
unloading shared libraries and deleting temporary files that were created by the com-
piler.

void ecl_set_option (int option, cl_fixnum value); [Function]
Set a boot option.

option An integer from Table 1.1.

value A cl_index value for this option

Description This functions sets the value of different options that have to be cus-
tomized before ECL boots. The table of options and default values [Table 1.1] shows
that some of them are boolean, and some of them are unsigned integers.

We distinguish three sets of values. The first set determines whether ECL handles
certain exceptions, such as access to forbidden regions of memory, interrupts via ,
floating point exceptions, etc.

The second set is related to the sizes of different stacks. Currently ECL uses four
stacks: a bind stack for keeping assignments to special variables; a frame stack for
implementing blocks, tagbodys and catch points; an interpreter stack for evaluating
bytecodes, and finally the machine or C stack, of the computer we run in. We can
set the expected size of these stacks, together with the size of a safety area which, if
penetrated, will lead to the generation of a correctable error.

18

Name (ECL_0PT_x*)
INCREMENTAL_GC

TRAP_SIGSEGV
TRAP_SIGFPE

TRAP_SIGINT
TRAP_SIGILL
TRAP_INTERRUPT_SIGNAL

SIGNAL_HANDLING_THREAD

BOOTED
BIND_STACK_SIZE

BIND_STACK_SAFETY_AREA
FRAME_STACK_SIZE
FRAME_STACK_SAFETY_
AREA

LISP_STACK_SIZE
LISP_STACK_SAFETY_AREA
C_STACK_SIZE

C_STACK_SAFETY_AREA
THREAD_INTERRUPT_
SIGNAL

Type
boolean

boolean
boolean

boolean
boolean
boolean

boolean

boolean
cl_index

cl_index
cl_index
cl_index

cl_index
cl_index
cl_index

cl_index
unsigned
int

Default
TRUE

TRUE
TRUE

TRUE
TRUE
TRUE

TRUE

ECL Manual

Description

Activate generational
collector.

Capture SIGSEGV signals.
Capture floating
exceptions.

garbage

point

Capture user interrupts.
Capture SIGILL exception.
Capture the signal that imple-
ments mp:interrupt-process.
Create a signal to capture and
process asynchronous threads
(See Section 3.5.2.2 [Signals
and Interrupts - Asynchronous
signals], page 141).

TRUE/FALSEHas ECL booted (read only).

8192

128
2048
128

32768

128

0 or
1048576

4192
0

Table 1.1: Boot options for embedded ECL

Size of stack for binding special
variables.

Size of stack for nonlocal jumps.

Size of interpreter stack.

Size of C stack in bytes. The
effect and default value of this
option depends on the operating
system. On Unix, the default
is 0 which means that ECL will
use the stack size provided by the
OS. If set to a non-default value,
ECL will set the stack size to
the given value unless the stack
size provided by the OS is already
large enough. On Windows, the
stack size is set at build time
and cannot be changed at run-
time. Here, we use a default of
1 MiB. For other operating sys-
tems, it is up to the user to set
this value to the available stack
size so that ECL can reliably de-
tect stack overflows.

If nonzero, specify the unix signal
which is used to communicate be-
tween different Lisp threads.

Chapter 1: User’s guide 19

cl_fixnum ecl_get_option (int option); [Function]
Read the value of a boot option.

option An integer from Table 1.1.

Description This functions reads the value of different options that have to be cus-
tomized before ECL boots. The table of options and default values is Table 1.1.

bool ecl_import_current_thread (cl.object name, cl_object [Function]
bindings);
Import an external thread in the Lisp environment.

name Thread name.

bindings ~ Unused (specifying initial bindings for external threads is not supported
currently)

returns True if the thread was successfully imported, false otherwise.

Description External threads, i.e. threads which are not created in the Lisp world
using the routines described in Section 3.4.2 [Processes (native threads)], page 127,
need to be imported with ecl_import_current_thread before Lisp code can be
executed.

See also ecl_release_current_thread

void ecl_release_current_thread (void); [Function]
Release an external thread imported with ecl_import_current_thread. Must be
called before thread exit to prevent memory leaks.

ECLDIR [Environment variable]
Specify a non-standard installation directory.

Description ECL includes various files for external modules (e.g. asdf, sockets), char-
acter encodings or documentation strings. The installation directory for these files is
chosen during build time by the configure script. If the directory is moved to a dif-
ferent place, the ECLDIR environment variable should be updated accordingly. Note
that the contents of the variable are parsed as a Common Lisp pathname, thus it
must end with a slash.

1.4.2.2 Catching Errors and Managing Interrupts

ECL_CATCH_ALL [Macro]
Create a protected region.

C Macro

cl_env_ptr env = ecl_process_env();
ECL_CATCH_ALL_BEGIN(env) {
/*
* Code that is protected. Uncaught lisp conditions, THROW,
* signals such as SIGSEGV and SIGBUS may cause jump to
* this region.
*/
} ECL_CATCH_ALL_IF_CAUGHT {

20 ECL Manual

/%
* If the exception, lisp condition or other control transfer
* is caught, this code is executed.
*/
} ECL_CATCH_ALL_END
/*
* In all cases we exit here.
*/
Description This is a set of three macros that create an unwind-protect region
that prevents any nonlocal transfer of control to outer loops. In the Lisp speak, the
previous code is equivalent to

(block nil
(unwind-protect
(progn
;3 Code that is protected

(return nil)))

As explained in ECL_UNWIND_PROTECT, it is normally advisable to set up an unwind-
protect frame to avoid the embedded lisp code to perform arbitrary transfers of con-
trol.

See also ECL_.UNWIND_PROTECT

ECL_UNWIND_PROTECT [Macro]
Create a protected region.

C Macro

cl_env_ptr env = ecl_process_env();
ECL_UNWIND_PROTECT_BEGIN(env) {
/*
* Code that is protected. Uncaught lisp conditions, THROW,
* signals such as SIGSEGV and SIGBUS may cause jump to
* this region.
*/
} ECL_UNWIND_PROTECT_EXIT {
/*
* If the exception, lisp condition or other control transfer
* is caught, this code is executed. After this code, the
* process will jump to the original destination of the
* THROW, GOTO or other control statement that was interrupted.
*/
} ECL_UNWIND_PROTECT_END
/*
* We only exit here if NO nonlocal jump was interrupted.
*/
Description When embedding ECL it is normally advisable to set up an
unwind-protect frame to avoid the embedded lisp code to perform arbitrary

Chapter 1: User’s guide 21

transfers of control. Furthermore, the unwind protect form will be used in at least
in the following occasions:

e In a normal program exit, caused by ext:quit, ECL unwinds up to the outermost
frame, which may be an ECL_CATCH_ALL or ECL_UNWIND_PROTECT macro.

Besides this, normal mechanisms for exit, such as ext:quit, and uncaught exceptions,
such as serious signals (See Section 3.5.2.1 [Signals and Interrupts - Synchronous
signals|, page 140), are best handled using unwind-protect blocks.

See also ECL_.CATCH_ALL

ecl_clear_interrupts () [Macro]
Clear all pending signals and exceptions.

Description This macro clears all pending interrupts.

See also ecl_disable_interrupts and ecl_enable_interrupts.

ecl_disable_interrupts () [Macro]
Postpone handling of signals and exceptions.
Description This macro sets a thread-local flag indicating that all received signals
should be queued for later processing. Note that it is not possible to execute
lisp code while interrupts are disabled in this way. For this purpose, use the
mp:without-interrupts macro. Every call to ecl_disable_interrupts must
be followed by a corresponding call to ecl_enable_interrupts, otherwise race
conditions will appear.

See also ecl_enable_interrupts and ecl_clear_interrupts.

ecl_enable_interrupts (); [Macro]
Activate handling of signals and exceptions.

Description This macro sets a thread-local flag indicating that all received signals can
be handled. If there are any pending signals, they will be immediately processed.

See also ecl_disable_interrupts and ecl_clear_interrupts.

ECL_WITH_LISP_FPE [Macro]
Execute Lisp code with correct floating point environment
Description Unless floating point exceptions are disabled (via the ——without-fpe con-
figure option or ECL_OPT_TRAP_SIGFPE runtime option), ECL will change the floating
point environment when booting. This macro allows for execution of Lisp code while
saving and later restoring the floating point environment of surrounding C code so
that changes in the floating point environment don’t leak outside.

ECL_WITH_LISP_FPE can be also used before ECL has booted.
Example

#include <ecl/ecl.h>
#include <stdio.h>

int main(int argc, char **xargv) {
ECL_WITH_LISP_FPE_BEGIN {
cl_boot(argc, argv);

22

ECL Manual

} ECL_WITH_LISP_FPE_END;

double a = 1.0 / 0.0;
double b;

ECL_WITH_LISP_FPE_BEGIN {
cl_object form = ecl_read_from_cstring(“(handler—case"
"(/ 1d0 0d40)"
"(division-by-zero () 0d40))");l}
b = ecl_to_double(si_safe_eval(3, form, ECL_NIL, ECL_NIL));
} ECL_WITH_LISP_FPE_END;

printf("%g %g\n", a, b);

cl_shutdown() ;
return O;

}

will output
inf O
See also ext:trap-fpe

23

2 Standards

2.1 Overview

2.1.1 Reading this manual

Common Lisp users

Embeddable Common Lisp supports all Common-Lisp data types exactly as defined in the
[ANSI, see [Bibliography], page 199]. All functions and macros are expected to behave as
described in that document and in the HyperSpec [HyperSpec, see [Bibliography|, page 199]
which is the online version of [ANSI, see [Bibliography], page 199]. In other words, the
Standard is the basic reference for Common Lisp and also for Embeddable Common Lisp,
and this part of the manual just complements it, describing implementation-specific features
such as:

e Platform dependent limits.
e Behavior which is marked as implementation specific in the standard.
e Some corner cases which are not described in [ANSI, see [Bibliography]|, page 199].

e The philosophy behind certain implementation choices, etc.

In order to aid in locating these differences, this first part of the manual copies the structure
of the ANSI Common-Lisp standard, having the same number of chapters, each one with a
set of sections documenting the implementation-specific details.

C/C++ programmers

The second goal of this document is to provide a reference for C programmers that want
to create, manipulate and operate with Common Lisp programs at a lower level, or simply
embedding Embeddable Common Lisp as a library.

The C/C++ reference evolves in parallel with the Common Lisp one, in the form of one
section with the name "C Reference" for each chapter of the ANSI Common-Lisp standard.
Much of what is presented in those sections is redundant with the Common Lisp specifi-
cation. In particular, there is a one-to-one mapping between types and functions which
should be obvious given the rules explained in the next section C' Reference.

We must remark that the reference in this part of the manual is not enough to know how
to embed Embeddable Common Lisp in a program. In practice the user or developer will
also have to learn how to build programs (Section 3.1 [System building], page 89), interface
with foreign libraries (Section 3.3 [Foreign Function Interface], page 103), manage memory
(Section 3.6 [Memory Management|, page 144), etc. These concepts are explained in a
different (Section 1.4 [Embedding ECL], page 16) part of the book.

2.1.2 C Reference

One type for everything: cl_object

ECL is designed around the basic principle that Common Lisp already provides everything
that a programmer could need, orienting itself around the creation and manipulation of

24 ECL Manual

Common Lisp objects: conses, arrays, strings, characters, ... When embedding ECL there
should be no need to use other C/C++ types, except when interfacing data to and from
those other languages.

All Common Lisp objects are represented internally through the same C type, c1_object,
which is either a pointer to a union type or an integer, depending on the situation. While
the inner guts of this type are exposed through various headers, the user should never rely
on these details but rather use the macros and functions that are listed in this manual.

There are two types of Common Lisp objects: immediate and memory allocated ones.
Immediate types fit in the bits of the cl_object word, and do not require the garbage
collector to be created. The list of such types may depend on the platform, but it includes
at least the fixnum and character types.

Memory allocated types on the other hand require the use of the garbage collector to be
created. ECL abstracts this from the user providing enough constructors, either in the
form of Common Lisp functions (c1_make_array, c1_complex,...), or in the form of C/C++
constructors (ecl_make_symbol, etc).

Memory allocated types must always be kept alive so that the garbage collector does not
reclaim them. This involves referencing the object from one of the places that the collector
scans:

e The fields of an object (array, structure, etc) which is itself alive.
e A special variable or a constant.
e The C stack (i.e. automatic variables in a function).

e Global variables or pointers that have been registered with the garbage collector.

For memory allocation details See Section 3.6 [Memory Management|, page 144. For object
implementation details See Section 4.4 [Manipulating Lisp objects], page 160.

Naming conventions

As explained in the introduction, each of the chapters in the Common Lisp standard can
also be implemented using C functions and types. The mapping between both languages is
done using a small set of rules described below.

e Functions in the Common Lisp (cl) package are prefixed with the characters cl_,
functions in the System (si) and Extensions (ext) package are prefix with si_, etc,
etc.

e If a function takes only a fixed number of arguments, it is mapped to a C function
with also a fixed number of arguments. For instance, cos maps to cl_object cl_
cos(cl_object), which takes a single Lisp object and returns a Lisp object of type
float.

e If the function takes a variable number of arguments, its signature consists on an integer
with the number of arguments and zero or more of required arguments and then a C
vararg. This is the case of c1_object cl_list(cl_narg narg, ...), which can be
invoked without arguments, as in c1_1ist (0), with one, c1_1list(1, a), etc.

e Functions return at least one value, which is either the first value output by the function,
or nil. The extra values may be retrieved immediately after the function call using
the function ecl_nth_value.

Chapter 2: Standards 25

In addition to the Common Lisp core functions (cl_x), there exist functions which are
devoted only to C/C++ programming, with tasks such as coercion of objects to and from
C types, optimized functions, inlined macroexpansions, etc. These functions and macros
typically carry the prefix ecl_ or ECL_ and only return one value, if any.

Most (if not all) Common Lisp functions and constructs available from C/C++ are available
in “ANSI Dictionary” sections which are part of the [Chapter 2 [Standards], page 23] entries.

Only in Common Lisp

Some parts of the language are not available as C functions, even though they can be used in
Common Lisp programs. These parts are either marked in the “ANSI Dictionary” sections
using the tag Only in Common Lisp, or they are simply not mentioned (macros and special
constructs). This typically happens with non-translatable constructs such as

e Common Lisp macros such as with-open-files
e Common Lisp special forms, such as cond

e Common Lisp generic functions, which cannot be written in C because of their dynam-
ical dispatch and automatic redefinition properties.

In most of those cases there exist straightforward alternatives using the constructs and
functions in ECL. For example, unwind-protect can be implemented using a C macro
which is provided by ECL

cl_env_ptr env = ecl_process_env();
ECL_UNWIND_PROTECT_BEGIN(env) {

/* protected code goes here */
} ECL_UNWIND_PROTECT_EXIT {

/* exit code goes here */
} ECL_UNWIND_PROTECT_END;

Common Lisp generic functions can be directly accessed using funcall or apply and the
function name, as shown in the code below

cl_object name = ecl_make_symbol ("MY-GENERIC-FUNCTION","CL-USER");
cl_object output = cl_funcall(2, name, argument);

Identifying these alternatives requires some knowledge of Common Lisp, which is why it is
recommended to approach the embeddable components in ECL only when there is some
familiarity with the language.

2.2 Evaluation and compilation

2.2.1 Compiler declaration optimize

The optimize declaration includes three concepts: debug, speed, safety and space. Each
of these declarations can take one of the integer values 0, 1, 2 and 3. According to these
values, the implementation may decide how to compile or interpret a given lisp form.

ECL currently does not use all these declarations, but some of them definitely affect the
speed and behavior of compiled functions. For instance, the debug declaration, as shown in
Table 2.1, the value of debugging is zero, the function will not appear in the debugger and,
if redefined, some functions might not see the redefinition.

26 ECL Manual

Behavior 0o 1 2 3
Compiled functions in the same source file are called directly Y Y N N
Compiled function appears in debugger backtrace N N Y Y
All functions get a global entry (SI:C-LOCAL is ignored) N N Y Y

Table 2.1: Behavior for different levels of debug

A bit more critical is the value of safety because as shown in Table 2.2, it may affect the
safety checks generated by the compiler. In particular, in some circumstances the compiler
may assume that the arguments to a function are properly typed. For instance, if you
compile with a low value of safety, and invoke rplaca with an object which is not a list,
the consequences are unspecified.

Behavior o 1 2 3

The compiler generates type checks for the arguments of a lambda form, N Y Y Y
thus enforcing any type declaration written by the user.

The value of an expression or a variable declared by the user is assumed Y Y N N
to be right.

We believe type declarations and type inference and, if the type of a Y Y N N
form is inferred to be right for a function, slot accessor, etc, this may be

inlined. Affects functions like car, cdr, etc

We believe types defined before compiling a file do not change beforethe Y Y N N
compiled code is loaded.

Arguments in a lisp form are assumed to have the appropriate typesso Y N N N
that the form will not fail.

The slots or fields in a lisp object are accessed directly without type Y N N N
checks even if the type of the object could not be inferred (see line

above). Affects functions like pathname-type, car, rest, etc.

Table 2.2: Behavior for different levels of safety

2.2.2 declaim and proclaim

Declarations established with proclaim stay in force indefinitely. Declarations established
with declaim in a file do not persist after the file has been compiled. However, they are
established with proclaim at load time when the compiled file is loaded. This means that
when compiling two files, declaim declarations in the first file will not be in force when
compiling the second file unless the first file was loaded before the second one was compiled.

Chapter 2: Standards 27

2.2.3 C Reference

cl_env_ptr ecl_process_env () [C/C++ identifier]
ECL stores information about each thread on a dedicated structure, which is the
process environment. A pointer to this structure can be retrieved using the function
or macro above. This pointer can be used for a variety of tasks, such as defining
special variable bindings, controlling interrupts, retrieving function output values,
etc.

2.2.3.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol C function

compile [Only in Common Lisp]

macroexpand cl_object cl_macroexpand(cl_narg narg, cl_object form, ...)
macroexpand-1 cl_object cl_macroexpand_1(cl_narg narg, cl_object form, ...)
proclaim [Only in Common Lisp]

special-operator-p cl_object cl_special_operator_p(cl-object form)

constantp cl_object cl_constantp (cl_narg narg, cl_object arg, ...)

2.3 Types and classes
ECL defines the following additional built-in classes in the c1 package:

e single-float
e double-float
e long-float

2.3.1 C Reference
2.3.1.1 ANSI Dictionary

Common Lisp and C equivalence

Synopsis

Lisp symbol C function

coerce cl_object cl_coerce(cl_object object, cl_object result_type)

subtypep cl_object cl_subtypep(cl_narg narg, cl_object typel, cl_object
type2, ...)

type-of cl_object cl_type_of(cl_object object)

typep cl_object cl_typep(cl_narg narg, cl_object object, cl_object
type_specifier, ...)

type-error-datum [Only in Common Lisp]

type-error-expected-type [Only in Common Lisp]

2.4 Data and control flow

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_procla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_specia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_consta.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_coerce.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_subtpp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_err.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_err.htm

28 ECL Manual

2.4.1 Shadowed bindings

ANSI doesn’t specify what should happen if any of the let, flet and labels special
operators contain many bindings sharing the same name. Because the behavior varies
between the implementations and the programmer can’t rely on the spec ECL signals an
error if such situation occur.

Moreover, while ANSI defines lambda list parameters in the terms of let*, when used in
function context programmer can’t provide an initialization forms for required parameters.
If required parameters share the same name an error is signaled.

Described behavior is present in ECL since version 16.0.0. Previously the let operator were
using first binding. Both flet and labels were signaling an error if C compiler was used
and used the last binding as a visible one when the byte compiler was used.

2.4.2 Minimal compilation

Former versions of ECL, as well as many other lisps, used linked lists to represent code.
Executing code thus meant traversing these lists and performing code transformations, such
as macro expansion, every time that a statement was to be executed. The result was a slow
and memory hungry interpreter.

Beginning with version 0.3, ECL was shipped with a bytecodes compiler and interpreter
which circumvent the limitations of linked lists. When you enter code at the lisp prompt, or
when you load a source file, ECL begins a process known as minimal compilation. Barely
this process consists on parsing each form, macroexpanding it and translating it into an
intermediate language made of bytecodes.

The bytecodes compiler is implemented in src/c/compiler.d. The main entry point is the
lisp function si::make-lambda, which takes a name for the function and the body of the
lambda lists, and produces a lisp object that can be invoked. For instance,

> (defvar fun (si::make-lambda ’f ’((x) (1+ x))))

FUN

> (funcall fun 2)

3

ECL can only execute bytecodes. When a list is passed to eval it must be first compiled to
bytecodes and, if the process succeeds, the resulting bytecodes are passed to the interpreter.
Similarly, every time a function object is created, such as in defun or defmacro, the compiler
processes the lambda form to produce a suitable bytecodes object.

The fact that ECL performs this eager compilation means that changes on a macro are not
immediately seen in code which was already compiled. This has subtle implications. Take
the following code:

> (defmacro f (a b) ‘(+ ,a ,b))
(defun g (x y) (£ x y))
(g 12)

(defmacro f (a b) ‘(- ,a ,b))

vmHyY wyVv Vv

(g 12)

Chapter 2: Standards 29

3

The last statement always outputs 3 while in former implementations based on simple list
traversal it would produce -1.

2.4.3 Function types

Functions in ECL can be of two types: they are either compiled to bytecodes or they have
been compiled to machine code using a lisp to C translator and a C compiler. To the first
category belong function loaded from lisp source files or entered at the toplevel. To the
second category belong all functions in the ECL core environment and functions in files
processed by compile or compile-file.

The output of (symbol-function fun) is one of the following:

e 4 function object denoting the definition of the function fun,

e a list of the form (macro . function-object) when fun denotes a macro,

e or simply ’special, when fun denotes a special form, such as block, if, etc.
ECL wusually keeps the source code of a function unless the global variable
si:*keep-definitions* was false when the function was translated into bytecodes.

Therefore, if you don’t need to use compile and disassemble on defined functions, you
should issue (setq si:*keep-definitions* nil) at the beginning of your session.

si:*keep-definitions* [Variable]
If set to t ECL will preserve the compiled function source code for disassembly and
recompilation.

In Table 2.3 we list all Common Lisp values related to the limits of functions.

call-arguments-limit 65536

lambda-parameters-limit call-arguments-1limit

multiple-values-limit 64

lambda-list-keywords (&optional &rest &key &allow-other-keys &aux &whole

&environment &body)

Table 2.3: Function related constants

2.4.4 C Calling conventions

ECL is implemented using either a C or a C++ compiler. This is not a limiting factor, but
imposes some constraints on how these languages are used to implement functions, multiple
values, closures, etc. In particular, while C functions can be called with a variable number
of arguments, there is no facility to check how many values were actually passed. This
forces us to have two types of functions in ECL

e Functions that take a fixed number of arguments have a simple C signature, with all
arguments being properly declared, as in c1_object cl_not(cl_object argl).

e Functions with a variable number of arguments, such as those accepting &optional,
&rest or &key arguments, must take as first argument the number of remaining ones,

30 ECL Manual

as in cl_object cl_list(cl_narg narg, ...). Here narg is the number of supplied
arguments.

The previous conventions set some burden on the C programmer that calls ECL, for she must
know the type of function that is being called and supply the right number of arguments.
This burden disappears for Common Lisp programmers, though.

As an example let us assume that the user wants to invoke two functions which are part
of the ANSI [ANSI, see [Bibliography], page 199] standard and thus are exported with a
C name. The first example is cl_cos, which takes just one argument and has a signature
cl_object cl_cos(cl_object).

#include <math.h>

cl_object angle = ecl_make_double_float(M_PI);

cl_object ¢ = cl_cos(angle);

printf ("\nThe cosine of PI is %g\n", ecl_double_float(c));
The second example also involves some Mathematics, but now we are going to use the C
function corresponding to +. As described in Section 2.10.7.5 [Numbers - ANSI dictionary],
page 47, the C name for the plus operator is c1_P and has a signature c1_object c1_P(cl_
narg narg,...). Our example now reads as follows

cl_object one = ecl_make_fixnum(1);

cl_object two = cl_P(2, one, one);

cl_object three = c1_P(3, one, one, one);

printf("\nl + 1 is %d\n", ecl_fixnum(two));

printf("\nl + 1 + 1 is %d\n", ecl_fixnum(three));

Note that most Common Lisp functions will not have a C name. In this case one must use
the symbol that names them to actually call the functions, using ¢1_funcall or cl_apply.
The previous examples may thus be rewritten as follows

/* Symbol + in package CL */

cl_object plus = ecl_make_symbol("+","CL");

cl_object one = ecl_make_fixnum(1l);

cl_object two cl_funcall(3, plus, one, one);

cl_object three = cl_funcall(4, plus, one, one, one);

printf("\nl + 1 is %d\n", ecl_fixnum(two));

printf("\nl + 1 + 1 is %d\n", ecl_fixnum(three));
Another restriction of C and C++ is that functions can only take a limited number of argu-
ments. In order to cope with this problem, ECL uses an internal stack to pass any argument
above a hardcoded limit, ECL_C_CALL_ARGUMENTS_LIMIT, which is as of this writing 63. The
use of this stack is transparently handled by the Common Lisp functions, such as apply,
funcall and their C equivalents, and also by a set of macros, c1_va_arg, which can be
used for coding functions that take an arbitrary name of arguments.

2.4.5 C Reference

void ecl_bds_bind (cl_env_ptr cl_env, cl_object var, cl_object [Function]
value);
void ecl_bds_push (cl_env_ptr cl_env, cl_object var); [Function]

Bind a special variable

Chapter 2: Standards 31

Description Establishes a variable binding for the symbol var in the Common Lisp
environment env, assigning it value.

This macro or function is the equivalent of let* and let.

ecl_bds_push does a similar thing, but reuses the old value of the same variable. It
is thus the equivalent of (let ((var var)) ...)

Every variable binding must undone when no longer needed. It is best practice to
match each call to ecl_bds_bind by another call to ecl_bds_unwindl in the same

function.
void ecl_bds_unwindl (clenv_ptr cl_env); [Function]
void ecl_bds_unwind_n (cl_env_ptr cl_env, int n); [Function]

Undo one variable binding

Description ecl_bds_unwindl undoes the outermost variable binding, restoring the
original value of the symbol in the process.

ecl_bds_unwind_n does the same, but for the n last variables.

Every variable binding must undone when no longer needed. It is best practice to
match each call to ecl_bds_bind by another call to ecl_bds_unwindl in the same
function.

cl_object ecl_setq (cl_env_ptr cl_env, cl_object var, cl_object [Function]
value);
C equivalent of setq
Description Assigns value to the special variable denoted by the symbol var, in the
Common Lisp environment cl_env.

This function implements a variable assignment, not a variable binding. It is thus the
equivalent of setq.

cl_object ecl_symbol_value (cl_object var); [Function]
Description Retrieves the value of the special variable or constant denoted by the
symbol var, in the Common Lisp environment cl_env.

This function implements the equivalent of symbol-value and works both on special
variables and constants.

If the symbol is not bound, an error is signaled.

typedef struct { ... } ecl_va_list[1]; [Macro]
ecl_va_start (ecl_va_list arglist, last_argument, narg, n_ordinary); [Macro]
cl_object ecl_va_arg (ecl-va_list arglist); [Macro]
cl_object ecl_va_end (ecl_va_list arglist); [Macro]

Accepting a variable number of arguments

Description The macros above are used to code a function that accepts an arbitrary
number of arguments. We will describe them in a practical example

cl_object my_plus(cl_narg narg, cl_object requiredl, ...)
{

cl_env_ptr env = ecl_process_env();

http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm

32 ECL Manual
cl_object other_value;
ecl_va_list varargs;
ecl_va_start(varargs, requiredl, narg, 1);
while (narg > 1) {
cl_object other_value = ecl_va_arg(varargs);
requiredl = ecl_plus(requiredl, other_value);
}
ecl_va_end(varargs) ;
ecl_returnl(env, requiredl);
}
The first thing to do is to declare the variable that will hold the arguments. This is
varargs in our example and it has the type ecl_va_list.
This arguments list is initialized with the ecl_va_start macro, based on the supplied
number of arguments, narg, the number of required arguments which are passed as
ordinary C arguments (1 in this case), the last such ordinary arguments, required,
and the buffer for the argument list, varargs.
Once varargs has been initialized, we can retrieve these values one by one using ecl_
va_arg. Note that the returned value always has the type cl_object, for it is always
a Common Lisp object.
The last statement before returning the output of the function is ecl_va_end. This
macro performs any required cleanup and should never be omitted.
cl_object ecl_nvalues (cl_env_ptr env); [Function]
cl_object ecl_nth_value (clenv_ptr env, int n); [Function]

Accessing output values

Description Common Lisp functions may return zero, one or more values. In ECL, the
first two cases do not require any special manipulation, as the C function returns either
nil or the first (zeroth) value directly. However, if one wishes to access additional
values from a function, one needs to use these two macros or functions

e ecl_nvalues(env) returns the number of values that the function actually out-
puts. The single argument is the lisp environment. This value is larger or equal
to 0 and smaller than ECL_MULTIPLE_VALUES_LIMIT.

e Once we know the number of return values, they can be directly accessed using
the function ecl_nth_value(env,n), where n is a number larger than or equal
to 1, and smaller than ECL_MULTIPLE_VALUES_LIMIT, which must correspond to
a valid output value. No checking is done.

Note that in both cases these macros and functions have to be used right after the
Lisp function was called. This is so because other Lisp functions might destroy the
content of the return stack.

Example A C/C++ excerpt:

cl_env_ptr env = ecl_process_env();
cl_object a = ecl_make_fixnum(13);

cl_object b = ecl_make_fixnum(6);

cl_object modulus = cl_floor(2, a, b);
cl_object remainder = ecl_nth_value(env, 1);

Chapter 2: Standards 33

The somewhat equivalent Common Lisp code:

(multiple-value-bind (modulus equivalent)
(floor 13 6))

ecl_returnO (cl_env_ptr cl_env); []
ecl_returnl (cl-env_ptr cl_env, cl_object valuel); []
ecl_return2 (cl-env_ptr cl_env, cl_object valuel, cl_object value2); [Macro]
ecl_return3 (cl_env_ptr cl_env, cl_object valuel, cl_object value2, []
cl_object value3);
Returning multiple values

Description Returns N values from a C/C++ function in a way that a Common Lisp
function can recognize and use them. The 0-th value is returned directly, while values
1 to N are stored in the Common Lisp environment cl_env. This macro has to be
used from a function which returns an object of type cl_object.

ECL_BLOCK_BEGIN [Macro]
ECL_BLOCK_BEGIN(env,code) {

} ECL_BLOCK_END;

Description ECL_BLOCK_BEGIN establishes a block named code that becomes visible
for the Common Lisp code. This block can be used then as a target for cl_return.

env must be the value of the current Common Lisp environment, obtained with ecl_
process_env.

The C/C++ program has to ensure that the code in ECL_BLOCK_END gets executed,
avoiding a direct exit of the block via goto or a C/C++ return.

ECL_CATCH_BEGIN [Macro]
ECL_CATCH_BEGIN(env,tag) {

} ECL_CATCH_END;

Description ECL_CATCH_BEGIN establishes a destination for throw with the code given
by tag.

env must be the value of the current Common Lisp environment, obtained with ecl_
process_env.

The C/C++ program has to ensure that the code in ECL_CATCH_END gets executed,
avoiding a direct exit of the catch block via goto or a C/C++ return.

ECL_UNWIND_PROTECT_BEGIN [Macro]
C macro for unwind-protect

Synopsis
ECL_UNWIND_PROTECT_BEGIN(env) {

} ECL_UNWIND_PROTECT_EXIT {

} ECL_UNWIND_PROTECT_END;

34

ECL Manual

Description ECL_UNWIND_PROTECT_BEGIN establishes two blocks of C code that work
like the equivalent ones in Common Lisp: a protected block, contained between the
"BEGIN" and the "EXIT" statement, and the exit block, appearing immediately
afterwards. The form guarantees that the exit block is always executed, even if the
protected block attempts to exit via some nonlocal jump construct (throw, return,

etc).

env must be the value of the current Common Lisp environment, obtained with ecl_

process_env.

The utility of this construct is limited, for it only protects against nonlocal exits
caused by Common Lisp constructs: it does not interfere with C goto, return or

with C++ exceptions.

2.4.5.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol

apply
call-arguments-limit
compiled-function-p
complement
constantly

every

eq

eql

equal

equalp

fboundp

fdefinition

(setf fdefinition)

fmakunbound

funcall
function-lambda-expression
functionp
get-setf-expansion

identity
let, let*

lambda-parameters-limit
multiple-values-limit

not

notevery

notany

set

C function or constant

cl_object cl_apply(cl_narg narg, cl_object function, ...)
ECL_.CALL_ARGUMENTS_LIMIT

cl_object cl_compiled_function_p(cl_object object)

cl_object cl_complement(cl_object function)

cl_object cl_constantly(cl_object value)

cl_object cl_every(cl_narg narg, cl_object predicate, ...)
cl_object cl_eq(cl_object x, cl_object y)

cl_object cl_eql(cl_object x, cl_object y)

cl_object cl_equal(cl_object x, cl_object y)

cl_object cl_equalp(cl_object x, cl_object y)

cl_object cl_fboundp(cl_object function_name)

cl_object cl_fdefinition(cl_object function_name)

cl_object si_fset(cl_narg narg, cl.object function_name,
cl_object definition, ...)

cl_object cl_-fmakunbound(cl-object function_name)
cl_object cl_funcall(cl_narg narg, cl_object function, ...)
cl_object cl_function_lambda_expression(cl_object function)
cl_object cl_functionp(cl_object object)

cl_object cl_get_setf_expansion(cl_narg narg, cl_object place,
cl_object cl_identity(cl_object x)
cl_object ecl_bds_bind(cl_env_ptr env,
cl_object value)
ECL_LAMBDA_PARAMETERS_LIMIT
ECL_MULTIPLE_VALUES_LIMIT
cl_object cl_not(cl_object object)
cl_object cl_notevery(cl_narg narg, cl_object predicate, ...)
cl_object cl_notany(cl_narg narg, cl_object predicate, ...)
cl_object cl_set(cl_object symbol, cl_object value)

cl_object symbol,

http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_call_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmpd_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comple.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cons_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_everyc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fbound.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fdefin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fdefin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fn_lam.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fnp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_se.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_lamb_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_multip.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_not.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_everyc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_everyc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set.htm

Chapter 2: Standards

setq
symbol-value

some
values-list

2.5 Objects
2.5.1 C Reference

2.5.1.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol
function-keywords
ensure-generic-function

allocate-instance
reinitialize-instance
shared-initialize

update-instance-for-different-class

35

cl_object ecl_setq(cl_env_ptr env, cl_object symbol, cl_object
value)

cl_object ecl_symbol_value(cl_env_ptr env, cl_object symbol)
cl_object cl_some(cl_narg narg, cl_object predicate, ...)
cl_object cl_values_list(cl_object list)

C function

[Only in Common Lisp]

cl_object cl_ensure_generic_function(cl_narg narg,
cl_object function_name, ...)

Only in Common Lisp|

Only in Common Lisp|

Only in Common Lisp

update-instance-for-redefined-clasgOnly in Common Lisp

change-class
slot-boundp

slot-exists-p
slot-makunbound

slot-missing
slot-unbound
slot-value

method-qualifiers
no-applicable-method
no-next-method
remove-method
make-instance
make-instances-obsolete
make-load-form
make-load-form-saving-slots

find-class
compute-applicable-methods
find-method

add-method

[
[
[]
[Only in Common Lisp]
{]

Only in Common Lisp|

cl_object cl_slot_boundp(cl-object instance, cl_object
slot_name)

cl_object cl_slot_exists_p(cl_object instance, cl_object
slot_name)

cl_object cl_slot_makunbound(cl_object instance,
cl_object slot_name)

[Only in Common Lisp]

[Only in Common Lisp]

cl_object cl_slot_value(cl_object instance, cl_object

slot_name)

[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

cl_object cl_make_load_form_saving_slots(cl_narg narg,
cl_object object, ...)

cl_object cl_find_class(cl_narg narg, cl_object symbol, ...)
[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_everyc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vals_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fn_kwd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ensure.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_alloca.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reinit.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_shared.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_update.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upda_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chg_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_bo.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_ex.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_ma.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_mi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_un.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_method.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_no_app.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_no_nex.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_met.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_i_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ld_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_l_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comput.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_add_me.htm

36 ECL Manual

initialize-instance Ounly in Common Lisp]

[
class-name [Only in Common Lisp]
(setf class-name) [Only in Common Lisp]
class-of cl_object cl_class_of(cl_object object)
unbound-slot-instance [Only in Common Lisp]

2.6 Structures

2.6.1 Redefining a defstruct structure

ANSI Common-Lisp says that consequences of redefining a defstruct are undefined. ECL
defines this behavior to signal an error if the new structure is not compatible. Structures
are incompatible when:

They have a different number of slots
This is particularly important for other structures which could have included
the current one and for already defined instances.

Slot name, type or offset is different
Binary compatibility between old and new instances.

2.6.2 C Reference
2.6.2.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol C function
copy-structure cl_object cl_copy_structure(cl_object structure)

2.7 Conditions

2.7.1 C Reference

ECL_HANDLER_CASE [Macro]
C macro for handler-case

Synopsis
ECL_HANDLER_CASE_BEGIN (env,names) {

} ECL_HANDLER_CASE(n,condition) { {

} ECL_HANDLER_CASE_END;

Description ECL_HANDLER_CASE_BEGIN runs a block of C code with a set of error
handlers bound to the names given by the list names. The subsequent ECL_HANDLER _
CASE statements specify what to do when the n-th type of conditions is found, where
n is an integer denoting the position of the name in the list names.

When a condition is signaled, ECL scans the list of signal handlers, looking for matches
based on typep. If the match with the highest precedence belongs to the list names,

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_class_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_opsetf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_clas_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unboun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_stu.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm

Chapter 2: Standards 37

ECL will perform a non-local transfer of control to the appropriate ECL_HANDLER_
CASE, passing it a condition object as unique argument.

The following example shows how to establish a handler for error conditions. Note
how the first value to ECL_HANDLER_CASE matches the position of the condition name
in the list:

cl_object error = ecl_make_symbol("ERROR","CL");

ECL_HANDLER_CASE_BEGIN(the_env, ecl_listl(error)) {
/* This form is evaluated with bound handlers */
output = cl_eval(l, form);

} ECL_HANDLER_CASE(1, condition) {
/* This code is executed when an error happens */
/* We just return the error that took place */
output = condition;

} ECL_HANDLER_CASE_END;

ECL_RESTART_CASE [Macro]
C macro for restart-case

Synopsis
ECL_RESTART_CASE_BEGIN(env,names) {

} ECL_RESTART_CASE(n,args) { {

} ECL_RESTART_CASE_END;

Description ECL_RESTART_CASE_BEGIN runs a block of C code with a set of restarts
bound to the names given by the list names. The subsequent ECL_RESTART_CASE
statements specify what to do when the n-th restart is invoked, where n is an integer
denoting the position of the name in the list names.

When the restart is invoked, it can receive any number of arguments, which are
grouped in a list and stored in a new variable created with the name args.

The following example shows how to establish an abort and a use-value restart. Note
how the first value to ECL_RESTART_CASE matches the position of the restart name in
the list:

cl_object abort = ecl_make_symbol ("ABORT","CL");
cl_object use_value = ecl_make_symbol ("USE-VALUE","CL");
ECL_RESTART_CASE_BEGIN(the_env, cl_list(2, abort, use_value)) {
/* This form is evaluated with bound restarts */
output = cl_eval(l, form);
} ECL_RESTART_CASE(1, args) {
/* This code is executed when the 1st restart (ABORT) is invoked */H
output = ECL_NIL;
} ECL_RESTART_CASE(2, args) {
/* This code is executed when the 2nd restart (USE-VALUE) is invoked */H
output = ECL_CAR(args);
} ECL_RESTART_CASE_END;

http://www.lispworks.com/documentation/HyperSpec/Body/m_rst_ca.htm

38 ECL Manual

2.7.1.1 ANSI dictionary

Common Lisp and C equivalence

Lisp symbol C function

abort cl_object cl_abort(cl_narg narg, ...)

break [Only in Common Lisp]

cell-error-name [Only in Common Lisp]

cerror cl_object cl_cerror(cl_narg narg, cl_object con-
tinue_format_control, cl_object datum, ...)

compute-restarts cl_object cl_compute_restarts(cl_narg narg, ...)

continue cl_object cl_continue(cl_narg narg, ...)

error cl_object cl_error(cl_narg narg, cl_object datum, ...)

find-restart cl_object cl_find_restart(cl_narg narg, cl_object identifier, ...)

handler-case ECL_HANDLER_CASE macro

invalid-method-error cl_object cl_invalid_method_error (cl_narg narg, cl_object
method, cl_object format, ...)

invoke-debugger [Only in Common Lisp]

invoke-restart cl_object cl_invoke_restart(cl_narg narg, cl_object restart, ...)

invoke-restart-interactively — cl_object cl_invoke_restart_interactively(cl-object restart)

make-condition cl_make_condition(cl_narg narg, cl_object type, ...)

method-combination-error cl_object cl_method_combination_error(cl_narg narg,
cl_object format, ...)

muffle-warning cl_object cl_muffle_warning(cl_narg narg, ...)

restart-name [Only in Common Lisp]

restart-case ECL_RESTART_CASE macro

signal [Only in Common Lisp]

simple-condition-format-contrf{Dnly in Common Lisp]
simple-condition-format-argurf@nty in Common Lisp]

store-value cl_object cl_store_value(cl_narg narg, ...)
use-value cl_object cl_use_value(cl_narg narg, ...)
warn [Only in Common Lisp]

2.8 Symbols

There are no implementation-specific limits on the size or content of symbol names. It is
however not allowed to write on the strings which have been passed to #’make-symbol or
returned from #’symbol-name.

2.8.1 C Reference

cl_object ecl_make_keyword (char *name); [Function]
Find a lisp keyword
Description
Many Lisp functions take keyword arguments. When invoking a function with key-
word arguments we need keywords, which are a kind of symbols that live in the
keyword package. This function does the task of finding or creating those keywords
from C strings.

http://www.lispworks.com/documentation/HyperSpec/Body/f_abortc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cell_e.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cerror.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comp_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_abortc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_r.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_invali.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_invoke.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_invo_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_invo_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_cnd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_meth_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_abortc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rst_na.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rst_ca.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_signal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_smp_cn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_smp_cn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_abortc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_abortc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_warn.htm

Chapter 2: Standards

39

e It is usually safe to store the resulting pointer, because keywords are always
referenced by their package and will not be garbage collected (unless of course,
you decide to delete it).

e Remember that the case of the string is significant. ecl_make_keyword ("T0O")
with return :T0, while ec1_make_keyword("to") returns a completely different
keyword, :|tol. In short, you usually want to use uppercase.

Example The following example converts a section of a string to uppercase characters:

cl_object start = ecl_make_keyword("START");
cl_object end = ecl_make_keyword("END");

sup = cl_string_upcase(4, s, start, ecl_make_fixnum(2),

cl_object ecl_make_symbol (const char *name, const char
*package_name);
Find a lisp symbol

end, ecl_make_fixnum(6));

[Function]

Description This function finds or create a symbol in the given package. First of all,
it tries to find the package named by package_name. If it does not exist, an error is
signaled. Then, a symbol with the supplied name is created and interned in the given

package.

2.8.1.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol
boundp
copy-symbol
get

gensym
gentemp

keywordp
make-symbol
makunbound

remprop

set

symbolp
symbol-function

(setf symbol-function)

symbol-name
symbol-package
symbol-plist

(setf symbol-plist)

symbol-value

C function

cl_object cl_boundp(cl-object symbolp)

cl_object cl_copy_symbol(cl_narg narg, cl_object symbol, ...)
cl_object cl_get(cl_narg narg, cl_object sym, cl_object indica-
tor, ...)

cl_object cl_gensym(cl_narg narg, ...)

cl_object cl_gentemp(cl_narg narg, ...)

cl_object cl_keywordp(cl-object object)

cl_object cl-make_symbol(cl_object name)

cl_object cl_makunbound(cl_object makunbound)

cl_object cl_remprop(cl_object symbol, cl_object indicator)
cl_object cl_set(cl_object symbol, cl_object value)

cl_object cl_symbolp(cl_object object)

cl_object cl_symbol_function(cl_object symbol)

cl_object si_fset(cl_.narg narg, clobject function_name,
cl_object definition, ...)

cl_object cl_symbol_name(cl_object symbol)

cl_object cl_symbol_package(cl_object symbol)

cl_object cl_symbol_plist(cl_object symbol)

cl_object si_set_symbol_plist(cl-object symbol, cl_object
plist)

cl_object cl_symbol_value(cl_object symbol)

http://www.lispworks.com/documentation/HyperSpec/Body/f_boundp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_sym.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gensym.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gentem.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_kwdp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_sym.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_makunb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rempro.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symbol.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_4.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_4.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm

40

2.9 Packages

ECL Manual

In Table 2.4 we list all packages available in ECL. The nicknames are aliases for a package.
Thus, system:symbol may be written as sys:symbol or si:symbol. The module field
explains which library provides what package. For instance, the ASDF package is obtained
when loading the ASDF library with (require ’asdf).

Name Nickname In module Description

COMMON-LISP CL ECL core Main Common Lisp
package.

COMMON-LISP-USER CL-USER ECL core User package.

CLOS MOP ECL core Symbols from the
AMOP.

EXT ECL core ECL extensions to the
language & library.

SYSTEM SI, SYS ECL core Functions and variables
internal to the imple-
mentation. Never to be
used.

FFI ECL core Foreign function
interface

CMP C CMP The compiler

SB-BSD-SOCKETS SOCKETS Sockets library compati-
ble with SBCL’s

SB-RT RT, RT Test units (customized

REGRESSION-TEST for ECL)

ASDF ASDF System definition
file with ECL
customizations.

Table 2.4: ECL packages

2.9.1 C Reference

2.9.1.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol C function

export cl_object cl_export(cl_narg narg, cl_object symbols, ...)

find-symbol cl_object cl_find_symbol(cl_narg narg, cl_object string, ...)

find-package cl_object cl_find_package(cl_object name)

find-all-symbols cl_object cl_find_all_symbols(cl_object string)

import cl_object cl_import(cl_narg narg, cl_object symbols, ...)

list-all-packages cl_object cl_list_all_packages(void)

rename-package cl_object cl_-rename_package(cl_-narg narg, cl_object package,

cl_object new_name, ...)

http://www.lispworks.com/documentation/HyperSpec/Body/f_export.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_import.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_list_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rn_pkg.htm

Chapter 2: Standards

shadow
shadowing-import

delete-package
make-package

unexport
unintern
unuse-package

use-package

intern
package-name
package-nicknames

package-shadowing-symbols

package-use-list
package-used-by-list
packagep
package-error-package

2.10 Numbers

2.10.1 Numeric types

41

cl_object cl_shadow(cl_narg narg, cl_object symbols, ...)
cl_object cl_shadowing_import(cl_narg narg, cl_object sym-
bols, ...)

cl_object cl_delete_package(cl_object package)

cl_object cl_make_package(cl_narg narg, cl_object pack-
age_name, ...)

cl_object cl_unexport(cl_narg narg, cl_object symbols, ...)
cl_object cl_unintern(cl_narg narg, cl_object symbol, ...)
cl_object cl_unuse_package(cl_narg narg, cl_object package,
cl_object cl_use_package(cl_narg narg, cl_object package, ...)
cl_object cl_intern(cl_narg narg, cl_object string, ...)
cl_object cl_package_name(cl_object package)

cl_object cl_package_nicknames(cl_object package)

cl_object cl_package_shadowing_symbols(cl_object package)
cl_object cl_package_use_list(cl_object package)

cl_object cl_package_used_by_list(cl_object package)
cl_object cl_packagep(cl_object object)

[Only in Common Lisp]

ECL supports all of the Common Lisp numeric tower, which is shown in Table 2.5. The
details, however, depend both on the platform on which ECL runs and on the configuration
which was chosen when building ECL.

Type Description

fixnum Signed integer with a number of bits given by ext:fixnum-bits, fit in a
machine word.

bignum Arbitrary size integers, only limited by amount of memory.

ratio Arbitrary size rational number, made up of two integers.

short-float Equivalent to single-float.

single-float
double-float

32-bits IEEE floating point number.
64-bits IEEE floating point number.

long-float Either equivalent to double-float, or a 96/128 bits IEEE floating point
number (long double in C/C++).

rational An alias for (or integer ratio)

float An alias for (or single-float double-float short-float long-float)

real An alias for (or rational float)

complex Complex number made of two real numbers of the above mentioned types

or a <float> _Complex type in C99.
Table 2.5: Numeric types in ECL

http://www.lispworks.com/documentation/HyperSpec/Body/f_shadow.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_shdw_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_del_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unexpo.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_uninte.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unuse_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_use_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pkg_na.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pkg_ni.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pkg_sh.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pkg_us.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pkg__1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pkgp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pkg_er.htm

42 ECL Manual

In general, the size of a fixnum is determined by the word size of a machine, which ranges
from 32 to 64 bits. Integers larger than this are implemented using the GNU Multiprecision
library (https://gmplib.org/). Rationals are implemented using two integers, without
caring whether they are fixnum or not. Floating point numbers include at least the two
IEEE types of 32 and 64 bits respectively.

In machines where it is supported, it is possible to associate the lisp long-float with the
machine type long double whose size ranges from 96 to 128 bits, and which are a bit slower.

In machines where a type <float> _Complex is supported numbers of type (complex
float) are implemented with it, otherwise like ratios all complex numbers are pairs of
numbers.

2.10.2 Floating point exceptions

ECL supports two ways of dealing with special floating point values, such as Not a Number
(NaN), infinity or denormalized floats, which can occur in floating point computations.
Either a condition is signaled or the value is silently used as it is. There are multiple
options controlling which behaviour is selected: If ECL is built with the ——without-ieee-
fp configure option, then a condition is signaled for every infinity or NaN encountered.
If not, floating point exceptions can be disabled at build time using the —--without-fpe
configure option. Otherwise, if both -—with-ieee-fp and --with-fpe options are on, by
default, a condition is signaled for invalid operation, division by zero and floating point
overflows. This can be changed at runtime by using ext:trap-fpe. If the ECL_OPT_TRAP_
SIGFPE boot option is false (see Table 1.1), no conditions are signaled by default (Note that
in this case, if you enable trapping of floating point exceptions with ext:trap-fpe, then
you have to install your own signal handler).

ext:trap-fpe condition flag [Function]

Control the signaling of the floating point exceptions

Synopsis

condition a symbol - one of cl:last, «cl:t, cl:division-by-zero,
cl:floating-point-overflow, cl:floating-point-underflow,
cl:floating-point-invalid-operation, cl:floating-point-
inexact or an integer.

flag a generalized boolean

Description If condition is last, flag is ignored and the currently enabled floating
point exceptions are returned in an implementation depended format (currently an
integer). Otherwise, flag determines whether the current thread will signal a floating
point exception for the conditions passed in condition. condition can be either a
symbol denoting a single condition, t for all conditions that are enabled by default
or a value obtained from an earlier call to ext:trap-fpe with last.

See also ECL_WITH_LISP_FPE
2.10.3 Random-States

ECL relies internally on a 32-bit Mersenne-Twister random number generator, using a
relatively large buffer to precompute about 5000 pseudo-random bytes. This implies also
that random states can be printed readably and also read, using the #$ macro. There is

https://gmplib.org/
https://gmplib.org/

Chapter 2: Standards 43

no provision to create random states from user arrays, though. Random state is printed
unreadably by default.

The #$ macro can be used to initialize the generator with a random seed (an integer), an
array of random bytes (mainly used for reading back printed random-state) and another
random-state (syntactic sugar for copying the random-state).

2.10.4 Infinity and Not a Number

The ANSI Common-Lisp standard does not specify the behaviour of numeric functions for
infinite or not number valued floating point numbers. If ECL is configured to support these
special values (see the -—with-ieee-fp configure option) and floating point exceptions are
disabled, numeric functions generally return the same value as the corresponding C function.
This means, that the output will be a NaN for a NaN input, and the “mathematically
correct” value (which may be NaN, e.g. for co-00) for an infinite real input. For complex
floats, however, the return value of a numeric function called with a complex number for
which the real or imaginary part is infinite, is undefined?.

For other functions dealing with numbers, we adopt the following behaviour:

Comparison functions
All numeric comparisons with =,<,<=,>,>= involving NaN return false. Com-
paring two NaNs of the same type with eql returns true.

min/max NaN values are ignored, i.e. the maximum/minimum is taken only over the
number valued parameters.

Rounding functions
All rounding functions signal an arithmetic-error if any of the given param-
eters are not number valued or infinite.

2.10.5 Branch cuts and signed zero

For multi-valued complex functions like asin, acos, etc. the ANSI Common-Lisp standard
specifies in detail the location of the branch cuts and in particular the value of these functions
on the branch cuts. ECL diverges from the standard in that the sign of zero distinguishes
two sides of a branch cut. For example, the asin function includes a branch cut running
from 1 to co on the real axis. The ANSI standard specifies a negative imaginary part
for asin on this branch cut consistent with approaching the cut from below. Evaluating
(asin z) in ECL, on the other hand, returns a result with positive imaginary part if the
imaginary part of z is +0.0 (consistent with approaching the cut from above) and a result
with negative imaginary part if the imaginary part of z is -0.0 (consistent with approaching
the cut from below)?. This applies to sqrt, asin, acos, atan, asinh, acosh and atanh.

The main reason for this is that some numeric functions for C complex numbers return mathematically
incorrect values, for example sinh(i*co) returns i*NaN instead of the mathematically correct i*co. Keeping
this consistent with our own implementation of complex arithmetic that is used when C complex numbers
are not available would require to much work. Furthermore, complex arithmetic with infinities is unreliable
anyway, since it quickly leads to NaN values (consider i*oco = (0+i*1)*(0co+i*0) = NaN+i*oo; even this simple
example is already mathematically incorrect).

The reason for this behaviour is twofold: first, the approach taken by ECL is mathematically more sensible in
a number system with signed zero and second, it is consistent with the specification of multi-valued complex
functions in the C programming language.

44 ECL Manual

2.10.6 Dictionary

ext:{short,single,double,long}-float-{positive,negativel}- [Constant|
infinity
Constant positive/negative infinity for the different floating point types.

ext:nan [Function]
Returns a double float NaN value. Coerce to other floating point types to get NaN
values e.g. for single floats.

ext:float-infinity-p x [Function]

ext:float-nan-p x [Function]
Predicates to test if x is infinite or NalN.

2.10.7 C Reference

2.10.7.1 Number C types
Numeric C types understood by ECL

Type names

cl_fixnum fixnum
cl_index (integer 0 most-positive-fixnum)
float short-float, single-float
double double-float
long double (*) long-float ECL_LONG_FLOAT :long-float
float _Complex (complex single-float) ECL_COMPLEX_FLOA@nplex-
(**) float
double _Complex (complex double-float) ECL_COMPLEX_FLOAnplex-
(**) float
long-double (complex long-float) ECL_COMPLEX_FLOAfnplex-
-Complex (**) float
uint8_t (unsigned-byte 8) ecl_uint8_t
int8_t (signed-byte 8) ecl_int8_t
uint16_t (unsigned-byte 16) ecl_uint16_t :uint16-t
intl6_t (signed-byte 16) ecl_int16_t :int16-t
uint32_t (unsigned-byte 32) ecl_uint32_t uint32-t
int32_t (signed-byte 32) ecl_int32_t :int32-t
uint64._t (unsigned-byte 64) ecl_uint64_t :uint64-t
int64_t (signed-byte 64) ecl_int64_t :int64-t
short (integer ffi:c-short-min ffi:c-short-

max)
unsigned short (integer O ffi:c-ushort-max)
int (integer ffi:c-int-min ffi:c-int-max)
unsigned int (integer 0 ffi:c-uint-max)
long (integer ffi:c-long-min ffi:c-long-

max)

unsigned long (integer 0 ffi:c-long-max)

Chapter 2: Standards 45

long long (integer ffi:c-long-long-min ffi:c- ecl_long_long_t :long-long
long-long-max)
unsigned long long (integer 0 ffi:c-ulong-long-max) ecl_ulong_long_t :ulong-
long

Description The table above shows the relation between C types and the equivalent Common
Lisp types. All types are standard C99 types, except for two. First, c1_fixnum is the
smallest signed integer that can fit a fixnum. Second, cl_index is the smallest unsigned
integer that fits a fixnum and is typically the unsigned counterpart of c1_fixnum.

(*) DEPRECATED Previous versions of ECL supported compilers that did not define
the long double type. The ECL_LONG_DOUBLE macro and long-double features indicat-
ing whether support for long double was available are removed now.

(**) The <float> _Complex types do not exist on all platforms. When they exist the macro
ECL_COMPLEX_FLOAT will be defined.

Many other types might also not exist on all platforms. This includes not only long long
and unsigned long long, but also some of the C99 integer types. There are two ways to

detect which integer types are available in your system:

e Check for the definition of C macros with a similar name, shown in the fifth column

above.

e In Lisp code, check for the presence of the associated features, shown in the fourth
column above.

2.10.7.2 Number constructors

Creating Lisp types from C numbers

Functions

cl_object ecl_make_fixnum (cl_fixnum n) [Function]
cl_object ecl_make_integer (cl_fixnum n) [Function]
cl_object ecl_make_unsigned_integer (cl_-index n) [Function]
cl_object ecl_make_single_float (float n) [Function]
cl_object ecl_make_double_float (double n) [Function]
cl_object ecl_make_long_float (long double n) [Function]
cl_object ecl_make_csfloat (float -Complex n) [Function]
cl_object ecl_make_cdfloat (double _Complex n) [Function]
cl_object ecl_make_clfloat (long double _Complex n) [Function]
cl_object ecl_make_uint8_t (uintS8_t n) [Function]
cl_object ecl_make_int8_t (intS8-t n) [Function]
cl_object ecl_make_uintl6_t (uintl6_t n) [Function]
cl_object ecl_make_intl16_t (intl6-t n) [Function]
cl_object ecl_make_uint32_t (uint32_t n) [Function]
cl_object ecl_make_int32_t (int32_t n) [Function]
cl_object ecl_make_uint64_t (uint64-t n) [Function]
cl_object ecl_make_int64_t (int64_t n) [Function]
cl_object ecl_make_short_t (short n) [Function]
cl_object ecl_make_ushort_t (unsigned short n) [Function]

46 ECL Manual

cl_object ecl_make_int (int n) Function
cl_object ecl_make_uint (unsigned int n) Function
cl_object ecl_make_long (long n) Function

[]
Function
cl_object ecl_make_ulong (unsigned long n) [Function]
[]
[]
[]

cl_object ecl_make_long_long (long long n) Function

cl_object ecl_make_ulong_long (unsigned long long n) Function

cl_object ecl_make_ratio (cl_object numerator, cl_object Function
denominator)

cl_object ecl_make_complex (cl-object real, cl_object imag) [Function]

Description These functions create a Lisp object from the corresponding C number.
If the number is an integer type, the result will always be an integer, which may be
a bignum. If on the other hand the C number is a float, double or long double, the
result will be a float.

There is some redundancy in the list of functions that convert from cl_fixnum
and cl_index to lisp. On the one hand, ecl_make_fixnum always creates a
fixnum, dropping bits if necessary. On the other hand, ecl_make_integer and
ecl_make_unsigned_integer faithfully convert to a Lisp integer, which may be a
bignum.

Note also that some of the constructors do not use C numbers. This is the case
of ecl_make_ratio and ecl_make_complex, because they are composite Lisp types.
When c99 complex float support is built in ec1_make_complex will use C number for
float types.

These functions or macros signal no errors.

2.10.7.3 Number accessors

Unchecked conversion from Lisp types to C numbers

Functions

cl_fixnum ecl_fixnum (cl-object n) Function
float ecl_single_float (cl-object n) Function
double ecl_double_float (cl-object n) Function

float _Complex ecl_csfloat (cl-object n)

double _Complex ecl_cdfloat (cl-object n)

long double _Complex ecl_clfloat (cl-object n) [Function
Description These functions and macros extract a C number from a Lisp object. They
do not check the type of the Lisp object as they typically just access directly the value
from a C structure.

[]

=

long double ecl_long_float (cl-object n) [Functlon]
[]

[]

]

2.10.7.4 Number coercion

Checked conversion from Lisp types to C numbers
Functions

cl_fixnum ecl_to_fixnum (cl_object n); [Function]
cl_index ecl_to_unsigned_integer (cl_object n); [Function]

Chapter 2: Standards

float ecl_to_float (cl-object n);

double ecl_to_double (cl_object n);

long double ecl_to_long_double (cl-object n);
float _Complex ecl_to_csfloat (cl-object n);
double _Complex ecl_to_cdfloat (cl_object n);
long double _Complex ecl_to_clfloat (cl_object n);
uint8_t ecl_to_uint8_t (cl-object n);

int8_t ecl_to_int8_t (cl-object n);

uint16_t ecl_to_uint16_t (cl-object n);
int16_t ecl_to_intl16_t (cl_object n);
uint32_t ecl_to_uint32_t (cl-object n);
int32_t ecl_to_int32_t (cl_object n);
uint64_t ecl_to_uint64_t (cl-object n);
int64_t ecl_to_int64_t (cl_object n);

short ecl_to_short (cl-object n);

unsigned short ecl_to_ushort (cl-object n);
int ecl_to_int (cl-object n);

unsigned int ecl_to_uint (cl-object n);

long ecl_to_long (cl-object n);

unsigned long ecl_to_ulong (clobject n);
long long ecl_to_long_long (cl-object n);

unsigned long long ecl_to_ulong_long (cl_object n);
Description These functions and macros convert a Lisp object to the corresponding
C number type. The conversion is done through a coercion process which may signal

an error if the argument does not fit the expected type.

2.10.7.5 ANSI dictionary

Common Lisp and C equivalence

47

Functlon

2
5
g
)
=

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[Functlon]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

Function
[Function]

)
)
)

Lisp symbol C function

= cl_object cl_E(cl_narg narg, ...)

/= cl_object cl_NE(cl_narg narg, ...)

< cl_object cl_L(cl_narg narg, ...)

> cl_object cl_G(cl-narg narg, ...)

<= cl_object cl_LE(cl_narg narg, ...)

>= cl_object cl_GE(cl_narg narg, ...)

max cl_object cl_max(cl_narg narg, ...)

min cl_object cl_min(cl_narg narg, ...)

minusp cl_object cl_minusp(cl_object real)

plusp cl_object cl_plusp(cl_object real)

Zerop cl_object cl_zerop(cl_object number)

floor cl_object cl_floor(cl_narg narg, cl_object number, ...
floor cl_object cl_flloor(cl_narg narg, cl_object number, ..
ceiling cl_object cl_ceiling(cl_narg narg, cl_object number, ..
fceiling cl_object cl_fceiling(cl_narg narg, cl_object number, ...

)

truncate cl_object cl_truncate(cl_narg narg, cl_object number, ...)

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_max_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_max_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_zerop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm

48

ftruncate
round
fround
sin

cos
tan
asin
acos
atan
sinh
cosh
tanh
asinh
acosh
atanh
*

+

/
1+

1-

abs

evenp
oddp
exp

expt

ged

lem

log

mod

rem
signum
sqrt

isqrt
make-random-state
random
random-state-p
numberp
cis
complex
complexp
conjugate
phase
realpart
imagpart

upgraded-complex-part-type

ECL Manual

cl_object cl_ftruncate(cl_narg narg, cl_object number, ...)
cl_object cl_round(cl_narg narg, cl_object number, ...)
cl_object cl_fround(cl_narg narg, cl_object number, ...)
cl_object cl_sin(cl_object radians
cl_object cl_cos(cl_object radians
cl_object cl_tan(cl_object radians)

cl_object cl_asin(cl_object number)

cl_object cl_acos(cl_object number)

cl_object cl_atan(cl_narg narg, cl_object numberl, ...)
cl_object cl_sinh(cl_object number)

cl_object cl_cosh(cl_object number)

cl_object cl_tanh(cl_object number)

cl_object cl_asinh(cl_object number)

cl_object cl_acosh(cl_object number)

cl_object cl_atanh(cl_object number)

cl_object cl_X(cl_narg narg, ...)

cl_object cl_P(cl_narg narg, ...)

cl_object cl_M(cl_narg narg, cl_object number, ...)
cl_object cl_-N(cl_narg narg, cl_object number, ...)
cl_object cl_-1P(cl_object number)

cl_object cl_1M(cl_object number)

cl_object cl_abs(cl_object number)

cl_object cl_evenp(cl_object integer)

cl_object cl_oddp(cl_object integer)

cl_object cl_exp(cl_object number)

cl_object cl_expt(cl_object base, cl_object power)
cl_object cl_ged(cl_narg narg, ...)

cl_object cl_lem(cl-narg narg, ...)

cl_object cl_log(cl-narg narg, cl_object number, ...)
cl_object cl-mod(cl_object number, cl_object divisor)
cl_object cl_rem(cl_object number, cl_object divisor)
cl_object cl_signum(cl_object number)

cl_object cl_sqrt(cl_object number)

cl_object cl_isqrt(cl_object natural)

cl_object cl_make_random_state(cl_narg narg, ...)
cl_object cl_random(cl_narg narg, cl_object limit, ...)
cl_object cl_random_state_p(cl_object object)

cl_object cl_-numberp(cl_object object)

cl_object cl_cis(cl_object radians)

cl_object cl_complex(cl_narg narg, cl_object realpart, ...)
cl_object cl_complexp(cl_object object)

cl_object cl_conjugate(cl_object number)

cl_object cl_phase(cl-object number)

cl_object cl_realpart(cl_object number)

cl_object cl_imagpart(cl_object number)

cl_object cl_upgraded_complex_part_type(cl_.narg narg,
cl_object typespec, ...)

o —

http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sin_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sin_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sin_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_asin_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_asin_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_asin_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f__.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_abs.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_evenpc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_evenpc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_exp_e.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_exp_e.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gcd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_lcm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_log.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mod_r.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mod_r.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_signum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sqrt_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sqrt.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_rnd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_random.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rnd_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_nump.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cis.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comp_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comp_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_conjug.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_phase.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_realpa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_realpa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upgrad.htm

Chapter 2: Standards

realp
numerator
denominator
rational
rationalize
rationalp

ash
integer-length
integerp
parse-integer
boole

logand
logandcl
logandc2
logeqv
logior
lognand
lognor
lognot
logorcl
logorc2
logxor
loghitp
logcount
logtest

byte
bytes-size
byte-position
deposit-field

dpb

1db

ldb-test
mask-field
decode-float
scale-float
float-radix
float-sign
float-digits
float-precision
integer-decode-float
float

floatp

arithmetic-error-operands

49

cl_object cl_realp(cl_object object)

cl_object cl_numerator(cl_object rational)

cl_object cl_denominator(cl_object rational)

cl_object cl_rational(cl_object number)

cl_object cl_rationalize(cl_object number)

cl_object cl_rationalp(cl_object object)

cl_object cl_ash(cl_object integer, cl_object count)
cl_object cl_integer_length(cl_object integer)

cl_object cl_integerp(cl_object object)

cl_object cl_parse_integer(cl_narg narg, cl_object string, ...)
cl_object cl_boole(cl_object op, cl_object integerl, cl_object
integer2)

cl_object cl_logand(cl_narg narg, ...)

cl_object cl_logandcl(cl_object integerl, cl_object integer2)
cl_object cl_logandc2(cl_object integerl, cl_object integer2)
cl_object cl_logeqv(cl_narg narg, ...)

cl_object cl_logior(cl_narg narg, ...)

cl_object cl_lognand(cl_object integerl, cl_object integer2)
cl_object cl_lognor(cl_object integerl, cl_object integer2)
cl_object cl_lognot(cl_object integer)

cl_object cl_logorcl(cl-object integerl, cl_object integer2)
cl_object cl_logorc2(cl-object integerl, cl_object integer2)
cl_object cl_logxor(cl_narg narg, ...)

cl_object cl_logbitp(cl_object index, cl_object integer)
cl_object cl_logcount(cl_object integer)

cl_object cl_logtest(cl_object integerl, cl_object integer2)
cl_object cl_byte(cl_object size, cl_object position)
cl_object cl_byte_size(cl_object bytespec)

cl_object cl_byte_position(cl_object bytespec)

cl_object cl_deposit_field(cl_object newbyte, cl_object byte-
spec, cl_object integer)

cl_object cl_dpb(cl_object newbyte, cl_object bytespec,
cl_object integer)

cl_object cl_ldb(cl_object bytespec, cl_object integer)
cl_object cl_ldb_test(cl_object bytespec, cl_object integer)
cl_object cl_mask_field(cl_object bytespec, cl_object integer)
cl_object cl_decode_float(cl_object float)

cl_object cl_scale_float(cl_object float, cl_object integer)
cl_object cl_float_radix(cl_object float)

cl_object cl_float_sign(cl_narg narg, cl_object floatl, ...)
cl_object cl_float_digits(cl_-object float)

cl_object cl_float_precision(cl_object float)

cl_object cl_integer_decode_float(cl_object float)

cl_object cl_float(cl_narg narg, cl_object number, ...)
cl_object cl_floatp(cl_object object)

[Only in Common Lisp]

http://www.lispworks.com/documentation/HyperSpec/Body/f_realp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_numera.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_numera.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ration.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ration.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rati_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ash.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_inte_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_parse_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_boole.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logbtp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logcou.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logtes.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_by_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_by_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_by_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_deposi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dpb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldb_te.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mask_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floatp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_arithm.htm

50 ECL Manual

arithmetic-error-operation ~ [Only in Common Lisp]

2.11 Characters

ECL is fully ANSI Common-Lisp compliant in all aspects of the character data type, with
the following peculiarities.

2.11.1 Unicode vs. POSIX locale

There are two ways of building ECL: with C or with Unicode character codes. These build
modes are accessed using the --disable-unicode and --enable-unicode configuration
options, the last one being the default.

When using C characters we are actually relying on the char type of the C language, using
the C library functions for tasks such as character conversions, comparison, etc. In this case
characters are typically 8 bit wide and the character order and collation are determines by
the current POSIX or C locale. This is not very accurate, leaves out many languages and
character encodings but it is sufficient for small applications that do not need multilingual
support.

When no option is specified ECL builds with support for a larger character set, the Unicode
6.0 standard. This uses 24 bit large character codes, also known as codepoints, with a large
database of character properties which include their nature (alphanumeric, numeric, etc),
their case, their collation properties, whether they are standalone or composing characters,
etc.

2.11.1.1 Character types

If ECL is compiled without Unicode support, all characters are implemented using 8-bit
codes and the type extended-char is empty. If compiled with Unicode support, characters
are implemented using 24 bits and the extended-char type covers characters above code
255.

Type Without Unicode With Unicode
standard-char #\Newline,32-126 #\Newline,32-126
base-char 0-255 0-255
extended-char - 256-16777215

2.11.1.2 Character names

All characters have a name. For non-printing characters between 0 and 32, and for 127 we
use the ordinary ASCII names. Characters above 127 are printed and read using hexadeci-
mal Unicode notation, with a U followed by 24 bit hexadecimal number, as in U0126.

http://www.lispworks.com/documentation/HyperSpec/Body/f_arithm.htm

Chapter 2: Standards 51

Character Code

#\Null 0
#\Ack 1
#\Bell 7
#\Backspace 8
#\Tab 9

#\Newline 10
#\Linefeed 10

#\Page 12
#\Esc 27
#\Escape 27
#\Space 32
#\Rubout 127
#\U0080 128
Table 2.6

Note that #\Linefeed is synonymous with #\Newline and thus is a member of
standard-char.

2.11.2 #\Newline characters

Internally, ECL represents the #\Newline character by a single code. However, when using
external formats, ECL may parse character pairs as a single #\Newline, and vice versa, use
multiple characters to represent a single #\Newline, see Section 2.19.1.3 [Streams - External
formats], page 74.

2.11.3 C Reference

2.11.3.1 C types
C character types

Type names

ecl_character character
ecl_base_char base-char

Description ECL defines two C types to hold its characters: ecl_base_char and ecl_
character.

e When ECL is built without Unicode, they both coincide and typically match unsigned
char, to cover the 256 codes that are needed.

e When ECL is built with Unicode, the two types are no longer equivalent, with ecl_
character being larger.

For your code to be portable and future proof, use both types to really express what you
intend to do.

2.11.3.2 Constructors

Creating and extracting characters from Lisp objects

52 ECL Manual

Functions

cl_object ECL_CODE_CHAR (ecl_character code); [Macro]
ecl_character ECL_CHAR_CODE (cl_object 0); [Macro]
ecl_character ecl_char_code (cl-object o); [Function]
ecl_base_char ecl_base_char_code (cl-object o0); [Function]

Description These functions and macros convert back and forth from C character
types to Lisp. The macros ECL_CHAR_CODE and ECL_CODE_CHAR perform this coercion
without checking the arguments. The functions ecl_char_code and ecl_base_char_
code, on the other hand, verify that the argument has the right type and signal an
error otherwise.

2.11.3.3 Predicates

C predicates for Lisp characters

Functions

bool ecl_base_char_p (ecl_character c); Function
bool ecl_alpha_char_p (ecl_character c); Function
bool ecl_alphanumericp (ecl_character c);

bool ecl_digitp (ecl_character c);

bool ecl_standard_char_p (ecl_character c);
Description These functions are equivalent to their Lisp equivalents but return C
booleans.

2.11.3.4 Character case

C functions related to the character case

[
[
[
bool ecl_graphic_char_p (ecl_character c); [Function
[
[

Functions
bool ecl_upper_case_p (ecl_character c); Function]
bool ecl_lower_case_p (ecl_character c); Function

ecl_character ecl_char_downcase (ecl_character c); Function

ecl_character ecl_char_upcase (ecl_character c); Function]
Description These functions check or change the case of a character. Note that in a
Unicode context, the output of these functions might not be accurate (for instance
when the uppercase character has two or more codepoints).

2.11.3.5 ANSI Dictionary

Common Lisp and C equivalence

[

[]
bool ecl_both_case_p (ecl_character c); [Function]

[]

[

Lisp symbol C function
char= cl_object cl_charE(cl_narg narg, ...)
char/= cl_object cl_charNE(cl_narg narg, ...)

char< cl_object cl_charL(cl_narg narg, ...)

http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm

Chapter 2: Standards 53
char> cl_object cl_charG(cl_narg narg, ...)

char<= cl_object cl_charLE(cl_narg narg, ...)

char>= cl_object cl_charGE(cl_narg narg, ...)

char-equal cl_object cl_char_equal(cl_narg narg, ...)

char-not-equal cl_object cl_char_not_equal(cl_narg narg, ...)

char-lessp cl_object cl_char_lessp(cl_narg narg, ...)

char-greaterp cl_object cl_char_greaterp(cl_narg narg, ...)

char-not-greaterp cl_object cl_char_not_greaterp(cl_narg narg, ...)

char-not-lessp cl_object cl_char_not_lessp(cl_narg narg, ...)

character cl_object cl_character(cl_object char_designator)

characterp cl_object cl_characterp(cl_object object)

alpha-char-p cl_object cl_alpha_char_p(cl_object character)

alphanumericp cl_object cl_alphanumericp(cl-object character)

digit-char cl_object cl_digit_char(cl_-narg narg, cl_object character, ...)
digit-char-p cl_object cl_digit_char_p(cl_narg narg, cl_object character, ...)
graphic-char-p cl_object cl_graphic_char_p(cl_object character)

standard-char-p cl_object cl_standard_char_p(cl_object character)

char_upcase cl_object cl_char_upcase(cl_object character)

char-downcase cl_object cl_char_downcase(cl_object character)

upper-case-p cl_object cl_upper_case_p(cl_object character)

lower-case-p cl_object cl_lower_case_p(cl_object character)

both-case-p cl_object cl_both_case_p(cl_object character)

char-code cl_object cl_char_code(cl_object character)

char-int cl_object cl_char_int(cl-object character)

code-char cl_object cl_code_char(cl_object code)

char-name cl_object cl_char_name(cl_object character)

name-char cl_object cl_name_char(cl_object name)

char-code-limit ECL_CHAR_-CODE_LIMIT

2.12 Conses

2.12.1 C Reference

2.12.1.1 Accessors

Accessing the elements of conses

Functions

cl_object ECL_CONS_CAR (cl_object o) [Function]
cl_object ECL_CONS_CDR (cl_object o) [Function]
cl_object ECL_RPLACA (cl-object o, cl_object v) [Function]
cl_object ECL_RPLACD (cl-object o, cl_object v) [Function]
cl_object _ecl_car (cl.object o) [Function]
cl_object _ecl_cdr (cl.object o) [Function]
cl_object _ecl_caar (cl-object o) [Function]
cl_object _ecl_cadr (cl-object o) [Function]

http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_alpha_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_alphan.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_digit_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_digi_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_graphi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_std_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_u.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_u.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_n.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_name_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_char_c.htm

54 ECL Manual

Description These functions access the elements of objects of type cons (ECL_CONS_
CAR, ECL_CONS_CDR, ECL_RPLACA and ECL_RPLACD) or type list (_ecl_car, _ecl_cdr,
_ecl_caar, ...). They don’t check the type of their arguments.

2.12.1.2 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol C function

cons cl_object cl_cons(cl_object car, cl_object cdr)
consp cl_object cl_consp(cl_object object)

atom cl_object cl_atom(cl_object object)

rplaca cl_object cl_rplaca(cl_object cons, cl_object car)
rplacd cl_object cl_rplacd(cl_object cons, cl_object cdr)
car cl_object cl_car(cl_object cons)

cdr cl_object cl_cdr(cl_object cons)

caar cl_object cl_caar(cl-object cons)

cdar cl_object cl_cdar(cl_object cons)

cadr cl_object cl_cadr(cl_object cons)

cddr cl_object cl_cddr(cl_object cons)

caaar cl_object cl_caaar(cl_object cons)

cdaar cl_object cl_cdaar(cl_object cons)

cadar cl_object cl_cadar(cl_object cons)

cddar cl_object cl_cddar(cl_object cons)

caadr cl_object cl_caadr(cl_object cons)

cdadr cl_object cl_cdadr(cl-object cons)

caddr cl_object cl_caddr(cl-object cons)

cdddr cl_object cl_cdddr(cl_object cons)

caaaar cl_object cl_caaaar(cl_object cons)

cdaaar cl_object cl_cdaaar(cl_object cons)

cadaar cl_object cl_cadaar(cl_object cons)

cddaar cl_object cl_cddaar(cl_object cons)

caadar cl_object cl_caadar(cl_object cons)

cdadar cl_object cl_cdadar(cl_object cons)

caddar cl_object cl_caddar(cl_object cons)

cdddar cl_object cl_cdddar(cl-object cons)

caaadr cl_object cl_caaadr(cl_object cons)

cdaadr cl_object cl_cdaadr(cl_object cons)

cadadr cl_object cl_cadadr(cl_object cons)

cddadr cl_object cl_cddadr(cl_object cons)

caaddr cl_object cl_caaddr(cl_object cons)

cdaddr cl_object cl_cdaddr(cl-object cons)

cadddr cl_object cl_cadddr(cl-object cons)

cddddr cl_object cl_cddddr(cl_object cons)

copy-tree cl_object cl_copy_tree(cl_object tree)

sublis cl_object cl_sublis(cl_narg narg, cl_object alist, cl_object tree,

)

http://www.lispworks.com/documentation/HyperSpec/Body/f_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_consp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_atom.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rplaca.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rplaca.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_tre.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sublis.htm

Chapter 2: Standards

nsublis

subst
subst-if
subst-if-not
nsubst
nsubst-if
nsubst-if-not
tree-equal

copy-list
list

list*
list-length
listp
make-list
first
second
third
fourth
fifth
sixth
seventh
eighth
ninth
tenth
nth

endp
null
nconc
append
revappend
nreconc
butlast
nbutlast
last

1diff
tailp
nthedr
rest

95

cl_object cl_sublis(cl_narg narg, cl_object alist, cl_object tree,
cl_object cl_subst(cl_narg narg, cl_object new, cl_object old,
cl_object tree, ...)

cl_object cl_subst_if(cl_narg narg, cl_-object new, cl_object
predicate, cl_object tree, ...)

cl_object cl_subst_if_not(cl-narg mnarg, cl-object new,
cl_object predicate, cl_object tree, ...)

cl_object cl_nsubst(cl_narg narg, cl_object new, cl_object old,
cl_object tree, ...)

cl_object cl_nsubst_if(cl_narg narg, cl_object new, cl_object
predicate, cl_object tree, ...)

cl_object cl_nsubst_if_not(cl_narg narg, cl_object new,
cl_object predicate, cl_object tree, ...)

cl_object cl_tree_equal(cl_narg narg, cl_object treel, cl_object
tree2, ...)

cl_object cl_copy_list(cl_object list)

cl_object cl_list(cl_narg narg, ...)

cl_object cl_listX(cl_narg narg, ...)

cl_object cl_list_length(cl_object list)

cl_object cl_listp(cl_object object)

cl_object cl_make_list(cl_narg narg, cl_object size, ...)
cl_object cl_first(cl_object list)

cl_object cl_second(cl_object list)

cl_object cl_third(cl_object list)

cl_object cl_fourth(cl_object list)

cl_object cl_fifth(cl_object list)

cl_object cl_sixth(cl_object list)

cl_object cl_seventh(cl_object list)

cl_object cl_eighth(cl_object list)

cl_object cl_ninth(cl_object list)

cl_object cl_tenth(cl_object list)

cl_object cl_nth(cl_object n, cl_object list)

cl_object cl_endp(cl_object list)

cl_object cl_null(cl-object object)

cl_object cl_nconc(cl_narg narg, ...)

cl_object cl_append(cl_narg narg, ...)

cl_object cl_revappend(cl_object list, cl_object tail)

cl_object cl_nreconc(cl_object list, cl_object tail)

cl_object cl_butlast(cl_narg narg, cl_object list, ...)

cl_object cl_nbutlast(cl_narg narg, cl_object list, ...)
cl_object cl_last(cl_narg narg, cl_object list, ...)

cl_object cl_ldiff(cl_object list, cl_object object)

cl_object cl_tailp(cl_object object, cl_object list)

cl_object cl_nthedr(cl_-object n, cl_object list)

cl_object cl_rest(cl_object list)

http://www.lispworks.com/documentation/HyperSpec/Body/f_nsublis.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tree_e.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_lis.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_list_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_list_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_list_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_lis.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_firstc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_nth.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_endp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_null.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_nconc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_append.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_revapp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_revapp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_butlas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_butlas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_last.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldiffc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldiffc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_nthcdr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rest.htm

56

member
member-if
member-if-not
mapc
mapcar
mapcan
mapl
maplist
mapcon
acons
assoc
assoc-if

assoc-if-not

copy-alist
pairlis

rassoc
rassoc-if
rassoc-if-not
get-properties
getf
intersection
nintersection
adjoin
set-difference
nset-difference

set-exclusive-or

ECL Manual

cl_object cl_member(cl-narg narg, cl_object member,
cl_object list,)

cloobject cl_member_if(cl_narg narg, cl-object predicate,
cl_object list,)

cl_object cl_member_if_not(cl_narg narg, cl_object predicate,
cl_object list,)

cl_object cl_mapc(cl_narg narg, cl_object function, ...)
cl_object cl_mapcar(cl_narg narg, cl_object function, ...)
cl_object cl_mapcan(cl_narg narg, cl_object function, ...)
cl_object cl_mapl(cl_narg narg, cl_object function, ...)
cl_object cl_maplist(cl_narg narg, cl_object function, ...)
cl_object cl_mapcon(cl_narg narg, cl_object function, ...)
cl_object cl_acons(cl-object key, cl-object datum, cl_object
alist)

cl_object cl_assoc(cl_narg narg, cl_object item, cl_object alist,
cl_object cl.assoc_if(cl_.narg narg, cl.object predicate,
cl_object alist, ...)

cl_object cl_assoc_if_not(cl_narg narg, cl_object predicate,
cl_object alist, ...)

cl_object cl_copy_alist(cl_object alist)

cl_object cl_pairlis(cl_narg narg, cl_object keys, cl_object
data, ...)

cl_object cl_rassoc(cl_narg narg, cl_object item, cl_object al-
ist, ...)

cloobject cl_rassoc_if(cl_narg narg, cl_object predicate,
cl_object alist, ...)

cl_object cl_rassoc_if_not(cl_narg narg, cl_object predicate,
cl_object alist, ...)

cl_object cl_get_properties(cl_object plist, cl_object indica-
tor_list)

cl_object cl_getf(cl_narg narg, cl_object plist, cl_object indi-
cator, ...)

cl_object cl_intersection(cl_narg narg, cl.object listl,
cl_object list2, ...)

cl_object cl_nintersection(cl_narg narg, cl_object listl,
cl_object list2, ...)

cl_object cl_adjoin(cl_narg narg, cl_object item, cl_object list,
cloobject cl_set_difference(cl_narg narg, cl_object listl,
cl_object list2, ...)

cl_object cl_nset_difference(cl_narg narg, cl_object listl,
cl_object list2, ...)

cl_object cl_set_exclusive_or(cl_narg narg, cl_object listl,
cl_object list2, ...)

http://www.lispworks.com/documentation/HyperSpec/Body/f_mem_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mem_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mem_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_acons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_assocc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_assocc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_assocc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_ali.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pairli.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rassoc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rassoc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rassoc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_getf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_isec_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_isec_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_adjoin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set_di.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set_di.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set_ex.htm

Chapter 2: Standards

nset-exclusive-or
subsetp
union

nunion

2.13 Arrays

2.13.1 Array limits

o7

cl_object cl_nset_exclusive_or(cl_narg narg, cl_object listl,
cl_object list2, ...)

cl_object cl_subsetp(cl-narg narg, cl_object listl, cl_object
list2, ...)

cl_object cl_union(cl_narg narg, cl_object list1, cl_object list2,

)

cl_object cl_nunion(cl_narg narg, cl_object listl, cl_object
list2, ...)

ECL arrays can have up to 64 dimensions. Common-Lisp constants related to arrays have

the following values in ECL.

Constant
array-rank-limit
array-dimension-limit
array-total-size-limit

2.13.2 Specializations

Value

64
most-positive-fixnum
array-dimension-limit

When the elements of an array are declared to have some precise type, such as a small or
large integer, a character or a floating point number, ECL has means to store those elements
in a more compact form, known as a specialized array. The list of types for which ECL
specializes arrays is platform dependent, but is summarized in the following table, together
with the C type which is used internally and the expected size.

Specialized type
bit

character
base-char
fixnum

ext:cl-index

(signed-byte 8)
(unsigned-byte 8)
(signed-byte 16)
(unsigned-byte 16)
(signed-byte 32)
(unsigned-byte 32)
(signed-byte 64)
(unsigned-byte 64)
single-float or short-float
double-float

Element C type Size

- 1 bit

unsigned char or uint32_t Depends on character range

unsigned char

cl_fixnum Machine word (32 or 64
bits)

cl_index Machine word (32 or 64
bits)

int8_t 8 bits

uint8_t 8 bits

int16_t 16 bits

uint16_t 16 bits

int32_t 32 bits

uint32_t 32 bits

int64_t 64 bits

uint64_t 64 bits

float 32-bits IEEE float

double 64-bits IEEE float

http://www.lispworks.com/documentation/HyperSpec/Body/f_sex_ex.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_subset.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unionc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unionc.htm

58

long-float

(complex single-float)
(complex double-float)
(complex long-float)

t

long double
float _Complex
double _Complex

long double _Complex

cl_object

ECL Manual

Between 96 and 128 bits

64 bits
128 bits

Between 192 and 256 bits

Size of a pointer.

Let us remark that some of these specialized types might not exist in your platform. This
is detected using conditional reading and features (See Section 2.10 [Numbers], page 41).

2.13.3 C Reference

2.13.3.1 Types and constants

C types, limits and enumerations

Constants and types

ECL_ARRAY_RANK_LIMIT

ECL_ARRAY_DIMENSION_LIMIT

ECL_ARRAY_TOTAL_LIMIT

cl_elttype {ecl_aet_object, ...}

Lisp or C type

t

cl_fixnum
(unsigned-byte 8)
(unsigned-byte 16)
(unsigned-byte 32)
(unsigned-byte 64)
ecl_character
single-float
long-float

(complex single-float)

Enumeration value
ecl_aet_object
ecl_aet_fix
ecl_aet_b&
ecl_aet_bl6
ecl_aet_b32
ecl_aet_b64
ecl_aet_ch
ecl_aet_sf
ecl_aet_If
ecl_aet_csf

Lisp or C type
(unsigned-byte 1)
cl_index
(signed-byte 8)
(signed-byte 16)
(signed-byte 32)
(signed-byte 64)
ecl_base_char
double-float
(complex long-float)
(complex

double-float)

[Constant]
[Constant|
[Constant|

]

[enum

Enumeration value
ecl_aet_bit
ecl_aet_index
ecl_aet_i8
ecl_aet_il6
ecl_aet_132
ecl_aet_i64
ecl_aet_bc
ecl_aet_df
ecl_aet_clf
ecl_aet_cdf

Description This list contains the constants that limit the rank of an array (ECL_
ARRAY_RANK_LIMIT), the maximum size of each dimension (ECL_ARRAY_DIMENSION_
LIMIT) and the maximum number of elements in an array (ECL_ARRAY_TOTAL_LIMIT).

ECL uses also internally a set of constants to describe the different specialized arrays.
The constants form up the enumeration type cl_elttype. They are listed in the
table above, which associates enumeration values with the corresponding Common

Lisp element type.

2.13.3.2 ecl_aet_to_symbol, ecl_symbol_to_aet

To and from element types

Functions

cl_object ecl_aet_to_symbol (clelttype param)

[Function]

Chapter 2: Standards 59

cl_elttype ecl_symbol_to_aet (cl_object type) [Function]
Description ecl_aet_to_symbol returns the Lisp type associated to the elements of
that specialized array class. ecl_symbol_to_aet does the converse, computing the
C constant that is associated to a Lisp element type.

The functions may signal an error if any of the arguments is an invalid C or Lisp
type.

2.13.3.3 Constructors

Creating array and vectors

Functions

cl_object ecl_alloc_simple_vector (clindex length, cl_elttype [Function]
element_type);

cl_object si_make_vector (cl_object element_type, cl_object [Function]

length, cl_object adjustablep, cl_object fill_pointerp, cl_object
displaced_to, cl_object displacement);
cl_object si_make_array (cl.object element_type, cl_object [Function]
dimensions, cl_object adjustablep, cl_object fill_pointerp, cl_object
displaced_to, cl_object displacement);
cl_object si_adjust_vector (cl-object vector, cl_object length); [Function]
Description The function ecl_alloc_simple_vector is the simplest constructor, cre-
ating a simple vector (i.e. non-adjustable and without a fill pointer), of the given size,
preallocating the memory for the array data. The first argument, element_type, is a
C constant that represents a valid array element type (See cl_elttype).

The function si_make_vector does the same job but allows creating an array with
fill pointer, which is adjustable or displaced to another array.

e clement_type is now a Common Lisp type descriptor, which is a symbol or list
denoting a valid element type

e dimension is a non-negative fixnum with the vector size.

e fill_pointerp is either ECL_NIL or a non-negative fixnum denoting the fill pointer
value.

e displaced_to is either ECL_NIL or a valid array to which the new array is dis-
placed.

e displacement is either ECL_NIL or a non-negative value with the array displace-
ment.
Adjustable vector may be adjusted with the function si_adjust_vector.

Finally, the function si_make_array does a similar job to si_make_vector but its
second argument, dimension, can be a list of dimensions, to create a multidimensional
array.

Examples Create one-dimensional base-string with room for 11 characters:
cl_object s = ecl_alloc_simple_vector(1l, ecl_aet_bc);
Create a one-dimensional array with a fill pointer
cl_object type = ecl_make_symbol("BYTE8","EXT");

60 ECL Manual

cl_object a = si_make_vector(type, ecl_make_fixnum(16), ECL_NIL, /* adjustable */
ecl_make_fixnum(0) /* fill-pointer */,
ECL_NIL /% displaced_to */,
ECL_NIL /* displacement */);

An alternative formulation

cl_object type = ecl_make_symbol("BYTE8","EXT");

cl_object a = si_make_array(type, ecl_make fixnum(16), ECL_NIL, /* adjustable */|
ecl_make_fixnum(0) /* fill-pointer */,
ECL_NIL /* displaced_to */,
ECL_NIL /* displacement */);

Create a 2-by-3 two-dimensional array, specialized for an integer type:

cl_object dims = cl_list(2, ecl_make_fixnum(2), ecl_make_fixnum(3));]}

cl_object type = ecl_make_symbol("BYTE8","EXT");

cl_object a = si_make_array(dims, type, ECL_NIL, /* adjustable */
ECL_NIL /* fill-pointer x/,
ECL_NIL /* displaced_to */,
ECL_NIL /* displacement */);

2.13.3.4 Accessors

Reading and writing array elements

Functions

cl_object ecl_aref (clobject array, cl-index row_major_index); [Function]

cl_object ecl_aset (cl-object array, cl_-index row_major_index, [Function]
cl_object new_value);

cl_object ecl_arefl (cl-object vector, cl_index row_major_index); [Function]

cl_object ecl_asetl (cl-object vector, cl_index row_major_index, [Function]

cl_object new_value);
Description ecl_aref accesses an array using the supplied row_major_indez, checking
the array bounds and returning a Lisp object for the value at that position. ecl_aset
does the converse, storing a Lisp value at the given row_major_indez.

The first argument to ecl_aref or ecl_aset is an array of any number of dimen-
sions. For an array of rank N and dimensions d1, d2 ... up to dN, the row ma-
jor index associated to the indices (i1,i2,...iN) is computed using the formula
11+d1* (12+d3* (i3+...)).

ecl_arefl and ecl_asetl are specialized versions that only work with one-
dimensional arrays or vectors. They verify that the first argument is indeed a
vector.

All functions above check that the index does not exceed the array bounds, that the
values match the array element type and that the argument is an array (or a vector).
If these conditions are not met, a type-error is signaled.

2.13.3.5 Array properties

Array size, fill pointer, etc.

Chapter 2: Standards 61

Functions

cl_elttype ecl_array_elttype (cl-object array); [Function]
cl_index ecl_array_rank (cl.object array); [Function]
cl_index ecl_array_dimension (cl_object array, cl_index index); [Function]

Description These functions query various properties of the arrays. Some of them
belong to the list of functions in the Common Lisp package, without any need for
specialized versions. More precisely

e ecl_array_elttype returns the array element type, with the encoding found in
the enumeration cl_elttype.

e ecl_array_rank returns the number of dimensions of the vector or array.

e ecl_array_dimension queries the dimension of an array, where index is a non-

negative integer between 0 and ecl_array_dimension(array)-1.

2.13.3.6 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol
make-array

adjust-array

adjustable-array-p
aref

(setf aref)
array-dimension

array-dimensions
array-element-type
array-has-fill-pointer-p
array-displacement
array-in-bounds-p

array-rank
array-row-major-index

array-total-size
arrayp
fill-pointer

(setf fill-pointer)

row-major-aref

(setf row-major-aref)

C function

cl_object cl_make_array(cl_narg narg, cl_object
dimension...)

cl_object cl_adjust_array(cl_narg narg, cl_object array,
cl_object dimensions, ...)

cl_object cl_adjustable_array_p(cl_object array)

cl_object cl_aref(cl_narg narg, cl_object array, ...)

cl_object si_aset(cl_narg narg, cl_object array, ...)

cloobject cl_array_dimension(cl_object array, cl_object
index)

cl_object cl_array_dimensions(cl_object array)

cl_object cl_array_element_type(cl_object array)

cl_object cl_array_has_fill_pointer_p(cl_object array)
cl_object cl_array_displacement(cl_object array)

cl_object cl_array_in_bounds_p(cl_narg narg, cl_object ar-
ray, ...)

cl_object cl_array_rank(cl_object array)

cl_object cl_array_row_major_index(cl_narg narg, cl_object
array, ...)

cl_object cl_array_total_size(cl_object array)

cl_object cl_arrayp(cl-object array)

cl_object cl_fill_pointer(cl-object array)

cl_object si_fill_pointer_set(cl_object array, cl_object
fill_pointer)

cloobject cl_-row_major_aref(cl_object array, cl_object
index)

cl_object si_row_major_aset(cl_object array, cl_object in-
dex, cl_object value)

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_adjust.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_adju_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_dim.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_d_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_ele.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_has.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_dis.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_in_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_ran.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_row.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_tot.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_arrayp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fill_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fill_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_row_ma.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_row_ma.htm

62

upgraded-array-element-type

simple-vector-p
svref

(setf svref)
vector
vector-pop
vector-push
vector-push-extend
vectorp

bit

(setf bit)
shit

(setf sbit)
bit-and
bit-andcl
bit-andc2
bit-eqv
bit-ior
bit-nand
bit-nor
bit-orcl
bit-orc2
bit-xor
bit-not

bit-vector-p
simple-bit-vector-p

2.14 Strincs

ECL Manual

cl_object cl_upgraded_array_element_type(cl_narg narg,
cl_object typespec, ...)

cl_object cl_simple_vector_p(cl_object object)

cl_object cl_svref(cl_object simple_vector, cl_object index)
cl_object si_svset(cl_object simple_vector, cl_object index,
cl_object value)

cl_object cl_vector(cl_narg narg, ...)

cl_object cl_vector_pop(cl_object vector)

cl_object cl_vector_push(cl_object new_element, cl_object
vector)

cl_object cl_vector_push_extend(cl_narg narg, cl_object
new_element, cl_object vector, ...)

cl_object cl_vectorp(cl_object object)

cl_object cl_bit(cl_narg narg, cl_object bit_array, ...)
cl_object si_aset(cl_narg narg, cl_object array, ...)

cl_object cl_sbit(cl_narg narg, cl_object bit_array, ...)
cl_object si_aset(cl_narg narg, cl_object array, ...)

cl_object cl_bit_and(cl-narg narg, cl_object arrayl,
cl_object array2, ...)

cl_object cl_bit_andcl(cl_narg narg, cl_object arrayl,
cl_object array?2, ...)

cloobject cl_bit_andc2(cl-narg narg, cl_object arrayl,
cl_object array?2, ...)

cloobject cl_bit_eqv(cl-narg mnarg, cl.object arrayl,
cl_object array?2, ...)

cl_object cl_bit_ior(cl_narg narg, cl_object arrayl, cl_object
array?2, ...)

cl_object cl_bit_nand(cl_.narg mnarg, cl_object arrayl,
cl_object array?2, ...)

cl_object cl_bit_nor(cl_narg narg, cl_object array1, cl_object
array?2, ...)

cl_object cl_bit_orcl(cl_.narg narg, clobject arrayl,
cl_object array2, ...)

cl_object cl_bit_orcl(cl_.narg narg, cl_object arrayl,
cl_object array?2, ...)

cl_object cl_bit_xor(cl_narg narg, cl_object array1, cl_object
array?2, ...)

cl_object cl_bit_not(cl_narg narg, cl_object array, ...)
cl_object cl_bit_vector_p(cl_object object)

cl_object cl_simple_bit_vector_p(cl_object object)

http://www.lispworks.com/documentation/HyperSpec/Body/f_upgr_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vector.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_po.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vecp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_sb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_sb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_sb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_sb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_and.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_bt_vec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_smp_bt.htm

Chapter 2: Standards 63

2.14.1 String types & Unicode

The ECL implementation of strings is ANSI Common-Lisp compliant. There are basically
four string types as shown in Table 2.7. As explained in Section 2.11 [Characters]|, page 50,
when Unicode support is disabled, character and base-character are the same type and
the last two string types are equivalent to the first two.

Abbreviation Expanded type Remarks

string (array character 8 or 32 bits per character, adjustable.
()

simple-string (simple-array char- 8 or 32 bits per character, not adjustable
acter (*)) nor displaced.

base-string (array base-char 8 bits per character, adjustable.
(*))

simple-base-string (simple-array base- 8 bits per character, not adjustable nor dis-
char (*)) placed.

Table 2.7: Common Lisp string types

It is important to remember that strings with unicode characters can only be printed read-
ably when the external format supports those characters. If this is not the case, ECL

will signal a serious-condition. This condition will abort your program if not properly
handled.

2.14.2 C reference

2.14.2.1 Base string constructors
Building strings of C data

Functions

cl_object ecl_alloc_adjustable_base_string (cl-index length); [Function]

cl_object ecl_alloc_simple_base_string (cl_index length); [Function]

cl_object ecl_make_simple_base_string (const char* data, [Function]
cl_fixnum length);

cl_object ecl_make_constant_base_string (const char* data, [Function]

cl_fixnum length);
Description These are different ways to create a base string, which is a string that
holds a small subset of characters, the base-char, with codes ranging from 0 to 255.

ecl_alloc_simple_base_string creates an empty string with that much space for
characters and a fixed length. The string does not have a fill pointer and cannot be
resized, and the initial data is unspecified

ecl_alloc_adjustable_base_string is similar to the previous function, but creates
an adjustable string with a fill pointer. This means that the length of the string can
be changed and the string itself can be resized to accommodate more data.

The other constructors create strings but use some preexisting data. ecl_make_
simple_base_string creates a string copying the data that the user supplies, and us-
ing freshly allocated memory. ecl_make_constant_base_string on the other hand,

64 ECL Manual

does not allocate memory, but simply uses the supplied pointer as buffer for the string.
This last function should be used with care, ensuring that the supplied buffer is not
deallocated. If the length argument of these functions is -1, the length is determined
by strlen.

2.14.2.2 String accessors

Reading and writing characters into a string

Functions
ecl_character ecl_char (cl_object string, cl_index index); [Function]
ecl_character ecl_char_set (cl-object string, cl_index index, [Function]

ecl_character c);
Description Access to string information should be done using these two functions.
The first one implements the equivalent of the char function from Common Lisp,
returning the character that is at position index in the string string.

The counterpart of the previous function is ecl_char_set, which implements (setf
char) and stores character ¢ at the position index in the given string.

Both functions check the type of their arguments and verify that the indices do not
exceed the string boundaries. Otherwise they signal a serious-condition.

2.14.2.3 Converting Unicode strings

Converting between different encodings. See Section 2.19.1.3 [Streams - External formats],
page 74, for a list of supported encodings (external formats).

Functions

ext:octets-to-string octets &key (external-format :default) (start [Function]
0) (end nil)
Decode a sequence of octets (i.e. 8-bit bytes) into a string according to the given
external format. octets must be a vector whose elements have a size of 8-bit. The
bounding index designators start and end optionally denote a subsequence to be
decoded. Signals an ext:character-decoding-error if the decoding fails.

ext:string-to-octets string &key (external-format :default) (start [Function]
0) (end nil) (null-terminate nil)
Encode a string into a sequence of octets according to the given external format.
The bounding index designators start and end optionally denote a subsequence to
be encoded. If null-terminate is true, add a terminating null byte. Signals an
ext:character-encoding-error if the encoding fails.

cl_object ecl_decode_from_cstring (const char *string, [Function]
cl_fixnum length, cl_object external_format)
Decode a C string of the given length into a Lisp string using the specified external
format. If length is -1, the length is determined by strlen. Returns NULL if the
decoding fails.

Chapter 2: Standards 65

cl_fixnum ecl_encode_to_cstring (char *output, cl_fixnum [Function]
output_length, cl_object input, cl_object external_format)

Encode the Lisp string input into a C string of the given length using the specified

external format. Returns the number of characters necessary to encode the Lisp

string (including the null terminator). If this is larger than output_length, output is

unchanged. Returns -1 if the encoding fails.

cl_object ecl_decode_from_unicode_wstring (const wchar_t [Function]
*string, cl_fixnum length)
cl_fixnum ecl_encode_to_unicode_wstring (wchar_t *output, [Function]

cl_fixnum output_length, cl_object input)
These functions work the same as ecl_decode_from_cstring, ecl_encode_to_
cstring, except that the external format used is either utf-8, utf-16 or utf-32
depending on whether sizeof (wchar_t) is 1, 2, or 4 respectively.

2.14.2.4 ANSI dictionary

Common Lisp and C equivalence

Lisp symbol
simple-string-p
char

(setf char)

schar

(setf schar)
string
string-upcase
string-downcase
string-capitalize
nstring-upcase
nstring-downcase
nstring-capitalize
string-trim
string-left-trim

string-right-trim

string
string=

string/=
string<

string>

C function

cl_object cl_simple_string_p(cl_object string)

cl_object cl_char(cl_object string, cl_object index)

cl_object si_char_set(cl_object string, cl_object index, cl_object char)
cl_object cl_schar(cl_object string, cl_object index)

cl_object si_char_set(cl_object string, cl_object index, cl_object char)
cl_object cl_string(cl_object x)

cl_object cl_string_upcase(cl_narg narg, cl_obejct string, ...)
cl_object cl_string_downcase(cl_narg narg, cl_obejct string, ...)
cl_object cl_string_capitalize(cl_narg narg, cl_obejct string, ...)
cl_object cl_nstring_upcase(cl_narg narg, cl_obejct string, ...)
cl_object cl_nstring_downcase(cl_narg narg, cl_obejct string, ...)
cl_object cl_nstring_capitalize(cl_narg narg, cl_obejct string, ...)
cl_object cl_string_trim(cl_object character_bag, cl_object string)

cl_object cl_string_left_trim(cl_object character_bag, cl_object
string)
cl_object cl_string_right_trim(cl_object character_bag, cl_object

string)

cl_object cl_string(cl_object x)

cl_object cl_stringE(cl_narg narg, cl_object stringl, cl_object string2,
cl_object cl_stringNE(cl_-narg narg, cl-object stringl, cl_object
string2, ...)

cl_object cl_stringli(cl_narg narg, cl_object stringl, cl_object string2,

cl_object cl_stringG(cl-narg narg, cl_object stringl, cl_object string2,

)

http://www.lispworks.com/documentation/HyperSpec/Body/f_smp-st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_tr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_tr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_tr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm

66

string<=
string>=
string-equal
string-not-equal
string-lessp

string-greaterp

string-not-greaterp

string-not-lessp

stringp
make-string

ECL Manual

cloobject cl_stringLE(cl_-narg narg, cl_object stringl, cl_object
string2, ...)

cloobject cl_stringGE(cl_narg narg, cl-object stringl, cl_object
string2, ...)

cl_object cl_string_equal(cl_-narg narg, cl_object stringl, cl_object
string2, ...)

cloobject cl_string_not_equal(cl_narg narg,
cl_object string2, ...)

cl_object cl_string_lessp(cl_narg narg, cl_object stringl, cl_object
string2, ...)

cl_object cl_string_greaterp(cl_narg narg, cl_object stringl, cl_object
string2, ...)

cl_object stringl,

cl_object cl_string_not_greaterp(cl_-narg narg, cl_object stringl,
cl_object string2, ...)

cl_object cl_string_not_lessp(cl_.narg narg,
cl_object string2, ...)

cl_object cl_stringp(cl_object x)

cl_object cl_make_string(cl_narg narg, cl_object size, ...)

cl_object stringl,

2.15 Sequences

2.15.1 C Reference

2.15.1.1 ANSI dictionary

Common Lisp and C equivalence

Lisp symbol
concatenate
copy-seq

count

count-if
count-if-not
delete

delete-if
delete-if-not
delete-duplicates

elt
(setf elt)

C function

cl_object cl_concatenate(cl_narg narg, cl_object result_type, ...)
cl_object cl_copy_seq(cl_object sequence)

cl_object cl_count(cl_narg narg, cl_object item, cl_object sequence,
cl_object cl_count_if(cl_narg narg, cl_object predicate, cl_object se-
quence, ...)

cl_object cl_count_if_not(cl-narg narg, cl_object predicate, cl_object
sequence, ...)

cl_object cl_delete(cl-narg narg, cl_object item, cl_object sequence,

)

cl_object cl_delete_if(cl_narg narg, cl_object test, cl_object sequence,
cl_object cl_delete_if_not(cl_narg narg, cl_object test, cl_object se-
quence, ...)

cl_object cl_delete_duplicates(cl_narg narg, cl_object sequence, ...)
cl_object cl_elt(cl_object sequence, cl_object index)

cl_object si_elt_set(cl-object sequence, cl_object index, cl_object
value)

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_stg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_concat.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_countc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_countc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_countc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_dup.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_elt.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_elt.htm

Chapter 2: Standards

fill

find
find-if
find-if-not

length
make-sequence

map
map-into
merge
mismatch

nreverse
nsubstitute

nsubstitute-if
nsubstitute-if-not
position
position-if
position-if-not
reduce

remove

remove-if
remove-if-not

remove-duplicates
replace

reverse
search

67

cl_object cl_fill(cl_narg narg, cl_object sequence, cl_object item, ...)
cl_object cl_find(cl_narg narg, cl_object item, cl_object sequence, ...)
cl_object cl_find_if(cl_narg narg, cl_object predicate, cl_object se-
quence, ...)

cl_object cl_find_if_not(cl_narg narg, cl_object predicate, cl_object
sequence, ...)

cl_object cl_length(cl_object x)

cl_object cl_make_sequence(cl_narg narg,
cl_object size, ...)

cl_object result_type,

cl_object cl_map(cl_narg narg, cl_object result_type, cl_object func-
tion, , ...)

cl_object cl-map_into(cl.narg narg, result_sequence,
cl_object function, ...)

cl_object cl_merge(cl_narg narg, cl_object result_type, cl_object se-
quencel, cl_object sequence2, cl_object predicate, ...)

cl_object cl_mismatch(cl_narg narg, cl-object sequencel, cl_object
sequence?2, ...)

cl_object cl_nreverse(cl_object sequence)

cl_object cl_nsubstitute(cl-narg narg, cl-object newitem, cl_object
olditem, cl_object sequence, ...)

cl_object cl_nsubstitute_if(cl_narg narg, cl_object newitem, cl_object
predicate, cl_object sequence, ...)

cl_object

cl_object cl_nsubstitute_if_not(cl_narg narg, cl_object newitem,
cl_object predicate, cl_object sequence, ...)

cl_object cl_position(cl_narg narg, cl_object item, cl_object sequence,
cl_object cl_position_if(cl_narg narg, cl_object predicate, cl_object
sequence, ...)

cloobject cl_position_if_not(cl_narg narg,
cl_object sequence, ...)

cl_object cl_-reduce(cl-narg narg, cl_object function, cl-object se-
quence, ...)

cl_object cl_-remove(cl_narg narg, cl_object item, cl_object sequence,
cl_object cl_-remove_if(cl_narg narg, cl_object test, cl_object se-
quence, ...)

cl_object predicate,

cl_object cl_remove_if_not(cl_narg narg, cl_object test, cl_object se-
quence, ...)

cl_object cl_remove_duplicates(cl_narg narg, cl_object sequence, ...)
cl_object cl_replace(cl_narg narg, cl_object sequencel, cl_object se-
quence2, ...)

cl_object cl_reverse(cl_object sequence)

cl_object cl_search(cl_narg narg, cl_object sequencel, cl_object se-
quence2, ...)

http://www.lispworks.com/documentation/HyperSpec/Body/f_fill.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_length.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_map.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_map_in.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_merge.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mismat.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_revers.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sbs_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sbs_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sbs_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pos_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pos_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pos_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reduce.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_dup.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_replac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_revers.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_search.htm

68 ECL Manual

sort cl_object cl_sort(cl_narg narg, cl-object sequence, cl_object predi-
cate, ...)

stable-sort cl_object cl_stable_sort(cl_narg narg, cl_object sequence, cl_object
predicate, ...)

subseq cl_object cl_subseq(cl_narg narg, cl_object sequence, cl_object start,

substitute cl_object cl_substitute(cl_narg narg, cl_object newitem, cl_object
olditem, cl_object sequence, ...)

substitute-if cl_object cl_substitute_if(cl_narg narg, cl_object newitem, cl_object
predicate, cl_object sequence, ...)

substitute-if-not cl_object cl_substitute_if_not(cl_narg narg, cl.object newitem,

cl_object predicate, cl_object sequence, ...)

2.16 Hash tables
2.16.1 Extensions
2.16.1.1 Weakness in hash tables

Weak hash tables allow the garbage collector to reclaim some of the entries if they are not
strongly referenced elsewhere. ECL supports four kinds of weakness in hash tables: :key,
:value, :key-and-value and :key-or-value.

To make hash table weak, programmer has to provide :weakness keyword argument to
cl:make-hash-table with the desired kind of weakness value (nil means that the hash
table has only strong references).

For more information see Weak References - Data Types and Implementation (https://

www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html) by Bruno
Haible.

ext:hash-table-weakness ht [Function]
Returns type of the hash table weakness. Possible return values are: :key, :value,
:key-and-value, :key-or-value or nil.

2.16.1.2 Thread-safe hash tables

By default ECL doesn’t protect hash tables from simultaneous access for performance rea-
sons. Read and write access may is synchronized when :synchronized keyword argument
to make-hash-table is t - (make-hash-table :synchronized t).

ext:hash-table-synchronized-p ht [Function]
Predicate answering whether hash table is synchronized or not.

2.16.1.3 Hash tables serialization

ext:hash-table-content ht [Function]
Returns freshly consed list of pairs (key . val) being contents of the hash table.

ext:hash-table-fill ht values [Function]
Fills ht with values being list of (key . val). Hash table may have some content
already, but conflicting keys will be overwritten.

http://www.lispworks.com/documentation/HyperSpec/Body/f_sort_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sort_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_subseq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sbs_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sbs_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sbs_s.htm
https://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
https://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html

Chapter 2: Standards

69

2.16.1.4 Custom equivalence predicate

make-hash-table may accept arbitrary :test keyword for the equivalence predicate. If it
is not one of the standard predicates (:eq, :eql, :equal, :equalp) a keyword argument
:hashing-function must be a function accepting one argument and returning a positive
fixnum. Otherwise the argument is ignored.

2.16.1.5 Example

CL-USER> (defparameter xht*
(make-hash-table :synchronized t

HT

:weakness :key-or-value))

CL-USER> (ext:hash-table-weakness *htx*)

:KEY-OR-VALUE

CL-USER> (ext:hash-table-synchronized-p *htx*)

T

CL-USER> (ext:hash-table-fill *ht* ’((:foo 3) (:bar 4) (:quux 5)))
#<hash-table 000055b1229e0b40>

CL-USER> (ext:hash-table-content *htx*)

((#<weak-pointer 000055b121866350> . #<weak-pointer 000055b121866320>)
(#<weak-pointer 000055b121866370> . #<weak-pointer 000055b121866360>)
(#<weak-pointer 000055b121866390> . #<weak-pointer 000055b121866380>))

2.16.2 C Reference

2.16.2.1 ANSI dictionary

Common Lisp and C equivalence

Lisp symbol
clrhash
gethash

(setf gethash)

hash-table-count
hash-table-p
hash-table-rehash-size
hash-table-rehash-threshold

hash-table-size
hash-table-test
make-hash-table

C function

cl_object cl_clrhash(cl-object hash_table)

cl_object cl_gethash(cl-narg narg, cl_object key, cl_object
hash_table, ...)

cl_object si_hash_set(cl-object key, cl_object hash_table,
cl_object value)

cl_object cl_hash_table_count(cl-object hash_table)

cl_object cl_hash_table_p(cl_object hash_table)

cl_object cl_hash_table_rehash_size(cl_object hash_table)
cl_object cl_hash_table_rehash_threshold(cl_object
hash_table)

cl_object cl_hash_table_size(cl_object hash_table)

cl_object cl_hash_table_test(cl_object hash_table)

cl_object cl_make_hash_table(cl_narg narg, ...)

http://www.lispworks.com/documentation/HyperSpec/Body/f_clrhas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gethas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gethas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_4.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_has.htm

70 ECL Manual

maphash cl_object cl_maphash(cl_-object function, cl_object
hash_table)

remhash cl_object cl_-remhash(cl_object key, cl_object hash_table)

sxhash cl_object cl_sxhash(cl_object object)

2.17 Filenames

2.17.1 Syntax

A pathname in the file system of Common-Lisp consists of six elements: host, device,
directory, name, type and version. Pathnames are read and printed using the #P reader
macro followed by the namestring. A namestring is a string which represents a pathname.
The syntax of namestrings for logical pathnames is well explained in the ANSI [ANSI, see
[Bibliography|, page 199] and it can be roughly summarized as follows:

[hostname:] [;] [directory-item;]0 or more[name] [.typel[.version]]
hostname = word
directory-item = wildcard-word
type, name = wildcard-word without dots

Here, wildcard-word is a sequence of any character excluding #\Null and dots. word is like
a wildcard-word but asterisks are excluded.

The way ECL parses a namestring is by first looking for the hostname component in the
previous template. If it is found and it corresponds to a previously defined logical hostname,
it assumes that the namestring corresponds to a logical pathname. If hostname is not found
or it is not a logical hostname, then ECL tries the physical pathname syntax

[device:] [[//hostname] /] [directory-item/]0 or more[name] [.typel
device, hostname = word
directory-item = wildcard-word
type = wildcard-word without dots
name = [.]wildcard-word

If this syntax also fails, then the namestring is not a valid pathname string and a
parse-error will be signaled.

It is important to remark that in ECL, all physical namestrings result into pathnames with
a version equal to :newest. Pathnames which are not logical and have any other version
(i. e. nil or a number), cannot be printed readably, but can produce a valid namestring
which results of ignoring the version.

Finally, an important rule applies to physical namestrings: if a namestring contains one or
more periods ‘., the last period separates the namestring into the file name and the filetype.
However, a namestring with a single leading period results in a name with a period in it.
This is for compatibility with Unix filenames such as .bashrc, where the leading period
indicates that the file is hidden.

The previous rule has in important consequence, because it means that if you want to
create a pathname without a name, you have to do it explicitely. In other words, ".*" is
equivalent to (make-pathname :name ".*" :type nil), while (make-pathname :name nil
:type :wild) creates a pathname whose type is a wildcard.

The following table illustrates how the physical pathnames work with practical examples.

http://www.lispworks.com/documentation/HyperSpec/Body/f_maphas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_remhas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sxhash.htm

Chapter 2: Standards 71

Namestring Name Type Directory Device
"foo.lsp" "foo" "Isp" nil nil
".bashrc" ".bashrc"nil nil nil
".ecl.1lsp" ".ecl" "l1sp" mnil nil
"foo.x" "foo" :wild nil nil
R :wild :wild nil nil
"ecl/build/bare.lsp" "bare" "1sp" (:relative "ecl" nil
"build")
"ecl/build/" nil nil (:relative "ecl" nil
"build")
"../../ecl/build/" nil nil (:relative :up :up nil
"ecl" "build")
"/etc/" nil nil (:absolute "etc") nil
"C:/etc/" nil nil (:absolute "etc") "e
"ok "ok nil nil nil
#. (make-pathname nil :wild nil nil
itype "*")

Table 2.8: Examples of physical namestrings

2.17.2 Wild pathnames and matching
ECL accepts four kind of wildcards in pathnames.

e A single wildcard in a directory component, file name, type or version is parsed as the
:wild value. See for instance "*.*" "/home/*/.bashrc", etc

e A double wildcard in a directory component, such as in "/home/**/" is parsed as the
:wild-inferiors, and matches any number of directories, even nested ones, such as:
/home/, /home/jlr, /home/jlr/1ib, etc.

e An isolated wildcard "log*.txt" matches any number of characters: log.txt, log_
back.txt, etc.

e A question mark "log?.txt" matches a single character: logl.txt, log2.txt...

The matching rules in Common Lisp and ECL are simple but have some unintuitive con-
sequences when compared to Unix/DOS rules. The most important one is that directories
must always end with a trailing slash /, as in #p"/my/home/directory/". Second to that,
nil values can only be matched by nil and :wild. Hence, "*" can only match files without
file type. For some examples see Section 2.18.1 [Files - Dictionary|, page 72.

2.17.3 C Reference
2.17.3.1 ANSI dictionary

Common Lisp and C equivalence

Lisp symbol C function
directory-namestring cl_object cl_directory_namestring(cl_object pathname)

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

72

enough-namestring

file-namestring
host-namestring

ECL Manual

cl_object cl_enough_namestring(cl_narg narg, cl_object path-
name, ...)

cl_object cl_file_namestring(cl_object pathname)

cl_object cl_host_namestring(cl_object pathname)

load-logical-pathname-translationbject cl_load _logical_pathname_translations(cl_object

host)

logical-pathname-translationscl_object cl_logical_pathname_translations(cl_object host)

logical-pathname
make-pathname
merge-pathnames

namestring
parse-namestring

pathname
pathname-device

pathname-directory
pathname-host
pathname-match-p
pathname-name
pathname-type

pathname-version
pathnamep

translate-logical-pathname

translate-pathname

wild-pathname-p

2.18 Files

2.18.1 Dictionary

directory pathspec

cl_object cl_logical_pathname(cl_object pathspec)

cl_object cl_make_pathname(cl_narg narg, ...)

cloobject cl_merge_pathnames(cl_narg narg, cl_object
pathname,...)

cl_object cl_-namestring(cl_object pathname)

cl_object cl_parse_namestring(cl_narg narg, cl_-object thing,
cl_object cl_pathname(cl_object pathspec)

cl_object cl_pathname_device(cl_narg narg, cl_object path-
name, ...)

cl_object cl_pathname_directory(cl_narg narg, cl_object path-
name, ...)

cl_object cl_pathname_host(cl-narg narg, cl_object path-
name, ...)

cl_object cl_pathname_match_p(cl_object pathname,
cl_object wildcard)

cl_object cl_pathname_name(cl_narg narg, cl_object path-
name, ...)

cl_object cl_pathname_type(cl_-narg narg, cl_object path-
name, ...)

cl_object cl_pathname_version(cl_object pathname)
cl_object cl_pathnamep(cl_object object)

cl_object cl_translate_logical _pathname(cl_narg narg,
cl_object pathname, ...)

cl_object cl_translate_pathname(cl_narg narg, cl_object
source, cl_object from_wildcard, cl_object to_wildcard, ...)
cl_object cl_wild_pathname_p(cl_-narg narg, cl_object path-
name, ...)

[Function]

This function does not have any additional arguments other than the ones described
in ANSI [ANSI, see [Bibliography], page 199]. To list files and directories, it follows
the rules for matching pathnames described in Section 2.17.2 [Filenames - Wild path-
names and matching], page 71. In short, you have the following practical examples:

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ld_log.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logica.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logi_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_merge_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pars_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/pathname.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_mat.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pnp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tr_log.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tr_pn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wild_p.htm

Chapter 2: Standards 73

Argument Meaning

"/home/jlr/*.*x" List all files in directory /home/jlr/ Note that it lists only files,
not directories!

"/home/jlr/*" Same as before, but only files without type.

"/home/jlr/*/" List all directories contained in /home/jlr/. Nested directories
are not navigated.

"/home/jlr/**/*.x" List all files in all directories contained in /home/jlr/, recursively.

Nested directories are navigated.

Table 2.9: Examples of using directory

rename-file filespec new-name &key (if-exists :error) [Function]
In addition to the arguments described in ANSI [ANSI, see [Bibliography], page 199],
the rename-file function in ECL has an : if-exists keyword argument that specifies
what happens when a file with the new name already exists. Valid values of this
argument are:

Argument Behaviour of the rename-file function

rerror Signal an error

:supersede, t Overwrite the existing file

nil Don’t overwrite the existing file, don’t signal an error

2.18.2 C Reference
2.18.2.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol C function

delete-file cl_object cl_delete_file(cl_object filespec)

directory cl_object cl_directory(cl_narg narg, cl_object pathspec, ...)

ensure-directories-exist cl_object cl_ensure_directories_exist(cl_narg narg, cl_object
pathspec, ...)

file-author cl_object cl_file_author(cl_object pathspec)

file-error-pathname [Only in Common Lisp]

file-write-date cl_object cl_file_write_date(cl_object pathspec)

probe-file cl_object cl_probe_file(cl_object pathspec)

rename-file cl_object cl_rename_file(cl_narg narg, cl_object filespec,

cl_object new_name, ...)
truename cl_object cl_truename(cl_object filespec)

2.19 Streams

2.19.1 ANSI Streams

http://www.lispworks.com/documentation/HyperSpec/Body/f_del_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dir.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ensu_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_e.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_probe_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rn_fil.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tn.htm

74 ECL Manual

2.19.1.1 Supported types

ECL implements all stream types described in ANSI [ANSI, see [Bibliography]|, page 199].
Additionally, when configured with option --enable-clos-streams, ECL includes a
version of Gray streams where any object that implements the appropriate methods
(stream-input-p, stream-read-char, etc) is a valid argument for the functions that
expect streams, such as read, print, etc.

2.19.1.2 Element types

ECL distinguishes between two kinds of streams: character streams and byte streams.
Character streams only accept and produce characters, written or read one by one, with
write-char or read-char, or in chunks, with write-sequence or any of the Lisp printer
functions. Character operations are conditioned by the external format, as described in
Section 2.19.1.3 [Streams - External formats|, page 74.

ANSI Common Lisp also supports binary streams. Here input and output is performed in
chunks of bits. Binary streams are created with the function open passing as argument a
subtype of integer and the implementation is free to round up that integer type to the closest
size it supports. In particular ECL rounds up the size to a multiple of a byte. For example,
the form (open "foo.bin" :direction :output :element-type ’ (unsigned-byte 13)),
will open the file foo.bin for writing, using 16-bit words as the element type.

2.19.1.3 External formats

An external format is an encoding for characters that maps character codes to a sequence
of bytes, in a one-to-one or one-to-many fashion. External formats are also known as
"character encodings" in the programming world and are an essential ingredient to be able
to read and write text in different languages and alphabets.

ECL has one of the most complete supports for external formats, covering all of the usual
codepages from the Windows and Unix world, up to the more recent UTF-8, UCS-2 and
UCS-4 formats, all of them with big and small endian variants, and considering different
encodings for the newline character.

However, the set of supported external formats depends on the size of the space of character
codes. When ECL is built with Unicode support (the default option), it can represent all
known characters from all known codepages, and thus all external formats are supported.
However, when ECL is built with the restricted character set, it can only use one codepage
(the one provided by the C library), with a few variants for the representation of end-of-line
characters.

In ECL, an external format designator is defined recursively as either a symbol or a list of
symbols. The grammar is as follows

external-format-designator :=
symbol |
({symbol}+)

and the table of known symbols is shown below. Note how some symbols (:cr,
:little-endian, etc.) just modify other external formats.

Chapter 2: Standards

Symbols

iCcr
:crlf

:1f
:little-endian

:big-endian

:utf-8 :utf8
:ucs-2 :ucs2 :utf-16 :utfi16
:unicode

:ucs-21e :ucs2le :utf-161e
:ucs-2be :ucs2be :utf-16be
:ucs-4 :ucséd :utf-32 :utf32

:ucs-4le :ucsédle :utf-321e
:ucs—4be :ucsédbe :utf-32be
:1s0-8859-1 :is08859-1
:latin-1 :cp819 :ibm819
:1s50-8859-2 :1s08859-2
:latin-2 :latin2
:1s0-8859-3 :1is08859-3
:latin-3 :1latin3
:1s0-8859-4 :is08859-4
:latin-4 :latin4d
:180-8859-5 :cyrillic
:1s0-8859-6 :arabic :asmo-708
:ecma-114

:180-8859-7 :greek8 :greek
:ecma-118

:1s0-8859-8 :hebrew
:1s0-8859-9 :latin-5 :latinb
:1s0-8859-10 :is08859-10
:latin-6 :latin6é
:1s0-8859-13 :1s08859-13
:latin-7 :latin7
:1s0-8859-14 :is08859-14
:latin-8 :1latin8
:1s0-8859-15 :1s08859-15
:latin-9 :1latin9
:dos-cp437 :ibm-437
:dos-cp850 :ibm-850 :cp850
:dos-cp852 :ibm-852

Codepage or encoding

#\Newline is Carriage Return
#\Newline is Carriage Return
followed by Linefeed

#\Newline is Linefeed

Modify UCS to use little-endian
encoding.

Modify UCS to use big-endian
encoding.

Unicode UTF-8

UCS-2 encoding with BOM. De-
faults to big-endian when writing
or if no BOM is detected when
reading.

UCS-2 with little-endian encoding
UCS-2 with big-endian encoding
UCS-4 encoding with BOM. De-
faults to big-endian when writing
or if no BOM is detected when
reading.

UCS-4 with little-endian encoding
UCS-4 with big-endian encoding
Latin-1 encoding

Latin-2 encoding
Latin-3 encoding
Latin-4 encoding

Latin-5 encoding
Latin-6 encoding

Greek encoding
Hebrew encoding
Latin-5 encoding
Latin-6 encoding
Latin-7 encoding
Latin-8 encoding
Latin-7 encoding
IBM CP 437

Windows CP 850
IBM CP 852

Unicode
required
No
No

Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes

75

76 ECL Manual

2.19.2 Dictionary

2.19.2.1 File Stream Extensions

open filespec &key direction element-type if-exists if-does-not-exist [Function]
external-format close-on-exec nonblock
Additional options for open include:

:close-on-exec
Child processes don’t inherit a copy of this stream: new processes created
by fork and exec (for example by calling ext:run-program) close the
stream after calling exec. Defaults to t.

:nonblock
Open fifos or device files in nonblocking mode. Defaults to nil.

These options are ignored on operating systems which do not support them.

ext:set-buffering-mode stream mode [Function]
Control the buffering mode of a stream
Synopsis
stream an ANSI stream
mode one of nil, :none, :1line, :1line-buffered, :full or :full-buffered
returns The supplied stream

Description If mode is nil or :none, stream will not be buffered, if it is :1ine or
:line-buffered resp. :full or :fully-buffered, stream will be line resp. fully
buffered. If the stream does not support buffering, nothing will happen.

ext:file-stream-fd file-stream [Function]
Return the POSIX file descriptor of file-stream as an integer

2.19.2.2 External Format Extensions

ext:*default-external-formatx* [Variable]
Default external format to use for reading from streams, dealing with filenames, etc.
The default is to use utf-8 encoding if ECL is built with Unicode support.

ext:all-encodings [Function]
Return a list of all supported external formats

ext:character-coding-error [Condition]
Character coding error

Class Precedence List ext:character-coding-error, error, serious-condition,
condition, t

Methods

ext:character-coding-error-external-format condition [Function]

returns The external format of condition

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

Chapter 2: Standards 77

Description Superclass of ext : character-encoding-error and ext: character-decoding-J
error.

ext:character-encoding-error [Condition]
Character encoding error
Class Precedence List ext:character-encoding-error, ext:character-coding-
error, error, serious-condition, condition, t

Methods
ext:character-encoding-error-code condition [Function]
returns The character code of the character, which can’t be encoded

Description Condition for characters, which can’t be encoded with some external
format.

ext:character-decoding-error [Condition]
Character decoding error

Class Precedence List ext:character-decoding-error, ext:character-coding-
error, error, serious—-condition, condition, t

Methods
ext:character-decoding-error-octects condition [Function]
returns A list of integers with the values of the unsigned char’s which

can’t be decoded.

Description Condition for characters, which can’t be decoded with some external
format.

ext:stream-encoding-error [Condition]
Stream encoding error

Class Precedence List ext:stream-encoding-error, ext:character-encoding-
error, ext:character-coding-error, stream-error, error, serious—-condition,
condition, t

Description This condition is signaled when trying to write a character to a stream,
which can’t be encoded with the streams external format.

ext:stream-decoding-error [Condition]
Stream decoding error

Class Precedence List ext:stream-decoding-error, ext:character-decoding-
error, ext:character-coding-error, stream-error, error, serious-condition,
condition, t

Description This condition is signaled when trying to read a character from a stream,
which can’t be decoded with the streams external format.

ext:encoding-error stream external-format code [Function]
Signal a ext:stream-encoding-error with the given external-format and code.
Make a restart available so that the error can be ignored or the character can be
replaced with a different one.

78

ECL Manual

ext:decoding-error stream external-format octects [Function]
Signal a ext:stream-decoding-error with the given external-format and octets.
Make a restart available so that the error can be ignored or the octets can be replaced
with a character.

2.19.2.3 Sequence Streams

ext:sequence-stream [System Class]
Class Precedence List ext:sequence-stream, stream, t

Description Sequence streams work similar to string streams for vectors. The supplied
vectors that the streams read from or write to must have a byte sized element type,
i.e. (signed-byte 8), (unsigned-byte 8) or base-char.

The semantics depend on the vector element type and the external format of the
stream. If no external format is supplied and the element type is an integer type, the
stream is a binary stream and accepts only integers of the same type as the element
type of the vector. Otherwise, the stream accepts both characters and integers and
converts them using the given external format. If the element type is base-char, the
elements of the vectors are treated as bytes. This means that writing a character may
use multiple elements of the vector, whose char-codes will be equal to the values of
the bytes comprising the character in the given external format.

ext:make-sequence-input-stream vector &key (start 0) (end nil) [Function]
(external-format nil)
Create a sequence input stream with the subsequence bounded by start and end of
the given vector.

ext:make-sequence-output-stream vector &key (external-format [Function]

nil)

Create a sequence output stream.

Example:

Using sequence streams to convert to a UTF8 encoded base string

CL-USER>
0QUTPUT
CL-USER>
STREAM
CL-USER>
"Spatzle
CL-USER>

(defvar *output* (make-array 20 :element-type ’base-char :adjustable t :fill-
(defvar *stream* (ext:make-sequence-output-stream *output* :external-format :
(write-string "Spdtzle mit Sof3’" *streamx)

mit Sof3’"

output

"SpAatzle mit SoA\237’"

2.19.3 C Reference

2.19.3.1 ANSI dictionary

Common Lisp and C equivalence

Chapter 2: Standards

Lisp symbol
broadcast-stream-streams

clear-input
clear-output
close

concatenated-stream-streams

echo-stream-input-stream
echo-stream-output-stream
file-length

file-position
file-string-length

finish-output
force-output

fresh-line
get-output-stream-string

input-stream-p
interactive-stream-p

listen
make-broadcast-stream
make-concatenated-stream
make-echo-stream

make-string-input-stream

make-string-output-stream
make-two-way-stream

make-synonym-stream
open

open-stream-p
output-stream-p
peek-char

read-byte

read-char
read-char-no-hang
read-line
read-sequence

stream-element-type

79

C function
cl_object
broadcast_stream)

cl_broadcast_stream_streams(cl_object

cl_object cl_clear_input(cl_narg narg, ...)

cl_object cl_clear_output(cl_narg narg, ...)

cl_object cl_close(cl_narg narg, cl_object stream, ...)
cl_object cl_concatenated_stream_streams(cl_object concate-
nated_stream)

cl_object cl_echo_stream_input_stream(cl_object
echo_stream)
cl_object cl_echo_stream_output_stream(cl_object

echo_stream)

cl_object cl_file_position(cl_narg narg, cl_object file_stream,
cl_object cl_file_position(cl_object stream)
cl_object cl_file_string_length(cl_object stream,
object)

cl_object cl_finish_output(cl_narg narg, ...)
cl_object cl_force_output(cl_narg narg, ...)
cl_object cl_fresh_line(cl_narg narg, ...)

cl_object cl_get_output_stream_string(cl_object
string_output_stream)

cl_object cl_input_stream_p(cl_object stream)

cl_object cl.interactive_stream_p(cl_object stream)

cl_object cl_listen(cl_narg narg, cl_object stream, ...)
cl_object cl_make_broadcast_stream(cl_narg narg, ...)
cl_object cl_make_concatenated_stream(cl_narg narg,)

cl_object

cl_object cl-make_echo_stream(cl_object input, cl_object
output)
cl_object cl_make_string_input_stream(cl_narg narg,

cl_object string, ...)

cl_object cl_make_string_output_stream(cl_narg narg, ...)
cl_object cl_make_two_way_stream(cl_object input, cl_object
output)

cl_object cl_make_synonym_stream(cl_object symbol)
cl_object cl_open(cl_narg narg, cl_object filespec, ...)
cl_object cl_open_stream_p(cl_object stream)

cl_object cl_output_stream_p(cl_object stream)

cl_object cl_peek_char(cl_narg narg, ...)

cl_object cl_read_byte(cl_narg narg, cl_object stream, ...)
cl_object cl_read_char(cl_narg narg, ...)

cl_object cl_read_char_no_hang(cl_narg narg, ...)

cl_object cl_read_line(cl_narg narg, ...)

cl_object cl_read_sequence(cl_narg narg, cl_object sequence,
cl_object stream, ...)

cl_object cl_stream_element_type(cl_object stream)

http://www.lispworks.com/documentation/HyperSpec/Body/f_broadc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_clear_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_close.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_conc_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_echo_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_echo_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_terpri.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_out.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_in_stm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intera.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_bro.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_con.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ech.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_s_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_s_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_two.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_syn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_in_stm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_peek_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_cha.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_c_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_lin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_el.htm

80 ECL Manual

stream-error-stream [Only in Common Lisp]

stream-external-format cl_object cl_stream_external_format(cl_object stream)

(setf cl_object si_stream_external_format_set(cl_object stream,

stream-external-format) cl_object format)

streamp cl_object cl_streamp(cl_object object)

synonym-stream-symbol cl_object cl_synonym_stream_symbol(cl_object Syn-
onym_stream)

terpri cl_object cl_terpri(cl_narg narg, ...)

two-way-stream-input-stream cl_object cl_two_way_stream_input_stream(cl_object
two_way _stream)

two-way-stream-output-streaml_object cl_two_way_stream_output_stream(cl_object
two_way _stream)

unread-char cl_object cl_unread_char(cl_narg narg, cl_object character, ...)

write-byte cl_object cl_write_byte(cl_object byte, cl_object stream)

write-char cl_object cl_write_char(cl_narg narg, cl_object character, ...)

write-line cl_object cl_write_line(cl_narg narg, cl_object string, ...)

write-string cl_object cl_write_string(cl_narg narg, cl_object string, ...)

write-sequence cl_object cl_write_sequence(cl_narg narg, cl_object sequence,
cl_object stream, ...)

y-0Or-n-p cl_object cl_y_or_n_p(cl_narg narg, ...)

yes-or-no-p cl_object cl_yes_or_no_p(cl_narg narg, ...)

2.20 Printer

In all situations where the rules are well specified, ECL prints objects according to ANSI
[ANSI, see [Bibliography|, page 199]. The specification leaves however a number of cases
as implementation dependent behavior. The output of ECL in those cases is summarized
in Table 2.11. Except for the types character and random-state, most of those examples
regard non-standard written forms #<...> cannot be read back using read. These printed
representations are just informative and should not be used to reconstruct or compare
objects.

http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_ex.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_ex.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_ex.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stmp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_syn_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_terpri.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_two_wa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_two_wa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unrd_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_cha.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_stg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_stg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_y_or_n.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_y_or_n.htm

Chapter 2: Standards

Lisp type

package
random-state
bitvector

vector

array

hash-table
readtable
interpreted function
machine compiled
function
input-stream
output-stream
probe-stream
string-input-stream
string-output-stream

two-way-stream

echo-stream
synonym-stream

broadcast-stream
concatenated-stream

closed-stream

Table 2.11: Implementation-specific printed representation

2.20.1 C Reference

Format

#<package name>
#<random-state array>
#<bit-vector unique-id>

#<vector unique-id>
#<array unique-id>

#<hash-table unique-id>
#<readtable unique-id>
#<bytecompiled-function
name-or-id>
#<compiled-function
name>

#<input stream
"filename">

#<output stream
"filename">

#<probe stream
"filename">
#<string-input stream
from "string-piece">
#<string-output stream
unique-id>

#<two-way stream
unique-id>

#<echo stream unique-id>
#<synonym stream to
symbol>

#<broadcast stream
unique-id>
#<concatenated stream
unique-id>

#<closed ...>

2.20.1.1 ANSI Dictionary

Common Lisp and C equivalence

81

Remarks

Only when *print-array* is
false.
Only when *print-array* is
false.
Only when *print-array* is
false.

Name is a symbol.
Name is a symbol.
An stream that reads from

filename.

An stream that writes to
filename.

The string is the text left to be
read.

The dots denote any of the
above stream forms.

82

Lisp symbol

copy-pprint-dispatch

pprint-dispatch
pprint-fill
pprint-linear
pprint-tabular
pprint-indent

pprint-newline
pprint-tab

print-object
set-pprint-dispatch

write

prinl

princ

print

pprint
write-to-string
prinl-to-string
princ-to-string

print-not-readable-object

format

2.21 Reader

2.21.1 *read-supress*

ECL Manual

C function

cl_object cl_copy_pprint_dispatch(cl_narg narg, ...)

cl_object cl_pprint_dispatch(cl_.narg narg, cl_object object,
cl_object cl_pprint_fill(cl_.narg narg, cl_object stream,
cl_object object, ...)

cl_object cl_pprint_linear(cl_narg narg, cl_object stream,
cl_object object, ...)

cl_object cl_pprint_tabular(cl_-narg narg, cl_object stream,
cl_object object, ...)

cl_object cl_pprint_indent(cl_narg narg, cl_object relative_to,
cl_object n, ...)

cl_object cl_pprint_newline(cl_narg narg, cl_object kind, ...)
cl_object cl_pprint_tab(cl_narg narg, cl_object kind, cl_object
colnum, cl_object colinc, ...)

[Only in Common Lisp]

cloobject cl_set_pprint_dispatch(cl-narg narg, cl_object
ype-spec, cl_object function, ...)

cl_object cl_write(cl_narg narg, cl_object object, ...)
cl_object cl_prinl(cl_narg narg, cl_object object, ...)
cl_object cl_princ(cl_narg narg, cl_object object, ...)
cl_object cl_print(cl_narg narg, cl_object object, ...)
cl_object cl_pprint(cl_narg narg, cl_object object, ...)
cl_object cl_write_to_string(cl_narg narg, cl_object object, ...)
cl_object cl_prinl_to_string(cl_object object)

cl_object cl_princ_to_string(cl_object object)

[Only in Common Lisp]

cl_object cl_format(cl_narg narg, cl_object stream, cl_object
string, ...)

The behaviour of *read-supress* is not fully specified in the standard. ECL tries to be
as liberal as possible in the syntax that it accepts when *read-suppress* is true. Errors
are only signaled in the following cases:

e End of file

e Unbalanced parantheses

e Invalid dispatching macro characters such as < or) (Undefined dispatching macro
characters don’t produce errors)

2.21.2 C Reference

2.21.2.1 ANSI Dictionary

Common Lisp and C equivalence

http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_ppr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ppr_di.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ppr_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ppr_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ppr_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ppr_in.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ppr_nl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ppr_ta.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pr_obj.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set_pp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pr_not.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

Chapter 2: Standards 83

Lisp symbol C function

copy-readtable cl_object cl_copy_readtable(cl_narg narg, ...)

make-dispatch-macro-charactel_object cl_make_dispatch-macro_character(cl_narg narg,
cl_object char, ...)

read cl_object cl_read(cl_narg narg, ...)

read-preserving-whitespace cl_object cl_read_preserving_whitespace(cl_narg narg, ...)

read-delimited-list cl_object cl_read_delimited_list(cl_narg narg, cl_object char,

read-from-string cl_object cl_read_from_string(cl_narg narg, cl_object string,

readtable-case cl_object cl_readtable_case(cl_object readtable)

(setf readtable-case) cl_object si_readtable_case_set(cl_object readtable, cl_object
mode)

readtablep cl_object cl_readtablep(cl_object object)

get-dispatch-macro-character cl_object cl_get_dispatch_macro_character(cl_-narg narg,
cl_object disp_char, cl_object sub_char, ...)

set-dispatch-macro-character cl_object cl_set_dispatch_macro_character(cl-narg narg,
cl_object disp_char, cl_object sub_char, cl_object function,

)

get-macro-character cl_object cl_get_macro_character(cl_narg narg, cl_object char,

set-macro-character cl_object cl_set_macro_character(cl_narg narg, cl_object char,
cl_object function, ...)

set-syntax-from-char cl_object cl_set_syntax_from_char(cl_narg narg, cl_object

to_char, cl_object from_char, ...)

2.22 System construction
2.22.1 C Reference
2.22.1.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol C function

compile-file [Only in Common Lisp]

compile-file-pathname [Only in Common Lisp]

load cl_object cl_load(cl-narg narg, cl_object pathname, ...)
provide cl_object cl_provide(cl_object module_name)

require cl_object cl_require(cl_narg narg, cl_object module_name, ...)

2.23 Environment

http://www.lispworks.com/documentation/HyperSpec/Body/f_cp_rdt.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_dis.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_de1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_fro.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rdtab1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rdtab1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rdta_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set__1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set__1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set_ma.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set_ma.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set_sy.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp__1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

84 ECL Manual

2.23.1 Dictionary

disassemble function-designator® [Function]
Display the assembly code of a function

Synopsis

function-designator
A symbol which is bound to a function in the global environment, or a
lambda form

Description As specified in ANSI [ANSI, see [Bibliography], page 199] this function
outputs the internal representation of a compiled function, or of a lambda form, as it
would look after being compiled.

ECL only has a particular difference: it has two different compilers, one based on
bytecodes and one based on the C language. The output will thus depend on the
arguments and on which compiler is active at the moment in which this function is
run.

e If the argument is a bytecompiled function or a lambda form, it will be processed
by the active compiler and the appropriate output (bytecodes or C) will be shown.

e If the argument is a C-compiled form, disassembling the function by showing
its C source code is not possible, since that would require saving not only the
lambda form of the function, but also the precise configuration of the compiler
when the function was compiled. Hence no output will be shown.

ed x7 [Function]
Invoke an editor on the file or object specified by x.

Synopsis (ed x?7)
b's nil, a file path, or an object to edit.

Description Starts the editor (on a file or an object if named). Functions from the list
ext:*ed-functions* are called in order with x as an argument until one of them returns
non-nil; these functions are responsible for signalling a file-error to indicate failure
to perform an operation on the file system. If no function returns a non-nil value or
ext:*ed-functions™ is nil then a simple-error will be signalled.

The Common Lisp specification states that the x argument is either nil, a function
name, or an instance of string or pathname and that a type-error may be signalled if is
not one of these types. ECL does not check the type of x and thus permits any object
to be passed to the hook functions. This allows for the possibility of editing other
objects that have a representation in source code such as class definitions. Therefore,
the hook functions should not make any assumptions about the type of x and should
instead return nil if there is not an approriate edit method for a specific value of x.

By default ext:*ed-functions* contains a single function that attempts to run the
program named in the environment variable EDITOR. If this environment variable is
not set then the fallback program is vi.

trace function-name* [Macro]
Follow the execution of functions

Chapter 2: Standards 85

Synopsis (trace function-name*)

function-name
{symbol | (symbol [option form|*)}

symbol A symbol which is bound to a function in the global environment. Not
evaluated.
option One of :break, :break-after, :cond-before, :cond-after, :cond,

:print, :print-after, :step

form A lisp form evaluated in an special environment (or a list of forms for
:print and :print-after).

returns List of symbols with traced functions.

Description Causes one or more functions to be traced. Each function-name can
be a symbol which is bound to a function, or a list containing that symbol plus
additional options. If the function bound to that symbol is called, information about
the arguments and output of this function will be printed. Trace options will modify
the amount of information and when it is printed.

Not that if the function is called from another function compiled in the same file,
tracing might not be enabled. If this is the case, to enable tracing, recompile the
caller with a notinline declaration for the called function.

trace returns a name list of those functions that were traced by the call to trace.
If no function-name is given, trace simply returns a name list of all the currently
traced functions.

Trace options cause the normal printout to be suppressed, or cause extra information
to be printed. Each option is a pair of an option keyword and a value form. If an
already traced function is traced again, any new options replace the old options and
a warning might be printed. The lisp form accompanying the option is evaluated in
an environment where sys::args contains the list of arguments to the function.

The following options are defined:

:cond, :cond-before, :cond-after
If : cond-before is specified, then trace does nothing unless form evalu-
ates to true at the time of the call. :cond-after is similar, but suppresses
the initial printout, and is tested when the function returns. :cond tries
both before and after.

:step If form evaluates to true, the stepper is entered.

:break, :break-after
If specified, and form evaluates to true, then the debugger is invoked at
the start of the function or at the end of the function according to the
respective option.

:print, :print-after
In addition to the usual printout, the result of evaluating each entry of
the list of forms contained in form is printed at the start of the function
or at the end of the function, depending on the option.

86

See also the following example:

> (defun abc (%)
(if (>= x 10)
x
(abc (+ x (abc (1+ x))))))
> (trace abc)

> (abc 9)

1> (ABC 9)

| 2> (ABC 10)

| <2 (ABC 10)

| 2> (ABC 19)

| <2 (ABC 19)
<1 (ABC 19)

19

> (untrace abc)

(ABC)

ECL Manual

;; Break if the first argument of the function is greater than 10

> (trace (abc :break (>= (first si::args) 10)))

((ABC :BREAK (>= (FIRST SI::ARGS) 10)))
> (abc 9)

1> (ABC 9)

| 2> (ABC 10)

Condition of type: SIMPLE-CONDITION
tracing ABC
Available restarts:

1. (CONTINUE) Return from BREAK.
2. (RESTART-TOPLEVEL) Go back to Top-Level REPL.

Broken at ABC. In: #<process TOP-LEVEL 0x1842f80>.

>>

2.23.2 C Reference

2.23.2.1 ANSI Dictionary

Common Lisp and C equivalence

Lisp symbol C function

decode-universal-time

universal_time, ...)

cl_object cl_decode_universal_time(cl_-narg narg, cl_object

http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_un.htm

Chapter 2: Standards 87

encode-universal-time cl_object cl_encode_universal_time(cl_-narg narg, cl_object
second, cl_object minute, cl_object hour, cl_object date,
cl_object month, cl_object year, ...)

get-universal-time cl_object cl_get_universal_time(void)

get-decoded-time cl_object cl_get_decoded_time(void)

sleep cl_object cl_sleep(cl_object seconds)

apropos cl_object cl_apropos(cl_narg narg, cl_object string, ...)
apropos-list cl_object cl_apropos_list(cl_narg narg, cl_object string, ...)
describe cl_object cl_describe(cl_narg narg, cl_object object, ...)

describe-object
get-internal-real-time
get-internal-run-time
disassemble
documentation

room

ed

inspect

dribble

lisp-implementation-type
lisp-implementation-version

short-site-name
long-site-name
machine-instance
machine-type
machine-version
software-type
software-version

user-homedir-pathname

[Only in Common Lisp]

cl_object cl_get_internal_real_time(void)
cl_object cl_get_internal_run_time(void)
[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

[Only in Common Lisp]

cl_object cl_inspect(cl-object object)
cl_object cl_dribble(cl_narg narg, ...)
cl_object cl_lisp_implementation_type(void)
cl_object cl_lisp_implementation_version(void)
cl_object cl_short_site_name()

cl_object cl_long_site_name()

cl_object cl_machine_instance()

cl_object cl_machine_type()

cl_object cl_machine_version()

cl_object cl_software_type()

cl_object cl_software_version|()

cl_object cl_user_homedir_pathname(cl_narg narg, ..

)

http://www.lispworks.com/documentation/HyperSpec/Body/f_encode.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_un.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_un.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_descri.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_desc_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_in.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get__1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_disass.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ed.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_inspec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dribbl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_lisp_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_lisp_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mach_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mach_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mach_v.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sw_tpc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sw_tpc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_user_h.htm

89

3 Extensions

3.1 System building

3.1.1 Compiling with ECL

In this section we will introduce topics on compiling Lisp programs. ECL is especially
powerful on combining lisp programs with C programs. You can embed ECL as a lisp engine
in C programs, or call C functions via Section 3.3 [Foreign Function Interface], page 103.
We explain file types generated by some compilation approaches. For the examples, a
GNU/Linux system and gec as a development environment are assumed.

You can generate the following files with ECL:

1. Portable FASL file (.fasc)

2. Native FASL file (.fas, .fasb)
3. Object file (.0)

4. Static library

5. Shared library

6. Executable file

Relations among them are depicted below:

90 ECL Manual

lisp files

=,

compile-file Tl
ammm compile-file

-
-

» fasc file e
compile-file

build-fasl

A e
- a
=
.

“object files build-fasl

r huiiﬂh—hta’gic:—lib rary K
! build-shared-library

build-program

build-program

] L

-

" executable

Figure 3.1: Build file types

3.1.1.1 Portable FASL

ECL provides two compilers (bytecodes compiler, and C/C++ compiler). Portable FASL
files are built from source lisp files by the bytecodes compiler. Generally FASC files are
portable across architectures and operating systems providing a convenient way of shipping
portable modules. Portable FASL files may be concatenated, what leads to bundles. FASC
files are faster to compile, but generally slower to run.

;3 install bytecodes compiler

Chapter 3: Extensions 91

(ext:install-bytecodes-compiler)

;; compile hello.lisp file to hello.fasc
(compile-file "hellol.lisp")
(compile-file "hello2.lisp")

;; reinitialize C/C++ compiler back
(ext:install-c-compiler)

;3 FASC file may be loaded dynamically from lisp program
(load "hellol.fasc")

;5 ... concatenated into a bundle with other FASC
(with-open-file (output "hello.fasc"
:direction :output
:if-exists :supersede)
(ext:run-program
"cat" ’("hellol.fasc" "hello2.fasc") :output output))

;3 ... and loaded dynamically from lisp program
(load "hello.fasc")

3.1.1.2 Native FASL

If you want to make a library which is loaded dynamically from a lisp program, you should
choose the fasl file format. Under the hood native fasls are just shared library files.

This means you can load fasl files with dlopen and initialize it by calling a init function
from C programs, but this is not an intended usage. The recommended usage is to load
fasl files by calling the load lisp function. To work with Native FASL files ECL has to be
compiled with --enable-shared configure option (enabled by default).

Creating a fasl file from one lisp file is very easy.
(compile-file "hello.lisp")

To create a fasl file from more lisp files, firstly you have to compile each lisp file into an
object file, and then combine them with c:build-fasl.

;; generates hello.o

(compile-file "hello.lisp" :system-p t)
;5 generates goodbye.o

(compile-file "goodbye.lisp" :system-p t)

;5 generates hello-goodbye.fas
(c:build-fasl "hello-goodbye"
:lisp-files ’("hello.o" "goodbye.o"))

;; fasls may be built from mix of objects and libraries (both shared and
;; static)
(c:build-fasl "mixed-bundle"

:lisp-files ’("hellol.o" "hello2.a" "hello3.so"))

92 ECL Manual

3.1.1.3 Object file

Object files work as an intermediate file format. If you want to compile more than two lisp
files, you might better to compile with a :system-p t option, which generates object files
(instead of a fasl).
On linux systems, ECL invokes gcc —c to generate object files.
An object file consists of some functions in C:

e Functions corresponding to Lisp functions

e The initialization function which registers defined functions on the lisp environment

Consider the example below.

(defun say-hello ()
(print "Hello, world"))

During compilation, this simple lisp program is translated into the C program, and then
compiled into the object file. The C program contains two functions:

e static cl_object Lisay_hello: ’say-hello’ function

e ECL_DLLEXPORT void _eclwm2nNauJEfEnD_CLSxi0z(cl_object flag): initialization
function

In order to use these object files from your C program, you have to call initialization
functions before using lisp functions (such as say-hello). However the name of an init
function is seemed to be randomized and not user-friendly. This is because object files are
not intended to be used directly.

ECL provides other user-friendly ways to generate compiled lisp programs (as static/shared
libraries or executables), and in each approach, object files act as intermediate files.

3.1.1.4 Static library

ECL can compile lisp programs to static libraries, which can be linked with C programs. A
static library is created by c:build-static-library with some compiled object files.

;; generates hello.o

(compile-file "hello.lsp" :system-p t)
;3 generates goodbye.o

(compile-file "goodbye.lsp" :system-p t)

;; generates libhello-goodbye.a
(c:build-static-library "hello-goodbye"
:lisp-files ’("hello.o" "goodbye.o")
:init-name "init_hello_goodbye")
When you use a static/shared library, you have to call its init function. The name of this
function is specified by the :init-name option. In this example, it is then init_hello_
goodbye. The usage of this function is shown below:

#include <ecl/ecl.h>
extern void init_hello_goodbye(cl_object cblock);

int
main(int argc, char **argv)

Chapter 3: Extensions 93

{
/* setup the lisp runtime */
cl_boot(argc, argv);
/* call the init function via ecl_init_module */
ecl_init_module(NULL, init_hello_goodbye);
VAT Vi
/* shutdown the lisp runtime */
cl_shutdown() ;
return O;
}

Because the program itself does not know the type of the init function, a prototype decla-
ration is inserted. After booting up the lisp environment, it invokes init_hello_goodbye
via ecl_init_module. init_hello_goodbye takes an argument, and ecl_init_module
supplies an appropriate one. Now that the initialization is finished, we can use functions
and other stuff defined in the library.

DEPRECATED read_VV - equivalent to ecl_init_module

3.1.1.5 Shared library

Almost the same as with a static library. The user has to use c:build-shared-library:

;3 generates hello.o

(compile-file "hello.lsp" :system-p t)
;3 generates goodbye.o

(compile-file "goodbye.lsp" :system-p t)

;3 generates libhello-goodbye.so

(c:build-shared-library "hello-goodbye"
:lisp-files ’("hello.o" "goodbye.o")
:init-name "init_hello_goodbye")

3.1.1.6 Executable

ECL supports the generation of executable files. To create a standalone executable from
a lisp program, compile all lisp files to object files. After that, calling c:build-program
creates the executable:

;3 generates hello.o

(compile-file "hello.lsp" :system-p t)
;3 generates goodbye.o

(compile-file "goodbye.lsp" :system-p t)

;3 generates hello-goodbye
(c:build-program "hello-goodbye"
:lisp-files ’("hello.o" "goodbye.o"))
Like with native FASL, the program may be built also from libraries.

94 ECL Manual

3.1.1.7 Summary
In this section, some file types that can be compiled with ECL were introduced. Each file
type has an adequate purpose:

e Object file: intermediate file format for others

e Fasl files: loaded dynamically via the load lisp function

e Static library: linked with and used from C programs

e Shared library: loaded dynamically and used from C programs

e Executable: standalone executable

ECL provides a high-level interface c:build-* for each native format. In case of Portable
FASL the bytecodes compiler is needed.

3.1.2 Compiling with ASDF

For larger systems involving more complex file dependencies, or for systems that are portable
across different Common Lisp implementations, it may be better to define systems using
asdf (https://common-lisp.net/project/asdf/).

ECL provides a useful extension for asdf called asdf :make-build, which offers an abstrac-
tion for building libraries directly from system definitions. Note that this extension is only
available in the ASDF that is shipped with ECL; it may not be available from an ASDF
installed from the system or from Quicklisp.

To download dependencies you may use Quicklisp (https://www.quicklisp.org) to load
your system (with dependencies defined). Make sure you can successfully load and run your
library in the ECL REPL (or *slime-repl*). Don’t worry about other libraries loaded in
your image — ECL will only build and pack libraries your project depends on (that is, all
dependencies you put in your .asd file, and their dependencies - nothing more, despite the
fact that other libraries may be loaded).

3.1.2.1 Example code to build

An example project is included in the ECL source distribution in the examples/asdf _with_
dependence/ directory.

This project depends on the alexandria library and consists of a system definition
(example-with-dep.asd), package definition (package.lisp), and the actual library code
(example.lisp).

Before following the steps below, you must configure ASDF to find your systems (https://
asdf . common-1lisp.dev/asdf/Configuring-ASDF-to-find-your-systems.html). You
can either copy or symlink the example directory in one of the standard ASDF locations, or
push the path of the example directory to your asdf :*central-registry*, for example:

(push "./" asdf:*central-registry*)

3.1.2.2 Build it as an single executable
Use this in the REPL to make an executable:

(asdf :make-build :example-with-dep
:type :program
:move-here #P"./"

https://common-lisp.net/project/asdf/
https://www.quicklisp.org
https://asdf.common-lisp.dev/asdf/Configuring-ASDF-to-find-your-systems.html
https://asdf.common-lisp.dev/asdf/Configuring-ASDF-to-find-your-systems.html

Chapter 3: Extensions 95

tepilogue-code ’(progn (example:test-function 5)
(si:exit)))
Here the :epilogue-code is executed after loading our library; we can use arbitrary Lisp
forms here. You can also put this code in your Lisp files and directly build them without
this :epilogue-code option to achieve the same result. Running the program in a console
will display the following and exit:

Factorial of 5 is: 120

3.1.2.3 Build it as shared library and use in C

Use this in the REPL to make a shared library:

(asdf :make-build :example-with-dep

:type :shared-library

:move-here #P"./"

:monolithic t

:init-name "init_dll_example")
Here :monolithic t means that ECL will compile the library and all its dependencies into
a single library named example-with-dep--all-systems.so. The :move-here parameter
is self-explanatory. :init-name sets the name of the initialization function. Each library
linked from C/C++ code must be initialized, and this is a mechanism to specify the initial-
ization function’s name.

To use it, we write a simple C program:

/* test.c */
#include <ecl/ecl.h>
extern void init_dll_example(cl_object);

int main (int argc, char *x*argv) {

cl_boot(argc, argv);
ecl_init_module(NULL, init_dll_example);

/* do things with the Lisp library */
cl_eval(c_string_to_object (" (example:test-function 5)"));

cl_shutdown();
return O;

}

Compile the file using a standard C compiler (note we’re linking to 1ibecl.so with -lecl,
which provides the lisp runtime!):

gcc test.c example-with-dep--all-systems.so -o test -lecl
If ECL is installed in a non-standard location you may need to provide flags for the compiler
and the linker. You may read them with:

ecl-config --cflags
ecl-config --1libs

L You may also link ECL runtime statically. That is not covered in this walkthrough.

96 ECL Manual

Since our shared object is not in the standard location, you need to provide LD_LIBRARY_
PATH pointing to the current directory to run the application:

LD_LIBRARY_PATH=‘pwd‘ ./test
This will show:
Factorial of 5 is: 120

You can also build all dependent libraries separately as a few .so files and link them
together. For example, if you are building a library called complex-example, that depends
on alexandria and cl-fad, you can do the following (in the REPL):

(asdf :make-build :complex-example
:type :shared-library
:move-here #P"./"
:init-name "init_example")

(asdf :make-build :alexandria
:type :shared-library
:move-here #P"./"
:init-name "init_alexandria")

(asdf :make-build :cl-fad
:type :shared-library
:move-here #P"./"
:init-name "init_fad")

(asdf :make-build :bordeaux-threads
:type :shared-library
:move-here #P"./"
:init-name "init_bt")
Note that we haven’t specified :monolithic t, so we need to build bordeaux-threads as
well because c1-fad depends on it. The building sequence doesn’t matter and the resultant
.so files can also be used in your future programs if these libraries are not modified.

We need to initialize all these modules using ecl_init_module in the correct order.
(bordeaux-threads must be initialized before cl-fad; cl-fad and alexandria must be
initialized before complex-ecample.)

Here is a code snippet (not a full program):

extern void init_fad(cl_object);

extern void init_alexandria(cl_object);
extern void init_bt(cl_object);

extern void init_example(cl_object);

/* call these *after* cl_boot(argc, argv);

if B depends on A, you should first init A then B. */
ecl_init_module(NULL, init_bt);
ecl_init_module(NULL, init_fad);
ecl_init_module(NULL, init_alexandria);
ecl_init_module(NULL, init_example);

Chapter 3: Extensions 97

3.1.2.4 Build it as static library and use in C

To build a static library, use:
(asdf :make-build :example-with-dep
:type :static-library
:move-here #P"./"
:monolithic t
:init-name "init_example")
This will generate example-with-dep--all-systems.a in the current directory which we
need to initialize with the init_example function. Compile it using:
gcc test.c example-with-dep--all-systems.a -o test-static -lecl
Then run it:
./test-static
This will show:
Factorial of 5 is: 120

Note we don’t need to pass the current path in LD_LIBRARY_PATH here, since our Lisp library
is statically bundled with the executable. The result is the same as the shared library
example above. You can also build all dependent libraries separately as static libraries.

3.1.3 C compiler configuration

ECL provides some global variables to customize which C compiler and compiler options
to use:

3.1.3.1 Compiler flags

It is not required to surround the compiler flags with quotes or use slashes before special
characters.

string c:*user-cc-flags* [Variable]
Flags and options to be passed to the C compiler when building FASL, shared libraries
and standalone programs.

string c:*user-linker-flagsx* [Variable]
Flags for options (e.g. -W1l,foo flags, usually in the $LDFLAGS variable in autoconf)
to be passed to the linker when building FASL, shared libraries and standalone pro-
grams.

string c:*user-linker-libs* [Variable]
Flags for libraries (e.g. —-1foo flags, usually in the $LIBS variable in autoconf) to be
passed to the linker when building FASL, shared libraries and standalone programs.

string c:*cc-optimizex [Variable]
Optimize options to be passed to the C compiler.

string c:*user-ld-flagsx [Variable]
DEPRECATED Flags and options to be passed to the linker when building FASL,
shared libraries and standalone programs.

98 ECL Manual

3.1.3.2 Compiler & Linker programs

string c::*ccx* [Variable]
This variable controls how the C compiler is invoked by ECL. One can set the variable
appropriately adding for instance flags which the C compiler may need to exploit
special hardware features (e.g. a floating point coprocessor).

string c::*x1ldx* [Variable]
This variable controls the linker which is used by ECL.

string c::*ranlibx [Variable]
Name of the ‘ranlib’ program on the hosting platform.

string c::*ar* [Variable]
Name of the ‘ar’ program on the hosting platform.

string c::*ecl-include-directory* [Variable]
Directory where the ECL header files for the target platform are located.

string c::*ecl-library-directory* [Variable]
Directory where the ECL library files for the target platform are located.

3.2 Operating System Interface

3.2.1 Command line arguments

string ext:*help-messagex* [Variable]
Command line help message. Initial value is ECL help message. This variable contains
the help message which is output when ECL is invoked with the —~help.

list-of-pathname-designators ext:*lisp-init-file-listx* [Variable]
ECL initialization files. Initial value is > ("~/.ecl" "~/.eclrc"). This variable con-
tains the names of initialization files that are loaded by ECL or embedding programs.
The loading of initialization files happens automatically in ECL unless invoked with
the option --norc. Whether initialization files are loaded or not is controlled by the
command line options rules, as described in ext:process-command-args.

list-of-lists ext:+default-command-arg-rules+ [Variable]
ECL command line options. This constant contains a list of rules for parsing the
command line arguments. This list is made of all the options which ECL accepts by
default. It can be passed as first argument to ext:process-command-args, and you
can use it as a starting point to extend ECL.

ext:command-args [Function]
Original list of command line arguments. This function returns the list of command
line arguments passed to either ECL or the program it was embedded in. The output
is a list of strings and it corresponds to the argv vector in a C program. Typically,
the first argument is the name of the program as it was invoked. You should not
count on the filename to be resolved.

Chapter 3: Extensions 99

ext:process-command-args &key args rules [Function]
args A list of strings. Defaults to the output of ext:command-args.
rules A list of lists. Defaults to the value of ext:+default-command-arg-
rules+.

This function processes the command line arguments passed to either ECL or the
program that embeds it. It uses the list of rules rules, which has the following syntax:

(option-name nargs template [:stop | :noloadrc | :loadrc]*)

option-name
A string with the option prefix as typed by the user. For instance --help,
-7, ——compile, etc.

nargs A non-negative integer denoting the number of arguments taken by this
option.

template A lisp form, not evaluated, where numbers from 0 to nargs will be replaced
by the corresponding option argument.

:stop If present, parsing of arguments stops after this option is found and
processed. The list of remaining arguments is passed to the rule.
ECL’s top-level uses this option with the -- command line option to
set ext:*unprocessed-ecl-command-args* to the list of remaining
arguments.

:noloadrc, :loadrc
Determine whether the lisp initialization files in ext:*1lisp-init-file-
list* will be loaded before processing all forms.

ext:process-command-args works as follows. First of all, it parses all the command
line arguments, except for the first one, which is assumed to contain the program
name. Each of these arguments is matched against the rules, sequentially, until one
of the patterns succeeds.

A special name *default*, matches any unknown command line option. If there is
no *default* rule and no match is found, an error is signaled. For each rule that
succeeds, the function constructs a lisp statement using the template.

After all arguments have been processed, ext:process-command-args, and there
were no occurrences of :noloadrc, the first existing file listed in ext:*lisp-init-
file-list* will be loaded. Finally, the list of lisp statements will be evaluated.

The following piece of code implements the Is command using lisp. Instructions for building
this program are found under examples/cmdline/1s.1sp.

(setq ext:*help-message* "

ls [--help | -7] filename*

Lists the file that match the given patterns.
ll)

(defun print-directory (pathnames)
(format t "~{"A~%"}"

100 ECL Manual

(mapcar #’(lambda (x) (enough-namestring x (si::getcwd)))
(mapcan #’directory (or pathnames °’>("*x.x" "x/"))))))

(defconstant +ls-rules+
> (("--help" 0 (progn (princ ext:*help-message* *standard-output*) (ext:quit 0)))]]
("-?" 0 (progn (princ ext:*help-message* *standard-output*) (ext:quit 0)))J]
("+«DEFAULT*" 1 (print-directory 1) :stop)))

(let ((ext:*lisp-init-file-list* NIL)) ; No initialization files
(handler-case (ext:process-command-args :rules +ls-rules+)
(error (c)
(princ ext:*help-message* *error-outputx)
(ext:quit 1))))
(ext:quit 0)

3.2.2 External processes

ECL provides several facilities for invoking and communicating with external processes.
If one just wishes to execute some program, without caring for its output, then probably
ext:system is the best function. In all other cases it is preferable to use ext:run-program,
which opens pipes to communicate with the program and manipulate it while it runs on
the background.

External process is a structure created with ext:run-program (returned as third value).
It is programmer responsibility, to call ext:external-process-wait on finished processes,
however during garbage collection object will be finalized.

ext:external-process-pid process [Function]
Returns process PID or nil if already finished.

ext:external-process-status process [Function]
Updates process status. ext:external-process-status calls ext:external-process-||
wait if process has not finished yet (non-blocking call). Returns two values:

status - member of (:abort :error :exited :signaled :stopped :resumed
:running)
code - if process exited it is a returned value, if terminated it is a signal code. Oth-
erwise NIL.

ext:external-process-wait process wait [Function]

If the second argument is non-NIL, function blocks until external process is fin-
ished. Otherwise status is updated. Returns two values (see ext:external-process-
status).

ext:terminate-process process &optional force [Function]
Terminates external process. May signal an error if the process has already finished.

ext:external-process-input process [Function]
ext:external-process-output process [Function]
ext:external-process-error-stream process [Function]

Process stream accessors (read-only).

Chapter 3: Extensions 101

ext:run-program command argv &key input output error wait [Function]
environ if-input-does-not-exist if-output-exists if-error-exists
external-format #+windows escape-arguments
ext:run-program creates a new process specified by the command argument. argv
are the standard arguments that can be passed to a program. For no arguments, use
nil (which means that just the name of the program is passed as arg 0).

ext:run-program will return three values - two-way stream for communication, re-
turn code or nil (if process is called asynchronously), and ext:external-process
object holding process state.

It is programmer responsibility to call ext:external-process-wait on finished pro-
cess, however ECL associates Section 3.6.5 [Finalization], page 146, with the object
calling it when the object is garbage collected. If process didn’t finish but is not
referenced, finalizer will be invoked once more during next garbage collection.

The &key arguments have the following meanings:

input Either t, nil, a pathname, a string, a stream or :stream. If t the
standard input for the current process is inherited. If nil, /dev/null
is used. If a pathname (or a string), the file so specified is used. If a
stream, all the input is read from that stream and sent to the subprocess.
If :stream, the ext:external-process-input slot is filled in with a
stream that sends its output to the process. Defaults to :stream.

if-input-does-not-exist
Can be one of: :error to generate an error :create to create an empty
file nil (the default) to return nil from ext:run-program

output Either t, nil, a pathname, a string, a stream, or :stream. If t, the
standard output for the current process is inherited. If nil, /dev/null is
used. If a pathname (or as string), the file so specified is used. If a stream,
all the output from the process is written to this stream. If : stream, the
ext:external-process-output slot is filled in with a stream that can
be read to get the output. Defaults to :stream.

if-output-exists
Can be one of: :error (the default) to generate an error, :supersede
to supersede the file with output from the program, :append to ap-
pend output from the program to the file or nil to return nil from
ext:run-program.

error Same as :output, except that :error can also be specified as :output in
which case all error output is routed to the same place as normal output.
Defaults to :output.

if-error-exists
Same as :if-output-exists.

wait If non-nil (default), wait until the created process finishes. If nil, con-
tinue running Lisp until the program finishes.

environ A list of STRINGSs describing the new Unix environment (as in "man
environ"). The default is to copy the environment of the current process.

102 ECL Manual

To extend existing environment (instead of replacing it), use :environ
(append *my-env* (ext:environ)).

If non-nil environ argument is supplied, then first argument to
ext:run-program, command, must be full path to the file.

external-format
The external-format to use for : input, :output, and :error STREAMs.

Windows specific options:

escape-arguments
Controls escaping of the arguments passed to CreateProcess.

3.2.3 FIFO files (named pipes)

Named pipe (known as fifo) may be created on UNIX with a shell command mkfifo. They
can be opened in non-blocking mode by using :nonblock t option for open. ext:file-kind
will return for such file :fifo. Since it is impossible to guess how many characters are
available in this special file file-length function will return nil.

3.2.4 Operating System Interface Reference

ext:system command [Function]
Run shell command ignoring its output. Uses fork.

ext :make-pipe [Function]
Creates a pipe and wraps it in a two way stream.

ext:quit &optional exit-code kill-all-threads [Function]
This function abruptly stops the execution of the program in which ECL is embedded.
Depending on the platform, several other functions will be invoked to free resources,
close loaded modules, etc.

The exit code is the code seen by the parent process that invoked this program.
Normally a code other than zero denotes an error.

If kill-all-threads is non-nil, tries to gently kill and join with running threads.

ext:environ [Function]
ext:getenv variable [Function]
ext:setenv variable value [Function]

Environment accessors.

ext:getpid Function
ext:getuid Function
ext:getcwd &optional (change-default-pathname-defaults NIL) Function

[]
=
ext:chdir directory &optional (change-default-pathname-defaults T) [Function]
[]
[]
[]

ext:file-kind filename follow-symlinks-p Function
ext:copy-file filename destination-filename Function
ext:chmod filename mode Function

Common operating system functions.

Chapter 3: Extensions 103

3.3 Foreign Function Interface

3.3.1 What is a FFI?

A Foreign Function Interface, or FFI for short, is a means for a programming language to
interface with libraries written in other programming languages, the foreign code. You will
see this concept most often being used in interpreted environments, such as Python, Ruby
or Lisp, where one wants to reuse the big number of libraries written in C and C++ for
dealing with graphical interfaces, networking, filesystems, etc.

A FFI is made of at least three components:

Foreign objects management
This is the data that the foreign code will use. A FFI needs to provide means to
build and manipulate foreign data, with automatic conversions to and from lisp
data types whenever possible, and it also has to deal with issues like garbage
collection and finalization.

Foreign code loader
To actually use a foreign routine, the code must reside in memory. The process
of loading this code and finding out the addresses of the routines we want to
use is normally done by an independent component.

Foreign function invocation
This is the part of the FFI that deals with actually calling the foreign routines
we want to use. For that one typically has to tell the FFI what are the arguments
that these routines expect, what are the calling conventions and where are these
routines to be found.

On top of these components sits a higher level interface written entirely in lisp, with which
you will actually declare and use foreign variables, functions and libraries. In the following
sections we describe both the details of the low-level components (See Section 3.3.2 [Two
kinds of FFI], page 103, and Section 3.3.3 [Foreign objects], page 104), and of the higher level
interface (See Section 3.3.4 [Higher level interfaces|, page 106). It is highly recommended
that you read all sections.

3.3.2 Two kinds of FFI

ECL allows for two different approaches when building a FFI. Both approaches have a
different implementation philosophy and affect the places where you can use the FFI and
how.

Static FFI (SFFI)
For every foreign function and variable you might need to use, a wrapper is
automatically written in C with the help of fli:c-inline. These wrappers are
compiled using an ordinary C compiler and linked against both the foreign
libraries you want to use and against the ECL library. The result is a FASL
file that can be loaded from ECL and where the wrappers appear as ordinary
lisp functions and variables that the user may directly invoked.

Dynamic FFI (DFFI)
First of all, the foreign libraries are loaded in memory using the facilities of
the operating system. Similar routines are used to find out and register the

104 ECL Manual

memory location of all the functions and variables we want to use. Finally,
when actually accessing these functions, a little piece of assembly code does the
job of translating the lisp data into foreign objects, storing the arguments in
the stack and in CPU registers, calling the function and converting back the
output of the function to lisp.

ECL for this purpose utilizes libffi (https://sourceware.org/libffi/), a
portable foreign-function interface library.

UFFI
C-INLINE DFFI
C. Fareign Assembler
compiler data

Figure 3.2: FFI components

As you see, the first approach uses rather portable techniques based on a programming
language (C, C++) which is strongly supported by the operating system. The conversion
of data is performed by a calling routines in the ECL library and we need not care about
the precise details (organizing the stack, CPU registers, etc) when calling a function: the
compiler does this for us.

On the other hand, the dynamic approach allows us to choose the libraries we load at
any time, look for the functions and invoke them even from the toplevel, but it relies on
unportable techniques and requires the developers to know very well both the assembly code
of the machine the code runs on and the calling conventions of that particular operating
system. For these reasons ECL doesn’t maintain it’s own implementation of the DFFI but
rather relies on the third party library.

ECL currently supports the static method on all platforms, and the dynamical one a wide
range of the most popular ones, shown in the section Supported Platforms at https://
sourceware.org/libffi/.

You can test if your copy of ECL was built with DFFI by inspecting whether the symbol
:dffi is present in the list from variable *featuresx.

3.3.3 Foreign objects

While the foreign function invocation protocols differ strongly between platforms and im-
plementations, foreign objects are pretty easy to handle portably. For ECL, a foreign object
is just a bunch of bytes stored in memory. The lisp object for a foreign object encapsulates
several bits of information:

e A list or a symbol specifying the C type of the object.

e The pointer to the region of memory where data is stored.

e A flag determining whether ECL can automatically manage that piece of memory and

deallocated when no longer in use.

https://sourceware.org/libffi/
https://sourceware.org/libffi/
https://sourceware.org/libffi/

Chapter 3: Extensions 105

A foreign object may contain many different kinds of data: integers, floating point numbers,
C structures, unions, etc. The actual type of the object is stored in a list or a symbol
which is understood by the higher level interface (See Section 3.3.4 [Higher level interfaces],
page 106).

The most important component of the object is the memory region where data is stored.
By default ECL assumes that the user will perform manual management of this memory,
deleting the object when it is no longer needed. The first reason is that this block may have
been allocated by a foreign routine using malloc(), or mmap(), or statically, by referring
to a C constant. The second reason is that foreign functions may store references to this
memory which ECL is not aware of and, in order to keep these references valid, ECL should
not attempt to automatically destroy the object.

In many cases, however, it is desirable to automatically destroy foreign objects once they
have been used. The higher level interfaces UFFI and CFFI (https://common-1lisp.net/
project/cffi/) provide tools for doing this. For instance, in the following example adapted
from the UFFI documentation, the string name is automatically deallocated

(ffi:def-function ("gethostname" c-gethostname)
((name (* :unsigned-char))
(len :int))
:returning :int)

(ffi:with-foreign-object (name ’(:array :unsigned-char 256))
(if (zerop (c-gethostname (ffi:char-array-to-pointer name) 256))
(format t "Hostname: ~S" (ffi:convert-from-foreign-string name))
(error "gethostname() failed.")))

3.3.3.1 C Reference

cl_object ecl_make_foreign_data (cl-object tag, cl_index size, [Function]
void *data)
Description This function creates a Lisp “foreign object” that points to a C data.
Use this function to pass a data from C to Lisp.

tag denotes the data type (See Section 3.3.7.1 [Primitive Types|, page 112) size is a
number of elements in data (or 0 for a raw pointer) data is a pointer to C data (either
an object or an array)

The C macro ecl_make_pointer(pointer) expands to ecl_make_foreign_
data(ECL_NIL, O, (pointer)).

void *ecl_foreign_data_pointer_safe(cl_object f) [Function]
Description This function returns a C pointer for the given Lisp foreign object. Lisp
foreign objects are constructed with functions ecl_make_foreign_data and ecl_
allocate_foreign_data.

The wrapper created with ecl_make_foreign_data is a subject of garbage collection,
but the pointer itself is not “freed”, because the data producer is “C world” and the
consumer is “Lisp world”.

This is different from si:allocate-foreign-object where the data producer is “Lisp
world” and the consumer is “C world”. In that case the wrapper is not collected unless

https://common-lisp.net/project/cffi/
https://common-lisp.net/project/cffi/

106 ECL Manual

explicitly released with si:free-foreign-object in which case the allocated foreign
data is also released.

char *ecl_base_string_pointer_safe(cl_object f) [Function]
Description This function returns a pointer to a simple base string f. If f is not a
simple base string this function signals an error.

cl_object ecl_null_terminated_base_string(cl_object s) [Function]
Description Tries to coerce a string to a simple base string suitable for ecl_base_
string_pointer_safe. This function may cons data.

3.3.4 Higher level interfaces

Up to now we have only discussed vague ideas about how a FFI works, but you are probably
more interested on how to actually code all these things in lisp. You have here three
possibilities:

e ECL supplies a high level interface which is compatible with UFFI up to version 1.8
(api for >=v2.0 is provided by cffi-uffi-compat system shipped with CFFI). Code de-
signed for UFFT library should run mostly unchanged with ECL. Note, that api resides
in ffi package, not uffi, to prevent conflicts with cffi-uffi-compat. New code shouldn’t
use this interface preferring CFFI (https://common-lisp.net/project/cffi/).

e The CFFI (https://common-lisp.net/project/cffi/) library features a complete
backend for ECL. This method of interfacing with the foreign libraries is preferred over
using UFFI.

e ECL’s own low level interface. Only to be used if ECL is your deployment platform.
It features some powerful constructs that allow you to mix arbitrary C and lisp code.

In the following two subsections we will discuss two practical examples of using the native
UFFI and the CFFI library.

UFFI example

The example below shows how to use UFFT in an application. There are several important
ingredients:
e You need to specify the libraries you use and do it at the toplevel, so that the compiler
may include them at link time.

e Every function you will use has to be declared using ffi:def-function.

e In the cases of headers not used by ECL, a header to include might need to be specified
using ffi:clines.
#|
Build and load this module with (compile-file "uffi.lsp" :load t)
| #
;3 This toplevel statement notifies the compiler that we will
;; need this shared library at runtime. We do not need this
;; statement in windows or modern macOS.
;; The actually needed path to libm might be different on different systems.|]

A

https://common-lisp.net/project/cffi/
https://common-lisp.net/project/cffi/

Chapter 3: Extensions 107

#-(or ming32 windows darwin)
(ffi:load-foreign-library "/usr/lib/libm.so")
;; With this other statement, we import the C function sin(),
;3 which operates on IEEE doubles.
(ffi:def-function ("sin" c-sin) ((arg :double))
:returning :double)
;3 We now use this function and compare with the lisp version.
(format t ""%Lisp sin:"t"d"%C sin: t"d~/Difference:~"t~d"
(sin 1.0d0) (c-sin 1.0d0) (- (sin 1.0d0) (c-sin 1.0d0)))

CFFI example

The CFFI (https://common-lisp.net/project/cffi/) library is an independent project
and it is not shipped with ECL. If you wish to use it you can go to their homepage, download
the code and build it using ASDF.

CFFI differs slightly from UFFT in that functions may be used even without being declared
beforehand.

#1

Build and load this module with (compile-file "cffi.lsp" :load t)

| #

;3 This toplevel statement notifies the compiler that we will

;3 need this shared library at runtime. We do not need this

;; statement in windows or macO(S.

#-(or ming32 windows darwin)

(cffi:load-foreign-library "/usr/lib/libm.so")

;; With this other statement, we import the C function sin(),

;3 which operates on IEEE doubles.

(cffi:defcfun ("sin" c-sin) :double ’(:double))

;3 We now use this function and compare with the lisp version.

(format t "“%Lisp sin: t"d"%C sin:"t"d"YDifference:"t~d"

(sin 1.0d0) (c-sin 1.0d0) (- (sin 1.0d0) (c-sin 1.0d0)))

;3 The following also works: no declaration!

(let ((c-cos (cffi:foreign-funcall "cos" :double 1.0d0 :double)))
(format t ""%Lisp cos:"t"d"%C cos: t"d~Difference: "t~d"

(cos 1.0d0) c-cos (- (cos 1.0d0) c-cos)))

https://common-lisp.net/project/cffi/

108 ECL Manual

SFFI example (low level inlining)

To compare with the previous pieces of code, we show how the previous programs would be
written using £fi:clines and ffi:c-inline.

#]
Build and load this module with (compile-file "ecl.lsp" :load t)
| #
;5 With this other statement, we import the C function sin(), which
;; operates on IEEE doubles. Notice that we include the C header to
;3 get the full declaration.
(defun c-sin (x)
(ffi:clines "#include <math.h>")
(ffi:c-inline (x) (:double) :double "sin(#0)" :one-liner t))
;; We now use this function and compare with the lisp version.
(format t ""%Lisp sin:"t"d"%C sin:"t"d~/Difference:~"t~d"
(sin 1.0d0) (c-sin 1.0d0) (- (sin 1.0d0) (c-sin 1.0d0)))

3.3.5 SFFI Reference
Reference

ffi:clines c/ct++-code™ [Special Form]
Insert C declarations and definitions

¢/c++-code
One or more strings with C definitions. Not evaluated.

returns No value.

Description This special form inserts C code from strings passed in the arguments
directly in the file that results from compiling lisp sources. Contrary to ffi:c-inline,
this function may have no executable statements, accepts no input value and returns
no value.

The main use of ffi:clines is to declare or define C variables and functions that
are going to be used later in other FFI statements. All statements from arguments
are grouped at the beginning of the produced header file.

ffi:clines is a special form that can only be used in lisp compiled files as a toplevel
form. Other uses will lead to an error being signaled, either at the compilation time
or when loading the file.

Examples In this example the £fi:clines statement is required to get access to the
C function cos:

(ffi:clines "#include <math.h>")
(defun cos (x)
(ffi:c-inline (x) (:double) :double "cos(#0)" :one-liner t))

Chapter 3: Extensions 109

ffi:c-inline (lisp-values) (arg-c-types) return-type c/c++-code [Special Form]
&key (side-effects t) (one-liner nil)
Inline C code in a lisp form

lisp-values One or more lisp expressions. Evaluated.

arg-c-types
One or more valid FFI types. Evaluated.

return-type
Valid FFT type or (values ffi-typex).

¢/c++-code
String containing valid C code plus some valid escape forms.

one-liner Boolean indicating, if the expression is a valid R-value. Defaults to nil.

side-eftects
Boolean indicating, if the expression causes side effects. Defaults to t.

returns One or more lisp values.

Description This is a special form which can be only used in compiled code and whose
purpose is to execute some C code getting and returning values from and to the lisp
environment.

The first argument lisp-values is a list of lisp forms. These forms are going to be
evaluated and their lisp values will be transformed to the corresponding C types
denoted by the elements in the list arg-c-types.

The input values are used to create a valid C expression using the template in C/C++-
code. This is a string of arbitrary size which mixes C expressions with two kind of
escape forms.

The first kind of escape form are made of a hash and a letter or a number, as in: #0,
#1, ..., until #z. These codes are replaced by the corresponding input values. The
second kind of escape form has the format @(return [n]), it can be used as lvalue in
a C expression and it is used to set the n-th output value of the ffi:c-inline form.

When the parameter one-liner is true, then the C template must be a simple C
statement that outputs a value. In this case the use of @(return) is not allowed.
When the parameter one-liner is false, then the C template may be a more complicated
block form, with braces, conditionals, loops and spanning multiple lines. In this case
the output of the form can only be set using @(return).

Parameter side-effects set to false will indicate, that the functions causes no side-
effects. This information is used by the compiler to optimize the resulting code. If
side-effects is set to false, but the function may cause the side effects, then results are
undefined.

Note that the conversion between lisp arguments and FFI types is automatic. Note
also that ffi:c-inline cannot be used in interpreted or bytecompiled code! Such
usage will signal an error.

Examples The following example implements the transcendental function SIN using
the C equivalent:

(ffi:c-lines "#include <math.h>")

110 ECL Manual

(defun mysin (x)
(ffi:c-inline (x) (:double) :double
"sin(#0)"
:one-liner t
:side-effects nil))

This function can also be implemented using the @(return) form as follows:

(defun mysin (x)
(ffi:c-inline (x) (:double) :double
"@(return)=sin(#0) ;"
:side-effects nil))

The following example is slightly more complicated as it involves loops and two output
values:

(defun sample (x)

(ffi:c-inline (x (+ x 2)) (:int :int) (values :int :int) "{
int nl1 = #0, n2 = #1, outl = 0, out2 = 1;
while (n1 <= n2) {

outl += nil;
out2 *= nil;
nil++;
}
@(return 0)= outl;
@(return 1)= out2;
}ll
:side-effects nil))

ffi:c-progn args &body body [Special Form]
Interleave C statements with the Lisp code

args Lisp arguments. Evaluated.
returns No value.

Description This form is used for it’s side effects. It allows for interleaving C state-
ments with the Lisp code. The argument types doesn’t have to be declared — in such
case the objects type in the C world will be c1_object.

Examples

(lambda (i)
(let* ((limit i)
(iterator 0)
(custom-var (cons 1 2)))
(declare (:int limit iterator))
(ffi:c-progn (limit iterator custom-var)
"cl_object cv = #2;"
"ecl_print(cv, ECL_T);"
"for (#1 = 0; #1 < #0; #1++) {"
(format t "“&Iterator: “A, I: “A~Y%" iterator i)
"}")))

Chapter 3: Extensions 111

ffi:defcallback name ret-type arg-desc &body body [Special Form]

name Name of the lisp function.

ret-type Declaration of the return type which function returns.
arg-desc List of pairs (arg-name arg-type).

body Function body.

returns Pointer to the defined callback.

Description Defines Lisp function and generates a callback for the C world, which
may be passed to these functions. Note, that this special operator has also a dynamic
variant (with the same name and interface).

ffi:defcbody name arg-types result-type c-expression [Macro]
Define C function under the lisp name

name Defined function name.
arg-types Argument types of the defined Lisp function.

result-type
Result type of the C function (may be (values ...).

returns Defined function name.

Description The compiler defines a Lisp function named by name whose body consists
of the C code of the string c-expression. In the c-expression one can reference the
arguments of the function as #0, #1, etc.

The interpreter ignores this form.

ffi:defentry name arg-types c-name &key no-interrupts [Macro]

name Lisp name for the function.

arg-types Argument types of the C function.

c-name If c-name is a list, then C function result type is declared as (car c-name)
and its name is (string (cdr c-name)).
If it’s an atom, then the result type is :object, and function name is
(string c-name).

returns Lisp function name.

Description The compiler defines a Lisp function named by name whose body consists

of a calling sequence to the C language function named by c-name.

The interpreter ignores this form.

ext:with-backend &key bytecodes c/c++ [Special Form]
Use different code depending on the backend.

Description Depending on whether the bytecodes or C compiler is used, this form will
emit the code given in the corresponding keyword argument.

Examples
CL-USER> (defmacro test ()

112 ECL Manual

> (ext:with-backend :c/c++ "c/c++" :bytecodes "bytecodes"))
TEST
CL-USER> (test)
"bytecodes"
CL-USER> (funcall (compile nil (lambda () (test))))

;35 OPTIMIZE levels: Safety=2, Space=0, Speed=3, Debug=3
IIC/C++||

ffi:defla name args &body body [Macro]
Provide Lisp alternative for interpreted code.

Description Used to DEFine Lisp Alternative. For the interpreter, ffi:defla is
equivalent to defun, but the compiler ignores this form.

3.3.6 DFFI Reference

ffi:*use-dffix [Variable]
This variable controls whether DFFI is used or not.

3.3.7 UFFI Reference

3.3.7.1 Primitive Types

Primitive types have a single value, these include characters, numbers, and pointers. They
are all symbols in the keyword package.

3

:char’
:unsigned-char’
Signed /unsigned 8-bits. Dereferenced pointer returns a character.

3

‘:byte’
:unsigned-byte’
Signed /unsigned 8-bits. Dereferenced pointer returns an integer.

‘:short’
:unsigned-short’
rint’
:unsigned-int’
:long’
:unsigned-long’
Standard integer types (16-bit, 32-bit and 32/64-bit).

‘:int16-t’
‘:uint16-t’
‘:int32-t’
‘:uint32-t’
‘:int64-t’
‘:uint64-t’
Integer types with guaranteed bitness.

Chapter 3: Extensions 113

‘:float’
‘:double’ Floating point numerals (32-bit and 64-bit).

:long-double’
Floating point numeral (usually 80-bit, at least 64-bit, exact bitness is com-
piler/architecture/platform dependent).

‘:csfloat’

‘:cdfloat’

‘:clfloat’
Complex floating point numerals. These types exist only when ECL is built
with c99complex support.

:cstring’
A NULL terminated string used for passing and returning characters strings with
a C function.

:void’ The absence of a value. Used to indicate that a function does not return a
value.

:pointer-void’
Points to a generic object.

x7 Used to declare a pointer to an object.

‘:object’ A generic lisp object (i.e. a c1_object in C)

Reference

ffi:def-constant name value &key (export nil) [Macro]
Binds a symbol to a constant.
name A symbol that will be bound to the value.
value An evaluated form that is bound the the name.
export When t, the name is exported from the current package. Defaults to nil.
returns Constant name.

Description This is a thin wrapper around defconstant. It evaluates at compile-time
and optionally exports the symbol from the package.

Examples

(ffi:def-constant pi2 (* 2 pi))

(ffi:def-constant exported-pi2 (* 2 pi) :export t)
Side Effects Creates a new special variable.

ffi:def-foreign-type name definition [Macro]
Defines a new foreign type

name A symbol naming the new foreign type.
value A form that is not evaluated that defines the new foreign type.

returns Foreign type designator (value).

114 ECL Manual

Description Defines a new foreign type

Examples
(ffi:def-foreign-type my-generic-pointer :pointer-void)
(ffi:def-foreign-type a-double-float :double-float)
(ffi:def-foreign-type char-ptr (* :char))

Side effects Defines a new foreign type.

ffi:null-char-p char [Function]
Tests a character for NULL value

char A character or integer.
returns A boolean flag indicating if char is a NULL value.

Description A predicate testing if a character or integer is NULL. This abstracts
the difference in implementations where some return a character and some return a
integer whence dereferencing a C character pointer.
Examples

(ffi:def-array-pointer ca :unsigned-char)

(let ((fs (ffi:convert-to-foreign-string "ab")))
(values (ffi:null-char-p (ffi:deref-array fs ’ca 0))
(ffi:null-char-p (ffi:deref-array fs ’ca 2))))
;5 => NIL T

3.3.7.2 Aggregate Types

Overview

Aggregate types are comprised of one or more primitive types.
Reference

ffi:def-enum name fields &key separator-string [Macro]
Defines a C enumeration

name A symbol that names the enumeration.

fields A list of field definitions. Each definition can be a symbol or a list of
two elements. Symbols get assigned a value of the current counter which
starts at 0 and increments by 1 for each subsequent symbol. It the field
definition is a list, the first position is the symbol and the second position
is the value to assign the the symbol. The current counter gets set to 1+
this value.

returns A string that governs the creation of constants. The default is "#".

Description Declares a C enumeration. It generates constants with integer values
for the elements of the enumeration. The symbols for the these constant values are
created by the concatenation of the enumeration name, separator-string, and field
symbol. Also creates a foreign type with the name name of type :int.

Chapter 3: Extensions 115

Examples

(ffi:def-enum abc (:a :b :c))
;; Creates constants abc#a (1), abc#b (2), abc#c (3) and defines
;3 the foreign type "abc" to be :int

(ffi:def-enum efoo (:el (:e2 10) :e3) :separator-string "-")

;; Creates constants efoo-el (1), efoo-e2 (10), efoo-e3 (11) and definesli

;; the foreign type efoo to be :int

Side effects Creates a :int foreign type, defines constants.

ffi:def-struct name &rest fields [Macro]
Defines a C structure
name A symbol that names the structure.
fields A variable number of field definitions. Each definition is a list consisting

of a symbol naming the field followed by its foreign type.
Description Declares a structure. A special type is available as a slot in the field. It is a
pointer that points to an instance of the parent structure. It’s type is :pointer-self.
Examples

(ffi:def-struct foo (a :unsigned-int)
(b (* :char))
(c (:array :int 10))
(next :pointer-self))

Side effects Creates a foreign type.

ffi:get-slot-value obj type field [Function]
Retrieves a value from a slot of a structure
obj A pointer to the foreign structure.
type The name of the foreign structure.
field The name of the desired field in the foreign structure.
returns The value of the field in the structure obj.

Description Accesses a slot value from a structure. This is generalized and can be
used with setf.

Examples

(ffi:get-slot-value foo-ptr ’foo-structure ’field-name)
(setf (ffi:get-slot-value foo-ptr ’foo-structure ’field-name) 10)

ffi:get-slot-pointer obj type field [Function]
Retrieves a pointer from a slot of a structure
obj A pointer to the foreign structure.
type The name of the foreign structure.

field The name of the desired field in the foreign structure.

116 ECL Manual

returns The value of the pointer field in the structure obj.
Description This is similar to ffi:get-slot-value. It is used when the value of a
slot is a pointer type.
Examples
(ffi:get-slot-pointer foo-ptr ’foo-structure ’my-char-ptr)

ffi:def-array-pointer name type [Macro]
Defines a pointer to an array of type

name A name of the new foreign type.
type The foreign type of the array elements.
Description Defines a type that is a pointer to an array of type.
Examples

(ffi:def-array-pointer byte-array-pointer :unsigned-char)
Side effects Defines a new foreign type.

ffi:deref-array array type position [Function]
Dereference an array

array A foreign array.

type The foreign type of the array.

position An integer specifying the position to retrieve from the array.
returns The value stored in the position of the array.

Description Dereferences (retrieves) the value of the foreign array element. setf-able.
Examples

(ffi:def-array-pointer ca :char)

(let ((fs (ffi:convert-to-foreign-string "ab")))
(values (ffi:null-char-p (ffi:deref-array fs ’ca 0))
(ffi:null-char-p (ffi:deref-array fs ’ca 2))))

;5 => NIL T

ffi:def-union name &rest fields [Macro]
Defines a foreign union type

name A name of the new union type.
fields A list of fields of the union in form (field-name field-type).

Description Defines a foreign union type.
Examples

(ffi:def-union test-union
(a-char :char)
(an-int :int))

(let ((u (ffi:allocate-foreign-object ’test-union)))
(setf (ffi:get-slot-value u ’test-union ’an-int) (+ 65 (x 66 256)))]

Chapter 3: Extensions 117

(progi
(ffi:ensure-char-character (ffi:get-slot-value u ’test-union ’a-char))]]
(ffi:free-foreign-object u)))
s => #\A

Side effects Defines a new foreign type.
3.3.7.3 Foreign Objects

Overview

Objects are entities that can allocated, referred to by pointers, and can be freed.

Reference
ffi:allocate-foreign-object type &optional size [Function]
Allocates an instance of a foreign object
type The type of foreign object to allocate. This parameter is evaluated.
size An optional size parameter that is evaluated. If specified, allocates and
returns an array of type that is size members long. This parameter is
evaluated.
returns A pointer to the foreign object.

Description Allocates an instance of a foreign object. It returns a pointer to the
object.

Examples

(ffi:def-struct ab (a :int) (b :double))
;3 => (:STRUCT (A :INT) (B :DOUBLE))
(ffi:allocate-foreign-object ’ab)

;3 => #<foreign AB>

ffi:free-foreign-object ptr [Function]
Frees memory that was allocated for a foreign object

ptr A pointer to the allocated foreign object to free.

Description Frees memory that was allocated for a foreign object.

ffi:with-foreign-object (var type) &body body [Macro]
Wraps the allocation, binding and destruction of a foreign object around a body of
code
var Variable name to bind.
type Type of foreign object to allocate. This parameter is evaluated.
body Code to be evaluated.
returns The result of evaluating the body.

Description This function wraps the allocation, binding, and destruction of a foreign
object around the body of code.

118 ECL Manual

Examples

(defun gethostname2 ()
"Returns the hostname"
(ffi:with-foreign-object (name ’(:array :unsigned-char 256))
(if (zerop (c-gethostname (ffi:char-array-to-pointer name) 256))l
(ffi:convert-from-foreign-string name)
(error "gethostname() failed."))))

ffi:size-of-foreign-type ftype [Macro]
Returns the number of data bytes used by a foreign object type
ftype A foreign type specifier. This parameter is evaluated.
returns Number of data bytes used by a foreign object ftype.

Description Returns the number of data bytes used by a foreign object type. This
does not include any Lisp storage overhead.

Examples
(ffi:size-of-foreign-type :unsigned-byte)
i => 1
(ffi:size-of-foreign-type ’my-100-byte-vector-type)
;3 => 100
ffi:pointer-address ptr [Function]

Returns the address of a pointer
ptr A pointer to a foreign object.
returns An integer representing the pointer’s address.

Description Returns the address as an integer of a pointer.

ffi:deref-pointer ptr ftype [Function]
Dereferences a pointer

ptr Pointer to a foreign object.
ftype Foreign type of the object being pointed to.
returns The value of the object where the pointer points.

Description Returns the object to which a pointer points. setf-able.

Notes Casting of the pointer may be performed with ffi:with-cast-pointer to-
gether with ffi:deref-pointer/ffi:deref-array.
Examples
(let ((intp (ffi:allocate-foreign-object :int)))
(setf (ffi:deref-pointer intp :int) 10)
(progi
(ffi:deref-pointer intp :int)
(ffi:free-foreign-object intp)))
;3 => 10

Chapter 3: Extensions 119

ffi:ensure-char-character object [Function]
Ensures that a dereferenced :char pointer is a character

object Fither a character or a integer specifying a character code.
returns A character.
Description Ensures that an objects obtained by dereferencing :char and
:unsigned-char pointers is a lisp character.
Examples
(let ((fs (ffi:convert-to-foreign-string "a")))
(progil
(ffi:ensure-char-character (ffi:deref-pointer fs :char))

(ffi:free-foreign-object fs)))
;5 => #\a

Exceptional Situations Depending upon the implementation and what UFFT expects,
this macro may signal an error if the object is not a character or integer.

ffi:ensure-char-integer object [Function]
Ensures that a dereferenced :char pointer is an integer

object Either a character or a integer specifying a character code.
returns An integer.
Description Ensures that an objects obtained by dereferencing :char and
:unsigned-char pointers is a lisp integer.
Examples

(let ((fs (ffi:convert-to-foreign-string "a")))

(progi
(ffi:ensure-char-integer (ffi:deref-pointer fs :char))
(ffi:free-foreign-object fs)))

3 => 96
Exceptional Situations Depending upon the implementation and what UFFI expects,
this macro may signal an error if the object is not a character or integer.

ffi:make-null-pointer ftype [Function]
Create a NULL pointer of a specified type

ftype A type of object to which the pointer refers.
returns The NULL pointer of type ftype.

ffi:null-pointer-p ptr [Function]
Tests a pointer for NULL value
ptr A foreign object pointer.
returns The boolean flag.

ffi:+null-cstring-pointer+ [Variable]

A NULL cstring pointer. This can be used for testing if a cstring returned by a
function is NULL.

120 ECL Manual

ffi:with-cast-pointer (var ptr ftype) &body body [Macro]
Wraps a body of code with a pointer cast to a new type
var Symbol which will be bound to the casted object.
ptr Pointer to a foreign object.
ftype A foreign type of the object being pointed to.
returns The value of the object where the pointer points.

Description Executes body with ptr cast to be a pointer to type ftype. var will be
bound to this value during the execution of body.
Examples
(ffi:with-foreign-object (size :int)
;; FOO is a foreign function returning a :POINTER-VOID
(let ((memory (foo size)))
(when (mumble)
;3 at this point we know for some reason that MEMORY points
;3 to an array of unsigned bytes
(ffi:with-cast-pointer (memory :unsigned-byte)
(dotimes (i (deref-pointer size :int))
(do-something-with
(ffi:deref-array memory ’(:array :unsigned-byte) 1)))))))|J}

ffi:def-foreign-var name type module [Macro]
Defines a symbol macro to access a variable in foreign code

name A string or list specifying the symbol macro’s name. If it is a string, that
names the foreign variable. A Lisp name is created by translating #_ to
#\- and by converting to upper-case.

If it is a list, the first item is a string specifying the foreign variable name
and the second it is a symbol stating the Lisp name.

type A foreign type of the foreign variable.

module Either a string specifying the module (or library) the foreign variable
resides in, :default if no module needs to be loaded or nil to use SFFI.

Description Defines a symbol macro which can be used to access (get and set) the
value of a variable in foreign code.

Examples

C code defining foreign structure, standalone integer and the accessor:

int baz = 3;

typedef struct {
int x;
double y;

} foo_struct;

foo_struct the_struct = { 42, 3.2 };

Chapter 3: Extensions 121

int foo O {
return baz;
}
Lisp code defining C structure, function and a variable:
(ffi:def-struct foo-struct
(x :int)
(y :double))

(ffi:def-function ("foo" foo) ()
:returning :int
:module "foo")

(ffi:def-foreign-var ("baz" *baz*) :int "foo")
(ffi:def-foreign-var ("the_struct" #*the-struct*) foo-struct "foo")

xbaz 55 => 3
(incf *baz*) i =>4
(foo) iro=> 4

3.3.7.4 Foreign Strings

Overview

UFFI has functions to two types of C-compatible strings: cstrings and foreign strings.
cstrings are used only as parameters to and from functions. In some implementations a
cstring is not a foreign type but rather the Lisp string itself. On other platforms a cstring
is a newly allocated foreign vector for storing characters. The following is an example of
using cstrings to both send and return a value.

(ffi:def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)

(defun my-getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(ffi:with-cstring (key-native key)
(ffi:convert-from-cstring (c-getenv key-native))))
In contrast, foreign strings are always a foreign vector of characters which have memory
allocated. Thus, if you need to allocate memory to hold the return value of a string, you
must use a foreign string and not a cstring. The following is an example of using a foreign
string for a return value.
(ffi:def-function ("gethostname" c-gethostname)
((name (* :unsigned-char))
(len :int))
:returning :int)

122 ECL Manual

(defun gethostname ()
"Returns the hostname"
(let* ((name (ffi:allocate-foreign-string 256))
(result-code (c-gethostname name 256))
(hostname (when (zerop result-code)
(ffi:convert-from-foreign-string name))))
;3 UFFI does not yet provide a universal way to free
;5 memory allocated by C’s malloc. At this point, a program
;; needs to call C’s free function to free such memory.
(unless (zerop result-code)
(error "gethostname() failed."))))

Foreign functions that return pointers to freshly allocated strings should in general not
return cstrings, but foreign strings. (There is no portable way to release such cstrings from
Lisp.) The following is an example of handling such a function.

(ffi:def-function ("readline" c-readline)
((prompt :cstring))
:returning (* :char))

(defun readline (prompt)
"Reads a string from console with line-editing."
(ffi:with-cstring (c-prompt prompt)
(let* ((c-str (c-readline c-prompt))
(str (ffi:convert-from-foreign-string c-str)))
(ffi:free-foreign-object c-str)

str)))
Reference

ffi:convert-from-cstring object [Macro]
Converts a cstring to a Lisp string

object A cstring
returns A Lisp string

Description Converts a Lisp string to a cstring. This is most often used when pro-
cessing the results of a foreign function that returns a cstring.

ffi:convert-to-cstring object [Macro]
Converts a Lisp string to a cstring

object A Lisp string
returns A cstring

Description Converts a Lisp string to a cstring. The cstring should be freed with
ffi:free-cstring.

Side Effects This function allocates memory.

Chapter 3: Extensions 123

ffi:convert-from-cstring cstring [Macro]
Free memory used by cstring

cstring cstring to be freed.

Description Frees any memory possibly allocated by £fi:convert-to-cstring. On
ECL, a cstring is just the Lisp string itself.

ffi:with-cstring (cstring string) &body body [Macro]
Binds a newly created cstring
cstring A symbol naming the cstring to be created.
string A Lisp string that will be translated to a cstring.
body The body of where the cstring will be bound.
returns Result of evaluating the body.

Description Binds a symbol to a cstring created from conversion of a string. Auto-
matically frees the cstring.

Examples

(ffi:def-function ("getenv" c-getenv)
((name :cstring))
:returning :cstring)

(defun getenv (key)
"Returns an environment variable, or NIL if it does not exist"
(check-type key string)
(ffi:with-cstring (key-cstring key)
(ffi:convert-from-cstring (c-getenv key-cstring))))

ffi:with-cstrings bindings &body body [Macro]
Binds a newly created cstrings

bindings List of pairs (cstring string), where cstring is a name for a cstring trans-
lated from Lisp string string.

body The body of where the bindings will be bound.
returns Result of evaluating the body.

Description Binds a symbols to a cstrings created from conversion of a strings.
Automatically frees the cstrings. This macro works similar to let*. Based on
with-cstring.

ffi:convert-from-foreign-string foreign-string &key length [Macro]
(null-terminated-p t)
Converts a foreign string into a Lisp string

foreign-string
A foreign string.

length The length of the foreign string to convert. The default is the length of
the string until a NULL character is reached.

124 ECL Manual

null-terminated-p
A boolean flag with a default value of t. When true, the string is con-
verted until the first NULL character is reached.

returns A Lisp string.
Description Returns a Lisp string from a foreign string. Can translate ASCII and
binary strings.

ffi:convert-to-foreign-string string [Macro]
Converts a Lisp string to a foreign string
string A Lisp string.
returns A foreign string.
Description Converts a Lisp string to a foreign string. Memory should be freed with
ffi:free-foreign-object.

ffi:allocate-foreign-string size &key unsigned [Macro]
Allocates space for a foreign string
size The size of the space to be allocated in bytes.

unsigned A boolean flag with a default value of t. When true, marks the pointer
as an :unsigned-char.

returns A foreign string which has undefined contents.
Description Allocates space for a foreign string. Memory should be freed with
ffi:free-foreign-object.

ffi:with-foreign-string (foreign-string string) &body body [Macro]
Binds a newly allocated foreign-string

foreign-string
A symbol naming the foreign string to be created.

string A Lisp string that will be translated to a foreign string.
body The body of where the foreign-string will be bound.
returns Result of evaluating the body.

Description Binds a symbol to a foreign-string created from conversion of a string.
Automatically deallocates the foreign-string.

Examples
ffi:with-foreign-strings bindings &body body [Macro]
Binds a newly created foreign string

bindings List of pairs (foreign-string string), where foreign-string is a name for a
foreign string translated from Lisp string string.

body The body of where the bindings will be bound.
returns Result of evaluating the body.

Description Binds a symbols to a foreign-strings created from conversion of a
strings. Automatically frees the foreign-strings. This macro works similar to letx.
Based on ffi:with-foreign-string.

Chapter 3: Extensions 125

3.3.7.5 Functions and Libraries

Reference
ffi:def-function name args &key module (returning :void) (call [Macro]
:cdecl)
name A string or list specifying the function name. If it is a string, that names
the foreign function. A Lisp name is created by translating #_ to #\-
and by converting to upper-case in case-insensitive Lisp implementations.
If it is a list, the first item is a string specifying the foreign function name
and the second it is a symbol stating the Lisp name.
args A list of argument declarations. If nil, indicates that the function does

not take any arguments.

module Either a string specifying which module (or library) that the foreign func-
tion resides, :default if no module needs to be loaded or nil to use SFFI.

call Function calling convention. May be one of :default, :cdecl, :sysv,
:stdcall, :win64 and :unix64.
This argument is used only when we’re using the dynamic function in-
terface. If ECL is built without the DFFI support, then it uses SFFI the
call argument is ignored.

returning A declaration specifying the result type of the foreign function. :void
indicates that the function does not return any value.

Description Declares a foreign function.
Examples
(ffi:def-function "gethostname"
((name (* :unsigned-char))
(len :int))
:returning :int)

ffi:load-foreign-library filename &key module [Macro]
supporting-libraries force-load system-library

filename A string or pathname specifying the library location in the filesystem.

module IGNORED A string designating the name of the module to apply to
functions in this library.

supporting-libraries
IGNORED A list of strings naming the libraries required to link the
foreign library.

force-load IGNORED Forces the loading of the library if it has been previously
loaded.

system-library
Denotes if the loaded library is a system library (accessible with the
correct linker flags). If t, then SFFI is used and the linking is performed
after compilation of the module. Otherwise (default) both SFFI and
DFFI are used, but SFFI only during the compilation.

126 ECL Manual
returns A generalized boolean true if the library was able to be loaded successfully
or if the library has been previously loaded, otherwise nil.
Description Loads a foreign library. Ensures that a library is only loaded once during
a session.
Examples
(ffi:load-foreign-library #p"/usr/lib/libmagic.so.1")
;3 => #<codeblock "/usr/lib/libmagic.so">
Side Effects Loads the foreign code into the Lisp system.
Affected by Ability to load the file.
ffi:find-foreign-library names directories &key drive-letters [Function]

types
Finds a foreign library file

names A string or list of strings containing the base name of the library file.
directories A string or list of strings containing the directory the library file.

drive-letters
A string or list of strings containing the drive letters for the library file.

types A string or list of strings containing the file type of the library file. Default
is nil. If nil, will use a default type based on the currently running
implementation.

returns A path containing the path to the first file found, or nil if the library
file was not found.

Description Finds a foreign library by searching through a number of possible loca-
tions. Returns the path of the first found file.

Examples

(ffi:find-foreign-library °’("libz" "libmagic")
>("/usr/local/lib/" "/usr/1lib/")
:types ’("so" "d11"))

;3 => #P"/usr/lib/libz.so0.1.2.8"

3.4 Native threads

3.4.1 Tasks, threads or processes

On most platforms, ECL supports native multithreading. That means there can be several
tasks executing lisp code on parallel and sharing memory, variables and files. The interface
for multitasking in ECL, like those of most other implementations, is based on a set of
functions and types that resemble the multiprocessing capabilities of old Lisp Machines.

This backward compatibility is why tasks or threads are called "processes". However,
they should not be confused with operating system processes, which are made of programs
running in separate contexts and without access to each other’s memory.

Chapter 3: Extensions 127

The implementation of threads in ECL is purely native and based on Posix Threads wherever
available. The use of native threads has advantages. For instance, they allow for non-
blocking file operations, so that while one task is reading a file, a different one is performing
a computation.

As mentioned above, tasks share the same memory, as well as the set of open files and
sockets. This manifests on two features. First of all, different tasks can operate on the
same lisp objects, reading and writing their slots, or manipulating the same arrays. Second,
while threads share global variables, constants and function definitions they can also have
thread-local bindings to special variables that are not seen by other tasks.

The fact that different tasks have access to the same set of data allows both for flexibility
and a greater risk. In order to control access to different resources, ECL provides the user
with locks, as explained in the next section.
3.4.2 Processes (native threads)

Process is a primitive representing native thread.
3.4.3 Processes dictionary

cl_object mp_all_processes () [Function]

mp:all-processes [Function]
Returns the list of processes associated to running tasks. The list is a fresh new one
and can be destructively modified. However, it may happen that the output list is
not up to date, because some of the tasks have expired before this copy is returned.

cl_object mp_exit_process () ecl_attr_noreturn [Function]

mp:exit-process [Function]
When called from a running task, this function immediately causes the task to finish.
When invoked from the main thread, it is equivalent to invoking ext:quit with exit

code 0.
cl_object mp_interrupt_process (cl-object process, cl_object [Function]
function)
mp: interrupt-process process function [Function]

Interrupt a task. This function sends a signal to a running process. When the task
is free to process that signal, it will stop whatever it is doing and execute the given
function.

WARNING: Use with care! Interrupts can happen anywhere, except in code regions
explicitely protected with mp:without-interrupts. This can lead to dangerous sit-
uations when interrupting functions which are not thread safe. In particular, one has
to consider:

e Reentrancy: Functions, which usually are not called recursively can be re-entered
during execution of the interrupt.

e Stack unwinding: Non-local jumps like throw or return-from in the interrupting
code will handle unwind-protect forms like usual. However, the cleanup forms
of an unwind-protect can still be interrupted. In that case the execution flow
will jump to the next unwind-protect.

128 ECL Manual

Note also that no guarantees are made that functions from the Common Lisp standard
or ECL extensions are interrupt safe (although most of them will be). In particular,
the compiler (compile and compile-file functions), FFI calls and aquire/release
functions for multithreading synchronization objects like mutexes or condition vari-
ables should not be interrupted by mp:interrupt-process.

Example:
Kill a task that is doing nothing (See mp:process-kill).

(flet ((task-to-be-killed ()
;3 Infinite loop
(loop (sleep 1))))
(let ((task (mp:process-run-function ’background #’task-to-be-killed)))|]
(sleep 10)
(mp:interrupt-process task ’mp:exit-process)))

cl_object mp_make_process (cl-narg narg, ...) [Function]

mp :make-process &key name initial-bindings [Function]
Create a new thread. This function creates a separate task with a name set to name
and no function to run. See also mp:process-run-function. Returns newly created
process.

If initial-bindings is false, the new process inherits local bindings to special variables
(i.e. binding a special variable with let or let*) from the current thread, otherwise
the new thread possesses no local bindings.

cl_object mp_process_active_p (cl_object process) [Function]

mp:process—-active-p process [Function]
Returns t when process is active, nil otherwise. Signals an error if process doesn’t
designate a valid process.

cl_object mp_process_enable (cl.object process) [Function]

mp:process—enable process [Function]
The argument to this function should be a process created by mp:make-process,
which has a function associated as per mp:process-preset but which is not yet
running. After invoking this function a new thread will be created in which the
associated function will be executed. Returns process if the thread creation was
successful and nil otherwise.

(defun process-run-function (process-name process-function &rest args)f]
(let ((process (mp:make-process name)))
(apply #’mp:process-preset process function args)
(mp:process-enable process)))

cl_object mp_process_yield () [Function]

mp:process-yield [Function]
Yield the processor to other threads.

Chapter 3: Extensions 129

cl_object mp_process_join (cl-object process) [Function]
mp:process—join process [Function]
Suspend current thread until process exits. Return the result values of the process
function.
cl_object mp_process_kill (cl-object process) [Function]
mp:process-kill process [Function]
Try to stop a running task. Killing a process may fail if the task has disabled inter-
rupts.
Example:

Kill a task that is doing nothing

(flet ((task-to-be-killed ()
;; Infinite loop
(loop (sleep 1))))
(let ((task (mp:process-run-function ’background #’task-to-be-killed)))|]
(sleep 10)
(mp:process-kill task)))

cl_object mp_process_suspend (cl-object process) [Function]

mp : process-suspend process [Function]
Suspend a running process. May be resumed with mp:process-resume.

Example:

(flet ((ticking-task ()
;; Infinite loop
(loop
(sleep 1)
(print :tick))))
(print "Running task (one tick per second)")
(let ((task (mp:process-run-function ’background #’ticking-task)))]}
(sleep 5)
(print "Suspending task for 5 seconds")
(mp: process-suspend task)
(sleep 5)
(print "Resuming task for 5 seconds")
(mp:process-resume task)
(sleep 5)
(print "Killing task")
(mp:process-kill task)))

cl_object mp_process_resume (cl.object process) [Function]

mp : process-resume process [Function]
Resumes a suspended process. See example in mp:process-suspend.

cl_object mp_process_name (cl-object process) [Function]

mp:process—name process [Function]
Returns the name of a process (if any).

130 ECL Manual

cl_object mp_process_preset (cl.narg narg, cl_object process, [Function]
cl_object function, ...)

mp:process-preset process function &rest function-args [Function]
Associates a function to call with the arguments function-args, with a stopped process.
The function will be the entry point when the task is enabled in the future.

See mp:process-enable and mp:process-run-function.

cl_object mp_process_run_function (cl_narg narg, cl_object [Function]
name, cl_object function, ...)

mp: process-run-function name function &rest function-args [Function]
Create a new process using mp:make-process, associate a function to it and start it
using mp:process-preset.

Example:

(flet ((count-numbers (end-number)
(dotimes (i end-number)
(format t ""%;;; Counting: ~i" i)
(terpri)
(sleep 1))))

(mp:process-run-function ’counter #’count-numbers 10))

cl_object mp_current_process () [Function]

mp: *current-process* [Variable]
Returns/holds the current process of a caller.

cl_object mp_block_signals () [Function]
mp:block-signals [Function]
Blocks process for interrupts and returns the previous sigmask.

See mp:interrupt-process.

cl_object mp_restore_signals (cl_object sigmask) [Function]

mp:restore-signals sigmask [Function]
Enables the interrupts from sigmask.

See mp:interrupt-process.

mp:without-interrupts &body body [Macro]
Executes body with all deferrable interrupts disabled. Deferrable interrupts arriving
during execution of the body take effect after body has been executed.

Deferrable interrupts include most blockable POSIX signals, and
mp:interrupt-process. Does not interfere with garbage collection, and unlike in
many traditional Lisps using userspace threads, in ECL mp:without-interrupts
does not inhibit scheduling of other threads.

Binds mp:allow-with-interrupts, mp:with-local-interrupts and
mp:with-restored-interrupts as a local macros.

Chapter 3: Extensions 131

mp:with-restored-interrupts executes the body with interrupts enabled if and
only if the mp:without-interrupts was in an environment in which interrupts were
allowed.

mp:allow-with-interrupts allows the mp:with-interrupts to take effect during
the dynamic scope of its body, unless there is an outer mp:without-interrupts
without a corresponding mp:allow-with-interrupts.

mp:with-local-interrupts executes its body with interrupts enabled provided that
there is an mp:allow-with-interrupts for every mp:without-interrupts surround-
ing the current one. mp:with-local-interrupts is equivalent to:

(mp:allow-with-interrupts (mp:with-interrupts ...))

Care must be taken mnot to let either mp:allow-with-interrupts or
mp:with-local-interrupts appear in a function that escapes from inside the
mp:without-interrupts in:

(mp:without-interrupts
;5 The body of the lambda would be executed with WITH-INTERRUPTS allowed]
;; regardless of the interrupt policy in effect when it is called.|}
(lambda () (mp:allow-with-interrupts ...)))

(mp:without-interrupts
;; The body of the lambda would be executed with interrupts enabled]]
;; regardless of the interrupt policy in effect when it is called.|}
(lambda () (mp:with-local-interrupts ...)))

mp:with-interrupts &body body [Macro]
Executes body with deferrable interrupts conditionally enabled. If there are pending
interrupts they take effect prior to executing body.

As interrupts are normally allowed mp:with-interrupts only makes sense if
there is an outer mp:without-interrupts with a corresponding mp:allow-with-
interrupts: interrupts are not enabled if any outer mp:without-interrupts is not
accompanied by mp:allow-with-interrupts.

3.4.4 Locks (mutexes)

Locks are used to synchronize access to the shared data. Lock may be owned only by a
single thread at any given time. Recursive locks may be re-acquired by the same thread
multiple times (and non-recursive locks can’t).

3.4.5 Locks dictionary

cl_object ecl_make_lock (clobject name, bool recursive) [Function]
C/C++ equivalent of mp:make-lock without key arguments.

See mp :make-lock.

mp :make-lock &key name (recursive nil) [Function]
Creates a lock named name. If recursive is true, a recursive lock is created that can
be locked multiple times by the same thread.

132 ECL Manual

cl_object mp_recursive_lock_p (cl-object lock) [Function]

mp:recursive-lock-p lock [Function]
Predicate verifying if lock is recursive.

cl_object mp_holding_lock_p (cl_object lock) [Function]

mp:holding-lock-p lock [Function]
Predicate verifying if the current thread holds lock.

cl_object mp_lock_name (cl-object lock) [Function]

mp:lock_name lock [Function]

Returns the name of lock.

cl_object mp_lock_owner (cl-object lock) [Function]

mp:lock-owner lock [Function]
Returns the process owning lock or nil if the mutex is not owned by any process.
For testing whether the current thread is holding a lock see mp:holding-lock-p.

cl_object mp_lock_count (cl-object lock) [Function]

mp:lock-count lock [Function]
Returns number of times lock has been locked.

cl_object mp_get_lock_wait (cl_object lock) [Function]
Grabs a lock (blocking if lock is already taken). Returns ECL_T.

cl_object mp_get_lock_nowait [Function]
Grabs a lock if free (non-blocking). If lock is already taken returns ECL_NIL, otherwise
ECL_T.

mp:get-lock lock &optional (wait t) [Function]

Tries to acquire a lock. wait indicates whether function should block or give up if
lock is already taken. If wait is nil, immediately return, if wait is a real number wait
specifies a timeout in seconds and otherwise block until the lock becomes available.
If lock can’t be acquired return nil. Successful operation returns t. Will signal an
error if the mutex is non-recursive and current thread already owns the lock.

cl_object mp_giveup_lock (cl-object lock) [Function]

mp:giveup-lock lock [Function]
Releases lock and returns t. May signal an error if the lock is not owned by the
current thread.

mp:with-lock (lock-form) &body body [Macro]
Acquire lock for the dynamic scope of body, which is executed with the lock held by
current thread. Returns the values of body.

3.4.6 Readers-writer locks

Readers-writer (or shared-exclusive) locks allow concurrent access for read-only operations,
while write operations require exclusive access. mp:rwlock is non-recursive and cannot be
used together with condition variables.

Chapter 3: Extensions 133

3.4.7 Read-Write locks dictionary

cl_object ecl_make_rwlock (cl-object name) [Function]
C/C++ equivalent of mp:make-rwlock without key arguments.

See mp:make-rwlock.

mp:make-rwlock &key name [Function]
Creates a rwlock named name.

cl_object mp_rwlock_name (cl-object lock) [Function]

mp:rwlock-name lock [Function]
Returns the name of lock.

cl_object mp_get_rwlock_read_wait (cl_object lock) [Function]
Acquires lock (blocks if lock is already taken with mp:get-rwlock-write. Lock may
be acquired by multiple readers). Returns ECL_T.

cl_object mp_get_rwlock_read_nowait [Function]
Tries to acquire lock. If lock is already taken with mp:get-rwlock-write returns
ECL_NIL, otherwise ECL_T.

mp: get-rwlock-read lock &optional (wait t) [Function]
Tries to acquire lock. wait indicates whenever function should block or give up if lock
is already taken with mp:get-rwlock-write.

cl_object mp_get_rwlock_write_wait (cl-object lock) [Function]
Acquires lock (blocks if lock is already taken). Returns ECL_T.

cl_object mp_get_rwlock_write_nowait [Function]
Tries to acquire lock. If lock is already taken returns ECL_NIL, otherwise ECL_T.

mp: get-rwlock-write lock &optional (wait t) [Function]
Tries to acquire lock. wait indicates whenever function should block or give up if lock
is already taken.

cl_object mp_giveup_rwlock_read (cl-object lock) [Function]

cl_object mp_giveup_rwlock_write (cl_object lock) [Function]

mp: giveup-rwlock-read lock [Function]

mp:giveup-rwlock-write lock [Function]
Release lock.

mp:with-rwlock (lock operation) &body body [Macro]

Acquire rwlock for the dynamic scope of body for operation operation, which is
executed with the lock held by current thread. Returns the values of body.

Valid values of argument operation are :read or :write (for reader and writer access
accordingly).

3.4.8 Condition variables

Condition variables are used to wait for a particular condition becoming true (e.g new client
connects to the server).

134 ECL Manual

3.4.9 Condition variables dictionary

cl_object mp_make_condition_variable () [Function]

mp:make-condition-variable [Function]
Creates a condition variable.

cl_object mp_condition_variable_wait (cl-object cv, cl-object [Function]
lock)
mp:condition-variable-wait cv lock [Function]

Release lock and suspend thread wuntil mp:condition-variable-signal or
mp:condition-variable-broadcast is called on cv. When thread resumes re-aquire
lock. Always returns t. May signal an error if lock is not owned by the current
thread.

Note: In some circumstances, the thread may wake up even if no call to
mp:condition-variable-signal or mp:condition-variable-broadcast has
happened. It is recommended to check for the condition that triggered the wait in a
loop around any mp:condition-variable-wait call.

Note: While the condition variable is blocked waiting for a signal or broadcast event,
calling mp:condition-variable-wait from further threads must be done using the
same mutex as that used by the threads that are already waiting on this condition
variable. The behaviour is undefined if this constraint is violated.

cl_object mp_condition_variable_timedwait (cl-object cv, [Function]
cl_object lock, cl_object seconds)

mp:condition-variable-timedwait cv lock seconds [Function]
mp:condition-variable-wait which timeouts after seconds seconds. Returns nil
on timeout and t otherwise. May signal an error if lock is not owned by the current

thread.
cl_object mp_condition_variable_signal (cl-object cv) [Function]
mp:condition-variable-signal cv [Function]

Wake up at least one of the waiters of cv. Usually, this will wake up only a single
thread, but it may also wake up multiple threads. Always returns t.

See mp:condition-variable-wait.

cl_object mp_condition_variable_broadcast (cl-object cv) [Function]
mp:condition-variable-broadcast cv [Function]
Wake up all waiters of cv. Always returns t.

See mp:condition-variable-wait.

3.4.10 Semaphores

Semaphores are objects which allow an arbitrary resource count. Semaphores are used
for shared access to resources where number of concurrent threads allowed to access it is
limited.

Chapter 3: Extensions 135

3.4.11 Semaphores dictionary

cl_object ecl_make_semaphore (clobject name, cl_fixnum count) [Function]
C/C++ equivalent of mp:make-semaphore without key arguments.
See mp:make-semaphore.

mp : make-semaphore &key name count [Function]
Creates a counting semaphore name with a resource count count.

cl_object mp_semaphore_name (cl_object semaphore) [Function]

mp : semaphore-name semaphore [Function]
Returns the name of semaphore.

cl_object mp_semaphore_count (cl_object semaphore) [Function]

mp : semaphore-count semaphore [Function]
Returns the resource count of semaphore.

cl_object mp_semaphore_wait_count (cl-object semaphore) [Function]

mp : semaphore-wait-count semaphore [Function]
Returns the number of threads waiting on semaphore.

cl_object mp_sempahore_wait(cl_object semaphore, cl_object [Function]

count, cl_object timeout)
mp: semaphore-wait semaphore count timeout [Function]

Decrement the count of semaphore by count if the count would not be negative.

Else blocks until the semaphore can be decremented. Returns the old count of
semaphore on success.

If timeout is not nil, it is the maximum number of seconds to wait. If the count
cannot be decremented in that time, returns nil without decrementing the count.

cl_object mp_wait_on_semaphore (cl_narg n, cl_object sem, ...) [Function]

mp:wait-on-semaphore semaphore &key count timeout [Function]

Waits on semaphore until it can grab count resources.
Returns resource count before semaphore was acquired.

This function is equivalent to (mp:semaphore-wait semaphore count timeout)

cl_object mp_try_get_semaphore (cl_narg n, cl_object sem, ...) [Function]

mp: try-get-semaphore semaphore &optional count [Function]

Tries to get a semaphore (non-blocking).

If there is no enough resource returns nil, otherwise returns resource count before
semaphore was acquired.

This function is equivalent to (mp:semaphore-wait semaphore count 0)

cl_object mp_signal_semaphore (cl_narg n, cl_object sem, ...);

mp:signal-semaphore semaphore &optional (count 1)
Releases count units of a resource on semaphore. Returns no values.

[Function]

[Function]

136 ECL Manual

3.4.12 Barriers

Barriers are objects which for a group of threads make them stop and they can’t proceed
until all other threads reach the barrier.

3.4.13 Barriers dictionary

cl_object ecl_make_barrier (cl.object name, cl_index count) [Function]
C/C++ equivalent of mp:make-barrier without key arguments.

See mp:make-barrier.

mp :make-barrier count &key name [Function]
Creates a barrier name with a thread count count.

mp:barrier-count barrier [Function]
Returns the count of barrier.

mp:barrier-name barrier [Function]
Returns the name of barrier.

mp:barrier-arrivers-count barrier [Function]
Returns the number of threads waiting on barrier.

mp:barrier-wait barrier [Function]
The caller thread waits on barrier. When the barrier is saturated then all threads
waiting on it are unblocked. Returns t if the calling thread had to wait to pass the
barrier, :unblocked if the barrier is enabled but could be passed without waiting and
nil if the barrier is disabled.

mp:barrier-unblock barrier &key reset-count disable kill-waiting [Function]
Forcefully wakes up all processes waiting on the barrier.

reset-count when used resets barrier counter.

disable disables or enables barrier. When a barrier is disabled then all calls to
mp:barrier-wait immedietely return.

kill-waiting is used to kill all woken threads.
Returns no values.

3.4.14 Atomic operations

ECL supports both compare-and-swap and fetch-and-add (which may be faster on some
processors) atomic operations on a number of different places. The compare-and-swap
macro is user extensible with a protocol similar to setf.

3.4.15 Atomic operations dictionary

C Reference

cl_object ecl_compare_and_swap (cl_object *slot, cl_object old, [Function]
cl_object new)
Perform an atomic compare and swap operation on slot and return the previous value
stored in slot. If the return value is equal to old (comparison by ==), the operation
has succeeded. This is a inline-only function defined in "ecl/ecl_atomics.h".

Chapter 3: Extensions 137

cl_object ecl_atomic_incf (cl.object *slot, cl_object increment) [Function]
cl_object ecl_atomic_incf_by_fixnum (cl.object *slot, cl_fixnum [Function]
increment)

Atomically increment slot by the given increment and return the previous value stored
in slot. The consequences are undefined if the value of slot is not of type fixnum. ecl_
atomic_incf signals an error if increment is not of type fixnum. This is a inline-only
function defined in "ecl/ecl_atomics.h".

cl_index ecl_atomic_index_incf (clindex *slot); [Function]
Atomically increment slot by 1 and return the new value stored in slot.

cl_object ecl_atomic_get (cl_object *slot) [Function]
Perform a volatile load of the object in slot and then atomically set slot to ECL_NIL.
Returns the value previously stored in slot.

void ecl_atomic_push (cl_object *slot, cl_object o) [Function]

cl_object ecl_atomic_pop (cl-object *slot) [Function]
Like push/pop but atomic.

Lisp Reference

mp:atomic-incf place &optional (increment 1) [Macro]

mp:atomic-decf place &optional (increment 1) [Macro]
Atomically increments/decrements the fixnum stored in place by the given increment
and returns the value of place before the increment. Incrementing and decrementing
is done using modular arithmetic, so that mp:atomic-incf of a place whose value is
most-positive-fixnum by 1 results in most-negative-fixnum stored in place.

Currently the following places are supported:

car, cdr, first, rest, svref, symbol-value, slot-value, clos:standard-instance-|j
access, clos:funcallable-standard-instance-access.

For slot-value, the object should have no applicable methods defined for
slot-value-using-class or (setf slot-value-using-class).

The consequences are undefined if the value of place is not of type fixnum.

mp: compare-and-swap place old new [Macro]
Atomically stores new in place if old is eq to the current value of place. Returns the
previous value of place: if the returned value is eq to old, the swap was carried out.

Currently, the following places are supported:

car, cdr, first, rest, svref, symbol-plist, symbol-value, slot-value,
clos:standard-instance-access, clos:funcallable-standard-instance-
access, a structure slot accessor? or any other place for which a compare-and-swap
expansion was defined by mp:defcas or mp:define-cas-expander.

2 The creation of atomic structure slot accessors can be deactivated by supplying a (:atomic-accessors nil)
option to defstruct.

138 ECL Manual

For slot-value, slot-unbound is called if the slot is unbound unless old is eq to
si:unbound, in which case old is returned and new is assigned to the slot. Addition-
ally, the object should have no applicable methods defined for slot-value-using-
class or (setf slot-value-using-class).

mp:atomic-update place update-fn &rest arguments [Macro]
Atomically updates the CAS-able place to the value returned by calling update-fn
with arguments and the old value of place. update-fn must be a function accepting
(1+ (length arguments)) arguments. Returns the new value which was stored in
place

place may be read and update-fn may be called more than once if multiple threads
are trying to write to place at the same time.

Example:

Atomic update of a structure slot. If the update would not be atomic, the result
would be unpredictable.

(defstruct test-struct
(slotl 0))
(let ((struct (make-test-struct)))
(mapc #’mp:process-join
(loop repeat 100
collect (mp:process-run-function
nn
(lambda O
(loop repeat 1000 do
(mp:atomic-update (test-struct-slotl struct) #’1+)]]
(sleep 0.00001))))))
(test-struct-slotl struct))

=> 100000
mp:atomic-push obj place [Macro]
mp:atomic-pop place [Macro]

Like push/pop, but atomic. place must be CAS-able and may be read multiple times
before the update succeeds.

mp:define-cas-expander accessor lambda-list &body body [Macro]

Define a compare-and-swap expander similar to define-setf-expander. Defines
the compare-and-swap-expander for generalized-variables (accessor ...). When a
form (mp:compare-and-swap (accessor argl ... argn) old new) is evaluated, the
forms given in the body of mp:define-cas-expander are evaluated in order with
the parameters in lambda-list bound to argl ... argn. The body must return six
values

(varl ... vark)

(form1 ... formk)

old-var

new-var

compare—and-swap—form
volatile-access-form

Chapter 3: Extensions 139

in order (Note that old-var and new-var are single variables, unlike in define-setf-
expander). The whole compare-and-swap form is then expanded into
(let* ((varl froml) ... (vark formk)
(old-var old-form)
(new-var new-form))
compare-and-swap-form) .

Note that it is up to the user of this macro to ensure atomicity for the resulting
compare-and-swap expansions.

Example

mp:define-cas-expander can be used to define a more convienient compare-and-
swap expansion for a class slot. Consider the following class:
(defclass food (O
((name :initarg :name)
(deliciousness :initform 5 :type ’(integer 0O 10)
raccessor food-deliciousness)))

(defvar *spédtzle*x (make-instance ’food :name "Spatzle"))
We can’t just use mp:compare-and-swap on *spdtzlex:

> (mp:compare-and-swap (food-deliciousness *x*) 5 10)

Condition of type: SIMPLE-ERROR
Cannot get the compare-and-swap expansion of (FOOD-DELICIOUSNESS *Xx) .||

We can use symbol-value, but let’s define a more convenient compare-and-swap
expander:

(mp:define-cas-expander food-deliciousness (food)
(let ((old (gensym))
(new (gensym)))
(values nil nil old new
‘(progn (check-type ,new (integer 0 10))
(mp: compare-and-swap (slot-value ,food ’deliciousness)]]
,old ,new))
¢ (food-deliciousness ,food))))

Now finally, we can safely store our rating:

> (mp:compare-and-swap (food-deliciousness *spatzlex) 5 10)

5

mp:defcas accessor cas-fun &optional documentation [Macro]
Define a compare-and-swap expansion similar to the short form of defsetf. Defines
an expansion

(compare-and-swap (accessor argl ... argn) old new)
=> (cas-fun argl ... argn old new)

Note that it is up to the user of this macro to ensure atomicity for the resulting
compare-and-swap expansions.

140 ECL Manual

mp:remcas symbol [Function]
Remove a compare-and-swap expansion. It is an equivalent of fmakunbound (setf
symbol) for cas expansions.

mp: get-cas—-expansion place &optional environment [Function]
Returns the compare-and-swap expansion forms and variables as defined in
mp:define-cas-expander for place as six values.

3.5 Signals and Interrupts

3.5.1 Problems associated to signals

POSIX contemplates the notion of "signals", which are events that cause a process or a
thread to be interrupted. Windows uses the term "exception", which includes also a more
general kind of errors.

In both cases the consequence is that a thread or process may be interrupted at any time,
either by causes which are intrinsic to them (synchronous signals), such as floating point
exceptions, or extrinsic (asynchronous signals), such as the process being aborted by the
user.

Of course, those interruptions are not always welcome. When the interrupt is delivered and
a handler is invoked, the thread or even the whole program may be in an inconsistent state.
For instance the thread may have acquired a lock, or it may be in the process of filling
the fields of a structure. Furthermore, sometimes the signal that a process receives may
not even be related to it, as in the case when a user presses Cltr-C and a SIGINT signal
is delivered to an arbitrary thread, or when the process receives the Windows exception
CTRL_CLOSE_EVENT denoting that the terminal window is being closed.

Understanding this, POSIX restricts severely what functions can be called from a signal
handler, thereby limiting its usefulness. However, Common Lisp users expect to be able to
handle floating point exceptions and to gracefully manage user interrupts, program exits,
etc. In an attempt to solve this seemingly impossible problem, ECL has taken a pragmatic
approach that works, it is rather safe, but involves some work on the ECL maintainers and
also on users that want to embed ECL as a library.

3.5.2 Kinds of signals

3.5.2.1 Synchronous signals

The name derives from POSIX and it denotes interrupts that occur due to the code that a
particular thread executes. They are largely equivalent to C++ and Java exceptions, and in
Windows they are called "unchecked exceptions."

Common Lisp programs may generate mostly three kinds of synchronous signals:

e Floating point exceptions, that result from overflows in computations, division by zero,
and so on.

e Access violations, such as dereferencing NULL pointers, writing into regions of memory
that are protected, etc.

e Process interrupts.

Chapter 3: Extensions 141

The first family of signals are generated by the floating point processing hardware in the
computer, and they typically happen when code is compiled with low security settings,
performing mathematical operations without checks.

The second family of signals may seem rare, but unfortunately they still happen quite
often. One scenario is wrong code that handles memory directly via FFI. Another one is
undetected stack overflows, which typically result in access to protected memory regions.
Finally, a very common cause of these kind of exceptions is invoking a function that has
been compiled with very low security settings with arguments that are not of the expected
type — for instance, passing a float when a structure is expected.

The third family is related to the multiprocessing capabilities in Common Lisp systems and
more precisely to the mp:interrupt-process function which is used to kill, interrupt and
inspect arbitrary threads. In POSIX systems ECL informs a given thread about the need
to interrupt its execution by sending a particular signal from the set which is available to
the user.

Note that in neither of these cases we should let the signal pass unnoticed. Access violations
and floating point exceptions may propagate through the program causing more harm than
expected, and without process interrupts we will not be able to stop and cancel different
threads. The only question that remains, though, is whether such signals can be handled
by the thread in which they were generated and how.

3.5.2.2 Asynchronous signals

In addition to the set of synchronous signals or "exceptions", we have a set of signals that
denote "events", things that happen while the program is being executed, and "requests".
Some typical examples are:

e Request for program termination (SIGKILL, SIGTERM).
e Indication that a child process has finished.

e Request for program interruption (SIGINT), typically as a consequence of pressing a
key combination, e.g. Ctrl-C.

The important difference with synchronous signals is that we have no thread that causes
the interrupt and thus there is no preferred way of handling them. Moreover, the operating
system will typically dispatch these signals to an arbitrary thread, unless we set up mech-
anisms to prevent it. This can have nasty consequences if the incoming signal interrupt a
system call, or leaves the interrupted thread in an inconsistent state.

3.5.3 Signals and interrupts in ECL

The signal handling facilities in ECL are constrained by two needs. First of all, we can
not ignore the synchronous signals mentioned in Section 3.5.2.1 [Signals and Interrupts -
Synchronous signals], page 140. Second, all other signals should cause the least harm to
the running threads. Third, when a signal is handled synchronously using a signal handler,
the handler should do almost nothing unless we are completely sure that we are in an
interruptible region, that is outside system calls, in code that ECL knows and controls.

The way in which this is solved is based on the existence of both synchronous and asyn-
chronous signal handling code, as explained in the following two sections.

142 ECL Manual

3.5.3.1 Handling of asynchronous signals

In systems in which this is possible, ECL creates a signal handling thread to detect and
process asynchronous signals (See Section 3.5.2.2 [Signals and Interrupts - Asynchronous
signals|, page 141). This thread is a trivial one and does not process the signals itself:
it communicates with, or launches new signal handling threads to act accordingly to the
denoted events.

The use of a separate thread has some nice consequences. The first one is that those signals
will not interrupt any sensitive code. The second one is that the signal handling thread
will be able to execute arbitrary lisp or C code, since it is not being executed in a sensitive
context. Most important, this style of signal handling is the recommended one by the
POSIX standards, and it is the one that Windows uses.

The installation of the signal handling thread is dictated by a boot time option, ECL_0OPT_
SIGNAL_HANDLING_THREAD (see Table 1.1 for a summary of boot options), and it will only
be possible in systems that support either POSIX or Windows threads.

Systems which embed ECL as an extension language may wish to deactivate the signal
handling thread using the previously mentioned option. If this is the case, then they should
take appropriate measures to avoid interrupting the code in ECL when such signals are
delivered.

Systems which embed ECL and do not mind having a separate signal handling thread
can control the set of asynchronous signals which is handled by this thread. This is done
again using the appropriate boot options such as ECL_OPT_TRAP_SIGINT, ECL_OPT_TRAP_
SIGTERM, etc. Note that in order to detect and handle those signals, ECL must block them
from delivery to any other thread. This means changing the sigprocmask() in POSIX
systems or setting up a custom SetConsoleCtrlHandler () in Windows.

3.5.3.2 Handling of synchronous signals

We have already mentioned that certain synchronous signals and exceptions can not be
ignored and yet the corresponding signal handlers are not able to execute arbitrary code.
To solve this seemingly impossible contradiction, ECL uses a simple solution, which is to
mark the sections of code which are interruptible, and in which it is safe for the handler to
run arbitrary code. All other regions would be considered "unsafe" and would be protected
from signals and exceptions.

In principle this "marking" of safe areas can be done using POSIX functions such as
pthread_sigmask() or sigprocmask(). However in practice this is slow, as it involves
at least a function call, resolving thread-local variables, etc, etc, and it will not work in
Windows.

Furthermore, sometimes we want signals to be detected but not to be immediately processed.
For instance, when reading from the terminal we want to be able to interrupt the process,
but we can not execute the code from the handler, since the C function which is used to
read from the terminal, read (), may have left the input stream in an inconsistent, or even
locked state.

The approach in ECL is more lightweight: we install our own signal handler and use a
thread-local variable as a flag that determines whether the thread is executing interrupt safe
code or not. More precisely, if the variable ecl_process_env()->disable_interrupts is
set, signals and exceptions will be postponed and then the information about the signal is

Chapter 3: Extensions 143

queued. Otherwise the appropriate code is executed: for instance invoking the debugger,
jumping to a condition handler, quitting, etc.

Systems that embed ECL may wish to deactivate completely these signal handlers. This
is done using the boot options, ECL_OPT_TRAP_SIGFPE, ECL_OPT_TRAP_SIGSEGV, ECL_OPT_
TRAP_SIGBUS, ECL_OPT_TRAP_INTERRUPT_SIGNAL.

Systems that embed ECL and want to allow handling of synchronous signals should take
care to also trap the associated lisp conditions that may arise. This is automatically taken
care of by functions such as si_safe_eval, and in all other cases it can be solved by
enclosing the unsafe code in a ECL_CATCH_ALL frame.

3.5.4 Considerations when embedding ECL

There are several approaches when handling signals and interrupts in a program that uses
ECL. One is to install your own signal handlers. This is perfectly fine, but you should
respect the same restrictions as ECL. Namely, you may not execute arbitrary code from
those signal handlers, and in particular it will not always be safe to execute Common Lisp
code from there.

If you want to use your own signal handlers then you should set the appropriate options
before invoking c1_boot, as explained in ecl_set_option. Note that in this case ECL will
not always be able to detect floating point exceptions.

The other option is to let ECL handle signals itself. This would be safer when the dominant
part of the code is Common Lisp, but you may need to protect the code that embeds ECL
from being interrupted using either the macros ecl_disable_interrupts and ecl_enable_
interrupts or the POSIX functions pthread_sigmaks and sigprocmask.

3.5.5 Signals Reference

mp:with-interrupts &body body [Macro]

mp:without-interrupts &body body [Macro]
Execute code with interrupts optionally enabled /disabled, See Section 3.4.3 [Processes
dictionary], page 127.

ext:unix-signal-received [Condition]
Unix signal condition

Class Precedence List condition, t
Methods

ext:unix-signal-received-code condition [Function]
Returns the signal code of condition

ext:get-signal-handler code [Function]
Queries the currently active signal handler for code.

ext:set-signal-handler code handler [Function]
Arranges for the signal code to be caught in all threads and sets the signal handler
for it. The value of handler modifies the signal handling behaviour as follows:

handler is a function designator
The function designated by handler will be invoked with no arguments

144 ECL Manual

handler is a symbol denoting a condition type
A continuable error of the given type will be signaled

handler is equal to code
A condition of type ext:unix-signal-received with the corresponding
signal code will be signaled

handler is nil
The signal will be caught but no handler will be called

ext:catch-signal code flag &key process [Function]
Changes the action taken on receiving the signal code. flag can be one of the following;:

nil or :ignore
Ignore the signal

:default Use the default signal handling strategy of the operating system

t or :catch
Catch the signal and invoke the signal handler as given by
ext:get-signal-handler

:mask, :unmask
Change the signal mask of either a) the not yet enabled process or b) the
current process, if process is not supplied

Returns t on success and nil on failure.

Example:
CL-USER> (ext:catch-signal ext:+SIGPIPE+ :catch)
T
CL-USER> (ext:get-signal-handler ext:+SIGPIPE+)
NIL
CL-USER> (ext:set-signal-handler ext:+SIGPIPE+

#’ (lambda QO
(format t "SIGPIPE detected in process: ~“a”™}" mp:
#<bytecompiled-function 0x25ffca8>
Passing the SIGPIPE signal to the ECL program with killall -s SIGPIPE ecl results in
the output:

SIGPIPE detected in process: #<process TOP-LEVEL OxlecdfcO>

3.6 Memory Management

3.6.1 Introduction

ECL relies on the Boehm-Weiser garbage collector for handling memory, creating and de-
stroying objects, and handling finalization of objects that are no longer reachable. The
use of a garbage collector, and in particular the use of a portable one, imposes certain
restrictions that may appear odd for C/C++ programmers.

In this section we will discuss garbage collection, how ECL configures and uses the memory
management library, what users may expect, how to handle the memory and how to control
the process by which objects are deleted.

Chapter 3: Extensions 145

3.6.2 Boehm-Weiser garbage collector

First of all, the garbage collector must be able to determine which objects are alive and
which are not. In other words, the collector must able to find all references to an object.
One possibility would be to know where all variables of a program reside, and where is the
stack of the program and its size, and parse all data there, discriminating references to lisp
objects. To do this precisely one would need a very precise control of the data and stack
segments, as well as how objects are laid out by the C compiler. This is beyond ECL’s scope
and wishes and it can make coexistence with other libraries (C++, Fortran, etc) difficult.

The Boehm-Weiser garbage collector, on the other hand, is a conservative garbage collec-
tor. When scanning memory looking for references to live data, it guesses, conservatively,
whether a word is a pointer or not. In case of doubt it will consider it to be a pointer and
add it to the list of live objects. This may cause certain objects to be retained longer than
what an user might expect but, in our experience, this is the best of both worlds and ECL
uses certain strategies to minimize the amount of misinterpreted data.

More precisely, ECL uses the garbage collector with the following settings:

e The collector will not scan the data sectors. If you embed ECL in another program,
or link libraries with ECL, you will have to notify ECL which variables point to lisp
objects.

e The collector is configured to ignore pointers that point to the middle of allocated
objects. This minimizes the risk of misinterpreting integers as pointers to live objects.

e It is possible to register finalizers that are invoked when an object is destroyed, but
for that you should use ECL’s API and understand the restriction described later in
Section 3.6.5 [Finalization|, page 146.

Except for finalization, which is a questionable feature, the previous settings are not very
relevant for Common Lisp programmers, but are crucial for people interested in embedding
in or cooperating with other C, C++ or Fortran libraries. Care should be taken when
manipulating directly the GC library to avoid interfering with ECL’s expectations.

3.6.3 Memory limits

Beginning with version 9.2.1, ECL operates a tighter control of the resources it uses. In
particular, it features explicit limits in the four stacks and in the amount of live data. These
limits are optional, can be changed at run time, but they allow users to better control the
evolution of a program, handling memory and stack overflow gracefully via the Common
Lisp condition system.

The customizable limits are listed in Table 3.1, but they need a careful description.

e ext:heap-size limits the total amount of memory which is available for lisp objects.
This is the memory used when you create conses, arrays, structures, etc.

e ext:c-stack controls the size of the stack for compiled code, including ECL’s library
itself. This limit is less stringent than the others. For instance, when code is compiled
with low safety settings, checks for this stack limit are usually omitted, for performance
reasons.

e ext:binding-stack controls the number of nested bindings for special variables. The
current value is usually safe enough, unless you have deep recursive functions that bind
special variables, which is not really a good idea.

146 ECL Manual

e ext:frame-stack controls the number of nested blocks, taghodys and other control
structures. It affects both interpreted and compiled code, but quite often compiled
code optimizes away these stack frames, saving memory and not being affected by this
limit.

e ext:lisp-stack controls the size of the interpreter stack. It only affects interpreted
code.

If you look at Table 3.1, some of these limits may seem very stringent, but they exist to
allow detecting and correcting both stack and memory overflow conditions. Larger values
can be set systematically either in the ~/.eclrc initialization file, or using the command
line options from the table.

3.6.4 Memory conditions

When ECL surpasses or approaches the memory limits it will signal a Common
Lisp condition. There are two types of conditions, ext:stack-overflow and
ext:storage-exhausted, for stack and heap overflows, respectively. Both errors are
correctable, as the following session shows:

> (defun foo (x) (foo x))

F0O

> (foo 1)

C-STACK overflow at size 1654784. Stack can probably be resized.
Broken at SI:BYTECODES.Available restarts:

1. (CONTINUE) Extend stack size

Broken at FO0O.

>> :rl

C-STACK overflow at size 2514944. Stack can probably be resized.
Broken at SI:BYTECODES.Available restarts:

1. (CONTINUE) Extend stack size

Broken at FO0O.

>> :q

Top level.

3.6.5 Finalization

As we all know, Common-Lisp relies on garbage collection for deleting unreachable objects.
However, it makes no provision for the equivalent of a C++ Destructor function that should
be called when the object is eliminated by the garbage collector. The equivalent of such
methods in a garbage collected environment is normally called a finalizer.

ECL includes a simple implementation of finalizers which makes the following promises.
e The finalizer can be any lisp function, let it be compiled or interpreter.

e Finalizers are not invoked during garbage collection. Instead, if an unreachable object
is found to have an associated finalizer, it is pushed into a list and before the next
garbage collection cycle, the finalizer will be invoked.

e If the finalizer is invoked and it makes the object reachable, for instance, by assigning
it to a variable, it will not be destroyed, but it will have no longer a finalizer associated
to it.

Chapter 3: Extensions 147

e ECL will strive to call finalizers before the environment is closed and the program is
finished, but this mechanism may fail when exiting in a non ordinary way.

The implementation is based on two functions, ext:set-finalizer and
ext:get-finalizer, which allow setting and querying the finalizer functions for
certain objects.

3.6.6 Memory Management Reference

Reference
ext:stack-overflow [Condition]
Stack overflow condition
Class Precedence List ext:stack-overflow, storage-condition,
serious—condition, condition, t
Methods
ext:stack-overflow-size condition [Function]
returns A non-negative integer.
ext:stack-overflow-type condition [Function]
returns A symbol from Table 3.1, except ext:heap-size.

Description This condition is signaled when one of the stack limits in Table 3.1 are
violated or dangerously approached. It can be handled by resetting the limits and
continuing, or jumping to an outer control point.

ext:storage-exhausted [Condition]
Memory overflow condition

Class Precedence List ext:storage-exhausted, storage-condition,
serious—-condition, condition, t

Description This condition is signaled when ECL exhausts the ext:heap-size limit
from Table 3.1. In handling this condition ECL follows this logic:

e If the heap size limit was set to 0 (that is no limit), but there is some free space
in the safety region ECL frees this space and issues a non-restartable error. The
user may jump to an outer point or quit.

e If the heap size had a finite limit, ECL offers the user the chance to resize it,
issuing a restartable condition. The user may at this point use (ext:set-limit
’ext:heap-size 0) to remove the heap limit and avoid further messages, or use
the (continue) restart to let ECL enlarge the heap by some amount.

e Independently of the heap size limit, if ECL finds that there is no space to free or
to grow, ECL simply quits. There will be no chance to do some cleanup because
there is no way to allocate any additional data.

ext:get-finalizer object [Function]
object Any lisp object.

Description This function returns the finalizer associated to an object, or nil.

148 ECL Manual

ext:get-limit concept [Function]
concept A symbol.
Description Queries the different memory and stack limits that condition ECL’s be-

havior. The value to be queried is denoted by the symbol concept, which should be
one from the list: Table 3.1

ext:set-finalizer object function [Function]
Associate a finalizer to an object.
object Any lisp object.
function A function or closure that takes one argument or nil.
Description If function is nil, no finalizer is associated to the object. Otherwise

function must be a function or a closure of one argument, which will be invoked
before the object is destroyed.

Example Close a file associated to an object.

(defclass my-class () ((file :initarg :file :initform nil)))

(defun finalize-my-class (x)
(let ((s (slot-value x ’file)))
(when s (format t ""%;;; Closing" s) (close s))))

(defmethod initialize-instance :around ((my-instance my-class) &rest args)f]
(ext:set-finalizer my-instance #’finalize-my-class)
(call-next-method))

(progn
(make-instance ’my-class :file (open "7/.ecl.old" :direction :input))]]
nil)

(si::gc t)
(si::gc t)

;; Closing

ext:set-1limit concept value [Function]
Set a memory or stack limit.

concept A symbol.
value A positive integer.

Changes the different memory and stack limits that condition ECL’s behavior. The
value to be changed is denoted by the symbol concept, while the value is the new
maximum size. The valid symbols and units are listed in Table 3.1.

Note that the limit has to be positive, but it may be smaller than the previous value
of the limit. However, if the supplied value is smaller than what ECL is using at the
moment, the new value will be silently ignored.

Chapter 3: Extensions 149

Concept Units Default Command line
ext:frame-stack Nested frames 2048 --frame-stack
ext:binding-stack Bindings 8192

ext:c-stack Bytes 128 kilobytes --c-stack
ext:heap-size Bytes 256 megabytes --heap-size
ext:lisp-stack Bytes 32 kilobyes --lisp-stack

Table 3.1: Customizable memory limits

3.7 Meta-Object Protocol (MOP)

3.7.1 Introduction

The Meta-Object Protocol is an extension to Common Lisp which provides rules, functions
and a type structure to handle the object system. It is a reflective system, where classes
are also objects and can be created and manipulated using very well defined procedures.

The Meta-Object Protocol associated to Common Lisp’s object system was introduced in
a famous book, The Art of the Metaobject Protocol AMOP [AMOP, see [Bibliography],
page 199], which was probably intended for the ANSI [ANSI, see [Bibliography]|, page 199]
specification but was dropped because of its revolutionary and then not too well tested
ideas.

The AMOP is present, in one way or another, in most Common Lisp implementations,
either using proprietary systems or because their implementation of CLOS descended from
PCL (Portable CommonLoops). It has thus become a de facto standard and ECL should
not be without it.

Unfortunately ECL’s own implementation originally contained only a subset of the AMOP.
This was a clever decision at the time, since the focus was on performance and on producing
a stable and lean implementation of Common Lisp. Nowadays it is however not an option,
especially given that most of the AMOP can be implemented with little cost for both the
implementor and the user.

So ECL has an almost complete implementation of the AMOP. However, since it was written
from scratch and progressed according to user’s request and our own innovations, there
might still be some missing functionality which we expect to correct in the near future.
Please report any feature you miss as a bug through the appropriate channels.

3.8 Gray Streams

close stream &key abort [Function]
Unlike the other Gray stream functions, close is not specialized on t for stream. This
decision has been taken mainly for the compatibility reasons with some libraries.

stream-file-position stream &optional position [Function]
This is used to implement file-position. When position is not provided it should
return the current file position of the stream as non-negative integer or nil if the file
position cannot be determined. When position is supplied the file position of the

150 ECL Manual

stream should be set to that value. If setting the position is successful then t should
be returned, otherwise nil should be returned. The default method always returns
nil.

stream-file-length stream [Function]
This is used to implement file-length. It returns either a non-negative integer or
nil if the concept of file length is not meaningful for the stream. The default method
will signal a type-error with an expected type of file-stream. This is required
to conform with the “Exceptional Situations” section of file-length in the ANSI
specification.

stream-interactive-p stream [Function]
This is used to implement interactive-stream-p. It returns a boolean indicating if
the stream is interactive. The default method always returns nil.

stream-line-length stream [Function]
Allows the default line length to be specified for the stream. It returns either a non-
negative integer or nil if the concept of line length is not meaningful for the stream.
This value is only used if *print-right-margin# is nil. The line length is used
by the pretty printer and by the format justification directive. The default method
returns nil.

stream-read-sequence stream sequence &optional start end [Function]
This is used to implement read-sequence. It should follow the semantics in the
ANSI specification. It returns the position of the first element in the sequence that
was not updated. The default method calls stream-read-char or stream-read-byte
repeatedly based on the type returned by stream-element-type. Element access to
the sequence is done via elt.

stream-write-sequence stream sequence &optional start end [Function]
This is used to implement write-sequence. It should follow the semantics in the
ANSI specification. It returns sequence without modification. The default method
calls stream-write-char or stream-write-byte repeatedly based on the type re-
turned by stream-element-type. Element access to the sequence is done via elt.

3.9 Tree walker

3.10 Local package nicknames

3.10.1 Overview

ECL allows giving packages local nicknames: they allow short and easy-to-use names to be
used without fear of name conflict associated with normal nicknames.

A local nickname is valid only when inside the package for which it has been specified.
Different packages can use same local nickname for different global names, or different local
nickname for same global name.

The keyword :package-local-nicknames in *features* indicates the support for this
feature.

Chapter 3: Extensions 151

3.10.2 Package local nicknames dictionary

cl:defpackage name [[options||* [Macro]
Options are extended to include

:local-nicknames (local-nickname actual-package-name)*

The package has the specified local nicknames for the corresponding actual packages.
Example:

(defpackage :bar (:intern "X"))

(defpackage :foo (:intern "X"))

(defpackage :quux (:use :cl) (:local-nicknames (:bar :foo) (:foo :bar)))f}

(find-symbol "X" :foo) ; => FO0O0::X

(find-symbol "X" :bar) ; => BAR::X

(let ((xpackage* (find-package :quux)))

(find-symbol "X" :foo0)) ; => BAR::X
(let ((*package* (find-package :quux)))
(find-symbol "X" :bar)) ; => F00::X
ext:package-local-nicknames package-designator [Function]
cl_object si_package_local_nicknames (cl-object [Function]

package_designator)

Returns an alist of (Local-nickname . actual-package) describing the nicknames
local to the designated package.

When in the designated package, calls to find-package with any of the
local-nicknames will return the corresponding actual-package instead. This also
affects all implied calls to find-package, including those performed by the reader.
When printing a package prefix for a symbol with a package local nickname, the local
nickname is used instead of the real name in order to preserve print-read consistency.

ext:package-locally-nicknamed-by-list package-designator [Function]

cl_object si_package_locally_nicknamed_by_list (cl-object [Function]
package_designator)
Returns a list of packages which have a local nickname for the designated package.

ext:add-package-local-nickname local-nickname actual-package [Function]
&optional package-designator

cl_object si_add_package_local_nickname (cl-object [Function]
local_nickname, cl_object actual_package, cl_object package_designator)
Adds local-nickname for actual-package in the designated package, defaulting to cur-
rent package. local-nickname must be a string designator, and actual-package must
be a package designator.
Returns the designated package.

Signals a continuable error if local-nickname is already a package local nickname for
a different package.

When in the designated package, calls to find-package with the local-nickname will

return the package the designated actual-package instead. This also affects all implied
calls to find-package, including those performed by the reader.

152 ECL Manual

When printing a package prefix for a symbol with a package local nickname, the local
nickname is used instead of the real name in order to preserve print-read consistency.

ext:remove-package-local-nickname old-nickname &optional [Function]
package-designator

cl_object si_remove_package_local_nickname (cl_object [Function]
old_nickname, cl_object package_designator)
If the designated package had old-nickname as a local nickname for another pack-
age, it is removed. Returns true if the nickname existed and was removed, and nil
otherwise.

3.11 Package locks

3.11.1 Package Locking Overview

ECL borrows parts of the protocol and documentation from SBCL for compatibility. In-
terface is the same except that the home package for locking is ext and that ECL doesn’t
implement Implementation Packages and a few constructs. To load the extension you need
to require package-locks:

(require ’#:package-locks)

Package locks protect against unintentional modifications of a package: they provide similar
protection to user packages as is mandated to common-lisp package by the ANSI specifi-
cation. They are not, and should not be used as, a security measure.

Newly created packages are by default unlocked (see the :lock option to defpackage).

The package common-1isp and ECL internal implementation packages are locked by default,
including ext.

It may be beneficial to lock common-1isp-user as well, to ensure that various libraries don’t
pollute it without asking, but this is not currently done by default.

3.11.2 Operations Violating Package Locks

The following actions cause a package lock violation if the package operated on is locked,
and *package* is not an implementation package of that package, and the action would
cause a change in the state of the package (so e.g. exporting already external symbols is
never a violation). Package lock violations caused by these operations signal errors of type
package-error.

1. Shadowing a symbol in a package.
Importing a symbol to a package.
Uninterning a symbol from a package.
Exporting a symbol from a package.
Unexporting a symbol from a package.
Changing the packages used by a package.
Renaming a package.

Deleting a package.

© 0NN

Attempting to redefine a function in a locked package.

Chapter 3: Extensions 153

10. Adding a new package local nickname to a package.

11. Removing an existing package local nickname to a package.
3.11.3 Package Lock Dictionary

ext:package-locked-p package [Function]
Returns t when package is locked, nil otherwise. Signals an error if package doesn’t
designate a valid package.

ext:lock-package package [Function]
Locks package and returns t. Has no effect if package was already locked. Signals an
error if package is not a valid package designator

ext:unlock-package package [Function]
Unlocks package and returns t. Has no effect if package was already unlocked. Signals
an error if package is not a valid package designator.

ext:without-package-locks &body body [Macro]
Ignores all runtime package lock violations during the execution of body. Body can
begin with declarations.

ext:with-unlocked-packages (&rest packages) &body body [Macro]
Unlocks packages for the dynamic scope of the body. Signals an error if any of
packages is not a valid package designator.

cl:defpackage name [[option|]* = package [Macro]
Options are extended to include

:lock boolean

If the argument to :lock is t, the package is initially locked. If :lock is not provided
it defaults to nil.

Example:
(defpackage "FOO" (:export "BAR") (:lock t))
;55 1s equivalent to

(defpackage "F00") (:export "BAR"))
(lock-package "F0O")

3.12 CDR Extensions

ECL currently implements the following specifications of the Common Lisp Document
Repository (https://common-lisp.net/project/cdr/):

https://common-lisp.net/project/cdr/
https://common-lisp.net/project/cdr/

154 ECL Manual

Number Comments

1 In clos package; partial implementation, see Section 3.7 [Meta-Object
Protocol (MOP)], page 149,

5 In ext package

7 Only if ECL is compiled with ——with-cmuformat configure option

14

Table 3.2: Implemented CDR, extensions

155

4 Developer’s guide

4.1 Sources structure

4.1.1 src/c
alloc_2.d

all_symbols.d
apply.d

arch/*

array.d
assignment.c
backq.d

big.d

big_11.4d

cfun.d

cfun_
dispatch.d
character.d
char_ctype.d
cinit.d
clos/accessor.d
clos/cache.d
clos/gfun.d
clos/instance.d
cmpaux.d

compiler.d

memory allocation based on the Boehm GC
name mangler and symbol initialization
interface to C call mechanism

architecture dependant code

array routines

assignment

backquote mechanism

bignum routines based on the GMP
bignum emulation with long long

compiled functions

trampolines for functions

character routines

character properties.

lisp initialization

dispatch for slots

thread-local cache for a variety of operations
dispatch for generic functions

CLOS interface

auxiliaries used in compiled Lisp code

bytecode compiler

156

cons.d
disassembler.d

dpp.c

ecl_
constants.h
ecl_features.h

error.d

eval.d
ffi/backtrace.d
ffi/cdata.d
ffi/libraries.d
ffi/mmap.d
ffi.d

file.d

format.d

hash.d
interpreter.d
iso_latin_
names.h
list.d

load.d
macros.d
main.d

Makefile.in

mapfun.d

ECL Manual

list manipulation macros & functions (auto generated)
bytecodes disassembler utilities

defun preprocessor

constant values for all_symbols.d

names of features compiled into ECL

error handling

evaluation

C backtraces

data for compiled files

shared library and bundle opening / copying / closing
mapping of binary files

user defined data types and foreign functions interface
file interface (implementation dependent)

format (this isn’t ANSI compliant, we need it for boot-
strapping though)

hash tables

bytecode interpreter

character names in ISO-LATIN-1

list manipulating routines

binary loader (contains also open_fasl_data)
macros and environment

ecl boot process

Makefile for ECL core library

mapping

Chapter 4: Developer’s guide

multival.d
newhash.d
num_arith.d
number.d
numbers/*.d

num_co.d

num_log.d
num_pred.d
num_rand.d
package.d
pathname.d
predicate.d
print.d
printer/*.d

read.d

reader/parse_

integer.d

reader/parse_

number.d
reference.d
sequence.d
serialize.d
sse2.d

stacks.d

multiple values

hashing routines

arithmetic operations

constructing numbers

arithmetic operations (abs, atan, plusp etc)

operations on floating-point numbers (implementation
dependent)

logical operations on numbers

predicates on numbers

random numbers

packages (OS dependent)

pathnames

predicates

print

printer utilities and object representations

reader

reference in Constants and Variables
sequence routines

serialize a bunch of lisp data

SSE2 vector type support

binding/history/frame stacks

157

158 ECL Manual

string.d string routines
structure.d structure interface
symbol.d symbols

symbols_list.h The file has contains all symbols defined in the core.

tcp.d stream interface to TCP
time.d time routines
typespec.d type specifier routines
unicode/* unicode definitions
unixfsys.d Unix file system interface
unixint.d Unix interrupt interface.
unixsys.d Unix shell interface
vector_push.d vector optimizations

threads/atomic.d atomic operations
threads/barrier.dwait barriers

threads/conditioncondition variables for native threads
variable.d
threads/mailbox.dthread communication queue

threads/mutex.d mutually exclusive locks.
threads/process.dnative threads
threads/queue.d waiting queue for threads
threads/rwlock.d POSIX read-write locks

threads/semaphorePdSIX-like semaphores

4.2 Contributing

Chapter 4: Developer’s guide 159

4.3 Defun preprocessor

The defun preprocessor allows for convenient definition of Lisp functions with optional and
keyword arguments and the use of Lisp symbols in ECL’s own C source code. It generates
the C code necessary to use optional function arguments and to access symbols in ECL’s
builtin symbol table.

Usage:
dpp [in-file [out-file]]

The file named in-file is preprocessed and the output will be written to the file whose name
is out-file. If in-file is "-" program is read from standard input, while if out-file is "-"
C-program is written to standard output.

The function definition:

@(defun name ({var}*
[&optional {var | (var [initform [svar]])l}x]
[&rest var]
[&key {var |
({var | (keyword var)} [initform [svar]])}x
[&allow_other_keys]]
[&aux {var | (var [initform])}*])

C-declaration
e {
C-body

} e
name is the name of the lisp function

&optional may be abbreviated as &o.

&rest may be abbreviated as &r.

&key may be abbreviated as &k.
&allow_other_keys may be abbreviated as &aok.
&aux may be abbreviated as &a.

Each variable becomes a C variable.
Each supplied-p parameter becomes a boolean C variable.

Initforms are C expressions. If an expression contains non-alphanumeric characters, it
should be surrounded by backquotes (‘).

Function return:
@(return {forml}x);

Return function expands into a lexical block {}, so if it’s used inside if/else, then it
should be enclosed, even if we use sole @(return) ;, because ";" will be treated as the next
instruction.

Symbols:

@’name’

160 ECL Manual

Expands into a C statement, whole value is the given symbol from symbols_list.h

@[name]

Expands into a C statement, whole value is a fixnum corresponding to the index in the
builtin symbols table of the given symbol from symbols_list.h. Used for handling type

errors.

4.4 Manipulating Lisp objects

If you want to extend, fix or simply customize ECL for your own needs, you should under-
stand how the implementation works.

cl_lispunion cons big ratio SF' DF longfloat gencomplex [C/C++ identifier]
csfloat cdfloat clfloat symbol pack hash array vector base_string string
stream random readtable pathname bytecodes bclosure cfun cfunfixed
cclosure d instance process queue lock rwlock condition_variable
semaphore barrier mailbox cblock foreign frame weak sse
Union containing all first-class ECL types.

4.4.1 Objects representation

In ECL a lisp object is represented by a type called cl_object. This type is a word which
is long enough to host both an integer and a pointer. The least significant bits of this word,
also called the tag bits, determine whether it is a pointer to a C structure representing a
complex object, or whether it is an immediate data, such as a fixnum or a character.

CIEEE OO0 O o0 OO 0] CET OO)68 pointer
N 1 1 I Y ey
CIEEE O] OO0 OO T CET e character
ENEEEEENEEEEEEENEEEEEEENIEEEEEE Qi

Figure 4.1: Immediate types

The topic of the immediate values and bit fiddling is nicely described in Peter Bex’s
blog (http://www.more-magic.net/posts/internals-data-representation.html) de-
scribing Chicken Scheme (http://www.call-cc.org/) internal data representation. We
could borrow some ideas from it (like improving fixnum bitness and providing more imme-
diate values). All changes to code related to immediate values should be carefully bench-
marked.

The fixnums and characters are called immediate data types, because they require no more
than the cl_object datatype to store all information. All other ECL objects are non-
immediate and they are represented by a pointer to a cell that is allocated on the heap.
Each cell consists of several words of memory and contains all the information related to that
object. By storing data in multiples of a word size, we make sure that the least significant
bits of a pointer are zero, which distinguishes pointers from immediate data.

http://www.more-magic.net/posts/internals-data-representation.html
http://www.more-magic.net/posts/internals-data-representation.html
http://www.call-cc.org/

Chapter 4: Developer’s guide 161

In an immediate datatype, the tag bits determine the type of the object. In non-immediate
datatypes, the first byte in the cell contains the secondary type indicator, and distinguishes
between different types of non immediate data. The use of the remaining bytes differs for
each type of object. For instance, a cons cell consists of three words:

Note, that this is one of the possible implementation of cons. The second one (currently
default) uses the immediate value for the 1ist and consumes two words instead of three.
Such implementation is more memory and speed efficient (according to the comments in
the source code):

/*

* CONSES

*

* We implement two variants. The "small cons" type carries the type
* information in the least significant bits of the pointer. We have
* to do some pointer arithmetics to find out the CAR / CDR of the

* cons but the overall result is faster and memory efficient, only
* using two words per cons.

*

* The other scheme stores conses as three-words objects, the first
* word carrying the type information. This is kept for backward

* compatibility and also because the oldest garbage collector does
* not yet support the smaller datatype.

*

* To make code portable and independent of the representation, only
* access the objects using the common macros below (that is all

* except ECL_CONS_PTR or ECL_PTR_CONS).

*/

cl_object [C/C++ identifier]

This is the type of a lisp object. For your C/C++ program, a cl_object can be either
a fixnum, a character, or a pointer to a union of structures (See c1_lispunion in the
header object.h). The actual interpretation of that object can be guessed with the
macro ecl_t_of.

Example
For example, if x is of type cl_object, and it is of type fixnum, we may retrieve its
value:

if (ecl_t_of(x) == t_fixnum)

printf ("Integer value: %d\n", ecl_fixnum(x));

162 ECL Manual

Example

If x is of type cl_object and it does not contain an immediate datatype, you may

inspect the cell associated to the lisp object using x as a pointer. For example:

if (ecl_t_of(x) == t_vector)
printf("Vector’s dimension is: %d\n", x->vector.dim);

You should see the following sections and the header object.h to learn how to use the

different fields of a c1_object pointer.
cl_type [C/C++ identifier]

Enumeration type which distinguishes the different types of lisp objects. The most

important values are:

t_cons t_fixnum, t_character, t_bignum, t_ratio, t_singlefloat, t_

doublefloat, t_complex, t_symbol, t_package, t_hashtable, t_array, t_vector,

t_string, t_bitvector, t_stream, t_random, t_readtable, t_pathname,

t_bytecodes, t_cfun, t_cclosure, t_gfun, t_instance, t_foreign and

t_thread.
cl_type ecl_t_of (cl-object x) [Function]

If x is a valid lisp object, ec1_t_of (x) returns an integer denoting the type that lisp

object. That integer is one of the values of the enumeration type cl_type.
bool ECL_CHARACTERP (cl_object o) [Function]
bool ECL_BASE_CHAR_P (cl-object o) [Function]
bool ECL_BASE_CHAR_CODE_P (ecl_character o) [Function]
bool ECL_NUMBER_TYPE_P (cl_object o) [Function]
bool ECL_COMPLEXP (cl-object o) [Function]
bool ECL_REAL_TYPE_P (cl.object o) [Function]
bool ECL_FIXNUMP (cl-object o) [Function]
bool ECL_BIGNUMP (cl-object o) [Function]
bool ECL_SINGLE_FLOAT_P (cl-object o) [Function]
bool ECL_DOUBLE_FLOAT_P (cl-object o) [Function]
bool ECL_LONG_FLOAT_P (cl_object o) [Function]
bool ECL_CONSP (cl-object o) [Function]
bool ECL_LISTP (cl-object o) [Function]
bool ECL_ATOM (cl-object o) [Function]
bool ECL_SYMBOLP (cl_object o) [Function]
bool ECL_ARRAYP (cl_object o) [Function]
bool ECL_VECTORP (cl-object o) [Function]
bool ECL_BIT_VECTOR_P (cl_object o) [Function]
bool ECL_STRINGP (cl-object o) [Function]
bool ECL_HASH_TABLE_P (cl_object o) [Function]
bool ECL_RANDOM_STATE_P (cl-object o) [Function]
bool ECL_PACKAGEP (cl-object o) [Function]
bool ECL_PATHNAMEP (cl_object o) [Function]
bool ECL_READTABLEP (cl-object o) [Function]
bool ECL_FOREIGN_DATA_P (cl-object o) [Function]

Chapter 4: Developer’s guide 163

bool ECL_SSE_PACK_P (cl-object o) [Function]
Different macros that check whether o belongs to the specified type. These checks
have been optimized, and are preferred over several calls to ecl_t_of.

bool ECL_IMMEDIATE (cl-object o) [Function]
Tells whether x is an immediate datatype.

4.4.2 Constructing objects

On each of the following sections we will document the standard interface for building
objects of different types. For some objects, though, it is too difficult to make a C interface
that resembles all of the functionality in the lisp environment. In those cases you need to

1. build the objects from their textual representation, or
2. use the evaluator to build these objects.

The first way makes use of a C or Lisp string to construct an object. The two functions
you need to know are the following ones.

si::string-to-object string &optional (err-value nil) [Function]
cl_object si_string_to_object (cl_narg narg, cl_object str, ...) [Function]
cl_object ecl_read_from_cstring (const char *s) [Function]

ecl_read_from_cstring builds a lisp object from a C string which contains a suitable
representation of a lisp object. si_string_to_object performs the same task, but
uses a lisp string, and therefore it is less useful.

e DEPRECATED c_string_to_object — equivalent to ecl_read_from_cstring

Example
Using a C string
cl_object arrayl = ecl_read_from_cstring("#(1 2 3 4)");

Using a Lisp string

cl_object string = make_simple_base_string("#(1 2 3 4)");
cl_object array2 = si_string_to_object(string);

Integers

Common-Lisp distinguishes two types of integer types: bignums and fixnums. A fixnum
is a small integer, which ideally occupies only a word of memory and which is between
the values MOST-NEGATIVE-FIXNUM and MOST-POSITIVE-FIXNUM. A bignum is any integer
which is not a fixnum and it is only constrained by the amount of memory available to
represent it.

In ECL a fixnum is an integer that, together with the tag bits, fits in a word of memory.
The size of a word, and thus the size of a fixnum, varies from one architecture to another,
and you should refer to the types and constants in the ecl.h header to make sure that your
C extensions are portable. All other integers are stored as bignums, they are not immediate
objects, they take up a variable amount of memory and the GNU Multiprecision Library is
required to create, manipulate and calculate with them.

164 ECL Manual

cl_fixnum [C/C++ identifier]
This is a C signed integer type capable of holding a whole fixnum without any loss of
precision. The opposite is not true, and you may create a cl_fixnum which exceeds
the limits of a fixnum and should be stored as a bignum.

cl_index [C/C++ identifier]
This is a C unsigned integer type capable of holding a non-negative fixnum without
loss of precision. Typically, a c1_index is used as an index into an array, or into a
proper list, etc.

MOST_NEGATIVE_FIXNUM [Constant)|

MOST_POSITIVE_FIXNUM [Constant|
These constants mark the limits of a fixnum.

bool ecl_fixnum_lower (cl-fixnum a, cl_fixnum b) Function]

bool ecl_fixnum_greater (cl_fixnum a, cl_fixnum b) Function

bool ecl_fixnum_leq (clfixnum a, cl_fixnum b) Function

[

[]

[]
bool ecl_fixnum_geq (clfixnum a, cl_fixnum b) [Function]

[]

[]

bool ecl_fixnum_plusp (cl_fixnum a) Function

bool ecl_fixnum_minusp (cl_fixnum a) Function
Operations on fixnums (comparison and predicates).

cl_object ecl_make_fixnum (cl_fixnum n) [Function]

cl_fixnum ecl_fixnum (cl-object o) [Function]

ecl_make_fixnum converts from an integer to a lisp object, while the ecl_fixnum
does the opposite (converts lisp object fixnum to integer). These functions do not
check their arguments.

¢ DEPRECATED MAKE_FIXNUM — equivalent to ecl_make_fixnum
e DEPRECATED fix — equivalent to ecl_fixnum

cl_fixnum fixint (cl_object o) [Function]

cl_index fixnint (cl-object o) [Function]
Safe conversion of a lisp fixnum to a C integer of the appropriate size. Signals an
error if o0 is not of fixnum type.

fixnint additionally ensure that o is not negative.

Characters

ECL has two types of characters — one fits in the C type char, while the other is used when
ECL is built with a configure option --enable-unicode which defaults to 32 (characters
are stored in 32bit variable and codepoints have 21-bits).

ecl_character [C/C++ identifier]
Immediate type t_character. If ECL built with Unicode support, then may be
either base or extended character, which may be distinguished with the predicate
ECL_BASE_CHAR_P.

Additionally we have ecl_base_char for base strings, which is an equivalent to the
ordinary char.

Chapter 4: Developer’s guide 165

Example

if (ECL_CHARACTERP (o) && ECL_BASE_CHAR_P(o0))
printf ("Base character: Y%c\n", ECL_CHAR_CODE(o0));

ECL_CHAR_CODE_LIMIT [Constant|
FEach character is assigned an integer code which ranges from 0 to

(ECL_.CHAR_CODE_LIMIT-1).
e DEPRECATED CHAR_CODE_LIMIT - equivalent to ECL_CHAR_CODE_LIMIT

cl_object ECL_CODE_CHAR (ecl_character o) [Function]
ecl_character ECL_CHAR_CODE (cl_object o) [Function]
ecl_character ecl_char_code (cl.object o) [Function]
ecl_base_char ecl_base_char_code (cl-object o) [Function]

ECL_CHAR_CODE, ecl_char_code and ecl_base_char_code return the integer code
associated to a lisp character. ecl_char_code and ecl_base_char_code perform a
safe conversion, while ECL_CHAR_CODE doesn’t check its argument.

ECL_CODE_CHAR returns the lisp character associated to an integer code. It does not
check its arguments.

e DEPRECATED CHAR_CODE — equivalent to ECL_CHAR_CODE
e DEPRECATED CODE_CHAR — equivalent to ECL_CODE_CHAR

bool ecl_char_eq (cl-object x, cl_object y) [Function]

bool ecl_char_equal (cl-object x, cl_object y) [Function]
Compare two characters for equality. char_eq take case into account and char_equal
ignores it.

int ecl_char_cmp (cl_object x, cl_object y) [Function]

int ecl_char_compare (cl-object x, cl_object y) [Function]

Compare the relative order of two characters. ecl_char_cmp takes care of case and
ecl_char_compare converts all characters to uppercase before comparing them.

Arrays

An array is an aggregate of data of a common type, which can be accessed with one or
more non-negative indices. ECL stores arrays as a C structure with a pointer to the region
of memory which contains the actual data. The cell of an array datatype varies depending
on whether it is a vector, a bit-vector, a multidimensional array or a string.

bool ECL_ADJUSTABLE_ARRAY_P (cl-object x) [Function]

bool ECL_ARRAY_HAS_FILL_POINTER_P (cl-object x) [Function]
All arrays (arrays, strings and bit-vectors) may be tested for being adjustable and
whenever they have a fill pointer with this two macros. They don’t check the type of
their arguments.

ecl_vector [C/C++ identifier]
If x contains a vector, you can access the following fields:

x->vector.elttype
The type of the elements of the vector.

166

x->vector.

x->vector.

x—->vector

x->vector.

ecl_array

ECL Manual

displaced

List storing the vectors that x is displaced from and that x displaces to.
dim

The maximum number of elements.

£illp
Actual number of elements in the vector or £ill pointer.

self
Union of pointers of different types. You should choose the right pointer
depending on x->vector.elttype.

[C/C++ identifier]

If x contains a multidimensional array, you can access the following fields:

x->array.

x->array.

x->array.

x->array.

x->array.

x->array.

x->array.

elttype
The type of the elements of the array.

rank
The number of array dimensions.

displaced
List storing the arrays that x is displaced from and that x displaces to.

dim
The maximum number of elements.

dims[]
Array with the dimensions of the array. The elements range from
x->array.dim[0] to x->array.dim[x->array.rank-1].

£illp
Actual number of elements in the array or £ill pointer.
self

Union of pointers of different types. You should choose the right pointer
depending on x->array.elttype.

cl_elttype ecl aet_object ecl_aet_sf ecl_aet_df ecl_aet_If [C/C++ identifier]

ecl_ae
ecl_ae
ecl_ae

t_csf ecl_aet_cdf ecl_aet_clf ecl_aet_bit ecl_aet_fix ecl_aet_index
t_b8 ecl_aet_i8 ecl_aet_b1l6 ecl_aet_il16 ecl_aet_b32 ecl_aet_i32
t_b64 ecl_aet_i64 ecl_aet_ch ecl_aet_bc

Each array is of an specialized type which is the type of the elements of the ar-

ray. ECL

has arrays only a few following specialized types, and for each of these

types there is a C integer which is the corresponding value of x->array.elttype or

x->vector

.elttype. We list some of those types together with the C constant that

denotes that type:

t

single-float

ecl_aet_object

ecl_aet_sf

Chapter 4: Developer’s guide 167

double-float
ecl_aet_df

long-float ecl_aet_1f

(CX)A[PLIQX’SIAK}LELPIA)AIU
ecl_aet_csf

(CX)A[PLED(l)CHIBLELFL(LAT)
ecl_aet_cdf

(CX)A[PLElKﬂLCHV(LPI&IATD
ecl_aet_clf

BIT ecl_aet_bit
FIXNUM ecl_aet_fix
INDEX ecl_aet_index

CHARACTER
ecl_aet_ch

BASE-CHAR

ecl_aet_bc

cl_elttype ecl_array_elttype (clobject array) [Function]
Returns the element type of the array o, which can be a string, a bit-vector, vector,
or a multidimensional array.

Example
For example, the code

ecl_array_elttype(ecl_read_from_cstring("\"AAA\"")); /* returns ecl_aet_ch */Jj
ecl_array_elttype(ecl_read_from_cstring("#(A B C)")); /* returns ecl_aet_object *

cl_object ecl_aref (clobject x, cl_index index) [Function]

cl_object ecl_aset (clobject x, cl_index index, cl_object value) [Function]
These functions are used to retrieve and set the elements of an array. The elements
are accessed with one index, index, as in the lisp function ROW-MAJOR-AREF.

Example

cl_object array = ecl_read_from_cstring("#2A((1 2) (3 4))");
cl_object x = ecl_aref (array, 3);

cl_print(1, x); /* Outputs 4 */

ecl_aset(array, 3, ecl_make_fixnum(5));

cl_print(1, array); /* Outputs #2A((1 2) (3 5)) */

cl_object ecl_arefl (cl-object x, cl_index index) [Function]
cl_object ecl_asetl (cl-object x, cl_index index, cl_object value) [Function]
These functions are similar to aref and aset, but they operate on vectors.

168 ECL Manual

Example

cl_object array = ecl_read_from_cstring("#(1 2 3 4)");
cl_object x = ecl_arefl(array, 3);

cl_print(1, x); /* Outputs 4 */

ecl_asetl(array, 3, ecl_make_fixnum(5));

cl_print(1, array); /* Outputs #(1 2 3 5) */

Strings

A string, both in Common-Lisp and in ECL is nothing but a vector of characters. Therefore,
almost everything mentioned in the section of arrays remains valid here.

The only important difference is that ECL stores the base-strings (non-Unicode version of
a string) as a lisp object with a pointer to a zero terminated C string. Thus, if a string
has n characters, ECL will reserve n+1 bytes for the base-string. This allows us to pass the
base-string self pointer to any C routine.

ecl_string [C/C++ identifier]
ecl_base_string [C/C++ identifier]
If x is a lisp object of type string or a base-string, we can access the following fields:

x->string.dim x->base_string.dim
Actual number of characters in the string.

x->string.fillp x->base_string.fillp
Actual number of characters in the string.

x->string.self x->base_string.self
Pointer to the characters (appropriately ecl_character’s and ecl_base_

char’s).
bool ECL_EXTENDED_STRING_P (cl_object object) [Function]
bool ECL_BASE_STRING_P (cl_object object) [Function]

Verifies if an objects is an extended or base string. If Unicode isn’t supported, then
ECL_EXTENDED_STRING_P always returns 0.

Bit-vectors

Bit-vector operations are implemented in file src/c/array.d. Bit-vector shares the struc-
ture with a vector, therefore, almost everything mentioned in the section of arrays remains
valid here.

Streams

Streams implementation is a broad topic. Most of the implementation is done in the file
src/c/file.d. Stream handling may have different implementations referred by a member
pointer ops.

Additionally on top of that we have implemented Gray Streams (in portable Common Lisp)
in file src/clos/streams.1sp, which may be somewhat slower (we need to benchmark it!).
This implementation is in a separate package GRAY. We may redefine functions in the
COMMON-LISP package with a function redefine-cl-functions at run-time.

Chapter 4: Developer’s guide 169

ecl_file_ops write_* read_* unread_* peek_* listen [C/C++ identifier]
clear_input clear_output finish_output force_output input_p output_p
interactive_p element_type length get_position set_position column close

ecl_stream [C/C++ identifier]

ecl_smmode mode
Stream mode (in example ecl_smm_string_input).

int closed
Whenever stream is closed or not.

ecl_file_ops *ops
Pointer to the structure containing operation implementations (dispatch
table).

union file
Union of ANSI C streams (FILE *stream) and POSIX files interface
(cl_fixnum descriptor).

cl_object object0O, objectl
Some objects (may be used for a specific implementation purposes).

cl_object byte_stack
Buffer for unread bytes.

cl_index column
File column.

cl_fixnum last_char
Last character read.

cl_fixnum last_code[2]
Actual composition of the last character.

cl_fixnum intO int1l
Some integers (may be used for a specific implementation purposes).

cl_index byte_size
Size of byte in binary streams.

cl_fixnum last_op
0: unknown, 1: reading, -1: writing

char *buffer
Buffer for FILE

cl_object format
external format

cl_eformat_encoder encoder
cl_eformat_encoder decoder
cl_object format_table

in flags Character table, flags, etc

ecl_character eof_character

170 ECL Manual

bool ECL_ANSI_STREAM_P (cl_object o) [Function]
Predicate determining if o is a first-class stream object.
bool ECL_ANSI_STREAM_TYPE_P (cl-object o, ecl_.smmode m) [Function]

Predicate determining if o is a first-class stream object of type m.

Structures

Structures and instances share the same datatype t_instance (with a few exceptions.
Structure implementation details are the file src/c/structure.d.

cl_object ECL_STRUCT_TYPE (clobject x)
cl_object ECL_STRUCT_SLOTS (cl-object x)

[Functlon]
[]
cl_object ECL_STRUCT_LENGTH (cl_object x) [Function]
[]
[]

cl_object ECL_STRUCT_SLOT (cl-object x, cl_index i) Function
cl_object ECL_STRUCT_NAME (cl-object x) Function
Convenience functions for the structures.

Instances

cl_object ECL_CLASS_OF (cl_object x) Function
cl_object ECL_SPEC_FLAG (cl_object x) Function
cl_object ECL_SPEC_OBJECT (cl-object x) Function
cl_object ECL_CLASS_NAME (clobject x) Function

[]
[|
Funciion
cl_object ECL_CLASS_SUPERIORS (cl_object x) [Function]
[]
[]
[]
[]

cl_object ECL_CLASS_INFERIORS (cl-object x) Function
cl_object ECL_CLASS_SLOTS (cl-object x) Function
cl_object ECL_CLASS_CPL (cl-object x) Function
bool ECL_INSTANCEP (cl-object x) Function

Convenience functions for the structures.

Bytecodes

A bytecodes object is a lisp object with a piece of code that can be interpreted. The objects
of type t_bytecodes are implicitly constructed by a call to eval, but can also be explicitly
constructed with the si_make_lambda function.

si:safe-eval form env &optional err-value [Function]
cl_object si_safe_eval (cl_narg narg, cl_object form, cl_object [Function]
env, ...)

si_safe_eval evaluates form in the lexical environment'® env, which can be ECL_NIL.
Before evaluating it, the expression form is bytecompiled. If the form signals an error,
or tries to jump to an outer point, the function has two choices: by default, it will
invoke a debugger, but if a third value is supplied, then si_safe_eval will not use a
debugger but rather return that value.

e DEPRECATED cl_object cl_eval (cl_object form) - cl_eval is the equiva-
lent of si_safe_eval but without environment and with no err-value supplied.
It exists only for compatibility with previous versions.

! Note that env must be a lexical environment as used in the interpreter, See Section 4.6.3 [The lexical
environment], page 173

Chapter 4: Developer’s guide 171

e DEPRECATED cl_object cl_safe_eval (cl_object form, cl_object env,
cl_object err_value) - Equivalent of si_safe_eval.

Example

cl_object form = ecl_read_from_cstring(" (print 1)");
si_safe_eval(2, form, ECL_NIL);
si_safe_eval(3, form, ECL_NIL, ecl_make_fixnum(3)); /* on error function will ret

cl_object si_make_lambda (cl.object name, cl_object def) [Function]
Builds an interpreted lisp function with name given by the symbol name and body
given by def.

Example

For instance, we would achieve the equivalent of

(funcall #’(lambda (x y)
(block foo (+ x y)))
12)

with the following code

cl_object def = ecl_read_from_cstring("((x y) (+ x y))");
cl_object name = ecl_make_symbol("F00", "COMMON-LISP-USER");
cl_object fun = si_make_lambda(name, def);

return cl_funcall(3, fun, ecl_make_fixnum(1l), ecl_make_fixnum(2));

Notice that si_make_lambda performs a bytecodes compilation of the definition and
thus it may signal some errors. Such errors are not handled by the routine itself so
you might consider using si_safe_eval instead.

4.5 Environment implementation

4.6 The interpreter

4.6.1 ECL stacks
ECL uses the following stacks:

Frame Stack consisting of catch, block, tagbody frames

Bind Stack for shallow binding of dynamic variables

Interpreter Stack acts as a Forth data stack, keeping intermediate arguments
to interpreted functions, plus a history of called functions.

C Control Stack used for arguments/values passing, typed lexical variables,

temporary values, and function invocation.

4.6.2 Procedure Call Conventions

ECL employs standard C calling conventions to achieve efficiency and interoperability with
other languages. Each Lisp function is implemented as a C function which takes as many
arguments as the Lisp original. If the function takes optional or keyword arguments, the
corresponding C function takes one additional integer argument which holds the number
of actual arguments. The function sets nvalues in the thread local environment to the

172 ECL Manual

number of Lisp values produced, it returns the first one and the remaining ones are kept in
a global (per thread) array (values).

To show the argument/value passing mechanism, here we list the actual code for the
Common-Lisp function last.

cl_object
cl_last(cl_narg narg, cl_object 1, ...)
{
const cl_env_ptr the_env = ecl_process_env();
cl_object k;
va_list ARGS;
va_start (ARGS, 1);

if (ecl_unlikely(narg < 1|| narg > 2)) FEwrong_num_arguments(/* ...

if (narg > 1) {

k = va_arg(ARGS,cl_object);
} else {

k = ecl_make_fixnum(1);
}
cl_object __valueO =
the_env->nvalues = 1;
the_env->values[0] =
va_end (ARGS) ;
return __valueO;

ecl_last(l, ecl_to_size(k));

__valueO;

¥

ECL adopts the convention that the name of a function that implements a Common-Lisp
function begins with a short package name (cl for COMMON-LISP, si for SYSTEM, etc),
followed by L, and followed by the name of the Common-Lisp function. (Strictly speaking,
‘=" and ‘¥’ in the Common-Lisp function name are replaced by ‘_’ and ‘A’, respectively, to
obey the syntax of C.)

The code for the function last first checks that the right number of arguments are supplied
to cl_last. That is, it checks that narg is 1 or 2, and otherwise, it causes an error. Follow-
ing that, the optional variable k is initialized and the return value __valueO is computed.
The number assigned to nvalues set by the function (1 in this case) represents the number
of values of the function. The return value of the function is copied in the values array as
well as returned directly.

In general, if one is to play with the C kernel of ECL there is no need to know about all
these conventions. There is a preprocessor (see Section 4.3 [Defun preprocessor|, page 159)
that takes care of the details, by using a lisp representation of the statements that output
values, and of the function definitions. For instance, the actual source code for c1_last in
src/c/list.d is

@(defun last (1 &optional (k ecl_make_fixnum(1)))
C]

@(return ecl_last(l, ecl_to_size(k)));
@)

*/) ;1

Chapter 4: Developer’s guide 173

4.6.3 The lexical environment

The ECL interpreter uses a list containing local functions and macros, variables, tags and
blocks to represent the lexical environment. When a function closure is created, the current
lexical environment is saved in the closure along with the lambda expression. Later, when
the closure is invoked, this list is used to recover the lexical environment.

Note that this list is different from what the Common Lisp standard calls a lexical en-
vironment, which is the content of a &environment parameter to defmacro. For the
differences between this two environments see the comments in src/c/compiler.d and
src/c/interpreter.d.

4.6.4 The interpreter stack

The bytecodes interpreter uses a stack of its own to save and restore values from intermediate
calculations. This Forth-like data stack is also used in other parts of the C kernel for various
purposes, such as saving compiled code, keeping arguments to format, etc.

However, one of the most important roles of the Interpreter Stack is to keep a log of the
functions which are called during the execution of bytecodes. For each function invoked,
the interpreter keeps three lisp objects on the stack:

o e e +

| function | lexical environment | index to previous record |

o o o +
The first item is the object which is funcalled. It can be a bytecodes object, a compiled
function or a generic function. In the last two cases the lexical environment is just nil. In
the first case, the second item on the stack is the lexical environment on which the code is
executed. Each of these records are popped out of the stack after function invocation.

Let us see how these invocation records are used for debugging.

> (defun fact (%) ;33 Wrong definition of the
(if (=x 0) ;;; factorial function.
one ;33 one should be 1.
(* x (fact (1- x)))))
FACT
> (fact 3) ;33 Tries 3!

Error: The variable ONE is unbound.

Error signalled by IF.

Broken at IF.

>> b ;33 Backtrace.

Backtrace: eval > fact > if > fact > if > fact > if > fact > IF
;33 Currently at the last IF.

>> :h ;55 Help.

Break commands:

:q(uit) Return to some previous break level.
:pop Pop to previous break level.

:c(ontinue) Continue execution.
:b(acktrace) Print backtrace.

174

:f (unction)
:p(revious)
:n(ext)
:g(o)

:fs

:bs
:v(ariables)
:1(ocal)
:hide
:unhide

:hp

:unhp
:unhide-all
:bds
:m(essage)
:hs

Show current function.

Go to previous function.

Go to next function.

Go to next function.

Search forward for function.
Search backward for function.

ECL Manual

Show local variables, functions, blocks, and tags.

Return the nth local value on the stack.

Hide function.
Unhide function.
Hide package.
Unhide package.

Unhide all variables and packages.

Show binding stack.
Show error message.
Help stack.

Top level commands:

.cf

:exit or °D
:1d

:step
:tr(ace)
:untr (ace)

Help commands:

:apropos
:doc (ument)

:h(elp) or 7

>> :p

Broken at IF.

>> :b

Compile file.
Exit Lisp.

Load file.

Single step form.
Trace function.
Untrace function.

Apropos.
Document.
Help. Type ":help help" for more

information.

;33 Move to the last call of FACT.

Backtrace: eval > fact > if > fact > if > fact > if > FACT > if
;33 Now at the last FACT.

>> v

Local variables:

;33 The environment at the last call

;33 to FACT is recovered.

X: 0 ;55 X 1s the only bound variable.
Block names: FACT. ;33 The block FACT is established.
>> X
0 ;53 The value of x
>>(return-from fact 1) ;33 Return from the last call of
6 ;33 FACT with the value of O.

;33 The execution is resumed and
> ;33 the value 6 is returned.

Chapter 4: Developer’s guide 175

;35 Again at the top-level loop.
4.7 The compiler

4.7.1 The compiler translates to C

The ECL compiler is essentially a translator from Common-Lisp to C. Given a Lisp source
file, the compiler first generates three intermediate files:

e a C-file which consists of the C version of the Lisp program
e an H-file which consists of declarations referenced in the C-file

e a Data-file which consists of Lisp data to be used at load time

The ECL compiler then invokes the C compiler to compile the C-file into an object file.
Finally, the contents of the Data-file is appended to the object file to make a Fasl-file. The
generated Fasl-file can be loaded into the ECL system by the Common-Lisp function load.
By default, the three intermediate files are deleted after the compilation, but, if asked, the
compiler leaves them.

The merits of the use of C as the intermediate language are:
e The ECL compiler is highly portable.

e Cross compilation is possible, because the contents of the intermediate files are common
to all versions of ECL. For example, one can compile his or her Lisp program by the ECL
compiler on a Sun, bring the intermediate files to DOS, compile the C-file with the gcc
compiler under DOS, and then append the Data-file to the object file. This procedure
generates the Fasl-file for the ECL system on DOS. This kind of cross compilation
makes it easier to port ECL.

e Hardware-dependent optimizations such as register allocations are done by the C com-
piler.

The demerits are:

e At those sites where no C compiler is available, the users cannot compile their Lisp
programs.

e The compilation time is long. 70% to 80% of the compilation time is used by the C
compiler. The ECL compiler is therefore slower than compiler generating machine code
directly.

4.7.2 The compiler mimics human C programmer

The format of the intermediate C code generated by the ECL compiler is the same as the
hand-coded C code of the ECL source programs. For example, supposing that the Lisp
source file contains the following function definition:

(defvar *deltax 2)
(defun addl (x) (+ *deltax x))

The compiler generates the following intermediate C code.
/* function definition for ADD1 */
/* optimize speed 3, debug O, space 0, safety 2 x/
static cl_object Lladdl(cl_object vix)
{

176 ECL Manual

cl_object env0 = ECL_NIL;

const cl_env_ptr cl_env_copy = ecl_process_env();
cl_object valueO;
ecl_cs_check(cl_env_copy,value0);

{
TTL:

value0 = ecl_plus(ecl_symbol_value(VV[0]),vix);

cl_env_copy->nvalues = 1;

return valueO;

}
}
/* initialization of this module */
ECL_DLLEXPORT void init_fas_CODE(cl_object flag)
{

const cl_env_ptr cl_env_copy = ecl_process_env();
cl_object valueO;
cl_object *VVtemp;
if (flag != OBJNULL){
Cblock = flag;
#ifndef ECL_DYNAMIC_VV
flag->cblock.data = VV;
#endif
flag->cblock.data_size = VM;
flag->cblock.temp_data_size = VMtemp;
flag->cblock.data_text = compiler_data_text;
flag->cblock.cfuns_size = compiler_cfuns_size;
flag->cblock.cfuns = compiler_cfuns;
flag->cblock.source = make_constant_base_string("test.lisp");
return;}
#ifdef ECL_DYNAMIC_VV
VV = Cblock->cblock.data;
#endif
Cblock->cblock.data_text = (const cl_object *)"QEcLtAg:init_fas_CODEQ";
VVtemp = Cblock->cblock.temp_data;
ECL_DEFINE_SETF_FUNCTIONS
si_Xmake_special(VV[0]);
if (ecl_boundp(cl_env_copy,VV[0])) { goto L2; }
cl_set (VV[0],ecl_make_fixnum(2));
L2:;
ecl_cmp_defun(VV[2]); /* ADD1 x/
3

The C function Liaddl implements the Lisp function addl. This relation is established
by ecl_cmp_defun in the initialization function init_fas_CODE, which is invoked at load
time. There, the vector VV consists of Lisp objects; VV[0] and VV[1] in this example hold
the Lisp symbols *delta* and add1, while VV[2] holds the function object for add1, which

Chapter 4: Developer’s guide 177

is created during initialization of the module. VM in the definition of L1addl is a C macro
declared in the corresponding H-file. The actual value of VM is the number of value stack
locations used by this module, i.e., 3 in this example. Thus the following macro definition
is found in the H-file.

#define VM 3

4.7.3 Implementation of Compiled Closures

The ECL compiler takes two passes before it invokes the C compiler. The major role of
the first pass is to detect function closures and to detect, for each function closure, those
lexical objects (i.e., lexical variable, local function definitions, tags, and block-names) to
be enclosed within the closure. This check must be done before the C code generation in
the second pass, because lexical objects to be enclosed in function closures are treated in a
different way from those not enclosed.

Ordinarily, lexical variables in a compiled function f are allocated on the C stack. However,
if a lexical variable is to be enclosed in function closures, it is allocated on a list, called the
"environment list", which is local to £. In addition, a local variable is created which points
to the lexical variable’s location (within the environment list), so that the variable may be
accessed through an indirection rather than by list traversal.

The environment list is a pushdown list: It is empty when f is called. An element is pushed
on the environment list when a variable to be enclosed in closures is bound, and is popped
when the binding is no more in effect. That is, at any moment during execution of £, the
environment list contains those lexical variables whose binding is still in effect and which
should be enclosed in closures. When a compiled closure is created during execution of f,
the compiled code for the closure is coupled with the environment list at that moment to
form the compiled closure.

Later, when the compiled closure is invoked, a pointer is set up to each lexical variable in
the environment list, so that each object may be referenced through a memory indirection.

Let us see an example. Suppose the following function has been compiled.

(defun foo (x)

(let ((a #’(lambda () (incf x)))
(y %))
(values a #’(lambda () (incf x y)))))

foo returns two compiled closures. The first closure increments x by one, whereas the
second closure increments x by the initial value of x. Both closures return the incremented
value of x.

>(multiple-value-setq (f g) (foo 10))
#<compiled-closure nil>

>(funcall f)
11

>(funcall g)
21

178 ECL Manual

After this, the two compiled closures look like:

second closure y: X:

* : address of the compiled code for #’(lambda () (incf x))
** : address of the compiled code for #’(lambda () (incf x y))

4.7.4 Use of Declarations to Improve Efficiency

Declarations, especially type and function declarations, increase the efficiency of the com-
piled code. For example, for the following Lisp source file, with two Common-Lisp declara-
tions added,
(eval-when (:compile-toplevel)
(proclaim ’(ftype (function (fixnum fixnum) fixnum) tak))
(proclaim ’(optimize (speed 3) (debug 0) (safety 0))))

(defun tak (x y)
(declare (fixnum x y))
(if (not (< y %))

y
(tak (tak (1- x) y)

(tak (1- y) x))))
The compiler generates the following C code (Note that the tail-recursive call of tak was
replaced by iteration):

/* function definition for TAK */
/* optimize speed 3, debug O, space 0, safety O */
static cl_object Litak(cl_object vix, cl_object v2y)

{

cl_object env0O = ECL_NIL;
const cl_env_ptr cl_env_copy = ecl_process_env();
cl_object valueO;

cl_fixnum v3x;

cl_fixnum v4y;

v3x = ecl_fixnum(vix);

vdy = ecl_fixnum(v2y);
TTL:

if ((v4y)<(v3x)) { goto L1; }
value0 = ecl_make_fixnum(v4y) ;
cl_env_copy->nvalues = 1;
return valueO;

Chapter 4: Developer’s guide 179

L1:;
{
cl_fixnum vb5;
{
cl_fixnum v6;
ve = (v3x)-1;
vb = ecl_fixnum(Lltak(ecl_make_fixnum(v6), ecl_make_fixnum(v4y)));
}
{
cl_fixnum v6;
ve = (vdy)-1;
vdy = ecl_fixnum(Litak(ecl_make_fixnum(v6), ecl_make_fixnum(v3x)));
}
v3x = vb;
}
goto TTL;

}

4.7.5 Inspecting generated C code

Common-Lisp defines a function disassemble, which is supposed to disassemble a compiled
function and to display the assembler code. According to Common-Lisp: The Language,
This is primary useful for debugging the compiler, ..\\

This is, however, useless in our case, because we are not concerned with assembly language.
Rather, we are interested in the C code generated by the ECL compiler. Thus the disas-
semble function in ECL accepts not-yet-compiled functions only and displays the translated
C code.

> (defun addl (x) (1+ x))

ADD1
> (disassemble *)

/* function definition for ADD1 */
/* optimize speed 3, debug O, space 0, safety 2 */
static cl_object Lladdl(cl_object vix)

{

cl_object env0O = ECL_NIL;
const cl_env_ptr cl_env_copy = ecl_process_env();
cl_object valueO;
ecl_cs_check(cl_env_copy,value0);
{
TTL:
value0 = ecl_one_plus(vix);
cl_env_copy->nvalues = 1;
return valueO;
b
3

180 ECL Manual

4.8 Porting ECL

To port ECL to a new architecture, the following steps are required:
1. Ensure that the GNU Multiprecision library supports this machine.

2. Ensure that the Boehm-Weiser garbage collector is supported by that architecture.
Alternatively, port ECL’s own garbage collector src/c/alloc.d and src/c/gbc.d to
that platform.

3. Fix src/aclocal.in, src/h/config.h.in and src/h/ecl.h so that they supply flags
for the new host machine.

4. Fix the machine dependent code in src/c/. The most critical parts are in the unix*.d
and threadx*.d files.

5. Compile as in any other platform.
6. Run the tests and compare to the results of other platforms.

4.9 Removed features

In-house DFFI

Commit 10bd3b613£d389da7640902c2b88a6e36088c920. Native DFFI was replaced by
a libffi (https://sourceware.org/libffi/) long time ago, but we have maintained the
code as a fallback. Due to small number of supported platforms and no real use it has been
removed in 2016.

In-house GC

Commit 61500316b7eal7d0e42f5cal27f2f9fa3e6596a8. Broken GC is replaced by
BoehmGC library. This may be added back as a fallback in the near future.

3bd9799a2fef21cc309472e604a46be236b155c7 removes a leftover (apparently gbce.d
wasn’t bdwgc glue).
Green threads

Commit 41923d5927£31£f4dd702£546b9caee74e98a2080. Green threads (aka light weight
processes) has been replaced with native threads implementation. There is an ongoing effort
to bring them back as an alternative interface.

Compiler newcmp

Commit 9b8258388487df8243e2ced9c784e569c0b34c4f This was abandoned effort of
changing the compiler architecture. Some clever ideas and a compiler package hierarchy.
Some of these things should be incorporated during the evolution of the primary compiler.

Old MIT loop

Commit 5042589043a7be853b7f85fd7a996747412de6b4. This old loop implementation
has got superseded by the one incorporated from Symbolics LOOP in 2001.

Support for bignum arithmetic (earith.d)

Commit edfc2ba785d6a64667e89c869ef0a872d7b9704b. Removes pre-gmp bignum code.
Name comes probably from “extended arithmetic”, contains multiplication and division
routines (assembler and a portable implementation).

https://sourceware.org/libffi/

Chapter 4: Developer’s guide 181

Unification module

Commit 6££5d20417a21a76846c4b28e532aac097£03109. Old unification module (logic
programming) from EcoLisp times.

Hierarchical packages

Commit 72e422f1b3c4b3c52fa273b961517db943749a8f. Partially broken. Tests left in
package-extensions.lsp.

8-bit opcodes in bytecodes interpreter

Commit ¢3244b0148ed352808779b07b25c3edddf9d7349. Works fine but provides no real
gain and is limited to intel.

thread local variables

Commit 618£f6e92e8144f7b95bc36b42a337c212bacc8e7. Disabled by default, practically
not tested, works on limited number of platforms.

Indexes

Concept index

(

(complex float) internal representation 42

A

ANSI Dictionaryooeeuieiiennenen.. 25
ATTAYS . oot 57

B

Barriers (synchronization)..................... 136
Bytecodes eager compilation 28

C

C/C++ code inliningooviii.. 108
Command line processing 98
Common Lisp functions limits.................. 29
Compiler declarations..............coovvinnn.. 25
Creating executables and libraries.............. 89
cstring and foreign string differences 121

D

Defun preprocessor, 159
disassemble and compile on

defined functions oL 29
Dynamic foreign function interface............ 112

E

Eager compilation implications................. 28
Environment implementation 171
External processes...............iiia. 100

F

FIFO files (named pipes)c.coovun... 102
Foreign aggregate types....................... 114
Foreign function interface..................... 103
Foreign functions and libraries 125
Foreign objects L. 117
Foreign primitive types 112
Foreign strings............... ... ool 121

H

Hash table generic test......................... 69
Hash table serialization 68

183

L

long-float internal representation............... 42

M

Memory management 144

N

Native FASL........... 91
Native threads................................ 126

@)

Object file internal layout................... ... 92
One type for everything: cl_object............ 23
Only in Common Lisp 25

P

Package local nicknames 150
Package locks......... il 152
Parsing arguments in standalone executable 99
Portable FASL......o 90

R

Readers-writer locks 132

S

Semaphores (synchronization)................. 134
Shadowed bindings in let, flet, labels

and lambda-list............. ... 28
Shared-exclusive locks 132
Static foreign function interface............... 108
Synchronized hash tables....................... 68
System building. ... 89

T

Thread-safe hash tables........................ 68
Twokindsof FFI............................. 103

U

Universal foreign function interface............ 112

184

A%

Weak hash tables 68

Configure option index

--enable-c99complex [auto] 45
--enable-shared [YES|no] 91
--enable-small-cons [YES|no] 161
--enable-threads [yes|no|AUTO] 126
--enable-unicode [32]16|no] 50, 164

Feature index

COMPLEX-FLOAT.............. ... 42, 112
D
DEFL .. 104
DLOPEN.o 91
E
ecl-read-write-lock 132
ECL-WEAK-HASH i, 68
F
FRL .o 103

Example index

A

Accessing underlying cl_object structure..... 162
Atomic update of a structure slot 138
B

Building executable 93
Building native FASL 91
Building Portable FASL file.................... 90
Building shared library......................... 93
Building static library............. ...l 92

ECL Manual

--with-dffi [system|included|AUTO|no] 103

——with-fpe [YESInol 42
--with-ieee-fp [YES|no] 42
--with-libffi-prefix=path.................. 103
LONG-FLOAT ... 42, 112
LONG-LONGottt 112
PACKAGE-LOCAL-NICKNAMES.................... 150
PACKAGE-LOCKS 152
T

THREADSo 126
UINT16-T ... o i e 112
UINT32-T ... o 112
UINT64-T ...t e 112
CFFI usage........cooiiiiii i 107

cl_object checking the type with ecl_t_of... 161
Conversion between foreign

string and cstring.......... ool 122
cstring used to send and return a value........ 121
D
Define a compare-and-swap expansion......... 139
Defpackage :lock option...................... 153
defpackage and package local nicknames....... 151
distinguishing between base and

Unicode character 165

dpp: function definition 159

Indexes

E

Eager compilation impact on macros........... 28
ecl_aref and ecl_aset accessing arrays...... 167
ecl_arefl and ecl_asetl accessing vectors... 168
ecl_array_elttype different

types of objects. ... 167
ecl_read_from_cstring constructing

Lisp objects in C......... 163
ext:with-backend use different code for ¢ and

bytecodes compiler 111

F

ffi:allocate-foreign-object

allocating structure object.................. 117
ffi:c-inline inlining ccode 109
ffi:c-inline returning multiple values....... 110
ffi:c-progn interleaving ¢ and lisp code...... 110
ffi:clines adding c toplevel declarations..... 108
ffi:def-array-pointer usage................ 116
ffi:def-constant defining constants 113
ffi:def-enum sample enumerations........... 115
ffi:def-foreign-type examples.............. 114
ffi:def-foreign-var places in

foreign world ool 120
ffi:def-function.............. 125
ffi:def-struct defining C structure.......... 115
ffi:def-union union definition and usage..... 116
ffi:deref-array retrieving array element..... 116
ffi:deref-pointer....................a 118
ffi:ensure-char-character.................. 119
ffi:ensure-char-integer.................... 119
ffi:find-foreign-library................... 126
ffi:get-slot-value

manipulating a struct field.................. 115
ffi:get-slot-valueusage 116
ffi:load-foreign-library................... 126
ffi:null-char-pexample.................... 114
ffi:size-of-foreign-type................... 118
ffi:with-cast-pointer...................... 120
ffi:with-foreign-object macro usage....... 118
foreign string used to send and

return a value...........o oo 121

H

Hash table extensions example 69

Function index

185

Initializing static/shared library in C/C++...... 92
Keeping lambda definitions with

si:*keep-definitions*..................... 29
Killing process.............c.ooiiiiiiii i 129
LS implementation............o 99
mp:process-run-function usage 130
Possible implementation of

mp:process-run-function:................. 128
Process interruption oo L 128
Safely executing Lisp code with floating point

exceptions in embedding program............ 21
Setting a signal handler....................... 144
SFFI USagevvviiiii i 108
si::make-lambda usage

(bytecodes compilation)...................... 28
si_make_lambda building functions............ 171
si_safe_evalc. i 171
Suspend and resume process 129
T
trace usage............. il 86
UFFTLusage.......ccooiiiiiiiiiiiiiiiii .. 106
Using sequence streams 78
with-cstringl 123

186

kK

*ecl_base_string_pointer_
safe(cl_object...........oiiiiiiiL. 106

*ecl_foreign_data_pointer_
safe(cl_object.......oooviiiiiiinina... 105
€CLl _CaaT ..t 53

_ecl_cadr 53

LBCL AT ot 53
ecl _CAr 53

cl:defpackage........................... 151, 153
Cl _bOOt . 16
cl_shutdown........... ..., 17
ClOSE . ittt 149

directory ... 72
disassemble...........coiiiiiiiiii i 84

E

ecl_aet_to_symbol.............. ... 58
ecl_alloc_adjustable_base_string........... 63
ecl_alloc_simple_base_string............... 63
ecl_alloc_simple_vector..................... 59
ecl_alpha_char p................oooiiiiiiil 52
ecl_alphanumericp.................. ... 52
ecl_aref 60, 167
ecl_arefl 60, 167
ecl_array_dimension.......................... 61
ecl_array_elttype....................... 61, 167
ecl_array_rankooiiiiiiiii., 61
ecl_aset ...t 60, 167
ecl_asetl 60, 167
ecl_atomic_getl 137
ecl_atomic_incf......... i, 137
ecl_atomic_incf_by_fixnum.................. 137
ecl_atomic_index_dincf 137
ecl_atomic_pop ... 137
ecl_atomic_push................ooiiiiiL. 137
ecl_base_char_code...................... 52, 165
ecl_base_char_ p...........cooviiiiiiniaion.. 52
ecl bds_bind.......... ... i 30
ecl_bds_push................o ool 30
ecl_ bds_unwind_n............. 31
ecl_bds_unwindl, 31
ecl_both_case_p................. ...l 52
ecl_cdfloat........cooiiii e 46
ecl_Char 64
ecl_char_Cmpcovviiiiiiinnnnnn 165
ecl_char_code..........coiiiiiiinnuninan. 52, 165

ecl_char_compare..............cccouuuniiin.. 165

ECL Manual

ecl_char_downcase..........c.ooviiiininnennnn. 52
ecl_char_eq.........coiiiiiiiiiiiiiiiiinnn. 165
ecl_char_equalot 165
ecl_char_set..........coiiiiiiiiinnnnnn.. 64
ecl_char_upcase..............covviiiiiiinnn.. 52
ecl_clear_interrupts 21
ecl_clfloat.......coviiiii i 46
ecl_compare_and_sSWapc..ooiiiiinn. 136
ecl_csfloat.......ooiniiii 46
ecl_decode_from_cstring..................... 64
ecl_decode_from_unicode_wstring............ 65
ecl _digitp....cooiiiiii 52
ecl_disable_interrupts...................... 21
ecl_double_floatccoiiiiiiiiia.. 46
ecl_enable_interrupts....................... 21
ecl_encode_to_cstringoaa 65
ecl_encode_to_unicode_wstring.............. 65
ecl_fixnum............. 46, 164
ecl_fixnum_geq............ol 164
ecl_fixnum_greater.......................... 164
ecl_fixnum_leq............cooiiiiiiiina. 164
ecl_fixnum_lower...............c.ciiiiiiininnn. 164
ecl_fixnum_minusp............oooiiiiiiiin, 164
ecl_fixnum _pluSpP......oouuiiiiiiiiiieinnnnn. 164
ecl_get_option......... 19
ecl_graphic_char_p........................... 52
ecl_import_current_thread................... 19
ecl_long _floatcooiiiiiiiiiiiiiiiian. 46
€CL_1OWeT _CASE_Pvvvvvvvnnnnniiiiniennneennns 52
ecl_make_barrier................. 136
ecl_make_cdfloat................c.iiiiinn.. 45
ecl_make_clfloat.............coiiiiinininn.. 45
ecl_make_compleX.........ccuviiiiiiiiiiiiiiann 46
ecl_make_constant_base_string.............. 63
ecl_make_csfloat................ciiiininn.. 45
ecl_make_double_float 45
ecl_make_fixnum......................... 45, 164
ecl_make_foreign data.................. ..., 105
ecl make_int...........oiiiiiiiii 45
ecl_make_intl6_t........... 45
ecl_make_int32_t......... ... 45
ecl make_intB4_t...... ... 45
ecl make_int8_t........ ..o, 45
ecl_make_integer.................. 45
ecl_make_keyword................oiiiiiiiin, 38
ecl_make_loCKviit it 131
eclmake _1ongttt 46
ecl_make_long_float.......................... 45
ecl_make_long_ long........................... 46
ecl_make_ratioccoiiiiiiiii. 46
ecl_make _rwlocCK.........oiiiiiniiniinin.. 133
ecl_make_semaphore.......................... 135
ecl_make_short_t.............ccoiiinininn.. 45
ecl_make_simple_base_string 63
ecl_make_single_float 45
ecl_make_symbol 39
ecl_make_uint i 46
ecl_make uintl6_t........... 45

Indexes

ecl make_uint32_t......., 45
ecl make_uint64_t....... ..., 45
ecl_make_ uint8_t............., 45
ecl_make_UlONgc.vvviiiiiiiii 46
ecl_make_ulong_long........................n. 46
ecl_make_unsigned_integer................... 45
ecl_make_ushort_t............o, 45
ecl_nth_valueot 32
ecl_null_terminated_base_
string(cl_object................. ...l 106
€Cl _NValuUeSttt e 32
€Cl_PrOCeSS_ENV ...ttt 27
ecl_read_from_cstring...................... 163
ecl_release_current_thread.................. 19
ecl_returnO...... ..ottt 33
ecl_returnl..... 33
ecl_return2............ . 33
ecl_return3...... 33
ecl_set_option............oiiiiiiiiiiiii 17
ecl _setqo 31
ecl_single_float................... 46
ecl_standard_char_p.......................... 52
ecl_symbol_to_aet.............coiiiiiiiiinnn. 58
ecl_symbol_value................ooiiiiiii., 31
ecl_t_of ... 162
ecl_to_cdfloatoiiiiiiiin.. 47
ecl_to_clfloatcoiniiiiiinn.. 47
ecl_to_csfloat ..., 47
ecl_to_doublecciiiiiiiiiii 47
ecl_to_fixnum............... ..., 46
ecl_to_float.......covviiniiiii i 46
ecl_to_int 47
ecl_to_intl6_t i 47
ecl_to_int32_t i 47
ecl_to_intB4_t 47
ecl_to_int8_t 47
ecl_to_long.............oiiiiiiiiiiin 47
ecl_to_long_double...........ccoviuiiiiinnnnn. 47
ecl_to_long long...........coviiiinininn. 47
ecl_to_short..........oiiniiiiiiiiiinnn.. 47
ecl_to_uint....... ... i 47
ecl_to_uintl6_t 47
ecl_to_uint32_to, 47
ecl_to_uintB4_t.........c i 47
ecl_to_uint8_t 47
ecl_to_ulong..............oooiiiiiiiiiL 47
ecl_to_ulong long........coovuiurieeennnnnnn.. 47
ecl_to_unsigned_integer..................... 46
ecl_to_ushort 47
€CLl_UPPer_CaSE_P.ovvvtiiiiiiii 52
€Cl _Va_aTg . ittt 31
ecl_va_end.t 31
ecl_va_start...........iiiii e 31
ECL_ADJUSTABLE_ARRAY P.......... 165
ECL_ANSI_STREAM _P....... ..o, 170
ECL_ANSI_STREAM_TYPE P..................... 170
ECL_ARRAY_HAS_FILL_POINTER_P.............. 165
ECL_ARRAYP i 162

187
ECL _ATOM ... i e 162
ECL_BASE_CHAR_CODE_Pcoviirininnn. 162
ECL_BASE_CHAR_P....... ..., 162
ECL_BASE_STRING_P.........coiiiiiiinnan. 168
ECL_BIGNUMP.ottt 162
ECL_BIT_VECTOR_P......coiiiiiiiiiininnnnn. 162
ECL_BLOCK_BEGINivitiiiiiinianannn. 33
ECL_CATCH_ALL e 19
ECL_CATCH_BEGINooitiiiiiiiininannn. 33
ECL_CHAR_CODE.ovueeeneinnn... 52, 165
ECL_CHARACTERPot 162
ECL_CLASS _CPL ...ttt 170
ECL_CLASS_INFERIORSc.coviuininn.. 170
ECL_CLASS _NAMEttt 170
ECL_CLASS OF ...ttt 170
ECL_CLASS_SLOTSottt 170
ECL_CLASS_SUPERIORScciviinn... 170
ECL_CODE_CHAR........iiiiiiiiiininnann, 52, 165
ECL_COMPLEXPt ee e 162
ECL_CONS_CAR. ...ttt e it 53
ECL_CONS_CDR.....oiiiii it e e e e e 53
ECL_CONSP ...ttt 162
ECL_DOUBLE_FLOAT_P.......coiiiiiiiinnnn.. 162
ECL_EXTENDED_STRING_P...................... 168
ECL_FIXNUMP.otiti ittt 162
ECL_FOREIGN_DATA_P...... 162
ECL_HANDLER_CASEot 36
ECL_HASH _TABLE_P..... ..ottt 162
ECL_IMMEDIATE0.iititi i 163
ECL_INSTANCEPciiiii it 170
ECL _LISTP ... e e 162
ECL_LONG_FLOAT _P ...t 162
ECL_NUMBER_TYPE _P........ ..., 162
ECL_PACKAGEPottt 162
ECL_PATHNAMEP i 162
ECL_RANDOM_STATE_P..... ..o, 162
ECL_READTABLEPot 162
ECL_REAL _TYPE_P...... ..ot 162
ECL_RESTART _CASEitiiiiiiiiinnnn, 37
ECL_RPLACA e 53
ECL_RPLACD . ..ottt ettt e e 53
ECL_SINGLE_FLOAT_P........cooiiiriiinnnn.. 162
ECL_SPEC_FLAGcoiii it 170
ECL_SPEC_OBJECT0, 170
ECL_SSE_PACK_P ...t 162
ECL_STRINGP.......otitiiiiiiiiiiiiiinannn 162
ECL_STRUCT_LENGTH..............coiiiiinen... 170
ECL_STRUCT_NAME...........oiiiiiiiennnnn.. 170
ECL_STRUCT_SLOTo, 170
ECL_STRUCT_SLOTS . ..ottt ieieieens 170
ECL_STRUCT_TYPEt 170
ECL_SYMBOLP. ..ottt it it ie i 162
ECL_UNWIND_PROTECT......... ..ot 20
ECL_UNWIND_PROTECT_BEGIN.................... 33
ECL_VECTORP. . ..ottt 162
ECL_WITH_LISP_FPE....... ..., 21
=T 84

188
ext:all-encodings.............coiiiiiiiiinnn. 76
ext:catch-signal............coviiiiiiennnn. 144
ext:character-coding-error-
external-format..................., 76
ext:character-decoding-error-octects...... 77
ext:character-encoding-error-code 77
ext:chdir.............. 102
ext:chmod................l 102
ext:command-args 98
ext:copy-file........................LLl 102
ext:decoding-error............ ..., 78
ext:encoding-error........................... 77
extienviron.......... ... i il 102
ext:external-process-error-stream........ 100
ext:external-process-input 100
ext:external-process-output 100
ext:external-process-pid................... 100
ext:external-process-status............... 100
ext:external-process-wait.................. 100
ext:file-kind...............l 102
ext:file-stream-fd........................... 76
ext:float-infinity-p............ 44
ext:float-nan-p..........................L 44
ext:get-finalizer........................... 147
ext:get-limitl 148
ext:get-signal-handler..................... 143
ext:getcwd.......... ...l 102
ext:getenv..........l 102
ext:igetpid....... il 102
ext:getuid...........ol 102
ext:hash-table-content 68
ext:hash-table-fill.......................... 68
ext:hash-table-synchronized-p.............. 68
ext:hash-table-weakness..................... 68
ext:lock-package..................iia 153
ext:make-pipel 102
ext:make-sequence-input-stream............. 78
ext :make-sequence-output-stream............ 78
OXTIMAN ...t 44
ext:octets-to-string 64
ext:package-local-nicknames 151
ext:package-locally-nicknamed-by-list.... 151
ext:package-locked-p....................... 153
ext:process-command-args.................... 99
extiquit...... il 102
ext:remove-package-local-nickname 152
eXt ITUN-—PrOZramttt 101
ext:set-buffering-mode...................... 76
ext:set-finalizer..................... 148
ext:set-limitl 148
ext:set-signal-handler..................... 143
extisetenv..........l 102
ext:stack-overflow-size.................... 147
ext:stack-overflow-type.................... 147
ext:string-to-octets 64
extisystem............ ... ool 102
ext:terminate-process...................... 100
ext:itrap-fpe......... i il 42

ECL Manual

ext:unix-signal-received-code............. 143
ext:unlock-package......................... 153
ext:with-backend.............. 111
ext:with-unlocked-packages 153
ext:without-package-locks.................. 153
F

ffi:allocate-foreign-object............... 117
ffi:allocate-foreign-string............... 124
ffi:c-inlineo 109
ffitc-progn........ ...l 110
ffi:clines........ ...l 108
ffi:convert-from-cstring.............. 122, 123
ffi:convert-from-foreign-string........... 123
ffi:convert-to-cstring..................... 122
ffi:convert-to-foreign-string............. 124
ffi:def-array-pointer...................... 116
ffi:def-constant.................... 113
ffitdef-enum............. il 114
ffi:def-foreign-type............ 113
ffi:def-foreign-var 120
ffi:def-function............... 125
ffi:def-struct...........l 115
ffi:def-union............................L 116
ffi:defcallback................ooiiiin.. 111
ffi:defcbodyo 111
ffi:defentry ... 111
ffitdefla............o i 112
ffi:deref-array.............cooiiiiiiiiii, 116
ffi:deref-pointer............... 118
ffi:ensure-char-character.................. 119
ffi:ensure-char-integer.................... 119
ffi:find-foreign-library................... 126
ffi:free-foreign-object.................... 117
ffi:get-slot-pointer 115
ffi:get-slot-value.......................... 115
ffi:load-foreign-library................... 125
ffi:make-null-pointer...................... 119
ffitnull-char-p..........cccoiiiiiiiiennnn... 114
ffi:null-pointer-p....................... ... 119
ffi:pointer-address 118
ffi:size-of-foreign-type................... 118
ffi:with-cast-pointer...................... 120
ffi:with-cstring............. 123
ffi:with-cstrings............ ...t 123
ffi:with-foreign-object.................... 117
ffi:with-foreign-string.................... 124
ffi:with-foreign-strings................... 124
fixint ... 164
fixnint ool 164

Indexes

M

MP:all-ProCesSSesSuuuuuuuuunnnennnnnnnnn 127
mp:atomic-decfol 137
mp:atomic-incf 137
mp:atomic-popl 138
mp:atomic-push.............l 138
mp:atomic-update..............l 138
mp:barrier-arrivers-count.................. 136
mp:barrier-count............... ...l 136
mp:barrier-name................... 136
mp:barrier-unblock............... 136
mp:barrier-wait.............l 136
mp:block-signals............................ 130
mp:compare—-and-SwWap 137
mp:condition-variable-broadcast........... 134
mp:condition-variable-signal.............. 134
mp:condition-variable-timedwait........... 134
mp:condition-variable-wait 134
mp:defcas..........oiiiiiiiiiii 139
mp:define-cas-expander..................... 138
MP:eXit-PproCesscovvuiiiiiniinneennnnn. 127
mp:get-cas—expansion............... ... 140
mp:get-loCk..........o il 132
mp:get-rwlock-read................. ...l 133
mp:get-rwlock-write 133
mp:giveup-lockl 132
mp:giveup-rwlock-read...................... 133
mp:giveup-rwlock-write............... 133
mp:holding-lock-p............ ...l 132
mp:interrupt-process....................... 127
mp:lock-countl 132
mp:lock-ownerl 132
mp:lock_nameiiiiiiiiii 132
mp:make-barrier..............l 136
mp:make-condition-variable 134
mp:make-lockl 131
mp:make-processooi.... 128
mp:make-rwlocko 133
mp:make-semaphore........................... 135
mp:process-active-p........................ 128
mp:process-enable........................... 128
mp:process-join............................. 129
mp:process-kill............................. 129
MP:PrOCESS™MAME . .o oo v veeeeeeeeeeeaannnnnn... 129
mp:process-preset................ 130
MP:ProOCeSS=TEeSUME . ..ottt 129
mp:process-run-function.................... 130
mp:process—suspend.............. ... 129
mp:process-yield................. ... 128
mp:recursive-lock-p........................ 132
) R = (o = 140
mp:restore-signals.......................... 130
mp:rwlock-namel 133
mp: semaphore-count.......................... 135
mp:semaphore-name........................... 135
mp:semaphore-wait................. 135
mp: semaphore-wait-count.................... 135
mp:signal-semaphore 135

189
mp:try-get-semaphore 135
mp:wait-on-semaphore 135
mp:with-interrupts..................... 131, 143
mp:with-lock 132
mp:with-rwlock............... 133
mp:without-interrupts 130, 143
mp_all _procesSesS..........ooeeuuuininnnnnnnn 127
mp_block_signals............coiiiiiiiinnnn. 130
mp_condition_variable_broadcast........... 134
mp_condition_variable_signal 134
mp_condition_variable_timedwait........... 134
mp_condition_variable_wait 134
MP_CULTENt_PrOCESS. . ..vvrrrteeeneennnnnnnnns 130
mp_exit_process............... ...l 127
mp_get_lock_nowait................. 132
mp_get_lock_wait............ ..., 132
mp_get_rwlock_read_nowait.................. 133
mp_get_rwlock_read_wait.................... 133
mp_get_rwlock_write_nowait 133
mp_get_rwlock_write_wait................... 133
mp_giveup_lock............... i 132
mp_giveup_rwlock_read...................... 133
mp_giveup_rwlock_write..................... 133
mp_holding _lock_p............. ...l 132
mp_interrupt _processc.eeeuuuenn. 127
mp_lock_count ool 132
mp_lock_name, 132
MP_LlOCK_OWNETttt 132
mp_make_condition_variable................ 134
mp_make_ProCessSouviiiiuinneiennnn.. 128
mp_process_active_p............ 128
mp_process_enable........................... 128
mp_process_join............ L 129
mp_process_kill........... i il 129
MP_PrOCESS_NAME ..o ovvvvvveeeeneeennneennn... 129
mp_process_preset........................... 130
MP_ProCeSS_TEeSUME........oovvveeeeennnnnn... 129
mp_process_run_function.................... 130
mMp_pProcess_suspend.............c.couuuuuunnnn. 129
mp_process_yield........... ... 128
mp_recursive_lock_p............ 132
mp_restore_signals..............ouiiiiiiin. 130
mp_rwlock name....................oiiiiiaan 133
mp_semaphore_count..............c.oouvuuiniin. 135
mp_semaphore _Name...............c.c.coeunennnn. 135
mp_semaphore_wait_count.................... 135
mp_sempahore_wait(cl_object 135
mp_signal_semaphore 135
mp_try_get_semaphore 135
mp_wait_on_semaphore 135
@)
OPBIL. . ottt 76
R
rename-file........... il 73

190

S

si::string-to-object 163
si:safe-evalt 170
si_add_package_local_nickname............. 151
si_adjust_vector...............l 59
si_make_arrayooiiiiiiiiiiiiiia, 59
si_make_lambdac.cciiiiiiirinnan.. 171
si_make_vVeCtor ...t 59
si_package_local_nicknames 151
si_package_locally_nicknamed_by_list..... 151
si_remove_package_local_nickname 152
si_safe_eval, 170

Variable index

C

cikcc-optimize*x........ oLl 97
c:¥user-cc—flags*............................ 97
c:¥user-ld-flags*............................ 97
c:*user-linker-flags* 97
c:*user-linker-libs* 97
Crikar* 98
CIiRCCk ittt 98
c::*ecl-include-directory*.................. 98
c::*ecl-library-directory*.................. 98
crikldk ... 98
ciikranlib*..... 98

E

ECL_ARRAY_DIMENSION_LIMIT................... 58
ECL_ARRAY_RANK_LIMITc.cviirin.n.. 58
ECL_ARRAY_TOTAL_LIMIT........ccvvvivrininnn. 58
ECL_CHAR_CODE_LIMITciiiiiiinnnnnn.. 165
ECLDIR. ..ttt e e et 19
ext:*default-external-format*.............. 76

Type index

C

cl_elttype ... 58, 166
cl_fixnum........... .. 164
Cl AndeX ...t e 164
cl_lispunion................l 160
cl_object ... 161
Cl_type ... 162

E

€CL_arTay ...ttt 166
ecl_base_String............c.coeiiiiiiiiiiian. 168
ecl_charactervvirininiiiiiiinn. 164
ecl_file OpSoviiiiiiii i 169

ECL Manual

si_string_to_object 163
stream-file-length.......................... 150
stream-file-position....................... 149
stream-interactive-p....................... 150
stream-line-length.......................... 150
stream-read-sequence 150
stream-write-sequence...................... 150

BraCe. o 84
typedef struct { ... } ecl_va_list[1];...... 31
ext:*help-message*........................... 98
ext:*lisp-init-file-list*................... 98
ext:+default-command-arg-rules+............ 98
ext:{short,single,double,long}-float-
{positive,negative}-infinity............. 44

F

ffitxuse-dffix.......... oo 112
ffi:+null-cstring-pointer+................ 119

M

MOST_NEGATIVE_FIXNUM....................... 164
MOST_POSITIVE_FIXNUM............ 164
mMp : ¥CUXTeNt—ProCesSS*uvuururnnnnnnn. 130

S

si:xkeep-definitions*....................... 29
ecl_stream...............ooiiiiiiiiiiiiit, 169
ecl_string........... il 168
€CL_VeCLOT .ttt 165
ext:character-coding-error.................. 76
ext:character-decoding-error............... 7
ext:character-encoding-error............... 7
ext:sequence-stream.......................... 78
ext:stack-overflow.......................... 147
ext:storage-exhausted...................... 147
ext:stream-decoding-error................... 7
ext:stream-encoding-error................... 7

ext:unix-signal-received................... 143

Indexes 191

Common Lisp symbols

192
K 112
byte. ..o 112
cdfloatooouiiiiiii 112
char........ .. 112
clfloat ... 112
csfloat ...t 112
restring ... 112
tdouble ... 112
float ..o 112
Int. .o 112
intl6-t ... 112
Int32-t .. 112
IntB4-t ... 112
1Ong. oot 112
long-doublel 112
tobject .. 112
pointer-void il 112
tshort ..o o 112
uintl6-t.... ... i 112
uint32-t........ooo 112
uint64-t ... 112
runsigned-byte ool 112
runsigned-charl 112
runsigned-int ... ool 112
runsigned-long ... 112
runsigned-shortol 112
void.. ..o 112
C
call-arguments-limit 29
D
debug. ... 25
directory ...l 72
disassemble...............l 84
double-float............oooiiiiiiiiiiii 27
E
ed ... 84
ext:*default-external-format*.............. 76
ext:*help-message*........................... 98
ext:*lisp-init-file-list*................... 98
ext:+default-command-arg-rules+............ 98
ext:add-package-local-nickname............ 151
ext:all-encodings............coiiiiiiiiiiia., 76
ext:binding-stack.............. 145
extic-stack........... i 145
ext:catch-signal............................ 144
ext:character-coding-error.................. 76
ext:character-coding-error-
external-format.................., 76
ext:character-decoding-error............... 77
ext:character-decoding-error-octects...... 77

ext:character-encoding-error............... 7

ECL Manual

ext:character-encoding-error-code 7
ext:chdir......... ol 102
ext:chmod...................l 102
ext:command-args................oiiiiiiia.... 98
ext:copy-file........l 102
ext:decoding-error................ 78
ext:double-float-negative-infinity........ 44
ext:double-float-positive-infinity........ 44
ext:encoding-error........................... 7
ext:environ..............ol 102
ext:external-process-error-stream........ 100
ext:external-process-input 100
ext:external-process-output 100
ext:external-process-pid................... 100
ext:external-process-status............... 100
ext:external-process-wait.................. 100
ext:file-kind................ 102
ext:file-stream-fd................. 76
ext:float-infinity-p.................. 44
ext:float—nan—pcuuiiiiiiiiiiiiniin 44
ext:frame-stack............ ... 145
ext:get-finalizer........................... 147
ext:get-limitl 148
ext:get-signal-handler..................... 143
extigetewd....... ...l 102
ext:getenv............. ... 102
ext:getpid...........l 102
ext:getuid............. ...l 102
ext:hash-table-fill.......................... 68
ext:hash-table-synchronized-p.............. 68
ext:hash-table-weakness..................... 68
ext:heap-sizel 145
ext:lisp-stack............... i 145
ext:lock-package............................ 153
ext:long-float-negative-infinity........... 44
ext:long-float-positive-infinity........... 44
ext:make-pipel 102
ext:make-sequence-input-stream............. 78
ext :make-sequence-output-stream............ 78
@XTIMAN .ottt 44
ext:octets-to-string 64
ext:package-local-nicknames 151

ext

:package-locally-nicknamed-by-1list.... 151

ext:package-locked-p....................... 153
ext:process—command-args.................... 99
ext:quit.......... ... 102
ext:remove-package-local-nickname 152
eXt ITUN-Program..........c.c.uuiiiiiiiiiiiaa. 101
ext:sequence-stream..................... ... 78
ext:set-buffering-mode...................... 76
ext:set-finalizer................. ...t 148
ext:set-limitl 148
ext:set-signal-handler..................... 143
extisetenv............ol 102
ext:short-float-negative-infinity 44
ext:short-float-positive-infinity 44
ext:single-float-negative-infinity........ 44
ext:single-float-positive-infinity........ 44

Indexes

ext:stack-overflow.................oouunnn. 147
ext:stack-overflow-size.................... 147
ext:stack-overflow-type.............cc.o.u.. 147
ext:storage-exhausted...................... 147
ext:stream-decoding-error................... 77
ext:stream-encoding-error................... T
ext:string-to-octets 64
extisystem............l 102
ext:terminate-process...................... 100
ext:trap-fpe......... il 42
ext:unix-signal-received................... 143
ext:unix-signal-received-code............. 143
ext:unlock-package.......................... 153
ext:with-backend...................... 111
ext:with-unlocked-packages 153
ext:without-package-locks.................. 153
extended-char ...l 50
F

ffirkuse-dffi*x.......... il 112
ffi:+null-cstring-pointer+................ 119
ffi:allocate-foreign-object............... 117
ffi:allocate-foreign-string............... 124
ffi:c-inlinel 109
ffi:c-progn....................ool 110
ffi:clines.......... ... il 108
ffi:convert-from-cstring................... 122
ffi:convert-from-foreign-string........... 123
ffi:convert-to-cstring..................... 122
ffi:convert-to-foreign-string............. 124
ffi:def-array-pointer...................... 116
ffi:def-constant.............. 113
ffitdef-enum...............l 114
ffi:def-foreign-type....................... 113
ffi:def-foreign-var 120
ffi:def-function................ 125
ffi:def-struct..........l 115
ffi:def-union..................l 116
ffi:defcallback.............oooiiuiiiinnn. 111
ffitdefcbody il 111
ffi:defentryl 111
ffitdefla..........ooiiiiiiiiiii 112
ffi:deref-array...................... ... 116
ffi:deref-pointer................. 118
ffi:ensure-char-character.................. 119
ffi:ensure-char-integer.................... 119
ffi:find-foreign-library................... 126
ffi:free-cstring........... ool 123
ffi:free-foreign-object.................... 117
ffi:get-slot-pointer....................... 115
ffi:get-slot-value.......................... 115
ffi:load-foreign-library................... 125
ffi:make-null-pointer...................... 119
ffi:null-char-p...........coiiiiiiiinnnnnn.. 114
ffi:null-pointer-p.......................... 119
ffi:pointer-address 118
ffi:size-of-foreign-type................... 118

193
ffi:with-cast-pointer...................... 120
ffi:with-cstring............. 123
ffi:with-cstrings............. 123
ffi:with-foreign-object.................... 117
ffi:with-foreign-string.................... 124
ffi:with-foreign-strings................... 124
H
hash-table-content........................... 68
L
lambda-list-keywords 29
lambda-parameters-limit..................... 29
M
MOST-NEGATIVE-FIXNUM............ 164
MOST-POSITIVE-FIXNUM..............., 164
mp : ¥CUTXTent—procCess*uvruuunnnnnn. 130
mp:all-procesSsSesS.......oovuuuuunnnnnnnnnnnn. 127
mp:allow-with-interrupts................... 130
mp:atomic-decf ...l 137
mp:atomic-incf ...l 137
MP:atomMIC—POP .o vvvvniii s 138
mp:atomic-push...........l 138
mp:atomic-update............ ..ol 138
mp:barrier-arrivers-count.................. 136
mp:barrier-count.................. 136
mp:barrier-name..................... ... 136
mp:barrier-unblock............. 136
mp:barrier-wait.............. 136
mp:block-signals............................ 130
mp:compare-and-sSwap 137
mp:condition-variable-broadcast........... 134
mp:condition-variable-signal.............. 134
mp:condition-variable-timedwait........... 134
mp:condition-variable-wait 134
mp:defcas.......ooiiiiiiiii 139
mp:define-cas-expander..................... 138
mp:exit-process.............. ...l 127
mp:get-cas-expansion............... ... 140
mp:get-lock......... ... il 132
mp:get-rwlock-read................... 133
mp:get-rwlock-write 133
mp:giveup-lock, 132
mp:giveup-rwlock-read...................... 133
mp:giveup-rwlock-write..................... 133
mp:holding-lock-p........................... 132
mp:interrupt-processc.o.uuuiia.. 127
mp:lock-count il 132
mp:lock-namel 132
mp:loCKk—0Wnercovviiiiiiiiiinnnnnn. 132
mp:make-barrier.............. 136
mp:make-condition-variable 134
mp:make-lockl 131
mp:make—proCessSc.covviiiiiennnnnn.... 128

194

mp:make-rwlockl 133
mp:make-semaphore........................... 135
mp:process-active-p.............. 128
mp:process-enable.................. ... 128
mp:process-join............................. 129
mp:process-kill.............. 129
MP:PrOCESS=MNAME . ..o v vveeeeeeeeeennnnnnnnn... 129
mp:process-preset............... ... 130
MP:ProOCESS=TESUMEo, 129
mp:process-run-function.................... 130
mp:process-suspend..................... 129
mp:process-yield............ ..o, 128
mp:recursive-lock-p........................ 132
11] ST ol)1 = P 140
mp:restore-signals............... 130
mp:rwlock-namel 133
mp:semaphore-count.................., 135
mp:semaphore-name........................... 135
mp:semaphore-wait................. 135
mp: semaphore-wait-count.................... 135
mp:signal-semaphore 135
mp:try-get-semaphore 135
mp:wait-on-semaphore 135
mp:with-interrupts....................... ... 131
mp:with-local-interrupts................... 130
mp:with-lock 132
mp:with-restored-interrupts............... 130
mp:with-rwlock....................... 133
mp:without-interrupts...................... 130
mp_lock_ownero, 132

C/C++ index

_eCl _CAAT .t 53
_ecl_cadr ... 53
_eCl AT .. 53
€CL _CAr ..o 53

c_string_to_object............ 163
CHAR_CODE. ... i e et e e 165
CHAR_CODE_LIMITciiiiiiinenanan.. 165
Cl _bOOt o 16
cl_elttype........coiiiiiiiii 58, 166
cl_env ptr...... ... 171
cl_env_structcoiiiiiiiii i 171
Cl eval ..o 170
cl_fixnum..........o, 163, 164
cl dndexX ...t 164
cl_lispunion 160
cl_object ... 161
cl_safe_evalot 170
cl_shutdown...........cooiiiiiiiiiiiinnannn. 17
CODE_CHAR . ..ot e e 165

ECL Manual
multiple-values-limit 29
O
OPCIL. o ottt et 76
optimize 25
R
read-Charoiiiii 74
S
safety.........o i 25
si:*keep-definitions*.................... ... 29
si::make-lambdaiiiiiiii. 28
single-float................ 27
SPACE . .ottt 25
speed............. 25
standard-char, 50
T
BLaCE . ottt 84
W
write-char..............iiiiiiiiiii 74
write-sequenceiiiaa 74
E
ecl_aet_to_symbol...................... 58
ecl_alloc_adjustable_base_string........... 63
ecl_alloc_simple_base_string............... 63
ecl_alloc_simple_vector..................u.. 59
ecl_alpha_char_p...........ccoiiiiiiiinnnn... 52
ecl_alphanumeric_p........... 52
ecl_aref il 60, 167
ecl_arefl 60, 167
eCcl _arrayottt 166
ecl_array_dimension................ ...l 60
ecl_array_elttype................oiit 60, 167
ecl_array_rankooiiiiiiiiii... 60
ecl_aset ... 60, 167
ecl_asetl ... 60, 167
ecl_atomic_getl 137
ecl_atomic_dincf............., 137
ecl_atomic_incf_by_fixnum.................. 137
ecl_atomic_index_incf...................... 137
eCl_atomicC _POP ..cvuutiiit i 137
ecl_atomic_push.................... ... 137
ecl_base_char..............c.oouuiuininn. 51, 164

ecl_base_char_code...................... 51, 165

Indexes

ecl_base_char_p...............ccoiiiiiii, 52
ecl_base_string.............coiiiiiiiiiii.. 168
ecl_base_string_pointer_safe.............. 106
ecl_bds_bind............ ... 30
ecl_bds_push.............. ool 30
ecl bds_unwind_n..............oiiiiiiiii., 31
ecl_bds_unwindl, 31
ecl_both_case_p.............iiiiiiiii, 52
ecl_cdfloat.......coiviiii 46
€CLl_ChaT ..t 64
ecl_char_Cmpoviiiiiiiinnnnnn 165
ecl_char_code.............coiiiininnann. 51, 165
ecl_char_compare.............ccouuuunnieannn. 165
ecl_char_downcase...........c.ooveiiiiinaennnn. 52
ecl _char_eq.......ooiiiiiiiiiiiiiiiiiiea 165
ecl_char_equal 165
ecl_char_set...........uuiriiiiininnanan.. 64
ecl_char_upcaseooiiiiiiiinnnnnn. 52
ecl_character..........ccoiiiiiinnuninon. 51, 164
ecl_clear_interrupts 21
ecl_clfloat.......civiiiii e 46
ecl_compare_and_SWapc..niinn. 136
ecl_csfloat ... 46
ecl_decode_from_cstring..................... 64
ecl_decode_from_unicode_wstring............ 65
ecl_digit_p............ ...l 52
ecl_disable_interrupts...................... 21
ecl_double_float.............cooiiiiiiiiia, 46
ecl_enable_interruptsoun. 21
ecl_encode_to_cstring 65
ecl_encode_to_unicode_wstring.............. 65
ecl_file PoOS ...t 168
ecl_fixnum........... 46, 164
ecl_fixnum_geq.............................. 164
ecl_fixnum_greater.......................... 164
ecl_fixnum_ leq.................. 164
ecl_fixnum_lower..............c.iuiiriiniinin.. 164
ecl_fixnum minusp............oiiiiiiiiiannn. 164
ecl_fixnum plusp...............coiiiiiinan. 164
ecl_foreign_data_pointer_safe............. 105
ecl_get_option.......... ...l 19
ecl_graphic_char_p........................... 52
ecl_import_current_thread................... 19
ecl_init_module............. ..., 92
ecl_long floatoooiiiiiii., 46
eCl_loWer_Case_P......oveiinuiirannniineaaann, 52
ecl_make_barrier.............. ..., 136
ecl_make_cdfloat..............coiiiiiiii... 45
ecl_make_clfloat...............cciiiiininn.. 45
ecl_make_compleX...........cooiiiiiiiii., 45
ecl_make_constant_base_string.............. 63
ecl_make_csfloat..........c.iviiiiniinninn. 45
ecl_make_double_float 45
ecl_make_fixnum......................... 45, 164
ecl_make_foreign data...................... 105
eclmake_int............coiiiiiiiiii 45
ecl make_intl6_t.......... ..., 45
ecl_make_int32_t..........., 45

195
ecl make_intB4_t...... ... 45
ecl make_int8_t....... ...t 45
ecl_make_integer.................. 45
ecl_make_keyword.............. ..., 38
ecl_make_loCKoiit i 131
eclmake 1ong ...ttt 45
ecl_make_long_float.......................... 45
ecl_make_long_ long........................... 45
ecl_make_pointer................. 105
ecl_make_ratiocoiiiiiiiiii. 45
ecl_make_rwloCKcoviiiiiiiniiiniinn.. 133
ecl_make_semaphore................ 135
ecl_make_short_t.............ciiiiiininon.. 45
ecl_make_simple_base_string................ 63
ecl_make_single_float 45
ecl_make_symbol 39
ecl_make_uint, 45
ecl_make uintl6_t........... 45
ecl_make_uint32_t............ 45
ecl_make_uintB4_t......... ..., 45
ecl_make_uint8_t........... 45
ecl_make_Ulongc.oviiiiiiiiiiiiii 45
ecl_make_ulong_long.............ccoeviiiii.. 45
ecl_make_unsigned_integer................... 45
ecl_make_ushort_t............, 45
ecl_nth_valueciiiiiniiiiinnnnnnn. 32
ecl_null_terminated_base_string........... 106
€Cl _NVAlUES . ..ttt 32
€CL_PrOCESS_NV .. .ttttiiiteeiiieeannns 27
ecl_read_from_cstring...................... 163
ecl_release_current_thread.................. 19
ecl_returnO......... .o 33
ecl_returnl....... 33
ecl_return2...... ...t 33
ecl_return3....... 33
ecl_set_option.......... ...l 17
ecl_setq ... 31
ecl_single_float.........ccooiviiiininnneen... 46
ecl_standard_char_p.......................... 52
ecl_stream.........coiiiiiii i 169
ecl_string.............o il 168
ecl_symbol_to_aet....................... 58
ecl_symbol_value..............cooiiiiiiii., 31
ecl _t_of ... 162
ecl_to_cdfloatcoiiiiiiii... 46
ecl_to_clfloatoiiiiiiiiin.. 46
ecl_to_csfloatoooviiiiiinnniiinnn... 46
ecl_to_double i 46
ecl_to_fixnum, 46
ecl_to_float.........oiiiiiiii i, 46
ecl_to_dnt 46
ecl_to_intl6_tt 46
ecl_to_int32_t 46
ecl_to_intB4_t 46
ecl_to_int8_t 46
€Cl_to_1Ong. .. oiii 46
ecl_to_long_double........................... 46

ecl_to_long long..........cooviiiiiiiiiiiin, 46

196

ecl_to_pointer..............l 105
ecl_to_short............coiiiiiiiiinnnnnnnnn.. 46
ecl_to_uint....... 46
ecl_to_uintl6_t......... ... i, 46
ecl_to_uint32_t i 46
ecl_to_uintB4_t ...t 46
ecl_to_uint8_t i 46
ecl_to_ulong.............. 46
ecl_to_ulong long.........covvuuiuiinnnnnnnn. 46
ecl_to_unsigned_integer..................... 46
ecl_to_ushortciviiiiiiinnennnnn.. 46
€Cl _UPPeT _CaSE@_P ..ttt 52
€CL_Va_aTg . .\ 31
ecl_va_end.........ii 31
ecl _va_list.....ooiiiiiii 31
ecl_va_start....... ... 31
€CLl_VeCEOr ...t e 165
ECL_ADJUSTABLE_ARRAY P 165
ECL_ANSI_STREAM_P...... ..., 170
ECL_ANSI_STREAM_TYPE P..................... 170
ECL_ARRAY_DIMENSION_LIMIT................... 58
ECL_ARRAY_HAS_FILL_POINTER_P.............. 165
ECL_ARRAY_RANK_LIMITccovvirinennn.. 58
ECL_ARRAY_TOTAL_LIMIT.........ccvvvuvrininnn. 58
ECL_ARRAYP i 162
ECL _ATOM. ... e e e e 162
ECL_BASE_CHAR_CODE_Pc.ciivinunnn. 162
ECL_BASE_CHAR_P...... ..., 162
ECL_BASE_STRING_P..........cooiiiiiniinnnn. 168
ECL_BIGNUMP.ciiiii it 162
ECL_BIT_VECTOR_P........ ..., 162
ECL_BLOCK_BEGIN0iiiiiiiiiininnnnnn, 33
ECL_CATCH_ALL ...ttt 19
ECL_CATCH_BEGINcc0ititiiiiiinnnnn, 33
ECL_CHAR_CODE.........c0iiiiiiiiinann 51, 165
ECL_CHAR_CODE_LIMITcviiiininnnnnn.. 165
ECL_CHARACTERPiiii it ii i 162
ECL_CLASS_CPL ...ttt iiiee e 170
ECL_CLASS_INFERIORScciviiininnn.. 170
ECL_CLASS_NAMEot 170
ECL_CLASS _OF ..ottt ee e 170
ECL_CLASS _SLOTS ...t i i ie i i 170
ECL_CLASS_SUPERIORScoiiiiiinannn.. 170
ECL_CODE_CHAR........0oiitiiiiiiinnnnn, 51, 165
ECL_COMPLEXP 162
ECL_CONS_CAR. ...ttt e e e 53
ECL_CONS_CDR. . .tttttiiee et iiieee e 53
ECL_CONSP . ..ottt e et et 162
ECL_DOUBLE_FLOAT_P......... ..., 162
ECL_EXTENDED_STRING_P............ ..., 168
ECL_FIXNUMP.ottt 162
ECL_FOREIGN_DATA P....... ..o, 162
ECL_HANDLER_CASE, 36
ECL_HASH_TABLE_P.......o, 162
ECL_IMMEDIATE i 163
ECL_INSTANCEP ..ottt 170
ECL _LISTP ...t et et e 162
ECL_LONG_FLOAT _P.... ... i 162

ECL Manual

ECL_NUMBER_TYPE_P........ ... 162
ECL_PACKAGEP ...ttt i 162
ECL_PATHNAMEP0t ii i 162
ECL_RANDOM_STATE_P.......ciiiiiiinnan.. 162
ECL_READTABLEP i 162
ECL_REAL_TYPE_P...... 162
ECL_RESTART _CASEcoiiiiiii i 37
ECL_RPLACA ... e e 53
ECL_RPLACD ...ttt e e e e 53
ECL_SINGLE_FLOAT_P......coiiiiiiinnnnn, 162
ECL_SPEC_FLAGcoiiti i 170
ECL_SPEC_OBJECTottt iainnnn 170
ECL_SSE_PACK_Pot 162
ECL_STRINGP.ottt 162
ECL_STRUCT_LENGTH............. ... 170
ECL_STRUCT_NAME........ ..o, 170
ECL_STRUCT_SLOTcoiiiiiiiiiinnen.. 170
ECL_STRUCT_SLOTSttt eiieeeen 170
ECL_STRUCT_TYPE..... ..ot 170
ECL_SYMBOLP.ttt it it 162
ECL_UNWIND_PROTECT........coiiriininennnn... 20
ECL_UNWIND_PROTECT_BEGIN.................... 33
ECL_VECTORP.coitii ittt 162
ECL_WITH_LISP_FPE....... ..o, 21
F

5 P 164
fixint ... 164
fixnint 164
M

MAKE _FIXNUM. ...ttt ittt 164
MOST_NEGATIVE_FIXNUM...........coovuvninnn. 164
MOST_POSITIVE_FIXNUM..........ccvvvuvninnn. 164
mp_all_processes..............oiiiiiiiiin... 127
mp_barrier_arrivers_count.................. 136
mp_barrier_count...............oiiiiiiiiaa, 136
mp_barrier name............................. 136
mp_barrier_unblock............... 136
mp_barrier_wait............... oL 136
mp_block_signals............coiiiiiiiinnnnn. 130
mp_condition_variable-broadcast........... 134
mp_condition_variable_signal.............. 134
mp_condition_variable_timedwait........... 134
mp_condition_variable_wait 134
Mp_CUTrTent _ProCesSsS..........ccouuunieeennnn.. 130
mp_exit_process.............coiiiiiiiiii.. 127
mp_get_lock_nowait.............. 132
mp_get_lock_wait............ ..o, 132
mp_get_rwlock_read_nowait.................. 133
mp_get_rwlock_read_wait.................... 133
mp_get_rwlock_write_nowait 133
mp_get_rwlock_write_wait................... 133
mp_giveup_lock............ ...l 132
mp_giveup_rwlock_read...................... 133

mp_giveup_rwlock_write..................... 133

Indexes

mp_holding_lock_p..............cooiiiii.. 132
mp_interrupt_processc..oo.. 127
mp_lock_countol 132
mp_lock_name 132
mp_make_barrier.............l 136
mp_make_condition_variable 134
mp_make_proCessS...............cooiiiiii.... 128
mp_make_semaphore........................... 135
mp_process—join............l 129
mp_process_active_pl 128
mp_process_enable........................... 128
mp_process_kill............. 129
MP_PrOCESS_NAME ... ovvveieneeeeeeannannn... 129
mp_process_preset........................... 130
MP_PrOCESS_TEeSUMEo, 129
mp_process_run_function.................... 130
mp_process_suspend........................ 129
mp_process_yield............. ..o, 128
mp_recursive_lock_p............... 132
mp_restore_signals.......................... 130
mp_rwlock name................oiiiiiiiiiaa.. 133
mp_semaphore_count.......................... 135
mp_semaphore_name........................... 135
mp_semaphore_wait........................... 135
mp_semaphore_wait_count.................... 135
mp_signal_semaphore 135
mp_try_get_semaphore 135
mp_wait_on_semaphore 135

S

si_add_package_local_nickname............. 151
si_adjust_vector.................. 59
si_make_arrayoiiiiiiiiiiiii 59
si_make_lambdaccciiiiiiinnnn.. 171
si_make_vectorl 59
si_octets_to_string............... 64
si_package_local_nicknames 151
si_package_locally_nicknamed_by_list..... 151
si_remove_package_local_nickname 152
si_safe_eval 170
si_string_to_object 163

si_string_to_octets............... 64

197
T
t_array ... 162
t_barrier...... 162
t_base_string............................... 162
t_bclosure. ... 162
t_bignum............. 162
t_bitvector....... ..ot 162
t_bytecodes.....................ooooooL 162
t_CCloSUTe. . .i i 162
t_cdfloat 162
tocfun .. 162
t_cfunfixed....... ...t 162
t_character............cciiiiiiiiiiinn.. 162
t_clfloat ... 162
t_codeblocK. ... 162
t_compleXot 162
t_condition_variable................. 162
t_contiguous -- contiguous block........... 162
t_csfloato 162
tend. . 162
t_fixnum. 162
t_foreign..........l 162
t_frame 162
t_hashtable............ ... i, 162
t_instance....... ...t 162
B dist 162
T LlOoCK o 162
t_longfloat.................ol 162
T _mailboX ... 162
t_othero 162
t_package............ ...l 162
t_pathname.............. ... 162
t_Pprocess 162
t_random.ooiii 162
t_ratio. ..o 162
t_readtable............iiiiiii 162
T rWloCK . . e 162
t_semaphore..............o oo 162
t_singlefloat 162
t_sse_pack.........oiiiiiiiiii 162
BoStart o 162
t_stream....... ... 162
tostring ... 162
t_structure = t_instance 162
tosymbol ... 162
B VeCtOr e 162
t_weak_pointer............. il 162

199

Bibliography

ANSI
AMOP

LISP1.5

Steele:84
Steele:90

Yasa:85

Attardi:95

Smith:84

ANSI Common-Lisp Specification, 1986.

Gregor Kickzales et al. “The Art of the Metaobject Protocol” The M.I.T. Press,
Massachussets Institute of Technology, 1999

John McCarthy et al. “Lisp 1.5 Programmer’s Manual 2nd ed” The M.L.T.
Press, Massachussets Institute of Technology, 1985

Guy L. Steele Jr. et al. “Common Lisp: the Language”, Digital Press, 1984.

Guy L. Steele Jr. at al. “Common Lisp: the Language II”, second edition,
Digital Press, 1990.

Taiichi Yuasa and Masami Hagiya “Kyoto Common-Lisp Report”, Research
Institute for Mathematical Sciences, Kyoto University, 1988.

Giusseppe Attardi “Embeddable Common-Lisp”, ACM Lisp Pointers, 8(1), 30-
41, 1995

B.C. Smith and J. des Rivieres “The Implementation of Procedurally Reflec-
tive Languages”, Proc. of the 1984 ACM Symposium on LISP and Functional
Programming, 1984.

	Introduction
	About this book
	User's guide
	Developer's guide
	Standards
	Extensions

	What is ECL
	History
	Credits
	Copyrights
	Copyright of ECL
	Copyright of this manual

	1 User's guide
	Building ECL
	Autoconf based configuration
	Platform specific instructions
	MSVC based configuration
	Android
	iOS

	Entering and leaving
	The break loop
	Embedding ECL
	Minimal Example
	Embedding Reference
	Starting and Stopping
	Catching Errors and Managing Interrupts

	2 Standards
	Overview
	Reading this manual
	C Reference

	Evaluation and compilation
	Compiler declaration optimize
	declaim and proclaim
	C Reference
	ANSI Dictionary

	Types and classes
	C Reference
	ANSI Dictionary

	Data and control flow
	Shadowed bindings
	Minimal compilation
	Function types
	C Calling conventions
	C Reference
	ANSI Dictionary

	Objects
	C Reference
	ANSI Dictionary

	Structures
	Redefining a defstruct structure
	C Reference
	ANSI Dictionary

	Conditions
	C Reference
	ANSI dictionary

	Symbols
	C Reference
	ANSI Dictionary

	Packages
	C Reference
	ANSI Dictionary

	Numbers
	Numeric types
	Floating point exceptions
	Random-States
	Infinity and Not a Number
	Branch cuts and signed zero
	Dictionary
	C Reference
	Number C types
	Number constructors
	Number accessors
	Number coercion
	ANSI dictionary

	Characters
	Unicode vs. POSIX locale
	Character types
	Character names

	#\Newline characters
	C Reference
	C types
	Constructors
	Predicates
	Character case
	ANSI Dictionary

	Conses
	C Reference
	Accessors
	ANSI Dictionary

	Arrays
	Array limits
	Specializations
	C Reference
	Types and constants
	ecl_aet_to_symbol, ecl_symbol_to_aet
	Constructors
	Accessors
	Array properties
	ANSI Dictionary

	Strings
	String types & Unicode
	C reference
	Base string constructors
	String accessors
	Converting Unicode strings
	ANSI dictionary

	Sequences
	C Reference
	ANSI dictionary

	Hash tables
	Extensions
	Weakness in hash tables
	Thread-safe hash tables
	Hash tables serialization
	Custom equivalence predicate
	Example

	C Reference
	ANSI dictionary

	Filenames
	Syntax
	Wild pathnames and matching
	C Reference
	ANSI dictionary

	Files
	Dictionary
	C Reference
	ANSI Dictionary

	Streams
	ANSI Streams
	Supported types
	Element types
	External formats

	Dictionary
	File Stream Extensions
	External Format Extensions
	Sequence Streams

	C Reference
	ANSI dictionary

	Printer
	C Reference
	ANSI Dictionary

	Reader
	read-supress
	C Reference
	ANSI Dictionary

	System construction
	C Reference
	ANSI Dictionary

	Environment
	Dictionary
	C Reference
	ANSI Dictionary

	3 Extensions
	System building
	Compiling with ECL
	Portable FASL
	Native FASL
	Object file
	Static library
	Shared library
	Executable
	Summary

	Compiling with ASDF
	Example code to build
	Build it as an single executable
	Build it as shared library and use in C
	Build it as static library and use in C

	C compiler configuration
	Compiler flags
	Compiler & Linker programs

	Operating System Interface
	Command line arguments
	External processes
	FIFO files (named pipes)
	Operating System Interface Reference

	Foreign Function Interface
	What is a FFI?
	Two kinds of FFI
	Foreign objects
	C Reference

	Higher level interfaces
	SFFI Reference
	DFFI Reference
	UFFI Reference
	Primitive Types
	Aggregate Types
	Foreign Objects
	Foreign Strings
	Functions and Libraries

	Native threads
	Tasks, threads or processes
	Processes (native threads)
	Processes dictionary
	Locks (mutexes)
	Locks dictionary
	Readers-writer locks
	Read-Write locks dictionary
	Condition variables
	Condition variables dictionary
	Semaphores
	Semaphores dictionary
	Barriers
	Barriers dictionary
	Atomic operations
	Atomic operations dictionary

	Signals and Interrupts
	Problems associated to signals
	Kinds of signals
	Synchronous signals
	Asynchronous signals

	Signals and interrupts in ECL
	Handling of asynchronous signals
	Handling of synchronous signals

	Considerations when embedding ECL
	Signals Reference

	Memory Management
	Introduction
	Boehm-Weiser garbage collector
	Memory limits
	Memory conditions
	Finalization
	Memory Management Reference

	Meta-Object Protocol (MOP)
	Introduction

	Gray Streams
	Tree walker
	Local package nicknames
	Overview
	Package local nicknames dictionary

	Package locks
	Package Locking Overview
	Operations Violating Package Locks
	Package Lock Dictionary

	CDR Extensions

	4 Developer's guide
	Sources structure
	src/c

	Contributing
	Defun preprocessor
	Manipulating Lisp objects
	Objects representation
	Constructing objects

	Environment implementation
	The interpreter
	ECL stacks
	Procedure Call Conventions
	The lexical environment
	The interpreter stack

	The compiler
	The compiler translates to C
	The compiler mimics human C programmer
	Implementation of Compiled Closures
	Use of Declarations to Improve Efficiency
	Inspecting generated C code

	Porting ECL
	Removed features

	Indexes
	Concept index
	Configure option index
	Feature index
	Example index
	Function index
	Variable index
	Type index
	Common Lisp symbols
	C/C++ index

	Bibliography

