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CHAPTER
ONE

INTRODUCTION

1.1 What is Biopython?

Biopython is a collection of freely available Python (https://www.python.org) modules for computational molecular
biology. Python is an object oriented, interpreted, flexible language that is widely used for scientific computing. Python
is easy to learn, has a very clear syntax and can easily be extended with modules written in C, C++ or FORTRAN.
Since its inception in 2000 [Chapman2000], Biopython has been continuously developed and maintained by a large
group of volunteers worldwide.

The Biopython web site (http://www.biopython.org) provides an online resource for modules, scripts, and web links
for developers of Python-based software for bioinformatics use and research. Biopython includes parsers for various
bioinformatics file formats (BLAST, Clustalw, FASTA, Genbank, ...), access to online services (NCBI, Expasy, ...),
a standard sequence class, sequence alignment and motif analysis tools, clustering algorithms, a module for structural
biology, and a module for phylogenetics analysis.

1.2 What can | find in the Biopython package

The main Biopython releases have lots of functionality, including:

 The ability to parse bioinformatics files into Python utilizable data structures, including support for the following
formats:

Blast output — both from standalone and WWW Blast
— Clustalw

— FASTA

— GenBank

— PubMed and Medline

— ExPASy files, like Enzyme and Prosite

— SCOP, including ‘dom’ and ‘lin’ files

— UniGene

— SwissProt

* Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary
interface.

* Code to deal with popular on-line bioinformatics destinations such as:

— NCBI - Blast, Entrez and PubMed services



https://www.python.org
http://www.biopython.org

Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

— ExPASy — Swiss-Prot and Prosite entries, as well as Prosite searches
¢ Interfaces to common bioinformatics programs such as:

— Standalone Blast from NCBI

— Clustalw alignment program

— EMBOSS command line tools

» A standard sequence class that deals with sequences, ids on sequences, and sequence features.

¢ Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

* Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
* Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
» Code making it easy to split up parallelizable tasks into separate processes.

* GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.

» Extensive documentation and help with using the modules, including this file, on-line wiki documentation, the

web site, and the mailing list.
* Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

We hope this gives you plenty of reasons to download and start using Biopython!

1.3 Installing Biopython

All of the installation information for Biopython was separated from this document to make it easier to keep updated.

The short version is use pip install biopython, see the main README file for other options.

1.4 Frequently Asked Questions (FAQ)

1. How do I cite Biopython in a scientific publication?

Please cite our application note [Cock2009] as the main Biopython reference. In addition, please cite any
publications from the following list if appropriate, in particular as a reference for specific modules within
Biopython (more information can be found on our website):

* For the official project announcement: Chapman and Chang, 2000 [Chapman2000];
* For Bio.PDB: Hamelryck and Manderick, 2003 [Hamelryck2003A];

e For Bio.Cluster: De Hoon et al., 2004 [DeHoon20041];

¢ For Bio.Graphics.GenomeDiagram: Pritchard et al., 2006 [Pritchard2006];

e For Bio.Phylo and Bio.Phylo.PAML: Talevich et al. 2012 [Talevich2012];

al., 2010 [Cock2010].

2. How should I capitalize “Biopython”? Is “BioPython” OK?

The correct capitalization is “Biopython”, not “BioPython” (even though that would have matched BioPerl,
BioJava and BioRuby).

3. How is the Biopython software licensed?

For the FASTQ file format as supported in Biopython, BioPerl, BioRuby, BioJava, and EMBOSS: Cock et

8 Chapter 1. Introduction


https://github.com/biopython/biopython/blob/master/README.rst

Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

Biopython is distributed under the Biopython License Agreement. However, since the release of Biopython
1.69, some files are explicitly dual licensed under your choice of the Biopython License Agreement or the BSD
3-Clause License. This is with the intention of later offering all of Biopython under this dual licensing
approach.

4. What is the Biopython logo and how is it licensed?

As of July 2017 and the Biopython 1.70 release, the Biopython logo is a yellow and blue snake forming a
double helix above the word “biopython” in lower case. It was designed by Patrick Kunzmann and this logo is
dual licensed under your choice of the Biopython License Agreement or the BSD 3-Clause License.

biopython

Prior to this, the Biopython logo was two yellow snakes forming a double helix around the word
“BIOPYTHON”, designed by Henrik Vestergaard and Thomas Hamelryck in 2003 as part of an open
competition.

5. Do you have a change-log listing what’s new in each release?

See the file NEWS . rst included with the source code (originally called just NEWS), or read the latest NEWS file
on GitHub.

6. What is going wrong with my print commands?
As of Biopython 1.77, we only support Python 3, so this tutorial uses the Python 3 style print function.

7. How do I find out what version of Biopython I have installed?
Use this:

>>> import Bio
>>> print(Bio.__version__)

If the “import Bio” line fails, Biopython is not installed. Note that those are double underscores before and
after version. If the second line fails, your version is very out of date.

If the version string ends with a plus like “1.66+”, you don’t have an official release, but an old snapshot of the
in development code after that version was released. This naming was used until June 2016 in the run-up to
Biopython 1.68.

If the version string ends with ““. dev<number>” like “1.68.dev0”, again you don’t have an official release, but
instead a snapshot of the in development code before that version was released.

8. Where is the latest version of this document?

If you download a Biopython source code archive, it will include the relevant version in both HTML and PDF
formats. The latest published version of this document (updated at each release) is online:

* http://biopython.org/DIST/docs/tutorial/Tutorial.html
¢ http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

1.4. Frequently Asked Questions (FAQ) 9
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

What is wrong with my sequence comparisons?
There was a major change in Biopython 1.65 making the Seq and MutableSeq classes (and subclasses) use
simple string-based comparison which you can do explicitly with str(seql) == str(seq2).

Older versions of Biopython would use instance-based comparison for Seq objects which you can do explicitly
with id(seql) == id(seq2).

If you still need to support old versions of Biopython, use these explicit forms to avoid problems. See Sec-
tion Comparing Seq objects.
What file formats do Bio.SeqIO and Bio.AlignIO read and write?

Check the built-in docstrings (from Bio import SeqIO, then help(SeqI0)), or see
http://biopython.org/wiki/SeqlO and http://biopython.org/wiki/AlignIO on the wiki for the latest listing.

Why won’t the Bio.SeqIO and Bio.AlignIO functions parse, read and write take filenames? They insist
on handles!

You need Biopython 1.54 or later, or just use handles explicitly (see Section What the heck is a handle?). It is
especially important to remember to close output handles explicitly after writing your data.

Why won’t the Bio.SeqIO.write() and Bio.AlignIO.write() functions accept a single record or
alignment? They insist on a list or iterator!
You need Biopython 1.54 or later, or just wrap the item with [...] to create a list of one element.

Why doesn’t str(...) give me the full sequence of a Seq object?
You need Biopython 1.45 or later.

Why doesn’t Bio.Blast work with the latest plain text NCBI blast output?

The NCBI keep tweaking the plain text output from the BLAST tools, and keeping our parser up to date is/was
an ongoing struggle. If you aren’t using the latest version of Biopython, you could try upgrading. However, we
(and the NCBI) recommend you use the XML output instead, which is designed to be read by a computer
program.

Why has my script using Bio.Entrez.efetch() stopped working?

This could be due to NCBI changes in February 2012 introducing EFetch 2.0. First, they changed the default
return modes - you probably want to add retmode="text" to your call. Second, they are now stricter about
how to provide a list of IDs — Biopython 1.59 onwards turns a list into a comma separated string automatically.

Why doesn’t Bio.Blast.NCBIWWW.qgblast () give the same results as the NCBI BLAST website?

You need to specify the same options — the NCBI often adjust the default settings on the website, and they do
not match the QBLAST defaults anymore. Check things like the gap penalties and expectation threshold.

Why can’t I add SeqRecord objects together?
You need Biopython 1.53 or later.

Why doesn’t Bio.SeqIO.index_db() work? The module imports fine but there is no “‘index_db " function!
You need Biopython 1.57 or later (and a Python with SQLite3 support).

Where is the MultipleSeqAlignment object? The Bio.Align module imports fine but this class isn’t there!

You need Biopython 1.54 or later. Alternatively, the older Bio.Align.Generic.Alignment class supports
some of its functionality, but using this is now discouraged.

Why can’t I run command line tools directly from the application wrappers?
You need Biopython 1.55 or later, but these were deprecated in Biopython 1.78. Consider using the Python
subprocess module directly.

I looked in a directory for code, but I couldn’t find the code that does something. Where’s it hidden?

One thing to know is that we put code in __init__.py files. If you are not used to looking for code in this file
this can be confusing. The reason we do this is to make the imports easier for users. For instance, instead of

10
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having to do a “repetitive” import like from Bio.GenBank import GenBank, you can just use from Bio
import GenBank.
22. Why doesn’t Bio.Fasta work?

We deprecated the Bio.Fasta module in Biopython 1.51 (August 2009) and removed it in Biopython 1.55

(August 2010). There is a brief example showing how to convert old code to use Bio.SeqIO instead in the
DEPRECATED.rst file.

For more general questions, the Python FAQ pages https://docs.python.org/3/fag/index.html may be useful.

1.4. Frequently Asked Questions (FAQ) 11
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CHAPTER
TWO

QUICK START — WHAT CAN YOU DO WITH BIOPYTHON?

This section is designed to get you started quickly with Biopython, and to give a general overview of what is available
and how to use it. All of the examples in this section assume that you have some general working knowledge of Python,
and that you have successfully installed Biopython on your system. If you think you need to brush up on your Python,
the main Python web site provides quite a bit of free documentation to get started with (https://docs.python.org/3/).

Since much biological work on the computer involves connecting with databases on the internet, some of the examples
will also require a working internet connection in order to run.

Now that that is all out of the way, let’s get into what we can do with Biopython.

2.1 General overview of what Biopython provides

As mentioned in the introduction, Biopython is a set of libraries to provide the ability to deal with “things” of interest
to biologists working on the computer. In general this means that you will need to have at least some programming
experience (in Python, of course!) or at least an interest in learning to program. Biopython’s job is to make your job
easier as a programmer by supplying reusable libraries so that you can focus on answering your specific question of
interest, instead of focusing on the internals of parsing a particular file format (of course, if you want to help by writing
a parser that doesn’t exist and contributing it to Biopython, please go ahead!). So Biopython’s job is to make you happy!

One thing to note about Biopython is that it often provides multiple ways of “doing the same thing.” Things have
improved in recent releases, but this can still be frustrating as in Python there should ideally be one right way to do
something. However, this can also be a real benefit because it gives you lots of flexibility and control over the libraries.
The tutorial helps to show you the common or easy ways to do things so that you can just make things work. To learn
more about the alternative possibilities, look in the Cookbook (Chapter Cookbook — Cool things to do with it, this has
some cools tricks and tips), and built-in “docstrings” (via the Python help command or Bio and BioSQL), or ultimately
the code itself.

2.2 Working with sequences

Disputably (of course!), the central object in bioinformatics is the sequence. Thus, we’ll start with a quick introduc-
tion to the Biopython mechanisms for dealing with sequences, the Seq object, which we’ll discuss in more detail in
Chapter Sequence objects.

Most of the time when we think about sequences we have in my mind a string of letters like AGTACACTGGT. You can
create such Seq object with this sequence as follows - the >>> represents the Python prompt followed by what you
would type in:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("AGTACACTGGT™)

(continues on next page)
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(continued from previous page)
>>> my_seq
Seq('AGTACACTGGT ")
>>> print(my_seq)
AGTACACTGGT

The Seq object differs from the Python string in the methods it supports. You can’t do this with a plain string:

>>> my_seq

Seq('AGTACACTGGT ")

>>> my_seq.complement ()
Seq('TCATGTGACCA")

>>> my_seq.reverse_complement ()
Seq("ACCAGTGTACT")

The next most important class is the SeqRecord or Sequence Record. This holds a sequence (as a Seq object) with
additional annotation including an identifier, name and description. The Bio.SeqIO module for reading and writing
sequence file formats works with SeqRecord objects, which will be introduced below and covered in more detail by
Chapter Sequence Input/Output.

This covers the basic features and uses of the Biopython sequence class. Now that you’ve got some idea of what it is
like to interact with the Biopython libraries, it’s time to delve into the fun, fun world of dealing with biological file
formats!

2.3 A usage example

Before we jump right into parsers and everything else to do with Biopython, let’s set up an example to motivate every-
thing we do and make life more interesting. After all, if there wasn’t any biology in this tutorial, why would you want
you read it?

Since I love plants, I think we’re just going to have to have a plant based example (sorry to all the fans of other
organisms out there!). Having just completed a recent trip to our local greenhouse, we’ve suddenly developed an
incredible obsession with Lady Slipper Orchids (if you wonder why, have a look at some Lady Slipper Orchids photos
on Flickr, or try a Google Image Search).

Of course, orchids are not only beautiful to look at, they are also extremely interesting for people studying evolution
and systematics. So let’s suppose we're thinking about writing a funding proposal to do a molecular study of Lady
Slipper evolution, and would like to see what kind of research has already been done and how we can add to that.

After a little bit of reading up we discover that the Lady Slipper Orchids are in the Orchidaceae family and the Cypri-
pedioideae sub-family and are made up of 5 genera: Cypripedium, Paphiopedilum, Phragmipedium, Selenipedium and
Mexipedium.

That gives us enough to get started delving for more information. So, let’s look at how the Biopython tools can help us.
We'll start with sequence parsing in Section Parsing sequence file formats, but the orchids will be back later on as well
- for example we’ll search PubMed for papers about orchids and extract sequence data from GenBank in Chapter Ac-
cessing NCBI's Entrez databases, extract data from Swiss-Prot from certain orchid proteins in Chapter Swiss-Prot and
ExPASy, and work with ClustalW multiple sequence alignments of orchid proteins in Section ClustalW .

14 Chapter 2. Quick Start — What can you do with Biopython?
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2.4 Parsing sequence file formats

A large part of much bioinformatics work involves dealing with the many types of file formats designed to hold bio-
logical data. These files are loaded with interesting biological data, and a special challenge is parsing these files into
a format so that you can manipulate them with some kind of programming language. However the task of parsing
these files can be frustrated by the fact that the formats can change quite regularly, and that formats may contain small
subtleties which can break even the most well designed parsers.

We are now going to briefly introduce the Bio.SeqIO module — you can find out more in Chapter Sequence In-
put/Output. We’ll start with an online search for our friends, the lady slipper orchids. To keep this introduction simple,
we’re just using the NCBI website by hand. Let’s just take a look through the nucleotide databases at NCBI, using an
Entrez online search (https://www.ncbi.nlm.nih.gov/nuccore/?term=Cypripedioideae) for everything mentioning the
text Cypripedioideae (this is the subfamily of lady slipper orchids).

When this tutorial was originally written, this search gave us only 94 hits, which we saved as a FASTA formatted text
file and as a GenBank formatted text file (files Is_orchid.fasta and Is_orchid.gbk, also included with the Biopython
source code under Doc/examples/).

If you run the search today, you’ll get hundreds of results! When following the tutorial, if you want to see the same
list of genes, just download the two files above or copy them from docs/examples/ in the Biopython source code. In
Section Connecting with biological databases we will look at how to do a search like this from within Python.

2.4.1 Simple FASTA parsing example

If you open the lady slipper orchids FASTA file Is_orchid.fasta in your favorite text editor, you’ll see that the file starts
like this:

>0i|2765658|emb|Z278533.1|CIZ78533 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG
AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG

It contains 94 records, each has a line starting with > (greater-than symbol) followed by the sequence on one or more
lines. Now try this in Python:

>>> from Bio import SeqIO

>>> for seq_record in SeqIO.parse("ls_orchid.fasta", "fasta"):
print(seqg_record.id)
print (repr(seq_record.seq))
print(len(seq_record))

You should get something like this on your screen:

9112765658 |emb|Z78533.1|CIZ78533
Seq (' CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC")
740

912765564 |emb|Z78439.1|PBZ78439
Seq('CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT. . .GCC")
592

2.4. Parsing sequence file formats 15
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2.4.2 Simple GenBank parsing example

Now let’s load the GenBank file Is_orchid.gbk instead - notice that the code to do this is almost identical to the snippet
used above for the FASTA file - the only difference is we change the filename and the format string:

>>> from Bio import SeqIO

>>> for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank"):
print(seq_record.id)
print(repr(seq_record.seq))
print(len(seq_record))

This should give:

Z278533.1

Seq (' CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC")
740

Z278439.1
Seq('CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT. . .GCC")
592

You’ll notice that a shorter string has been used as the seq_record. id in this case.

2.4.3 | love parsing — please don’t stop talking about it!

Biopython has a lot of parsers, and each has its own little special niches based on the sequence format it is parsing
and all of that. Chapter Sequence Input/Output covers Bio.SeqIO in more detail, while Chapter Sequence alignments
introduces Bio.Align for sequence alignments.

While the most popular file formats have parsers integrated into Bio.SeqIO and/or Bio.AlignIO, for some of the rarer
and unloved file formats there is either no parser at all, or an old parser which has not been linked in yet. Please also
check the wiki pages http://biopython.org/wiki/SeqlO and http://biopython.org/wiki/AlignIO for the latest information,
or ask on the mailing list. The wiki pages should include an up to date list of supported file types, and some additional
examples.

The next place to look for information about specific parsers and how to do cool things with them is in the Cookbook
(Chapter Cookbook — Cool things to do with it of this Tutorial). If you don’t find the information you are looking for,
please consider helping out your poor overworked documentors and submitting a cookbook entry about it! (once you
figure out how to do it, that is!)

2.5 Connecting with biological databases

One of the very common things that you need to do in bioinformatics is extract information from biological databases. It
can be quite tedious to access these databases manually, especially if you have a lot of repetitive work to do. Biopython
attempts to save you time and energy by making some on-line databases available from Python scripts. Currently,
Biopython has code to extract information from the following databases:

* Entrez (and PubMed) from the NCBI — See Chapter Accessing NCBI'’s Entrez databases.
* ExPASy — See Chapter Swiss-Prot and ExPASYy.
¢ SCOP — See the Bio.SCOP.search() function.

16 Chapter 2. Quick Start — What can you do with Biopython?



https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO
https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html
https://www.ncbi.nlm.nih.gov/PubMed/
https://www.expasy.org/
http://scop.mrc-lmb.cam.ac.uk/scop/

Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

The code in these modules basically makes it easy to write Python code that interact with the CGI scripts on these
pages, so that you can get results in an easy to deal with format. In some cases, the results can be tightly integrated
with the Biopython parsers to make it even easier to extract information.

2.6 What to do next

Now that you’ve made it this far, you hopefully have a good understanding of the basics of Biopython and are ready to
start using it for doing useful work. The best thing to do now is finish reading this tutorial, and then if you want start
snooping around in the source code, and looking at the automatically generated documentation.

Once you get a picture of what you want to do, and what libraries in Biopython will do it, you should take a peak at the
Cookbook (Chapter Cookbook — Cool things to do with it), which may have example code to do something similar to
what you want to do.

If you know what you want to do, but can’t figure out how to do it, please feel free to post questions to the main
Biopython list (see http://biopython.org/wiki/Mailing_lists). This will not only help us answer your question, it will
also allow us to improve the documentation so it can help the next person do what you want to do.

Enjoy the code!

2.6. What to do next 17
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CHAPTER
THREE

SEQUENCE OBJECTS

Biological sequences are arguably the central object in Bioinformatics, and in this chapter we’ll introduce the Biopython
mechanism for dealing with sequences, the Seq object. Chapter Sequence annotation objects will introduce the related
SegRecord object, which combines the sequence information with any annotation, used again in Chapter Sequence
Input/Output for Sequence Input/Output.

Sequences are essentially strings of letters like AGTACACTGGT, which seems very natural since this is the most common
way that sequences are seen in biological file formats.

The most important difference between Seq objects and standard Python strings is they have different methods. Al-
though the Seq object supports many of the same methods as a plain string, its translate () method differs by doing
biological translation, and there are also additional biologically relevant methods like reverse_complement ().

3.1 Sequences act like strings

In most ways, we can deal with Seq objects as if they were normal Python strings, for example getting the length, or
iterating over the elements:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("GATCG")
>>> for index, letter in enumerate(my_seq):

print (" " % (index, letter))

0 G

1A

2T

3C

4 G

>>> print(len(my_seq))

5

You can access elements of the sequence in the same way as for strings (but remember, Python counts from zero!):

>>> print(my_seq[0]) # first letter

G
>>> print(my_seq[2]) # third letter
T
>>> print(my_seq[-1]) # last letter
G

The Seq object has a . count () method, just like a string. Note that this means that like a Python string, this gives a
non-overlapping count:

19
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>>> from Bio.Seq import Seq
>>> "AAAA" .count ("AA")

2

>>> Seq("AAAA™) .count ("AA™)
2

For some biological uses, you may actually want an overlapping count (i.e. 3 in this trivial example). When searching
for single letters, this makes no difference:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC")
>>> len(my_seq)

32

>>> my_seq.count("'G")

9

>>> 100 * (my_seq.count("G") + my_seq.count("C")) / len(my_seq)
46.875

While you could use the above snippet of code to calculate a GC%, note that the Bio.SeqUtils module has several
GC functions already built. For example:

>>> from Bio.Seq import Seq

>>> from Bio.SeqUtils import gc_fraction

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC™)
>>> gc_fraction(my_seq)

0.46875

Note that using the Bio.SeqUtils.gc_fraction() function should automatically cope with mixed case sequences
and the ambiguous nucleotide S which means G or C.

Also note that just like a normal Python string, the Seq object is in some ways “read-only”. If you need to edit your
sequence, for example simulating a point mutation, look at the Section MutableSeq objects below which talks about
the MutableSeq object.

3.2 Slicing a sequence

A more complicated example, let’s get a slice of the sequence:

>>> from Bio.Seq import Seq

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC")
>>> my_seq[4:12]

Seq('GATGGGCC")

Note that ‘Seq‘ objects follow the usual indexing conventions for Python strings, with the first element of the sequence
numbered 0. When you do a slice the first item is included (i.e. 4 in this case) and the last is excluded (12 in this case).

Also like a Python string, you can do slices with a start, stop and stride (the step size, which defaults to one). For
example, we can get the first, second and third codon positions of this DNA sequence:

>>> my_seq[0::3]
Seq('GCTGTAGTAAG')
>>> my_seq[1::3]
Seq('AGGCATGCATC")

(continues on next page)
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(continued from previous page)
>>> my_seq[2::3]
Seq (' TAGCTAAGAC')

Another stride trick you might have seen with a Python string is the use of a -1 stride to reverse the string. You can do
this with a Seq object too:

>>> my_seq[::-1]
Seq (' CGCTAAAAGCTAGGATATATCCGGGTAGCTAG'")

3.3 Turning Seq objects into strings

If you really do just need a plain string, for example to write to a file, or insert into a database, then this is very easy to
get:

>>> str(my_seq)
' GATCGATGGGCCTATATAGGATCGAAAATCGC'

Since calling str() on a Seq object returns the full sequence as a string, you often don’t actually have to do this
conversion explicitly. Python does this automatically in the print function:

>>> print(my_seq)
GATCGATGGGCCTATATAGGATCGAAAATCGC

You can also use the Seq object directly with a %s placeholder when using the Python string formatting or interpolation
operator (%):

>>> fasta_format_string = ">Name\n%s\n" % my_seq
>>> print(fasta_format_string)
>Name

GATCGATGGGCCTATATAGGATCGAAAATCGC

This line of code constructs a simple FASTA format record (without worrying about line wrapping). Section The format
method describes a neat way to get a FASTA formatted string from a SeqRecord object, while the more general topic
of reading and writing FASTA format sequence files is covered in Chapter Sequence Input/Output.

3.4 Concatenating or adding sequences

Two Seq objects can be concatenated by adding them:

>>> from Bio.Seq import Seq
>>> seql = Seq("ACGT")

>>> seq2 = Seq("AACCGG™)
>>> seql + seq2
Seq('ACGTAACCGG")

Biopython does not check the sequence contents and will not raise an exception if for example you concatenate a protein
sequence and a DNA sequence (which is likely a mistake):
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>>> from Bio.Seq import Seq
>>> protein_seq = Seq("EVRNAK'™)
>>> dna_seq = Seq("ACGT")

>>> protein_seq + dna_seq
Seq('EVRNAKACGT')

You may often have many sequences to add together, which can be done with a for loop like this:

>>> from Bio.Seq import Seq
>>> list_of_seqs = [Seq("ACGT"), Seq("AACC"), Seq("GGTT")]
>>> concatenated = Seq("")
>>> for s in list_of_seqgs:
concatenated += s

>>> concatenated
Seq('ACGTAACCGGTT")

Like Python strings, Biopython Seq also has a . join method:

>>> from Bio.Seq import Seq

>>> contigs = [Seq("ATG"), Seq("ATCCCG"), Seq("TTGCA™)]
>>> spacer = Seq("N" * 10)

>>> spacer.join(contigs)

Seq ("ATGNNNNNNNNNNATCCCGNNNNNNNNNNTTGCA ")

3.5 Changing case

Python strings have very useful upper and lower methods for changing the case. For example,

>>> from Bio.Seq import Seq
>>> dna_seq = Seq("acgtACGT")
>>> dna_seq

Seq('acgtACGT")

>>> dna_seq.upper()
Seq('ACGTACGT")

>>> dna_seq.lower()
Seq('acgtacgt')

These are useful for doing case insensitive matching:

>>> "GTAC" in dna_seq

False

>>> "GTAC" in dna_seq.upper()
True
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3.6 Nucleotide sequences and (reverse) complements

For nucleotide sequences, you can easily obtain the complement or reverse complement of a Seq object using its built-in
methods:

>>> from Bio.Seq import Seq

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC")
>>> my_seq

Seq ('GATCGATGGGCCTATATAGGATCGAAAATCGC")

>>> my_seq.complement ()
Seq('CTAGCTACCCGGATATATCCTAGCTTTTAGCG")

>>> my_seq.reverse_complement ()
Seq("'GCGATTTTCGATCCTATATAGGCCCATCGATC")

As mentioned earlier, an easy way to just reverse a Seq object (or a Python string) is slice it with -1 step:

>>> my_seq[::-1]
Seq (' CGCTAAAAGCTAGGATATATCCGGGTAGCTAG'")

If you do accidentally end up trying to do something weird like taking the (reverse) complement of a protein sequence,
the results are biologically meaningless:

>>> from Bio.Seq import Seq
>>> protein_seq = Seq("EVRNAK")
>>> protein_seq.complement ()
Seq('EBYNTM')

Here the letter “E” is not a valid IUPAC ambiguity code for nucleotides, so was not complemented. However, “V”
means “A”, “C” or “G” and has complement “B*, and so on.

The example in Section Converting a file of sequences to their reverse complements combines the Seq object’s reverse
complement method with Bio.SeqIO for sequence input/output.

3.7 Transcription

Before talking about transcription, I want to try to clarify the strand issue. Consider the following (made up) stretch of
double stranded DNA which encodes a short peptide:

DNA coding strand (aka Crick strand, strand + 1)
5 ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3
CEETTEEEEEE e e e et e e e e e e
3 TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5
DNA template strand (aka Watson strand, strand — 1)

Transcription of this DNA sequence produces the following RNA sequence:

5 AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3
Single-stranded messenger RNA

The actual biological transcription process works from the template strand, doing a reverse complement (TCAG —
CUGA) to give the mRNA. However, in Biopython and bioinformatics in general, we typically work directly with the
coding strand because this means we can get the mRNA sequence just by switching T — U.
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Now let’s actually get down to doing a transcription in Biopython. First, let’s create Seq objects for the coding and
template DNA strands:

>>> from Bio.Seq import Seq

>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG™)
>>> coding_dna

Seq("'ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")

>>> template_dna = coding_dna.reverse_complement()

>>> template_dna

Seq("'CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT ")

These should match the figure above - remember by convention nucleotide sequences are normally read from the 5’ to
3’ direction, while in the figure the template strand is shown reversed.

Now let’s transcribe the coding strand into the corresponding mRNA, using the Seq object’s built-in transcribe
method:

>>> coding_dna
Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
>>> messenger_rna = coding_dna.transcribe()
>>> messenger_rna

Seq (' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")

As you can see, all this does is to replace T by U.

If you do want to do a true biological transcription starting with the template strand, then this becomes a two-step
process:

>>> template_dna.reverse_complement () .transcribe()
Seq (' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")

The Seq object also includes a back-transcription method for going from the mRNA to the coding strand of the DNA.
Again, this is a simple U — T substitution:

>>> from Bio.Seq import Seq

>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")
>>> messenger_rna

Seq (' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")

>>> messenger_rna.back_transcribe()
Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")

Note: The Seq object’s transcribe and back_transcribe methods were added in Biopython 1.49. For older re-
leases you would have to use the Bio. Seq module’s functions instead, see Section Working with strings directly.

3.8 Translation

Sticking with the same example discussed in the transcription section above, now let’s translate this mRNA into the
corresponding protein sequence - again taking advantage of one of the Seq object’s biological methods:

>>> from Bio.Seq import Seq

>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG™)
>>> messenger_rna

Seq ("' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")

(continues on next page)
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(continued from previous page)

>>> messenger_rna.translate()
Seq("'MAIVMGR*KGAR* ")

You can also translate directly from the coding strand DNA sequence:

>>> from Bio.Seq import Seq

>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
>>> coding_dna

Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")

>>> coding_dna.translate()

Seq("MAIVMGR*KGAR* ")

You should notice in the above protein sequences that in addition to the end stop character, there is an internal stop as
well. This was a deliberate choice of example, as it gives an excuse to talk about some optional arguments, including
different translation tables (Genetic Codes).

The translation tables available in Biopython are based on those from the NCBI (see the next section of this tutorial). By
default, translation will use the standard genetic code (NCBI table id 1). Suppose we are dealing with a mitochondrial
sequence. We need to tell the translation function to use the relevant genetic code instead:

>>> coding_dna.translate(table="Vertebrate Mitochondrial")
Seq ("MAIVMGRWKGAR* ")

You can also specify the table using the NCBI table number which is shorter, and often included in the feature annotation
of GenBank files:

>>> coding_dna.translate(table=2)
Seq("'MAIVMGRWKGAR* ")

Now, you may want to translate the nucleotides up to the first in frame stop codon, and then stop (as happens in nature):

>>> coding_dna.translate()

Seq("'MAIVMGR*KGAR* ")

>>> coding_dna.translate(to_stop=True)
Seq("MAIVMGR')

>>> coding_dna.translate(table=2)

Seq ("MAIVMGRWKGAR* ")

>>> coding_dna.translate(table=2, to_stop=True)
Seq("MAIVMGRWKGAR")

Notice that when you use the to_stop argument, the stop codon itself is not translated - and the stop symbol is not
included at the end of your protein sequence.

You can even specify the stop symbol if you don’t like the default asterisk:

>>> coding_dna.translate(table=2, stop_symbol="@")
Seq("MAIVMGRWKGAR@")

Now, suppose you have a complete coding sequence CDS, which is to say a nucleotide sequence (e.g. mRNA — after any
splicing) which is a whole number of codons (i.e. the length is a multiple of three), commences with a start codon, ends
with a stop codon, and has no internal in-frame stop codons. In general, given a complete CDS, the default translate
method will do what you want (perhaps with the to_stop option). However, what if your sequence uses a non-standard
start codon? This happens a lot in bacteria — for example the gene yaaX in E. coli K12:
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>>> from Bio.Seq import Seq
>>> gene = Seq(
"GTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCA"
"GCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGTAAAATTACAGATAGGCGATCGTGAT"
"AATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACAT"
"TATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCAT"
oy "AAGAAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAA"
)
>>> gene.translate(table="Bacterial")
Seq('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. . .HR* ",
ProteinAlpabet())
>>> gene.translate(table="Bacterial", to_stop=True)
Seq('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. . .HHR'")

In the bacterial genetic code GTG is a valid start codon, and while it does normally encode Valine, if used as a start
codon it should be translated as methionine. This happens if you tell Biopython your sequence is a complete CDS:

>>> gene.translate(table="Bacterial", cds=True)
Seq ("MKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. . .HHR ')

In addition to telling Biopython to translate an alternative start codon as methionine, using this option also makes sure

your sequence really is a valid CDS (you’ll get an exception if not).

The example in Section Translating a FASTA file of CDS entries combines the Seq object’s translate method with

Bio.SeqIO for sequence input/output.

3.9 Translation Tables

In the previous sections we talked about the Seq object translation method (and mentioned the equivalent function in
the Bio.Seq module — see Section Working with strings directly). Internally these use codon table objects derived
from the NCBI information at ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt, also shown on https://www.ncbi.nlm.

nih.gov/Taxonomy/Utils/wprintgc.cgi in a much more readable layout.

As before, let’s just focus on two choices: the Standard translation table, and the translation table for Vertebrate Mito-

chondrial DNA.

>>> from Bio.Data import CodonTable
>>> standard_table = CodonTable.unambiguous_dna_by_name["Standard"]

>>> mito_table = CodonTable.unambiguous_dna_by_name["Vertebrate Mitochondrial"]

Alternatively, these tables are labeled with ID numbers 1 and 2, respectively:

>>> from Bio.Data import CodonTable
>>> standard_table = CodonTable.unambiguous_dna_by_id[1]
>>> mito_table = CodonTable.unambiguous_dna_by_id[2]

You can compare the actual tables visually by printing them:

>>> print(standard_table)
Table 1 Standard, SGCO

(continues on next page)
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(continued from previous page)

T | TIT F | TCT S | TAT Y | TGT C | T
T | TIC F | TCC S | TACY | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA Stop| A
T | TTG L(s)| TCG S | TAG Stop| TGG W | G
——tm - e e o +--
C| CIT L | CCT P | CAT H | CGT R | T
C| CIC L | ccCcp | CACH | CGC R | C
C| CTA L | CCAP | CAA Q | CGA R | A
C | CIG L(s)| CCG P | CAG Q | CGG R | G
- e o o +--
A | ATT I | ACT T | AAT N | AGT S | T
A | ATC I | ACCT | AAC N | AGC S | C
A | ATA I | ACA T | AAA K | AGA R | A
A | ATG M(s)| ACG T | AAG K | AGG R | G
R e e e e +--
G| GITV | GCT A | GAT D | GGT G | T
G | GIC V | GCC A | GACD | GGC G | C
G| GTA V | GCA A | GAA E | GGA G | A
G | GIG V | GCG A | GAG E | GGG G | G
R e e e e +--
and:
>>> print(mito_table)
Table 2 Vertebrate Mitochondrial, SGC1

| T | C | A | G I
e +o—mmmm B it B ettt +--
T | TIT F | TCT S | TAT Y | TGT C | T
T | TTC F | TCC S | TACY | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA W | A
T | TTG L | TCG S | TAG Stop| TGG W | G
e +o—— +o—— - B +--
C| CIT L | CCT P | CAT H | CGT R | T
C| CICL | CCCP | CAC H | CGC R | C
C| CTA L | CCAP | CAA Q | CGA R | A
C | CIG L | CCG P | CAG Q | CGG R | G
e o o o +--
A | ATT I(s)| ACT T | AAT N | AGT S | T
A | ATC I(s)| ACC T | AAC N | AGC S | C
A | ATA M(s)| ACA T | AAA K | AGA Stop| A
A | ATG M(s)| ACG T | AAG K | AGG Stop| G
——tm - o o o +--
G| GIT V | GCT A | GAT D | GGT G | T
G | GTC V | GCC A | GAC D | GGC G | C
G| GTA V | GCA A | GAA E | GGA G | A
G | GTG V(s)| GCG A | GAG E | GGG G | G
- e o o +--

You may find these following properties useful — for example if you are trying to do your own gene finding:

[>>> mito_table.stop_codons
(continues on next page)
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(continued from previous page)
['TAA', 'TAG', '"AGA', '"AGG']
>>> mito_table.start_codons
['ATT', 'ATC', 'ATA', 'ATG', 'GTG']
>>> mito_table. forward_table["ACG"]
T

3.10 Comparing Seq objects

Sequence comparison is actually a very complicated topic, and there is no easy way to decide if two sequences are
equal. The basic problem is the meaning of the letters in a sequence are context dependent - the letter “A” could be
part of a DNA, RNA or protein sequence. Biopython can track the molecule type, so comparing two Seq objects could
mean considering this too.

Should a DNA fragment “ACG” and an RNA fragment “ACG” be equal? What about the peptide “ACG”? Or the
Python string “ACG”? In everyday use, your sequences will generally all be the same type of (all DNA, all RNA, or all
protein). Well, as of Biopython 1.65, sequence comparison only looks at the sequence and compares like the Python
string.

>>> from Bio.Seq import Seq
>>> seql = Seq("ACGT")

>>> "ACGT" == seql
True
>>> seql == "ACGT"
True

As an extension to this, using sequence objects as keys in a Python dictionary is equivalent to using the sequence as a
plain string for the key. See also Section Turning Seq objects into strings.

3.11 Sequences with unknown sequence contents

In some cases, the length of a sequence may be known but not the actual letters constituting it. For example, GenBank
and EMBL files may represent a genomic DNA sequence only by its config information, without specifying the sequence
contents explicitly. Such sequences can be represented by creating a Seq object with the argument None, followed by
the sequence length:

>>> from Bio.Seq import Seq
>>> unknown_seq = Seq(None, 10)

The Seq object thus created has a well-defined length. Any attempt to access the sequence contents, however, will raise
an UndefinedSequenceError:

>>> unknown_seq

Seq(None, length=10)

>>> len(unknown_seq)

10

>>> print (unknown_seq)

Traceback (most recent call last):

Bio.Seq.UndefinedSequenceError: Sequence content is undefined
>>>
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3.12 Sequences with partially defined sequence contents

Sometimes the sequence contents is defined for parts of the sequence only, and undefined elsewhere. For example, the
following excerpt of a MAF (Multiple Alignment Format) file shows an alignment of human, chimp, macaque, mouse,
rat, dog, and opossum genome sequences:

s hg38.chr7 117512683 36 + 159345973 TTGAAAACCTGAATGTGAGAGTCAGTCAAGGATAGT
s panTro4.chr7 119000876 36 + 161824586 TTGAAAACCTGAATGTGAGAGTCACTCAAGGATAGT
s rheMac3.chr3 156330991 36 + 198365852 CTGAAATCCTGAATGTGAGAGTCAATCAAGGATGGT
s mm10.chr6 18207101 36 + 149736546 CTGAAAACCTAAGTAGGAGAATCAACTAAGGATAAT
s rn5.chr4 42326848 36 + 248343840 CTGAAAACCTAAGTAGGAGAGACAGTTAAAGATAAT
s canFam3.chrl4 56325207 36 + 60966679 TTGAAAAACTGATTATTAGAGTCAATTAAGGATAGT
s monDom5.chr8 173163865 36 + 312544902 TTAAGAAACTGGAAATGAGGGTTGAATGACAAACTT

In each row, the first number indicates the starting position (in zero-based coordinates) of the aligned sequence on the
chromosome, followed by the size of the aligned sequence, the strand, the size of the full chromosome, and the aligned
sequence.

A Seq object representing such a partially defined sequence can be created using a dictionary for the data argument,
where the keys are the starting coordinates of the known sequence segments, and the values are the corresponding
sequence contents. For example, for the first sequence we would use

>>> from Bio.Seq import Seq
>>> seq = Seq({117512683: "TTGAAAACCTGAATGTGAGAGTCAGTCAAGGATAGT"}, length=159345973)

Extracting a subsequence from a partially define sequence may return a fully defined sequence, an undefined sequence,
or a partially defined sequence, depending on the coordinates:

>>> seq[1000:1020]

Seq(None, length=20)

>>> seq[117512690:117512700]

Seq('CCTGAATGTG'")

>>> seq[117512670:117512690]

Seq({13: 'TTGAAAA'}, length=20)

>>> seq[117512700:]

Seq({0: '"AGAGTCAGTCAAGGATAGT'}, length=41833273)

Partially defined sequences can also be created by appending sequences, if at least one of the sequences is partially or
fully undefined:

>>> seq = Seq("ACGT™)

>>> undefined_seq = Seq(None, length=10)
>>> seq + undefined_seq + seq

Seq({0: "ACGT', 14: '"ACGT'}, length=18)
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3.13 MutableSeq objects

Just like the normal Python string, the Seq object is “read only”, or in Python terminology, immutable. Apart from
wanting the Seq object to act like a string, this is also a useful default since in many biological applications you want
to ensure you are not changing your sequence data:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA™)

Observe what happens if you try to edit the sequence:

>>> my_seq[5] = "G"
Traceback (most recent call last):

TypeError: 'Seq' object does not support item assignment

However, you can convert it into a mutable sequence (a MutableSeq object) and do pretty much anything you want
with it:

>>> from Bio.Seq import MutableSeq

>>> mutable_seq = MutableSeq(my_seq)

>>> mutable_seq
MutableSeq('GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA")

Alternatively, you can create a MutableSeq object directly from a string:

>>> from Bio.Seq import MutableSeq
>>> mutable_seq = MutableSeq("'GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA™)

Either way will give you a sequence object which can be changed:

>>> mutable_seq
MutableSeq('GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA")
>>> mutable_seq[5] = "C"

>>> mutable_seq
MutableSeq('GCCATCGTAATGGGCCGCTGAAAGGGTGCCCGA")
>>> mutable_seq.remove("T")

>>> mutable_seq
MutableSeq('GCCACGTAATGGGCCGCTGAAAGGGTGCCCGA")
>>> mutable_seq.reverse()

>>> mutable_seq
MutableSeq('AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG")

Note that the MutableSeq object’s reverse() method, like the reverse() method of a Python list, reverses the
sequence in place.

An important technical difference between mutable and immutable objects in Python means that you can’t use a
MutableSeq object as a dictionary key, but you can use a Python string or a Seq object in this way.

Once you have finished editing your a MutableSeq object, it’s easy to get back to a read-only Seq object should you
need to:

>>> from Bio.Seq import Seq
>>> new_seq = Seq(mutable_seq)
(continues on next page)
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(continued from previous page)

>>> new_seq
Seq ("AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG")

You can also get a string from a MutableSeq object just like from a Seq object (Section Turning Seq objects into
Sstrings).

3.14 Finding subsequences

Sequence objects have find, rfind, index, and rindex methods that perform the same function as the corresponding
methods on plain string objects. The only difference is that the subsequence can be a string (str), bytes, bytearray,
Seq, or MutableSeq object:

>>> from Bio.Seq import Seq, MutableSeq
>>> seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA™)
>>> seq.index("ATGGGCCGC™)

9

>>> seq.index(b"ATGGGCCGC™)

9

>>> seq.index(bytearray(b"ATGGGCCGC"))
9

>>> seq.index(Seq(""ATGGGCCGC™))

9

>>> seq.index(MutableSeq("ATGGGCCGC"))
9

A ValueError is raised if the subsequence is not found:

>>> seq.index("ACTG")
Traceback (most recent call last):

ValueError:

while the find method returns -1 if the subsequence is not found:

>>> seq.find("ACTG")
=il

The methods rfind and rindex search for the subsequence starting from the right hand side of the sequence:

>>> seq.find("CC")
1

>>> seq.rfind("CC")
29

Use the search method to search for multiple subsequences at the same time. This method returns an iterator:

>>> for index, sub in seq.search(["CC", "GGG", "CC"]):
print(index, sub)

1 CC
11 GGG

(continues on next page)

3.14. Finding subsequences 31




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

(continued from previous page)
14 CC
23 GGG
28 CC
29 CC

The search method also takes plain strings, bytes, bytearray, Seq, and MutableSeq objects as subsequences;
identical subsequences are reported only once, as in the example above.

3.15 Working with strings directly

To close this chapter, for those you who really don’t want to use the sequence objects (or who prefer a functional
programming style to an object orientated one), there are module level functions in Bio. Seq will accept plain Python
strings, Seq objects or MutableSeq objects:

>>> from Bio.Seq import reverse_complement, transcribe, back_transcribe, translate
>>> my_string = "GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTGGTTAG"

>>> reverse_complement (my_string)

'CTAACCAGCAGCACGACCACCCTTCCAACGACCCATAACAGC'

>>> transcribe(my_string)

' GCUGUUAUGGGUCGUUGGAAGGGUGGUCGUGCUGCUGGUUAG'

>>> back_transcribe(my_string)

' GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTGGTTAG'

>>> translate(my_string)

' AVMGRWKGGRAAG* '

You are, however, encouraged to work with Seq objects by default.
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CHAPTER
FOUR

SEQUENCE ANNOTATION OBJECTS

Chapter Sequence objects introduced the sequence classes. Immediately “above” the Seq class is the Sequence Record
or SeqRecord class, defined in the Bio.SeqRecord module. This class allows higher level features such as identi-
fiers and features (as SeqFeature objects) to be associated with the sequence, and is used throughout the sequence
input/output interface Bio.SeqIO described fully in Chapter Sequence Input/Output.

If you are only going to be working with simple data like FASTA files, you can probably skip this chapter for now. If
on the other hand you are going to be using richly annotated sequence data, say from GenBank or EMBL files, this
information is quite important.

While this chapter should cover most things to do with the SeqRecord and SeqFeature objects in this chapter, you
may also want to read the SeqRecord wiki page (http://biopython.org/wiki/SeqRecord), and the built-in documentation
(Bio.SeqRecord and Bio.SegFeature):

>>> from Bio.SeqRecord import SeqRecord
>>> help(SeqRecord)

4.1 The SeqRecord object

The SeqRecord (Sequence Record) class is defined in the Bio.SeqRecord module. This class allows higher level
features such as identifiers and features to be associated with a sequence (see Chapter Sequence objects), and is the
basic data type for the Bio.SeqIO sequence input/output interface (see Chapter Sequence Input/Output).

The SeqRecord class itself is quite simple, and offers the following information as attributes:

.seq

The sequence itself, typically a Seq object.
.id

The primary ID used to identify the sequence — a string. In most cases this is something like an accession number.
.name

A “common” name/id for the sequence — a string. In some cases this will be the same as the accession number,
but it could also be a clone name. I think of this as being analogous to the LOCUS id in a GenBank record.

.description
A human readable description or expressive name for the sequence — a string.

Jetter_annotations
Holds per-letter-annotations using a (restricted) dictionary of additional information about the letters in the se-
quence. The keys are the name of the information, and the information is contained in the value as a Python
sequence (i.e. a list, tuple or string) with the same length as the sequence itself. This is often used for qual-
ity scores (e.g. Section Simple quality filtering for FASTQ files) or secondary structure information (e.g. from
Stockholm/PFAM alignment files).
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.annotations
A dictionary of additional information about the sequence. The keys are the name of the information, and the in-
formation is contained in the value. This allows the addition of more “unstructured” information to the sequence.

features
A list of SeqFeature objects with more structured information about the features on a sequence (e.g. position
of genes on a genome, or domains on a protein sequence). The structure of sequence features is described below
in Section Feature, location and position objects.

.dbxrefs
A list of database cross-references as strings.

4.2 Creating a SeqRecord

Using a SeqRecord object is not very complicated, since all of the information is presented as attributes of the class.
Usually you won’t create a SeqRecord “by hand”, but instead use Bio.SeqIO to read in a sequence file for you (see
Chapter Sequence Input/Output and the examples below). However, creating SeqRecord can be quite simple.

4.2.1 SeqRecord objects from scratch

To create a SeqRecord at a minimum you just need a Seq object:

>>> from Bio.Seq import Seq
>>> simple_seq = Seq("GATC")
>>> from Bio.SeqRecord import SeqRecord
>>> simple_seq_r = SeqgRecord(simple_seq)

Additionally, you can also pass the id, name and description to the initialization function, but if not they will be set as
strings indicating they are unknown, and can be modified subsequently:

>>> simple_seq_r.id

'<unknown id>'

>>> simple_seq_r.id = "AC12345"

>>> simple_seq_r.description = "Made up sequence I wish I could write a paper about"
>>> print(simple_seq_r.description)

Made up sequence I wish I could write a paper about

>>> simple_seq_r.seq

Seq('GATC")

Including an identifier is very important if you want to output your SeqRecord to a file. You would normally include
this when creating the object:

>>> from Bio.Seq import Seq

>>> simple_seq = Seq("GATC")

>>> from Bio.SeqRecord import SeqRecord

>>> simple_seq_r = SeqRecord(simple_seq, id="AC12345")

As mentioned above, the SeqRecord has an dictionary attribute annotations. This is used for any miscellaneous
annotations that doesn’t fit under one of the other more specific attributes. Adding annotations is easy, and just involves
dealing directly with the annotation dictionary:
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>>> simple_seq_r.annotations["evidence"] = "None. I just made it up."
>>> print(simple_seqg_r.annotations)
{'evidence': 'None. I just made it up.'}

>>> print(simple_seq_r.annotations["evidence"])
None. I just made it up.

Working with per-letter-annotations is similar, letter_annotations is a dictionary like attribute which will let you
assign any Python sequence (i.e. a string, list or tuple) which has the same length as the sequence:

>>> simple_seq_r.letter_annotations["phred_quality"] = [40, 40, 38, 30]
>>> print(simple_seq_r.letter_annotations)

{'phred_quality': [40, 40, 38, 30]}

>>> print(simple_seq_r.letter_annotations["phred_quality"])

[40, 40, 38, 30]

The dbxrefs and features attributes are just Python lists, and should be used to store strings and SeqFeature
objects (discussed later in this chapter) respectively.

4.2.2 SeqRecord objects from FASTA files

This example uses a fairly large FASTA file containing the whole sequence for Yersinia pestis biovar Microtus str.
91001 plasmid pPCP1, originally downloaded from the NCBI. This file is included with the Biopython unit tests under
the GenBank folder, or online NC_005816.fna from our website.

The file starts like this - and you can check there is only one record present (i.e. only one line starting with a greater
than symbol):

>gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete.,
-.sequence
TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

Back in Chapter Quick Start — What can you do with Biopython? you will have seen the function Bio.SeqIO.parse(.
..) used to loop over all the records in a file as SeqRecord objects. The Bio.SeqIO module has a sister function for
use on files which contain just one record which we’ll use here (see Chapter Sequence Input/Output for details):

>>> from Bio import SeqIO

>>> record = SeqIO.read("NC_005816.fna", "fasta")

>>> record

SeqRecord(seq=Seq (' TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. ..CTG'), id=
—'gi|45478711|ref|NC_005816.1|"', name='gi|45478711|ref|NC_005816.1|"', description=

<, 'gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1,
<, complete sequence', dbxrefs=[])

Now, let’s have a look at the key attributes of this SeqRecord individually — starting with the seq attribute which gives
you a Seq object:

>>> record.seq
Seq (' TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG")

Next, the identifiers and description:
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>>> record.id

'gi|45478711|ref|NC_005816.1|"

>>> record.name

'gi 45478711 |ref|NC_005816.1]"

>>> record.description

'gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1,.
-—~complete sequence'

As you can see above, the first word of the FASTA record’s title line (after removing the greater than symbol) is used
for both the id and name attributes. The whole title line (after removing the greater than symbol) is used for the record
description. This is deliberate, partly for backwards compatibility reasons, but it also makes sense if you have a FASTA
file like this:

>Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1
TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

Note that none of the other annotation attributes get populated when reading a FASTA file:

>>> record.dbxrefs

(]

>>> record.annotations

{1

>>> record.letter_annotations

{1

>>> record. features

N

In this case our example FASTA file was from the NCBI, and they have a fairly well defined set of conventions for
formatting their FASTA lines. This means it would be possible to parse this information and extract the GI number and
accession for example. However, FASTA files from other sources vary, so this isn’t possible in general.

4.2.3 SeqRecord objects from GenBank files

As in the previous example, we’re going to look at the whole sequence for Yersinia pestis biovar Microtus str. 91001
plasmid pPCP1, originally downloaded from the NCBI, but this time as a GenBank file. Again, this file is included
with the Biopython unit tests under the GenBank folder, or online NC_005816.gb from our website.

This file contains a single record (i.e. only one LOCUS line) and starts:

LOCUS NC_005816 9609 bp DNA circular BCT 21-JUL-2008

DEFINITION Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1l, complete
sequence.

ACCESSION NC_005816

VERSION NC_005816.1 GI:45478711

PROJECT GenomeProject: 10638

Again, we’ll use Bio.SeqIO to read this file in, and the code is almost identical to that for used above for the FASTA
file (see Chapter Sequence Input/Output for details):

>>> from Bio import SeqIO
>>> record = SeqlIO.read("NC_005816.gb", "genbank")

(continues on next page)
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(continued from previous page)
>>> record
SeqRecord(seq=Seq (' TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. ..CTG'), id=
< "NC_005816.1", name='NC_005816', description='Yersinia pestis biovar Microtus str..
91001 plasmid pPCP1l, complete sequence', dbxrefs=['Project:58037'])

>>> record.seq
Seq (' TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG")

The name comes from the LOCUS line, while the id includes the version suffix. The description comes from the
DEFINITION line:

>>> record.id

'NC_005816.1"

>>> record.name

'NC_005816"

>>> record.description

'Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence'

GenBank files don’t have any per-letter annotations:

>>> record.letter_annotations

{1

Most of the annotations information gets recorded in the annotations dictionary, for example:

>>> len(record.annotations)

13

>>> record.annotations["source"]

'Yersinia pestis biovar Microtus str. 91001’

The dbxrefs list gets populated from any PROJECT or DBLINK lines:

>>> record.dbxrefs
['Project:58037"]

Finally, and perhaps most interestingly, all the entries in the features table (e.g. the genes or CDS features) get recorded
as SeqFeature objects in the features list.

>>> len(record. features)
41

We’ll talk about SeqFeature objects next, in Section Feature, location and position objects.

4.3 Feature, location and position objects

4.3.1 SeqFeature objects

Sequence features are an essential part of describing a sequence. Once you get beyond the sequence itself, you need
some way to organize and easily get at the more “abstract” information that is known about the sequence. While it is
probably impossible to develop a general sequence feature class that will cover everything, the Biopython SeqFeature
class attempts to encapsulate as much of the information about the sequence as possible. The design is heavily based
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on the GenBank/EMBL feature tables, so if you understand how they look, you’ll probably have an easier time grasping
the structure of the Biopython classes.

The key idea about each SeqFeature object is to describe a region on a parent sequence, typically a SeqRecord
object. That region is described with a location object, typically a range between two positions (see Section Positions
and locations below).

The SegFeature class has a number of attributes, so first we’ll list them and their general features, and then later in
the chapter work through examples to show how this applies to a real life example. The attributes of a SeqFeature are:

type
This is a textual description of the type of feature (for instance, this will be something like ‘CDS’ or ‘gene’).

Jocation
The location of the SeqFeature on the sequence that you are dealing with, see Section Positions and locations
below. The SeqFeature delegates much of its functionality to the location object, and includes a number of
shortcut attributes for properties of the location:

ref
shorthand for .location.ref — any (different) reference sequence the location is referring to. Usually
just None.

.ref_db
shorthand for .location.ref_db — specifies the database any identifier in .ref refers to. Usually just
None.

.strand
shorthand for .location.strand — the strand on the sequence that the feature is located on. For double
stranded nucleotide sequence this may either be 1 for the top strand, —1 for the bottom strand, O if the strand
is important but is unknown, or None if it doesn’t matter. This is None for proteins, or single stranded
sequences.

.qualifiers

This is a Python dictionary of additional information about the feature. The key is some kind of terse one-word
description of what the information contained in the value is about, and the value is the actual information.
For example, a common key for a qualifier might be “evidence” and the value might be “computational (non-
experimental).” This is just a way to let the person who is looking at the feature know that it has not be experi-
mentally (i. e. in a wet lab) confirmed. Note that other the value will be a list of strings (even when there is only
one string). This is a reflection of the feature tables in GenBank/EMBL files.

.sub_features
This used to be used to represent features with complicated locations like ‘joins’ in GenBank/EMBL files. This
has been deprecated with the introduction of the CompoundLocation object, and should now be ignored.

4.3.2 Positions and locations

The key idea about each SeqFeature object is to describe a region on a parent sequence, for which we use a location
object, typically describing a range between two positions. Two try to clarify the terminology we’re using:
position
This refers to a single position on a sequence, which may be fuzzy or not. For instance, 5, 20, <100 and >200
are all positions.

location
A location is region of sequence bounded by some positions. For instance 5. .20 (i. e. 5 to 20) is a location.

I just mention this because sometimes I get confused between the two.
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SimpleLocation object

Unless you work with eukaryotic genes, most SeqFeature locations are extremely simple - you just need start and end
coordinates and a strand. That’s essentially all the basic SimpleLocation object does.

In practice of course, things can be more complicated. First of all we have to handle compound locations made up of
several regions. Secondly, the positions themselves may be fuzzy (inexact).

CompoundLocation object

Biopython 1.62 introduced the CompoundLocation as part of a restructuring of how complex locations made up of
multiple regions are represented. The main usage is for handling ‘join’ locations in EMBL/GenBank files.

Fuzzy Positions

So far we’ve only used simple positions. One complication in dealing with feature locations comes in the positions
themselves. In biology many times things aren’t entirely certain (as much as us wet lab biologists try to make them
certain!). For instance, you might do a dinucleotide priming experiment and discover that the start of mRNA transcript
starts at one of two sites. This is very useful information, but the complication comes in how to represent this as a
position. To help us deal with this, we have the concept of fuzzy positions. Basically there are several types of fuzzy
positions, so we have five classes to deal with them:

ExactPosition
As its name suggests, this class represents a position which is specified as exact along the sequence. This is
represented as just a number, and you can get the position by looking at the position attribute of the object.

BeforePosition
This class represents a fuzzy position that occurs prior to some specified site. In GenBank/EMBL notation, this
is represented as something like <13, signifying that the real position is located somewhere less than 13. To get
the specified upper boundary, look at the position attribute of the object.

AfterPosition
Contrary to BeforePosition, this class represents a position that occurs after some specified site. This is
represented in GenBank as >13, and like BeforePosition, you get the boundary number by looking at the
position attribute of the object.

WithinPosition
Occasionally used for GenBank/EMBL locations, this class models a position which occurs somewhere between
two specified nucleotides. In GenBank/EMBL notation, this would be represented as (1.5), to represent that
the position is somewhere within the range 1 to 5.

OneOfPosition
Occasionally used for GenBank/EMBL locations, this class deals with a position where several possible values
exist, for instance you could use this if the start codon was unclear and there where two candidates for the start
of the gene. Alternatively, that might be handled explicitly as two related gene features.

UnknownPosition
This class deals with a position of unknown location. This is not used in GenBank/EMBL, but corresponds to
the ‘?’ feature coordinate used in UniProt.

Here’s an example where we create a location with fuzzy end points:

>>> from Bio import SegFeature

>>> start_pos = SeqgFeature.AfterPosition(5)

>>> end_pos = SeqFeature.BetweenPosition(9, left=8, right=9)
>>> my_location = SeqFeature.SimpleLocation(start_pos, end_pos)
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Note that the details of some of the fuzzy-locations changed in Biopython 1.59, in particular for BetweenPosition and
WithinPosition you must now make it explicit which integer position should be used for slicing etc. For a start position
this is generally the lower (left) value, while for an end position this would generally be the higher (right) value.

If you print out a SimpleLocation object, you can get a nice representation of the information:

>>> print(my_location)
[>5:(849)]

We can access the fuzzy start and end positions using the start and end attributes of the location:

>>> my_location.start
AfterPosition(5)

>>> print(my_location.start)

>5

>>> my_location.end
BetweenPosition(9, left=8, right=9)
>>> print(my_location.end)

(849)

If you don’t want to deal with fuzzy positions and just want numbers, they are actually subclasses of integers so should
work like integers:

>>> int(my_location.start)
5

>>> int(my_location.end)

9

Similarly, to make it easy to create a position without worrying about fuzzy positions, you can just pass in numbers to
the FeaturePosition constructors, and you’ll get back out ExactPosition objects:

>>> exact_location = SeqgFeature.SimpleLocation(5, 9)
>>> print(exact_location)

[5:9]

>>> exact_location.start

ExactPosition(5)

>>> int(exact_location.start)

5

That is most of the nitty gritty about dealing with fuzzy positions in Biopython. It has been designed so that dealing
with fuzziness is not that much more complicated than dealing with exact positions, and hopefully you find that true!

Location testing

You can use the Python keyword in with a SeqFeature or location object to see if the base/residue for a parent
coordinate is within the feature/location or not.

For example, suppose you have a SNP of interest and you want to know which features this SNP is within, and lets
suppose this SNP is at index 4350 (Python counting!). Here is a simple brute force solution where we just check all
the features one by one in a loop:

>>> from Bio import SeqIO
>>> my_snp = 4350
>>> record = SeqIO.read("NC_005816.gb", "genbank™)

(continues on next page)
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(continued from previous page)

>>> for feature in record. features:
if my_snp in feature:
print (" " % (feature.type, feature.qualifiers.get("db_xref")))

source ['taxon:229193']
gene ['GenelID:2767712']
CDS ['GI:45478716', 'GenelD:2767712']

Note that gene and CDS features from GenBank or EMBL files defined with joins are the union of the exons — they do
not cover any introns.

4.3.3 Sequence described by a feature or location

A SeqgFeature orlocation object doesn’t directly contain a sequence, instead the location (see Section Positions and lo-
cations) describes how to get this from the parent sequence. For example consider a (short) gene sequence with location
5:18 on the reverse strand, which in GenBank/EMBL notation using 1-based counting would be complement (6. .18),
like this:

>>> from Bio.Seq import Seq

>>> from Bio.SeqFeature import SeqFeature, SimpleLocation

>>> seq = Seq("ACCGAGACGGCAAAGGCTAGCATAGGTATGAGACTTCCTTCCTGCCAGTGCTGAGGAACTGGGAGCCTAC™)
>>> feature = SeqFeature(SimpleLocation(5, 18, strand=-1), type="gene')

You could take the parent sequence, slice it to extract 5 : 18, and then take the reverse complement. The feature location’s
start and end are integer-like so this works:

>>> feature_seq = seq[feature.location.start : feature.location.end].reverse_complement()
>>> print(feature_seq)
AGCCTTTGCCGTC

This is a simple example so this isn’t too bad — however once you have to deal with compound features (joins) this is
rather messy. Instead, the SeqFeature object has an extract method to take care of all this (and since Biopython
1.78 can handle trans-splicing by supplying a dictionary of referenced sequences):

>>> feature_seq = feature.extract(seq)
>>> print(feature_seq)
AGCCTTTGCCGTC

The length of a SeqFeature or location matches that of the region of sequence it describes.

>>> print(len(feature_seq))

13

>>> print(len(feature))

13

>>> print(len(feature.location))
13

For SimpleLocation objects the length is just the difference between the start and end positions. However, for a
CompoundLocation the length is the sum of the constituent regions.
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4.4 Comparison

The SeqRecord objects can be very complex, but here’s a simple example:

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> recordl = SeqRecord(Seq("ACGT"), id="test")
>>> record2 = SeqRecord(Seq("ACGT"), id="test")

What happens when you try to compare these “identical” records?

[>>> recordl == record2 J

Perhaps surprisingly older versions of Biopython would use Python’s default object comparison for the SeqRecord,
meaning recordl == record2 would only return True if these variables pointed at the same object in memory. In
this example, recordl == record2 would have returned False here!

False

>>> recordl == record2 # on old versions of Biopython! ’

As of Biopython 1.67, SeqRecord comparison like recordl == record2 will instead raise an explicit error to avoid
people being caught out by this:

>>> recordl == record?2
Traceback (most recent call last):

NotImplementedError: SeqRecord comparison is deliberately not implemented. Explicitly.
-.compare the attributes of interest.

Instead you should check the attributes you are interested in, for example the identifier and the sequence:

>>> recordl.id == record2.id
True

>>> recordl.seq == record2.seq
True

Beware that comparing complex objects quickly gets complicated (see also Section Comparing Seq objects).

4.5 References

Another common annotation related to a sequence is a reference to a journal or other published work dealing with
the sequence. We have a fairly simple way of representing a Reference in Biopython — we have a Bio.SeqFeature.
Reference class that stores the relevant information about a reference as attributes of an object.

The attributes include things that you would expect to see in a reference like journal, title and authors. Addi-
tionally, it also can hold the medline_id and pubmed_id and a comment about the reference. These are all accessed
simply as attributes of the object.

A reference also has a location object so that it can specify a particular location on the sequence that the reference
refers to. For instance, you might have a journal that is dealing with a particular gene located on a BAC, and want
to specify that it only refers to this position exactly. The location is a potentially fuzzy location, as described in
section Positions and locations.
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Any reference objects are stored as a list in the SeqRecord object’s annotations dictionary under the key “references”.
That’s all there is too it. References are meant to be easy to deal with, and hopefully general enough to cover lots of
usage cases.

4.6 The format method

The format () method of the SeqRecord class gives a string containing your record formatted using one of the output
file formats supported by Bio.SeqIO, such as FASTA:

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> record = SeqRecord(

Seq(
"MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD"
"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK"
"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM"
"SSAC"

)

id="gi|14150838|gb|AAK54648.1|AF376133_1",

. description="chalcone synthase [Cucumis sativus]",

)

>>> print(record. format("fasta"))

which should give:

>gi| 14150838 |gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]
MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD
GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK
NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM

SSAC

This format method takes a single mandatory argument, a lower case string which is supported by Bio.SeqIO as
an output format (see Chapter Sequence Input/Output). However, some of the file formats Bio.SeqIO can write to
require more than one record (typically the case for multiple sequence alignment formats), and thus won’t work via this
format () method. See also Section Getting your SeqRecord objects as formatted strings.

4.7 Slicing a SeqRecord

You can slice a SeqRecord, to give you a new SeqRecord covering just part of the sequence. What is important here
is that any per-letter annotations are also sliced, and any features which fall completely within the new sequence are
preserved (with their locations adjusted).

For example, taking the same GenBank file used earlier:

>>> from Bio import SeqIO
>>> record = SeqlIO.read("NC_005816.gb", "genbank")
>>> record
SeqRecord(seq=Seq (' TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG'), id=
— '"NC_005816.1"', name='NC_005816', description='Yersinia pestis biovar Microtus str..
91001 plasmid pPCP1l, complete sequence', dbxrefs=['Project:58037"'])
>>> len(record)
(continues on next page)
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9609
>>> len(record. features)
41

For this example we’re going to focus in on the pim gene, YP_pPCPO5. If you have a look at the GenBank file directly
you’ll find this gene/CDS has location string 4343 . .4780, or in Python counting 4342 :4780. From looking at the file
you can work out that these are the twelfth and thirteenth entries in the file, so in Python zero-based counting they are
entries 11 and 12 in the features list:

>>> print(record. features[20])

type: gene

location: [4342:4780](+)

qualifiers:
Key: db_xref, Value: ['GenelID:2767712']
Key: gene, Value: ['pim']
Key: locus_tag, Value: ['YP_pPCPO5']

>>> print(record. features[21])
type: CDS

location: [4342:4780](+)
qualifiers:

Key: codon_start, Value: ['1']

Key: db_xref, Value: ['GI:45478716', 'GenelD:2767712']

Key: gene, Value: ['pim']

Key: locus_tag, Value: ['YP_pPCPO5']

Key: note, Value: ['similar to many previously sequenced pesticin immunity protein.
—entries of Yersinia pestis plasmid pPCP, e.g. gi| 16082683|,ref|NP_395230.1| (NC_
—003132) , gi|1200166|emb|CAA90861.1| (Z54145 ) , gi|1488655| emb|CAA63439.1| (X92856) ,
< 0112996219 |gb|AAC62543.1| (AF053945) , and gi|5763814|emb|CAB531 67.1| (AL109969)']

Key: product, Value: ['pesticin immunity protein']

Key: protein_id, Value: ['NP_995571.1']

Key: transl_table, Value: ['11']

Key: translation, Value: [
< "MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILQNLELNTFGNSLSHGIYGKQTTFKQTEFTNIKSNTKKHIALINKDNSWMISLK

ILGIKRDEYTVCF

<"']

Let’s slice this parent record from 4300 to 4800 (enough to include the pim gene/CDS), and see how many features we
get:

>>> sub_record = record[4300:4800]

>>> sub_record
SeqRecord(seq=Seq('ATAAATAGATTATTCCAAATAATTTATTTATGTAAGAACAGGATGGGAGGGGGA. . .TTA"), id=
— 'NC_005816.1", name='NC_005816"', description='Yersinia pestis biovar Microtus str..
91001 plasmid pPCP1l, complete sequence', dbxrefs=[])

>>> len(sub_record)

500

>>> len(sub_record. features)

2

Our sub-record just has two features, the gene and CDS entries for YP_pPCP05:

>>> print(sub_record. features[0])
type: gene

(continues on next page)
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location: [42:480](+)

qualifiers:
Key: db_xref, Value: ['GeneID:2767712']
Key: gene, Value: ['pim']
Key: locus_tag, Value: ['YP_pPCPO5']

>>> print(sub_record. features[1])
type: CDS

location: [42:480](+)

qualifiers:

Key: codon_start, Value: ['1']

Key: db_xref, Value: ['GI:45478716', 'GenelD:2767712']

Key: gene, Value: ['pim']

Key: locus_tag, Value: ['YP_pPCPO5']

Key: note, Value: ['similar to many previously sequenced pesticin immunity protein.,
—entries of Yersinia pestis plasmid pPCP, e.g. gi| 16082683|,ref|NP_395230.1| (NC_
—003132) , gi|1200166]|emb|CAA90861.1| (Z54145 ) , gi|1488655| emb|CAA63439.1| (X92856) ,
<, gi]2996219|gb|AAC62543.1| (AF053945) , and gi|5763814|emb|CAB531 67.1| (AL109969)']

Key: product, Value: ['pesticin immunity protein']

Key: protein_id, Value: ['NP_995571.1']

Key: transl_table, Value: ['11']

Key: translation, Value: [
< "MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILQNLELNTFGNSLSHGIYGKQTTFKQTEFTNIKSNTKKHIALINKDNSWMISLK

ILGIKRDEYTVCF]

‘—)']

Notice that their locations have been adjusted to reflect the new parent sequence!

While Biopython has done something sensible and hopefully intuitive with the features (and any per-letter annotation),
for the other annotation it is impossible to know if this still applies to the sub-sequence or not. To avoid guessing, with
the exception of the molecule type, the . annotations and .dbxrefs are omitted from the sub-record, and it is up to
you to transfer any relevant information as appropriate.

>>> sub_record.annotations
{'molecule_type': 'DNA'}
>>> sub_record.dbxrefs

(]

You may wish to preserve other entries like the organism? Beware of copying the entire annotations dictionary as in
this case your partial sequence is no longer circular DNA - it is now linear:

[>>> sub_record.annotations["topology"] = "linear" ]

The same point could be made about the record id, name and description, but for practicality these are preserved:

>>> sub_record.id
'NC_005816.1"

>>> sub_record.name
'NC_005816"

>>> sub_record.description

'Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence'

This illustrates the problem nicely though, our new sub-record is not the complete sequence of the plasmid, so the
description is wrong! Let’s fix this and then view the sub-record as a reduced GenBank file using the format method
described above in Section The format method:
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>>> sub_record.description = (
"Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1l, partial"

=)

>>> print(sub_record. format('genbank")[:200] + "...")
LOCUS NC_005816 500 bp DNA linear UNK 01-JAN-1980

DEFINITION Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1l, partial.
ACCESSION NC_005816
VERSION NC_0058. ..

See Sections Trimming off primer sequences and Trimming off adaptor sequences for some FASTQ examples where
the per-letter annotations (the read quality scores) are also sliced.

4.8 Adding SeqRecord objects

You can add SeqRecord objects together, giving a new SeqRecord. What is important here is that any common per-
letter annotations are also added, all the features are preserved (with their locations adjusted), and any other common
annotation is also kept (like the id, name and description).

For an example with per-letter annotation, we’ll use the first record in a FASTQ file. Chapter Sequence Input/Output
will explain the SeqIO functions:

>>> from Bio import SeqIO

>>> record = next(SeqlO.parse("example.fastq", "fastq"))

>>> len(record)

25

>>> print(record.seq)

CCCTTCTTGTCTTCAGCGTTTCTCC

>>> print(record.letter_annotations["phred_quality"])

[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26, 26, 26,.
26, 23, 23]

Let’s suppose this was Roche 454 data, and that from other information you think the TTT should be only TT. We can
make a new edited record by first slicing the SeqRecord before and after the “extra” third T:

>>> left = record[:20]

>>> print(left.seq)

CCCTTCTTGTCTTCAGCGTT

>>> print(left.letter_annotations["phred_quality"])

[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26]
>>> right = record[21:]

>>> print(right.seq)

CTCC

>>> print(right.letter_annotations["phred_quality"])

[26, 26, 23, 23]

Now add the two parts together:

>>> edited = left + right
>>> len(edited)

24

>>> print(edited.seq)
CCCTTCTTGTCTTCAGCGTTCTCC

(continues on next page)
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>>> print(edited.letter_annotations["phred _quality"])
[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26, 26, 26,.
23, 23]

Easy and intuitive? We hope so! You can make this shorter with just:

[>>> edited = record[:20] + record[21:]

Now, for an example with features, we’ll use a GenBank file. Suppose you have a circular genome:

>>> from Bio import SeqIO

>>> record = SeqlIO.read("NC_005816.gb", "genbank")

>>> record

SegRecord(seq=Seq (' TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. ..CTG'), id=
< "NC_005816.1"', name='NC_005816"', description='Yersinia pestis biovar Microtus str..
-.91001 plasmid pPCP1, complete sequence', dbxrefs=['Project:58037'])

>>> len(record)

9609

>>> len(record. features)

41

>>> record.dbxrefs

['Project:58037"]

>>> record.annotations.keys()

dict_keys(['molecule_type', 'topology', 'data_file_division', 'date', 'accessions',

- 'sequence_version', 'gi', 'keywords', 'source', 'organism', 'taxonomy', 'references',
— 'comment'])

You can shift the origin like this:

>>> shifted = record[2000:] + record[:2000]

>>> shifted
SegRecord(seq=Seq('GATACGCAGTCATATTTTTTACACAATTCTCTAATCCCGACAAGGTCGTAGGTC...GGA"), id=
< "NC_005816.1", name='NC_005816', description='Yersinia pestis biovar Microtus str..
91001 plasmid pPCP1l, complete sequence', dbxrefs=[])

>>> len(shifted)

9609

Note that this isn’t perfect in that some annotation like the database cross references, all the annotations except molecule
type, and one of the features (the source feature) have been lost:

>>> len(shifted. features)

40

>>> shifted.dbxrefs

[]

>>> shifted.annotations.keys()
dict_keys(['molecule_type'])

This is because the SeqRecord slicing step is cautious in what annotation it preserves (erroneously propagating anno-
tation can cause major problems). If you want to keep the database cross references or the annotations dictionary, this
must be done explicitly:

>>> shifted.dbxrefs = record.dbxrefs[:]
>>> shifted.annotations = record.annotations.copy()

(continues on next page)
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>>> shifted.dbxrefs

['Project:58037"']

>>> shifted.annotations.keys()

dict_keys(['molecule_type', 'topology', 'data_file_division', 'date', 'accessions',

- 'sequence_version', 'gi', 'keywords', 'source', 'organism', 'taxonomy', 'references',
— 'comment'])

Also note that in an example like this, you should probably change the record identifiers since the NCBI references
refer to the original unmodified sequence.

4.9 Reverse-complementing SeqRecord objects

One of the new features in Biopython 1.57 was the SeqRecord object’s reverse_complement method. This tries to
balance easy of use with worries about what to do with the annotation in the reverse complemented record.

For the sequence, this uses the Seq object’s reverse complement method. Any features are transferred with the location
and strand recalculated. Likewise any per-letter-annotation is also copied but reversed (which makes sense for typical
examples like quality scores). However, transfer of most annotation is problematical.

For instance, if the record ID was an accession, that accession should not really apply to the reverse complemented
sequence, and transferring the identifier by default could easily cause subtle data corruption in downstream analysis.
Therefore by default, the SeqRecord’s id, name, description, annotations and database cross references are all not
transferred by default.

The SeqRecord object’s reverse_complement method takes a number of optional arguments corresponding to prop-
erties of the record. Setting these arguments to True means copy the old values, while False means drop the old values
and use the default value. You can alternatively provide the new desired value instead.

Consider this example record:

>>> from Bio import SeqIO

>>> rec = Seql0.read("NC_005816.gb", "genbank")

>>> print(rec.id, len(rec), len(rec.features), len(rec.dbxrefs), len(rec.annotations))
NC_005816.1 9609 41 1 13

Here we take the reverse complement and specify a new identifier — but notice how most of the annotation is dropped
(but not the features):

>>> rc = rec.reverse_complement (id="TESTING")
>>> print(rc.id, len(rc), len(rc.features), len(rc.dbxrefs), len(rc.annotations))
TESTING 9609 41 0 0
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CHAPTER
FIVE

SEQUENCE INPUT/OUTPUT

In this chapter we’ll discuss in more detail the Bio.SeqIO module, which was briefly introduced in Chapter Quick
Start — What can you do with Biopython? and also used in Chapter Sequence annotation objects. This aims to provide
a simple interface for working with assorted sequence file formats in a uniform way. See also the Bio.SeqIO wiki page
(http://biopython.org/wiki/SeqlO), and the built-in documentation Bio. Seq:

>>> from Bio import SeqIO
>>> help(SeqIO)

The “catch” is that you have to work with SeqRecord objects (see Chapter Sequence annotation objects), which contain
a Seq object (see Chapter Sequence objects) plus annotation like an identifier and description. Note that when dealing
with very large FASTA or FASTQ files, the overhead of working with all these objects can make scripts too slow. In
this case consider the low-level SimpleFastaParser and FastqGeneralIterator parsers which return just a tuple
of strings for each record (see Section Low level FASTA and FASTQ parsers).

5.1 Parsing or Reading Sequences

The workhorse function Bio.SeqIO.parse() is used to read in sequence data as SeqRecord objects. This function
expects two arguments:

1. The first argument is a handle to read the data from, or a filename. A handle is typically a file opened for reading,
but could be the output from a command line program, or data downloaded from the internet (see Section Parsing
sequences from the net). See Section What the heck is a handle? for more about handles.

2. The second argument is a lower case string specifying sequence format — we don’t try and guess the file format
for you! See http://biopython.org/wiki/SeqlO for a full listing of supported formats.

The Bio.SeqI0.parse() function returns an iterator which gives SeqRecord objects. Iterators are typically used in
a for loop as shown below.

Sometimes you’ll find yourself dealing with files which contain only a single record. For this situation use the function
Bio.SeqIO.read() which takes the same arguments. Provided there is one and only one record in the file, this is
returned as a SeqRecord object. Otherwise an exception is raised.
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5.1.1 Reading Sequence Files

In general Bio.SeqIO.parse() is used to read in sequence files as SeqRecord objects, and is typically used with a
for loop like this:

from Bio import SeqIO

for seq_record in SeqIO.parse("ls_orchid.fasta", "fasta"):
print(seq_record.id)
print(repr(seq_record.seq))
print(len(seq_record))

The above example is repeated from the introduction in Section Parsing sequence file formats, and will load the orchid
DNA sequences in the FASTA format file Is_orchid.fasta. If instead you wanted to load a GenBank format file like
Is_orchid.gbk then all you need to do is change the filename and the format string:

from Bio import SeqIO

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank™):
print(seq_record.id)
print(repr(seq_record.seq))
print(len(seq_record))

Similarly, if you wanted to read in a file in another file format, then assuming Bio.SeqIO.parse() supports it you
would just need to change the format string as appropriate, for example “swiss” for SwissProt files or “embl” for EMBL
text files. There is a full listing on the wiki page (http://biopython.org/wiki/SeqlO) and in the built-in documentation
Bio.SeqIO:

Another very common way to use a Python iterator is within a list comprehension (or a generator expression). For
example, if all you wanted to extract from the file was a list of the record identifiers we can easily do this with the
following list comprehension:

>>> from Bio import SeqIO

>>> identifiers = [seq_record.id for seq_record in SeqlIO.parse("ls_orchid.gbk", "genbank
"]

>>> identifiers

['Z78533.1', 'Z78532.1', 'Z78531.1', 'Z78530.1', 'Z78529.1', 'Z78527.1', ..., 'Z78439.1']

There are more examples using SeqI0.parse() in a list comprehension like this in Section Sequence parsing plus
simple plots (e.g. for plotting sequence lengths or GC%).

5.1.2 Iterating over the records in a sequence file
In the above examples, we have usually used a for loop to iterate over all the records one by one. You can use the for
loop with all sorts of Python objects (including lists, tuples and strings) which support the iteration interface.

The object returned by Bio.SeqIO is actually an iterator which returns SeqRecord objects. You get to see each record
in turn, but once and only once. The plus point is that an iterator can save you memory when dealing with large files.

Instead of using a for loop, can also use the next () function on an iterator to step through the entries, like this:

from Bio import SeqIO
record_iterator = SeqIO.parse("ls_orchid.fasta", "fasta")

(continues on next page)
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first_record = next(record_iterator)
print(first_record.id)
print(first_record.description)

second_record = next(record_iterator)
print(second_record.id)
print(second_record.description)

Note that if you try to use next () and there are no more results, you’ll get the special StopIteration exception.

One special case to consider is when your sequence files have multiple records, but you only want the first one. In this
situation the following code is very concise:

from Bio import SeqIO

first_record = next(SeqlO.parse("ls_orchid.gbk", "genbank"))

A word of warning here — using the next () function like this will silently ignore any additional records in the file.
If your files have one and only one record, like some of the online examples later in this chapter, or a GenBank file
for a single chromosome, then use the new Bio.SeqIO.read() function instead. This will check there are no extra
unexpected records present.

5.1.3 Getting a list of the records in a sequence file

In the previous section we talked about the fact that Bio.SeqIO.parse() gives you a SeqRecord iterator, and that
you get the records one by one. Very often you need to be able to access the records in any order. The Python 1ist data
type is perfect for this, and we can turn the record iterator into a list of SeqRecord objects using the built-in Python
function 1ist O like so:

from Bio import SeqIO
records = list(SeqlIO.parse("ls_orchid.gbk", "genbank™))
print ("Found records" % len(records))

print("The last record")

last_record = records[-1] # using Python's list tricks
print(last_record.id)

print(repr(last_record.seq))

print(len(last_record))

print("The first record")

first_record = records[0] # remember, Python counts from zero
print(first_record.id)

print (repr(first_record.seq))

print(len(first_record))

Giving:

Found 94 records
The last record
778439.1

(continues on next page)
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Seq("'CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT. . .GCC")
592

The first record

Z78533.1

Seq (' CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC")
740

You can of course still use a for loop with a list of SeqRecord objects. Using a list is much more flexible than an
iterator (for example, you can determine the number of records from the length of the list), but does need more memory
because it will hold all the records in memory at once.

5.1.4 Extracting data

The SegRecord object and its annotation structures are described more fully in Chapter Sequence annotation objects.
As an example of how annotations are stored, we’ll look at the output from parsing the first record in the GenBank file
Is_orchid.gbk.

from Bio import SeqIO

record_iterator = SeqlO.parse("ls_orchid.gbk", "genbank")
first_record = next(record_iterator)
print (first_record)

That should give something like this:

ID: Z78533.1

Name: Z78533

Description: C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.

Number of features: 5

/sequence_version=1

/source=Cypripedium irapeanum

/taxonomy=['Eukaryota', 'Viridiplantae', 'Streptophyta', ..., 'Cypripedium']
/keywords=['5.8S ribosomal RNA', '5.8S rRNA gene', ..., 'ITS1', 'ITS2']
/references=[...]

/accessions=["'Z278533"]

/data_file_division=PLN

/date=30-NOV-2006

/organism=Cypripedium irapeanum

/9i=2765658

Seq (' CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC")

This gives a human readable summary of most of the annotation data for the SeqRecord. For this example we’re going
to use the .annotations attribute which is just a Python dictionary. The contents of this annotations dictionary were
shown when we printed the record above. You can also print them out directly:

[print (first_record.annotations)

Like any Python dictionary, you can easily get the keys:

[print (first_record.annotations.keys())

or values:
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[print (first_record.annotations.values())

In general, the annotation values are strings, or lists of strings. One special case is any references in the file get stored
as reference objects.

Suppose you wanted to extract a list of the species from the Is_orchid.gbk GenBank file. The information we want,
Cypripedium irapeanum, is held in the annotations dictionary under ‘source’ and ‘organism’, which we can access like
this:

>>> print(first_record.annotations["source"])
Cypripedium irapeanum

or:

>>> print(first_record.annotations["organism"])
Cypripedium irapeanum

In general, ‘organism’ is used for the scientific name (in Latin, e.g. Arabidopsis thaliana), while ‘source’ will often be
the common name (e.g. thale cress). In this example, as is often the case, the two fields are identical.

Now let’s go through all the records, building up a list of the species each orchid sequence is from:

from Bio import SeqIO

all_species = []

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank™):
all_species.append(seq_record.annotations[organism"])

print(all_species)

Another way of writing this code is to use a list comprehension:

from Bio import SeqIO

all_species = [

seq_record.annotations["organism"]

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank™)
]

print(all_species)

In either case, the result is:

[['Cypripedium irapeanum', 'Cypripedium californicum', ..., 'Paphiopedilum barbatum']

Great. That was pretty easy because GenBank files are annotated in a standardized way.

Now, let’s suppose you wanted to extract a list of the species from a FASTA file, rather than the GenBank file. The
bad news is you will have to write some code to extract the data you want from the record’s description line - if the
information is in the file in the first place! Our example FASTA format file Is_orchid.fasta starts like this:

>0i|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG
AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG

You can check by hand, but for every record the species name is in the description line as the second word. This means
if we break up each record’s .description at the spaces, then the species is there as field number one (field zero is
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the record identifier). That means we can do this:

>>> from Bio import SeqIO

>>> all_species = []

>>> for seq_record in SeqlIO.parse('ls_orchid.fasta", "fasta"):
all_species.append(seq_record.description.split()[1])

>>> print(all_species)
['C.irapeanum', 'C.californicum', 'C.fasciculatum', ..., 'P.barbatum']

The concise alternative using list comprehensions would be:

>>> from Bio import SeqIO
>>> all_species = [
seqg_record.description.split()[1]

‘e for seq_record in SeqIO.parse('"ls_orchid.fasta", "fasta")
-]
>>> print(all_species)
['C.irapeanum', 'C.californicum', 'C.fasciculatum', ..., 'P.barbatum']

In general, extracting information from the FASTA description line is not very nice. If you can get your sequences in a
well annotated file format like GenBank or EMBL, then this sort of annotation information is much easier to deal with.

5.1.5 Modifying data

In the previous section, we demonstrated how to extract data from a SeqRecord. Another common task is to alter this
data. The attributes of a SeqRecord can be modified directly, for example:

>>> from Bio import SeqIO

>>> record_iterator = SeqIO.parse("ls_orchid.fasta", "fasta")
>>> first_record = next(record_iterator)

>>> first_record.id

'gi|2765658|emb|Z78533.1|CIZ78533"

>>> first_record.id = "new_id"

>>> first_record.id

'new_id'

Note, if you want to change the way FASTA is output when written to a file (see Section Writing Sequence Files), then
you should modify both the id and description attributes. To ensure the correct behavior, it is best to include the
id plus a space at the start of the desired description:

>>> from Bio import SeqIO

>>> record_iterator = SeqIO.parse("ls_orchid.fasta", "fasta")
>>> first_record = next(record_iterator)
>>> first_record.id = "new_id"

>>> first_record.description = first_record.id +
>>> print(first_record.format("fasta")[:200])
>new_id desired new description
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAA
CGATCGAGTGAATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGT
GACCCTGATTTGTTGTTGGGCCGCCTCGGGAGCGTCCATGGCGGGT

+ "desired new description"
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5.2 Parsing sequences from compressed files

In the previous section, we looked at parsing sequence data from a file. Instead of using a filename, you can give
Bio.SeqIO a handle (see Section What the heck is a handle?), and in this section we’ll use handles to parse sequence
from compressed files.

As you’ll have seen above, we can use Bio.SeqIO.read() or Bio.SeqIO.parse() with a filename - for instance
this quick example calculates the total length of the sequences in a multiple record GenBank file using a generator
expression:

>>> from Bio import SeqIO
>>> print(sum(len(r) for r in SeqIO.parse("ls_orchid.gbk", "gb")))
67518

Here we use a file handle instead, using the with statement to close the handle automatically:

>>> from Bio import SeqIO
>>> with open("ls_orchid.gbk") as handle:
print(sum(len(r) for r in SeqIO.parseChandle, "gb")))

67518

Or, the old fashioned way where you manually close the handle:

>>> from Bio import SeqIO

>>> handle = open("ls_orchid.gbk")

>>> print(sum(len(r) for r in SeqIO.parse(handle, "gb")))
67518

>>> handle.close()

Now, suppose we have a gzip compressed file instead? These are very commonly used on Linux. We can use Python’s
gzip module to open the compressed file for reading - which gives us a handle object:

>>> import gzip

>>> from Bio import SeqIO

>>> with gzip.open("ls_orchid.gbk.gz", "rt") as handle:
print(sum(len(r) for r in SeqIO.parseChandle, "gb")))

67518

Similarly if we had a bzip2 compressed file:

>>> import bz2

>>> from Bio import SeqIO

>>> with bz2.open("ls_orchid.gbk.bz2", "rt") as handle:
print(sum(len(r) for r in SeqIO.parseChandle, "gb")))

67518

There is a gzip (GNU Zip) variant called BGZF (Blocked GNU Zip Format), which can be treated like an ordinary gzip
file for reading, but has advantages for random access later which we’ll talk about later in Section Indexing compressed

files.
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5.3 Parsing sequences from the net

In the previous sections, we looked at parsing sequence data from a file (using a filename or handle), and from com-
pressed files (using a handle). Here we’ll use Bio.SeqIO with another type of handle, a network connection, to
download and parse sequences from the internet.

Note that just because you can download sequence data and parse it into a SeqRecord object in one go doesn’t mean
this is a good idea. In general, you should probably download sequences once and save them to a file for reuse.

5.3.1 Parsing GenBank records from the net

Section EFetch: Downloading full records from Entrez talks about the Entrez EFetch interface in more detail, but
for now let’s just connect to the NCBI and get a few Opuntia (prickly-pear) sequences from GenBank using their GI
numbers.

First of all, let’s fetch just one record. If you don’t care about the annotations and features downloading a FASTA file is
a good choice as these are compact. Now remember, when you expect the handle to contain one and only one record,
use the Bio.SeqIO.read() function:

from Bio import Entrez
from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"
with Entrez.efetch(
db="nucleotide", rettype="fasta", retmode="text", id="6273291"

) as handle:
seq_record = SeqlO.readChandle, "fasta")
print (" with features" % (seq_record.id, len(seq_record.features)))

Expected output:

[gi|6273291|gb|AF191665.1|AF191665 with 0 features ]

The NCBI will also let you ask for the file in other formats, in particular as a GenBank file. Until Easter 2009, the
Entrez EFetch API let you use “genbank” as the return type, however the NCBI now insist on using the official return
types of “gb” (or “gp” for proteins) as described on EFetch for Sequence and other Molecular Biology Databases. As
a result, in Biopython 1.50 onwards, we support “gb” as an alias for “genbank” in Bio.SeqIO.

from Bio import Entrez
from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"
with Entrez.efetch(
db="nucleotide", rettype="gb", retmode="text", id="6273291"

) as handle:
seq_record = SeqlO.readChandle, "gb") # using "gb" as an alias for "genbank"
print (" with features" % (seq_record.id, len(seq_record.features)))

The expected output of this example is:

[AF191665.1 with 3 features J

Notice this time we have three features.
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Now let’s fetch several records. This time the handle contains multiple records, so we must use the Bio.SeqIO.
parse() function:

from Bio import Entrez
from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"
with Entrez.efetch(

db="nucleotide", rettype="gb", retmode="text", id="6273291,6273290,6273289"
) as handle:

for seq_record in SeqIO.parse(handle, "gb"):

print (" ..." % (seq_record.id, seq_record.description[:50]))
print(

"Sequence length , features, from: "

% (

len(seq_record),
len(seq_record. features),
seq_record.annotations["source"],

That should give the following output:

AF191665.1 Opuntia marenae rpll6 gene; chloroplast gene for c...
Sequence length 902, 3 features, from: chloroplast Opuntia marenae
AF191664.1 Opuntia clavata rpll6 gene; chloroplast gene for c...
Sequence length 899, 3 features, from: chloroplast Grusonia clavata
AF191663.1 Opuntia bradtiana rpll6 gene; chloroplast gene for...
Sequence length 899, 3 features, from: chloroplast Opuntia bradtianaa

See Chapter Accessing NCBI's Entrez databases for more about the Bio.Entrez module, and make sure to read about
the NCBI guidelines for using Entrez (Section Entrez Guidelines).

5.3.2 Parsing SwissProt sequences from the net

Now let’s use a handle to download a SwissProt file from ExPASy, something covered in more depth in Chapter Swiss-
Prot and ExPASy. As mentioned above, when you expect the handle to contain one and only one record, use the
Bio.SeqIO.read() function:

from Bio import ExPASy
from Bio import SeqIO

with ExPASy.get_sprot_raw("'023729") as handle:
seq_record = SeqIO.read(handle, "swiss")

print(seq_record.id)

print(seq_record.name)

print(seq_record.description)

print(repr(seq_record.seq))

print("Length " % len(seq_record))

print(seq_record.annotations["keywords"])

Assuming your network connection is OK, you should get back:
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023729

CHS3_BROFI

RecName: Full=Chalcone synthase 3; EC=2.3.1.74; AltName: Full=Naringenin-chalcone..
—synthase 3;

Seq("'MAPAMEEIRQAQRAEGPAAVLAIGTSTPPNALYQADYPDYYFRITKSEHLTELK. . .GAE')

Length 394

['Acyltransferase', 'Flavonoid biosynthesis', 'Transferase']

5.4 Sequence files as Dictionaries

Looping over the iterator returned by SeqIO.parse once will exhaust the file. For self-indexed files, such as files in
the twoBit format, the return value of SeqIO.parse can also be used as a dictionary, allowing random access to the
sequence contents. As in this case parsing is done on demand, the file must remain open as long as the sequence data
is being accessed:

>>> from Bio import SeqIO

>>> handle = open("'sequence.bigendian.2bit", "rb")

>>> records = SeqlO.parseChandle, "twobit")

>>> records.keys()

dict_keys(['seqlllll', 'seq222', 'seq3333', 'seq4', 'seq555', 'seq6'])

>>> records["seq222"]

SeqgRecord(seq=Seq (' TTGATCGGTGACAAATTTTTTACAAAGAACTGTAGGACTTGCTACTTCTCCCTC...ACA"), id=
— 'seq222"', name='<unknown name>', description='<unknown description>', dbxrefs=[])
>>> records["seq222"] .seq
Seq('TTGATCGGTGACAAATTTTTTACAAAGAACTGTAGGACTTGCTACTTCTCCCTC. . .ACA")

>>> handle.close()

>>> records["seq222"] .seq

Traceback (most recent call last):

ValueError: cannot retrieve sequence: file is closed

For other file formats, Bio.SeqIO provides three related functions module which allow dictionary like random access
to a multi-sequence file. There is a trade off here between flexibility and memory usage. In summary:

* Bio.SeqIO.to_dict() is the most flexible but also the most memory demanding option (see Section Sequence
files as Dictionaries — In memory). This is basically a helper function to build a normal Python dictionary
with each entry held as a SeqRecord object in memory, allowing you to modify the records.

* Bio.SeqIO.index() is a useful middle ground, acting like a read only dictionary and parsing sequences into
SegRecord objects on demand (see Section Sequence files as Dictionaries — Indexed files).

* Bio.SeqIO.index_db() also acts like a read only dictionary but stores the identifiers and file offsets in a file
on disk (as an SQLite3 database), meaning it has very low memory requirements (see Section Sequence files as
Dictionaries — Database indexed files), but will be a little bit slower.

See the discussion for an broad overview (Section Discussion).
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5.4.1 Sequence files as Dictionaries — In memory

The next thing that we’ll do with our ubiquitous orchid files is to show how to index them and access them like a
database using the Python dictionary data type (like a hash in Perl). This is very useful for moderately large files
where you only need to access certain elements of the file, and makes for a nice quick ’n dirty database. For dealing
with larger files where memory becomes a problem, see Section Sequence files as Dictionaries — Indexed files below.

You can use the function Bio.SeqIO.to_dict() to make a SeqRecord dictionary (in memory). By default this will
use each record’s identifier (i.e. the .1id attribute) as the key. Let’s try this using our GenBank file:

>>> from Bio import SeqIO
>>> orchid_dict = SeqlIO.to_dict(SeqIO.parse("ls_orchid.gbk", "genbank"))

There is just one required argument for Bio.SeqIO.to_dict(), a list or generator giving SeqRecord objects. Here
we have just used the output from the SeqI0.parse function. As the name suggests, this returns a Python dictionary.

Since this variable orchid_dict is an ordinary Python dictionary, we can look at all of the keys we have available:

94

>>> len(orchid_dict) ’

>>> list(orchid_dict.keys(Q))
['Z78484.1', 'Z78464.1', 'Z78455.1', 'Z78442.1', 'Z78532.1', 'Z78453.1', ..., 'Z78471.1']

Under Python 3 the dictionary methods like “.keys()* and “.values()** are iterators rather than lists.

If you really want to, you can even look at all the records at once:

[>>> list(orchid_dict.values()) # lots of output! J

We can access a single SeqRecord object via the keys and manipulate the object as normal:

>>> seq_record = orchid_dict["Z78475.1"]

>>> print(seq_record.description)

P.supardii 5.8S rRNA gene and ITS1 and ITS2 DNA

>>> seq_record.seq

Seq (' CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT. . .GGT")

So, it is very easy to create an in memory “database” of our GenBank records. Next we’ll try this for the FASTA file
instead.

Note that those of you with prior Python experience should all be able to construct a dictionary like this “by hand”.
However, typical dictionary construction methods will not deal with the case of repeated keys very nicely. Using the
Bio.SeqIO.to_dict () will explicitly check for duplicate keys, and raise an exception if any are found.

Specifying the dictionary keys

Using the same code as above, but for the FASTA file instead:

from Bio import SeqIO

orchid_dict = SeqIO.to_dict(SeqIO.parse("ls_orchid.fasta", "fasta'))
print(orchid_dict.keys())

This time the keys are:
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['9i[2765596|emb|Z78471.1|PDZ78471"', 'gi|2765646|emb|Z78521.1|CCZ78521",
., '9i|2765613|emb|Z78488.1|PTZ78488"', 'gi|2765583|emb|Z78458.1|PHZ78458"]

You should recognize these strings from when we parsed the FASTA file earlier in Section Simple FASTA parsing
example. Suppose you would rather have something else as the keys - like the accession numbers. This brings us nicely
to SeqIO.to_dict()’s optional argument key_function, which lets you define what to use as the dictionary key for
your records.

First you must write your own function to return the key you want (as a string) when given a SeqRecord object. In
general, the details of function will depend on the sort of input records you are dealing with. But for our orchids, we
can just split up the record’s identifier using the “pipe” character (the vertical line) and return the fourth entry (field
three):

def get_accession(record):
"""Given a SeqRecord, return the accession number as a string.

e.g. "gi|2765613|emb|Z78488.1|PTZ78488" -> "Z78488.1"

parts = record.id.split("|")

assert len(parts) == 5 and parts[0] == "gi" and parts[2] == "emb"
return parts[3]

Then we can give this function to the SeqI0.to_dict () function to use in building the dictionary:

from Bio import SeqIO

orchid_dict = SeqIO.to_dict(

SeqIO.parse("ls_orchid.fasta", "fasta"), key_function=get_accession
)
print(orchid_dict.keys())

Finally, as desired, the new dictionary keys:

>>> print(orchid_dict.keys())
['Z78484.1", 'Z78464.1', 'Z78455.1', 'Z78442.1', 'Z78532.1', 'Z78453.1', ..., 'Z78471.1']

Not too complicated, I hope!

Indexing a dictionary using the SEGUID checksum

To give another example of working with dictionaries of SeqRecord objects, we’ll use the SEGUID checksum function.
This is a relatively recent checksum, and collisions should be very rare (i.e. two different sequences with the same
checksum), an improvement on the CRC64 checksum.

Once again, working with the orchids GenBank file:

from Bio import SeqIO
from Bio.SeqUtils.CheckSum import seguid

for record in SeqIO.parse("ls_orchid.gbk", "genbank"):
print(record.id, seguid(record.seq))

This should give:
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Z78533.1 JUEoWn6DPhgZ9nAyowsgtoD9TTo
Z278532.1 MN/s0q9zDoCVEEc+k/IFwCNF2pY

Z278439.1 H+JfaShya/4yyAj7IbMqgNkxdxQ

Now, recall the Bio.SeqIO.to_dict() function’s key_function argument expects a function which turns a
SegRecord into a string. We can’t use the seguid() function directly because it expects to be given a Seq object
(or a string). However, we can use Python’s lambda feature to create a “one off” function to give to Bio.SeqIO.
to_dict() instead:

>>> from Bio import SeqIO
>>> from Bio.SeqUtils.CheckSum import seguid
>>> seguid_dict = SeqIO.to_dict(
SeqIO0.parse("ls_orchid.gbk", "genbank"), lambda rec: seguid(rec.seq)
vee )
>>> record = seguid_dict["MN/s0®q9zDoCVEEc+k/IFwCNF2pY"]
>>> print(record.id)
Z78532.1
>>> print(record.description)
C.californicum 5.8S rRNA gene and ITS1 and ITS2 DNA

That should have retrieved the record Z78532. 1, the second entry in the file.

5.4.2 Sequence files as Dictionaries — Indexed files

As the previous couple of examples tried to illustrate, using Bio.SeqIO. to_dict () is very flexible. However, because
it holds everything in memory, the size of file you can work with is limited by your computer’s RAM. In general, this
will only work on small to medium files.

For larger files you should consider Bio.SeqIO.index (), which works a little differently. Although it still returns a
dictionary like object, this does not keep everything in memory. Instead, it just records where each record is within the
file — when you ask for a particular record, it then parses it on demand.

As an example, let’s use the same GenBank file as before:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.gbk", "genbank")
>>> len(orchid_dict)

94

>>> orchid_dict.keys()
['Z78484.1", 'Z78464.1', 'Z78455.1', 'Z78442.1', 'Z78532.1', 'Z78453.1', ..., 'Z78471.1']

>>> seq_record = orchid_dict["Z78475.1"]

>>> print(seq_record.description)

P.supardii 5.8S rRNA gene and ITS1 and ITS2 DNA

>>> seq_record.seq

Seq (' CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT. . .GGT")
>>> orchid_dict.close()

Note that Bio.SeqIO.index () won’t take a handle, but only a filename. There are good reasons for this, but it is a
little technical. The second argument is the file format (a lower case string as used in the other Bio.SeqIO functions).
You can use many other simple file formats, including FASTA and FASTQ files (see the example in Section /ndexing
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a FASTQ file). However, alignment formats like PHYLIP or Clustal are not supported. Finally as an optional argument
you can supply a key function.

Here is the same example using the FASTA file - all we change is the filename and the format name:

>>> from Bio import SeqIO
>>> orchid_dict = SeqIO.index("ls_orchid. fasta", "fasta")
>>> len(orchid_dict)
94
>>> orchid_dict.keys()
['gi|2765596|emb|Z78471.1|PDZ78471', 'gi|2765646|emb|Z78521.1|CCZ78521",
., 'gi|2765613|emb|Z78488.1|PTZ78488"', 'gi|2765583|emb|Z78458.1|PHZ78458"]

Specifying the dictionary keys

Suppose you want to use the same keys as before? Much like with the Bio.SeqIO0.to_dict() example in Sec-
tion Specifying the dictionary keys, you’ll need to write a tiny function to map from the FASTA identifier (as a string)
to the key you want:

def get_acc(identifier):
"""Given a SeqRecord identifier string, return the accession number as a string.

e.g. "gi|2765613|emb|Z78488.1|PTZ78488" -> "Z78488.1"

parts = identifier.split("|")

assert len(parts) == 5 and parts[0] == "gi" and parts[2] == "emb"
return parts[3]

Then we can give this function to the Bio.SeqIO.index () function to use in building the dictionary:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.fasta", "fasta", key_function=get_acc)
>>> print(orchid_dict.keys())
['Z78484.1', 'Z78464.1', 'Z78455.1', 'Z78442.1', 'Z78532.1', 'Z78453.1', ..., 'Z78471.1']

Easy when you know how?

Getting the raw data for a record

The dictionary-like object from Bio.SeqIO.index() gives you each entry as a SeqRecord object. However, it is
sometimes useful to be able to get the original raw data straight from the file. For this use the get_raw() method which
takes a single argument (the record identifier) and returns a bytes string (extracted from the file without modification).

A motivating example is extracting a subset of a records from a large file where either Bio.SeqIO.write() does not
(yet) support the output file format (e.g. the plain text SwissProt file format) or where you need to preserve the text
exactly (e.g. GenBank or EMBL output from Biopython does not yet preserve every last bit of annotation).

Let’s suppose you have download the whole of UniProt in the plain text SwissPort file format from their
FTP site (ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz)
and uncompressed it as the file uniprot_sprot.dat, and you want to extract just a few records from it:

>>> from Bio import SeqIO
>>> uniprot = SeqlO.index("uniprot_sprot.dat", "swiss")
>>> with open("selected.dat", "wb") as out_handle:
(continues on next page)
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(continued from previous page)

for acc in ["P33487", "P19801", "P13689", "Q8JZQ5", "Q9TRC7"]:
out_handle.write(uniprot.get_raw(acc))

Note with Python 3 onwards, we have to open the file for writing in binary mode because the get_raw() method
returns bytes strings.

There is a longer example in Section Sorting a sequence file using the SeqIO.index () function to sort a large sequence
file (without loading everything into memory at once).

5.4.3 Sequence files as Dictionaries — Database indexed files

Biopython 1.57 introduced an alternative, Bio.SeqIO.index_db(), which can work on even extremely large files
since it stores the record information as a file on disk (using an SQLite3 database) rather than in memory. Also, you
can index multiple files together (providing all the record identifiers are unique).

The Bio.SeqIO.index() function takes three required arguments:
* Index filename, we suggest using something ending .idx. This index file is actually an SQLite3 database.
* List of sequence filenames to index (or a single filename)
* File format (lower case string as used in the rest of the SeqI0 module).

As an example, consider the GenBank flat file releases from the NCBI FTP site, ftp://ftp.ncbi.nih.gov/genbank/, which
are gzip compressed GenBank files.

As of GenBank release 210, there are 38 files making up the viral sequences, gbvrll.seq, ..., gbvrl38.seq, taking
about 8GB on disk once decompressed, and containing in total nearly two million records.

If you were interested in the viruses, you could download all the virus files from the command line very easily with the
rsync command, and then decompress them with gunzip:

# For illustration only, see reduced example below
$ rsync -avP "ftp.ncbi.nih.gov::genbank/gbvrl*.seq.gz" .
$ gunzip gbvrl*.seq.gz

Unless you care about viruses, that’s a lot of data to download just for this example - so let’s download just the first four
chunks (about 25MB each compressed), and decompress them (taking in all about 1GB of space):

Reduced example, download only the first four chunks
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrll.seq.gz
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrl2.seq.gz
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrl3.seq.gz
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrl4.seq.gz
gunzip gbvrl*.seq.gz

A . e e FH

Now, in Python, index these GenBank files as follows:

>>> import glob

>>> from Bio import SeqIO

>>> files = glob.glob("gbvrl®*.seq")

>>> print (" files to index" % len(files))

4

>>> gb_vrl = SeqIO.index_db('"gbvrl.idx", files, "genbank")

(continues on next page)
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(continued from previous page)

>>> print (" sequences indexed" % len(gb_vrl))
272960 sequences indexed

Indexing the full set of virus GenBank files took about ten minutes on my machine, just the first four files took about a
minute or so.

However, once done, repeating this will reload the index file gbvrl.idx in a fraction of a second.

You can use the index as a read only Python dictionary - without having to worry about which file the sequence comes
from, e.g.

>>> print(gb_vrl["AB811634.1"].description)
Equine encephalosis virus NS3 gene, complete cds, isolate: Kimronl.

Getting the raw data for a record

Just as with the Bio.SeqIO.index () function discussed above in Section Getting the raw data for a record, the
dictionary like object also lets you get at the raw bytes of each record:

>>> print(gb_vrl.get_raw("AB811634.1"))

LOCUS AB811634 723 bp RNA linear VRL 17-JUN-2015
DEFINITION Equine encephalosis virus NS3 gene, complete cds, isolate: Kimronl.
ACCESSION  AB811634

//

5.4.4 Indexing compressed files

Very often when you are indexing a sequence file it can be quite large — so you may want to compress it on disk.
Unfortunately efficient random access is difficult with the more common file formats like gzip and bzip2. In this
setting, BGZF (Blocked GNU Zip Format) can be very helpful. This is a variant of gzip (and can be decompressed
using standard gzip tools) popularized by the BAM file format, samtools, and tabix.

To create a BGZF compressed file you can use the command line tool bgzip which comes with samtools. In our
examples we use a filename extension *.bgz, so they can be distinguished from normal gzipped files (named *.gz).
You can also use the Bio.bgzf module to read and write BGZF files from within Python.

The Bio.SeqIO0.index () and Bio.SeqIO.index_db() can both be used with BGZF compressed files. For example,
if you started with an uncompressed GenBank file:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.gbk", "genbank")
>>> len(orchid_dict)

94

>>> orchid_dict.close()

You could compress this (while keeping the original file) at the command line using the following command — but don’t
worry, the compressed file is already included with the other example files:

[$ bgzip -c 1ls_orchid.gbk > ls_orchid.gbk.bgz

You can use the compressed file in exactly the same way:
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>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.gbk.bgz", "genbank")
>>> len(orchid_dict)

94

>>> orchid_dict.close()

or:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index_db("ls_orchid.gbk.bgz.idx", "ls_orchid.gbk.bgz", "genbank")
>>> len(orchid_dict)

94

>>> orchid_dict.close()

The SeqIO indexing automatically detects the BGZF compression. Note that you can’t use the same index file for the
uncompressed and compressed files.

5.4.5 Discussion

So, which of these methods should you use and why? It depends on what you are trying to do (and how much data you
are dealing with). However, in general picking Bio.SeqIO.index() is a good starting point. If you are dealing with
millions of records, multiple files, or repeated analyses, then look at Bio.SeqIO.index_db().

Reasons to choose Bio.SeqIO.to_dict() overeither Bio.SeqIO.index() or Bio.SeqIO.index_db() boil down
to a need for flexibility despite its high memory needs. The advantage of storing the SeqRecord objects in memory is
they can be changed, added to, or removed at will. In addition to the downside of high memory consumption, indexing
can also take longer because all the records must be fully parsed.

Both Bio.SeqIO.index() and Bio.SeqIO.index_db() only parse records on demand. When indexing, they scan
the file once looking for the start of each record and do as little work as possible to extract the identifier.

Reasons to choose Bio.SeqIO.index() over Bio.SeqIO.index_db() include:
e Faster to build the index (more noticeable in simple file formats)

« Slightly faster access as SeqRecord objects (but the difference is only really noticeable for simple to parse file
formats).

e Can use any immutable Python object as the dictionary keys (e.g. a tuple of strings, or a frozen set) not just
strings.

* Don’t need to worry about the index database being out of date if the sequence file being indexed has changed.
Reasons to choose Bio.SeqIO.index_db() over Bio.SeqIO.index () include:

* Not memory limited — this is already important with files from second generation sequencing where 10s of
millions of sequences are common, and using Bio.SeqI0.index() can require more than 4GB of RAM and
therefore a 64bit version of Python.

* Because the index is kept on disk, it can be reused. Although building the index database file takes longer, if you
have a script which will be rerun on the same datafiles in future, this could save time in the long run.

* Indexing multiple files together

* The get_raw() method can be much faster, since for most file formats the length of each record is stored as well
as its offset.
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5.5 Writing Sequence Files

We’ve talked about using Bio.SeqIO.parse() for sequence input (reading files), and now we’ll look at Bio.SeqIO.
write() which is for sequence output (writing files). This is a function taking three arguments: some SeqRecord
objects, a handle or filename to write to, and a sequence format.

Here is an example, where we start by creating a few SeqRecord objects the hard way (by hand, rather than by loading
them from a file):

from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord

recl = SegRecord(

Seq(
"MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD"
"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK"
"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM"
"SSAC",

),

id="gi|14150838|gb|AAK54648.1|AF376133_1",
description="chalcone synthase [Cucumis sativus]",

)
rec2 = SeqgRecord(

Seq(
"YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ"
"DMVVVEIPKLGKEAAVKAIKEWGQ",

),

id="gi|13919613|gb|AAK33142.1|",
description="chalcone synthase [Fragaria vesca subsp. bracteata]",

)

rec3 = SeqgRecord(

Seq(
"MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC"
"EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP"
"KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN"
"NKGARVLVVCSEITAVTFRGPNDTHLDSLVGQALFGDGAAAVIIGSDPIPEVERPLFELV"
"SAAQTLLPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLVEAFQPLGISDWNSLFW"
"TAHPGGPAILDQVELKLGLKQEKLKATRKVLSNYGNMSSACVLFILDEMRKASAKEGLGT"
"TGEGLEWGVLFGFGPGLTVETVVLHSVAT" ,

),

id="gi| 13925890 |gb|AAK49457.1|",

description="chalcone synthase [Nicotiana tabacum]",

)

my_records = [recl, rec2, rec3]

Now we have a list of SeqRecord objects, we’ll write them to a FASTA format file:

from Bio import SeqIO

SeqIO.write(my_records, "my_example.faa", "fasta")
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And if you open this file in your favorite text editor it should look like this:

>0i| 14150838 |gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]
MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD
GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK
NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM

SSAC

>0i|13919613|gb|AAK33142.1| chalcone synthase [Fragaria vesca subsp. bracteatal]
YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ
DMVVVEIPKLGKEAAVKAIKEWGQ

>gi| 13925890 |gb|AAK49457.1| chalcone synthase [Nicotiana tabacum]
MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC
EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP
KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN
NKGARVLVVCSEITAVTFRGPNDTHLDSLVGQALFGDGAAAVIIGSDPIPEVERPLFELV
SAAQTLLPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLVEAFQPLGISDWNSLFW
TAHPGGPATILDQVELKLGLKQEKLKATRKVLSNYGNMSSACVLFILDEMRKASAKEGLGT
TGEGLEWGVLFGFGPGLTVETVVLHSVAT

Suppose you wanted to know how many records the Bio.SeqIO.write() function wrote to the handle? If your
records were in a list you could just use 1len(my_records), however you can’t do that when your records come from
a generator/iterator. The Bio.SeqIO.write() function returns the number of SeqRecord objects written to the file.

Note - If you tell the Bio.SeqIO.write() function to write to a file that already exists, the old file will be overwritten
without any warning.

5.5.1 Round trips

Some people like their parsers to be “round-tripable”, meaning if you read in a file and write it back out again it is
unchanged. This requires that the parser must extract enough information to reproduce the original file exactly. Bio.
SeqIO does not aim to do this.

As atrivial example, any line wrapping of the sequence data in FASTA files is allowed. An identical SeqRecord would
be given from parsing the following two examples which differ only in their line breaks:

>YAL®68C-7235.2170 Putative promoter sequence
TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCACAGTTTTCGTTAAGA
GAACTTAACATTTTCTTATGACGTAAATGAAGTTTATATATAAATTTCCTTTTTATTGGA

>YAL®68C-7235.2170 Putative promoter sequence
TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCA
CAGTTTTCGTTAAGAGAACTTAACATTTTCTTATGACGTAAATGA
AGTTTATATATAAATTTCCTTTTTATTGGA

To make a round-tripable FASTA parser you would need to keep track of where the sequence line breaks occurred,
and this extra information is usually pointless. Instead Biopython uses a default line wrapping of 60 characters on
output. The same problem with white space applies in many other file formats too. Another issue in some cases is that
Biopython does not (yet) preserve every last bit of annotation (e.g. GenBank and EMBL)).

Occasionally preserving the original layout (with any quirks it may have) is important. See Section Getting the raw
data for a record about the get_raw() method of the Bio.SeqIO.index() dictionary-like object for one potential
solution.
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5.5.2 Converting between sequence file formats

In previous example we used a list of SeqRecord objects as input to the Bio.SeqIO.write() function, but it will
also accept a SeqRecord iterator like we get from Bio.SeqIO.parse() — this lets us do file conversion by combining
these two functions.

For this example we’ll read in the GenBank format file Is_orchid.gbk and write it out in FASTA format:

from Bio import SeqIO

records = SeqIO.parse("ls_orchid.gbk", "genbank")
count = SeqlO.write(records, "my_example.fasta", "fasta")
print ("Converted records" % count)

Still, that is a little bit complicated. So, because file conversion is such a common task, there is a helper function letting
you replace that with just:

from Bio import SeqIO

count = SeqIO.convert('"ls_orchid.gbk", "genbank", "my_example.fasta", "fasta")
print("Converted records" % count)

The Bio.SeqIO.convert() function will take handles or filenames. Watch out though — if the output file already
exists, it will overwrite it! To find out more, see the built-in help:

>>> from Bio import SeqIO
>>> help(SeqIO0.convert)

In principle, just by changing the filenames and the format names, this code could be used to convert between any file
formats available in Biopython. However, writing some formats requires information (e.g. quality scores) which other
files formats don’t contain. For example, while you can turn a FASTQ file into a FASTA file, you can’t do the reverse.
See also Sections Converting FASTQ files and Converting FASTA and QUAL files into FASTQ files in the cookbook
chapter which looks at inter-converting between different FASTQ formats.

Finally, as an added incentive for using the Bio.SeqIO.convert() function (on top of the fact your code will be
shorter), doing it this way may also be faster! The reason for this is the convert function can take advantage of several
file format specific optimizations and tricks.

5.5.3 Converting a file of sequences to their reverse complements

Suppose you had a file of nucleotide sequences, and you wanted to turn it into a file containing their reverse complement
sequences. This time a little bit of work is required to transform the SeqRecord objects we get from our input file into
something suitable for saving to our output file.

To start with, we’ll use Bio.SeqIO.parse() to load some nucleotide sequences from a file, then print out their reverse
complements using the Seq object’s built-in . reverse_complement () method (see Section Nucleotide sequences and
(reverse) complements):

>>> from Bio import SeqIO

>>> for record in SeqIO.parse("ls_orchid.gbk", "genbank"):
print(record.id)
print(record.seq.reverse_complement())
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Now, if we want to save these reverse complements to a file, we’ll need to make SeqRecord objects. We can use
the SeqRecord object’s built-in .reverse_complement () method (see Section Reverse-complementing SeqRecord
objects) but we must decide how to name our new records.

This is an excellent place to demonstrate the power of list comprehensions which make a list in memory:

>>> from Bio import SeqIO

>>> records = [
rec.reverse_complement (id="rc_" + rec.id, description="reverse complement")
for rec in SeqlIO.parse("ls_orchid.fasta", "fasta")

-]
>>> len(records)
94

Now list comprehensions have a nice trick up their sleeves, you can add a conditional statement:

>>> records = [
rec.reverse_complement (id="rc_" + rec.id, description="reverse complement")
for rec in SeqlIO.parse("ls_orchid.fasta", "fasta")
if len(rec) < 700

-]
>>> len(records)
18

That would create an in memory list of reverse complement records where the sequence length was under 700 base
pairs. However, we can do exactly the same with a generator expression - but with the advantage that this does not
create a list of all the records in memory at once:

>>> records = (
rec.reverse_complement (id="rc_" + rec.id, description="reverse complement")
for rec in SeqlO.parse('ls_orchid.fasta", "fasta")
if len(rec) < 700

As a complete example:

>>> from Bio import SeqIO

>>> records = (
rec.reverse_complement (id="rc_" + rec.id, description="reverse complement")
for rec in SeqlIO.parse("ls_orchid.fasta", "fasta")
if len(rec) < 700

)

>>> SeqlO.write(records, "rev_comp.fasta", "fasta")
18

There is a related example in Section Translating a FASTA file of CDS entries, translating each record in a FASTA file
from nucleotides to amino acids.
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5.5.4 Getting your SeqRecord objects as formatted strings

Suppose that you don’t really want to write your records to a file or handle — instead you want a string containing
the records in a particular file format. The Bio.SeqIO interface is based on handles, but Python has a useful built-in
module which provides a string based handle.

For an example of how you might use this, let’s load in a bunch of SeqRecord objects from our orchids GenBank file,
and create a string containing the records in FASTA format:

from Bio import SeqIO
from io import StringIO

records = SeqIO.parse("ls_orchid.gbk", "genbank")
out_handle = StringIO0()

SeqlO.write(records, out_handle, "fasta")
fasta_data = out_handle.getvalue()

print (fasta_data)

This isn’t entirely straightforward the first time you see it! On the bright side, for the special case where you would
like a string containing a single record in a particular file format, use the the SeqRecord class’ format () method (see
Section The format method).

Note that although we don’t encourage it, you can use the format () method to write to a file, for example something
like this:

from Bio import SeqIO

with open("ls_orchid_long.tab", "w") as out_handle:
for record in SeqlIO.parse("ls_orchid.gbk", "genbank"):
if len(record) > 100:
out_handle.write(record. format("tab"))

While this style of code will work for a simple sequential file format like FASTA or the simple tab separated format
used here, it will not work for more complex or interlaced file formats. This is why we still recommend using Bio.
SeqIO0.write(), as in the following example:

from Bio import SeqIO

records = (rec for rec in SeqIO.parse("ls_orchid.gbk", "genbank") if len(rec) > 100)
SeqIO.write(records, "ls_orchid.tab", "tab")

Making a single call to SeqIO.write(. . .) is also much quicker than multiple calls to the SeqRecord. format(...)
method.

5.6 Low level FASTA and FASTQ parsers

Working with the low-level SimpleFastaParser or FastqGeneralIterator is often more practical than Bio.
SeqIO.parse when dealing with large high-throughput FASTA or FASTQ sequencing files where speed matters. As
noted in the introduction to this chapter, the file-format neutral Bio.SeqI0 interface has the overhead of creating many
objects even for simple formats like FASTA.

When parsing FASTA files, internally Bio.SeqIO.parse() calls the low-level SimpleFastaParser with the file
handle. You can use this directly - it iterates over the file handle returning each record as a tuple of two strings, the title
line (everything after the > character) and the sequence (as a plain string):
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>>> from Bio.SeqIO.FastaIO import SimpleFastaParser
>>> count = 0
>>> total_len = 0
>>> with open("ls_orchid.fasta") as in_handle:
for title, seq in SimpleFastaParser(in_handle):
count += 1
total_len += len(seq)

>>> print(" records with total sequence length " % (count, total_len))
94 records with total sequence length 67518

As long as you don’t care about line wrapping (and you probably don’t for short read high-throughput data), then
outputting FASTA format from these strings is also very fast:

out_handle.write(">%s\n%s\n" % (title, seq))

Likewise, when parsing FASTQ files, internally Bio.SeqI0.parse() calls the low-level FastqGeneralIterator
with the file handle. If you don’t need the quality scores turned into integers, or can work with them as ASCII strings
this is ideal:

>>> from Bio.SeqI0.QualityIO import FastgGeneralIterator
>>> count = 0
>>> total_len = 0
>>> with open("example.fastq") as in_handle:
for title, seq, qual in FastqGenerallterator(in_handle):
count += 1
total_len += len(seq)

>>> print (" records with total sequence length " % (count, total_len))
3 records with total sequence length 75

There are more examples of this in the Cookbook (Chapter Cookbook — Cool things to do with it), including how to
output FASTQ efficiently from strings using this code snippet:

out_handle.write("@%s\n%s\n+\n%s\n" % (title, seq, qual))
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CHAPTER
SIX

SEQUENCE ALIGNMENTS

Sequence alignments are a collection of two or more sequences that have been aligned to each other — usually with the
insertion of gaps, and the addition of leading or trailing gaps — such that all the sequence strings are the same length.

Alignments may extend over the full length of each sequence, or may be limited to a subsection of each sequence. In
Biopython, all sequence alignments are represented by an Alignment object, described in section Alignment objects.
Alignment objects can be obtained by parsing the output of alignment software such as Clustal or BLAT (described
in section Reading and writing alignments. or by using Biopython’s pairwise sequence aligner, which can align two
sequences to each other (described in Chapter Pairwise sequence alignment).

See Chapter Multiple Sequence Alignment objects for a description of the older MultipleSeqAlignment class and the
parsers in Bio.AlignIO that parse the output of sequence alignment software, generating MultipleSeqAlignment
objects.

6.1 Alignment objects

The Alignment class is defined in Bio.Align. Usually you would get an Alignment object by parsing the output
of alignment programs (section Reading and writing alignments) or by running Biopython’s pairwise aligner (Chap-
ter Pairwise sequence alignment). For the benefit of this section, however, we will create an Alignment object from
scratch.

6.1.1 Creating an Alignment object from sequences and coordinates

Suppose you have three sequences:

>>> seqA "CCGGTTTTT"

>>> seqB "AGTTTAA"

>>> seqC = "AGGTTT"

>>> sequences = [segA, seqB, seq(]

To create an Alignment object, we also need the coordinates that define how the sequences are aligned to each other.
We use a NumPy array for that:

>>> import numpy as np
>>> coordinates = np.array([[1, 3, 4, 7, 91, [0, 2, 2, 5, 5], [®, 2, 3, 6, 6]]1)

These coordinates define the alignment for the following sequence segments:
* SeqA[1:3], SegB[0:2], and SeqC[0:2] are aligned to each other;
e SeqA[3:4] and SeqC[2:3] are aligned to each other, with a gap of one nucleotide in segB;
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* SeqA[4:7], SeqB[2:5], and SeqC[3:6] are aligned to each other;
* SeqgA[7:9] is not aligned to segB or seqC.
Note that the alignment does not include the first nucleotide of segA and last two nucleotides of segB.

Now we can create the Alignment object:

>>> from Bio.Align import Alignment

>>> alignment = Alignment(sequences, coordinates)
>>> alignment

<Alignment object (3 rows x 8 columns) at ...>

The alignment object has an attribute sequences pointing to the sequences included in this alignment:

>>> alignment.sequences
['CCGGTTTTT', 'AGTTTAA', 'AGGTTT']

and an attribute coordinates with the alignment coordinates:

>>> alignment.coordinates

array([[1, 3, 4, 7, 9],
[6, 2, 2, 5, 5],
[0, 2, 3, 6, 6]11)

Print the Alignment object to show the alignment explicitly:

>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
® AGGTTT-- 6

with the starting and end coordinate for each sequence are shown to the left and right, respectively, of the alignment.

6.1.2 Creating an Alignment object from aligned sequences

If you start out with the aligned sequences, with dashes representing gaps, then you can calculate the coordinates using
the parse_printed_alignment class method. This method is primarily employed in Biopython’s alignment parsers
(see Section Reading and writing alignments), but it may be useful for other purposes. For example, you can construct
the Alignment object from aligned sequences as follows:

>>> lines = ["CGGITTTT", "AG-TTT--", "AGGTTT--"]
>>> for line in lines:
print(line)
CGGTTTTT
AG-TTT--
AGGTTT--
>>> lines = [line.encode() for line in lines] # convert to bytes
>>> lines
[b'CGGTTTTT', b'AG-TTT--', b'AGGTTT--']

>>> sequences, coordinates = Alignment.parse_printed_alignment(lines)
>>> sequences

[b'CGGTTTTT', b'AGTTT', b'AGGTTT']

>>> sequences = [sequence.decode() for sequence in sequences]

(continues on next page)
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(continued from previous page)

>>> sequences
["CGGTTTTT', 'AGTTT', 'AGGTTT']
>>> print(coordinates)
[[6 2 36 8]
[0 225 5]
[0 2 36 6]]

The initial G nucleotide of seqA and the final CC nucleotides of seqB were not included in the alignment and is therefore
missing here. But this is easy to fix:

>>> from Bio.Seq import Seq
>>> sequences[0] = "C" + sequences[0]
>>> sequences[1] = sequences[1] + "AA"
>>> sequences
['CCGGTTTTT', 'AGTTTAA', 'AGGTTT']
>>> coordinates[0, :] += 1
>>> print(coordinates)
[[134709]
[0 225 5]
[0 2 36 6]]

Now we can create the Alignment object:

>>> alignment = Alignment(sequences, coordinates)
>>> print(alignment)

1 CGGTTTTIT 9

0 AG-TTT-- 5

0 AGGTTT-- 6

which identical to the Alignment object created above in section Creating an Alignment object from sequences and
coordinates.

By default, the coordinates argument to the Alignment initializer is None, which assumes that there are no gaps in
the alignment. All sequences in an ungapped alignment must have the same length. If the coordinates argument is
None, then the initializer will fill in the coordinates attribute of the Alignment object for you:

>>> ungapped_alignment = Alignment (["ACGTACGT", "AAGTACGT", "ACGTACCT"])
>>> ungapped_alignment

<Alignment object (3 rows x 8 columns) at ...>
>>> print(ungapped_alignment.coordinates)

[[0 8]

[0 8]

[0 8]]

>>> print(ungapped_alignment)
0O ACGTACGT 8
0O AAGTACGT 8
® ACGTACCT 8
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6.1.3 Common alignment attributes

The following attributes are commonly found on Alignment objects:

* sequences: This is a list of the sequences aligned to each other. Depending on how the alignment was created,
the sequences can have the following types:

— plain Python string;

- Seq;

— MutableSeq;

— SeqgRecord,;

- bytes;

— bytearray;

— NumPy array with data type numpy.int32;

— any other object with a contiguous buffer of format "c", "B", "i", or "I";

— lists or tuples of objects defined in the alphabet attribute of the PairwiseAligner object that created
the alignment (see section Generalized pairwise alignments).

For pairwise alignments (meaning an alignment of two sequences), the properties target and query are aliases
for sequences[0] and sequences[1], respectively.

* coordinates: A NumPy array of integers storing the sequence indices defining how the sequences are aligned
to each other;

e score: The alignment score, as found by the parser in the alignment file, or as calculated by the
PairwiseAligner (see section Basic usage);

e annotations: A dictionary storing most other annotations associated with the alignment;

e column_annotations: A dictionary storing annotations that extend along the alignment and have the same
length as the alignment, such as a consensus sequence (see section ClustalW for an example).

An Alignment object created by the parser in Bio.Align may have additional attributes, depending on the alignment
file format from which the alignment was read.

6.2 Slicing and indexing an alignment

Slices of the form alignment [k, i:j], where k is an integer and i and j are integers or are absent, return a string
showing the aligned sequence (including gaps) for the target (if k=0) or the query (if k=1) that includes only the columns
i through j in the printed alignment.

To illustrate this, in the following example the printed alignment has 8 columns:

>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6

>>> alignment.length
8

To get the aligned sequence strings individually, use
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>>> alignment[0]
'CGGTTTTT'

>>> alignment[1]
'AG-TTT--'

>>> alignment[2]
'AGGTTT--"'

>>> alignment[0, :]
'CGGTTTTT'

>>> alignment[1, :]
'AG-TTT--"'

>>> alignment[0, 1:-1]
'GGTTTT'

>>> alignment[1, 1:-1]
'G-TTT-'

Columns to be included can also be selected using an iterable over integers:

>>> alignment[0, (1, 2, 4)]
'GGT"'

>>> alignment[1, range(0, 5, 2)]
IA_TI

To get the letter at position [i, j] of the printed alignment, use alignment[i, j]; this will return
found at that position:

if a gap is

>>> alignment[0, 2]
IGI
>>> alignment[2, 6]

To get specific columns in the alignment, use

>>> alignment[:, 0]

'CAA'
>>> alignment[:, 1]
'GGG'
>>> alignment[:, 2]
'G-G'

Slices of the form alignment[i:j:k] return a new Alignment object including only sequences [i:j:k] of the
alignment:

>>> alignment[1:]

<Alignment object (2 rows x 6 columns) at ...>
>>> print(alignment[1:])
target 0 AG-TTT 5
O [I-111 6
query 0 AGGTTT 6
Slices of the form alignment[:, 1i:j], where i and j are integers or are absent, return a new Alignment object

that includes only the columns i through j in the printed alignment.

Extracting the first 4 columns for the example alignment above gives:
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>>> alignment[:, :4]
<Alignment object (3 rows x 4 columns) at ...>
>>> print(alignment[:, :4])

1 CGGT 5

0 AG-T 3

0 AGGT 4

Similarly, extracting the last 6 columns gives:

>>> alignment[:, -6:]
<Alignment object (3 rows x 6 columns) at ...>
>>> print(alignment[:, -6:])

3 GITTTT 9

2 -TTT-- 5

2 GTTT-- 6

The column index can also be an iterable of integers:

>>> print(alignment[:, (1, 3, 0)]1)
0 GTC 3
0 GTA 3
0 GTA 3

Calling alignment[:, :] returns a copy of the alignment.

6.3 Getting information about the alignment

6.3.1 Alignment shape

The number of aligned sequences is returned by len(alignment):

>>> len(alignment)
3

The alignment length is defined as the number of columns in the alignment as printed. This is equal to the sum of the
number of matches, number of mismatches, and the total length of gaps in each sequence:

>>> alignment.length
8

The shape property returns a tuple consisting of the length of the alignment and the number of columns in the alignment
as printed:

>>> alignment.shape
G, &

78 Chapter 6. Sequence alignments




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

6.3.2 Comparing alignments

Two alignments are equal to each other (meaning that alignmentl == alignment2 evaluates to True) if each of
the sequences in alignmentl.sequences and alignment2.sequences are equal to each other, and alignmentl.
coordinates and alignment2.coordinates contain the same coordinates. If either of these conditions is not
fulfilled, then alignmentl == alignment2 evaluates to False. Inequality of two alignments (e.g., alignmentl <
alignment2) is established by first comparing alignmentl.sequences and alignment2.sequences, and if they
are equal, by comparing alignmentl.coordinates to alignment2.coordinates.

6.3.3 Finding the indices of alighed sequences

For pairwise alignments, the aligned property of an alignment returns the start and end indices of subsequences in
the target and query sequence that were aligned to each other. If the alignment between target (t) and query (q) consists
of N chunks, you get two tuples of length N:

(((t_startl, t_endl), (t_start2, t_end2), ..., (t_startN, t_endN)),
((g_startl, g_endl), (g_start2, g_end2), ..., (g_startN, g_endN)))

For example,

>>> pairwise_alignment = alignment[:2, :]
>>> print(pairwise_alignment)

target 1 CGGTTTTT 9
O .|-Il--8
query 0 AG-TTT-- 5

>>> print(pairwise_alignment.aligned)
[[[1 3]
[4 711

([0 2]
[2 5111

Note that different alignments may have the same subsequences aligned to each other. In particular, this may occur if
alignments differ from each other in terms of their gap placement only:

>>> pairwise_alignmentl = Alignment (["AAACAAA", "AAAGAAA"],
np.array([[0, 3, 4, 4, 71, [0, 3, 3, 4, 7]11)) #.
—fmt: skip
>>> pairwise_alignment2 = Alignment (["AAACAAA", "AAAGAAA"],
np.array([[0®, 3, 3, 4, 71, [0, 3, 4, 4, 7]11)) #.
—fmt: skip

>>> print(pairwise_alignmentl)

target 0 AAAC-AAA 7
O [1l--111 8
query 0 AAA-GAAA 7

>>> print(pairwise_alignment2)

target 0 AAA-CAAA 7
O [1l--111 8
query 0 AAAG-AAA 7

(continues on next page)
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>>> pairwise_alignmentl.aligned
array([[[®, 31,

(4, 711,
Lo, 31,
(4, 711D

>>> pairwise_alignment2.aligned
array([[[®, 3],

(4, 711,
Lo, 31,
(4, 711D

The property indices returns a 2D NumPy array with the sequence index of each letter in the alignment, with gaps
indicated by -1:

>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6

>>> alignment.indices

array([[ 1, 2, 3, 4, 5, 6, 7, 8],
re, 1, -1, 2, 3, 4, -1, -11],
[e, 1, 2, 3, 4, 5, -1, -11D

The property inverse_indices returns a list of 1D NumPy arrays, one for each of the aligned sequences, with the
column index in the alignment for each letter in the sequence. Letters not included in the alignment are indicated by
-1:

>>> alignment.sequences

['CCGGTTTTT', 'AGTTTAA', 'AGGTTT']

>>> alignment.inverse_indices

[array([-1, ©®, 1, 2, 3, 4, 5, 6, 71),
array([ 0, 1, 3, 4, 5, -1, -1]1),
array([0, 1, 2, 3, 4, 51)]

6.3.4 Counting identities, mismatches, and gaps

The counts method calculates the number of identities, mismatches, and gaps of a pairwise alignment. For an align-
ment of more than two sequences, the number of identities, mismatches, and gaps are calculated and summed for
all pairs of sequences in the alignment. The three numbers are returned as an AlignmentCounts object, which is a
namedtuple with fields gaps, identities, and mismatches. This method currently takes no arguments, but in the
future will likely be modified to accept optional arguments allowing its behavior to be customized.

>>> print(pairwise_alignment)

target 1 CGGTTTTT 9
O .I-I11--8
query 0 AG-TTT-- 5

(continues on next page)
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>>> pairwise_alignment.counts()
AlignmentCounts(gaps=3, identities=4, mismatches=1)
>>> print(alignment)

1 CGGTTTTT 9

0 AG-TTT-- 5

0 AGGTTT-- 6

>>> alignment.counts()
AlignmentCounts(gaps=8, identities=14, mismatches=2)

6.3.5 Letter frequencies

The frequencies method calculates how often each letter appears in each column of the alignment:

>>> alignment. frequencies

{'C': array([1l., 0., 0., 0., 0., 0., 0., 0.]),
'G': array([0., 3., 2., 0., 0., 0., 0., 0.]1),
'T': array([0., 0., 0., 3., 3., 3., 1., 1.1),
'A': array([2., 0., 0., 0., 0., 0., 0., 0.]1),
'-': array([0., 0., 1., 0., 0., 0., 2., 2.1)}

6.3.6 Substitutions

Use the substitutions method to find the number of substitutions between each pair of nucleotides:

>>> m = alignment.substitutions
>>> print(m)

A C G T
A1.0 0.0 0.0 0.0
C2.0 0.0 0.0 0.0
G 0.0 0.0 4.0 0.0
T0.0 0.0 0.09.0

Note that the matrix is not symmetric: The counts for a row letter R and a column letter C is the number of times
letter R in a sequence is replaced by letter C in a sequence appearing below it. For example, the number of C’s that are
aligned to an A in a later sequence is

>>> m[llcll , llAll]
2.0

while the number of A’s that are aligned to a C in a later sequence is

>>> m["A", "C"]
0.0

To get a symmetric matrix, use

>>> m += m.transpose()
>>m /= 2.0
>>> print(m)

(continues on next page)
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A C G T
A 1.0 1.0 0.0 0.0
C1.0 0.0 0.0 0.0
G 0.0 0.0 4.0 0.0
T 0.0 0.0 0.0 9.0
>>> m["A", "C"]
1.0
>>> m["C", "A"]
1.0

(continued from previous page)

The total number of substitutions between A’s and T’s in the alignment is 1.0 + 1.0 = 2.

6.3.7 Alignments as arrays

Using NumPy, you can turn the alignment object into an array of letters. In particular, this may be useful for fast

calculations on the alignment content.

>>> align_array = np.array(alignment)
>>> align_array.shape
a3, 8
>>> align_array
array([[b'C', b'G"', b'G', b'T', b'T', b'T', b'T', b'T'],
[b'A", b'G", b'-', b'T', b'T', b'T', b'-", b'-"],
[b'A", b'G", b'G', b'T', b'T', b'T", b'-", b'-"]], dtype="|S1")

By default, this will give you an array of bytes characters (with data type dtype="|S1"'). You can create an array of

Unicode (Python string) characters by using dtype="U":

[>>> align_array = np.array(alignment, dtype="U")

>>> align_array

array([[vcl’ 'G', 'G', 'T', ITI’ 'T', 'T', 'T'],
['A', 'G', l_l’ 'T', 'T', 'T', l_l, |_v]’
['A', 'G', 'G', ITI, 'T', 'T', l_l, l_l]]’ dtype:|<U1|)

(the printed dtype will be ‘<U1’ or ‘>U1’ depending on whether your system is little-endian or big-endian, respec-
tively). Note that the alignment object and the NumPy array align_array are separate objects in memory - editing

one will not update the other!

6.4 Operations on an alignment

6.4.1 Sorting an alignment

The sort method sorts the alignment sequences. By default, sorting is done based on the id attribute of each sequence

if available, or the sequence contents otherwise.

>>> print(alignment)
1 CGGTTTTT 9

(continues on next page)
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0 AG-TTT-- 5
0 AGGTTT-- 6

>>> alignment.sort()

>>> print(alignment)
0 AGGTTT-- 6
0 AG-TTT--
1 CGGTTTTT 9

(9]

Alternatively, you can supply a key function to determine the sort order. For example, you can sort the sequences by
increasing GC content:

>>> from Bio.SeqUtils import gc_fraction
>>> alignment.sort(key=gc_fraction)
>>> print(alignment)

0 AG-TTT-- 5

® AGGTTT-- 6

1 CGGTTTTIT 9

Note that the key function is applied to the full sequence (including the initial A and final GG nucleotides of seqB), not
just to the aligned part.

The reverse argument lets you reverse the sort order to obtain the sequences in decreasing GC content:

>>> alignment.sort(key=gc_fraction, reverse=True)
>>> print(alignment)

1 CGGTTTTIT 9

® AGGTTT-- 6

0 AG-TTT-- 5

6.4.2 Reverse-complementing the alignment

Reverse-complementing an alignment will take the reverse complement of each sequence, and recalculate the coordi-
nates:

>>> alignment.sequences
['CCGGTTTTT', 'AGGTTT', 'AGTTTAA']
>>> rc_alignment = alignment.reverse_complement()
>>> print(rc_alignment.sequences)
['AAAAACCGG', '"AAACCT', 'TTAAACT']
>>> print(rc_alignment)
0® AAAAACCG 8

® --AAACCT 6
2 --AAA-CT 7
>>> alignment[:, :4].sequences

['"CCGGTTTTT', 'AGGTTT', 'AGTTTAA']
>>> print(alignment[:, :4])

1 CGGT 5

0 AGGT 4

0 AG-T 3

(continues on next page)
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>>> rc_alignment = alignment[:, :4].reverse_complement()
>>> rc_alignment[:, :4].sequences
['AAAAACCGG', '"AAACCT', 'TTAAACT']
>>> print(rc_alignment[:, :4])
4 ACCG 8
2 ACCT 6
4 A-CT 7

Reverse-complementing an alignment preserves its column annotations (in reverse order), but discards all other anno-
tations.

6.4.3 Adding alignments

Alignments can be added together to form an extended alignment if they have the same number of rows. As an example,
let’s first create two alignments:

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> al = SeqRecord(Seq("AAAAC"), id="Alpha")

>>> bl = SeqRecord(Seq("AAAC"), id="Beta")

>>> cl = SeqRecord(Seq("AAAAG"), id="Gamma")

>>> a2 = SeqRecord(Seq("GTIT"), id="Alpha")

>>> b2 = SeqRecord(Seq("TT"), id="Beta")

>>> c2 = SeqRecord(Seq("GT"), id="Gamma")

>>> left = Alignment(

. [al, bl, cl], coordinates=np.array([[0, 3, 4, 5], [0, 3, 3, 41, [0, 3, 4, 5]1)
cee )
>>> left.annotations = {"tool": "demo", "name": "start"}

>>> left.column_annotations = {"stats": "CCCXC"}

>>> right = Alignment(

. [a2, b2, c2], coordinates=np.array([[0, 1, 2, 3], [0, O, 1, 2], [0, 1, 1, 2]1)
ce )

>>> right.annotations = {"tool": "demo", "name": "end"}
>>> right.column_annotations = {"stats": "CXC"}

Now, let’s look at these two alignments:

>>> print(left)

Alpha 0 AAAAC 5
Beta 0 AAA-C 4
Gamma 0 AAAAG 5
>>> print(right)

Alpha 0 GIT 3
Beta 0 -TT 2
Gamma 0 G-T 2

Adding the two alignments will combine the two alignments row-wise:

>>> combined = left + right
>>> print(combined)
Alpha 0 AAAACGTT 8

(continues on next page)
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Beta 0 AAA-C-TT 6
Gamma 0 AAAAGG-T 7

For this to work, both alignments must have the same number of sequences (here they both have 3 rows):

>>> len(left)

3

>>> len(right)

3

>>> len(combined)
3

The sequences are SeqRecord objects, which can be added together. Refer to Chapter Sequence annotation objects
for details of how the annotation is handled. This example is a special case in that both original alignments shared the
same names, meaning when the rows are added they also get the same name.

Any common annotations are preserved, but differing annotation is lost. This is the same behavior used in the
SeqRecord annotations and is designed to prevent accidental propagation of inappropriate values:

>>> combined.annotations
{"tool': 'demo'}

Similarly any common per-column-annotations are combined:

>>> combined.column_annotations
{'stats': 'CCCXCCXC'}

6.4.4 Mapping a pairwise sequence alignment

Suppose you have a pairwise alignment of a transcript to a chromosome:

>>> chromosome = "AAAAAAAACCCCCCCAAAAAAAAAAAGGGGGGAAAAAAAA"
>>> transcript = "CCCCCCCGGGGGG"

>>> sequencesl = [chromosome, transcript]

>>> coordinatesl = np.array([[8, 15, 26, 32], [0, 7, 7, 13]11)
>>> alignmentl = Alignment(sequencesl, coordinatesl)

>>> print(alignmentl)

target 8 CCCCCCCAAAAAAAAAAAGGGGGG 32
O I ----==mm-- [T 24
query 0 CCCCCCC----------- GGGGGG 13

and a pairwise alignment between the transcript and a sequence (e.g., obtained by RNA-seq):

>>> rnaseq = "CCCCGGGG"

>>> sequences2 = [transcript, rnaseq]

>>> coordinates2 = np.array([[3, 11], [0, 8]1]1)

>>> alignment2 = Alignment(sequences2, coordinates2)
>>> print(alignment2)

target 3 CCCCGGGG 11
O [IIITIIT 8
query 0 CCCCGGGG 8
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Use the map method on alignmentl, with alignment2 as argument, to find the alignment of the RNA-sequence to
the genome:

>>> alignment3 = alignmentl.map(alignment2)
>>> print(alignment3)

target 11 CCCCAAAAAAAAAAAGGGG 30
0 [1]]----------- 111 19
query 0 CCCC—————————- GGGG 8

>>> print(alignment3.coordinates)
[[11 15 26 30]
[® 4 4 8]]
>>> format(alignment3, "psl")
"B\tONtO\tO\tO\tO\t1\t11\t+\tquery\t8\tO\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n’'

To be able to print the sequences, in this example we constructed alignment1 and alignment2 using sequences with
a defined sequence contents. However, mapping the alignment does not depend on the sequence contents; only the
coordinates of alignmentl and alignment2 are used to construct the coordinates for alignment3.

The map method can also be used to lift over an alignment between different genome assemblies. In this case, self is a
DNA alignment between two genome assemblies, and the argument is an alignment of a transcript against one of the
genome assemblies:

>>> from Bio import Align

>>> chain = Align.read("Blat/panTro5ToPanTro6.over.chain", "chain")
>>> chain.sequences[0].id

'chrl’

>>> len(chain.sequences[0].seq)

228573443

>>> chain.sequences[1].id

'chrl’

>>> len(chain.sequences[1].seq)

224244399

>>> import numpy as np

>>> np.set_printoptions(threshold=5) # print 5 array elements per row

>>> print(chain.coordinates)

[[122250000 122250400 122250400 ... 122909818 122909819 122909835]
[111776384 111776784 111776785 ... 112019962 112019962 112019978]1]

showing that the range 122250000:122909835 of chrl on chimpanzee genome assembly panTro5 aligns to range
111776384:112019978 of chrl of chimpanzee genome assembly panTro6. See section UCSC chain file format for
more information about the chain file format.

>>> transcript = Align.read("'Blat/est.panTro5.psl", "psl")

>>> transcript.sequences[0].id

'chrl’

>>> len(transcript.sequences[0].seq)

228573443

>>> transcript.sequences[1].id

'DC525629'

>>> len(transcript.sequences[1].seq)

407

>>> print(transcript.coordinates)

[[122835789 122835847 122840993 122841145 122907212 122907314]
[ 32 90 90 242 242 344]]
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This shows that nucleotide range 32:344 of expressed sequence tag DC525629 aligns to range 122835789:122907314
of chrl of chimpanzee genome assembly panTro5. Note that the target sequence chain.sequences[0].seq and the
target sequence transcript.sequences[0] have the same length:

>>> len(chain.sequences[0].seq) == len(transcript.sequences[0].seq)
True

We swap the target and query of the chain such that the query of chain corresponds to the target of transcript:

>>> chain = chain[::-1]

>>> chain.sequences[0].id

'chrl’

>>> len(chain.sequences[0].seq)

224244399

>>> chain.sequences[1].id

'chrl’

>>> len(chain.sequences[1].seq)

228573443

>>> print(chain.coordinates)

[[111776384 111776784 111776785 ... 112019962 112019962 112019978]
[122250000 122250400 122250400 ... 122909818 122909819 122909835]]

>>> np.set_printoptions(threshold=1000) # reset the print options

Now we can get the coordinates of DC525629 against chimpanzee genome assembly panTro6 by calling chain.map,
with transcript as the argument:

>>> lifted_transcript = chain.map(transcript)

>>> lifted_transcript.sequences[0].id

'chrl’

>>> len(lifted_transcript.sequences[0].seq)

224244399

>>> lifted_transcript.sequences[1].id

'DC525629'

>>> len(lifted_transcript.sequences[1].seq)

407

>>> print(lifted_transcript.coordinates)

[[111982717 111982775 111987921 111988073 112009200 112009302]
[ 32 90 90 242 242 344]]

This shows that nucleotide range 32:344 of expressed sequence tag DC525629 aligns to range 111982717:112009302
of chrl of chimpanzee genome assembly panTro6. Note that the genome span of DC525629 on chimpanzee genome as-
sembly panTro5 is 122907314 - 122835789 = 71525 bp, while on panTro6 the genome span is 112009302 - 111982717
= 26585 bp.

6.4.5 Mapping a multiple sequence alignment

Consider a multiple alignment of genomic sequences of chimpanzee, human, macaque, marmoset, mouse, and rat:

>>> from Bio import Align
>>> path = "Blat/panTro5.maf"
>>> genome_alignment = Align.read(path, "maf")
>>> for record in genome_alignment.sequences:
print(record.id, len(record.seq))
(continues on next page)

6.4. Operations on an alignment 87




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

(continued from previous page)

panTro5.chrl 228573443
hgl19.chrl 249250621
rheMac8.chrl 225584828
calJac3.chr18 47448759
mml®.chr3 160039680
rn6.chr2 266435125
>>> print(genome_alignment.coordinates)
[[133922962 133922962 133922970 133922970 133922972 133922972 133922995
133922998 133923010]
[155784573 155784573 155784581 155784581 155784583 155784583 155784606
155784609 155784621]
[130383910 130383910 130383918 130383918 130383920 130383920 130383943
130383946 130383958]
[ 9790455 9790455 9790463 9790463 9790465 9790465 9790488
9790491  9790503]
[ 88858039 88858036 88858028 88858026 88858024 88858020 88857997
88857997 88857985]
[188162970 188162967 188162959 188162959 188162957 188162953 188162930
188162930 188162918]]
>>> print(genome_alignment)
panTro5.c 133922962 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
hg19.chrl 155784573 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
rheMac8.c 130383910 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcC
callac3.c 9790455 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAGCTTAAAggct
mml1®.chr3 88858039 TATAATAATTGTATATGTCACAGAAAAAAATGAATTTTCAAT---GACTTAATAGCC
rn6.chr2 188162970 TACAATAATTG--TATGTCATAGAAAAAAATGAATTTTCAAT---AACTTAATAGCC

panTro5.c 133923010
hgl19.chrl 155784621
rheMac8.c 130383958
calJac3.c 9790503
mml®.chr3 88857985
rn6.chr2 188162918

Suppose we want to replace the older versions of the genome assemblies (panTro5, hgl9, rheMac8, calJac3, mm10,
and rn6) by their current versions (panTro6, hg38, rheMac10, calJac4, mm39, and rn7). To do so, we need the
pairwise alignment between the old and the new assembly version for each species. These are provided by UCSC
as chain files, typically used for UCSC’s 1liftOver tool. The .chain files in the Tests/Align subdirectory in the
Biopython source distribution were extracted from UCSC’s . chain files to only include the relevant genomic region.
For example, to lift over panTro5 to panTro6, we use the file panTro5ToPanTro6 . chain with the following contents:

chain 1198066 chrl 228573443 + 133919957 133932620 chrl 224244399 + 130607995 130620657 1

4990 o 2
1362 3 0
6308

To lift over the genome assembly for each species, we read in the corresponding . chain file:

>>> paths = [
"Blat/panTro5ToPanTro6.chain",
"Blat/hg19ToHg38.chain",

(continues on next page)
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"Blat/rheMac8ToRheMacl1®.chain",
"Blat/calJac3ToCallac4.chain",
"Blat/mm10®ToMm39.chain",

- 1]

>>> liftover_alignments =

"Blat/rn6ToRn7.chain",

(continued from previous page)

[Align.read(path, "chain") for path in paths]

>>> for liftover_alignment in liftover_alignments:

print(liftover_alignment.target.id, liftover_alignment.coordinates[0,

:D

chrl [133919957 133924947 133924947 133926309 133926312 133932620]

chrl [155184381 156354347 156354348 157128497 157128497 157137496]

chrl [130382477 130383872 130383872 130384222 130384222 130388520]

chr18 [9786631 9787941 9788508 9788508 9795062 9795065 9795737]

chr3 [66807541 74196805 74196831 94707528 94707528 94708176 94708178 94708718]
chr2 [188111581 188158351 188158351 188171225 188171225 188228261 188228261

1882369971

Note that the order of species is the same in 1iftover_alignments and genome_alignment.sequences. Now we
can lift over the multiple sequence alignment to the new genome assembly versions:

>>> genome_alignment =

genome_alignment.mapall (liftover_alignments)

>>> for record in genome_alignment.sequences:
print(record.id, len(record.seq))

chrl 224244399
chrl 248956422
chrl 223616942
chr18 47031477
chr3 159745316
chr2 249053267
>>> print(genome_alignment.coordinates)

[[130611000
130611036
[155814782
155814818
[ 95186253
95186217

[ 9758318
9758354

[ 88765346
88765304
[174256702
174256662

130611000 130611008 130611008
130611048]
155814782 155814790 155814790
155814830]
95186253
95186205]
9758318
9758366]
88765343
88765292]
174256699 174256691 174256691
1742566501 ]

95186245 95186245

9758326 9758326

88765335 88765333

130611010 130611010 130611033

155814792 155814792 155814815

95186243 95186243 95186220

9758328 9758328 9758351

88765331 88765327 88765304

174256689 174256685 174256662

As the . chain files do not include the sequence contents, we cannot print the sequence alignment directly. Instead,
we read in the genomic sequence separately (as a .2bit file, as it allows lazy loading; see section Sequence files as
Dictionaries) for each species:

>>> from Bio import SeqIO

>>> names = ("panTro6", "hg38", "rheMacl®", "callac4", "mm39", "rn7")

>>> for i, name in enumerate(names):
filename = f"{name/.2bit"

(continues on next page)
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genome = SeqIO.parse(filename, "twobit")
chromosome = genome_alignment.sequences[i].id
assert len(genome_alignment.sequences[i]) == len(genome [chromosome])
genome_alignment.sequences[i] = genome[chromosome]
genome_alignment.sequences[i].id = f"{name}.{chromosome

>>> print(genome_alignment)

panTro6.c 130611000 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
hg38.chrl 155814782 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
rheMac1®. 95186253 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
callac4.c 9758318 ---ACTAGTTA--CA----GTAACAGAaaataaaatttaaatagaagcttaaaggct
mm39.chr3 88765346 TATAATAATTGTATATGTCACAGAAAAAAATGAATTTTCAAT---GACTTAATAGCC
rn7.chr2 174256702 TACAATAATTG--TATGTCATAGAAAAAAATGAATTTTCAAT---AACTTAATAGCC

panTro6.c 130611048
hg38.chrl 155814830
rheMacl1®. 95186205
calJac4.c 9758366
mm39.chr3 88765292
rn7.chr2 174256650

The mapall method can also be used to create a multiple alignment of codon sequences from a multiple sequence
alignment of the corresponding amino acid sequences (see Section Generating a multiple sequence alignment of codon
sequences for details).

6.5

The Alignments class

The Alignments (plural) class inherits from AlignmentsAbstractBaseClass and from list, and can be used as
a list to store Alignment objects. The behavior of Alignments objects is different from that of 1ist objects in two
important ways:

An Alignments object is its own iterator, consistent with iterators returned by Bio.Align.parse (see sec-
tion Reading alignments) or iterators returned by the pairwise aligner (see Section Pairwise sequence alignment).
Calling iter on the iterator will always return the Alignments object itself. In contrast, calling iter on a list
object creates a new iterator each time, allowing you to have multiple independent iterators for a given list.

In this example, alignment_iteratorl and alignment_iterator?2 are obtained from a list and act indepen-
dently of each other:

>>> alignment_list = [alignmentl, alignment2, alignment3]
>>> alignment_iteratorl = iter(alignment_list)

>>> alignment_iterator2 = iter(alignment_list)

>>> next(alignment_iteratorl)

<Alignment object (2 rows x 24 columns) at ...>
>>> next(alignment_iterator2)
<Alignment object (2 rows x 24 columns) at ...>
>>> next(alignment_iteratorl)
<Alignment object (2 rows x 8 columns) at ...>
>>> next(alignment_iteratorl)
<Alignment object (2 rows x 19 columns) at ...>

>>> next(alignment_iterator2)

(continues on next page)
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<Alignment object (2 rows x 8 columns) at ...>
>>> next(alignment_iterator2)
<Alignment object (2 rows x 19 columns) at ...>

In contrast, alignment_iteratorl and alignment_iterator2 obtained by calling iter on an Alignments
object are identical to each other:

-

>>> from Bio.Align import Alignments

>>> alignments = Alignments([alignmentl, alignment2, alignment3])
>>> alignment_iteratorl = iter(alignments)

>>> alignment_iterator2 = iter(alignments)

>>> alignment_iteratorl is alignment_iterator2

True

>>> next(alignment_iteratorl)

<Alignment object (2 rows x 24 columns) at ...>
>>> next(alignment_iterator2)

<Alignment object (2 rows x 8 columns) at ...>
>>> next(alignment_iteratorl)

<Alignment object (2 rows x 19 columns) at ...>

>>> next(alignment_iterator2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

L

Calling iter on an Alignments object resets the iterator to its first item, so you can loop over it again. You can
also iterate over the alignments multiple times using a for-loop, which implicitly calls iter on the iterator:

p
>>> for item in alignments:

print(repr(item))
<Alignment object (2 rows x 24 columns) at ...>
<Alignment object (2 rows x 8 columns) at ...>
<Alignment object (2 rows x 19 columns) at ...>

>>> for item in alignments:

print(repr(item))
<Alignment object (2 rows x 24 columns) at ...>
<Alignment object (2 rows x 8 columns) at ...>
<Alignment object (2 rows x 19 columns) at ...>

This behavior is consistent with regular Python lists, and with iterators returned by Bio.Align.parse (see
section Reading alignments) or by the pairwise aligner (see Section Pairwise sequence alignment).

* Metadata can be stored as attributes on an Alignments object, whereas a plain 1ist does not accept attributes:

>>> alignment_list.score = 100
Traceback (most recent call last):

AttributeError: 'list' object has no attribute 'score'...
>>> alignments.score = 100

>>> alignments.score

100
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6.6 Reading and writing alignments

Output from sequence alignment software such as Clustal can be parsed into Alignment objects by the Bio.Align.
read and Bio.Align.parse functions. Their usage is analogous to the read and parse functions in Bio.SeqIO (see
Section Parsing or Reading Sequences): The read function is used to read an output file containing a single alignment
and returns an Alignment object, while the parse function returns an iterator to iterate over alignments stored in an
output file containing one or more alignments. Section Alignment file formats describes the alignment formats that
can be parsed in Bio.Align. Bio.Align also provides a write function that can write alignments in most of these
formats.

6.6.1 Reading alignments

Use Bio.Align.parse to parse a file of sequence alignments. For example, the file ucsc_mm9_chr10.maf contains
48 multiple sequence alignments in the MAF (Multiple Alignment Format) format (see section Multiple Alignment
Format (MAF)):

>>> from Bio import Align

>>> alignments = Align.parse("'MAF/ucsc_mm9_chrl®.maf", "maf")
>>> alignments

<Bio.Align.maf.AlignmentIterator object at 0x...>

where "maf" is the file format. The alignments object returned by Bio.Align.parse may contain attributes that
store metadata found in the file, such as the version number of the software that was used to create the alignments. The
specific attributes stored for each file format are described in Section Alignment file formats. For MAF files, we can
obtain the file format version and the scoring scheme that was used:

>>> alignments.metadata
{'MAF Version': 'l', 'Scoring': 'autoMZ.v1'}

As alignment files can be very large, Align.parse returns an iterator over the alignments, so you won’t have to store all
alignments in memory at the same time. You can iterate over these alignments and print out, for example, the number
of aligned sequences in each alignment:

>>> for a in alignments:
print(len(a.sequences))

(o2 IV, IS S R

You can also call 1en on the alignments to obtain the number of alignments.

>>> len(alignments)
48

Depending on the file format, the number of alignments may be explicitly stored in the file (for example in the case of
bigBed, bigPsl, and bigMaf files), or otherwise the number of alignments is counted by looping over them once (and

92 Chapter 6. Sequence alignments




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

returning the iterator to its original position). If the file is large, it may therefore take a considerable amount of time
for len to return. However, as the number of alignments is cached, subsequent calls to 1en will return quickly.

If the number of alignments is not excessively large and will fit in memory, you can convert the alignments iterator to
a list of alignments. To do so, you could call 1ist on the alignments:

>>> alignment_list = list(alignments)

>>> len(alignment_list)

48

>>> alignment_list[27]

<Alignment object (3 rows x 91 columns) at 0x...>

>>> print(alignment_list[27])

mm9.chri10 3019377 CCCCAGCATTCTGGCAGACACAGTG-AAAAGAGACAGATGGTCACTAATAAAATCTGT-A
felCat3.s 46845 CCCAAGTGTTCTGATAGCTAATGTGAAAAAGAAGCATGTGCCCACCAGTAAGCTTTGTGG
canFam2.c 47545247 CCCAAGTGTTCTGATTGCCTCTGTGAAAAAGAAACATGGGCCCGCTAATAagatttgcaa

mm9.chr10® 3019435 TAAATTAG-ATCTCAGAGGATGGATGGACCA 3019465
felCat3.s 46785 TGAACTAGAATCTCAGAGGATG---GGACTC 46757
canFam2.c 47545187 tgacctagaatctcagaggatg---ggactc 47545159

But this will lose the metadata information:

>>> alignment_list.metadata
Traceback (most recent call last):

AttributeError: 'list' object has no attribute 'metadata’

Instead, you can ask for a full slice of the alignments:

>>> type(alignments)

<class 'Bio.Align.maf.AlignmentIterator'>
>>> alignments = alignments[:]

>>> type(alignments)

<class 'Bio.Align.Alignments'>

This returns a Bio.Align.Alignments object, which can be used as a list, while keeping the metadata information:

>>> len(alignments)

48

>>> print(alignments[11])

mm9.chr10® 3014742 AAGTTCCCTCCATAATTCCTTCCTCCCACCCCCACA 3014778

calJacl.C 6283 AAATGTA----- TGATCTCCCCATCCTGCCCTG--~ 6311
otoGarl.s 175262 AGATTTC----- TGATGCCCTCACCCCCTCCGTGCA 175231
loxAfrl.s 9317 AGGCTTA----- TG----CCACCCCCCACCCCCACA 9290

>>> alignments.metadata
{'MAF Version': 'l', 'Scoring': 'autoMZ.vl'}
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6.6.2 Writing alignments

To write alignments to a file, use

>>> from Bio import Align
>>> target = "myfile.txt"
>>> Align.write(alignments, target, "clustal")

where alignments is either a single alignment or a list of alignments, target is a file name or an open file-like
object, and "clustal" is the file format to be used. As some file formats allow or require metadata to be stored with
the alignments, you may want to use the Alignments (plural) class instead of a plain list of alignments (see Section The
Alignments class), allowing you to store a metadata dictionary as an attribute on the alignments object:

>>> from Bio import Align

>>> alignments = Align.Alignments(alignments)

>>> metadata = {"Program": "Biopython", "Version": "1.81"}
>>> alignments.metadata = metadata

>>> target = "myfile.txt"

>>> Align.write(alignments, target, "clustal")

6.6.3 Printing alignments

For text (non-binary) formats, you can call Python’s built-in format function on an alignment to get a string showing
the alignment in the requested format, or use Alignment objects in formatted (f-) strings. If called without an argument,
the format function returns the string representation of the alignment:

>>> str(alignment)

! 1 CGGTTTTT 9\n 0 AGGTTT-- 6\n 0 AG-
<TTT-- 5\n'

>>> format(alignment)

! 1 CGGTTTTT 9\n 0 AGGTTT-- 6\n 0 AG-
~TTT-- 5\n'

>>> print(format(alignment))
1 CGGTTTTT 9
0 AGGTTT-- 6
0 AG-TTT-- 5

By specifying one of the formats shown in Section Alignment file formats, format will create a string showing the
alignment in the requested format:

>>> format(alignment, "clustal')

'sequence_0 CGGTTTTT\nsequence_1 o
—AGGTTT--\nsequence_2 AG-TTT--\n\n\n'

>>> print(format(alignment, "clustal'))

sequence_0 CGGTTTTT

sequence_1 AGGTTT--

sequence_2 AG-TTT--

>>> print(£f"*** this is the alignment in Clustal format: ***\n{alignment:clustal}\n***")
**% this is the alignment in Clustal format: ***

sequence_0 CGGTTTTT

(continues on next page)
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sequence_1 AGGTTT--
sequence_2 AG-TTT--

EE R

>>> format(alignment, "maf")

'a\ns sequence_® 1 8 + 9 CGGTTTTT\ns sequence_1 0 6 + 6 AGGTTT--\ns sequence_2 0 5 + 7.
—AG-TTT--\n\n'

>>> print(format(alignment, "maf"))

a
s sequence_0 1 8 + 9 CGGTTTTT
s sequence_l1 ® 6 + 6 AGGTTT--
s sequence_2 0 5 + 7 AG-TTT--

As optional keyword arguments cannot be used with Python’s built-in format function or with formatted strings, the
Alignment class has a format method with optional arguments to customize the alignment format, as described in
the subsections below. For example, we can print the alignment in BED format (see section Browser Extensible Data
(BED)) with a specific number of columns:

>>> print(pairwise_alignment)

target 1 CGGTTTTT 9
o .I-IIl--8
query 0 AG-TTT-- 5

>>> print(format(pairwise_alignment, "bed"))
target 1 7 query 0 + 1 7 0 2 2,3, 0,3,

>>> print(pairwise_alignment. format("bed"))
target 1 7 query 0 + 1 7 0 2 2,3, 0,3,

>>> print(pairwise_alignment. format("bed", bedN=3))
target 1 7

>>> print(pairwise_alignment. format("bed", bedN=6))
target 1 7 query 0 +

6.7 Alignment file formats

The table below shows the alignment formats that can be parsed in Bio.Align. The format argument fmt used in
Bio.Align functions to specify the file format is case-insensitive. Most of these file formats can also be written by
Bio.Align, as shown in the table.
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File format fmt Description text/binary  Supported by write Subsec-
tion
azm A2M text yes 1.7.11
bed Browser Extensible Data (BED) text yes 1.7.14
bigbed bigBed binary yes 1.7.15
bigmaf bigMaf binary yes 1.7.19
bigpsl bigPsl binary yes 1.7.17
chain UCSC chain file text yes 1.7.20
clustal ClustalW text yes 1.7.2
emboss EMBOSS text no 1.7.5
* exonerate™ Exonerate text yes 1.7.7
fasta Aligned FASTA text yes 1.7.1
hhr HH-suite output files text no 1.7.10
maf Multiple Alignment Format (MAF) text yes 1.7.18
mauve Mauve eXtended Multi-FastA (xmfa) format text yes 1.7.12
msf GCG Multiple Sequence Format (MSF) text no 1.7.6
nexus NEXUS text yes 1.7.8
phylip PHYLIP output files text yes 1.7.4
psl Pattern Space Layout (PSL) text yes 1.7.16
sam Sequence Al ignment/Map (SAM) text yes 1.7.13
** stockholm™  Stockholm text yes 1.7.3
tabular Tabular output from BLAST or FASTA text no 1.7.9

6.7.1 Aligned FASTA

Files in the aligned FASTA format store exactly one (pairwise or multiple) sequence alignment, in which gaps in the
alignment are represented by dashes (-). Use fmt="fasta" to read or write files in the aligned FASTA format. Note
that this is different from output generated by William Pearson’s FASTA alignment program (parsing such output is
described in section Tabular output from BLAST or FASTA instead).

The file probcons. fa in Biopython’s test suite stores one multiple alignment in the aligned FASTA format. The
contents of this file is as follows:

>plas_horvu
D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQEEYLTAPGETFSVTLTV---
—PGTYGFYCEPHAGAGMVGKVTV

>plas_chlre
--VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRDDYLNAPGETYSVKLTA---
—AGEYGYYCEPHQGAGMVGKIIV

>plas_anava
—VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPH
>plas_proho
VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNTKLRIAPGSFYSVTLGT---
—PGTYSFYCTPHRGAGMVGTITV

>azup_achcy

VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A------- FKSKINENYKVTFTA---

RGAGMVGKITV

—PGVYGVKCTPHYGMGMVGVVEV

To read this file, use
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>>> from Bio import Align

>>> alignment = Align.read('probcons.fa", "fasta")
>>> alignment
<Alignment object (5 rows x 101 columns) at ...>

We can print the alignment to see its default representation:

>>> print(alignment)
plas_horv 0 D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQE

plas_chlr 0 --VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDATPSG-VN-ADAISRD
plas_anav 0 --VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHK
plas_proh 0 VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNT
azup_achc 0 VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A------
plas_horv 57 EYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVTV 95
plas_chlr 56 DYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKIIV 94
plas_anav 58 QLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKITV 99
plas_proh 56 KLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTITV 94
azup_achc 51 -FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVEV 88

or we can print it in the aligned FASTA format:

>>> print(format(alignment, "fasta"))

>plas_horvu
D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQEEYLTAPGETFSVTLTV---
—PGTYGFYCEPHAGAGMVGKVTV

>plas_chlre
--VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRDDYLNAPGETYSVKLTA---
—AGEYGYYCEPHQGAGMVGKIIV

>plas_anava
—VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPH
>plas_proho
VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNTKLRIAPGSFYSVTLGT---
—PGTYSFYCTPHRGAGMVGTITV

>azup_achcy

VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A------- FKSKINENYKVTFTA---
—PGVYGVKCTPHYGMGMVGVVEV

RGAGMVGKITV

or any other available format, for example Clustal (see section ClustalW):

>>> print(format(alignment, "clustal"))

plas_horvu D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-
plas_chlre --VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-
plas_anava --VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKS
plas_proho VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-
azup_achcy VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-
plas_horvu VD-VSKISQEEYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVT
plas_chlre VN-ADAISRDDYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKII
plas_anava ADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKIT
plas_proho ES-APALSNTKLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTIT
azup_achcy AESASEEEEEE FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVE

(continues on next page)
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plas_horvu
plas_chlre
plas_anava
plas_proho
azup_achcy

S << <<

The sequences associated with the alignment are SeqRecord objects:

>>> alignment.sequences
[SeqRecord(seq=Seq('DVLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSGVDVSKI...VTV'), id=

— 'plas_horvu', name='<unknown name>', description='", dbxrefs=[]), SeqRecord(seq=Seq(

< "VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDATIPSGVNADAIS...IIV'), id='plas_chlre', name=
- '<unknown name>', description='"', dbxrefs=[]), SeqRecord(seq=Seq(

< "VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKS. ..ITV'), id='plas_anava', name=
< "<unknown name>', description='"', dbxrefs=[]), SegRecord(seq=Seq(

< "VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDKVPAGESAPALS. ..ITV'), id='plas_proho', name=
- '<unknown name>', description='"', dbxrefs=[]), SeqRecord(seq=Seq(

— "VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDKGHNVETIKGMIPDGAEAFKS. . .VEV'), id='azup_achcy', name=
< '"<unknown name>', description='"', dbxrefs=[])]

39 9

Note that these sequences do not contain gaps (
coordinates attribute instead:

characters), as the alignment information is stored in the

>>> print(alignment.coordinates)

[[L® 1 133 34 42 44 48 48 50 50 51 58 73 73 95]
® 32 33 41 43 47 47 49 49 50 57 72 72 94]
® 32 33 41 43 47 48 50 51 52 59 74 77 99]
2 34 35 43 43 47 47 49 49 50 57 72 72 94]
2 34 34 42 44 48 48 50 50 51 51 66 66 88]]

Lo B e B s B |
(=B — I — ]
L — I —]

Use Align.write to write this alignment to a file (here, we’ll use a StringIO object instead of a file):

>>> from io import StringIO

>>> stream = StringI0()

>>> Align.write(alignment, stream, "FASTA")

1

>>> print(stream.getvalue())

>plas_horvu
D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQEEYLTAPGETFSVTLTV---
—PGTYGFYCEPHAGAGMVGKVTV

>plas_chlre
--VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRDDYLNAPGETYSVKLTA---
—AGEYGYYCEPHQGAGMVGKIIV

>plas_anava

— VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPH
>plas_proho
VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNTKLRIAPGSFYSVTLGT---
—PGTYSFYCTPHRGAGMVGTITV

>azup_achcy

RGAGMVGKITV

(continues on next page)
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VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A------- FKSKINENYKVTFTA---
—PGVYGVKCTPHYGMGMVGVVEV

Note that Align.write returns the number of alignments written (1, in this case).

6.7.2 ClustalW

Clustal is a set of multiple sequence alignment programs that are available both as standalone programs as as web
servers. The file opuntia.aln (available online or in the Doc/examples subdirectory of the Biopython source code)
is an output file generated by Clustal. Its first few lines are

CLUSTAL 2.1 multiple sequence alignment

9i16273285|gb|AF191659.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
9116273284 |gb|AF191658.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
9116273287 |gb|AF191661.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
9116273286 |gb|AF191660.1|AF191 TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
916273290|gb|AF191664.1|AF191 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
g16273289|gb|AF191663.1|AF191 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
9116273291 |gb|AF191665.1|AF191 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA

e e dede e Yede e v B R R R R S RS
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To parse this file, use

>>> from Bio import Align
>>> alignments = Align.parse('opuntia.aln", "clustal™)

The metadata attribute on alignments stores the information shown in the file header:

>>> alignments.metadata
{'Program': 'CLUSTAL', 'Version': '2.1'}

You can call next on the alignments to pull out the first (and only) alignment:

>>> alignment = next(alignments)
>>> print(alignment)
gi|627328 0 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT

911627328 0 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
911627328 0 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
91627328 O TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
91627329 O TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi]627328 0 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi|627329 0 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
91627328 60 CTAAATGATATACGATTCCACTATGTAAGGTCTTTGAATCATATCATAAAAGACAATGTA
91627328 60 CTAAATGATATACGATTCCACTATGTAAGGTCTTTGAATCATATCATAAAAGACAATGTA
91627328 60 CTAAATGATATACGATTCCACTATGTAAGGTCTTTGAATCATATCATAAAAGACAATGTA
gi]627328 60 CTAAATGATATACGATTCCACTA...
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If you are not interested in the metadata, then it is more convenient to use the Align.read function, as anyway each
Clustal file contains only one alignment:

>>> from Bio import Align
>>> alignment = Align.read('opuntia.aln", "clustal")

The consensus line below each alignment block in the Clustal output file contains an asterisk if the sequence is conserved
at each position. This information is stored in the column_annotations attribute of the alignment:

>>> alignment.column_annotations

{ ' Clustal_consensus' . Vadedededededede ededede dedekededefhdedededefhdedhddefhdededdefhddhddn

Printing the alignment in clustal format will show the sequence alignment, but does not include the metadata:

>>> print(format(alignment, "clustal"))

gi]6273285|gb|AF191659.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
9116273284 |gb|AF191658.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
916273287 |gb|AF191661.1|AF191 TATACATT. ..

Writing the alignments in clustal format will include both the metadata and the sequence alignment:

>>> from io import StringIO

>>> stream = StringI0()

>>> Align.write(alignments, stream, "clustal")
1

>>> print(stream.getvalue())

CLUSTAL 2.1 multiple sequence alignment

9i]6273285|gb|AF191659.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
9116273284 |gb|AF191658.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
9116273287 |gb|AF191661.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
916273286|gb|AF191660.1|AF191 TATACATAAAAGAAG. ..

Use an Alignments (plural) object (see Section The Alignments class) if you are creating alignments by hand, and
would like to include metadata information in the output.

6.7.3 Stockholm

This is an example of a protein sequence alignment in the Stockholm file format used by PFAM:

# STOCKHOLM 1.0

#=GF ID 7kD_DNA_binding

#=GF AC PF02294.20

#=GF DE  7KkD DNA-binding domain

#=GF AU Mian N;0000-0003-4284-4749
#=GF AU Bateman A;0000-0002-6982-4660
#=GF SE Pfam-B_8148 (release 5.2)
#=GF GA  25.00 25.00;

#=GF TC 26.60 46.20;

#=GF NC 23.20 19.20;

#=GF BM  hmmbuild HMM.ann SEED.ann
#=GF SM  hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq

(continues on next page)
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(continued from previous page)

#=GF TP  Domain

#=GF CL  CL0049

#=GF RN [1]

#=GF RM 3130377

#=GF RT Microsequence analysis of DNA-binding proteins 7a, 7b, and 7e
#=GF RT from the archaebacterium Sulfolobus acidocaldarius.

#=GF RA Choli T, Wittmann-Liebold B, Reinhardt R;

#=GF RL ] Biol Chem 1988;263:7087-7093.

#=GF DR INTERPRO; IPR003212;

#=GF DR  SCOP; 1sso; fa;

#=GF DR  SO; 0000417; polypeptide_domain;

#=GF CC This family contains members of the hyper-thermophilic

#=GF CC archaebacterium 7kD DNA-binding/endoribonuclease P2 family.
#=GF CC There are five 7kD DNA-binding proteins, 7a-7e, found as
#=GF CC  monomers in the cell. Protein 7e shows the tightest DNA-binding
#=GF CC ability.

#=GF SQ 3

#=GS DN7_METS5/4-61 AC A4YEA2.1

#=GS DN7A_SACS2/3-61 AC P61991.2

#=GS DN7A_SACS2/3-61 DR PDB; 1SSO A; 2-60;

#=GS DN7A_SACS2/3-61 DR PDB; 1JIC A; 2-60;

#=GS DN7A_SACS2/3-61 DR PDB; 2CVR A; 2-60;

#=GS DN7A_SACS2/3-61 DR PDB; 1B40 A; 2-60;

#=GS DN7E_SULAC/3-60 AC P13125.2

DN7_METS5/4-61 KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD . NGKTGRGAVSEKDAPKELLNMIGK
DN7A_SACS2/3-61 TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
#=GR DN7A_SACS2/3-61 SS EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT
DN7E_SULAC/3-60 KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD . NGKTGRGAVSEKDAPKELMDMLAR
#=GC SS_cons EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT
#=GC seg_cons KVKFKYKGEEKEVDISKIKKVWRVGKMVSFTYDD . NGKTGRGAVSEKDAPKELLsSMLuK
//

This is the seed alignment for the 7kD_DNA_binding (PF02294.20) PFAM entry, downloaded from the InterPro web-
site (https://www.ebi.ac.uk/interpro/). This version of the PFAM entry is also available in the Biopython source distri-
bution as the file pfam2.seed. txt in the subdirectory Tests/Stockholm/. We can load this file as follows

>>> from Bio import Align

>>> alignment = Align.read('pfam2.seed.txt", "stockholm")
>>> alignment
<Alignment object (3 rows x 59 columns) at ...>

We can print out a summary of the alignment:

>>> print(alignment)

DN7_METS5 0 KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD-NGKTGRGAVSEKDAPKELLNMIGK
DN7A_SACS 0 TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
DN7E_SULA 0 KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD-NGKTGRGAVSEKDAPKELMDMLAR
DN7_METS5 58
DN7A_SACS 59
DN7E_SULA 58

You could also call Python’s built-in format function on the alignment object to show it in a particular file format (see
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section Printing alignments for details), for example in the Stockholm format to regenerate the file:

>>> print(format(alignment, "stockholm™))

# STOCKHOLM 1.0

#=GF ID  7kD_DNA_binding

#=GF AC PF02294.20

#=GF DE  7kD DNA-binding domain

#=GF AU Mian N;0000-0003-4284-4749

#=GF AU Bateman A;0000-0002-6982-4660

#=GF SE  Pfam-B_8148 (release 5.2)

#=GF GA  25.00 25.00;

#=GF TC 26.60 46.20;

#=GF NC 23.20 19.20;

#=GF BM  hmmbuild HMM.ann SEED.ann

#=GF SM  hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq

#=GF TP Domain

#=GF CL CL0O049

#=GF RN [1]

#=GF RM 3130377

#=GF RT Microsequence analysis of DNA-binding proteins 7a, 7b, and 7e from
#=GF RT the archaebacterium Sulfolobus acidocaldarius.

#=GF RA Choli T, Wittmann-Liebold B, Reinhardt R;

#=GF RL ] Biol Chem 1988;263:7087-7093.

#=GF DR INTERPRO; IPR003212;

#=GF DR SCOP; 1sso; fa;

#=GF DR  SO; 0000417; polypeptide_domain;

#=GF CC This family contains members of the hyper-thermophilic
#=GF CC  archaebacterium 7kD DNA-binding/endoribonuclease P2 family. There
#=GF CC are five 7kD DNA-binding proteins, 7a-7e, found as monomers in the
#=GF CC cell. Protein 7e shows the tightest DNA-binding ability.
#=GF SQ 3

#=GS DN7_METS5/4-61 AC A4YEA2.1

#=GS DN7A_SACS2/3-61 AC P61991.2

#=GS DN7A_SACS2/3-61 DR PDB; 1SSO A; 2-60;

#=GS DN7A_SACS2/3-61 DR PDB; 1JIC A; 2-60;

#=GS DN7A_SACS2/3-61 DR PDB; 2CVR A; 2-60;

#=GS DN7A_SACS2/3-61 DR PDB; 1B40 A; 2-60;

#=GS DN7E_SULAC/3-60 AC P13125.2

DN7_METS5/4-61 KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD.
—NGKTGRGAVSEKDAPKELLNMIGK

DN7A_SACS2/3-61 o

— TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK

#=GR DN7A_SACS2/3-61 SS EEEEESSSSHHREHFFIEEEEEESSSSHFEREEESSSSSHEHEHHHFRESS
—CHHHHHHTT

DN7E_SULAC/3-60 KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD.
—NGKTGRGAVSEKDAPKELMDMLAR

#=GC SS_cons EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-
—CHHHHHHTT

#=GC seqg_cons KVKFKYKGEEKEVDISKIKKVWRVGKMVSFTYDD.
—NGKTGRGAVSEKDAPKELLsMLuK

//

or alternatively as aligned FASTA (see section Aligned FASTA):

102 Chapter 6. Sequence alignments




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

>>> print(format(alignment, "fasta"))

>DN7_METS5/4-61
KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD-NGKTGRGAVSEKDAPKELLNMIGK
>DN7A_SACS2/3-61
TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
>DN7E_SULAC/3-60
KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD-NGKTGRGAVSEKDAPKELMDMLAR

or in the PHYLIP format (see section PHYLIP output files):

>>> print(format(alignment, "phylip"))

3 59
DN7_METS5/KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD-NGKTGRGAVSEKDAPKELLNMIGK
DN7A_SACS2TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
DN7E_SULACKVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD-NGKTGRGAVSEKDAPKELMDMLAR

General information of the alignment is stored under the annotations attribute of the Alignment object, for example

>>> alignment.annotations["identifier"]

'7kD_DNA_binding'

>>> alignment.annotations["clan"]

'CLOO49’

>>> alignment.annotations['"database references"]

[{'reference': 'INTERPRO; IPRO03212;'}, {'reference': 'SCOP; 1sso; fa;'}, {'reference':
—"'S0; 0000417; polypeptide_domain;'}]

The individual sequences in this alignment are stored under alignment.sequences as SeqRecords, including any
annotations associated with each sequence record:

>>> for record in alignment.sequences:
print (" " % (record.id, record.annotations["accession"], record.dbxrefs))

DN7_METS5/4-61 A4YEA2.1 []
DN7A_SACS2/3-61 P61991.2 ['PDB; 1SSO A; 2-60;', 'PDB; 1JIC A; 2-60;', 'PDB; 2CVR A; 2-60;
—"', '"PDB; 1B40 A; 2-60;']
DN7E_SULAC/3-60 P13125.2 []

The secondary structure of the second sequence (DN7A_SACS2/3-61) is stored in the letter_annotations attribute
of the SeqRecord:

>>> alignment.sequences[0].letter_annotations

{}

>>> alignment.sequences[1].letter_annotations

{'secondary structure': 'EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT'}
>>> alignment.sequences[2].letter_annotations

{}

The consensus sequence and secondary structure are associated with the sequence alignment as a whole, and are there-
fore stored in the column_annotations attribute of the Alignment object:

>>> alignment.column_annotations
{'consensus secondary structure': 'EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-
«,CHHHHHHTT' ,

'consensus sequence': 'KVKFKYKGEEKEVDISKIKKVWRVGKMVSFTYDD.NGKTGRGAVSEKDAPKELLsMLuK'}
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6.7.4 PHYLIP output files

The PHYLIP format for sequence alignments is derived from the PHYLogeny Interference Package from Joe Felsen-
stein. Files in the PHYLIP format start with two numbers for the number of rows and columns in the printed alignment.
The sequence alignment itself can be in sequential format or in interleaved format. An example of the former is the
sequential.phy file (provided in Tests/Phylip/ in the Biopython source distribution):

3 384
CYS1_DICDI

ALEU_HORVU

CATH_HUMAN

FLEFQDKFNK
FKNYYLNNKE
TTGNVEGQHF
GIQTESSYPY
E-WQFYIGGV
YIYLRRGKNT
MAHARVLLLA
FARFAVRYGK
FQATRL-GAA
TTGALEAAYT
GIDTEESYPY
DGFRQYKSGV
YFKMEMGKNM

FKSWMSKHRK
IKHKYLWSEP
TTGALESATA
GIMGEDTYPY
QDFMMYRTGI
YFLIERGKNM

LFVLAVFTVF
KY-SHEEYLE
ATFTDDLPVA
ISQNKLVSLS
TAETGTQCNF
F-DIPCN--P
CGVSNFVSTS
LAVLATAAVA
SYESAAEVRR
QTCSATLAGN
QATGKNISLS
KGVNGV-CHY
YTSDHCGTTP
CAIATCASYP
LPLLCAGAWL
TY-STEEYHH
QNCSAT--KS
TATGKMLSLA
QGKDGY-CKF
YSSTSCHKTP
CGLAACASYP

RFEIFKSNLG
DYLDDEFINS
EQNLVDCDHE
NSANIGAKIS
NSLDHGILIV
II--

VASSSSFADS
RFRIFSESLE
HLMRDA--AA
EQQLVDCAGG
KAENAAVQVL
DDVNHAVLAV
VVAA

LGV-------
RLQTFASNWR
NYLRGT--GP
EQQLVDCAQD
QPGKAIGFVK
DKVNHAVLAV
IPLV

KIEELNLIAT
IPTAFDWRTR
CMEYEGEEAC
NFTMIP-KNE
GYSAKNTIFR

NPIRPVTDRA
EVRSTN----
LPETKDWRED

DSVNITLNAE
GYGVENGV--

-PVCGAAELS
KINAHN----
YPPSVDWRKK

DVANITIYDE
GYGEKNGI--

IPPEEQ----
NHKADTKFGV
G-AVTPVKNQ
DEGCNGGLQP
TVMAGYIVST
KNMPYWIVKN

ASTLESAVLG
RKGLPYRLGI
G-IVSPVKNQ
--GCNGGLPS
DELKNAVGLV
---PYWLIKN

VNSLEK----
NGNHTFKMAL
GNFVSPVKNQ
--GCQGGLPS
EAMVEAVALY
---PYWIVKN

NKFADLSSDE
GQCGSCWSFS
NAYNYIIKNG
GPLATAADAV
SWGADWGEQG

ALGRTRHALR
NRFSDMSWEE
AHCGSCWTFS
QAFEYIKYNG
RPVSVAFQVI
SWGADWGDNG

NQFSDMSFAE
GACGSCWTFS
QAFEYILYNK
NPVSFAFEVT
SWGPQWGMNG

In the sequential format, the complete alignment for one sequence is shown before proceeding to the next sequence. In
the interleaved format, the alignments for different sequences are next to each other, for example in the file interlaced.
phy (provided in Tests/Phylip/ in the Biopython source distribution):

3 384
CYS1_DICDI
ALEU_HORVU
CATH_HUMAN

FLEFQDKFNK
FARFAVRYGK
FKSWMSKHRK

FKNYYLNNKE
FQATRL-GAA
IKHKYLWSEP

TTGNVEGQHF
TTGALEAAYT
TTGALESATA

GIQTESSYPY
GIDTEESYPY
GIMGEDTYPY

LFVLAVFTVF
LAVLATAAVA
LPLLCAGAWL

KY-SHEEYLE
SYESAAEVRR
TY-STEEYHH

ATFTDDLPVA
QTCSATLAGN
QNCSAT--KS

ISQNKLVSLS
QATGKNISLS
TATGKMLSLA

TAETGTQCNF
KGVNGV-CHY
QGKDGY-CKF

VASSSSFADS
SRR

RFEIFKSNLG
RFRIFSESLE
RLQTFASNWR

DYLDDEFINS
HLMRDA--AA
NYLRGT--GP

EQNLVDCDHE
EQQLVDCAGG
EQQLVDCAQD

NSANIGAKIS
KAENAAVQVL
QPGKAIGFVK

NPIRPVTDRA
-PVCGAAELS

KIEELNLIAT
EVRSTN----
KINAHN----

IPTAFDWRTR
LPETKDWRED
YPPSVDWRKK

CMEYEGEEAC

NFTMIP-KNE
DSVNITLNAE
DVANITIYDE

IPPEEQ----
ASTLESAVLG
VNSLEK----

NHKADTKFGV
RKGLPYRLGI
NGNHTFKMAL

G-AVTPVKNQ
G-IVSPVKNQ
GNFVSPVKNQ

DEGCNGGLQP
--GCNGGLPS
--GCQGGLPS

TVMAGYIVST
DELKNAVGLV
EAMVEAVALY

ALGRTRHALR

NKFADLSSDE
NRFSDMSWEE
NQFSDMSFAE

GQCGSCWSFS
AHCGSCWTFS
GACGSCWTFS

NAYNYIIKNG
QAFEYIKYNG
QAFEYILYNK

GPLATAADAV
RPVSVAFQVI
NPVSFAFEVT

(continues on next page)

104

Chapter 6. Sequence alignments




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

(continued from previous page)

E-WQFYIGGV F-DIPCN--P NSLDHGILIV GYSAKNTIFR KNMPYWIVKN SWGADWGEQG
DGFRQYKSGV YTSDHCGTTP DDVNHAVLAV GYGVENGV-- --- PYWLIKN SWGADWGDNG
QDFMMYRTGI YSSTSCHKTP DKVNHAVLAV GYGEKNGI-- --- PYWIVKN SWGPQWGMNG

YIYLRRGKNT CGVSNFVSTS II--
YFKMEMGKNM CATATCASYP VVAA
YFLTERGKNM CGLAACASYP IPLV

The parser in Bio.Align detects from the file contents if it is in the sequential or in the interleaved format, and then
parses it appropriately.

>>> from Bio import Align

>>> alignment = Align.read('sequential.phy", "phylip™)
>>> alignment

<Alignment object (3 rows x 384 columns) at ...>

>>> alignment2 = Align.read("interlaced.phy", "phylip")
>>> alignment2

<Alignment object (3 rows x 384 columns) at ...>
>>> alignment == alignment2
True

Here, two alignments are considered to be equal if they have the same sequence contents and the same alignment
coordinates.

>>> alignment.shape

(3, 384)

>>> print(alignment)

CYS1_DICD 0 - ——-- MKVILLFVLAVFTVFVSS--- - - - ————————- RGIPPEEQ--------—-—-—- SQ
ALEU_HORV 0 MAHARVLLLALAVLATAAVAVASSSSFADSNPIRPVTDRAASTLESAVLGALGRTRHALR
CATH_HUMA o —————- MWATLPLLCAGAWLLGV-------- PVCGAAELSVNSLEK------------ FH
CYS1_DICD 28 FLEFQDKFNKKY-SHEEYLERFEIFKSNLGKIEELNLTATNHKADTKFGVNKFADLSSDE
ALEU_HORV 60 FARFAVRYGKSYESAAEVRRRFRIFSESLEEVRSTN----RKGLPYRLGINRFSDMSWEE
CATH_HUMA 34 FKSWMSKHRKTY-STEEYHHRLQTFASNWRKINAHN----NGNHTFKMALNQFSDMSFAE
CYS1_DICD 87 FKNYYLNNKEAIFTDDLPVADYLDDEFINSIPTAFDWRTRG-AVTPVKNQGQCGSCWSFS
ALEU_HORV 116 FQATRL-GAAQTCSATLAGNHLMRDA--AALPETKDWREDG-IVSPVKNQAHCGSCWTFS
CATH_HUMA 89 IKHKYLWSEPQNCSAT--KSNYLRGT--GPYPPSVDWRKKGNFVSPVKNQGACGSCWTEFS
CYS1_DICD 146 TTGNVEGQHFISQNKLVSLSEQNLVDCDHECMEYEGEEACDEGCNGGLQPNAYNYIIKNG
ALEU_HORV 172 TTGALEAAYTQATGKNISLSEQQLVDCAGGFNNF-------- GCNGGLPSQAFEYIKYNG
CATH_HUMA 145 TTGALESATATATGKMLSLAEQQLVDCAQDFNNY-------- GCQGGLPSQAFEYILYNK
CYS1_DICD 206 GIQTESSYPYTAETGTQCNFNSANIGAKISNFTMIP-KNETVMAGYIVSTGPLAIAADAV
ALEU_HORV 224 GIDTEESYPYKGVNGV-CHYKAENAAVQVLDSVNITLNAEDELKNAVGLVRPVSVAFQVI
CATH_HUMA 197 GIMGEDTYPYQGKDGY-CKFQPGKAIGFVKDVANITIYDEEAMVEAVALYNPVSFAFEVT
CYS1_DICD 265 E-WQFYIGGVF-DIPCN--PNSLDHGILIVGYSAKNTIFRKNMPYWIVKNSWGADWGEQG
ALEU_HORV 283 DGFRQYKSGVYTSDHCGTTPDDVNHAVLAVGYGVENGV----- PYWLIKNSWGADWGDNG
CATH_HUMA 256 QDFMMYRTGIYSSTSCHKTPDKVNHAVLAVGYGEKNGI----- PYWIVKNSWGPQWGMNG

(continues on next page)
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CYS1_DICD 321 YIYLRRGKNTCGVSNFVSTSII-- 343
ALEU_HORV 338 YFKMEMGKNMCATATCASYPVVAA 362
CATH_HUMA 311 YFLIERGKNMCGLAACASYPIPLV 335

When outputting the alignment in PHYLIP format, Bio.Align writes each of the aligned sequences on one line:

>>> print(format(alignment, "phylip"))

3 384

CYS1_DICDI----- MKVILLFVLAVFTVFVSS----——————————- RGIPPEEQ--------—--—-—- SQFLEFQDKFNKKY -

. SHEEYLERFEIFKSNLGKIEELNLIAINHKADTKFGVNKFADLSSDEFKNYYLNNKEAIFTDDLPVADYLDDEFINSIPTAFDWRTRG

—AVTPVKNQGQCGSCWSFSTTGNVEGQHFISQNKLVSLSEQNLVDCDHECMEYEGEEACDEGCNGGLQPNAYNYITKNGGIQTESSYPYTAETGTQCNFNSA

—KNETVMAGYIVSTGPLATAADAVE-WQFYIGGVF-DIPCN--
—PNSLDHGILIVGYSAKNTIFRKNMPYWIVKNSWGADWGEQGYIYLRRGKNTCGVSNFVSTSII--
ALEU_

—HORVUMAHARVLLLALAVLATAAVAVASSSSFADSNPIRPVTDRAASTLESAVLGALGRTRHALRFARFAVRYGKSYESAAEVRRRFRIFSESLEEVRSTN

——---RKGLPYRLGINRFSDMSWEEFQATRL-GAAQTCSATLAGNHLMRDA--AALPETKDWREDG-

— IVSPVKNQAHCGSCWTFSTTGALEAAYTQATGKNISLSEQQLVDCAGGFNNF --~-~-~----
—GCNGGLPSQAFEYIKYNGGIDTEESYPYKGVNGV-
—CHYKAENAAVQVLDSVNITLNAEDELKNAVGLVRPVSVAFQVIDGFRQYKSGVYTSDHCGTTPDDVNHAVLAVGYGVENGV -~~~
—PYWLIKNSWGADWGDNGYFKMEMGKNMCATATCASYPVVAA

CATH_HUMAN------ MWATLPLLCAGAWLLGV-------- PVCGAAELSVNSLEK------—————- FHFKSWMSKHRKTY -

— STEEYHHRLQTFASNWRKINAHN----NGNHTFKMALNQF SDMSFAETIKHKYLWSEPQNCSAT--KSNYLRGT -~
—GPYPPSVDWRKKGNFVSPVKNQGACGSCWTF STTGALESATATATGKMLSLAEQQLVDCAQDEFNNY - ~-----~
—GCQGGLPSQAFEYILYNKGIMGEDTYPYQGKDGY -
—CKFQPGKAIGFVKDVANITIYDEEAMVEAVALYNPVSFAFEVTQDFMMYRTGIYSSTSCHKTPDKVNHAVLAVGYGEKNGI---~-~
—PYWIVKNSWGPQWGMNGYFLIERGKNMCGLAACASYPIPLV

We can write the alignment in PHYLIP format, parse the result, and confirm it is the same as the original alignment
object:

>>> from io import StringIO

>>> stream = StringI0()

>>> Align.write(alignment, stream, "phylip")
1

>>> stream.seek(0)

0

>>> alignment3 = Align.read(stream, "phylip")
>>> alignment == alignment3

True

>>> [record.id for record in alignment.sequences]
['CYS1_DICDI', 'ALEU_HORVU', 'CATH_HUMAN']
>>> [record.id for record in alignment3.sequences]
['CYS1_DICDI', 'ALEU_HORVU', 'CATH_HUMAN']
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6.7.5 EMBOSS

EMBOSS (European Molecular Biology Open Software Suite) is a set of open-source software tools for molecular bi-
ology and bioinformatics [Rice2000]. It includes software such as needle and water for pairwise sequence alignment.
This is an example of output generated by the water program for Smith-Waterman local pairwise sequence alignment
(available as water.txt in the Tests/Emboss directory of the Biopython distribution):

HtH#H#H R R R AR
# Program: water

# Rundate: Wed Jan 16 17:23:19 2002

# Report_file: stdout
e i g g g

#

#

# Aligned_sequences: 2

# 1: IXI_234

# 2: IXI_235

# Matrix: EBLOSUM62

# Gap_penalty: 10.0

# Extend_penalty: 0.5

#

# Length: 131

# Identity: 112/131 (85.5%)

# Similarity: 112/131 (85.5%)

# Gaps: 19/131 (14.5%)

# Score: 591.5

#

#

#

IXT_234 1 TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQAT 50
AERRRRRNNRRRRN FEEEEEEEEEE e

IXI_235 1 TSPASIRPPAGPSSR--------- RPSPPGPRRPTGRPCCSAAPRRPQAT 41

IXI_234 51 GGWKTCSGTCTTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAG 100
RN RN FETTEETTEETTTEry

IXT_235 42 GGWKTCSGTCTTSTSTRHRGRSGW---------- RASRKSMRAACSRSAG 81

IXI_234 101 SRPNRFAPTLMSSCITSTTGPPAWAGDRSHE 131
CETEETEEEEE T EEr e e e

IXTI_235 82 SRPNRFAPTLMSSCITSTTGPPAWAGDRSHE 112

B T T e T e T

# _______________________________________

As this output file contains only one alignment, we can use Align.read to extract it directly. Here, instead we will
use Align.parse so we can see the metadata of this water run:

>>> from Bio import Align
>>> alignments = Align.parse('water.txt", "emboss")

The metadata attribute of alignments stores the information shown in the header of the file, including the program
used to generate the output, the date and time the program was run, the output file name, and the specific alignment
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file format that was used (assumed to be srspair by default):

>>> alignments.metadata
{'Align_format': 'srspair', 'Program': 'water', 'Rundate': 'Wed Jan 16 17:23:19 2002',
< 'Report_file': 'stdout'}

To pull out the alignment, we use

>>> alignment = next(alignments)
>>> alignment

<Alignment object (2 rows x 131 columns) at ...>
>>> alignment.shape
(2, 13D
>>> print(alignment)
IXI_234 O TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTC
O [TIEIITEIITITN ===~ FEEEEEEEEEE T Eer e e e e e e
IXI_235 0 TSPASIRPPAGPSSR--------- RPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTC
IXI_234 60 TTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTG
G [IITIIIIITIN] === FEEEEEETEEr e er et e e
IXI_235 51 TTSTSTRHRGRSGW---------- RASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTG
IXI_234 120 PPAWAGDRSHE 131
120 [[FITEIrrrr 131
IXI_235 101 PPAWAGDRSHE 112

>>> print(alignment.coordinates)
[[ 0 15 24 74 84 131]
[ 0 15 15 65 65 112]]

We can use indices to extract specific parts of the alignment:

>>> alignment[0]

— 'TSPASTRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGWSARTTTAACLRAS

'
—

>>> alignment[1]

'TSPASIRPPAGPSSR--------- RPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGW----------
<> RASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTGPPAWAGDRSHE'

>>> alignment[1, 10:30]

'GPSSR------—--- RPSPPG'

The annotations attribute of the alignment stores the information associated with this alignment specifically:

>>> alignment.annotations
{'Matrix': 'EBLOSUM62', 'Gap_penalty': 10.0, 'Extend_penalty': 0.5, 'Identity': 112,

RKSMRAACSRSAG!

—'Similarity': 112, 'Gaps': 19, 'Score': 591.5}

The number of gaps, identities, and mismatches can also be obtained by calling the counts method on the alignment
object:

>>> alignment.counts()
AlignmentCounts(gaps=19, identities=112, mismatches=0)

where AlignmentCounts is a namedtuple in the collections module in Python’s standard library.
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The consensus line shown between the two sequences is stored in the column_annotations attribute:

>>> alignment.column_annotations
{'emboss_consensus"': "[[||IIIIII]I]]] i

<TEEEEETEEEEr e e e e e e e e e e e e e e e e e
< EEErErerrrrrre e e e e e e e e e e e

| e

I
}

Use the format function (or the format method) to print the alignment in other formats, for example in the PHYLIP
format (see section PHYLIP output files):

>>> print(format(alignment, "phylip"))

2 131

IXI_234 .
—TSPASTRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGWSARTTTAACLRASR
IXI_235 TSPASIRPPAGPSSR--------- RPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGW-----

KSMRAACSRSAGS!

S RASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTGPPAWAGDRSHE

We can use alignment . sequences to get the individual sequences. However, as this is a pairwise alignment, we can
also use alignment.target and alignment.query to get the target and query sequences:

>>> alignment.target

SeqRecord(seq=Seq (' TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWK. ..SHE'), id=
. 'IXI_234"', name='<unknown name>', description='<unknown description>', dbxrefs=[])
>>> alignment.query

SeqRecord(seq=Seq (' TSPASIRPPAGPSSRRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTS...SHE'), id=
. "IXI_235"', name='<unknown name>', description='<unknown description>', dbxrefs=[])

Currently, Biopython does not support writing sequence alignments in the output formats defined by EMBOSS.

6.7.6 GCG Multiple Sequence Format (MSF)

The Multiple Sequence Format (MSF) was created to store multiple sequence alignments generated by the GCG (Genet-
ics Computer Group) set of programs. The file W_prot.msf in the Tests/msf directory of the Biopython distribution
is an example of a sequence alignment file in the MSF format This file shows an alignment of 11 protein sequences:

I TAA_MULTIPLE_ALIGNMENT

MSF: 99 Type: P Oct 18, 2017 11:35 Check: 0 ..

Name: W*01:01:01:01 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:02 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:03 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:04 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:05 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:06 Len: 99 Check: 7236 Weight: 1.00
Name: W*02:01 Len: 93 Check: 9483 TWeight: 1.00
Name: W*03:01:01:01 Len: 93 Check: 9974 TWeight: 1.00
Name: W*03:01:01:02 Len: 93 Check: 9974 Weight: 1.00
Name: W*04:01 Len: 93 Check: 9169 Weight: 1.00
Name: W*05:01 Len: 99 Check: 7331 Weight: 1.00
//

W*01:01:01:01 GLTPFNGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ

(continues on next page)
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W*01
W*01
W*01
w*01
w*01

w03
W03

W 01
W 01
W*01
w*01
w*01
w01

W*03
W*03

:01:01
:01:01
:01:01
:01:01
:01:01

W*02

:01:01
:01:01

W*04
W*05

:01:01
:01:01
:01:01
:01:01
:01:01
:01:01

W*02

:01:01
:01:01

W*04
W*05

:02
:03
:04
:05
:06
:01
:01
:02
:01
:01

:01
:02
:03
:04
:05
:06
:01
:01
:02
:01
:01

GLTPFNGYTA
GLTPFNGYTA
GLTPFNGYTA
GLTPFNGYTA
GLTPFNGYTA
GLTPSNGYTA
GLTPSSGYTA
GLTPSSGYTA
GLTPSNGYTA
GLTPSSGYTA

MPWRRNRQSC
MPWRRNRQSC
MPWRRNRQSC
MPWRRNRQSC
MPWRRNRQSC
MPWRRNRQSC
MPWRRNMQSC
MPWRRNRQSC
MPWRRNRQSC
MPWRRNMQSC
MPWRRNRQSC

ATWTRTAVSS
ATWTRTAVSS
ATWTRTAVSS
ATWTRTAVSS
ATWTRTAVSS
ATWTRTAASS
ATWTRTAVSS
ATWTRTAVSS
ATWTRTAASS
ATWTRTAVSS

SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR
SKPTCREGGR

VGMNIPYHGA
VGMNIPYHGA
VGMNIPYHGA
VGMNIPYHGA
VGMNIPYHGA
VGMNIPYDGA
VGMNIPYHGA
VGMNIPYHGA
VGMNIPYDGA
VGMNIPYHGA

SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG
SGSAKSLRMG

SYLVRNQELR
SYLVRNQELR
SYLVRNQELR
SYLVRNQELR
SYLVRNQELR
SYLVRNQELR
SYLVRNQELR
SYLVRNQELR
SYLVRNQELR
SYLVRNQELR

RRGCSAQNPK
RRGCSAQNPK
RRGCSAQNPK
RRGCSAQNPK
RRGCSAQNPK
RRGCSAQNPK
RRRCTAQNPK
RRGCSAQNPK
RRGCSAQNPK
RRGCSAQNPK
RRGCSAQNPK

(continued from previous page)

SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ
SWTAADKAAQ

DSHDPPPHL
DSHDPPPHL
DSHDPPPHL
DSHDPPPHL
DSHDPPPHL
DSHDPPPHL
RLT
RLT
RLT
RLT
DSHDPPPHL

To parse this file with Biopython, use

>>> from Bio import Align
>>> alignment = Align.read("W_prot.msf", "msf")

The parser skips all lines up to and including the line starting with “MSF:”. The following lines (until the “//” demar-
cation) are read by the parser to verify the length of each sequence. The alignment section (after the “/ /> demarcation)
is read by the parser and stored as an Alignment object:

>>> alignment

<Alignment object (11 rows x 99 columns) at ...>
>>> print(alignment)
W*01:01:0 O GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 O GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 O GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 0 GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 O GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 O GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*02:01 O GLTPSNGYTAATWTRTAASSVGMNIPYDGASYLVRNQELRSWTAADKAAQMPWRRNMQSC
W*03:01:0 O GLTPSSGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*03:01:0 0 GLTPSSGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*04:01 O GLTPSNGYTAATWTRTAASSVGMNIPYDGASYLVRNQELRSWTAADKAAQMPWRRNMQSC
W*05:01 O GLTPSSGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99

(continues on next page)
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W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*02:01 60 SKPTCREGGRSGSAKSLRMGRRRCTAQNPKRLT------ 93
W*03:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKRLT------ 93
W*03:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKRLT------ 93
W*04:01 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKRLT------ 93
W*05:01 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99

The sequences and their names are stored in the alignment . sequences attribute:

>>> len(alignment.sequences)

11

>>> alignment.sequences[0].id

'W*01:01:01:01"'

>>> alignment.sequences[0].seq
Seq('GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWR. . .PHL ")

The alignment coordinates are stored in the alignment.coordinates attribute:

>>> print(alignment.coordinates)
[[ 0 93 99]
93 99]
93 99]
93 99]
93 99]
93 99]
93 93]
93 93]
93 93]
93 93]
93 9911

—

Lo T e T e T e T s Y e B s B e B
(= I — I — I — I — N — R — R — N — I — ]

Currently, Biopython does not support writing sequence alignments in the MSF format.

6.7.7 Exonerate

Exonerate is a generic program for pairwise sequence alignments [Slater2005]. The sequence alignments found by
Exonerate can be output in a human-readable form, in the “cigar” (Compact Idiosyncratic Gapped Alignment Report)
format, or in the “vulgar” (Verbose Useful Labelled Gapped Alignment Report) format. The user can request to include
one or more of these formats in the output. The parser in Bio.Align can only parse alignments in the cigar or vulgar
formats, and will not parse output that includes alignments in human-readable format.

The file exn_22_m_cdna2genome_vulgar.exn in the Biopython test suite is an example of an Exonerate output file
showing the alignments in vulgar format:

Command line: [exonerate -m cdna2genome ../scer_cadl.fa /media/Waterloo/Downloads/
—genomes/scer_s288c/scer_s288c.fa --bestn 3 --showalignment no --showcigar no --
—showvulgar yes]

Hostname: [blackbriar]

vulgar: gi|296143771|ref|NM_001180731.1| ® 1230 + gi|330443520|ref|NC_001136.10| 1319275.
-.1318045 - 6146 M 1 1 C 3 3 M 1226 1226

vulgar: gi|296143771|ref|NM_001180731.1| 1230 ® - gi|330443520|ref|NC_001136.10| 1318045..
1319275 + 6146 M 129 129 C 3 3 M 1098 1098

(continues on next page)
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vulgar: gi|296143771|ref|NM_001180731.1| O 516 + gi|330443688|ref|NC_001145.3]| 85010..
667216 + 518 M 11 11 G1 O M1515G20M44G10M11G10OM88G40M17 17 5.
-0 2 I 0168904 302M44G01M88G20M33G1OM3333G02M77G01M
102 102 5 0 2 T 0 96820 3 0 2 M 14 14 GO 2 M 10 10 G20 M55G0 2M10 100G 2 0 M.
-4 4G01M2020G10O0M1515G01M55G30M44502T1I0 1221143 0 2 M 20 20,
~GO5M66502TI0193835302M1212G02M55G10M77G02M11G0 1M,
1212 C7575M66G10M44G01M22G01M33G0O1NM41 41

-- completed exonerate analysis

This file includes three alignments. To parse this file, use

>>> from Bio import Align

>>> alignments = Align.parse("exn_22_m_cdna2genome_vulgar.exn", "exonerate")

The dictionary alignments.metadata stores general information about these alignments, shown at the top of the
output file:

>>> alignments.metadata
{'Program': 'exonerate',

'Command line': 'exonerate -m cdna2genome ../scer_cadl.fa /media/Waterloo/Downloads/
—.genomes/scer_s288c/scer_s288c.fa --bestn 3 --showalignment no --showcigar no --
—showvulgar yes',

'Hostname': 'blackbriar'}

Now we can iterate over the alignments. The first alignment, with alignment score 6146.0, has no gaps:

>>> alignment = next(alignments)
>>> alignment.score
6146.0
>>> print(alignment.coordinates)
[[1319275 1319274 1319271 1318045]
[ 0 1 4 123011
>>> print(alignment)
gi|330443 1319275 27272227222222222222222222222222222722222722222272222272222272222?277

O [ITTTTEEErErrr e e e e e e e e e e e e e e e e e

gj_ 296143 O ?27?7?2??°??????2?2??2°?2??2??2??????????2?2??2??2°??2??2°??2°????°??°7°?7°7°?7°7°?7?7°?7

01330443 1318075 ??7??2777772727777772222777777777 1318045

1200 [LTEEETEEEETEErrrer el 1230
gi|296143 1200 ??7277227272?272222222222222722222277 1230

Note that the target (the first sequence) in the printed alignment is on the reverse strand while the query (the second
sequence) is on the forward strand, with the target coordinate decreasing and the query coordinate increasing. Printing
this alignment in exonerate format using Python’s built-in format function writes a vulgar line:

>>> print(format(alignment, "exonerate'))
vulgar: gi|296143771|ref|NM_001180731.1| ® 1230 + gi|330443520|ref|NC_001136.10| 1319275,
1318045 - 6146 M 1 1 C 3 3 M 1226 1226

Using the format method allows us to request either a vulgar line (default) or a cigar line:

>>> print(alignment. format("exonerate", "vulgar"))
vulgar: gi|296143771|ref|NM_001180731.1| ® 1230 + gi|330443520|ref|NC_001136.10| 1319275,

(continues on next page)
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—1318045 - 6146 M 1 1 C 3 3 M 1226 1226

>>> print(alignment. format("exonerate", "cigar"))
cigar: gi|296143771|ref|NM_001180731.1| ® 1230 + gi|330443520|ref|NC_001136.10| 1319275..
-,1318045 - 6146 M 1 M 3 M 1226

The vulgar line contains information about the alignment (in the sectionM 1 1 C 3 3 M 1226) that is missing from
the cigar lineM 1 M 3 M 1226. The vulgar line specifies that the alignment starts with a single aligned nucleotides,
followed by three aligned nucleotides that form a codon (C), followed by 1226 aligned nucleotides. In the cigar line,
we see a single aligned nucleotide, followed by three aligned nucleotides, followed by 1226 aligned nucleotides; it
does not specify that the three aligned nucleotides form a codon. This information from the vulgar line is stored in the
operations attribute:

>>> alignment.operations
bytearray(b'MCM")

See the Exonerate documentation for the definition of other operation codes.

Similarly, the "vulgar" or "cigar" argument can be used when calling Bio.Align.write to write a file with vulgar
or cigar alignment lines.

We can print the alignment in BED and PSL format:

>>> print(format(alignment, "bed"))
gi|330443520|ref|NC_001136.10| 1318045 1319275 gi|296143771|ref|NM_001180731.1| 6146 -
. 1318045 1319275 O 3 1226,3,1, 0,1226,1229,

>>> print(format(alignment, "psl™))
1230 O 6 0 0 0 O 0 - gil296143771|ref|NM_001180731.1| 1230 0 .
1230 gi|330443520 |ref|NC_001136.10| 1319275 1318045 1319275 3 1226,3,1, 0,1226,
1229, 1318045,1319271,1319274,

The SAM format parser defines its own (optional) operations attribute (section Sequence Alignment/Map (SAM)),
which is not quite consistent with the operations attribute defined in the Exonerate format parser. As the operations
attribute is optional, we delete it before printing the alignment in SAM format:

>>> del alignment.operations

>>> print(format(alignment, "sam™))

gi[296143771|ref|NM_001180731.1]| 16 gi|330443520|ref|NC_001136.10| 1318046 255..
—1226M3M1IM * ® O * * AS:i:6146

The third alignment contains four long gaps:

>>> alignment = next(alignments) # second alignment
>>> alignment = next(alignments) # third alignment
>>> print(alignment)

gi|330443 85010 ?7?727727222-2222222227222272--2222-2-22222277-- 272222227277
O TLITEITEETE=TEEEEEr e r ==t =t=TEE e b ====TE T
gi|296143 0 ?777777272222227222222222222222222227222222227222272222227727
gi|330443 85061 ?77777272222722222222222222222222222222222722222222222227277
60 | || || mmmm oo oo
9i|296143 e - ——

(continues on next page)
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gi[330443 (O L R o o o o O O O o o o o O S O O O Y G Y O o o o S O O G Y o N N N N N U N S Y S S N A Y ol ¢
582000 === === === === = === NNRRRRRRR
gi 296143 B ——,——,— 7722777777
gi|330443 (VA R I O o o o O O O o o o S O O T O O i i o o S N N N N N N U o S S S S N A S ol ¢
582060 | 1=~ 1 11I=TLLEEE==T= 0L EEEEEEEEE EEEEEE T T
gi[296143 R I e o o O O O O O B N O O o N N N U U o o N N N A N Y Y N S S S S O
gi|330443 (YA N I o o O o O O O o o o o O S O O O O O O o o o O O O G O O O o o o o S N N Y N N N S N N N T A S Y i o o ¢
582120 |11 LLCEEEEEEEEE LR EE L L LT =T -
gil296143 N R o o o O o o o o O N N O N N N S S S N NN NI A A IS
gi[330443 667168 ?7?7?7??77777070°°°°°7777070°0°0°°°°2777770°0°07°7°77777777 667216
582180 [[=[[I=1TTTTTTTTEEEEEErErr e e e e e e e rrr ey 582228
gil296143 R o o N o o o o o N N N N N N o i N N N Y S N N A A A i il ¢ 516

>>> print(format(alignment, "exonerate'))
vulgar: gi|296143771|ref|NM_001180731.1| ® 516 + gi|330443688|ref|NC_001145.3|
85010 667216 + 518 M 11 11 G1 O M 1515G20M44G10M11G10M283S8

G40M17 1750210168904 302 M44G01M88G20M33G10
M3333G02M77G01MI102 10250 2710096820302M1414G02M10 10
G20M55G02M1010G20M44G01M2020G10O0M1515G01MS55
G30M44502TI01221143 02 M2020G05M66502TO0 1938353 0 2
M1212G02M55G10M77G02M11G01M1212C7575M66G10
M44G01M22G01M33GO0O1NA41 41

6.7.8 NEXUS

The NEXUS file format [Maddison1997] is used by several programs to store phylogenetic information. This is an
example of a file in the NEXUS format (available as codonposset.nex in the Tests/Nexus subdirectory in the
Biopython distribution):

#NEXUS
[MacClade 4.05 registered to Computational Biologist, University]

BEGIN DATA;
DIMENSIONS NTAX=2 NCHAR=22;
FORMAT DATATYPE=DNA MISSING=? GAP=- ;

MATRIX

[ 10 20 ]

L . -1
Aegotheles AAAAAGGCATTGTGGTGGGAAT [22]
Aerodramus 7777?2777 TTGTGGTGGGAAT [13]
END;

BEGIN CODONS;
CODONPOSSET * CodonPositions =

(continues on next page)
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1-10,
11-22\3,
12-22\3,
13-22\3;
CODESET * UNTITLED = Universal: all ;

w N R =

END;

In general, files in the NEXUS format can be much more complex. Bio.Align relies heavily on NEXUS parser in
Bio.Nexus (see Chapter Phylogenetics with Bio.Phylo) to extract Alignment objects from NEXUS files.

To read the alignment in this NEXUS file, use

>>> from Bio import Align

>>> alignment = Align.read('codonposset.nex", '"nexus")
>>> print(alignment)
Aegothele 0 AAAAAGGCATTGTGGTGGGAAT 22

® coooocooc FETEETEETETTT 22
Aerodramu 0 ??7???2?27??7?TTGTGGTGGGAAT 22

>>> alignment. shape
(2, 22)

The sequences are stored under the sequences attribute:

>>> alignment.sequences[0].id
'Aegotheles’

>>> alignment.sequences[0].seq

Seq ("AAAAAGGCATTGTGGTGGGAAT ')

>>> alignment.sequences[0].annotations
{'molecule_type': 'DNA'}

>>> alignment.sequences[1].id
'Aerodramus’

>>> alignment.sequences[1].seq

>>> alignment.sequences[1].annotations
{'molecule_type': 'DNA'}

To print this alignment in the NEXUS format, use

>>> print(format(alignment, "nexus"))
#NEXUS

begin data;

dimensions ntax=2 nchar=22;

format datatype=dna missing=? gap=-;
matrix

Aegotheles AAAAAGGCATTGTGGTGGGAAT

’

end;

Similarly, you can use Align.write(alignment, "myfilename.nex", "nexus") to write the alignment in the
NEXUS format to the file myfilename.nex.
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6.7.9 Tabular output from BLAST or FASTA
Alignment output in tabular output is generated by the FASTA aligner [Pearson1988] run with the -m 8CB or -m 8CC
argument, or by BLAST [Altschul1990] run with the -outfmt 7 argument.

The file nucleotide_m8CC. txt in the Tests/Fasta subdirectory of the Biopython source distribution is an example
of an output file generated by FASTA with the -m 8CC argument:

# fasta36 -m 8CC seq/mgstml.nt seq/gst.nlib

# FASTA 36.3.8h May, 2020

# Query: pGI875 - 657 nt

# Database: seq/gst.nlib

# Fields: query id, subject id, % identity, alignment length, mismatches, gap opens, q..
-,start, q. end, s. start, s. end, evalue, bit score, aln_code

# 12 hits found

pGT875 pGT875 100.00 657 0 O 1 657 38 694 4.6e-191 655.6 657M

pGT875 RABGLTR 79.10 646 135 0 1 646 34 679 1.6e-116 408.0  646M

pGT875 BTGST 59.56 413 167 21 176 594 228 655 1.9e-07 45.7 .
—149M1D7M1I17M3D6OM5I6M1T13M2T13M4130M2I6M2D112M

pGT875 RABGSTB 66.93 127 42 8 159 289 157 287 3.2e-07 45.0 _
—»15M2T17M2D11M1I58M1I11M1D7M1D8M

pGT875 OCDHPR 91.30 23 2 1 266 289 2303 2325 0.012 29.7 17M1D6M

# FASTA processed 1 queries

To parse this file, use

>>> from Bio import Align
>>> alignments = Align.parse('nucleotide_m8CC.txt", "tabular")

Information shown in the file header is stored in the metadata attribute of alignments:

>>> alignments.metadata

{'Command line': 'fasta36 -m 8CC seq/mgstml.nt seq/gst.nlib’',
'Program': 'FASTA',
'Version': '36.3.8h May, 2020',
'Database': 'seq/gst.nlib'}

Extract a specific alignment by iterating over the alignments. As an example, let’s go to the fourth alignment:

>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> print(alignment)

RABGSTB 156 27772277272022777272777220072720277--22777722°772722°2°772777777
O [LEEEEEEEEETE == e e e e e et ==1 e e e = e e rer
PGT875 158 2777227727272777--2077722027727272722277777222777-272727277777
RABGSTB 214 ?777777002777000227000777202077222077722072720277777277777-7
60 [LTTTTEEETEEErrr e e et e e e e e e e e e e e e e = e =1
pGT875 215 2277272007777007727200772200777220077720072727-72222727777277
RABGSTB 273 ?77777-72777777 287

(continues on next page)
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120 [[HEEE=TErrrrrs 135
pGT875 274 ?7?7777°7°7777777 289

>>> print(alignment.coordinates)

[[156 171 173 190 190 201 202 260 261 272 272 279 279 287]
[158 173 173 190 192 203 203 261 261 272 273 280 281 289]]

>>> alignment.aligned

array([[[156, 171],

[173, 190],
[190, 201],
[202, 2607,
[261, 272],
[272, 279],
[279, 28711,
[[158, 173],
[173, 1907,
[192, 203],
[203, 261],
[261, 272],
[273, 2807,

[281, 289111)

The sequence information of the target and query sequences is stored in the target and query attributes (as well as
under alignment.sequences):

>>> alignment.target

SeqgRecord(seqg=Seq(None, length=287), id='RABGSTB', name='<unknown name>', description='
—,<unknown description>', dbxrefs=[])

>>> alignment.query

SeqRecord(seq=Seq(None, length=657), id='pGT875', name='<unknown name>', description='
—<unknown description>', dbxrefs=[])

Information of the alignment is stored under the annotations attribute of the alignment:

>>> alignment.annotations
{'% identity': 66.93,
'mismatches': 42,
'gap opens': 8,
'evalue': 3.2e-07,
'bit score': 45.0}

BLAST in particular offers many options to customize tabular output by including or excluding specific columns;
see the BLAST documentation for details. This information is stored in the dictionaries alignment.annotations,
alignment.target.annotations, or alignment.query.annotations, as appropriate.
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6.7.10 HH-suite output files

Alignment files in the hhr format are generated by hhsearch or hhblits in HH-suite [Steinegger2019]. As an exam-
ple, see the file 2uvo_hhblits.hhr in Biopython’s test suite:

Query 2UVO:A|PDBID|CHAIN|SEQUENCE
Match_columns 171
No_of_segs 1560 out of 4005

Neff 8.3

Searched_HMMs 34

Date Fri Feb 15 16:34:13 2019

Command hhblits -i 2uvoAh.fasta -d /pdb70

No Hit Prob E-value P-value Score SS Cols Query HMM ..

—Template HMM

1 2uvo_A Agglutinin isolectin 1; 100.0 3.7E-34 4.8E-38 210.3 0.0 171 1-171 o
—1-171 (171)

2 2wga ; lectin (agglutinin); 99.9 1.1E-30 1.4E-34 190.4 0.0 162 2-169 u
—2-163 (164)

3 1ulk_A Lectin-C; chitin-bindin 99.8 5.2E-24 6.6E-28 148.2 0.0 120 1-124 i
—2-121 (126)

31 4z8i_A BBTPGRP3, peptidoglycan 79.6 0.12 1.5E-05 36.1 0.0 37 1-37 -

—9-54 (236)
32 1lwga ; lectin (agglutinin); 40.4 2.6 0.00029 25.9 0.0 106 54-163 o

—11-116 (164)

No 1

>2uvo_A Agglutinin isolectin 1; carbohydrate-binding protein, hevein domain, chitin-
—binding, GERM agglutinin, chitin-binding protein; HET: NDG NAG GOL; 1.40A {Triticum.
—aestivum} PDB: lwgc_A* 2cwg_A* 2x3t_A* 4aml_A* 7wga_A 9wga_A 2wgc_A 1lwgt_A 1k7t_A*_
< 1k7v_A* 1k7u_A 2x52_A* 1tOw_A*

Probab=99.95 E-value=3.7e-34 Score=210.31 Aligned_cols=171 Identities=100% ..
—Similarity=2.050 Sum_probs=166.9

Q 2UVO:A|PDBID|C 1.
—ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQCCSQYGYCGFGAEYCGAGCQG  80..
—(171)

Q Consensus 1 ~~Cgmmmmmm~ Cr~mmnCCs~ag~CG C~~~C C Cg C CCs~~g~
< CGrmmmn C~~~C~~ 80 (171)

e e I B O e I o T P o [ S [ o e (R I I [
St [+ [+ ]
T Consensus 1 ~~Cgrmmmmm~ CrrmnCCS~~g~nCgmmmmn Cg~gC C cg c CCs~~g~
—Cg~mm~~ C~~~C~ 80 (171)
T 2uvo_A 1.

—~ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQCCSQYGYCGFGAEYCGAGCQG  80..
(17D

T ss_dssp o
—CBCBGGGTTBBCGGGCEECTTSBEEBSHHHHSTTCCBSSCSSCCBCBGGGTTBCCSTTCEECTTSBEEBSHHHHSTTCCB

T ss_pred o
—CCCCCCCCCcCCLCCCeellCLeECCLcccccllecccccccccccCeccClcccClccccCllceelCllcccclllccc
Confidence o
79999999999999999999999999999999999999999999999999999999999999999999999999999999

(continues on next page)
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Q 2UVO:A|PDBID|C  81.
—GPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGGCQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYC  160..
—(171)

Q Consensus 81 Cg C CCS~~G~CGrmmmn C~n~nCm~~C Cg C
< CCS~~G~CGrmmmin C 160 (171
el [ e I e e e I I I I I O I e I o e o [ [ [ o o e I
Rl A T B
T Consensus 81 cg C CCs~~g~CGrrmmn~ C~~gCg~~~cC cg C
5 CCS~~g~Cgmmmmn C 160 (171)
T 2uvo_A 81.

—»GPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGGCQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYC 160..
(17D

T ss_dssp o

> SSCSSCCBCBGGGTTBCCGGGCEECTTSBEEBSHHHHSTTCCBSSCSSCCCCBTTTTTBCCSTTCEECTTSCEEBSHHHH

T ss_pred o
—»ccccccccccccccCCCCCCCeccClllccCllececcCllellecccccccccccccccCCCCCCcCCCCEecCchhhe
Confidence o
—99999999999988999999999999999999999999999999999999999999999999999999999999999999

Q 2UVO:A|PDBID|C 161 GAGCQSGGCDG 171 (171)

Q Consensus 161 ~~gCq~~~c~~ 171 (171)
+++| | ++. ] ]

T Consensus 161 ~~~CQm~~~~~ 171 (171)

T 2uvo_A 161 GAGCQSGGCDG 171 (171)

T ss_dssp STTCCBSSCC-

T ss_pred cccceccCCCCC

Confidence 99999999986

No 2

No 32

>lwga ; lectin (agglutinin); NMR {}

Probab=40.43 E-value=2.6 Score=25.90 Aligned_cols=106 Identities=20% Similarity=0.
<652 Sum_probs=54.7

Q 2UVO:A|PDBID|C  54.
—TCTNNQCCSQYGYCGFGAEYCGAGCQGGPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGGCQSGACSTDKPCG 133,
—(171)

Q Consensus 54 ~C~~~nCCs~ng~CG Cr~~~C Cg C CCS~~G~CGormmmn Crmn
< CQ~~~Crmm~n Cg 133 (171)

S I N [ [ P [ [ [ N I [ | ...
B T | .
T Consensus 11 ~c cc C C~~nC C Crmm— =~ C cc C Crmrv
s v Cmmimins c~ 88 (164)
T lwga 11 XCXXXXCCXXXXXCXXXXXXCXXXCXXXXCXXXXXCXXX--

< XXXCXXXXCCXXXXXCXXXXXXCXXXCXXXXCXXXXXCX 88 (164)

(continues on next page)
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T ss_pred CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceee--
—CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
Confidence 344556666666666666566555543333223333321 .

—234666677777777777766666655544332223333

Q 2UVO:A|PDBID|C 134 KDAGGRVCTNNYCCSKWGSCGIGPGYCGAG 163 (171)

Q Consensus 134 ~~mmmn~ CrmmmnCCS~vaGrCGrmmm~ C~~g 163 (171)
PP I N I I | ...

T Consensus 89 ~~--~~n~C cc C c~~~ 116 (164)

T 1lwga 89 XX--XXXCXXXXCCXXXXXCXXXXXXCXXX 116 (164)

T ss_pred CC--CCCCCCCCCCCCCCCCCCCCCeccecec

Confidence 22 23344455555555555555544433

Done!

The file contains three sections:
* A header with general information about the alignments;
* A summary with one line for each of the alignments obtained;
* The alignments shown consecutively in detail.

To parse this file, use

>>> from Bio import Align
>>> alignments = Align.parse("2uvo_hhblits.hhr", "hhr")

Most of the header information is stored in the metadata attribute of alignments:

>>> alignments.metadata
{'Match_columns': 171,
'No_of_seqgs': (1560, 4005),
'Neff': 8.3,
'Searched_HMMs': 34,
'Rundate': 'Fri Feb 15 16:34:13 2019',
'Command line': 'hhblits -i 2uvoAh.fasta -d /pdb70'}

except the query name, which is stored as an attribute:

>>> alignments.query_name
'20V0:A|PDBID|CHAIN|SEQUENCE'

as it will reappear in each of the alignments.

Iterate over the alignments:

>>> for alignment in alignments:
print (alignment.target.id)

2uvo_A

2wga

lulk_A

(continues on next page)
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478i_A
lwga

Let’s look at the first alignment in more detail:

>>> alignments = iter(alignments)
>>> alignment = next(alignments)
>>> alignment

<Alignment object (2 rows x 171 columns) at ...>
>>> print(alignment)
2uvo_A 0 ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQC
O [TEEETEEEErErr ettt e et et e eer e e e et e e e
2UVO:A|PD 0 ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQC
2uvo_A 60 CSQYGYCGFGAEYCGAGCQGGPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGG
60 [LITEITEIEErrrr et rr et e e e e e e e e e e e
2UVO:A|PD 60 CSQYGYCGFGAEYCGAGCQGGPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGG
2uvo_A 120 CQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYCGAGCQSGGCDG 171
20 [TEErrrerrerrerrereer e e e e e e e rer e rrrrr 171
2UVO:A|PD 120 CQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYCGAGCQSGGCDG 171

The target and query sequences are stored in alignment.sequences. As these are pairwise alignments, we can also
access them through alignment.target and alignment.query:

>>> alignment.target is alignment.sequences[0]
True
>>> alignment.query is alignment.sequences[1]
True

The ID of the query is set from the alignments. query_name (note that the query ID printed in the alignment in the
hhr file is abbreviated):

>>> alignment.query.id
'20V0:A|PDBID|CHAIN|SEQUENCE'

The ID of the target is taken from the sequence alignment block (the line starting with T 2uvo_A):

>>> alignment.target.id
'2uvo_A'

The sequence contents of the target and query are filled in from the information available in this alignment:

>>> alignment.target.seq

Seq ("'ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGAT . . .CDG")
>>> alignment.query.seq

Seq ("'ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGAT. . .CDG")

The sequence contents will be incomplete (a partially defined sequence; see Section Sequences with partially defined
sequence contents) if the alignment does not extend over the full sequence.

The second line of this alignment block, starting with *“>”, shows the name and description of the Hidden Markov Model
from which the target sequence was taken. These are stored under the keys "hmm_name" and "hmm_description" in
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the alignment . target.annotations dictionary:

>>> alignment.target.annotations
{"hmm_name': '2uvo_A',

'hmm_description': 'Agglutinin isolectin 1; carbohydrate-binding protein, hevein domain,
— chitin-binding, GERM agglutinin, chitin-binding protein; HET: NDG NAG GOL; 1.40A
—{Triticum aestivum} PDB: lwgc_A* 2cwg_A* 2x3t_A* 4aml_A* 7wga_A 9wga_A 2wgc_A lwgt_A._
< 1k7t_A* 1k7v_A* 1k7u_A 2x52_A* 1tOw_A*'}

The dictionary alignment.target.letter_annotations stores the target alignent consensus sequence, the sec-
ondary structure as predicted by PSIPRED, and the target secondary structure as determined by DSSP:

>>> alignment.target.letter_annotations

{'Consensus': '~~Cg~~~~~~~ C~~~~CCS~~g~Cg Cg~gC C cg C CCs~~g~Cgmmmmn~
s Cromim Cromins ~CQg~ C CCs~ng~ClOrmmmn CrongCQem~Crmmmn (o] I CrmmnCCS~~g~Cgnmmn~
— Cvmn C ',

'ss_pred'

— "CCCCCCCCCcCCCCCCeellCLLeECCCLcccecClccccccccccccCeccClcccClccccClCceeCCClccccClleccccececcecccc

v
—

'ss_dssp':
— 'CBCBGGGTTBBCGGGCEECTTSBEEBSHHHHSTTCCBSSCSSCCBCBGGGTTBCCSTTCEECTTSBEEBSHHHHSTTCCBSSCSSC(
=]

In this example, for the query sequence only the consensus sequence is available:

>>> alignment.query.letter_annotations

{'Consensus': '~~Cg~~~~mmn CrmmnCCs~ng~CG C~mnC C Cg C CCs~~g~CGrmmmn
s Crmn~C C C CCS~~G~CGrmmm~ Cr~nnC~~C Cg C CCS~~G~CGrmmm~

The alignment.annotations dictionary stores information about the alignment shown on the third line of the align-
ment block:

>>> alignment.annotations

{'Probab': 99.95,
'E-value': 3.7e-34,
'Score': 210.31,
'Identities': 100.0,
'Similarity': 2.05,

icccccccCCCCCa

BCBGGGTTBCCGG!

'Sum_probs': 166.9}

Confidence values for the pairwise alignment are stored under the "Confidence" key in the alignment.
column_annotations dictionary. This dictionary also stores the score for each column, shown between the query
and the target section of each alignment block:

>>> alignment.column_annotations

{'column score': "||||++.++. | [++ | HH ]t t] [+ | oo |+ o [ttt oo ] o] [+,
I e I [ 1 S Y 2 e I [ e e ) [ S =
|+ I+

'Confidence’:

<"799999999999999999999999999999999999999999999999999999999999999999999999999999999999999

9999988999999

="'}
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6.7.11 A2M

A2M files are alignment files created by align2model or hmmscore in the SAM Sequence Alignment and Modeling
Software System [Krogh1994], [Hughey1996]. An A2M file contains one multiple alignment. The A2M file format is
similar to aligned FASTA (see section Aligned FASTA). However, to distinguish insertions from deletions, A2M uses
both dashes and periods to represent gaps, and both upper and lower case characters in the aligned sequences. Matches
are represented by upper case letters and deletions by dashes in alignment columns containing matches or deletions
only. Insertions are represented by lower case letters, with gaps aligned to the insertion shown as periods. Header lines
start with “>” followed by the name of the sequence, and optionally a description.

The file probcons. a2m in Biopython’s test suite is an example of an A2M file (see section Aligned FASTA for the same
alignment in aligned FASTA format):

>plas_horvu
D.VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG.VD.VSKISQEEYLTAPGETFSVTLTV. ..
—PGTYGFYCEPHAGAGMVGKVT

\')

>plas_chlre

- .VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG.VN.ADAISRDDYLNAPGETYSVKLTA. ..
—AGEYGYYCEPHQGAGMVGKII

\

>plas_anava

< VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSAD1AKSLSHKQLLMSPGQSTSTTFPAdapAGEYTFYCEPH
\')

>plas_proho
VqIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG.ES.APALSNTKLRIAPGSFYSVTLGT. ..
—PGTYSFYCTPHRGAGMVGTIT

\')

>azup_achcy

VhMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG.AE.A------- FKSKINENYKVTFTA. ..
—PGVYGVKCTPHYGMGMVGVVE

\'

RGAGMVGKIT

To parse this alignment, use

>>> from Bio import Align

>>> alignment = Align.read('probcons.a2m", "az2m")

>>> alignment

<Alignment object (5 rows x 101 columns) at ...>

>>> print(alignment)

plas_horv 0 D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQE
plas_chlr 0 --VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRD
plas_anav 0 --VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHK
plas_proh 0 VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNT
azup_achc 0 VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A------
plas_horv 57 EYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVTV 95

plas_chlr 56 DYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKIIV 94

plas_anav 58 QLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKITV 99

plas_proh 56 KLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTITV 94

azup_achc 51 -FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVEV 88

The parser analyzes the pattern of dashes, periods, and lower and upper case letters in the A2M file to determine if a
column is an match/mismatch/deletion ("D”’) or an insertion (”I”). This information is stored under the match key of
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the alignment.column_annotations dictionary:

>>> alignment.column_annotations

{'state"':

— '"DIDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDIDDIDDDDDDDDDDDDDDDDDDDDDDDIIIDDDDDDDDPDDDDDDDDDDDD
9%

As the state information is stored in the alignment, we can print the alignment in the A2M format:

>>> print(format(alignment, "a2m"))

>plas_horvu
D.VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG.VD.VSKISQEEYLTAPGETFSVTLTV. ..
—PGTYGFYCEPHAGAGMVGKVTV

>plas_chlre

- . VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG.VN.ADAISRDDYLNAPGETYSVKLTA. ..
—AGEYGYYCEPHQGAGMVGKIIV

>plas_anava

< VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSAD1AKSLSHKQLLMSPGQSTSTTFPAdapAGEYTFYCEPHRGAGMVGKITV
>plas_proho
VqQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG.ES.APALSNTKLRIAPGSFYSVTLGT. ..
—PGTYSFYCTPHRGAGMVGTITV

>azup_achcy

VhMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG.AE.A----—-- FKSKINENYKVTFTA. ..
—PGVYGVKCTPHYGMGMVGVVEV

Similarly, the alignment can be written in the A2M format to an output file using Align.write (see section Writing
alignments).

6.7.12 Mauve eXtended Multi-FastA (xmfa) format

Mauve [Darling2004] is a software package for constructing multiple genome alignments. These alignments are stored
in the eXtended Multi-FastA (xmfa) format. Depending on how exactly progressiveMauve (the aligner program in
Mauve) was called, the xmfa format is slightly different.

If progressivelMauve is called with a single sequence input file, as in

[progressiveMauve combined.fasta --output=combined.xmfa ... J

where combined. fasta contains the genome sequences:

>equCabl
GAAAAGGAAAGTACGGCCCGGCCACTCCGGGTGTGTGCTAGGAGGGCTTA
>mm9

GAAGAGGAAAAGTAGATCCCTGGCGTCCGGAGCTGGGACGT

>canFam2
CAAGCCCTGCGCGCTCAGCCGGAGTGTCCCGGGCCCTGCTTTCCTTTTC

then the output file combined.xmfa is as follows:

#FormatVersion Mauvel
#SequencelFile combined.fa
#SequencelEntry 1
#SequencelFormat FastA

(continues on next page)
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#Sequence2File combined.fa

#Sequence2Entry 2

#Sequence2Format FastA

#Sequence3File combined.fa

#Sequence3Entry 3

#Sequence3Format FastA

#BackboneFile combined.xmfa.bbcols

> 1:2-49 - combined. fa
AAGCCCTCCTAGCACACACCCGGAGTGG-CCGGGCCGTACTTTCCTTTT
> 2:0-0 + combined.fa

> 3:2-48 + combined. fa
AAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGCTTTCCTTTT

1:1-1 + combined. fa

1:50-50 + combined.fa

AV | I i VAR | I~ I VAR ||

2:1-41 + combined. fa
GAAGAGGAAAAGTAGATCCCTGGCGTCCGGAGCTGGGACGT

3:1-1 + combined. fa

3:49-49 + combined. fa

o v I 0V

with numbers (1, 2, 3) referring to the input genome sequences for horse (equCab1), mouse (mm9), and dog (canFamz2),
respectively. This xmfa file consists of six alignment blocks, separated by = characters. Use Align.parse to extract
these alignments:

>>> from Bio import Align
>>> alignments = Align.parse('combined.xmfa", "mauve™)

The file header data are stored in the metadata attribute:

>>> alignments.metadata

{'FormatVersion': 'Mauvel',
'BackboneFile': 'combined.xmfa.bbcols',
'File': 'combined.fa'?}

The identifiers attribute stores the sequence identifiers for the three sequences, which in this case is the three
numbers:

>>> alignments.identifiers
[l ® 1] s Al 1 1] s Al 2 l]

These identifiers are used in the individual alignments:
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>>> for alignment in alignments:
print([record.id for record in alignment.sequences])

print (alignment)

print(":‘\‘z‘::’:ft:‘::‘c”)
[ 9’ , 0q 0 , 190 ]
0 49 AAGCCCTCCTAGCACACACCCGGAGTGG-CCGGGCCGTACTTTCCTTTT 1
1 S ,—,—————Y—Ys—r— 0
2 1 AAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGCTTTCCTTTT 48

['0']

0 0G1

['0']

0 49 A 50

['1']

1 ® GAAGAGGAAAAGTAGATCCCTGGCGTCCGGAGCTGGGACGT 41
['2']

2 0C1

['2']

2 48 C 49

Note that only the first block is a real alignment; the other blocks contain only a single sequence. By including these
blocks, the xmfa file contains the full sequence that was provided in the combined. fa input file.

If progressiveMauve is called with a separate input file for each genome, as in

[progressivel"[auve equCabl.fa canFam2.fa mm9.fa --output=separate.xmfa ... ]

where each Fasta file contains the genome sequence for one species only, then the output file separate.xmfa is as
follows:

#FormatVersion Mauvel

#SequencelFile equCabl.fa

#SequencelFormat FastA

#Sequence2File canFam2.fa

#Sequence2Format FastA

#Sequence3File mm9.fa

#Sequence3Format FastA

#BackboneFile separate.xmfa.bbcols

> 1:1-50 - equCabl.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC

(continues on next page)
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> 3:1-19 - mm9. fa
————————————————————————————————— GGATCTACTTTTCCTCTTC

> 3:20-41 + mm9. fa
CTGGCGTCCGGAGCTGGGACGT

The identifiers equCab1 for horse, mm9 for mouse, and canFam2 for dog are now shown explicitly in the output file. This
xmfa file consists of two alignment blocks, separated by = characters. Use Align.parse to extract these alignments:

>>> from Bio import Align
>>> alignments = Align.parse('separate.xmfa", "mauve')

The file header data now does not include the input file name:

>>> alignments.metadata
{'FormatVersion': 'Mauvel',
'BackboneFile': 'separate.xmfa.bbcols'}

The identifiers attribute stores the sequence identifiers for the three sequences:

>>> alignments.identifiers
['equCabl.fa', 'canFam2.fa', 'mm9.fa']

These identifiers are used in the individual alignments:

>>> for alignment in alignments:
print([record.id for record in alignment.sequences])
print(alignment)
print(":‘::':-.'::'::‘::‘:")

['equCabl.fa', 'canFam2.fa', 'mm9.fa']

equCabl.f 50 TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC ©
canFam2. f 0 CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC 49
mm9. fa O B e GGATCTACTTTTCCTCTTC O
['mm9.fa']

mm9. fa 19 CTGGCGTCCGGAGCTGGGACGT 41

Tehhhhk

To output the alignments in Mauve format, use Align.write:

>>> from io import StringIO
>>> stream = StringI0()

>>> alignments = Align.parse('separate.xmfa", "mauve')
>>> Align.write(alignments, stream, "mauve')
2

>>> print(stream.getvalue())
#FormatVersion Mauvel
#SequencelFile equCabl.fa
#SequencelFormat FastA
(continues on next page)
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#Sequence2File canFam2.fa

#Sequence2Format FastA
#Sequence3File mm9.fa
#Sequence3Format FastA

#BackboneFile separate.xmfa.bbcols

> 1:1-50 - equCabl.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC
> 3:1-19 - mm9. fa

————————————————————————————————— GGATCTACTTTTCCTCTTC

> 3:20-41 + mm9. fa
CTGGCGTCCGGAGCTGGGACGT

Here, the writer makes use of the information stored in alignments.metadata and alignments.identifiers
to create this format. If your alignments object does not have these attributes, you can provide them as keyword
arguments to Align.write:

>>> stream = StringI0()

>>> alignments = Align.parse('separate.xmfa", "mauve')

>>> metadata = alignments.metadata

>>> identifiers = alignments.identifiers

>>> alignments = list(alignments) # this drops the attributes
>>> alignments.metadata

Traceback (most recent call last):

AttributeError: 'list' object has no attribute 'metadata’
>>> alignments.identifiers
Traceback (most recent call last):

AttributeError: 'list' object has no attribute 'identifiers'
>>> Align.write(alignments, stream, "mauve", metadata=metadata, identifiers=identifiers)
2

>>> print(stream.getvalue())

#FormatVersion Mauvel

#SequencelFile equCabl.fa

#SequencelFormat FastA

#Sequence2File canFam2.fa

#Sequence2Format FastA

#Sequence3File mm9.fa

#Sequence3Format FastA

#BackboneFile separate.xmfa.bbcols

> 1:1-50 - equCabl.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC

> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC

> 3:1-19 - mm9. fa

————————————————————————————————— GGATCTACTTTTCCTCTTC

> 3:20-41 + mm9. fa

(continues on next page)
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CTGGCGTCCGGAGCTGGGACGT

Python does not allow you to add these attributes to the alignments object directly, as in this example it was converted
to a plain list. However, you can construct an Alignments object and add attributes to it (see Section The Alignments
class):

>>> alignments = Align.Alignments(alignments)

>>> alignments.metadata = metadata

>>> alignments.identifiers = identifiers

>>> stream = StringI0()

>>> Align.write(alignments, stream, "mauve", metadata=metadata, identifiers=identifiers)
2

>>> print(stream.getvalue())

#FormatVersion Mauvel

#SequencelFile equCabl.fa

#SequencelFormat FastA

#Sequence2File canFam2.fa

#Sequence2Format FastA

#Sequence3File mm9.fa

#Sequence3Format FastA

#BackboneFile separate.xmfa.bbcols

> 1:1-50 - equCabl.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2. fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC
> 3:1-19 - mm9. fa

————————————————————————————————— GGATCTACTTTTCCTCTTC

> 3:20-41 + mm9. fa
CTGGCGTCCGGAGCTGGGACGT

When printing a single alignment in Mauve format, use keyword arguments to provide the metadata and identifiers:

>>> alignment = alignments[0]

>>> print(alignment.format('mauve", metadata=metadata, identifiers=identifiers))
> 1:1-50 - equCabl.fa

TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC

> 2:1-49 + canFam2.fa

CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC

> 3:1-19 - mm9. fa

————————————————————————————————— GGATCTACTTTTCCTCTTC
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6.7.13 Sequence Alignment/Map (SAM)

Files in the Sequence Alignment/Map (SAM) format [Li2009] store pairwise sequence alignments, usually of next-
generation sequencing data against a reference genome. The file ex1.sam in Biopython’s test suite is an example of a
minimal file in the SAM format. Its first few lines are as follows:

EAS56_57:6:190:289:82 69 chrl 100 0 * = 100 0 o
— CTCAAGGTTGTTGCAAGGGGGTCTATGTGAACAAA <LLT <KL <KL 5<734<;<5 555, 94<; or
MF:1:192

EAS56_57:6:190:289:82 137 chrl 100 73 35M = 100 0 ar
<+ AGGGGTGCAGAGCCGAGTCACGGGGTTGCCAGCAC <LLLLKL 5 <LLLLLLLLL 3<<3<<<<; 8<6;9; ;2 o
MF:1:64 Aq:i:0 NM:i:® UQ:i:0 HO:i:1 H1:i:0

EAS51_64:3:190:727:308 99 chrl 103 99 35M = 263 195 ar
—GGTGCAGAGCCGAGTCACGGGGTTGCCAGCACAGG <LLLLLLLLLLLLLLLLLLLLLLLL LKL s 1 <<<844 or

MF:1:18 Aq:1:73 NM:i:® UQ:i:0 HO®:i:1 H1:i:0

To parse this file, use

>>> from Bio import Align
>>> alignments = Align.parse('exl.sam", "sam")
>>> alignment = next(alignments)

The flag of the first line is 69. According to the SAM/BAM file format specification, lines for which the flag contains
the bitwise flag 4 are unmapped. As 69 has the bit corresponding to this position set to True, this sequence is unmapped
and was not aligned to the genome (in spite of the first line showing chrl). The target of this alignment (or the first
item in alignment . sequences) is therefore None:

>>> alignment. flag

69

>>> bin(69)

'0b1000101"

>>> bin(4)

'0b100’

>>> if alignment.flag & 4:
print ("unmapped")

. else:

print ("mapped")

unmapped
>>> alignment.sequences
[None, SegRecord(seq=Seq('CTCAAGGTTGTTGCAAGGGGGTCTATGTGAACAAA'), id="EAS56_

557:6:190:289:82"', name='<unknown name>', description='", dbxrefs=[])]
>>> alignment.target is None
True

The second line represents an alignment to chromosome 1:

>>> alignment = next(alignments)
>>> if alignment.flag & 4:
print ("unmapped")
. else:
print ("mapped")

(continues on next page)
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mapped
>>> alignment.target
SeqgRecord(seq=None, id='chrl', name='<unknown name>', description=""', dbxrefs=[])

As this SAM file does not store the genome sequence information for each alignment, we cannot print the alignment.
However, we can print the alignment information in SAM format or any other format (such as BED, see section Browser
Extensible Data (BED)) that does not require the target sequence information:

>>> format(alignment, "sam")
'EAS56_57:6:190:289:82\t137\tchri\t100\t73\t35M\t=\t100\t0\
—tAGGGGTGCAGAGCCGAGTCACGGGGTTGCCAGCAC\ t<<<<<< § << ;<< <<<<;8<6;9; ;2 \tMF:1: 64\
—tAg:i:O\tNM:1:0\tUQ:i:0\tHO:i:1\tHl:i:0\n"

>>> format(alignment, "bed")
'chri\t99\t134\tEAS56_57:6:190:289:82\tO\t+\t99\t134\t0O\t1\t35,\t0,\n’'

However, we cannot print the alignment in PSL format (see section Pattern Space Layout (PSL)) as that would require
knowing the size of the target sequence chrl:

>>> format(alignment, "psl")
Traceback (most recent call last):

TypeError:

If you know the size of the target sequences, you can set them by hand:

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> target = SeqRecord(Seq(None, length=1575), id="chrl")

>>> alignment.target = target

>>> format(alignment, "psl")

'35\ tO\tO\tO\tO\tO\tO\tO\t+\tEAS56_57:6:190:289:82\t35\t0O\t35\tchri\t1575\t99\t134\t1\
—1t35,\t0,\t99,\n’

The file ex1_header.sam in Biopython’s test suite contains the same alignments, but now also includes a header. Its
first few lines are as follows:

@HD\tVN:1.3\tSO:coordinate
@SQ\tSN:chrl\tLN:1575
@SQ\tSN:chr2\tLN:1584

EAS56_57:6:190:289:82 69 chrl 100 0 & = 100 0 A
. CTCAAGGTTGTTGCAAGGGGGTCTATGTGAACAAA <LLT <KL ;<KL 5<734<;<5 555, 94<; or
MF:1:192

The header stores general information about the alignments, including the size of the target chromosomes. The target
information is stored in the targets attribute of the alignments object:

>>> from Bio import Align

>>> alignments = Align.parse('exl_header.sam", "sam")

>>> len(alignments.targets)

2

>>> alignments.targets[0]

SeqRecord(seq=Seq(None, length=1575), id='chrl', name='<unknown name>', description='",._

(continues on next page)
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—dbxrefs=[])

>>> alignments.targets[1]

SeqRecord(seq=Seq(None, length=1584), id='chr2', name='<unknown name>', description='",.
—dbxrefs=[1])

Other information provided in the header is stored in the metadata attribute:

>>> alignments.metadata

{'HD': {'VN': "1.3", 'SO': 'coordinate'}}

With the target information, we can now also print the alignment in PSL format:

>>> alignment = next(alignments) # the unmapped sequence; skip it

>>> alignment = next(alignments)

>>> format(alignment, "psl")
"35\tO\tO\tO\tO\tO\tO\tO\t+\tEAS56_57:6:190:289:82\t35\tO\t35\tchri\t1575\t99\t134\t1\
—1t35,\t0,\t99,\n'

‘We can now also print the alignment in human-readable form, but note that the target sequence contents is not available
from this file:

>>> print(alignment)

chrl 99 777770°2°072°7°°7777707070°0°7°7°7°7°2777777°?7°7?77 134
g 35
EAS56_57: 0 AGGGGTGCAGAGCCGAGTCACGGGGTTGCCAGCAC 35

Alignments in the file saml.sam in the Biopython test suite contain an additional MD tag that shows how the query
sequence differs from the target sequence:

@sqQ SN:1 LN:239940

@PG ID:bwa PN:bwa VN:0.6.2-r126

HWI-1KL120:88:DOLRBACXX:1:1101:1780:2146 77 & 0 0 * ar
¥ 0 0 o

—GATGGGAAACCCATGGCCGAGTGGGAAGAAACCAGCTGAGGTCACATCACCAGAGGAGGGAGAGTGTGGCCCCTGACTCAGTCCATCA
— @=7DDDDBFFFF7A;E?GGEGE8BB?FF?F>G@F=GIIDEIBCFF<FEFEC@EEEE2?78B8/=@( (- ; ?@2<BOQ##########
B

HWI-1KL120:88:DOLRBACXX:1:1101:2852:2134 137 1 136186 25 101M an
= 136186 O o
- TCACGGTGGCCTGTTGAGGCAGGGGCTCACGCTGACCTCTCTCGGCGTGGGAGGGGCCGGTGTGAGGCAAGGGCTCACGCTGACCTCT
<> @C@FFFDFHGHHHJ]JJIJJJJI]JJ)GEDHHGGHGBGIIGIIAB@GEE=BDBBCCDD@D@B7@;@DDD?<A?DD728:>8() 009>
w1 >>CO>S5?7?B######  XT:A:U NM:i:5 SM:i:25 AM:i:0 XO0:i:1 X1:i:0 XM:i:5 XO0:i:0 .

GCTTGTGGAGCTG,

CTCGGCGTGGGAG,

—XG:1:0 MD:Z:25G14G2C34A12A9

The parser reconstructs the local genome sequence from the MD tag, allowing us to see the target sequence explicitly
when printing the alignment:

>>> from Bio import Align
>>> alignments = Align.parse('saml.sam", "sam")
>>> for alignment in alignments:
if not alignment.flag & 4: # Skip the unmapped lines
break

(continues on next page)
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>>> alignment

<Alignment object (2 rows x 101 columns) at ...>
>>> print(alignment)
1 136185 TCACGGTGGCCTGTTGAGGCAGGGGGTCACGCTGACCTCTGTCCGCGTGGGAGGGGCCGG
O TLITEETEETErrEr ettt et trer e et e e e teer ey
HWI-1KL12 0 TCACGGTGGCCTGTTGAGGCAGGGGCTCACGCTGACCTCTCTCGGCGTGGGAGGGGCCGG
1 136245 TGTGAGGCAAGGGCTCACACTGACCTCTCTCAGCGTGGGAG 136286
60 [ IIEITEEEITEEr et et ettt 101
HWI-1KL12 60 TGTGAGGCAAGGGCTCACGCTGACCTCTCTCGGCGTGGGAG 101

SAM files may include additional information to distinguish simple sequence insertions and deletions from skipped
regions of the genome (e.g. introns), hard and soft clipping, and padded sequence regions. As this information cannot
be stored in the coordinates attribute of an Alignment object, and is stored in a dedicated operations attribute
instead. Let’s use the third alignment in this SAM file as an example:

>>> from Bio import Align

>>> alignments = Align.parse('dna_rna.sam", "sam")

>>> alignment = next(alignments)

>>> alignment = next(alignments)

>>> alignment = next(alignments)

>>> print(format(alignment, "SAM"))

NR_111921.1 ® chr3 48663768 ® 46M1827N82M3376N76MI12H * O O .
—,CACGAGAGGAGCGGAGGCGAGGGGTGAACGCGGAGCACTCCAATCGCTCCCAACTAGAGGTCCACCCAGGACCCAGAGACCTGGATTT]
- g AS:i:1000 NM:i:0

>>> print(alignment.coordinates)

[[48663767 48663813 48665640 48665722 48669098 48669174]
[ 0 46 46 128 128 204711

>>> alignment.operations

bytearray(b'MNMNM')

>>> alignment.query.annotations["hard_clip_right"]

12

In this alignment, the cigar string 63M1062N75M468N43M defines 46 aligned nucleotides, an intron of 1827 nucleotides,
82 aligned nucleotides, an intron of 3376 nucleotides, 76 aligned nucleotides, and 12 hard-clipped nucleotides. These
operations are shown in the operations attribute, except for hard-clipping, which is stored in alignment.query.
annotations["hard_clip_right"] (or alignment.query.annotations["hard_clip_left"], if applicable)
instead.

To write a SAM file with alignments created from scratch, use an Alignments (plural) object (see Section The Align-
ments class) to store the alignments as well as the metadata and targets:

>>> from io import StringIO
>>> import numpy as np

>>> from Bio import Align
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord

>>> alignments = Align.Alignments()

>>> seql = Seq(None, length=10000)

(continues on next page)
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>>> targetl = SeqRecord(seql, id="chrl")
>>> seq2 = Seq(None, length=15000)
>>> target2 = SeqRecord(seq2, id="chr2")
>>> alignments.targets = [targetl, target2]
>>> alignments.metadata = {"HD": {"VN": "1.3", "SO": "coordinate"}}

>>> seqgA = Seq(None, length=20)

>>> queryA = SeqRecord(segA, id="readA")

>>> sequences = [targetl, queryA]

>>> coordinates = np.array([[4300, 4320], [0, 20]1)

>>> alignment = Align.Alignment(sequences, coordinates)
>>> alignments.append(alignment)

>>> seqB = Seq(None, length=25)

>>> queryB = SeqRecord(seqB, id="readB")

>>> sequences = [targetl, queryB]

>>> coordinates = np.array([[5900, 5925], [25, 0]11)

>>> alignment = Align.Alignment(sequences, coordinates)
>>> alignments.append(alignment)

>>> seqC = Seq(None, length=40)

>>> queryC = SeqRecord(seqC, id="readC")

>>> sequences = [target2, queryC]

>>> coordinates = np.array([[12300, 12318], [0, 18]11)
>>> alignment = Align.Alignment(sequences, coordinates)
>>> alignments.append(alignment)

>>> stream = StringI0()

>>> Align.write(alignments, stream, "sam')

3

>>> print(stream.getvalue())

@HD VN:1.3 SO:coordinate

@SQ SN:chrl LN:10000

@SQ SN:chr2 LN:15000

readA O chrl 4301 255 20M * O O
readB 16 chrl 5901 255 251 * O © *
readC O chr2 12301 255 18M22S * 0 ©

6.7.14 Browser Extensible Data (BED)

BED (Browser Extensible Data) files are typically used to store the alignments of gene transcripts to the genome. See
the description from UCSC for a full explanation of the BED format.

BED files have three required fields and nine optional fields. The file bed12.bed in subdirectory Tests/Blat is an
example of a BED file with 12 fields:

chr22 1000 5000 mRNA1 960 + 1200 4900 255,0,0 2 567,488, 90,3512,
chr22 2000 6000 mRNA2 900 - 2300 5960 0,255,0 2 433,399, 90,3601,

To parse this file, use
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>>> from Bio import Align

>>> alignments = Align.parse('bedl2.bed", "bed™)

>>> len(alignments)

2

>>> for alignment in alignments:
print(alignment.coordinates)

[[1000 1567 4512 5000]
[ 0 567 567 1055]]
[[2000 2433 5601 6000]
[ 832 399 399 011

Note that the first sequence ("mRNA1”) was mapped to the forward strand, while the second sequence ("mRNA2”") was
mapped to the reverse strand.

As a BED file does not store the length of each chromosome, the length of the target sequence is set to its maximum:

>>> alignment.target
SeqRecord(seq=Seq(None, length=9223372036854775807), id='chr22', name='<unknown name>',._
—description="", dbxrefs=[])

The length of the query sequence can be inferred from its alignment information:

>>> alignment.query
SeqRecord(seq=Seq(None, length=832), id='mRNA2', name='<unknown name>', description='",._
—dbxrefs=[])

The alignment score (field 5) and information stored in fields 7-9 (referred to as thickStart, thickEnd, and itemRgb
in the BED format specification) are stored as attributes on the alignment object:

>>> alignment.score
900.0

>>> alignment.thickStart
2300

>>> alignment.thickEnd
5960

>>> alignment.itemRgb
'0,255,0'

To print an alignment in the BED format, you can use Python’s built-in format function:

>>> print(format(alignment, "bed™))
chr22 2000 6000 mRNA2 900 - 2300 5960 0,255,0 2 433,399, 90,3601,

or you can use the format method of the alignment object. This allows you to specify the number of fields to be
written as the bedN keyword argument:

>>> print(alignment . format('bed™))
chr22 2000 6000 mRNA2 900 - 2300 5960 0,255,0 2 433,399, 0,3601,

>>> print(alignment. format("bed", 3))
chr22 2000 6000

>>> print(alignment. format('"bed", 6))
chr22 2000 6000 mRNA2 900 -
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The same keyword argument can be used with Align.write:

>>> Align.write(alignments, "mybed3file.bed", "bed", bedN=3)

2

>>> Align.write(alignments, "mybed6file.bed", "bed", bedN=6)
2

>>> Align.write(alignments, "mybedl2file.bed", "bed")

2

6.7.15 bigBed

The bigBed file format is an indexed binary version of a BED file Browser Extensible Data (BED). To create a bigBed
file, you can either use the bedToBigBed program from UCSC (") <https://genome.ucsc.edu/goldenPath/help/bigBed.
html>"__. or you can use Biopython for it by calling the Bio.Align.write function with fmt="bigbed". While the
two methods should result in identical bigBed files, using bedToBigBed is much faster and may be more reliable, as
it is the gold standard. As bigBed files come with a built-in index, it allows you to quickly search a specific genomic
region.

As an example, let’s parse the bigBed file dna_rna.bb, available in the Tests/Blat subdirectory in the Biopython
distribution:

>>> from Bio import Align
>>> alignments = Align.parse('dna_rna.bb", "bigbed™)
>>> len(alignments)

4
>>> print(alignments.declaration)
table bed
"Browser Extensible Data"
(
string chrom; "Reference sequence chromosome or scaffold"
uint chromStart; "Start position in chromosome"
uint chromEnd; "End position in chromosome"
string name; "Name of item."
uint score; "Score (0-1000)"
char[1] strand; "+ or - for strand"
uint thickStart; "Start of where display should be thick (start codon)"
uint thickEnd; "End of where display should be thick (stop codon)"
uint reserved; "Used as itemRgb as of 2004-11-22"
int blockCount; "Number of blocks"
int[blockCount] blockSizes; "Comma separated list of block sizes"
int[blockCount] chromStarts; "Start positions relative to chromStart"
)

The declaration contains the specification of the columns, in AutoSql format, that was used to create the bigBed file.
Target sequences (typically, the chromosomes against which the sequences were aligned) are stored in the targets
attribute. In the bigBed format, only the identifier and the size of each target is stored. In this example, there is only a
single chromosome:

>>> alignments.targets
[SeqgRecord(seq=Seq(None, length=198295559), id='chr3', name='<unknown name>',._
—.description="<unknown description>', dbxrefs=[])]

Let’s look at the individual alignments. The alignment information is stored in the same way as for a BED file (see
section Browser Extensible Data (BED)):
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>>> alignment = next(alignments)

>>> alignment.target.id

'chr3’

>>> alignment.query.id

'NR_046654.1"

>>> alignment.coordinates

array ([[42530895, 42530958, 42532020, 42532095, 42532563, 42532606],

[ 181, 118, 118, 43, 43, 011D
>>> alignment.thickStart
42530895
>>> alignment.thickEnd
42532606
>>> print(alignment)
chr3 42530895 ?7777772222222222000000702°°222200000°000°0°0°22°22222°2°0°0777°7°7°7777
O [THEETEEEEEErrrer et e et et ee e e e e e e e
NR_046654 181 27272727272722222222202222072222072220722220022070°2777227277°2272777
chr3 42530955 ?7?7°277?27°270°70°7°°20°7°?°70°2°270°7°0°27°2270°2770°27°7°07270°77°°27°7707°7°777°777
60 |[|]---------- -
NR_046654 121 2 P mm e
chr3 42532515 ?772772722720072220022200222207022207222072227002°27072°27777°72777
1620 - - m oo o LT
NR_046654 AR 2777772777727
chr3 42532575 ?7?777772???277?°7?7?7?°7777777277777 42532606
1680 [ITIEITEEETTEEETEEr e 1711
NR_046654 31 ?2277277772272772727772727777°27777 0

The default bigBed format does not store the sequence contents of the target and query. If these are available elsewhere
(for example, a Fasta file), you can set alignment.target.seq and alignment.query.seq to show the sequence
contents when printing the alignment, or to write the alignment in formats that require the sequence contents (such as
Clustal, see section ClustalW). The test script test_Align_bigbed.py in the Tests subdirectory in the Biopython
distribution gives some examples on how to do that.

Now let’s see how to search for a sequence region. These are the sequences stored in the bigBed file, printed in BED
format (see section Browser Extensible Data (BED)):

>>> for alignment in alignments:
print (format(alignment, "bed"))

chr3 42530895 42532606 NR_046654.1 1000 - 42530895 42532606 0 3 .
—63,75,43, 0,1125,1668,

chr3 42530895 42532606 NR_046654.1_modified 978 - 42530895 42532606
-0 5 27,36,17,56,43, 0,27,1125,1144,1668,

chr3 48663767 48669174 NR_111921.1 1000 + 48663767 48669174 o 3 .
—46,82,76, 0,1873,5331,

chr3 48663767 48669174 NR_111921.1_modified 972 + 48663767 48669174 .
-0 5 28,17,76,6,76, ©0,29,1873,1949,5331,

Use the search method on the alignments object to find regions on chr3 between positions 48000000 and 49000000.
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This method returns an iterator:

>>> selected_alignments = alignments.search("chr3", 48000000, 49000000)
>>> for alignment in selected_alignments:
print(alignment.query.id)

NR_111921.1
NR_111921.1_modified

The chromosome name may be None to include all chromosomes, and the start and end positions may be None to start
searching from position 0 or to continue searching until the end of the chromosome, respectively.

Writing alignments in the bigBed format is as easy as calling Bio.Align.write:

[>>> Align.write(alignments, "output.bb", "bigbed") ]

You can specify the number of BED fields to be included in the bigBed file. For example, to write a BEDG6 file, use

[>>> Align.write(alignments, "output.bb", "bigbed", bedN=6) ]

Same as for bedToBigBed, you can include additional columns in the bigBed output. Suppose the file bedExample2.
as (available in the Tests/Blat subdirectory of the Biopython distribution) stores the declaration of the included BED
fields in AutoSql format. We can read this declaration as follows:

>>> from Bio.Align import bigbed
>>> with open("bedExample2.as") as stream:
autosql_data = stream.read()

>>> declaration = bigbed.AutoSQLTable.from_string(autosql_data)
>>> type(declaration)

<class 'Bio.Align.bigbed.AutoSQLTable'>

>>> print(declaration)

table hgl8KGchr7

"UCSC Genes for chr7 with color plus GeneSymbol and SwissProtID"

(
string chrom; "Reference sequence chromosome or scaffold"
uint chromStart; "Start position of feature on chromosome"
uint chromEnd; "End position of feature on chromosome"
string name; "Name of gene"
uint score; "Score"
char[1] strand; "+ or - for strand"
uint thickStart; "Coding region start"
uint thickEnd; "Coding region end"
uint reserved; "Green on + strand, Red on - strand"
string geneSymbol; "Gene Symbol"
string spID; "SWISS-PROT protein Accession number"

)

Now we can write a bigBed file with the 9 BED fields plus the additional fields geneSymbol and spID by calling

>>> Align.write(
alignments,
"output.bb",
"bigbed",
bedN=9,

(continues on next page)
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declaration=declaration,
extralndex=["name", "geneSymbol"],

Here, we also requested to include additional indices on the name and geneSymbol in the bigBed file. Align.write
expects to find the keys geneSymbol and spID in the alignment.annotations dictionary. Please refer to the test
script test_Align_bigbed.py in the Tests subdirectory in the Biopython distribution for more examples of writing
alignment files in the bigBed format.

Optional arguments are compress (default value is True), blockSize (default value is 256), and itemsPerSlot
(default value is 512). See the documentation of UCSC’s bedToBigBed program for a description of these arguments.
Searching a bigBed file can be faster by using compress=False and itemsPerSlot=1 when creating the bigBed file.

6.7.16 Pattern Space Layout (PSL)

PSL (Pattern Space Layout) files are are generated by the BLAST-Like Alignment Tool BLAT [Kent2002]. Like BED
files (see section Browser Extensible Data (BED)), PSL files are typically used to store alignments of transcripts to
genomes. This is an example of a short BLAT file (available as dna_rna.psl in the Tests/Blat subdirectory of the
Biopython distribution), with the standard PSL header consisting of 5 lines:

psLayout version 3

match mis- rep. N'sQgap Qgap T gap T gap strand Q Q u
-Q Q T T T T block blockSizes ¢Starts tStarts

match match count bases count bases name size ar
—start end name size start end count

—

1650 39 06 O 0 2 5203 + NR_111921.1 216 ® 204 chr3 198295559 .
—48663767 48669174 3  46,82,76, 0,46,128, 48663767,48665640,48669098,
1750 6 06 o6 0 2 1530 - NR_046654.1 181 0 181 chr3 198295559
42530895 42532606 3 63,75,43, 0,63,138, 42530895,42532020,42532563,
1622 39 6 1 2 3 5204 + NR_111921.1 _modified 220 3 208 chr3 .

—198295559 48663767 48669174 5 28,17,76,6,76, 3,31,48,126,132, 48663767,
—48663796,48665640,48665716,48669098,
1721 6 o6 1 3 3 1532 - NR_046654.1_modified 190 3 185 chr3 .

198295559 42530895 42532606 5 27,36,17,56,43, 5,35,71,88,144, 42530895,
—42530922,42532020,42532039,42532563,

To parse this file, use

>>> from Bio import Align

>>> alignments = Align.parse('dna_rna.psl", "psl™)
>>> alignments.metadata

{'psLayout version': '3'}

Iterate over the alignments to get one Alignment object for each line:

>>> for alignment in alignments:
print(alignment.target.id, alignment.query.id)

chr3 NR_046654.1

(continues on next page)
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chr3 NR_046654.1_modified
chr3 NR_111921.1
chr3 NR_111921.1_modified

Let’s look at the last alignment in more detail. The first four columns in the PSL file show the number of matches, the
number of mismatches, the number of nucleotides aligned to repeat regions, and the number of nucleotides aligned to
N (unknown) characters. These values are stored as attributes to the Alignment object:

>>> alignment.matches
162

>>> alignment.misMatches
2

>>> alignment.repMatches
39

>>> alignment.nCount

0

As the sequence data of the target and query are not stored explicitly in the PSL file, the sequence content of
alignment.target and alignment.query is undefined. However, their sequence lengths are known:

>>> alignment.target

SeqRecord(seq=Seq(None, length=198295559), id='chr3', ...)
>>> alignment.query
SeqgRecord(seq=Seq(None, length=220), id='NR_111921.1 _modified', ...)

We can print the alignment in BED or PSL format:

>>> print(format(alignment, "bed"))
chr3 48663767 48669174 NR_111921.1_modified ® + 48663767 48669174 A
-0 5 28,17,76,6,76, 0,29,1873,1949,5331,

>>> print(format(alignment, "psl™))

162 2 39 0 1 2 3 5204 + NR_111921.1 _modified 220 3 208 chr3 .
-,198295559 48663767 48669174 5 28,17,76,6,76, 3,31,48,126,132, 48663767,
-.48663796,48665640,48665716,48669098,

Here, the number of matches, mismatches, repeat region matches, and matches to unknown nucleotides were taken
from the corresponding attributes of the Alignment object. If these attributes are not available, for example if the
alignment did not come from a PSL file, then these numbers are calculated using the sequence contents, if available.
Repeat regions in the target sequence are indicated by masking the sequence as lower-case or upper-case characters, as
defined by the following values for the mask keyword argument:

* False (default): Do not count matches to masked sequences separately;
* "lower": Count and report matches to lower-case characters as matches to repeat regions;
* "upper": Count and report matches to upper-case characters as matches to repeat regions;

The character used for unknown nucleotides is defined by the wildcard argument. For consistency with BLAT, the
wildcard character is "N" by default. Use wildcard=None if you don’t want to count matches to any unknown nu-
cleotides separately.

>>> import numpy
>>> from Bio import Align
>>> query = "GGTGGGGG"

(continues on next page)
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>>> target = "AAAAAAAggggGGNGAAAAA"

>>> coordinates = numpy.array([[®, 7, 15, 20], [0, O, 8, 8]1]1)
>>> alignment = Align.Alignment([target, query], coordinates)
>>> print(alignment)

target 0 AAAAAAAggggGGNGAAAAA 20
0 —————- e 20
query ) e==c=== GGTGGGGG----- 8

>>> line = alignment.format('psl™)

>>> print(line)

6 1 0 1 O 0 ® O + query 8 0 8 target 20 7 15 1 8y o
-0, 7,

>>> line = alignment.format('psl", mask="lower")

>>> print(line)

3 1 3 1 0 0 0 0 + query 8 0 8 target 20 7 15 1 8, .o
-0, 7,

>>> line = alignment.format("'psl", mask="lower", wildcard=None)

>>> print(line)

3 2 3 0 0 0 0 0 + query 8 0 8 target 20 7 15 1 8y o
-0, 7,

The same arguments can be used when writing alignments to an output file in PSL format using Bio.Align.write.
This function has an additional keyword header (True by default) specifying if the PSL header should be written.

In addition to the format method, you can use Python’s built-in format function:

>>> print(format(alignment, "psl"))
6 1 0 1 0 0 0 0 + query 8 0 8 target 20 7 15 1 ST
-0, 7,

allowing Alignment objects to be used in formatted (f-) strings in Python:

>>> line = f"The alignment in PSL format is
>>> print(line)

The alignment in PSL format is '6 1 0 1 0 0 0 0 + query 8 0 8 o
—target 20 7 15 1 8, 0, 7,

alignment :psl}/'."

Note that optional keyword arguments cannot be used with the format function or with formatted strings.

6.7.17 bigPsl

A bigPsl file is a bigBed file with a BED12+13 format consisting of the 12 predefined BED fields and 13 custom
fields defined in the AutoSql file bigPsl.as provided by UCSC, creating an indexed binary version of a PSL file (see
section Pattern Space Layout (PSL)). To create a bigPsl file, you can either use the ps1ToBigPsl and bedToBigBed
programs from UCSC. or you can use Biopython by calling the Bio.Align.write function with fmt="bigpsl".
While the two methods should result in identical bigPsl files, the UCSC tools are much faster and may be more reliable,
as itis the gold standard. As bigPsl files are bigBed files, they come with a built-in index, allowing you to quickly search
a specific genomic region.

As an example, let’s parse the bigBed file dna_rna.psl.bb, available in the Tests/Blat subdirectory in the Biopy-
thon distribution. This file is the bigPsl equivalent of the bigBed file dna_rna.bb (see section bigBed) and of the PSL
file dna_rna.psl (see section Pattern Space Layout (PSL)).
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>>> from Bio import Align

>>> alignments = Align.parse('dna_rna.psl.bb", "bigpsl")

>>> len(alignments)
4

>>> print(alignments.declaration)

table bigPsl
"bigPsl pairwise alignment"

(

string chrom; "Reference sequence chromosome or scaffold"

uint chromStart; "Start position in chromosome"

uint chromEnd; "End position in chromosome"

string name; "Name or ID of item, ideally both human readable and.
—unique"

uint score; "Score (0-1000)"

char[1] strand; "+ or - indicates whether the query aligns to the +.
—or - strand on the reference"

uint thickStart; "Start of where display should be thick (start codon)

uint thickEnd; "End of where display should be thick (stop codon)"

uint reserved; "RGB value (use R,G,B string in input file)"

int blockCount; "Number of blocks"

int[blockCount] blockSizes;
int[blockCount] chromStarts;

"Comma separated list of block sizes"
"Start positions relative to chromStart"

uint oChromStart; "Start position in other chromosome"

uint oChromEnd; "End position in other chromosome"

char[1] oStrand; "+ or -, - means that psl was reversed into BED-
—,compatible coordinates"

uint oChromSize; "Size of other chromosome."

int[blockCount] oChromStarts;

"Start positions relative to oChromStart or from.

—oChromStart+oChromSize depending on strand"

Istring oSequence; "Sequence on other chrom (or edit list, or empty)"
string oCDS; "CDS in NCBI format"

uint chromSize; "Size of target chromosome"

uint match; "Number of bases matched."

uint misMatch; "Number of bases that don't match"

uint repMatch; "Number of bases that match but are part of repeats"
uint nCount; "Number of 'N' bases"

uint seqType; "O=empty, l=nucleotide, 2=amino_acid"

The declaration contains the specification of the columns as defined by the bigPsl.as AutoSql file from UCSC. Target
sequences (typically, the chromosomes against which the sequences were aligned) are stored in the targets attribute.
In the bigBed format, only the identifier and the size of each target is stored. In this example, there is only a single
chromosome:

>>> alignments.targets
[SeqRecord(seq=Seq(None, length=198295559), id='chr3', name='<unknown name>', .
—.description="<unknown description>', dbxrefs=[])]

Iterating over the alignments gives one Alignment object for each line:

>>> for alignment in alignments:
print(alignment.target.id, alignment.query.id)
(continues on next page)
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chr3 NR_046654.1
chr3 NR_046654.1_modified
chr3 NR_111921.1
chr3 NR_111921.1 _modified

Let’s look at the individual alignments. The alignment information is stored in the same way as for the corresponding
PSL file (see section Pattern Space Layout (PSL)):

>>> alignment.coordinates

array([[48663767, 48663795, 48663796, 48663813, 48665640, 48665716,
48665716, 48665722, 48669098, 48669174],
[ 3, 31, 31, 48, 48, 124,

126, 132, 132, 20811)

>>> alignment.thickStart

48663767

>>> alignment.thickEnd

48669174

>>> alignment.matches

162

>>> alignment.misMatches

2

>>> alignment.repMatches

39

>>> alignment.nCount

0

We can print the alignment in BED or PSL format:

>>> print(format(alignment, "bed"))
chr3 48663767 48669174 NR_111921.1_modified 1000 + 48663767 48669174,
. 0 5 28,17,76,6,76, 0,29,1873,1949,5331,

>>> print(format(alignment, "psl™))

162 2 39 0 1 2 3 5204 + NR_111921.1 _modified 220 3 208 chr3 _
198295559 48663767 48669174 5 28,17,76,6,76, 3,31,48,126,132, 48663767,
-.48663796,48665640,48665716,48669098,

As a bigPsl file is a special case of a bigBed file, you can use the search method on the alignments object to find
alignments to specific genomic regions. For example, we can look for regions on chr3 between positions 48000000
and 49000000:

>>> selected_alignments = alignments.search("chr3", 48000000, 49000000)
>>> for alignment in selected_alignments:
print(alignment.query.id)

NR_111921.1
NR_111921.1_modified

The chromosome name may be None to include all chromosomes, and the start and end positions may be None to start
searching from position 0 or to continue searching until the end of the chromosome, respectively.

To write a bigPsl file with Biopython, use Bio.Align.write(alignments, "myfilename.bb", fmt="bigpsl"),
where myfilename.bb is the name of the output bigPsl file. Alternatively, you can use a (binary) stream for output.
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Additional options are
e compress: If True (default), compress data using zlib; if False, do not compress data.
* extraIndex: List of strings with the names of extra columns to be indexed.
e cds: If True, look for a query feature of type CDS and write it in NCBI style in the PSL file (default: False).
e fa: If True, include the query sequence in the PSL file (default: False).

» mask: Specify if repeat regions in the target sequence are masked and should be reported in the repMatches
field instead of in the matches field. Acceptable values are

— None: no masking (default);
— "lower": masking by lower-case characters;
— "upper": masking by upper-case characters.

* wildcard: Report alignments to the wildcard character (representing unknown nucleotides) in the target or
query sequence in the nCount field instead of in the matches, misMatches, or repMatches fields. Default
value is "N".

See section Pattern Space Layout (PSL) for an explanation on how the number of matches, mismatches, repeat region
matches, and matches to unknown nucleotides are obtained.

Further optional arguments are blockSize (default value is 256), and itemsPerSlot (default value is 512). See the
documentation of UCSC’s bedToBigBed program for a description of these arguments. Searching a bigPsl file can
be faster by using compress=False and itemsPerSlot=1 when creating the bigPsl file.

6.7.18 Multiple Alignment Format (MAF)

MAF (Multiple Alignment Format) files store a series of multiple sequence alignments in a human-readable format.
MAF files are typically used to store alignment s of genomes to each other. The file ucsc_test.maf in the Tests/MAF
subdirectory of the Biopython distribution is an example of a simple MAF file:

track name=euArc visibility=pack mafDot=off frames="multiz28wayFrames" speciesOrder=
—"hgl6 panTrol baboon mm4 rn3" description="A sample alignment"

##maf version=1 scoring=tba.v8

# tbha.v8 (((Chuman chimp) baboon) (mouse rat))

# multiz.v7

# maf_project.v5 _tba_right.maf3 mouse _tba_C

# single_cov2.v4 single_cov2 /dev/stdin

a score=23262.0

s hgl6.chr7 27578828 38 + 158545518 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s panTrol.chr6 28741140 38 + 161576975 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s baboon 116834 38 + 4622798 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
s mm4.chr6 53215344 38 + 151104725 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
s rn3.chr4 81344243 40 + 187371129 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG
a score=5062.0

s hgl6.chr7 27699739 6 + 158545518 TAAAGA

s panTrol.chr6 28862317 6 + 161576975 TAAAGA

s baboon 241163 6 + 4622798 TAAAGA

s mm4.chr6 53303881 6 + 151104725 TAAAGA

s rn3.chr4 81444246 6 + 187371129 taagga

(continues on next page)
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a score=6636.0

s hgl6.chr7 27707221 13 + 158545518 gcagctgaaaaca
s panTrol.chr6 28869787 13 + 161576975 gcagctgaaaaca
s baboon 249182 13 + 4622798 gcagctgaaaaca
s mm4.chr6 53310102 13 + 151104725 ACAGCTGAAAATA

To parse this file, use

>>> from Bio import Align
>>> alignments = Align.parse('ucsc_test.maf", "maf")

Information shown in the file header (the track line and subsequent lines starting with “#”)) is stored in the metadata
attribute of the alignments object:

>>> alignments.metadata

{'name': 'euArc',
'visibility': 'pack',
'mafDot': 'off',
'frames': 'multiz28wayFrames',
'speciesOrder': ['hgl6', 'panTrol', 'baboon', 'mm4', 'rn3'],
'description': 'A sample alignment',
'MAF Version': '1',
'Scoring': 'tba.v8',
'Comments': ['tbha.v8 ((Chuman chimp) baboon) (mouse rat))',
'multiz.v7',

'maf_project.v5 _tba_right.maf3 mouse _tba_C',
'single_cov2.v4 single_cov2 /dev/stdin']}

By iterating over the alignments we obtain one Alignment object for each alignment block in the MAF file:

>>> alignment = next(alignments)
>>> alignment.score
23262.0
>>> {seq.id: len(seq) for seq in alignment.sequences}
{'hgl6.chr7': 158545518,
'panTrol.chr6': 161576975,
'baboon': 4622798,
'mm4.chr6': 151104725,
'rn3.chr4': 187371129}
>>> print(alignment.coordinates)
[[27578828 27578829 27578831 27578831 27578850 27578850 27578866]
[28741140 28741141 28741143 28741143 28741162 28741162 28741178]
[ 116834 116835 116837 116837 116856 116856  116872]
[53215344 53215344 53215346 53215347 53215366 53215366 53215382]
[81344243 81344243 81344245 81344245 81344264 81344267 81344283]]
>>> print(alignment)
hgl6.chr7 27578828 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 27578866
panTrol.c 28741140 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 28741178
baboon 116834 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG 116872
mm4 . chr6 53215344 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG 53215382
rn3.chr4 81344243 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG 81344283

>>> print(format(alignment, "phylip"))
(continues on next page)
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5 42

hg16.chr7 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
panTrol.chAAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
baboon AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
mm4.chré -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
rn3.chr4 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG

In addition to the “a” (alignment block) and “s” (sequence) lines, MAF files may contain “i” lines with information
about the genome sequence before and after this block, “e” lines with information about empty parts of the alignment,
and “q” lines showing the quality of each aligned base. This is an example of an alignment block including such lines:

a score=19159.000000

s mm9.chrl0@ 3014644 45 + 129993255 CCTGTACC---

— CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG

s hgl18.chr6 15870786 46 - 170899992 CCTATACCTTTCTTTTATGAGAA-
—TTTTGTTTTAATCCTAAAC-TTTT

i hgl8.chré6 I9085CO

s panTro2.chr6 16389355 46 - 173908612 CCTATACCTTTCTTTTATGAGAA-
T TTTTGTTTTAATCCTAAAC-TTTT

g panTro2.chr6 99999999999999999999999-
—9999999999999999999-9999

i panTro2.chr6 I 9106 C 0O

s callacl.Contig6394 6182 46 + 133105 CCTATACCTTTCTTTCATGAGAA-
<~ TTTTGTTTGAATCCTAAAC-TTTT

i calJacl.Contig6394 NOCO

s loxAfrl.scaffold_75566 1167 34 - 10574 - —-—————----- TTTGGTTAGAA-
—TTATGCTTTAATTCAAAAC-TTCC

q loxAfrl.scaffold_75566 —mmmm———— 99999699899-
9999999999999869998-9997

i loxAfrl.scaffold_75566 NOCO

e tupBell.scaffold_114895.1-498454 167376 4145 - 498454 T

e echTell.scaffold 288249 87661 7564 + 100002 I

e otoGarl.scaffold_334.1-359464 181217 2931 - 359464 I

e ponAbe2.chré6 16161448 8044 - 174210431 I

This is the 10th alignment block in the file ucsc_mm9_chr10.maf (available in the Tests/MAF subdirectory of the
Biopython distribution):

>>> from Bio import Align
>>> alignments = Align.parse('ucsc_mm9_chrl®.maf", "maf")
>>> for i in range(10):

alignment = next(alignments)

>>> alignment.score

19159.0

>>> print(alignment)

mm9.chrl0 3014644 CCTGTACC---CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG 3014689
hg18.chr6 155029206 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 155029160
panTro2.c 157519257 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 157519211
calJacl.C 6182 CCTATACCTTTCTTTCATGAGAA-TTTTGTTTGAATCCTAAAC-TTTT 6228
loxAfrl.s 9407 ----——--———-- TTTGGTTAGAA-TTATGCTTTAATTCAAAAC-TTCC 9373

The “i” lines show the relationship between the sequence in the current alignment block to the ones in the preceding and
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subsequent alignment block. This information is stored in the annotations attribute of the corresponding sequence:

>>> alignment.sequences[0].annotations

{}

>>> alignment.sequences[1].annotations

{'leftStatus': 'I', 'leftCount': 9085, 'rightStatus': 'C', 'rightCount': 0}

showing that there are 9085 bases inserted (”I”") between this block and the preceding one, while the block is contiguous
(’C”) with the subsequent one. See the UCSC documentation for the full description of these fields and status characters.

The “q” lines show the sequence quality, which is stored under the “quality” dictionary key of theannotations
attribute of the corresponding sequence:

>>> alignment.sequences[2].annotations["quality"]
'9999999999999999999999999999999999999999999999"'
>>> alignment.sequences[4].annotations["quality"]
'9999969989999999999999998699989997'

The “e” lines show information about species with a contiguous sequence before and after this alignment bloack,
but with no aligning nucleotides in this alignment block. This is stored under the “empty” key of the alignment.
annotations dictionary:

>>> alignment.annotations["empty"]
[(SegRecord(seq=Seq(None, length=498454), id='tupBell.scaffold_114895.1-498454', name="'",

-, description="", dbxrefs=[]), (331078, 326933), 'I"),

(SeqRecord(seqg=Seq(None, length=100002), id='echTell.scaffold_288249', name='",.
—description="", dbxrefs=[]), (87661, 95225), 'I'),

(SeqRecord(seq=Seq(None, length=359464), id='otoGarl.scaffold 334.1-359464', name="",_
—description="", dbxrefs=[]), (178247, 175316), 'I'),

(SeqRecord(seq=Seq(None, length=174210431), id='ponAbe2.chr6', name='"', description='",.

—dbxrefs=[]1), (158048983, 158040939), 'I')]

This shows for example that there were non-aligning bases inserted (”I”) from position 158040939 to 158048983 on the

opposite strand of the ponAbe2 . chré genomic sequence. Again, see the UCSC documentation for the full definition
of “e” lines.

To print an alignment in MAF format, you can use Python’s built-in format function:

>>> print(format(alignment, "MAF"))
a score=19159.000000

s mm9.chrl® 3014644 45 + 129993255 CCTGTACC---
—CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG

s hgl8.chr6 15870786 46 - 170899992 CCTATACCTTTCTTTTATGAGAA-
< TTTTGTTTTAATCCTAAAC-TTTT

i hgl8.chré6 I9085 CO

s panTro2.chr6 16389355 46 - 173908612 CCTATACCTTTCTTTTATGAGAA-
—TTTTGTTTTAATCCTAAAC-TTTT

q panTro2.chr6 99999999999999999999999-
—9999999999999999999-9999

i panTro2.chr6 I 9106 C O

s callacl.Contig6394 6182 46 + 133105 CCTATACCTTTCTTTCATGAGAA-
< TTTTGTTTGAATCCTAAAC-TTTT

i calJacl.Contig6394 NOCO

s loxAfrl.scaffold_75566 1167 34 - 18574 -—\--———————- TTTGGTTAGAA-

—TTATGCTTTAATTCAAAAC-TTCC

(continues on next page)
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q loxAfrl.scaffold_75566 e 99999699899-
-59999999999999869998-9997

i loxAfrl.scaffold_75566 NOCO

e tupBell.scaffold_114895.1-498454 167376 4145 - 498454 1

e echTell.scaffold_288249 87661 7564 + 100002 I

e otoGarl.scaffold_334.1-359464 181217 2931 - 359464 1

e ponAbe2.chr6 16161448 8044 - 174210431 I

To write a complete MAF file, use Bio.Align.write(alignments, "myfilename.maf", fmt="maf"), where
myfilename.maf is the name of the output MAF file. Alternatively, you can use a (text) stream for output. File header
information will be taken from the metadata attribute of the alignments object. If you are creating the alignments
from scratch, you can use the Alignments (plural) class to create a list-like alignments object (see Section 7The
Alignments class) and give it a metadata attribute.

6.7.19 bigMaf

A bigMaf file is a bigBed file with a BED3+1 format consisting of the 3 required BED fields plus a custom field that
stores a MAF alignment block as a string, creating an indexed binary version of a MAF file (see section Multiple
Alignment Format (MAF)). The associated AutoSql file bigMaf.as is provided by UCSC. To create a bigMaf file, you
can either use the mafToBigMaf and bedToBigBed programs from UCSC. or you can use Biopython by calling the
Bio.Align.write function with fmt="bigmaf". While the two methods should result in identical bigMaf files, the
UCSC tools are much faster and may be more reliable, as it is the gold standard. As bigMaf files are bigBed files, they
come with a built-in index, allowing you to quickly search a specific region of the reference genome.

The file ucsc_test.bb in the Tests/MAF subdirectory of the Biopython distribution is an example of a bigMaf file.
This file is equivalent to the MAF file ucsc_test.maf (see section Multiple Alignment Format (MAF)). To parse this
file, use

>>> from Bio import Align

>>> alignments = Align.parse('ucsc_test.bb", "bigmaf™)
>>> len(alignments)
3

>>> print(alignments.declaration)
table bedMaf
"Bed3 with MAF block"

(
string chrom; "Reference sequence chromosome or scaffold"
uint chromStart; "Start position in chromosome"
uint chromEnd; "End position in chromosome"
1string mafBlock; "MAF block"
)

The declaration contains the specification of the columns as defined by the bigMaf.as AutoSql file from UCSC.

The bigMaf file does not store the header information found in the MAF file, but it does define a reference genome.
The corresponding SeqRecord is stored in the targets attribute of the alignments object:

>>> alignments.reference

'hgl16'

>>> alignments.targets

[SeqRecord(seq=Seq(None, length=158545518), id='hgl6.chr7', ...)]
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By iterating over the alignments we obtain one Alignment object for each alignment block in the bigMaf file:

>>> alignment = next(alignments)
>>> alignment.score
23262.0
>>> {seq.id: len(seq) for seq in alignment.sequences}
{'hgl6.chr7': 158545518,
'panTrol.chr6': 161576975,
'baboon': 4622798,
'mm4.chr6': 151104725,
'rn3.chr4': 187371129}
>>> print(alignment.coordinates)
[[27578828 27578829 27578831 27578831 27578850 27578850 27578866]
[28741140 28741141 28741143 28741143 28741162 28741162 28741178]
[ 116834 116835 116837 116837 116856 116856  116872]
[53215344 53215344 53215346 53215347 53215366 53215366 53215382]
[81344243 81344243 81344245 81344245 81344264 81344267 81344283]]
>>> print(alignment)
hgl6.chr7 27578828 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 27578866
panTrol.c 28741140 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 28741178
baboon 116834 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG 116872
mm4 . chr6é 53215344 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG 53215382
rn3.chr4 81344243 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG 81344283

>>> print(format(alignment, "phylip"))

5 42

hg16.chr7 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
panTrol.chAAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
baboon AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
mm4 .chr6 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
rn3.chr4 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG

[TERIENTPRT]

Information in the “i”, “@”, and “q” lines is stored in the same way as in the corresponding MAF file (see section Mul-
tiple Alignment Format (MAF)):

>>> from Bio import Align
>>> alignments = Align.parse('ucsc_mm9_chrl®.bb", "bigmaf")
>>> for i in range(10):

alignment = next(alignments)

>>> alignment.score

19159.0

>>> print(alignment)

mm9.chri10 3014644 CCTGTACC---CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG 3014689
hg18.chr6 155029206 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 155029160
panTro2.c 157519257 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 157519211
calJacl.C 6182 CCTATACCTTTCTTTCATGAGAA-TTTTGTTTGAATCCTAAAC-TTTT 6228
loxAfrl.s 9407 -—\————————- TTTGGTTAGAA-TTATGCTTTAATTCAAAAC-TTCC 9373

>>> print(format(alignment, "MAF"))
a score=19159.000000

s mm9.chril® 3014644 45 + 129993255 CCTGTACC---
— CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG
s hgl8.chr6 15870786 46 - 170899992 CCTATACCTTTCTTTTATGAGAA-

(continues on next page)
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< TTTTGTTTTAATCCTAAAC-TTTT

i hgl8.chré6 I 9085 CO

s panTro2.chr6 16389355 46 - 173908612 CCTATACCTTTCTTTTATGAGAA-
—TTTTGTTTTAATCCTAAAC-TTTT

q panTro2.chré6 99999999999999999999999-
<59999999999999999999-9999

i panTro2.chr6 I 9106 C O

s callacl.Contig6394 6182 46 + 133105 CCTATACCTTTCTTTCATGAGAA-
—TTTTGTTTGAATCCTAAAC-TTTT

i calJacl.Contig6394 NOCO

s loxAfrl.scaffold_75566 1167 34 - 10574 - - -\ -\ ————-———- TTTGGTTAGAA-
—TTATGCTTTAATTCAAAAC-TTCC

q loxAfrl.scaffold_75566 —mee— 99999699899-
9999999999999869998-9997

i loxAfrl.scaffold_75566 NOCO

e tupBell.scaffold 114895.1-498454 167376 4145 - 498454 T

e echTell.scaffold_ 288249 87661 7564 + 100002 I

e otoGarl.scaffold_334.1-359464 181217 2931 - 359464 1

e ponAbe2.chr6 16161448 8044 - 174210431 1

>>> alignment.sequences[1].annotations
{'leftStatus': 'I', 'leftCount': 9085, 'rightStatus': 'C', 'rightCount': 0}
>>> alignment.sequences[2].annotations["quality"]
'9999999999999999999999999999999999999999999999"'
>>> alignment.sequences[4].annotations["quality"]

'9999969989999999999999998699989997"
>>> alignment.annotations["empty"]

[(SegRecord(seq=Seq(None, length=498454), id='tupBell.scaffold_114895.1-498454', name="'",
<, description="", dbxrefs=[]), (331078, 326933), 'I'),

(SeqRecord(seq=Seq(None, length=100002), id='echTell.scaffold_288249', name="",.
—.description="", dbxrefs=[]), (87661, 95225), 'I'),

(SegRecord(seq=Seq(None, length=359464), id='otoGarl.scaffold_334.1-359464', name="",_
—.description="", dbxrefs=[]), (178247, 175316), 'I"),

(SeqRecord(seq=Seq(None, length=174210431), id='ponAbe2.chr6', name='"', description='",.
—dbxrefs=[]), (158048983, 158040939), 'I')]

To write a complete bigMaf file, use Bio.Align.write(alignments, "myfilename.bb", fmt="bigMaf"),
where myfilename.bb is the name of the output bigMaf file. Alternatively, you can use a (binary) stream for out-
put. If you are creating the alignments from scratch, you can use the Alignments (plural) class to create a list-like
alignments object (see Section The Alignments class) and give it a targets attribute. The latter must be a list
of SeqRecord objects for the chromosomes for the reference species in the order in which they appear in the align-
ments. Alternatively, you can use the targets keyword argument when calling Bio.Align.write. The id of each
SeqgRecord must be of the form reference.chromosome, where reference refers to the reference species. Bio.
Align.write has the additional keyword argument compress (True by default) specifying whether the data should be
compressed using zlib. Further optional arguments are blockSize (default value is 256), and itemsPerSlot (default
value is 512). See the documentation of UCSC’s bedToBigBed program for a description of these arguments.

As a bigMaf file is a special case of a bigBed file, you can use the search method on the alignments object to
find alignments to specific regions of the reference species. For example, we can look for regions on chr10 between
positions 3018000 and 3019000 on chromosome 10:
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>>> selected_alignments = alignments.search("mm9.chrl0", 3018000, 3019000)
>>> for alignment in selected_alignments:
start, end = alignment.coordinates[0®, 0], alignment.coordinates[0, -1]
print(start, end)

3017743 3018161
3018161 3018230
3018230 3018359
3018359 3018482
3018482 3018644
3018644 3018822
3018822 3018932
3018932 3019271

The chromosome name may be None to include all chromosomes, and the start and end positions may be None to start
searching from position 0 or to continue searching until the end of the chromosome, respectively. Note that we can
search on genomic position for the reference species only.

Searching a bigMaf file can be faster by using compress=False and itemsPerSlot=1 when creating the bigMaf
file.

6.7.20 UCSC chain file format

Chain files describe a pairwise alignment between two nucleotide sequences, allowing gaps in both sequences. Only
the length of each aligned subsequences and the gap lengths are stored in a chain file; the sequences themselves are not
stored. Chain files are typically used to store alignments between two genome assembly versions, allowing alignments
to one genome assembly version to be lifted over to the other genome assembly. This is an example of a chain file
(available as ps1_34_001.chain in the Tests/Blat subdirectory of the Biopython distribution):

chain 16 chr4 191154276 + 61646095 61646111 hgl8_dna 33 + 11 27 1

16

chain 33 chrl 249250621 + 10271783 10271816 hgl8_dna 33 + 0 33 2
33

chain 17 chr2 243199373 + 53575980 53575997 hgl8_dna 33 - 8 25 3
17

chain 35 chr9 141213431 + 85737865 85737906 hgl9_dna 50 + 9 50 4
41

chain 41 chr8 146364022 + 95160479 95160520 hgl9_dna 50 + 8 49 5
41

chain 30 chr22 51304566 + 42144400 42144436 hgl9_dna 50 + 11 47 6
36

chain 41 chr2 243199373 + 183925984 183926028 hgl9_dna 50 + 1 49 7
6 0 4

38

chain 31 chrl9 59128983 + 35483340 35483510 hgl9_dna 50 + 10 46 8
25 134 0

11

chain 39 chr18 78077248 + 23891310 23891349 hgl9_dna 50 + 10 49 9
39

This file was generated by running UCSC’s ps1lToChain program on the PSL file ps1_34_001.psl. According
to the chain file format specification, there should be a blank line after each chain block, but some tools (including
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pslToChain) apparently do not follow this rule.

To parse this file, use

>>> from Bio import Align
>>> alignments = Align.parse('psl_34_001.chain", "chain")

Iterate over alignments to get one Alignment object for each chain:

>>> for alignment in alignments:
print(alignment.target.id, alignment.query.id)

chr4 hgl8_dna
chrl hgl8_dna
chr2 hgl8_dna
chr9 hgl9_dna
chr8 hgl9_dna
chr22 hgl9_dna
chr2 hgl9_dna

chrl hgl9_dna

Iterate from the start until we reach the seventh alignment:

>>> alignments = iter(alignments)
>>> for i in range(7):
alignment = next(alignments)

Check the alignment score and chain ID (the first and last number, respectively, in the header line of each chain block)
to confirm that we got the seventh alignment:

>>> alignment.score

41.0

>>> alignment.annotations["id"]
Al 7 1

‘We can print the alignment in the chain file format. The alignment coordinates are consistent with the information in the
chain block, with an aligned section of 6 nucleotides, a gap of 4 nucleotides, and an aligned section of 38 nucleotides:

>>> print(format(alignment, "chain"))

chain 41 chr2 243199373 + 183925984 183926028 hgl9_dna 50 + 1 49 7
6 0 4

38

>>> alignment.coordinates
array([[183925984, 183925990, 183925990, 183926028],

[ iy 7, 11, 4911)
>>> print(alignment)
chr2 183925984 ?77777-—--27227772?7?772277722777727777277777777 183926028
O [IIITT====T1TEEEEErErre et e e e e e e e 48
hg19_dna O O O o o o A i o o o o O O O O N N N N o o i il 49

We can also print the alignment in a few other alignment fite formats:
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>>> print(format(alignment, "BED"))
chr2 183925984 183926028 hgl9_dna 41 + 183925984 183926028 ©® 2 6,38,
-~ 0,6,

>>> print(format(alignment, "PSL"))
4 0 0 O 1 4 ® O + hgl9_dna 50 1 49 chr2 243199373 .
5183925984 183926028 2 6,38, 1,11, 183925984,183925990,

>>> print(format(alignment, "exonerate"))
vulgar: hgl9_dna 1 49 + chr2 183925984 183926028 + 41 M 6 6 G 4 ® M 38 38

>>> print(alignment. format("exonerate", "cigar"))
cigar: hgl9_dna 1 49 + chr2 183925984 183926028 + 41 M 6 I 4 M 38

>>> print(format(alignment, "sam"))
hg19_dna 0 chr2 183925985 255 1S6M4I38M1S * 0 0 & & AS:i:41 id:A:7

6.7. Alignment file formats 153




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

154 Chapter 6. Sequence alignments



CHAPTER
SEVEN

PAIRWISE SEQUENCE ALIGNMENT

Pairwise sequence alignment is the process of aligning two sequences to each other by optimizing the similarity score
between them. The Bio.Align module contains the PairwiseAligner class for global and local alignments us-
ing the Needleman-Wunsch, Smith-Waterman, Gotoh (three-state), and Waterman-Smith-Beyer global and local pair-
wise alignment algorithms, with numerous options to change the alignment parameters. We refer to Durbin et al.
[Durbin1998] for in-depth information on sequence alignment algorithms.

7.1 Basic usage

To generate pairwise alignments, first create a PairwiseAligner object:

>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()

The PairwiseAligner object aligner (see Section The pairwise aligner object) stores the alignment parameters to
be used for the pairwise alignments. These attributes can be set in the constructor of the object:

[>>> aligner = Align.PairwiseAligner(match_score=1.0)

or after the object is made:

[>>> aligner.match_score = 1.0 ]

Use the aligner.score method to calculate the alignment score between two sequences:

>>> target = "GAACT"

>>> query = "GAT"

>>> score = aligner.score(target, query)
>>> score

3.0

The aligner.align method returns Alignment objects, each representing one alignment between the two sequences:

>>> alignments = aligner.align(target, query)
>>> alignment = alignments[0]

>>> alignment

<Alignment object (2 rows x 5 columns) at ...>

Iterate over the Alignment objects and print them to see the alignments:
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>>> for alignment in alignments:

print (alignment)
target 0 GAACT 5
O [[--15
query 0 GA--T 3
target 0 GAACT 5
O [-]-15
query 0 G-A-T 3

Each alignment stores the alignment score:

>>> alignment.score
3.0

as well as pointers to the sequences that were aligned:

>>> alignment.target
' GAACT'

>>> alignment.query
'GAT'

Internally, the alignment is stored in terms of the sequence coordinates:

>>> alignment = alignments[0]
>>> alignment.coordinates
array([[0, 2, 4, 5],

[0, 2, 2, 31D

Here, the two rows refer to the target and query sequence. These coordinates show that the alignment consists of the
following three blocks:

e target[0:2] aligned to query[0:2];
* target[2:4] aligned to a gap, since query[2:2] is an empty string;
e target[4:5] aligned to query[2:3].

The number of aligned sequences is always 2 for a pairwise alignment:

>>> len(alignment)
2

The alignment length is defined as the number of columns in the alignment as printed. This is equal to the sum of the
number of matches, number of mismatches, and the total length of gaps in the target and query:

>>> alignment.length
5

The aligned property, which returns the start and end indices of aligned subsequences, returns two tuples of length 2
for the first alignment:

>>> alignment.aligned
array ([[[0, 27,
[4, 511,

(continues on next page)
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Lee, 21,
(2, 311D

while for the alternative alignment, two tuples of length 3 are returned:

>>> alignment = alignments[1]
>>> print(alignment)

target 0 GAACT 5
O [-]-15
query 0 G-A-T 3

>>> alignment.aligned
array([[[0®, 1],

[2’ 3]1
(4, 511,
Lee, 11,
1, 21,
[2, 311D

Note that different alignments may have the same subsequences aligned to each other. In particular, this may occur if
alignments differ from each other in terms of their gap placement only:

>>> aligner.mode = "global"

>>> aligner.mismatch_score = -10

>>> alignments = aligner.align("AAACAAA"™, "AAAGAAA™)
>>> len(alignments)

2

>>> print(alignments[0])

target 0 AAAC-AAA 7
O [II--111 8

query 0 AAA-GAAA 7

>>> alignments[0].aligned
array([[[®, 3],

[4, 711,
Lo, 31,
[4, 711D
>>> print(alignments[1])
target 0 AAA-CAAA 7
O [II--11l 8
query 0 AAAG-AAA 7

>>> alignments[1].aligned
array([[[®, 3],

(4, 711,
(e, 31,
(4, 711D

The map method can be applied on a pairwise alignment alignment1 to find the pairwise alignment of the query
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of alignment2 to the target of alignmentl, where the target of alignment2 and the query of alignmentl are
identical. A typical example is where alignment1 is the pairwise alignment between a chromosome and a transcript,
alignment2 is the pairwise alignment between the transcript and a sequence (e.g., an RNA-seq read), and we want to
find the alignment of the sequence to the chromosome:

>>> aligner.mode = "local"

>>> aligner.open_gap_score = -1

>>> aligner.extend_gap_score = 0

>>> chromosome = "AAAAAAAACCCCCCCAAAAAAAAAAAGGGGGGAAAAAAAA"
>>> transcript = "CCCCCCCGGGGGG"

>>> alignmentsl = aligner.align(chromosome, transcript)

>>> len(alignments1)

1

>>> alignmentl = alignments1[0]

>>> print(alignmentl)

target 8 CCCCCCCAAAAAAAAAAAGGGGGG 32
O [IITT--=====---- LTI 24
query 0 CCCCCCC----------~ GGGGGG 13

>>> sequence = "CCCCGGGG"

>>> alignments2 = aligner.align(transcript, sequence)
>>> len(alignments2)

1

>>> alignment2 = alignments2[0]

>>> print(alignment2)

target 3 CCCCGGGG 11
O [IIITIIT 8
query 0 CCCCGGGG 8

>>> mapped_alignment = alignmentl.map(alignment2)
>>> print(mapped_alignment)

target 11 CCCCAAAAAAAAAAAGGGG 30
O |11 [-mnmmmmmmv 1111 19
query 0 CCCC--------——- GGGG 8

>>> format(mapped_alignment, "psl")
'B\tONtO\tO\tO\tO\t1\t11\t+\tquery\t8\tO\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n'

Mapping the alignment does not depend on the sequence contents. If we delete the sequence contents, the same align-
ment is found in PSL format (though we obviously lose the ability to print the sequence alignment):

>>> from Bio.Seq import Seq

>>> alignmentl.target = Seq(None, len(alignmentl.target))

>>> alignmentl.query = Seq(None, len(alignmentl.query))

>>> alignment2.target = Seq(None, len(alignment2.target))

>>> alignment2.query = Seq(None, len(alignment2.query))

>>> mapped_alignment = alignmentl.map(alignment2)

>>> format(mapped_alignment, "psl™)
'B\TONtONtO\tO\tO\t1\t11\t+\tquery\t8\tO\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n"'

By default, a global pairwise alignment is performed, which finds the optimal alignment over the whole length of
target and query. Instead, a local alignment will find the subsequence of target and query with the highest
alignment score. Local alignments can be generated by setting aligner.mode to "local":
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>>> aligner.mode = "local"

>>> target = "AGAACTC"

>>> query = "GAACT"

>>> score = aligner.score(target, query)

>>> score

5.0

>>> alignments = aligner.align(target, query)
>>> for alignment in alignments:

print(alignment)
target 1 GAACT 6
O [l 5
query 0 GAACT 5

Note that there is some ambiguity in the definition of the best local alignments if segments with a score 0 can be added
to the alignment. We follow the suggestion by Waterman & Eggert [Waterman1987] and disallow such extensions.

7.2 The pairwise aligner object

The PairwiseAligner object stores all alignment parameters to be used for the pairwise alignments. To see an
overview of the values for all parameters, use

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner(match_score=1.0, mode="1local")

>>> print(aligner)

Pairwise sequence aligner with parameters
wildcard: None
match_score: 1.000000
mismatch_score: 0.000000
target_internal_open_gap_score: 0.000000
target_internal_extend_gap_score: 0.000000
target_left_open_gap_score: 0.000000
target_left_extend_gap_score: 0.000000
target_right_open_gap_score: 0.000000
target_right_extend_gap_score: 0.000000
query_internal_open_gap_score: 0.000000
query_internal_extend_gap_score: 0.000000
query_left_open_gap_score: 0.000000
query_left_extend_gap_score: 0.000000
query_right_open_gap_score: 0.000000
query_right_extend_gap_score: 0.000000
mode: local

See Sections Substitution scores, Affine gap scores, and General gap scores below for the definition of these parameters.
The attribute mode (described above in Section Basic usage) can be set equal to "global” or "local" to specify global
or local pairwise alignment, respectively.

Depending on the gap scoring parameters (see Sections Affine gap scores and General gap scores) and mode, a
PairwiseAligner object automatically chooses the appropriate algorithm to use for pairwise sequence alignment.
To verify the selected algorithm, use
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>>> aligner.algorithm
'Smith-Waterman'

This attribute is read-only.

A PairwiseAligner object also stores the precision € to be used during alignment. The value of € is stored in the
attribute aligner.epsilon, and by default is equal to 1075:

>>> aligner.epsilon
le-06

Two scores will be considered equal to each other for the purpose of the alignment if the absolute difference between
them is less than e.

7.3 Substitution scores

Substitution scores define the value to be added to the total score when two letters (nucleotides or amino acids) are
aligned to each other. The substitution scores to be used by the PairwiseAligner can be specified in two ways:

* By specifying a match score for identical letters, and a mismatch scores for mismatched letters. Nucleotide
sequence alignments are typically based on match and mismatch scores. For example, by default BLAST
[Altschul1990] uses a match score of 41 and a mismatch score of —2 for nucleotide alignments by megablast,
with a gap penalty of 2.5 (see section Affine gap scores for more information on gap scores). Match and mismatch
scores can be specified by setting the match and mismatch attributes of the PairwiseAligner object:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> aligner.match_score

1.0

>>> aligner.mismatch_score

0.0

>>> score = aligner.score("ACGT", "ACAT")
>>> print(score)

3.0

>>> aligner.match_score = 1.0

>>> aligner.mismatch_score = -2.0

>>> aligner.gap_score = -2.5

>>> score = aligner.score("ACGT", "ACAT")
>>> print(score)

1.0

When using match and mismatch scores, you can specify a wildcard character (None by default) for unknown
letters. These will get a zero score in alignments, irrespective of the value of the match or mismatch score:

>>> aligner.wildcard = "?"

>>> score = aligner.score("ACGT", "AC?T")
>>> print(score)

3.0

 Alternatively, you can use the substitution_matrix attribute of the PairwiseAligner object to specify a
substitution matrix. This allows you to apply different scores for different pairs of matched and mismatched let-
ters. This is typically used for amino acid sequence alignments. For example, by default BLAST [Altschul1990]
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uses the BLOSUMG62 substitution matrix for protein alignments by blastp. This substitution matrix is available
from Biopython:

-

>>> from Bio.Align import substitution_matrices

>>> substitution_matrices.load()

['BENNER22', 'BENNER6', 'BENNER74', 'BLASTN', 'BLASTP', 'BLOSUM45', 'BLOSUM50',
- "BLOSUM62', ..., 'TRANS']

>>> matrix = substitution_matrices.load("BLOSUM62")

>>> print(matrix)

# Matrix made by matblas from blosum62.iij

A R N D C Q .
A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 .
R-1.0 5.0 0.0 -2.0 -3.0 1.0 .
N -2.0 0.0 6.0 1.0 -3.0 0.0 .
D -2.0 -2.0 1.0 6.0 -3.0 0.0 .
C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 .
Q -1.0 1.0 0.0 0.0 -3.0 5.0 .

>>> aligner.substitution_matrix = matrix
>>> score = aligner.score("ACDQ", "ACDQ")
>>> score

24.0

>>> score = aligner.score("ACDQ", "ACNQ")
>>> score

19.0

When using a substitution matrix, X is not interpreted as an unknown character. Instead, the score provided by
the substitution matrix will be used:

>>> matrix["D", "X"]

-1.0

>>> score = aligner.score("ACDQ", "ACXQ")
>>> score

17.0

By default, aligner.substitution_matrix is None. The attributes aligner.match_score and aligner.
mismatch_score are ignored if aligner.substitution_matrix is not None. Setting aligner.match_score
or aligner.mismatch_score to valid values will reset aligner.substitution_matrix to None.

7.4 Affine gap scores

Affine gap scores are defined by a score to open a gap, and a score to extend an existing gap:
gap score = open gap score + (n — 1) x extend gap score,

where n is the length of the gap. Biopython’s pairwise sequence aligner allows fine-grained control over the gap scoring
scheme by specifying the following twelve attributes of a PairwiseAligner object:
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Opening scores Extending scores
query_left_open_gap_score query_left_extend_gap_score
query_internal_open_gap_score query_internal_extend_gap_score
query_right_open_gap_score query_right_extend_gap_score
target_left_open_gap_score target_left_extend_gap_score
target_internal_open_gap_score target_internal_extend_gap_score
target_right_open_gap_score target_right_extend_gap_score

These attributes allow for different gap scores for internal gaps and on either end of the sequence, as shown in this
example:
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target query score
A . query left open gap score
C . query left extend gap score
C . query left extend gap score
G G match score
G T mismatch score
G . query internal open gap score
A . query internal extend gap score
A R query internal extend gap score
T T match score
A A match score
G . query internal open gap score
C C match score

o C target internal open gap score

. C target internal extend gap score
C C match score
T G mismatch score
C C match score

R C target internal open gap score
A A match score

R T target right open gap score

R A target right extend gap score

R A target right extend gap score

For convenience, PairwiseAligner objects have additional attributes that refer to a number of these values collec-
tively, as shown (hierarchically) in Table Meta-attributes of the pairwise aligner objects..

Table 1: Meta-attributes of the pairwise aligner objects.

Meta-attribute

Attributes it maps to

gap_score
open_gap_score
extend_gap_score

target_gap_score, query_gap_score
target_open_gap_score, query_open_gap_score
target_extend_gap_score, query_extend_gap_score
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Table 1 — continued from previous page

Meta-attribute

Attributes it maps to

internal_gap_score
internal_open_gap_score
internal_extend_gap_score
end_gap_score
end_open_gap_score
end_extend_gap_score
left_gap_score
right_gap_score
left_open_gap_score
left_extend_gap_score
right_open_gap_score
right_extend_gap_score
target_open_gap_score
target_extend_gap_score
target_gap_score
query_open_gap_score
query_extend_gap_score
query_gap_score
target_internal_gap_score
target_end_gap_score
target_end_open_gap_score
target_end_extend_gap_score
target_left_gap_score
target_right_gap_score
query_end_gap_score
query_end_open_gap_score
query_end_extend_gap_score
query_internal_gap_score
query_left_gap_score
query_right_gap_score

target_internal_gap_score, query_internal_gap_score
target_internal_open_gap_score, query_internal_open_gap_score
target_internal_extend_gap_score, query_internal_extend_gap_score
target_end_gap_score, query_end_gap_score

target_end_open_gap_score, query_end_open_gap_score
target_end_extend_gap_score, query_end_extend_gap_score
target_left_gap_score, query_left_gap_score

target_right_gap_score, query_right_gap_score

target_left_open_gap_score, query_left_open_gap_score
target_left_extend_gap_score, query_left_extend_gap_score
target_right_open_gap_score, query_right_open_gap_score
target_right_extend_gap_score, query_right_extend_gap_score
target_internal_open_gap_score, target_left_open_gap_score, target_right_op
target_internal_extend_gap_score, target_left_extend_gap_score, target_righ
target_open_gap_score, target_extend_gap_score
query_internal_open_gap_score, query_left_open_gap_score, query_right_open_
query_internal_extend_gap_score, query_left_extend_gap_score, query_right_e
query_open_gap_score, query_extend_gap_score
target_internal_open_gap_score, target_internal_extend_gap_score
target_end_open_gap_score, target_end_extend_gap_score
target_left_open_gap_score, target_right_open_gap_score
target_left_extend_gap_score, target_right_extend_gap_score
target_left_open_gap_score, target_left_extend_gap_score
target_right_open_gap_score, target_right_extend_gap_score
query_end_open_gap_score, query_end_extend_gap_score
query_left_open_gap_score, query_right_open_gap_score
query_left_extend_gap_score, query_right_extend_gap_score
query_internal_open_gap_score, query_internal_extend_gap_score
query_left_open_gap_score, query_left_extend_gap_score
query_right_open_gap_score, query_right_extend_gap_score

7.5 General gap scores

For even more fine-grained control o

ver the gap scores, you can specify a gap scoring function. For example, the gap

scoring function below disallows a gap after two nucleotides in the query sequence:

>>>
>>>
>>>

from Bio import Align
aligner = Align.Pairwise
def my_gap_score_functio
if start == 2:
return -1000
else:
return -1 * leng
>>>
>>>
>>>

aligner.query_gap_score

alignments = aligner.ali

for alignment in alignme
print(alignment)

Aligner ()
n(start, length):

th
= my_gap_score_function
gn("AACTT", "AATT")

nts:

(continues on next page)

164

Chapter 7. Pairwise sequence alignment



Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

(continued from previous page)

target 0 AACTT 5
O -[.||] 5
query 0 -AATT 4
target 0 AACTT 5
O [-.|] 5
query 0 A-ATT 4
target 0 AACTT 5
O [].-]5
query 0 AAT-T 4
target 0 AACTT 5
O |[|].]-5
query 0 AATT- 4

7.6 Using a pre-defined substitution matrix and gap scores

By default, a PairwiseAligner object is initialized with a match score of +1.0, a mismatch score of 0.0, and all gap
scores equal to 0.0, While this has the benefit of being a simple scoring scheme, in general it does not give the best
performance. Instead, you can use the argument scoring to select a predefined scoring scheme when initializing a
PairwiseAligner object. Currently, the provided scoring schemes are blastn and megablast, which are suitable
for nucleotide alignments, and blastp, which is suitable for protein alignments. Selecting these scoring schemes
will initialize the PairwiseAligner object to the default scoring parameters used by BLASTN, MegaBLAST, and
BLASTP, respectively.

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner(scoring="blastn")

>>> print(aligner)

Pairwise sequence aligner with parameters
substitution_matrix: <Array object at ...>
target_internal_open_gap_score: -7.000000
target_internal_extend_gap_score: -2.000000
target_left_open_gap_score: -7.000000
target_left_extend_gap_score: -2.000000
target_right_open_gap_score: -7.000000
target_right_extend_gap_score: -2.000000
query_internal_open_gap_score: -7.000000
query_internal_extend_gap_score: -2.000000
query_left_open_gap_score: -7.000000
query_left_extend_gap_score: -2.000000
query_right_open_gap_score: -7.000000
query_right_extend_gap_score: -2.000000
mode: global

>>> print(aligner.substitution_matrix[:, :])

A T G C S W R Y K M B ' H D N
A 2.0 -3.0 -3.0 -3.0 -3.0 -1.60 -1.0 -3.0 -3.0 -1.0 -3.0 -1.0 -1.0 -1.0 -2.0
T-3.0 2.0 -3.0 -3.0 -3.0 -1.60 -3.0 -1.0 -1.0 -3.0 -1.0 -3.0 -1.0 -1.0 -2.0
G-3.0 -3.0 2.0 -3.0 -1.0 -3.0 -1.0 -3.0 -1.0 -3.0 -1.0 -1.0 -3.0 -1.0 -2.0

(continues on next page)
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0 -3.0 -3.0 2.0 -1.0 -3.0 -3.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -3.0 -2.0
¢ -3.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
o -1.¢ -3.0 -3.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
0 -3.0 -1.0 -3.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
0 -1.0 -3.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -2.0
¢ -3.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
.0 -1.0 -1.60 -1.0 -1.60 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
¢ -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
¢ -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0

7.7 lterating over alignments

The alignments returned by aligner.align are a kind of immutable iterable objects (similar to range). While they
appear similar to a tuple or 1ist of Alignment objects, they are different in the sense that each Alignment object is
created dynamically when it is needed. This approach was chosen because the number of alignments can be extremely
large, in particular for poor alignments (see Section Examples for an example).

You can perform the following operations on alignments:

len(alignments) returns the number of alignments stored. This function returns quickly, even if the
number of alignments is huge. If the number of alignments is extremely large (typically, larger than
9,223,372,036,854,775,807, which is the largest integer that can be stored as a long int on 64 bit machines),
len(alignments) will raise an OverflowError. A large number of alignments suggests that the alignment
quality is low.

L

>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()

>>> alignments = aligner.align("AAA", "AA™)
>>> len(alignments)
3

You can extract a specific alignment by index:

-

L

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> alignments = aligner.align("AAA", "AA™)
>>> print(alignments[2])

target 0 AAA 3
0 -] 3
query 0 -AA 2

>>> print(alignments[0])

target 0 AAA 3
O [[-3
query 0 AA- 2

* You can iterate over alignments, for example as in
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>>> for alignment in alignments:
print(alignment)

The alignments iterator can be converted into a 1ist or tuple:

£>>> alignments = list(alignments) J

It is wise to check the number of alignments by calling len(alignments) before attempting to call
list(alignments) to save all alignments as a list.

* The alignment score (which has the same value for each alignment in alignments) is stored as an attribute.
This allows you to check the alignment score before proceeding to extract individual alignments:

{>>> print(alignments.score) ’
2.0

7.8 Aligning to the reverse strand

By default, the pairwise aligner aligns the forward strand of the query to the forward strand of the target. To calculate

"o,

the alignment score for query to the reverse strand of target, use strand="-":

>>> from Bio import Align

>>> from Bio.Seq import reverse_complement
>>> target = "AAAACCC"

>>> query = "AACC"

>>> aligner = Align.PairwiseAligner()

>>> aligner.mismatch_score = -1

>>> aligner.internal_gap_score = -1

>>> aligner.score(target, query) # strand is "+'" by default
4.0

>>> aligner.score(target, reverse_complement(query), strand="-'")
4.0

>>> aligner.score(target, query, strand="-")

0.0

>>> aligner.score(target, reverse_complement(query))

0.0

non

The alignments against the reverse strand can be obtained by specifying strand= when calling aligner.align:

>>> alignments = aligner.align(target, query)
>>> len(alignments)

1

>>> print(alignments[0])

target 0 AAAACCC 7
© =[]=7

query 0 --AACC- 4

>>> print(alignments[0].format("bed"))
target 2 6 query 4 + 2 6 0 1 4, 0,

>>> alignments = aligner.align(target, reverse_complement(query), strand="-")

(continues on next page)
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>>> len(alignments)

1

>>> print(alignments[0])

target 0 AAAACCC 7
O —-IIIl-7

query 4 --AACC- 0O

>>> print(alignments[0].format("bed"))

target 2 6 query 4 - 2 6 0 1 4, 0,
>>> alignments = aligner.align(target, query, strand="-")
>>> len(alignments)
2
>>> print(alignments[0])
target 0 AAAACCC---- 7
0 ~——--—————- 11
query 4 ———\———- GGTT ©

>>> print(alignments[1])

target 0 ----AAAACCC 7
O -~ —---——————- 11
query 4 GGTT------- 0

Note that the score for aligning query to the reverse strand of target may be different from the score for aligning the
reverse complement of query to the forward strand of target if the left and right gap scores are different:

>>> aligner.left_gap_score = -0.5
>>> aligner.right_gap_score = -0.2
>>> aligner.score(target, query)
2.8

>>> alignments = aligner.align(target, query)
>>> len(alignments)

1
>>> print(alignments[0])
target 0 AAAACCC 7
O ——[IIl-7
query 0 --AACC- 4
>>> aligner.score(target, reverse_complement(query), strand="-")
3.1
>>> alignments = aligner.align(target, reverse_complement(query), strand="-")
>>> len(alignments)
1
>>> print(alignments[0])
target 0 AAAACCC 7
O ——[IIl-7
query 4 --AACC- 0
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7.9 Substitution matrices

Substitution matrices [Durbin1998] provide the scoring terms for classifying how likely two different residues are to
substitute for each other. This is essential in doing sequence comparisons. Biopython provides a ton of common
substitution matrices, including the famous PAM and BLOSUM series of matrices, and also provides functionality for
creating your own substitution matrices.

7.9.1 Array objects

You can think of substitutions matrices as 2D arrays in which the indices are letters (nucleotides or amino acids) rather
than integers. The Array class in Bio.Align.substitution_matrices is a subclass of numpy arrays that supports
indexing both by integers and by specific strings. An Array instance can either be a one-dimensional array or a square
two-dimensional arrays. A one-dimensional Array object can for example be used to store the nucleotide frequency
of a DNA sequence, while a two-dimensional Array object can be used to represent a scoring matrix for sequence
alignments.

To create a one-dimensional Array, only the alphabet of allowed letters needs to be specified:

>>> from Bio.Align.substitution_matrices import Array
>>> counts = Array("ACGT")
>>> print(counts)

= o N >
[ — I — ]
[ — I — I —]

The allowed letters are stored in the alphabet property:

>>> counts.alphabet
'ACGT'

This property is read-only; modifying the underlying _alphabet attribute may lead to unexpected results. Elements
can be accessed both by letter and by integer index:

>>> counts["C"] = -3
>>> counts[2] = 7
>>> print(counts)

= o N >
I

S N woe

(=R — R — ]

>>> counts[1]
-3.0

Using a letter that is not in the alphabet, or an index that is out of bounds, will cause a IndexError:

>>> counts["U"]
Traceback (most recent call last):

IndexError: 'U'
>>> counts["X"] = 6
Traceback (most recent call last):
(continues on next page)
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IndexError: 'X'
>>> counts[7]
Traceback (most recent call last):

IndexError: index 7 is out of bounds for axis 0 with size 4

A two-dimensional Array can be created by specifying dims=2:

>>> from Bio.Align.substitution_matrices import Array
>>> counts = Array("ACGT", dims=2)
>>> print(counts)

H o0 >
(== = ]
oo o>
cooo
ce222n
ceooo
ceooo0n
oo
coooH

Again, both letters and integers can be used for indexing, and specifying a letter that is not in the alphabet will cause
an IndexError:

>>> counts["A",
>>> counts[2, 1
>>> counts[3, "
>>> print(counts)

H o N>
[ — I — ]

>>> counts["X", 1]
Traceback (most recent call last):

IndexError: 'X'
>>> counts["A", 5]

Traceback (most recent call last):

IndexError: index 5 is out of bounds for axis 1 with size 4

Selecting a row or column from the two-dimensional array will return a one-dimensional Array:

>>> counts = Array("ACGT", dims=2)
>>> counts["A", "C"] = 12.0

>>> counts[2, 1] = 5.0

>>> counts[3, "T"] = -2

>>> counts["G"]
Array([®., 5., 0., 0.]
alphabet="ACGT")
>>> counts[:, "C"]
Array([12., ©0., 5., ©0.],
alphabet="ACGT'")
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Array objects can thus be used as an array and as a dictionary. They can be converted to plain numpy arrays or plain
dictionary objects:

>>> import numpy as np
>>> x = Array("ACGT")
>>> x["C"] =5

>>> X
Array([®., 5., 0., 0.7,
alphabet="ACGT")
>>> a = np.array(x) # create a plain numpy array
>>> a
array([0., 5., 0., 0.1)
>>> d = dict(x) # create a plain dictionary
>>> d
{'A': 0.0, 'C': 5.0, 'G': 0.0, 'T': 0.0}

While the alphabet of an Array is usually a string, you may also use a tuple of (immutable) objects. This is used for
example for a codon substitution matrix (as in the substitution_matrices.load("SCHNEIDER") example shown
later), where the keys are not individual nucleotides or amino acids but instead three-nucleotide codons.

While the alphabet property of an Array is immutable, you can create a new Array object by selecting the letters
you are interested in from the alphabet. For example,

>>> a = Array("ABCD", dims=2, data=np.arange(16).reshape(4, 4))
>>> print(a)

A B C D
A 0.0 1.0 2.0 3.0
B 4.0 5.0 6.0 7.0
C 8.0 9.0 10.0 11.0
D 12.0 13.0 14.0 15.0

>>> b = a.select("CAD")
>>> print(b)

C A
10.

O = N
—_

SN S
2o
N @ o
2o
— =
[V, IOV
ecoo2uU0

Note that this also allows you to reorder the alphabet.

Data for letters that are not found in the alphabet are set to zero:

>>> ¢ = a.select("DEC")
>>> print(c)

D E C
D 15.0 0.0 14.0
E 0.0 0.0 0.0
C 11.0 0.0 10.0

As the Array class is a subclass of numpy array, it can be used as such. A ValueError is triggered if the Array
objects appearing in a mathematical operation have different alphabets, for example

>>> from Bio.Align.substitution_matrices import Array
>>> d = Array("ACGT")

(continues on next page)
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>>> r = Array("ACGU")
>>d+ r
Traceback (most recent call last):

ValueError: alphabets are inconsistent

7.9.2 Calculating a substitution matrix from a pairwise sequence alignment

As Array is a subclass of a numpy array, you can apply mathematical operations on an Array object in much the
same way. Here, we illustrate this by calculating a scoring matrix from the alignment of the 16S ribosomal RNA gene
sequences of Escherichia coli and Bacillus subtilis. First, we create a PairwiseAligner object (see Chapter Pairwise
sequence alignment) and initialize it with the default scores used by blastn:

>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner(scoring="blastn")
>>> aligner.mode = "local"

Next, we read in the 16S ribosomal RNA gene sequence of Escherichia coli and Bacillus subtilis (provided in Tests/
Align/ecoli.fa and Tests/Align/bsubtilis. fa), and align them to each other:

>>> from Bio import SeqIO

>>> sequencel = SeqlIO.read("ecoli.fa", "fasta")

>>> sequence2 = SeqlO.read("bsubtilis.fa", "fasta")
>>> alignments = aligner.align(sequencel, sequence2)

The number of alignments generated is very large:

>>> len(alignments)
1990656

However, as they only differ trivially from each other, we arbitrarily choose the first alignment, and count the number
of each substitution:

>>> alignment = alignments[0]
>>> substitutions = alignment.substitutions
>>> print(substitutions)

A C G T
A 307.0 19.0 34.0 19.0
C 15.0 280.0 25.0 29.0
G 34.0 24.0 401.0 20.0
T 24.0 36.0 20.0 228.0

We normalize against the total number to find the probability of each substitution, and create a symmetric matrix of
observed frequencies:

>>> observed_frequencies = substitutions / substitutions.sum()
>>> observed_frequencies = (observed_frequencies + observed_frequencies.transpose()) / 2.
-0
>>> print(format (observed_frequencies, " D))

A C G T
A 0.2026 0.0112 0.0224 0.0142
C 0.0112 0.1848 0.0162 0.0215

(continues on next page)

172 Chapter 7. Pairwise sequence alignment




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

(continued from previous page)

G 0.0224 0.0162 0.2647 0.0132
T 0.0142 0.0215 0.0132 0.1505

The background probability is the probability of finding an A, C, G, or T nucleotide in each sequence separately. This
can be calculated as the sum of each row or column:

>>> background = observed_frequencies.sum(0)
>>> print(format(background, " D))

A 0.2505

C 0.2337

G 0.3165

T 0.1993

The number of substitutions expected at random is simply the product of the background distribution with itself:

>>> expected_frequencies = background[:, None].dot(background[None, :])

>>> print(format (expected_frequencies, " D))
A C G T

A 0.0627 0.0585 0.0793 0.0499

C 0.0585 0.0546 0.0740 0.0466

G 0.0793 0.0740 0.1002 0.0631

T 0.0499 0.0466 0.0631 0.0397

The scoring matrix can then be calculated as the logarithm of the odds-ratio of the observed and the expected proba-
bilities:

>>> oddsratios = observed_frequencies / expected_frequencies
>>> import numpy as np

>>> scoring_matrix = np.log2(oddsratios)

>>> print(scoring matrix)

A C G T
A 1.7 -2.4 -1.8 -1.8
Cc-2.4 1.8 -2.2 -1.1
G-1.8 -2.2 1.4 -2.3
T =lo8 =l.il =2.3 1.9

The matrix can be used to set the substitution matrix for the pairwise aligner (see Chapter Pairwise sequence alignment):

[>>> aligner.substitution_matrix = scoring_matrix ]

7.9.3 Calculating a substitution matrix from a multiple sequence alignment

In this example, we’ll first read a protein sequence alignment from the Clustalw file protein.aln (also available online
here)

>>> from Bio import Align
>>> filename = "protein.aln"
>>> alignment = Align.read(filename, "clustal")

Section ClustalW contains more information on doing this.

The substitutions property of the alignment stores the number of times different residues substitute for each other:
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[>>> substitutions = alignment.substitutions J

To make the example more readable, we’ll select only amino acids with polar charged side chains:

>>> substitutions = substitutions.select("DEHKR")
>>> print(substitutions)
D E H K R
D 2360.0 270.0 15.0 1.0 48.0
E 241.0 3305.0 15.0 45.0 2.0
H 0.0 18.0 1235.0 8.0 0.0
K 0.0 9.0 24.0 3218.0 130.0
R 2.0 2.0 17.0 103.0 2079.0

Rows and columns for other amino acids were removed from the matrix.

Next, we normalize the matrix and make it symmetric.

>>> observed_frequencies = substitutions / substitutions.sum()
>>> observed_frequencies = (observed_frequencies + observed_frequencies.transpose()) / 2.
-0
>>> print(format (observed_frequencies, " D))
D E H K R
D 0.1795 0.0194 0.0006 0.0000 0.0019
E 0.0194 0.2514 0.0013 0.0021 0.0002
H 0.0006 0.0013 0.0939 0.0012 0.0006
K 0.0000 0.0021 0.0012 0.2448 0.0089
R 0.0019 0.0002 0.0006 0.0089 0.1581

Summing over rows or columns gives the relative frequency of occurrence of each residue:

>>> background = observed_frequencies.sum(0)
>>> print(format (background, " D))

D 0.2015

E 0.2743

H 0.0976

K 0.2569

R 0.1697

>>> sum(background) == 1.0
True

The expected frequency of residue pairs is then

>>> expected_frequencies = background[:, None].dot(background[None, :])
>>> print(format (expected_frequencies, " "))
D E H K R
406 0.0553 0.0197 0.0518 0.0342
553 0.0752 0.0268 0.0705 0.0465
197 0.0268 0.0095 0.0251 0.0166
518 0.0705 0.0251 0.0660 0.0436
342 0.0465 0.0166 0.0436 0.0288

D 0.0
E 0.0
H 0.0
K 0.0
R 0.0

Here, background[:, None] creates a 2D array consisting of a single column with the values of
expected_frequencies, and rxpected_frequencies[None, :] a 2D array with these values as a single row.
Taking their dot product (inner product) creates a matrix of expected frequencies where each entry consists of two
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expected_frequencies values multiplied with each other. For example, expected_frequencies['D', 'E']is
equal to residue_frequencies['D'] * residue_frequencies['E'].

We can now calculate the log-odds matrix by dividing the observed frequencies by the expected frequencies and taking
the logarithm:

>>> import numpy as np
>>> scoring_matrix = np.log2(observed_frequencies / expected_frequencies)
>>> print(scoring matrix)

D I8 H K R
D 2.1 -1.5-5.1 -10.4 -4.2
E -1.5 1.7 -4.4 -5.1 -8.3
H -5.1 -4.4 3.3 -4.4 -4.7
K -10.4 -5.1 -4.4 1.9 =4.3
R -4.2 -8.3 -4.7 -2.3 2.5

This matrix can be used as the substitution matrix when performing alignments. For example,

>>> from Bio.Align import PairwiseAligner

>>> aligner = PairwiseAligner()

>>> aligner.substitution_matrix = scoring_matrix
>>> aligner.gap_score = -3.0

>>> alignments = aligner.align("DEHEK", "DHHKK")
>>> print(alignments[0])

target 0 DEHEK 5
O [.].] 5
query 0 DHHKK 5
>>> print (" " % alignments.score)
-2.18
>>> score = (
scoring_matrix["D", "D"]
+ scoring_matrix["E", "H"]
+ scoring matrix["H", "H"]
+ scoring matrix["E", "K"]
.. + scoring_matrix["K", "K"]
. )
>>> print (" " % score)
-2.18

(see Chapter Pairwise sequence alignment for details).

7.9.4 Reading Array objects from file

Bio.Align.substitution_matrices includes a parser to read one- and two-dimensional Array objects from file.
One-dimensional arrays are represented by a simple two-column format, with the first column containing the key and the
second column the corresponding value. For example, the file hg38.chrom. sizes (obtained from UCSC), available
in the Tests/Align subdirectory of the Biopython distribution, contains the size in nucleotides of each chromosome
in human genome assembly hg38:

chrl 248956422
chr2 242193529
chr3 198295559

(continues on next page)
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chr4 190214555

chrUn_KI270385v1 990
chrUn_KI270423v1 981
chrUn_KI270392v1 971
chrUn_KI270394v1 970

(continued from previous page)

To parse this file, use

>>> from Bio.Align import substitution_matrices
>>> with open("hg38.chrom.sizes") as handle:
table = substitution_matrices.read(handle)

>>> print(table)
chrl 248956422.0
chr2 242193529.0
chr3 198295559.0
chr4 190214555.0

chrUn_KI270423v1 981.0

chrUn_KI270392v1 971.0
chrUn_KI270394v1 970.0

Use dtype=int to read the values as integers:

>>> with open("hg38.chrom.sizes") as handle:
table = substitution_matrices.read(handle, int)

>>> print(table)
chrl 248956422
chr2 242193529
chr3 198295559
chr4 190214555

chrUn_KI270423v1 981

chriUn_KI270392v1 971
chrUn_KI270394v1 970

For two-dimensional arrays, we follow the file format of substitution matrices provided by NCBI. For example, the
BLOSUMG62 matrix, which is the default substitution matrix for NCBI’s protein-protein BLAST [Altschul1990] pro-

gram blastp, is stored as follows:

Matrix made by matblas from blosum62.iij

* column uses minimum score

BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
Blocks Database = /data/blocks_5.0/blocks.dat
Cluster Percentage: >= 62

Entropy = 0.6979, Expected = -0.5209
AARNDO COQEGHTITU LI KM T FUP ST
A 4-1-2-2 6-1-1 §-2-1-1-1-1-2-1 10
R-1560-2-310-2 0-3-2 2-1-3-2-1-1-
N-2 0§ 6 1-3 0 0 0§ 1-3-3 0-2-3-2 1 0-
D-2-2 1 6-3 0 2-1-1-3-4-1-3-3-1 0-1-4-

H oH H H W W

S w Rk, N
R @ @ ~ N
n—u—u'—-ex
rhrhrL»h

(continues on next page)
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c -3-3-3 9-3-4-3-3-1-1-3-1-2-3-1-1-2
Q-1 1 60 6-3 5 2-2 0-3-21 06-3-1 0-1-2
E-1 6 60 24 2 5-2 0-3-3 1-2-3-1 0-1-3
G 0-2 0-1-3-2-2 6-2-4-4-2-3-3-2 0-2-2
H-2 06 1-1-3 @ 0-2 8-3-3-1-2-1-2-1-2-2

-2 -1
-1 -2
=3 =0
-3 -3

2 -3

(continued from previous page)

This file is included in the Biopython distribution under Bio/Align/substitution_matrices/data. To parse this

file, use

>>> from Bio.Align import substitution_matrices
>>> with open("BLOSUM62") as handle:
matrix = substitution_matrices.read(Chandle)

>>> print(matrix.alphabet)
ARNDCQEGHILKMFPSTWYVBZX*
>>> print(matrix["A", "D"]1)
-2.0

The header lines starting with # are stored in the attribute header:

>>> matrix.header[0]
'Matrix made by matblas from blosum62.iij'

We can now use this matrix as the substitution matrix on an aligner object:

>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.substitution_matrix = matrix

To save an Array object, create a string first:

>>> text str(matrix)
>>> print(text)

# Matrix made by matblas from blosum62.iij
# * column uses minimum score
# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 62
# Entropy = 0.6979, Expected = -0.5209

A R N D C Q E G H I L
A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 -1.0 0.0 -2.0 -1.0 -1.0
R-1.0 5.0 0.0 -2.0 -3.0 1.0 0.0 -2.0 0.0 -3.0 -2.0
N -2.0 0.0 6.0 1.0 -3.0 0.0 0.0 0.0 1.0 -3.0 -3.0
D-2.0 -2.0 1.0 6.0 -3.0 0.0 2.0 -1.0 -1.0 -3.0 -4.0
C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 -4.0 -3.0 -3.0 -1.0 -1.0

w = N =

oo A

=W N =
o =

=7

=3
=3
=/

@2 M

=1l
=7 c
=0
=1L
=3

(=N — I — R — R — N
@22 W0n

and write the text to a file.
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7.9.5 Loading predefined substitution matrices

Biopython contains a large set of substitution matrices defined in the literature, including BLOSUM (Blocks Sub-
stitution Matrix) [Henikoff1992] and PAM (Point Accepted Mutation) matrices [Dayhoff1978]. These matrices are
available as flat files in the Bio/Align/substitution_matrices/data directory, and can be loaded into Python
using the load function in the substitution_matrices submodule. For example, the BLOSUMG62 matrix can be
loaded by running

>>> from Bio.Align import substitution_matrices
>>> m = substitution_matrices.load(""BLOSUM62™)

This substitution matrix has an alphabet consisting of the 20 amino acids used in the genetic code, the three ambiguous
amino acids B (asparagine or aspartic acid), Z (glutamine or glutamic acid), and X (representing any amino acid), and
the stop codon represented by an asterisk:

>>> m.alphabet
' ARNDCQEGHILKMFPSTWYVBZX* '

To get a full list of available substitution matrices, use load without an argument:

>>> substitution_matrices.load()
['BENNER22', 'BENNER6', 'BENNER74', 'BLASTN', 'BLASTP', 'BLOSUM45', 'BLOSUM50', ...,
— '"TRANS ']

Note that the substitution matrix provided by Schneider ef al. [Schneider2005] uses an alphabet consisting of three-
nucleotide codons:

>>> m = substitution_matrices.load("SCHNEIDER")
>>> m.alphabet
("AAA', '"AAC', 'AAG', '"AAT', 'ACA', 'ACC', 'ACG', 'ACT', ..., 'TTG', 'TTT'")

7.10 Examples

Suppose you want to do a global pairwise alignment between the same two hemoglobin sequences from above
(HBA_HUMAN, HBB_HUMAN) stored in alpha. faa and beta. faa:

>>> from Bio import Align

>>> from Bio import SeqIO

>>> seql SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqlO.read("beta.faa", "fasta")
>>> aligner = Align.PairwiseAligner()

>>> score = aligner.score(seql.seq, seq2.seq)
>>> print(score)

72.0

showing an alignment score of 72.0. To see the individual alignments, do

[>>> alignments = aligner.align(seql.seq, seq2.seq) ]

In this example, the total number of optimal alignments is huge (more than 4 x 1037), and calling 1en(alignments)
will raise an OverflowError:
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>>> len(alignments)
Traceback (most recent call last):

OverflowError: number of optimal alignments is larger than 9223372036854775807

Let’s have a look at the first alignment:

[>>> alignment = alignments[0]

The alignment object stores the alignment score, as well as the alignment itself:

>>> print(alignment.score)
72.0
>>> print(alignment)
target 0 MV-LS-PAD--KTN--VK-AA-WGKV----- GAHAGEYGAEALE-RMFLSF----P-TTK
O 11-l-=]====]====]==]-=[ | ]]----- |-==11==l==] == ] == [======] - | --
query 0 MVHL-TP--EEK--SAV-TA-LWGKVNVDEVG---GE--A--L-GR--L--LVVYPWT--
target 41 TY--FPHF----DLSHGS---AQVK-G------ HGKKV--A--DA-LTNAVAHV-DDMPN
60 ---|-=|--==|||------ |-1==1------ ==l == == == == == | ===
query 39 --QRF--FESFGDLS---TPDA-V-MGNPKVKAHGKKVLGAFSD-GL--A--H-LD---N
target 79 ALS----A-LSD-LHAH--KLR-VDPV-NFK-LLSHC---LLVT--LAAHLPA----EFT
120 -|--===|=||==11-=== |== || |==]|-= ]| ------ |- 1===1 = ]--==--- 11
query 81 -L-KGTFATLS-ELH--CDKL-HVDP-ENF-RLL---GNVL-V-CVLA-H---HFGKEFT
target 119 PA-VH-ASLDKFLAS---VSTV------ LTS--KYR- 142
189 |--|--|------ | -=== ] =] === |====[|l== 217
query 124 P-PV-QA------ A-YQKV--VAGVANAL--AHKY-H 147

Better alignments are usually obtained by penalizing gaps: higher costs for opening a gap and lower costs for extending
an existing gap. For amino acid sequences match scores are usually encoded in matrices like PAM or BLOSUM. Thus,
a more meaningful alignment for our example can be obtained by using the BLOSUMS62 matrix, together with a gap

open penalty of 10 and a gap extension penalty of 0.5:

>>> from Bio import Align

>>> from Bio import SeqIO

>>> from Bio.Align import substitution_matrices
>>> seql = SeqIO.read("alpha.faa", "fasta")

>>> seq2 = SeqlO.read("beta.faa", "fasta")

>>> aligner = Align.PairwiseAligner()

>>> aligner.open_gap_score = -10

>>> aligner.extend_gap_score = -0.5

>>> aligner.substitution_matrix = substitution_matrices.load("BLOSUM62")
>>> score = aligner.score(seql.seq, seq2.seq)

>>> print(score)

292.5

>>> alignments = aligner.align(seql.seq, seq2.seq)
>>> len(alignments)

2

>>> print(alignments[0].score)

292.5

>>> print(alignments[0])

(continues on next page)
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(continued from previous page)

target 0 MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS----- HGS
O A P O I N N e B IR R TR P A P - .
query 0 MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGN
target 53 AQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAH
60 Il I11ITeule.... T TN I R T e T
query 58 PKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHH
target 113 LPAEFTPAVHASLDKFLASVSTVLTSKYR 142
120 o1l el eeulealalnnl ool ], 149
query 118 FGKEFTPPVQAAYQKVVAGVANALAHKYH 147

This alignment has the same score that we obtained earlier with EMBOSS needle using the same sequences and the
same parameters.

To perform a local alignment, set aligner.mode to 'local':

>>> aligner.mode = "local"

>>> aligner.open_gap_score = -10

>>> aligner.extend_gap_score = -1

>>> alignments = aligner.align("LSPADKTNVKAA", "PEEKSAV")
>>> print(len(alignments))

1

>>> alignment = alignments[0]

>>> print(alignment)

target 2 PADKTNV 9
O |..]..]17
query 0 PEEKSAV 7

>>> print(alignment.score)
16.0

7.11 Generalized pairwise alignments

In most cases, PairwiseAligner is used to perform alignments of sequences (strings or Seq objects) consisting of
single-letter nucleotides or amino acids. More generally, PairwiseAligner can also be applied to lists or tuples of
arbitrary objects. This section will describe some examples of such generalized pairwise alignments.

7.11.1 Generalized pairwise alignments using a substitution matrix and alphabet

Schneider ef al. [Schneider2005] created a substitution matrix for aligning three-nucleotide codons (see below in
section Substitution matrices for more information). This substitution matrix is associated with an alphabet consisting
of all three-letter codons:

>>> from Bio.Align import substitution_matrices

>>> m = substitution_matrices.load("SCHNEIDER")

>>> m.alphabet

("AAA', '"AAC', 'AAG', 'AAT', 'ACA', 'ACC', 'ACG', 'ACT', ..., 'TTIG', 'TTT")

We can use this matrix to align codon sequences to each other:
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>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()
>>> aligner.substitution_matrix = m
>>> aligner.gap_score = -1.0

>>> sl = ("AAT", "CTG", "TTT", "TTT")
>>> s2 = ("AAT", "TTA", "TTT")

>>> alignments = aligner.align(sl, s2)
>>> len(alignments)

2

>>> print(alignments[0])

AAT CTG TTIT TTIT

N
AAT TTA TTT ---

>>> print(alignments[1])
AAT CTG TTT TTT

(e === 111
AAT TTA --- TTT

Note that aligning TTT to TTA, as in this example:

AAT CTG TTT TTIT

[ === o 1T
AAT --- TTA TIT

would get a much lower score:

>>> print(m["CTG", "TTA"])
7.6

>>> print(m["TTT", "TTA"])
-0.3

presumably because CTG and TTA both code for leucine, while TTT codes for phenylalanine. The three-letter codon
substitution matrix also reveals a preference among codons representing the same amino acid. For example, TTA has a
preference for CTG preferred compared to CTC, though all three code for leucine:

>>> sl ("AAT", "CTG", "CTC", "TTT")
>>> s2 = ("AAT", "TTA", "TTT")

>>> alignments = aligner.align(sl, s2)
>>> len(alignments)

1

>>> print(alignments[0])

AAT CTG CTC TTIT

1) coe === [0

AAT TTA --- TTIT

>>> print(m["CTC", "TTA"])
6.5
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7.11.2 Generalized pairwise alignments using match/mismatch scores and an al-
phabet

Using the three-letter amino acid symbols, the sequences above translate to

>>> sl = ("Asn", "Leu", "Leu", "Phe")
>>> s2 = ("Asn", "Leu", "Phe")

We can align these sequences directly to each other by using a three-letter amino acid alphabet:

>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.alphabet = ['Ala', 'Arg', 'Asn', "Asp', 'Cys',
'Gln', 'Glu', 'Gly', 'His', 'Ile’,
'Leu', 'Lys', 'Met', 'Phe', 'Pro',
'Ser', 'Thr', 'Trp', 'Tyr', 'Val'] # fmt: skip

We use +6/-1 match and mismatch scores as an approximation of the BLOSUMG62 matrix, and align these sequences
to each other:

>>> aligner.match = +6

>>> aligner.mismatch = -1

>>> alignments = aligner.align(sl, s2)
>>> print(len(alignments))

2

>>> print(alignments[0])

Asn Leu Leu Phe

I === 1T

Asn Leu --- Phe

>>> print(alignments[1])
Asn Leu Leu Phe

[T === 111 Il
Asn --- Leu Phe

>>> print(alignments.score)
18.0

7.11.3 Generalized pairwise alignments using match/mismatch scores and integer
sequences

Internally, the first step when performing an alignment is to replace the two sequences by integer arrays consisting of
the indices of each letter in each sequence in the alphabet associated with the aligner. This step can be bypassed by
passing integer arrays directly:

>>> import numpy as np

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> sl = np.array([2, 10, 10, 13], np.int32)
>>> s2 = np.array([2, 10, 13], np.int32)
>>> aligner.match = +6

(continues on next page)
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>>> aligner.mismatch = -1

>>> alignments = aligner.align(sl, s2)
>>> print(len(alignments))

2

>>> print(alignments[0])

2 10 10 13

LI == 1
2 10 -- 13

>>> print(alignments[1])
2 10 10 13

| == 11 1
2 -- 10 13

>>> print(alignments.score)
18.0

(continued from previous page)

Note that the indices should consist of 32-bit integers, as specified in this example by numpy . int32.

Unknown letters can again be included by defining a wildcard character, and using the corresponding Unicode code

point number as the index:

>>> aligner.wildcard = "?7"
>>> ord(aligner.wildcard)
63

>>> s2 = np.array([2, 63, 13], np.int32)

>>> aligner.gap_score = -3

>>> alignments = aligner.align(sl, s2)
>>> print(len(alignments))

2

>>> print(alignments[0])

2 10 10 13

| .. - 11

2 63 -- 13

>>> print(alignments[1])
2 10 10 13
| == oo [l
2 -- 63 13

>>> print(alignments.score)
9.0
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7.11.4 Generalized pairwise alignments using a substitution matrix and integer se-

quences

Integer sequences can also be aligned using a substitution matrix, in this case a numpy square array without an alphabet
associated with it. In this case, all index values must be non-negative, and smaller than the size of the substitution

matrix:

>>> from Bio import Align

>>> import numpy as np

>>> aligner = Align.PairwiseAligner()
>>> m = np.eye(5)

>>> m[0, 1:] = m[1:, 0] = -2

>>> m[2, 2] = 3

>>> print(m)

[[ 1. -2. -2. -2. -2.]

[-2. 1. 0. 0. 0.]

[-2. 0. 3. 0. 0.]

[-2. 0. 0. 1. 0.]

[-2. 0. 0. 0. 1.]]
>>> aligner.substitution_matrix = m
>>> aligner.gap_score = -1

>>> sl = np.array([0®, 2, 3, 4], np.int32)
>>> s2 = np.array([0®, 3, 2, 1], np.int32)
>>> alignments = aligner.align(sl, s2)
>>> print(len(alignments))

>>> print(alignments[0])
- 234
| o =

321 -

>>> print(alignments[1])
- 234
-] - .
32-1

S —

>>> print(alignments.score)
2.0

7.12 Codon alignments

The CodonAligner class in the Bio.Align module implements a specialized aligner for aligning a nucleotide se-
quence to the amino acid sequence it encodes. Such alignments are non-trivial if frameshifts occur during translation.
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7.12.1 Aligning a nucleotide sequence to an amino acid sequence

To align a nucleotide sequence to an amino acid sequence, first create a CodonAligner object:

>>> from Bio import Align
>>> aligner = Align.CodonAligner()

The CodonAligner object aligner stores the alignment parameters to be used for the alignments:

>>> print(aligner)

Codon aligner with parameters
wildcard: 'X'
match_score: 1.0
mismatch_score: 0.0
frameshift_minus_two_score: -3.0
frameshift_minus_one_score: -3.0
frameshift_plus_one_score: -3.0
frameshift_plus_two_score: -3.0

The wildcard, match_score, and mismatch_score parameters are defined in the same was as for the
PairwiseAligner class described above (see Section The pairwise aligner object). The values specified
by the frameshift_minus_two_score, frameshift_minus_one_score, frameshift_plus_one_score, and
frameshift_plus_two_score parameters are added to the alignment score whenever a -2, -1, +1, or +2 frame shift,
respectively, occurs in the alignment. By default, the frame shift scores are set to -3.0. Similar to the PairwiseAligner
class (Table Meta-attributes of the pairwise aligner objects.), the CodonAligner class defines additional attributes that
refer to a number of these values collectively, as shown in Table Meta-attributes of CodonAligner objects..

Table 2: Meta-attributes of CodonAligner objects.

Meta-attribute Attributes it maps to

frameshift_minus frameshift_minus_two_score, frameshift_minus_one_score

frameshift_plus_ frameshift_plus_two_score, frameshift_plus_one_score

frameshift_two_s frameshift minus_two_score, frameshift_plus_two_score

frameshift_one_s frameshift minus_one_score, frameshift plus_one_score

frameshift_score frameshift_minus_two_score, frameshift_minus_one_score,
frameshift_plus_one_score, frameshift_plus_two_score

Now let’s consider two nucleotide sequences and the amino acid sequences they encode:

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> nucl = Seq("TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG™)
>>> rnal = SeqRecord(nucl, id="rnal")

>>> nuc2 = Seq("TCAGGGACTTCGAGAACCAAGCGCTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG™)
>>> rna2 = SeqRecord(nuc2, id="rna2")

>>> aal = Seq("SGTARTKLLLLLAALCAAGGALE")

>>> aa2 = Seq("SGTSRTKRLLLLAALGAAGGALE™)

>>> prol = SeqRecord(aal, id="prol")

>>> pro2 = SeqRecord(aa2, id="pro2")

While the two protein sequences both consist of 23 amino acids, the first nucleotide sequence consists of 3 x 23 = 69
nucleotides while the second nucleotide sequence tonsists of only 68 nucleotides:
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>>> len(prol)
23
>>> len(pro2)
23
>>> len(rnal)
69
>>> len(rna2)
68

This is due to a -1 frame shift event during translation of the second nucleotide sequence. Use CodonAligner.align
to align rnal to prol, and rna2 to pro2, returning an iterator of Alignment objects:

>>> alignmentsl = aligner.align(prol, rnal)
>>> len(alignmentsl)

1

>>> alignmentl = next(alignmentsl)

>>> print(alignmentl)

prol 0SS G T A RTI KU LI LT LTI LT LA AALTUCAAGG
rnal 0 TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGG
prol 20 A L E 23

rnal 60 GCGCTGGAG 69

>>> alignmentl.coordinates
array([[ 0, 23],
[ 0, 691D
>>> alignment1[0]
' SGTARTKLLLLLAALCAAGGALE'
>>> alignmentl1[1]
' TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG'
>>> alignments2 = aligner.align(pro2, rna2)
>>> len(alignments2)
1
>>> alignment2 = next(alignments2)
>>> print(alignment2)

pro2 0S G T S R T K R 8
rna2 0 TCAGGGACTTCGAGAACCAAGCGC 24
pro2 8L L L L A AL GAAGGATLE 23
rna2 23 CTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG 68

>>> alignment2[0]
' SGTSRTKRLLLLAALGAAGGALE'
>>> alignment2[1]
' TCAGGGACTTCGAGAACCAAGCGCCTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG'
>>> alignment2.coordinates
array([[ 0, 8, 8, 23],
[ 0, 24, 23, 68]])

While alignment1 is a continuous alignment of the 69 nucleotides to the 23 amino acids, in alignment2 we find a
-1 frame shift after 24 nucleotides. As alignment2[1] contains the nucleotide sequence after applying the -1 frame
shift, it is one nucleotide longer than nuc2 and can be translated directly, resulting in the amino acid sequence aa2:
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>>> from Bio.Seq import translate
>>> len(nuc2)

68

>>> len(alignment2[1])

69

>>> translate(alignment2[1])

' SGTSRTKRLLLLAALGAAGGALE'

>>> _ == aa2

True

The alignment score is stored as an attribute on the alignments1 and alignmentsz2 iterators, and on the individual
alignments alignmentl and alignment2:

>>> alignmentsl.score
23.0
>>> alignmentl.score
23.0
>>> alignments2.score
20.0
>>> alignment2.score
20.0

where the score of the rnal-prol alignment is equal to the number of aligned amino acids, and the score of the rna2-
pro2 alignment is 3 less due to the penalty for the frame shift. To calculate the alignment score without calculating the
alignment itself, the score method can be used:

>>> score = aligner.score(prol, rnal)
>>> print(score)

23.0

>>> score = aligner.score(pro2, rna2)
>>> print(score)

20.0

7.12.2 Generating a multiple sequence alignment of codon sequences

Suppose we have a third related amino acid sequence and its associated nucleotide sequence:

>>> aa3 = Seq("MGTALLLLLAALCAAGGALE")
>>> pro3 = SeqRecord(aa3, id="pro3")

>>> nuc3 = Seq("ATGGGAACCGCGCTGCTTTTGCTACTGGCCGCGCTCTGCGCCGCAGGTGGGGCCCTGGAG™)
>>> rna3 = SeqRecord(nuc3, id="rna3")

>>> nuc3.translate() == aa3

True

As above, we use the CodonAligner to align the nucleotide sequence to the amino acid sequence:

>>> alignments3 = aligner.align(pro3, rna3)

>>> len(alignments3)

1

>>> alignment3 = next(alignments3)

>>> print(alignment3)

pro3 OM G T A L L L L L A AL CAAGGA AL E

(continues on next page)
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rna3 0 ATGGGAACCGCGCTGCTTTTGCTACTGGCCGCGCTCTGCGCCGCAGGTGGGGCCCTGGAG
pro3 20
rna3 60

The three amino acid sequences can be aligned to each other, for example using ClustalW. Here, we create the alignment
by hand:

>>> import numpy as np

>>> from Bio.Align import Alignment

>>> sequences = [prol, pro2, pro3]

>>> protein_alignment = Alignment(

. sequences, coordinates=np.array([[0, 4, 7, 23], [0, 4, 7, 23], [0, 4, 4, 20]1])
)

>>> print(protein_alignment)

prol 0 SGTARTKLLLLLAALCAAGGALE 23
pro2 0 SGTSRTKRLLLLAALGAAGGALE 23
pro3 O MGTA---LLLLLAALCAAGGALE 20

Now we can use the mapall method on the protein alignment, with the nucleotide-to-protein pairwise alignments as
the argument, to obtain the corresponding codon alignment:

>>> codon_alignment = protein_alignment.mapall([alignmentl, alignment2, alignment3])
>>> print(codon_alignment)

rnal 0 TCAGGGACTGCGAGAACCAAGCTA 24
rna2 0 TCAGGGACTTCGAGAACCAAGCGC 24
rna3 0 ATGGGAACCGCG--------- CTG 15
rnal 24 CTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG 69
rna2 23 CTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG 68
rna3 15 CTTTTGCTACTGGCCGCGCTCTGCGCCGCAGGTGGGGCCCTGGAG 60

7.12.3 Analyzing a codon alignment

Calculating the number of nonsynonymous and synonymous substitutions per site

The most important application of a codon alignment is to estimate the number of nonsynonymous substitutions per site
(dN) and synonymous substitutions per site (dS). These can be calculated by the calculate_dn_ds function in Bio.
Align.analysis. This function takes a pairwise codon alignment and input, as well as the optional arguments method
specifying the calculation method, codon_table (defaulting to the Standard Code), the ratio k of the transition and
transversion rates, and cfreq to specify the equilibrium codon frequency. Biopython currently supports three counting
based methods (NG86, LWL85, YN®O) as well as the maximum likelihood method (ML) to estimate dN and dS:

* NG86: Nei and Gojobori (1986) [Neil986] (default). With this method, you can also specify the ratio of the
transition and transversion rates via the argument k, defaulting to 1.0.

e LWL85: Li et al. (1985) [Lil985].
* YNOO: Yang and Nielsen (2000) [Yang2000].

e ML: Goldman and Yang (1994) [Goldman1994]. With this method, you can also specify the equilibrium codon
frequency via the cfreq argument, with the following options:
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— F1x4: count the nucleotide frequency in the provided codon sequences, and use it to calculate the back-
ground codon frequency;

— F3x4: (default) count the nucleotide frequency separately for the first, second, and third position in the
provided codons, and use it to calculate the background codon frequency;

— F61: count the frequency of codons from the provided codon sequences, with a pseudocount of 0.1.

The calculate_dN_dS method can be applied to a pairwise codon alignment. In general, the different calculation
methods will result in slightly different estimates for dN and dS:

>>> from Bio.Align import analysis
>>> pairwise_codon_alignment = codon_alignment[:2]
>>> print(pairwise_codon_alignment)

rnal 0 TCAGGGACTGCGAGAACCAAGCTA 24
O [HEEEEEEE-tEEErrrrrrrs. .
rna2 0 TCAGGGACTTCGAGAACCAAGCGC 24
rnal 24 CTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG 69
24 |11 EEEEEEEEEer e e e e e e e e e e e e e e e e 69
rna2 23 CTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG 68

>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="NG86")
>>> print (dN, dS)

0.067715... 0.201197...

>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="LWL85")
>>> print(dN, dS)

0.068728... 0.207551...

>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="YNOO")
>>> print(dN, dS)

0.081468... 0.127706...

>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="ML")
>>> print (dN, dS)

0.069475... 0.205754...

For a multiple alignment of codon sequences, you can calculate a matrix of dN and dS values:

>>> dN, dS = analysis.calculate_dn_ds_matrix(codon_alignment, method="NG86")

>>> print (dN)

rnal 0.000000

rna2 0.067715 0.000000

rna3 0.060204 0.145469 0.000000
rnal rna2 rna3

>>> print (dS)

rnal 0.000000

rna2 0.201198 0.000000

rna3 0.664268 0.798957 0.000000
rnal rna2 rna3

The objects dN and dS returned by calculate_dn_ds_matrix are instances of the DistanceMatrix class in Bio.
Phylo.TreeConstruction. This function only takes codon_table as an optional argument.

From these two sequences, you can create a dN tree and a dS tree using Bio.Phylo.TreeConstruction:
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>>> from Bio.Phylo.TreeConstruction import DistanceTreeConstructor
>>> dn_constructor = DistanceTreeConstructor()

>>> ds_constructor = DistanceTreeConstructor()

>>> dn_tree = dn_constructor.upgma(dN)

>>> ds_tree = ds_constructor.upgma(dS)

>>> print(type(dn_tree))

<class 'Bio.Phylo.BaseTree.Tree'>

>>> print(dn_tree)

Tree(rooted=True)

Clade(branch_length=0, name='Inner2')
Clade(branch_length=0.053296..., name="'rna2')
Clade(branch_length=0.023194..., name='Innerl')

Clade(branch_length=0.0301021..., name='rna3')
Clade(branch_length=0.0301021..., name='rnal')
>>> print(ds_tree)
Tree(rooted=True)

Clade(branch_length=0, name='Inner2')
Clade(branch_length=0.365806..., name="'rna3')
Clade(branch_length=0.265207..., name='Innerl")

Clade(branch_length=0.100598..., name="'rna2')
Clade(branch_length=0.100598..., name="'rnal')

Performing the McDonald-Kreitman test

The McDonald-Kreitman test assesses the amount of adaptive evolution by comparing the within species synonymous
substitutions and nonsynonymous substitutions to the between species synonymous substitutions and nonsynonymous
substitutions to see if they are from the same evolutionary process. The test requires gene sequences sampled from
different individuals of the same species. In the following example, we will use Adh gene from fruit fly. The data in-
cludes 11 individuals from Drosophila melanogaster, 4 individuals from Drosophila simulans, and 12 individuals from
Drosophila yakuba. The protein alignment data and the nucleotide sequences are available in the Tests/codonalign
directory as the files adh.aln and drosophila. fasta, respectively, in the Biopython distribution. The function
mktest in Bio.Align.analysis implements the Mcdonald-Kreitman test.

>>> from Bio import SeqIO

>>> from Bio import Align

>>> from Bio.Align import CodonAligner

>>> from Bio.Align.analysis import mktest

>>> aligner = CodonAligner()

>>> nucleotide_records = SeqIO.index("drosophila.fasta", "fasta")

>>> for nucleotide_record in nucleotide_records.values():
print(nucleotide_record.description)

gi|9097|emb|X57361.1| Drosophila simulans (individual c)
gi|9099|emb|X57362.1| Drosophila simulans (individual d)
gi|9101|emb|X57363.1| Drosophila simulans (individual e)
gil9103|emb|X57364.1| Drosophila simulans (individual £)
gi|9217|emb|X57365.1| Drosophila yakuba (individual a)
gil9219|emb|X57366.1| Drosophila yakuba (individual b)
gi|9221|emb|X57367.1| Drosophila yakuba (individual c)
gi|9223|emb|X57368.1| Drosophila yakuba (individual d)
gi|9225|emb|X57369.1| Drosophila yakuba (individual e)
gi|9227|emb|X57370.1| Drosophila yakuba (individual f)

(continues on next page)
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gil9229|emb|X57371.1| Drosophila yakuba (individual g)
gil9231|emb|X57372.1| Drosophila yakuba (individual h)
gi|9233|emb|X57373.1| Drosophila yakuba (individual i)
gi|9235|emb|X57374.1| Drosophila yakuba (individual j)
gi|9237|emb|X57375.1| Drosophila yakuba (individual k)
gil9239|emb|X57376.1| Drosophila yakuba (individual 1)

Ja-F)

gi|156879|gb|M17837.1|DROADHCK D.melanogaster (strain
gi|156863|gb|M19547.1|DROADHCC D.melanogaster (strain Af-S)
gi|156877|gb|M17836.1|DROADHC] D.melanogaster (strain Af-F)
gi|156875|gb|M17835.1|DROADHCI D.melanogaster (strain Wa-F)
gi|156873|gb|M17834.1|DROADHCH D.melanogaster (strain Fr-F)
gi|156871|gb|M17833.1|DROADHCG D.melanogaster (strain F1-F) ...
gi|156869|gb|M17832.1|DROADHCF D.melanogaster (strain Ja-S) ...
gi|156867|gb|M17831.1|DROADHCE D.melanogaster (strain F1-2S)
gi|156865|gb|M17830.1|DROADHCD D.melanogaster (strain Fr-S)
gi|156861|gb|M17828.1|DROADHCB D.melanogaster (strain F1-1S)
gi|156859|gb|M17827.1|DROADHCA D.melanogaster (strain Wa-S)
>>> protein_alignment = Align.read("adh.aln", "clustal")

>>> len(protein_alignment)

27

>>> print(protein_alignment)

gi|9217]e 0 MAFTLTNKNVVFVAGLGGIGLDTSKELVKRDLKNLVILDRIENPAATAELKAINPKVTVT
gi|9219]e 0 MAFTLTNKNVVFVAGLGGIGLDTSKELVKRDLKNLVILDRIENPAATAELKAINPKVTVT
gi|9221]e 0 MAFTLTNKNVVFVAGLGGIGLDTSKELVKRDLKNLVILDRIENPAATAELKAINPKVTVT
gi| 156859 0 MSFTLTNKNVIFVAGLGGIGLDTSKELLKRDLKNLVILDRIENPAATAELKAINPKVTVT
gil9217]e 240 GTLEAIQWSKHWDSGI 256
gil9219]e 240 GTLEAIQWSKHWDSGI 256
gil9221]e 240 GTLEAIQWSKHWDSGI 256
91156859 240 GTLEAIQWTKHWDSGI 256

>>> codon_alignments = []

>>> for protein_record in protein_alignment.sequences:
nucleotide_record = nucleotide_records[protein_record.id]
alignments = aligner.align(protein_record, nucleotide_record)
assert len(alignments) == 1
codon_alignment = next(alignments)
codon_alignments.append(codon_alignment)

>>> print(codon_alignment)

911156859 oM S F T L TNI KNV VTIT FVAGLGG GTIG
gi| 156859 0 ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATTGGT
gi]156859 20L D T S K ELLK RDTU LI KNI LUV ITULTDR
911156859 60 CTGGACACCAGCAAGGAGCTGCTCAAGCGCGATCTGAAGAACCTGGTGATCCTCGACCGC

(continues on next page)
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911156859 240 G T L E A I Q W T K H W D S G I 256
911156859 720 GGCACCCTGGAGGCCATCCAGTGGACCAAGCACTGGGACTCCGGCATC 768

>>> nucleotide_records.close() # Close indexed FASTA file
>>> alignment = protein_alignment.mapall (codon_alignments)
>>> print(alignment)

gi|9217]e 0 ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATTGGT
gil|9219]|e 0 ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATTGGT
gil9221|e 0 ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATTGGT
gi|156859 0 ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATTGGT
gil9217]e 720 GGCACCCTGGAGGCCATCCAGTGGTCCAAGCACTGGGACTCCGGCATC 768

gil9219]|e 720 GGCACCCTGGAGGCCATCCAGTGGTCCAAGCACTGGGACTCCGGCATC 768

gil|9221]e 720 GGTACCCTGGAGGCCATCCAGTGGTCCAAGCACTGGGACTCCGGCATC 768

gi|156859 720 GGCACCCTGGAGGCCATCCAGTGGACCAAGCACTGGGACTCCGGCATC 768

>>> unique_species = ["Drosophila simulans", "Drosophila yakuba", "D.melanogaster"]

>>> species = []
>>> for record in alignment.sequences:
description = record.description
for s in unique_species:
if s in description:
break
else:
raise Exception(f"Failed to find species for {description}")
species.append(s)

>>> print(species)

['Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba',
< 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba',
< 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba',

— 'Drosophila simulans', 'Drosophila simulans', 'Drosophila simulans', 'Drosophila..
—simulans', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.
—.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster',
- 'D.melanogaster', 'D.melanogaster']

>>> pvalue = mktest(alignment, species)
>>> print(pvalue)
0.00206457. ..

In addition to the multiple codon alignment, the function mktest takes as input the species to which each sequence in
the alignment belongs to. The codon table can be provided as an optional argument codon_table.

192 Chapter 7. Pairwise sequence alignment




CHAPTER
EIGHT

MULTIPLE SEQUENCE ALIGNMENT OBJECTS

This chapter describes the older MultipleSeqAlignment class and the parsers in Bio.AlignIO that parse the output
of sequence alignment software, generating MultipleSeqAlignment objects. By Multiple Sequence Alignments we
mean a collection of multiple sequences which have been aligned together — usually with the insertion of gap characters,
and addition of leading or trailing gaps — such that all the sequence strings are the same length. Such an alignment can
be regarded as a matrix of letters, where each row is held as a SeqRecord object internally.

We will introduce the MultipleSegAlignment object which holds this kind of data, and the Bio.AlignIO module
for reading and writing them as various file formats (following the design of the Bio.SeqIO module from the previous
chapter). Note that both Bio.SeqI0 and Bio.AlignIO can read and write sequence alignment files. The appropriate
choice will depend largely on what you want to do with the data.

The final part of this chapter is about using common multiple sequence alignment tools like ClustalW and MUSCLE
from Python, and parsing the results with Biopython.

8.1 Parsing or Reading Sequence Alighments

We have two functions for reading in sequence alignments, Bio.AlignIO.read() and Bio.AlignIO.parse() which
following the convention introduced in Bio.SeqIO are for files containing one or multiple alignments respectively.

Using Bio.AlignIO.parse() will return an iterator which gives MultipleSeqAlignment objects. Iterators are
typically used in a for loop. Examples of situations where you will have multiple different alignments include resam-
pled alignments from the PHYLIP tool segboot, or multiple pairwise alignments from the EMBOSS tools water or
needle, or Bill Pearson’s FASTA tools.

However, in many situations you will be dealing with files which contain only a single alignment. In this case, you
should use the Bio.AlignIO.read() function which returns a single MultipleSeqAlignment object.

Both functions expect two mandatory arguments:

1. The first argument is a handle to read the data from, typically an open file (see Section What the heck is a handle?),
or a filename.

2. The second argument is a lower case string specifying the alignment format. As in Bio.SeqIO we don’t try and
guess the file format for you! See http://biopython.org/wiki/AlignlO for a full listing of supported formats.

There is also an optional seq_count argument which is discussed in Section Ambiguous Alignments below for dealing
with ambiguous file formats which may contain more than one alignment.
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8.1.1 Single Alignments

As an example, consider the following annotation rich protein alignment in the PFAM or Stockholm file format:

# STOCKHOLM 1.0

#=GS COATB_BPIKE/30-81 AC P03620.1

#=GS COATB_BPIKE/30-81 DR PDB; 1ifl ; 1-52;
#=GS QI9TOQ8_BPIKE/1-52 AC Q9T0Q8.1

#=GS COATB_BPI22/32-83 AC P15416.1

#=GS COATB_BPM13/24-72 AC P69541.1

#=GS COATB_BPM13/24-72 DR PDB; 2cpb ; 1-49;
#=GS COATB_BPM13/24-72 DR PDB; 2cps ; 1-49;
#=GS COATB_BPZ]2/1-49 AC P03618.1

#=GS Q9TOQ9_BPFD/1-49  AC Q9T0Q9.1

#=GS Q9TOQ9_BPFD/1-49 DR PDB; 1nh4 A; 1-49;
#=GS COATB_BPIF1/22-73 AC P03619.2

#=GS COATB_BPIF1/22-73 DR PDB; 1lifk ; 1-50;

COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
#=GR COATB_BPIKE/30-81 SS -HHHHHHHHHHHHHH - -HHHHHHHH - -HHHHHHHHHHHHHHHHHHHHH - - - -
Q9TOQ8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
COATB_BPM13/24-72 AEGDDP. . . AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR COATB_BPM13/24-72 SS ---S-T...CHCHHHHCCCCTCCCTTCHHHHHHHHHHHHHHHHHHHHCTT - -
COATB_BPZJ2/1-49 AEGDDP. . . AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
Q9TOQ9_BPFD/1-49 AEGDDP. . .AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR Q9TOQ9_BPFD/1-49 SS - ------ . . . ~-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH - -
COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
#=GR COATB_BPIF1/22-73 SS XX-HHHH- -HHHHHH - -HHHHHHH - -HHHHHHHHHHHHHHHHHHHHHHH - - -
#=GC SS_cons XHHHHHHHHHHHHHHHCHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHHHC - -
#=GC seq_cons AEssss. . .AptAhDSLpspAT-hIu.sWshVsslVsAsluIKLFKKFsSKA
//

This is the seed alignment for the Phage_Coat_Gp8 (PF05371) PFAM entry, downloaded from a now out of date
release of PFAM from https://pfam.xfam.org/. We can load this file as follows (assuming it has been saved to disk as
“PF05371_seed.sth” in the current working directory):

>>> from Bio import AlignIO
>>> alignment = AlignIO.read("'PF05371_seed.sth", "stockholm")

This code will print out a summary of the alignment:

>>> print(alignment)

Alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL. ..SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL. ..SRA Q9TOQ8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL. ..SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA COATB_BPZ]2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA Q9T0®Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL. . .SRA COATB_BPIF1/22-73

You’ll notice in the above output the sequences have been truncated. We could instead write our own code to format
this as we please by iterating over the rows as SeqRecord objects:
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>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Alignment length " % alignment.get_alignment_length())
Alignment length 52
>>> for record in alignment:
print (" - " % (record.seq, record.id))

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9TOQ8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLATRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9TOQ9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73

You could also call Python’s built-in format function on the alignment object to show it in a particular file format —
see Section Getting your alignment objects as formatted strings for details.

Did you notice in the raw file above that several of the sequences include database cross-references to the PDB and the
associated known secondary structure? Try this:

>>> for record in alignment:
if record.dbxrefs:
print(" " % (record.id, record.dbxrefs))

COATB_BPIKE/30-81 ['PDB; 1ifl ; 1-52;']
COATB_BPM13/24-72 ['PDB; 2cpb ; 1-49;', 'PDB; 2cps ; 1-49;']
Q9TOQ9_BPFD/1-49 ['PDB; 1nh4 A; 1-49;']
COATB_BPIF1/22-73 ['PDB; 1lifk ; 1-50;']

To have a look at all the sequence annotation, try this:

>>> for record in alignment:
print (record)

PFAM provide a nice web interface at http://pfam.xfam.org/family/PF05371 which will actually let you download this
alignment in several other formats. This is what the file looks like in the FASTA file format:

>COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
>Q9TOQ8_BPIKE/1-52
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
>COATB_BPI22/32-83
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
>COATB_BPM13/24-72
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPZ]2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
>Q9TOQ9_BPFD/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPIF1/22-73
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA

Note the website should have an option about showing gaps as periods (dots) or dashes, we’ve shown dashes above.
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Assuming you download and save this as file “PF05371_seed.faa” then you can load it with almost exactly the same
code:

>>> from Bio import AlignIO
>>> alignment = AlignIO.read("'PF05371_seed.faa", "fasta")
>>> print(alignment)

All that has changed in this code is the filename and the format string. You’ll get the same output as before, the
sequences and record identifiers are the same. However, as you should expect, if you check each SeqRecord there is
no annotation nor database cross-references because these are not included in the FASTA file format.

Note that rather than using the Sanger website, you could have used Bio.AlignIO to convert the original Stockholm
format file into a FASTA file yourself (see below).

With any supported file format, you can load an alignment in exactly the same way just by changing the format string.
For example, use “phylip” for PHYLIP files, “nexus” for NEXUS files or “emboss” for the alignments output by the
EMBOSS tools. There is a full listing on the wiki page (http://biopython.org/wiki/AlignlO) and in the built-in docu-
mentation, Bio.AlignIO:

>>> from Bio import AlignIO
>>> help(AlignIO)

8.1.2 Multiple Alignments

The previous section focused on reading files containing a single alignment. In general however, files can contain more
than one alignment, and to read these files we must use the Bio.AlignIO.parse() function.

Suppose you have a small alignment in PHYLIP format:

5 6
Alpha AACAAC
Beta AACCCC
Gamma ACCAAC
Delta CCACCA

Epsilon  CCAAAC

If you wanted to bootstrap a phylogenetic tree using the PHYLIP tools, one of the steps would be to create a set of many
resampled alignments using the tool bootseq. This would give output something like this, which has been abbreviated
for conciseness:

5 6
Alpha AAACCA
Beta AAACCC
Gamma ACCCCA
Delta CCCAAC
Epsilon  CCCAAA

5 6
Alpha AAACAA
Beta AAACCC
Gamma ACCCAA

Delta CCCACC

Epsilon  CCCAAA
5 6

Alpha AAAAAC

(continues on next page)
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Beta AAACCC
Gamma AACAAC
Delta CCCCCA

Epsilon  CCCAAC

5 6
Alpha AAAACC
Beta ACCCCC
Gamma AAAACC
Delta CCCCAA

Epsilon  CAAACC

(continued from previous page)

If you wanted to read this in using Bio.AlignIO you could use:

>>> from Bio import AlignIO

>>> alignments = AlignIO.parse('resampled.phy", "phylip")

>>> for alignment in alignments:
print(alignment)
print(Q)

This would give the following output, again abbreviated for display:

Alignment with 5 rows and 6 columns
AAACCA Alpha

AAACCC Beta

ACCCCA Gamma

CCCAAC Delta

CCCAAA Epsilon

Alignment with 5 rows and 6 columns
AAACAA Alpha

AAACCC Beta

ACCCAA Gamma

CCCACC Delta

CCCAAA Epsilon

Alignment with 5 rows and 6 columns
AAAAAC Alpha

AAACCC Beta

AACAAC Gamma

CCCCCA Delta

CCCAAC Epsilon

Alignment with 5 rows and 6 columns
AAAACC Alpha

ACCCCC Beta

AAAACC Gamma

CCCCAA Delta

CAAACC Epsilon
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As with the function Bio.SeqIO.parse(), using Bio.AlignIO.parse() returns an iterator. If you want to keep all
the alignments in memory at once, which will allow you to access them in any order, then turn the iterator into a list:

>>> from Bio import AlignIO

>>> alignments = list(AlignIO.parse("resampled.phy", "phylip"))
>>> last_align = alignments[-1]

>>> first_align = alignments[0]

8.1.3 Ambiguous Alignments

Many alignment file formats can explicitly store more than one alignment, and the division between each alignment is
clear. However, when a general sequence file format has been used there is no such block structure. The most common
such situation is when alignments have been saved in the FASTA file format. For example consider the following:

>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG

This could be a single alignment containing six sequences (with repeated identifiers). Or, judging from the identifiers,
this is probably two different alignments each with three sequences, which happen to all have the same length.

What about this next example?

>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Delta
ACTACGGCTAGCACAGAAG

Again, this could be a single alignment with six sequences. However this time based on the identifiers we might guess
this is three pairwise alignments which by chance have all got the same lengths.

This final example is similar:

>Alpha
ACTACGACTAGCTCAG--G
>XXX
ACTACCGCTAGCTCAGAAG

(continues on next page)
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(continued from previous page)

>Alpha
ACTACGACTAGCTCAGG
>YYY
ACTACGGCAAGCACAGG
>Alpha
--ACTACGAC--TAGCTCAGG
>777
GGACTACGACAATAGCTCAGG

In this third example, because of the differing lengths, this cannot be treated as a single alignment containing all six
records. However, it could be three pairwise alignments.

Clearly trying to store more than one alignment in a FASTA file is not ideal. However, if you are forced to deal with
these as input files Bio.AlignIO can cope with the most common situation where all the alignments have the same
number of records. One example of this is a collection of pairwise alignments, which can be produced by the EMBOSS
tools needle and water — although in this situation, Bio.AlignIO should be able to understand their native output
using “emboss” as the format string.

To interpret these FASTA examples as several separate alignments, we can use Bio.AlignIO.parse() with the op-
tional seq_count argument which specifies how many sequences are expected in each alignment (in these examples,
3, 2 and 2 respectively). For example, using the third example as the input data:

>>> for alignment in AlignIO.parse(handle, "fasta", seq_count=2):

print("Alignment length " % alignment.get_alignment_length())
for record in alignment:

print (" - " % (record.seq, record.id))
print()

giving:

Alignment length 19
ACTACGACTAGCTCAG--G - Alpha
ACTACCGCTAGCTCAGAAG - XXX

Alignment length 17
ACTACGACTAGCTCAGG - Alpha
ACTACGGCAAGCACAGG - YYY

Alignment length 21
--ACTACGAC--TAGCTCAGG - Alpha
GGACTACGACAATAGCTCAGG - ZZZ

UsingBio.AlignIO.read() orBio.AlignIO.parse() without the seq_count argument would give a single align-
ment containing all six records for the first two examples. For the third example, an exception would be raised because
the lengths differ preventing them being turned into a single alignment.

If the file format itself has a block structure allowing Bio.AlignIO to determine the number of sequences in each
alignment directly, then the seq_count argument is not needed. If it is supplied, and doesn’t agree with the file
contents, an error is raised.

Note that this optional seq_count argument assumes each alignment in the file has the same number of sequences.
Hypothetically you may come across stranger situations, for example a FASTA file containing several alignments each
with a different number of sequences — although I would love to hear of a real world example of this. Assuming you
cannot get the data in a nicer file format, there is no straight forward way to deal with this using Bio.AlignIO. In this

8.1. Parsing or Reading Sequence Alignments 199




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

case, you could consider reading in the sequences themselves using Bio.SeqIO and batching them together to create
the alignments as appropriate.

8.2 Writing Alighments

We’ve talked about using Bio.AlignIO.read() and Bio.AlignIO.parse() for alignment input (reading files), and
now we’ll look at Bio.AlignIO.write() which is for alignment output (writing files). This is a function taking three
arguments: some MultipleSeqAlignment objects (or for backwards compatibility the obsolete Alignment objects),
a handle or filename to write to, and a sequence format.

Here is an example, where we start by creating a few MultipleSeqAlignment objects the hard way (by hand, rather
than by loading them from a file). Note we create some SeqRecord objects to construct the alignment from.

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> from Bio.Align import MultipleSeqAlignment
>>> alignl = MultipleSegAlignment (

[
SegRecord(Seq("ACTGCTAGCTAG"), id="Alpha"),
SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta"),
SeqRecord(Seq("ACTGCTAGDTAG"), id="Gamma"),
.. ]
cen )
>>> align2 = MultipleSegAlignment (
[
SegRecord(Seq("GTCAGC-AG"), id="Delta"),
SeqRecord(Seq("GACAGCTAG"), id="Epsilon"),
SegRecord(Seq("GTCAGCTAG"), id="Zeta"),
.. ]
cee )
>>> align3 = MultipleSegAlignment (
[
SeqRecord(Seq("ACTAGTACAGCTG"), id="Eta"),
SeqRecord(Seq("ACTAGTACAGCT-"), id="Theta"),
SeqRecord(Seq("-CTACTACAGGTG"), id="Iota"),
.. ]
)

>>> my_alignments = [alignl, align2, align3]

Now we have a list of Alignment objects, we’ll write them to a PHYLIP format file:

>>> from Bio import AlignIO
>>> AlignIO.write(my_alignments, "my_example.phy", "phylip")

And if you open this file in your favorite text editor it should look like this:

3 12
Alpha ACTGCTAGCT AG
Beta ACT-CTAGCT AG
Gamma ACTGCTAGDT AG
39
Delta GTCAGC-AG

Epislon GACAGCTAG

(continues on next page)
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(continued from previous page)

Zeta GTCAGCTAG

3 13

Eta ACTAGTACAG CTG
Theta ACTAGTACAG CT-
Iota -CTACTACAG GTG

Its more common to want to load an existing alignment, and save that, perhaps after some simple manipulation like
removing certain rows or columns.

Suppose you wanted to know how many alignments the Bio.AlignIO.write() function wrote to the handle? If your
alignments were in a list like the example above, you could just use len(my_alignments), however you can’t do that
when your records come from a generator/iterator. Therefore the Bio.AlignIO.write() function returns the number
of alignments written to the file.

Note - If youtell the Bio.AlignIO.write() function to write to a file that already exists, the old file will be overwritten
without any warning.

8.2.1 Converting between sequence alignment file formats

Converting between sequence alignment file formats with Bio.AlignIO works in the same way as converting between
sequence file formats with Bio.SeqIO (Section Converting between sequence file formats). We load generally the
alignment(s) using Bio.AlignIO.parse() and then save them using the Bio.AlignIO.write() — or just use the
Bio.AlignIO.convert() helper function.

For this example, we’ll load the PEAM/Stockholm format file used earlier and save it as a Clustal W format file:

>>> from Bio import AlignIO
>>> count = AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.aln", "clustal

(1]
—

>>> print("Converted alignments" % count)
Converted 1 alignments

Or, using Bio.AlignIO.parse() and Bio.AlignIO.write():

>>> from Bio import AlignIO

>>> alignments = AlignIO.parse("PF05371_seed.sth", "stockholm™)

>>> count = AlignIO.write(alignments, "PF05371_seed.aln", "clustal")
>>> print("Converted alignments" % count)

Converted 1 alignments

The Bio.AlignIO.write() function expects to be given multiple alignment objects. In the example above we gave
it the alignment iterator returned by Bio.AlignIO.parse().

In this case, we know there is only one alignment in the file so we could have used Bio.AlignIO.read() instead, but
notice we have to pass this alignment to Bio.AlignIO.write() as a single element list:

>>> from Bio import AlignIO
>>> alignment = AlignIO.read("'PF05371_seed.sth", "stockholm")
>>> AlignIO.write([alignment], "PF05371_seed.aln", "clustal")

Either way, you should end up with the same new Clustal W format file “PF05371_seed.aln” with the following content:

CLUSTAL X (1.81) multiple sequence alignment

(continues on next page)
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(continued from previous page)

COATB_BPIKE/30-81
Q9TOQ8_BPIKE/1-52
COATB_BPI22/32-83
COATB_BPM13/24-72
COATB_BPZ]2/1-49

Q9TOQ9_BPFD/1-49

COATB_BPIF1/22-73

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFAS
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVS

COATB_BPIKE/30-81 KA
Q9TOQ8_BPIKE/1-52 RA
COATB_BPI22/32-83 KA
COATB_BPM13/24-72 KA
COATB_BPZJ2/1-49 KA
Q9TOQ9_BPFD/1-49 KA
COATB_BPIF1/22-73 RA

Alternatively, you could make a PHYLIP format file which we’ll name “PF05371_seed.phy”:

>>> from Bio import AlignIO
>>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip")

This time the output looks like this:

7 52

COATB_BPIK AEPNAATNYA TEAMDSLKTQ AIDLISQTIWP VVTTVVVAGL VIRLFKKFSS
Q9TOQ8_BPI AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
COATB_BPI2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
COATB_BPM1 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZ] AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9TOQ9_BPF AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

KA

RA

KA

KA

KA

KA

RA

One of the big handicaps of the original PHYLIP alignment file format is that the sequence identifiers are strictly
truncated at ten characters. In this example, as you can see the resulting names are still unique - but they are not very
readable. As a result, a more relaxed variant of the original PHYLIP format is now quite widely used:

>>> from Bio import AlignIO
>>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip-relaxed

")

This time the output looks like this, using a longer indentation to allow all the identifiers to be given in full:

7 52

COATB_BPIKE/30-81

AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS

(continues on next page)
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(continued from previous page)

AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

Q9TOQ8_BPIKE/1-52
COATB_BPI22/32-83
COATB_BPM13/24-72
COATB_BPZJ2/1-49
Q9TOQ9_BPFD/1-49
COATB_BPIF1/22-73

KA
RA
KA
KA
KA
KA
RA

If you have to work with the original strict PHYLIP format, then you may need to compress the identifiers somehow —
or assign your own names or numbering system. This following bit of code manipulates the record identifiers before
saving the output:

>>> from Bio import AlignIO
>>> alignment = AlignIO.read("'PF05371_seed.sth", "stockholm")
>>> name_mapping = {}
>>> for i, record in enumerate(alignment):
name_mapping[i] = record.id
record.id = "seq%i" % i

>>> print(name_mapping)

{0: 'COATB_BPIKE/30-81', 1: 'Q9TOQ8_BPIKE/1-52', 2: 'COATB_BPI22/32-83', 3: 'COATB_BPM13/
—24-72", 4: 'COATB_BPZ]2/1-49', 5: 'Q9TOQ9_BPFD/1-49', 6: 'COATB_BPIF1/22-73'}

>>> AlignIO.write([alignment], "PF05371_seed.phy", "phylip")

This code used a Python dictionary to record a simple mapping from the new sequence system to the original identifier:

{
: "COATB_BPIKE/30-81",
: "Q9TOQ8_BPIKE/1-52",
"COATB_BPI22/32-83",

H N~

Here is the new (strict) PHYLIP format output:

7 52
seq® AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTITVVVAGL VIRLFKKFSS
seql AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
seq2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
seq3 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq4 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
seq5 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq6 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA

(continues on next page)
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KA
KA
KA
KA
RA

In general, because of the identifier limitation, working with strict PHYLIP file formats shouldn’t be your first choice.
Using the PFAM/Stockholm format on the other hand allows you to record a lot of additional annotation too.

8.2.2 Getting your alignment objects as formatted strings

The Bio.AlignIO interface is based on handles, which means if you want to get your alignment(s) into a string in a
particular file format you need to do alittle bit more work (see below). However, you will probably prefer to call Python’s
built-in format function on the alignment object. This takes an output format specification as a single argument, a
lower case string which is supported by Bio.AlignIO as an output format. For example:

>>> from Bio import AlignIO

>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print(format(alignment, "clustal"))

CLUSTAL X (1.81) multiple sequence alignment

COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9TOQ8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS

Without an output format specification, format returns the same output as str.

As described in Section The format method, the SeqRecord object has a similar method using output formats supported
by Bio.SeqIO.

Internally format is calling Bio.AlignIO.write() with a StringIO handle. You can do this in your own code if
for example you are using an older version of Biopython:

>>> from io import StringIO

>>> from Bio import AlignIO

>>> alignments = AlignIO.parse("'PF05371_seed.sth", "stockholm")
>>> out_handle = StringI0(Q)

>>> AlignIO.write(alignments, out_handle, "clustal")

1

>>> clustal_data = out_handle.getvalue()

>>> print(clustal_data)

CLUSTAL X (1.81) multiple sequence alignment

COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9TOQ8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
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8.3 Manipulating Alighments

Now that we’ve covered loading and saving alignments, we’ll look at what else you can do with them.

8.3.1 Slicing alignments

First of all, in some senses the alignment objects act like a Python 1ist of SeqRecord objects (the rows). With this
model in mind hopefully the actions of 1len() (the number of rows) and iteration (each row as a SeqRecord) make
sense:

>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Number of rows: %i" % len(alignment))
Number of rows: 7
>>> for record in alignment:
print("%s - %s" % (record.seq, record.id))

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9TOQ8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLATRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9TOQ9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73

You can also use the list-like append and extend methods to add more rows to the alignment (as SeqRecord objects).
Keeping the list metaphor in mind, simple slicing of the alignment should also make sense - it selects some of the rows
giving back another alignment object:

>>> print(alignment)

Alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL. . .SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL. ..SRA Q9TO®Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL. ..SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA COATB_BPZ]2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA Q9TOQ9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL. . .SRA COATB_BPIF1/22-73
>>> print(alignment[3:7])

Alignment with 4 rows and 52 columns
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA COATB_BPZJ]2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL. ..SKA Q9T®Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL. . .SRA COATB_BPIF1/22-73

What if you wanted to select by column? Those of you who have used the NumPy matrix or array objects won’t be
surprised at this - you use a double index.

>>> print(alignment[2, 6])
T

Using two integer indices pulls out a single letter, short hand for this:
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>>> print(alignment[2].seq[6])
T

You can pull out a single column as a string like this:

>>> print(alignment[:, 6])
TTT---T

You can also select a range of columns. For example, to pick out those same three rows we extracted earlier, but take
just their first six columns:

>>> print(alignment[3:6, :6])
Alignment with 3 rows and 6 columns
AEGDDP COATB_BPM13/24-72

AEGDDP COATB_BPZ]2/1-49

AEGDDP Q9TO0Q9_BPFD/1-49

Leaving the first index as : means take all the rows:

>>> print(alignment[:, :6])
Alignment with 7 rows and 6 columns
AEPNAA COATB_BPIKE/30-81

AEPNAA Q9TOQ8_BPIKE/1-52

DGTSTA COATB_BPI22/32-83

AEGDDP COATB_BPM13/24-72

AEGDDP COATB_BPZ]2/1-49

AEGDDP Q9T0Q9_BPFD/1-49

FAADDA COATB_BPIF1/22-73

This brings us to a neat way to remove a section. Notice columns 7, 8 and 9 which are gaps in three of the seven
sequences:

>>> print(alignment[:, 6:9])
Alignment with 7 rows and 3 columns
TNY COATB_BPIKE/30-81

TNY Q9TOQ8_BPIKE/1-52

TSY COATB_BPI22/32-83

--- COATB_BPM13/24-72

--- COATB_BPZ]2/1-49

--- Q9TOQ9_BPFD/1-49

TSQ COATB_BPIF1/22-73

Again, you can slice to get everything after the ninth column:

>>> print(alignment[:, 9:]1)

Alignment with 7 rows and 43 columns
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9TOQ8_BPIKE/1-52
ATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZ]2/1-49
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9TOQ9_BPFD/1-49
AKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
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Now, the interesting thing is that addition of alignment objects works by column. This lets you do this as a way to
remove a block of columns:

>>> edited = alignment[:, :6] + alignment[:, 9:]

>>> print(edited)

Alignment with 7 rows and 49 columns
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9TOQ8_BPIKE/1-52
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZ]2/1-49
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T®Q9_BPFD/1-49
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73

Another common use of alignment addition would be to combine alignments for several different genes into a meta-
alignment. Watch out though - the identifiers need to match up (see Section Adding SeqRecord objects for how adding
SegRecord objects works). You may find it helpful to first sort the alignment rows alphabetically by id:

>>> edited.sort()

>>> print(edited)

Alignment with 7 rows and 49 columns
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T®Q8_BPIKE/1-52
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T®Q9_BPFD/1-49

Note that you can only add two alignments together if they have the same number of rows.

8.3.2 Alignments as arrays

Depending on what you are doing, it can be more useful to turn the alignment object into an array of letters — and you
can do this with NumPy:

>>> import numpy as np

>>> from Bio import AlignIO

>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

>>> align_array = np.array(alignment)

>>> print("Array shape by " % align_array.shape)

Array shape 7 by 52

>>> align_array[:, :10]

array([['A', '"E', 'P', 'N', 'A', 'A', 'T', 'N', 'Y', 'A'],
['A', 'E', 'P', 'N', 'A', 'A', 'T', 'N', 'Y', 'A'],
('n', '¢', ', 's', 't', 'A', 't', 's*', 'y', 'A']l,

['A'; 'E', 'G', 'D', 'D', ‘P', l_l’ l_l’ l_l, 'A']y
['A', 'E', 'G', 'D', 'D', 'P', l_l, l_l, |_l, 'A'],
['A', 'E', .G', .D', IDI, 'P', l_l, l_l, l_l, 'A'],

['F', 'A', IAI, IDI, 'D', 'A', 'T', 'S', 'Q', 'A']],...

Note that this leaves the original Biopython alignment object and the NumPy array in memory as separate objects -
editing one will not update the other!
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8.3.3 Counting substitutions

The substitutions property of an alignment reports how often letters in the alignment are substituted for each other.
This is calculated by taking all pairs of rows in the alignment, counting the number of times two letters are aligned to
each other, and summing this over all pairs. For example,

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> from Bio.Align import MultipleSeqAlignment
>>> msa = MultipleSegAlignment (

[
SeqRecord(Seq("ACTCCTA"), id="seql"),
SeqRecord(Seq("AAT-CTA"), id="seqg2"),
SegRecord(Seq("CCTACT-"), id="seq3"),
SegRecord(Seq("TCTCCTC"), id="seq4"),
]

)
>>> print(msa)
Alignment with 4 rows and 7 columns
ACTCCTA seql
AAT-CTA seq2
CCTACT- seq3
TCTCCTC seq4
>>> substitutions = msa.substitutions
>>> print(substitutions)

A C T
A2.0 4.5 1.0
C 4.5 10.0 0.5
T1.0 0.5 12.0

As the ordering of pairs is arbitrary, counts are divided equally above and below the diagonal. For example, the 9
alignments of A to C are stored as 4.5 at position ['A', 'C'] and 4.5 atposition ['C', 'A']. Thisarrangement helps
to make the math easier when calculating a substitution matrix from these counts, as described in Section Substitution
matrices.

Note that msa. substitutions contains entries for the letters appearing in the alignment only. You can use the select
method to add entries for missing letters, for example

>>> m = substitutions.select("ATCG")
>>> print(m)

A T c G
A2.0 1.0 4.5 0.0
T1.0 12.0 0.5 0.0
Cc4.5 0.5 10.0 0.0
G0.0 0.0 0.0 0.0

This also allows you to change the order of letters in the alphabet.
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8.3.4 Calculating summary information

Once you have an alignment, you are very likely going to want to find out information about it. Instead of trying to
have all of the functions that can generate information about an alignment in the alignment object itself, we’ve tried to
separate out the functionality into separate classes, which act on the alignment.

Getting ready to calculate summary information about an object is quick to do. Let’s say we’ve got an alignment object
called alignment, for example read in using Bio.AlignIO.read(...) as described in Chapter Multiple Sequence
Alignment objects. All we need to do to get an object that will calculate summary information is:

>>> from Bio.Align import AlignInfo
>>> summary_align = AlignInfo.SummaryInfo(msa)

The summary_align object is very useful, and will do the following neat things for you:

1. Calculate a quick consensus sequence — see section Calculating a quick consensus sequence

2. Get a position specific score matrix for the alignment — see section Position Specific Score Matrices
3. Calculate the information content for the alignment — see section Information Content
4

. Generate information on substitutions in the alignment — section Substitution matrices details using this to gen-
erate a substitution matrix.

8.3.5 Calculating a quick consensus sequence

The SummaryInfo object, described in section Calculating summary information, provides functionality to calculate a
quick consensus of an alignment. Assuming we’ve got a SummaryInfo object called summary_align we can calculate
a consensus by doing:

>>> consensus = summary_align.dumb_consensus()
>>> consensus
Seq('XCTXCTX")

As the name suggests, this is a really simple consensus calculator, and will just add up all of the residues at each point
in the consensus, and if the most common value is higher than some threshold value will add the common residue to the
consensus. If it doesn’t reach the threshold, it adds an ambiguity character to the consensus. The returned consensus
object is a Seq object.

You can adjust how dumb_consensus works by passing optional parameters:

the threshold
This is the threshold specifying how common a particular residue has to be at a position before it is added. The
default is 0.7 (meaning 70%).

the ambiguous character
This is the ambiguity character to use. The default is *N’.

Alternatively, you can convert the multiple sequence alignment object msa to a new-style Alignment object (see section
Alignment objects) by using the alignment attribute (see section Getting a new-style Alignment object):

[>>> alignment = msa.alignment }

You can then create a Motif object (see section Motif objects):

>>> from Bio.motifs import Motif
>>> motif = Motif("ACGT", alignment)
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and obtain a quick consensus sequence:

>>> motif.consensus
Seq("ACTCCTA")

The motif.counts.calculate_consensus method (see section Obtaining a consensus sequence) lets you specify
in detail how the consensus sequence should be calculated. For example,

>>> motif.counts.calculate_consensus(identity=0.7)
'NCTNCTN'

8.3.6 Position Specific Score Matrices

Position specific score matrices (PSSMs) summarize the alignment information in a different way than a consensus, and
may be useful for different tasks. Basically, a PSSM is a count matrix. For each column in the alignment, the number
of each alphabet letters is counted and totaled. The totals are displayed relative to some representative sequence along
the left axis. This sequence may be the consensus sequence, but can also be any sequence in the alignment.

For instance for the alignment above:

>>> print(msa)

Alignment with 4 rows and 7 columns
ACTCCTA seql

AAT-CTA seq2

CCTACT- seq3

TCTCCTC seq4

we get a PSSM with the consensus sequence along the side using

>>> my_pssm = summary_align.pos_specific_score_matrix(consensus, chars_to_ignore=["N"])
>>> print (my_pssm)

A C T
X 2.0 1.0 1.0
C 1.0 3.0 0.0
T 0.0 0.0 4.0
X 1.0 2.0 0.0
C 0.0 4.0 0.0
T 0.0 0.0 4.0
X 2.0 1.0 0.0

where we ignore any N ambiguity residues when calculating the PSSM.
Two notes should be made about this:

1. To maintain strictness with the alphabets, you can only include characters along the top of the PSSM that are in
the alphabet of the alignment object. Gaps are not included along the top axis of the PSSM.

2. The sequence passed to be displayed along the left side of the axis does not need to be the consensus. For instance,
if you wanted to display the second sequence in the alignment along this axis, you would need to do:

>>> second_seq = msa[l]
>>> my_pssm = summary_align.pos_specific_score_matrix(second_seq, chars_to_ignore=[
~"N"1)
>>> print (my_pssm)
A C T

(continues on next page)
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(continued from previous page)
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The command above returns a PSSM object. You can access any element of the PSSM by subscripting like
your_pssm[sequence_number] [residue_count_name]. For instance, to get the counts for the ’A’ residue in the
second element of the above PSSM you would do:

‘ >>> print (my_pssm[5]1["T"])
4.0

The structure of the PSSM class hopefully makes it easy both to access elements and to pretty print the matrix.

Alternatively, you can convert the multiple sequence alignment object msa to a new-style ALignment object (see section
Alignment objects) by using the alignment attribute (see section Getting a new-style Alignment object):

[>>> alignment = msa.alignment

You can then create a Motif object (see section Motif objects):

>>> from Bio.motifs import Motif
>>> motif = Motif("ACGT", alignment)

and obtain the counts of each nucleotide in each position:

>>> counts = motif.counts
>>> print(counts)
0 1 2 3 4 5 6

= o N >
(=]
(=]
(=}
(=]
(=4
(=]
(=]
(=]
(=]
(=]
(=4
(=]
(=]
(=4
(=]
(=]
(=4
(=]
(=]
(=4
(=]

>>> print(counts["T"]1[5])
4.0

8.3.7 Information Content

A potentially useful measure of evolutionary conservation is the information content of a sequence.

A useful introduction to information theory targeted towards molecular biologists can be found at http://www.lecb.
ncifcrf.gov/~toms/paper/primer/. For our purposes, we will be looking at the information content of a consensus
sequence, or a portion of a consensus sequence. We calculate information content at a particular column in a multiple
sequence alignment using the following formula:

IC; = Z log< )

where:
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 IC; — The information content for the j-th column in an alignment.
e N, — The number of letters in the alphabet.

* P;; — The frequency of a particular letter 7 in the j-th column (i. e. if G occurred 3 out of 6 times in an alignment
column, this would be 0.5)

* (); — The expected frequency of a letter ¢. This is an optional argument, usage of which is left at the user’s
discretion. By default, it is automatically assigned to 0.05 = 1/20 for a protein alphabet, and 0.25 = 1/4 for a
nucleic acid alphabet. This is for getting the information content without any assumption of prior distributions.
When assuming priors, or when using a non-standard alphabet, you should supply the values for @Q;.

Well, now that we have an idea what information content is being calculated in Biopython, let’s look at how to get it
for a particular region of the alignment.

First, we need to use our alignment to get an alignment summary object, which we’ll assume is called summary_align
(see section Calculating summary information) for instructions on how to get this. Once we’ve got this object, calcu-
lating the information content for a region is as easy as:

>>> e_freq_table = {"A": 0.3, "G": 0.2, "T": 0.3, "C": 0.2}

>>> info_content = summary_align.information_content (

.. 2, 6, e_freq_table=e_freq_table, chars_to_ignore=["N"]
- )

>>> info_content

6.3910647...

Now, info_content will contain the relative information content over the region [2:6] in relation to the expected
frequencies.

The value return is calculated using base 2 as the logarithm base in the formula above. You can modify this by passing
the parameter 1og_base as the base you want:

>>> info_content = summary_align.information_content (

. 2, 6, e_freq_table=e_freq_table, log_base=10, chars_to_ignore=["N"]
- )

>>> info_content

1.923902...

By default nucleotide or amino acid residues with a frequency of 0 in a column are not take into account when the
relative information column for that column is computed. If this is not the desired result, you can use pseudo_count
instead.

>>> info_content = summary_align.information_content (

.. 2, 6, e_freq_table=e_freq_table, chars_to_ignore=["N", "-"], pseudo_count=1
- )

>>> info_content

4.299651...

In this case, the observed frequency F;; of a particular letter 4 in the j-th column is computed as follows:

J
where:
* k — the pseudo count you pass as argument.
¢ k — the pseudo count you pass as argument.

¢ @; — The expected frequency of the letter ¢ as described above.
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Well, now you are ready to calculate information content. If you want to try applying this to some real life problems,
it would probably be best to dig into the literature on information content to get an idea of how it is used. Hopefully
your digging won’t reveal any mistakes made in coding this function!

8.4 Getting a new-style Alignment object

Use the alignment property to create a new-style Alignment object (see section Alignment objects) from an old-style
MultipleSegAlignment object:

>>> type(msa)

<class 'Bio.Align.MultipleSegAlignment'>
>>> print(msa)

Alignment with 4 rows and 7 columns
ACTCCTA seql

AAT-CTA seq2

CCTACT- seq3

TCTCCTC seq4

>>> alignment = msa.alignment

>>> type(alignment)

<class 'Bio.Align.Alignment'>

>>> print(alignment)

seql 0 ACTCCTA 7
seq2 0 AAT-CTA 6
seq3 0 CCTACT- 6
seq4 0 TCTCCTIC 7

Note that the alignment property creates and returns a new Alignment object that is consistent with the informa-
tion stored in the MultipleSeqAlignment object at the time the Alignment object is created. Any changes to the
MultipleSegAlignment after calling the alignment property will not propagate to the Alignment object. However,
you can of course call the alignment property again to create a new Alignment object consistent with the updated
MultipleSegAlignment object.

8.5 Calculating a substitution matrix from a multiple sequence align-
ment

You can create your own substitution matrix from an alignment. In this example, we’ll first read a protein sequence
alignment from the Clustalw file protein.aln (also available online here)

>>> from Bio import AlignIO
>>> filename = "protein.aln"
>>> msa = AlignIO.read(filename, "clustal")

Section ClustalW contains more information on doing this.

The substitutions property of the alignment stores the number of times different residues substitute for each other:

[>>> observed_frequencies = msa.substitutions ]

To make the example more readable, we’ll select only amino acids with polar charged side chains:
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>>> observed_frequencies = observed_frequencies.select("DEHKR")
>>> print (observed_frequencies)

D Iz H K R
D 2360.0 255.5 7.5 0.5 25.0
E 255.5 3305.0 16.5 27.0 2.0
H 7.5 16.5 1235.0 16.0 8.5
K 0.5 27.0 16.0 3218.0 116.5
R 25.0 2.0 8.5 116.5 2079.0

Rows and columns for other amino acids were removed from the matrix.

Next, we normalize the matrix:

>>> import numpy as np
>>> observed_frequencies /= np.sum(observed_frequencies)

Summing over rows or columns gives the relative frequency of occurrence of each residue:

>>> residue_frequencies = np.sum(observed_frequencies, 0)
>>> print(residue_frequencies. format (" "))

D 0.2015

E 0.2743

H 0.0976

K 0.2569

R 0.1697

>>> sum(residue_frequencies) == 1.0
True

The expected frequency of residue pairs is then

>>> expected_frequencies = np.dot(

. residue_frequencies[:, None], residue_frequencies[None, :]
)

>>> print(expected_frequencies. format (" "))
D E H K R

406 0.0553 0.0197 0.0518 0.0342

553 0.0752 0.0268 0.0705 0.0465

197 0.0268 0.0095 0.0251 0.0166

518 0.0705 0.0251 0.0660 0.0436

342 0.0465 0.0166 0.0436 0.0288

D 0.0
E 0.0
H 0.0
K 0.0
R 0.0

Here, residue_frequencies[:, None] creates a 2D array consisting of a single column with the values of
residue_frequencies, and residue_frequencies[None, :] a 2D array with these values as a single row.
Taking their dot product (inner product) creates a matrix of expected frequencies where each entry consists of two
residue_frequencies values multiplied with each other. For example, expected_frequencies['D', 'E'] is

Yo

equal to residue_frequencies['D'] * residue_frequencies['E'].

We can now calculate the log-odds matrix by dividing the observed frequencies by the expected frequencies and taking
the logarithm:

>>> m = np.log2(observed_frequencies / expected_frequencies)
>>> print(m)
D E H K R

(continues on next page)
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(continued from previous page)

D 2.1 -1.5 -5.1 -10.4 -4.2
E -1.5 1.7 -4.4 -5.1 -8.3
H -5.1-4.4 3.3 -4.4 -4.7
K -10.4 -5.1 -4.4 1.9 -2.3
R -4.2 -8.3 -4.7 -2.3 2.5

This matrix can be used as the substitution matrix when performing alignments. For example,

>>> from Bio.Align import PairwiseAligner

>>> aligner = PairwiseAligner()

>>> aligner.substitution_matrix = m

>>> aligner.gap_score = -3.0

>>> alignments = aligner.align("DEHEK", "DHHKK")
>>> print(alignments[0])

target 0 DEHEK 5
O [.].15
query 0 DHHKK 5
>>> print (" " % alignments.score)
-2.18
>>> score = m["D", "D"] + m["E", "H"] + m["H", "H"] + m["E", "K"] + m["K", "K"]
>>> print (" " % score)
-2.18

8.6 Alignment Tools

There are lots of algorithms out there for aligning sequences, both pairwise alignments and multiple sequence align-
ments. These calculations are relatively slow, and you generally wouldn’t want to write such an algorithm in Python.
For pairwise alignments, you can use Biopython’s PairwiseAligner (see Chapter Pairwise sequence alignment),
which is implemented in C and therefore fast. Alternatively, you can run an external alignment program by invoking it
from Python. Normally you would:

1. Prepare an input file of your unaligned sequences, typically this will be a FASTA file which you might create
using Bio.SeqIO (see Chapter Sequence Input/Output).

2. Run the alignment program by running its command using Python’s subprocess module.

3. Read the output from the tool, i.e. your aligned sequences, typically using Bio.AlignIO (see earlier in this
chapter).

Here, we will show a few examples of this workflow.

8.6.1 Clustalw

ClustalW is a popular command line tool for multiple sequence alignment (there is also a graphical interface called
ClustalX). Before trying to use ClustalW from within Python, you should first try running the ClustalW tool yourself
by hand at the command line, to familiarize yourself the other options.

For the most basic usage, all you need is to have a FASTA input file, such as opuntia.fasta (available online or in the
Doc/examples subdirectory of the Biopython source code). This is a small FASTA file containing seven prickly-pear
DNA sequences (from the cactus family Opuntia). By default ClustalW will generate an alignment and guide tree file
with names based on the input FASTA file, in this case opuntia.aln and opuntia.dnd, but you can override this or
make it explicit:
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>>> import subprocess
>>> cmd = "clustalw2 -infile=opuntia.fasta"
>>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)

Notice here we have given the executable name as clustalw2, indicating we have version two installed, which has a
different filename to version one (clustalw, the default). Fortunately both versions support the same set of arguments
at the command line (and indeed, should be functionally identical).

You may find that even though you have ClustalW installed, the above command doesn’t work — you may get a message
about “command not found” (especially on Windows). This indicated that the Clustal W executable is not on your PATH
(an environment variable, a list of directories to be searched). You can either update your PATH setting to include the
location of your copy of ClustalW tools (how you do this will depend on your OS), or simply type in the full path of
the tool. Remember, in Python strings \n and \t are by default interpreted as a new line and a tab — which is why

we’re put a letter “r” at the start for a raw string that isn’t translated in this way. This is generally good practice when
specifying a Windows style file name.

>>> import os

>>> clustalw_exe = r"C:\Program Files\new clustal\clustalw2.exe"

>>> assert os.path.isfile(clustalw_exe), "Clustal W executable missing"

>>> cmd = clustalw_exe + " -infile=opuntia.fasta"

>>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)

Now, at this point it helps to know about how command line tools “work”. When you run a tool at the command line, it
will often print text output directly to screen. This text can be captured or redirected, via two “pipes”, called standard
output (the normal results) and standard error (for error messages and debug messages). There is also standard input,
which is any text fed into the tool. These names get shortened to stdin, stdout and stderr. When the tool finishes, it has
areturn code (an integer), which by convention is zero for success, while a non-zero return code indicates that an error
has occurred.

In the example of ClustalW above, when run at the command line all the important output is written directly to the output
files. Everything normally printed to screen while you wait is captured in results.stdout and results.stderr,
while the return code is stored in results.returncode.

What we care about are the two output files, the alignment and the guide tree. We didn’t tell ClustalW what filenames to
use, but it defaults to picking names based on the input file. In this case the output should be in the file opuntia.aln.
You should be able to work out how to read in the alignment using Bio.AlignIO by now:

>>> from Bio import AlignIO

>>> align = AlignIO.read("opuntia.aln", "clustal")

>>> print(align)

Alignment with 7 rows and 906 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA ¢gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273291|gb|AF191665.1|AF191

In case you are interested (and this is an aside from the main thrust of this chapter), the opuntia.dnd file ClustalW
creates is just a standard Newick tree file, and Bio.Phylo can parse these:

>>> from Bio import Phylo
>>> tree = Phylo.read("opuntia.dnd", "newick")
>>> Phylo.draw_ascii(tree)
(continues on next page)
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09116273291 |gb|AF191665.1|AF191665

| 9116273290 |gb|AF191664.1|AF191664

09116273287 |gb|AF191661.1|AF191661

|
I
I [ 9116273289 |gb|AF191663.1|AF191663
I
I
I

[ 9i]6273286|gb|AF191660.1|AF191660

| __ 91]6273285|gb|AF191659.1|AF191659

p—
| 9i1]6273284|gb|AF191658.1|AF191658

Chapter Phylogenetics with Bio.Phylo covers Biopython’s support for phylogenetic trees in more depth.

8.6.2 MUSCLE

MUSCLE is a more recent multiple sequence alignment tool than ClustalW. As before, we recommend you try using
MUSCLE from the command line before trying to run it from Python.

For the most basic usage, all you need is to have a FASTA input file, such as opuntia.fasta (available online or in the
Doc/examples subdirectory of the Biopython source code). You can then tell MUSCLE to read in this FASTA file, and
write the alignment to an output file named opuntia. txt:

>>> import subprocess
>>> cmd = "muscle -align opuntia.fasta -output opuntia.txt"
>>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)

MUSCLE will output the alignment as a FASTA file (using gapped sequences). The Bio.AlignIO module is able to
read this alignment using format="fasta":

>>> from Bio import AlignIO

>>> align = AlignIO.read("opuntia.txt", "fasta")

>>> print(align)

Alignment with 7 rows and 906 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273289|gb|AF191663.1|AF191663
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273291|gb|AF191665.1|AF191665
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273290|gb|AF191664.1|AF191664
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273287|gb|AF191661.1|AF191661
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273286|gb|AF191660.1|AF191660
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273285|gb|AF191659.1|AF191659
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG. . .AGA gi|6273284|gb|AF191658.1|AF191658

You can also set the other optional parameters; see MUSCLE’s built-in help for details.
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8.6.3 EMBOSS needle and water

The EMBOSS suite includes the water and needle tools for Smith-Waterman algorithm local alignment, and
Needleman-Wunsch global alignment. The tools share the same style interface, so switching between the two is trivial
— we’ll just use needle here.

Suppose you want to do a global pairwise alignment between two sequences, prepared in FASTA format as follows:

>HBA_HUMAN

MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDL SHGSAQVKGHG
KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
AVHASLDKFLASVSTVLTSKYR

in a file alpha. faa, and secondly in a file beta. faa:

>HBB_HUMAN
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
VKAHGKKVLGAF SDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
KEFTPPVQAAYQKVVAGVANALAHKYH

You can find copies of these example files with the Biopython source code under the Doc/examples/ directory.

The command to align these two sequences against each other using needle is as follows:

needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -
—gapextend=0.5

Why not try running this by hand at the command prompt? You should see it does a pairwise comparison and records
the output in the file needle. txt (in the default EMBOSS alignment file format).

Even if you have EMBOSS installed, running this command may not work — you might get a message about “command
not found” (especially on Windows). This probably means that the EMBOSS tools are not on your PATH environment
variable. You can either update your PATH setting, or simply use the full path to the tool, for example:

C:\EMBOSS\needle.exe -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -
—gapopen=10 -gapextend=0.5

Next we want to use Python to run this command for us. As explained above, for full control, we recommend you use
Python’s built-in subprocess module:

>>> import sys
>>> import subprocess
>>> cmd = "needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -
—gapopen=10 -gapextend=0.5"
>>> results = subprocess.run(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
. shell=(sys, platform != "win32"),
)
>>> print(results.stdout)
>>> print(results.stderr)
Needleman-Wunsch global alignment of two sequences

Next we can load the output file with Bio.AlignIO as discussed earlier in this chapter, as the emboss format:
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>>> from Bio import AlignIO

>>> align = AlignIO.read('needle.txt", "emboss")

>>> print(align)

Alignment with 2 rows and 149 columns
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY. . .KYR HBA_HUMAN
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF . . .KYH HBB_HUMAN

In this example, we told EMBOSS to write the output to a file, but you can tell it to write the output to stdout instead
(useful if you don’t want a temporary output file to get rid of — use outfile=stdout argument):

>>> cmd = "needle -outfile=stdout -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -
—gapextend=0.5"
>>> child = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
.- shell=(sys.platform != "win32"),

)
>>> align = AlignIO.read(child.stdout, "emboss")
>>> print(align)
Alignment with 2 rows and 149 columns
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY. . .KYR HBA_HUMAN
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF . . .KYH HBB_HUMAN

Similarly, it is possible to read one of the inputs from stdin (e.g. asequence="stdin").

This has only scratched the surface of what you can do with needle and water. One useful trick is that the second
file can contain multiple sequences (say five), and then EMBOSS will do five pairwise alignments.
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CHAPTER
NINE

PAIRWISE ALIGNMENTS USING PAIRWISE2

Please note that Bio.pairwise2 was deprecated in Release 1.80. As an alternative, please consider using Bio.Align.
PairwiseAligner (described in Chapter Pairwise sequence alignment).

Bio.pairwise2 contains essentially the same algorithms as water (local) and needle (global) from the EMBOSS
suite (see above) and should return the same results. The pairwise2 module has undergone some optimization regard-
ing speed and memory consumption recently (Biopython versions >1.67) so that for short sequences (global alignments:
~2000 residues, local alignments ~600 residues) it’s faster (or equally fast) to use pairwise2 than calling EMBOSS’
water or needle via the command line tools.

Suppose you want to do a global pairwise alignment between the same two hemoglobin sequences from above
(HBA_HUMAN, HBB_HUMAN) stored in alpha. faa and beta. faa:

>>> from Bio import pairwise2

>>> from Bio import SeqIO

>>> seql = SeqlO.read("alpha.faa", "fasta")

>>> seq2 = SeqlO.read("beta.faa", "fasta")

>>> alignments = pairwise2.align.globalxx(seql.seq, seq2.seq)

As you see, we call the alignment function with align.globalxx. The tricky part are the last two letters of the
function name (here: xx), which are used for decoding the scores and penalties for matches (and mismatches) and
gaps. The first letter decodes the match score, e.g. x means that a match counts 1 while mismatches have no costs.
With m general values for either matches or mismatches can be defined (for full details see Bio.pairwise2). The
second letter decodes the cost for gaps; x means no gap costs at all, with s different penalties for opening and extending
a gap can be assigned. So, globalxx means that only matches between both sequences are counted.

Our variable alignments now contains a list of alignments (at least one) which have the same optimal score for the
given conditions. In our example this are 80 different alignments with the score 72 (Bio.pairwise2 will return up to
1000 alignments). Have a look at one of these alignments:

>>> len(alignments)

80

>>> print(alignments[0])

Alignment (seqA="MV-LSPADKTNV---K-A--A-WGKVGAHAG. ..YR-', seqB="MVHL----- T--PEEKSAVTALWGKV-
—---...Y-H', score=72.0, start=0, end=217)

Each alignment is a named tuple consisting of the two aligned sequences, the score, the start and the end positions of
the alignment (in global alignments the start is always 0 and the end the length of the alignment). Bio.pairwise2 has
a function format_alignment for a nicer printout:

>>> print(pairwise2.format_alignment(*alignments[0]))
MV-LSPADKTNV---K-A--A-WGKVGAHAG---EY-GA-EALE-RMFLSF----PTTK-TY--F...YR-
[ | R [ T I B B | | Joosl

(continues on next page)
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MVHL----- T--PEEKSAVTALWGKV----- NVDE-VG-GEAL-GR--L--LVVYP---WT-QRF...Y-H
Score=72

Since Biopython 1.77 the required parameters can be supplied with keywords. The last example can now also be written

as:

[>>> alignments = pairwise2.align.globalxx(sequenceA=seql.seq, sequenceB=seq2.seq)

Better alignments are usually obtained by penalizing gaps: higher costs for opening a gap and lower costs for extending
an existing gap. For amino acid sequences match scores are usually encoded in matrices like PAM or BLOSUM. Thus,
a more meaningful alignment for our example can be obtained by using the BLOSUMG62 matrix, together with a gap

open penalty of 10 and a gap extension penalty of 0.5 (using globalds):

>>> from Bio import pairwise2

>>> from Bio import SeqIO

>>> from Bio.Align import substitution_matrices

>>> blosum62 = substitution_matrices.load(""BLOSUM62")

>>> seql = SeqIlO.read("alpha.faa", "fasta")

>>> seq2 = SeqlO.read("beta.faa", "fasta")

>>> alignments = pairwise2.align.globalds(seql.seq, seq2.seq, blosum62, -10, -0.5)

>>> len(alignments)

2

>>> print(pairwise2.format_alignment(*alignments[0]))

MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY. . .KYR

0 P S N I [ v [oovinn. [.

MVHLTPEEKSAVTALWGKV-NVDEVGGEALGRLLVVYPWTQRFF . . .KYH
Score=292.5

This alignment has the same score that we obtained earlier with EMBOSS needle using the same sequences and the

same parameters.

Local alignments are called similarly with the function align.localXX, where again XX stands for a two letter code

for the match and gap functions:

>>> from Bio import pairwise2
>>> from Bio.Align import substitution_matrices
>>> blosum62 = substitution_matrices.load("BLOSUM62")

>>> print(pairwise2.format_alignment(*alignments[0]))
3 PADKTNV

[..]..]
1 PEEKSAV

Score=16

>>> alignments = pairwise2.align.localds("LSPADKTNVKAA", "PEEKSAV", blosum62, -10, -1)

In recent Biopython versions, format_alignment will only print the aligned part of a local alignment (together with
the start positions in 1-based notation, as shown in the above example). If you are also interested in the non- aligned

parts of the sequences, use the keyword-parameter full_sequences=True:

>>> from Bio import pairwise2

>>> from Bio.Align import substitution_matrices

>>> blosum62 = substitution_matrices.load("BLOSUM62")

>>> alignments = pairwise2.align.localds("LSPADKTNVKAA", "PEEKSAV", blosum62, -10,
>>> print(pairwise2.format_alignment(*alignments[0], full_sequences=True))

(continues on next page)
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LSPADKTNVKAA
[
--PEEKSAV---
Score=16

Note that local alignments must, as defined by Smith & Waterman, have a positive score (>0). Thus, pairwise2 may
return no alignments if no score >0 has been obtained. Also, pairwise2 will not report alignments which are the
result of the addition of zero-scoring extensions on either site. In the next example, the pairs serine/aspartic acid (S/D)
and lysine/asparagine (K/N) both have a match score of 0. As you see, the aligned part has not been extended:

>>> from Bio import pairwise2
>>> from Bio.Align import substitution_matrices
>>> blosum62 = substitution_matrices.load("BLOSUM62")
>>> alignments = pairwise2.align.localds("LSSPADKTNVKKAA", "DDPEEKSAVNN", blosum62, -10,.
—~-1)
>>> print(pairwise2.format_alignment(*alignments[0]))
4 PADKTNV
[..]..]
3 PEEKSAV
Score=16

Instead of supplying a complete match/mismatch matrix, the match code m allows for easy defining general
match/mismatch values. The next example uses match/mismatch scores of 5/-4 and gap penalties (open/extend) of
2/0.5 using localms:

>>> alignments = pairwise2.align.localms("AGAACT", "GAC", 5, -4, -2, -0.5)
>>> print(pairwise2.format_alignment(*alignments[0]))
2 GAAC
[ 11
1 G-AC
Score=13

One useful keyword argument of the Bio.pairwise2.align functions is score_only. When set to True it will only
return the score of the best alignment(s), but in a significantly shorter time. It will also allow the alignment of longer
sequences before a memory error is raised. Another useful keyword argument is one_alignment_only=True which
will also result in some speed gain.

Unfortunately, Bio.pairwise2 does not work with Biopython’s multiple sequence alignment objects (yet). However,
the module has some interesting advanced features: you can define your own match and gap functions (interested
in testing affine logarithmic gap costs?), gap penalties and end gaps penalties can be different for both sequences,
sequences can be supplied as lists (useful if you have residues that are encoded by more than one character), etc. These
features are hard (if at all) to realize with other alignment tools. For more details see the module’s API documentation
Bio.pairwise2.
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TEN

BLAST (NEW)

Hey, everybody loves BLAST right? I mean, geez, how can it get any easier to do comparisons between one of your
sequences and every other sequence in the known world? But, of course, this section isn’t about how cool BLAST is,
since we already know that. It is about the problem with BLAST — it can be really difficult to deal with the volume of
data generated by large runs, and to automate BLAST runs in general.

Fortunately, the Biopython folks know this only too well, so they’ve developed lots of tools for dealing with BLAST
and making things much easier. This section details how to use these tools and do useful things with them.

Dealing with BLAST can be split up into two steps, both of which can be done from within Biopython. Firstly, running
BLAST for your query sequence(s), and getting some output. Secondly, parsing the BLAST output in Python for further
analysis.

Your first introduction to running BLAST was probably via the NCBI BLAST web page. In fact, there are lots of ways
you can run BLAST, which can be categorized in several ways. The most important distinction is running BLAST
locally (on your own machine), and running BLAST remotely (on another machine, typically the NCBI servers). We're
going to start this chapter by invoking the NCBI online BLAST service from within a Python script.

10.1 Running BLAST over the Internet

We use the function gblast in the Bio.Blast module to call the online version of BLAST.
The NCBI guidelines state:
1. Do not contact the server more often than once every 10 seconds.
2. Do not poll for any single RID more often than once a minute.
3. Use the URL parameter email and tool, so that the NCBI can contact you if there is a problem.
4

. Run scripts weekends or between 9 pm and 5 am Eastern time on weekdays if more than 50 searches will be
submitted.

Blast.gblast follows the first two points automatically. To fulfill the third point, set the Blast.email variable (the
Blast.tool variable is already set to "biopython" by default):

>>> from Bio import Blast

>>> Blast.tool

'biopython'

>>> Blast.email = "A.N.Other@example.com"
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10.1.1 BLAST arguments

The gblast function has three non-optional arguments:

* The first argument is the BLAST program to use for the search, as a lower case string. The programs and their
options are described at the NCBI BLAST web page. Currently gblast only works with blastn, blastp, blastx,
tblast and tblastx.

* The second argument specifies the databases to search against. Again, the options for this are available on NCBI’s
BLAST Help pages.

* The third argument is a string containing your query sequence. This can either be the sequence itself, the sequence
in fasta format, or an identifier like a GI number.

The gblast function also takes a number of other option arguments, which are basically analogous to the different
parameters you can set on the BLAST web page. We’ll just highlight a few of them here:

¢ The argument url_base sets the base URL for running BLAST over the internet. By default it connects to the
NCBI, but one can use this to connect to an instance of NCBI BLAST running in the cloud. Please refer to the
documentation for the gblast function for further details.

* The gblast function can return the BLAST results in various formats, which you can choose with the optional
format_type keyword: "XML", "HTML", "Text", "XML2", "JSON2", or "Tabular". The default is "XML", as
that is the format expected by the parser, described in section Parsing BLAST output below.

* The argument expect sets the expectation or e-value threshold.

For more about the optional BLAST arguments, we refer you to the NCBI’s own documentation, or that built into
Biopython:

>>> from Bio import Blast
>>> help(Blast.qgblast)

Note that the default settings on the NCBI BLAST website are not quite the same as the defaults on QBLAST. If you
get different results, you’ll need to check the parameters (e.g., the expectation value threshold and the gap values).

For example, if you have a nucleotide sequence you want to search against the nucleotide database (nt) using BLASTN,
and you know the GI number of your query sequence, you can use:

>>> from Bio import Blast
>>> result_stream = Blast.gblast("blastn",

nt", "8332116")

Alternatively, if we have our query sequence already in a FASTA formatted file, we just need to open the file and read
in this record as a string, and use that as the query argument:

>>> from Bio import Blast
>>> fasta_string = open("m_cold.fasta").read()
>>> result_stream = Blast.gblast("blastn", "nt", fasta_string)

We could also have read in the FASTA file as a SeqRecord and then supplied just the sequence itself:

>>> from Bio import Blast

>>> from Bio import SeqIO

>>> record = SeqlIO.read("m_cold.fasta", "fasta")

>>> result_stream = Blast.gblast("blastn", "nt", record.seq)

Supplying just the sequence means that BLAST will assign an identifier for your sequence automatically. You might
prefer to call format on the SeqRecord object to make a FASTA string (which will include the existing identifier):
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>>> from Bio import Blast

>>> from Bio import SeqIO

>>> records = SeqlO.parse("ls_orchid.gbk", "genbank™)

>>> record = next(records)

>>> result_stream = Blast.gblast("blastn", "nt", format(record, "fasta"))

This approach makes more sense if you have your sequence(s) in a non-FASTA file format which you can extract using
Bio.SeqIO (see Chapter Sequence Input/Output).

10.1.2 Saving BLAST results

Whatever arguments you give the gblast () function, you should get back your results as a stream of bytes data (by
default in XML format). The next step would be to parse the XML output into Python objects representing the search
results (Section Parsing BLAST output), but you might want to save a local copy of the output file first. I find this
especially useful when debugging my code that extracts info from the BLAST results (because re-running the online
search is slow and wastes the NCBI computer time).

We need to be a bit careful since we can use result_stream.read() to read the BLAST output only once — calling
result_stream.read() again returns an empty bytes object.

>>> with open("my_blast.xml", "wb") as out_stream:
out_stream.write(result_stream.read())

>>> result_stream.close()

After doing this, the results are in the file my_blast.xml and result_stream has had all its data extracted (so we
closed it). However, the parse function of the BLAST parser (described in Parsing BLAST output) takes a file-like
object, so we can just open the saved file for input as bytes:

[>>> result_stream = open("my_blast.xml", "rb")

Now that we’ve got the BLAST results back into a data stream again, we are ready to do something with them, so this
leads us right into the parsing section (see Section Parsing BLAST output below). You may want to jump ahead to that
now ....

10.1.3 Obtaining BLAST output in other formats

By using the format_type argument when calling gblast, you can obtain BLAST output in formats other than XML.
Below is an example of reading BLAST output in JSON format. Using format_type="JSON2", the data provided by
Blast.gblast will be in zipped JSON format:

>>> from Bio import Blast

>>> from Bio import SeqIO

>>> record = SeqlO.read("m_cold.fasta", "fasta")

>>> result_stream = Blast.gblast("blastn"”, "nt", record.seq, format_type="JSON2")
>>> data = result_stream.read()

>>> datal[:4]

b'PK\x03\x04"'

which is the ZIP file magic number.
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>>> with open('myzipfile.zip", "wb") as out_stream:
out_stream.write(data)

13813

Note that we read and write the data as bytes. Now open the ZIP file we created:

>>> import zipfile

>>> myzipfile = zipfile.ZipFile("myzipfile.zip")
>>> myzipfile.namelist ()

['N5KN7UMJO013.json', 'N5KN7UM]013_1.json']

>>> stream = myzipfile.open("'N5KN7UMI013.json")
>>> data = stream.read()

These data are bytes, so we need to decode them to get a string object:

>>> data = data.decode()
>>> print(data)
{
"BlastJSON": [
{"File": "NS5KN7UMJO13_1.json" }

Now open the second file contained in the ZIP file to get the BLAST results in JSON format:

>>> stream = myzipfile.open("'N5KN7UMI013_1.json")
>>> data = stream.read()

>>> len(data)

145707

>>> data = data.decode()

>>> print(data)

{
"BlastOutput2": {
"report": {
"program": "blastn",

"version": "BLASTN 2.14.1+",
"reference": "Stephen F. Altschul, Thomas L. Madden, Alejandro A.
"search_target": {
"db": "nt"
L
"params": {
"expect": 10,
"sc_match": 2,
"sc_mismatch": -3,
"gap_open": 5,
"gap_extend": 2,
"filter": "L;m;"
Ee
"results": {
"search": {
"query_id": "Query_69183",
"query_len": 1111,

(continues on next page)
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"query_masking": [

{
"from": 797,
"to": 1110
}
] H
"hits": [
{
"num": 1,
"description": [
{

"id": "gi|1219041180|ref|XM_021875076.1|",

We can use the JSON parser in Python’s standard library to convert the JSON data into a regular Python dictionary:

>>> import json

>>> d = json.loads(data)

>>> print(d)

{'BlastOutput2': {'report': {'program': 'blastn', 'version': 'BLASTN 2.14.1+',
'reference': 'Stephen F. Altschul, Thomas L. Madden, Alejandro A. Sch&auml;ffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),

"Gapped BLAST and PSI-BLAST: a new generation of protein database search programs",
Nucleic Acids Res. 25:3389-3402.',

'search_target': {'db': 'nt'}, 'params': {'expect': 10, 'sc_match': 2,
'sc_mismatch': -3, 'gap_open': 5, 'gap_extend': 2, 'filter': 'L;m;'},

'results': {'search': {'query_id': 'Query_128889', 'query_len': 1111,
'query_masking': [{'from': 797, 'to': 1110}], 'hits': [{'num': 1,

'description': [{'id': 'gi|1219041180|ref|XM_021875076.1|"', 'accession':
'XM_021875076', 'title':

'PREDICTED: Chenopodium quinoa cold-regulated 413 plasma membrane protein 2-like,,

- (LOC110697660), mRNA',

'taxid': 63459, 'sciname': 'Chenopodium quinoa'}], 'len': 1173, 'hsps':
[{'num': 1, 'bit_score': 435.898, 'score': 482, 'evalue': 9.02832e-117,
'identity': 473, 'query_from'

10.2 Running BLAST locally

10.2.1 Introduction

Running BLAST locally (as opposed to over the internet, see Section Running BLAST over the Internet) has at least
major two advantages:

* Local BLAST may be faster than BLAST over the internet;
* Local BLAST allows you to make your own database to search for sequences against.

Dealing with proprietary or unpublished sequence data can be another reason to run BLAST locally. You may not be
allowed to redistribute the sequences, so submitting them to the NCBI as a BLAST query would not be an option.

Unfortunately, there are some major drawbacks too — installing all the bits and getting it setup right takes some effort:
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* Local BLAST requires command line tools to be installed.

* Local BLAST requires (large) BLAST databases to be setup (and potentially kept up to date).

10.2.2 Standalone NCBI BLAST+

The “new” NCBI BLAST+ suite was released in 2009. This replaces the old NCBI “legacy” BLAST package (see
Other versions of BLAST).

This section will show briefly how to use these tools from within Python. If you have already read or tried the alignment
tool examples in Section Alignment Tools this should all seem quite straightforward. First, we construct a command
line string (as you would type in at the command line prompt if running standalone BLAST by hand). Then we can
execute this command from within Python.

For example, taking a FASTA file of gene nucleotide sequences, you might want to run a BLASTX (translation) search
against the non-redundant (NR) protein database. Assuming you (or your systems administrator) has downloaded and
installed the NR database, you might run:

[$ blastx -query opuntia.fasta -db nr -out opuntia.xml -evalue 0.001 -outfmt 5 ]

This should run BLASTX against the NR database, using an expectation cut-off value of 0.001 and produce XML
output to the specified file (which we can then parse). On my computer this takes about six minutes - a good reason to
save the output to a file so you can repeat any analysis as needed.

From within python we can use the subprocess module to build the command line string, and run it:

>>> import subprocess

>>> cmd = "blastx -query opuntia.fasta -db nr -out opuntia.xml"
>>> cmd += " -evalue 0.001 -outfmt 5"

>>> subprocess.run(cmd, shell=True)

In this example there shouldn’t be any output from BLASTX to the terminal. You may want to check the output file
opuntia.xml has been created.

As you may recall from earlier examples in the tutorial, the opuntia. fasta contains seven sequences, so the BLAST
XML output should contain multiple results. Therefore use Bio.Blast.parse() to parse it as described below in
Section Parsing BLAST output.

10.2.3 Other versions of BLAST

NCBI BLAST+ (written in C++) was first released in 2009 as a replacement for the original NCBI “legacy” BLAST
(written in C) which is no longer being updated. You may also come across Washington University BLAST (WU-
BLAST), and its successor, Advanced Biocomputing BLAST (AB-BLAST, released in 2009, not free/open source).
These packages include the command line tools wu-blastall and ab-blastall, which mimicked blastall from
the NCBI “legacy” BLAST suite. Biopython does not currently provide wrappers for calling these tools, but should be
able to parse any NCBI compatible output from them.
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10.3 Parsing BLAST output

As mentioned above, BLAST can generate output in various formats, such as XML, HTML, and plain text. Originally,
Biopython had parsers for BLAST plain text and HTML output, as these were the only output formats offered at the
time. These parsers have now been removed from Biopython, as the BLAST output in these formats kept changing,
each time breaking the Biopython parsers. Nowadays, Biopython can parse BLAST output in the XML format, the
XML2 format, and tabular format. This chapter describes the parser for BLAST output in the XML and XML?2 formats
using the Bio.Blast.parse function. This function automatically detects if the XML file is in the XML format or in
the XML2 format. BLAST output in tabular format can be parsed as alignments using the Bio.Align.parse function
(see the section Tabular output from BLAST or FASTA).

You can get BLAST output in XML format in various ways. For the parser, it doesn’t matter how the output was
generated, as long as it is in the XML format.

* You can use Biopython to run BLAST over the internet, as described in section Running BLAST over the Internet.
* You can use Biopython to run BLAST locally, as described in section Running BLAST locally.

* You can do the BLAST search yourself on the NCBI site through your web browser, and then save the results.
You need to choose XML as the format in which to receive the results, and save the final BLAST page you get
(you know, the one with all of the interesting results!) to a file.

* You can also run BLAST locally without using Biopython, and save the output in a file. Again, you need to
choose XML as the format in which to receive the results.

The important point is that you do not have to use Biopython scripts to fetch the data in order to be able to parse it.
Doing things in one of these ways, you then need to get a file-like object to the results. In Python, a file-like object or
handle is just a nice general way of describing input to any info source so that the info can be retrieved using read ()
and readline () functions (see Section What the heck is a handle?).

If you followed the code above for interacting with BLAST through a script, then you already have result_stream,
the file-like object to the BLAST results. For example, using a GI number to do an online search:

>>> from Bio import Blast
>>> result_stream = Blast.gblast("blastn", "nt", "8332116")

If instead you ran BLAST some other way, and have the BLAST output (in XML format) in the file my_blast.xml,
all you need to do is to open the file for reading (as bytes):

[>>> result_stream = open('"my_blast.xml", "rb") J

Now that we’ve got a data stream, we are ready to parse the output. The code to parse it is really quite small. If you
expect a single BLAST result (i.e., you used a single query):

>>> from Bio import Blast
>>> blast_record = Blast.read(result_stream)

or, if you have lots of results (i.e., multiple query sequences):

>>> from Bio import Blast
>>> blast_records = Blast.parse(result_stream)

Just like Bio.SeqIO and Bio.Align (see Chapters Sequence Input/Output and Sequence alignments), we have a pair
of input functions, read and parse, where read is for when you have exactly one object, and parse is an iterator for
when you can have lots of objects — but instead of getting SeqRecord or Alignment objects, we get BLAST record
objects.
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To be able to handle the situation where the BLAST file may be huge, containing thousands of results, Blast .parse()
returns an iterator. In plain English, an iterator allows you to step through the BLAST output, retrieving BLAST records
one by one for each BLAST search result:

>>> from Bio import Blast
>>> blast_records = Blast.parse(result_stream)
>>> blast_record = next(blast_records)
# ... do something with blast_record
>>> blast_record = next(blast_records)
# ... do something with blast_record
>>> blast_record = next(blast_records)
# ... do something with blast_record
>>> blast_record = next(blast_records)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
# No further records

Or, you can use a for-loop:

>>> for blast_record in blast_records:
pass # Do something with blast_record

Note though that you can step through the BLAST records only once. Usually, from each BLAST record you would
save the information that you are interested in.

Alternatively, you can use blast_records as a list, for example by extracting one record by index, or by calling len
or print on blast_records. The parser will then automatically iterate over the records and store them:

>>> from Bio import Blast

>>> blast_records = Blast.parse("xml_2222 blastx_001.xml")

>>> len(blast_records) # this causes the parser to iterate over all records

7

>>> blast_records[2].query.description

'gi|5690369|gb|AF158246.1|AF158246 Cricetulus griseus glucose phosphate isomerase (GPI)..
—.gene, partial intron sequence'

If your BLAST file is huge though, you may run into memory problems trying to save them all in a list.

If you start iterating over the records before using blast_records as a list, the parser will first reset the file stream
to the beginning of the data to ensure that all records are neing read. Note that this will fail if the stream cannot
be reset to the beginning, for example if the data are being read remotely (e.g. by gblast; see subsection Running
BLAST over the Internet). In those cases, you can explicitly read the records into a list by calling blast_records =
blast_records[:] before iterating over them. After reading in the records, it is safe to iterate over them or use them
as a list.

Instead of opening the file yourself, you can just provide the file name:

>>> from Bio import Blast
>>> with Blast.parse('"my_blast.xml") as blast_records:
for blast_record in blast_records:
pass # Do something with blast_record

In this case, Biopython opens the file for you, and closes it as soon as the file is not needed any more (while it is
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possible to simply use blast_records = Blast.parse("my_blast.xml"), it has the disadvantage that the file
may stay open longer than strictly necessary, thereby wasting resources).

You can print the records to get a quick overview of their contents:

>>> from Bio import Blast
>>> with Blast.parse('my_blast.xml") as blast_records:
print(blast_records)

Program:
db:
Query:

Hits:

BLASTN 2.2.27+
refseq_rna

42291 (length=61)

mystery_seq

# # HSP

0 NOoOYUVLLD WDN -

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
97
98
99

NNNNRNNNNRRRRRRNRRRRNRERRRNRDNR R R

==

0i]262205317 |ref|NR_030195.
09i[301171311|ref|NR_035856.
gi|270133242|ref|NR_032573.
gi|301171322|ref|NR_035857.
gi|301171267 |ref|NR_035851.
gi]262205330 | ref|NR_030198.
011262205302 |ref|NR_030191.
9i[301171259|ref|NR_035850.
gi|262205451|ref|NR_030222.
gi|301171447|ref|NR_035871.
gi|301171276|ref|NR_035852.
011262205290 |ref|NR_030188.
9i[301171354|ref|NR_035860.
gi|262205281|ref|NR_030186.
911262205298 | ref|NR_030190.
gi|301171394|ref|NR_035865.
011262205429 |ref|NR_030218.
011262205423 |ref|NR_030217.
gi|301171401|ref|NR_035866.
gi|270133247 | ref|NR_032574.
gi]262205309|ref|NR_030193.
gi|270132717 |ref|NR_032716.
09i[301171437 |ref|NR_035870.
9i]270133306|ref|NR_032587.
gi|301171428|ref|NR_035869.
gi|301171211|ref|NR_035845.
gi|301171153|ref|NR_035838.
9i[301171146|ref|NR_035837.
9i]270133254|ref|NR_032575.
gi|262205445|ref|NR_030221.

gi|356517317 |ref|XM_003527287
gi]297814701|ref|XM_002875188
0911397513516 |ref|XM_003827011

Homo sapiens microRNA 52...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Homo sapiens microRNA 52...
Homo sapiens microRNA 51...
Pan troglodytes microRNA...
Homo sapiens microRNA 51...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Homo sapiens microRNA 51...
Pan troglodytes microRNA...
Homo sapiens microRNA 52...
Homo sapiens microRNA 52...
Pan troglodytes microRNA...
Homo sapiens microRNA 51...
Homo sapiens microRNA 52...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Homo sapiens microRNA 52...
Macaca mulatta microRNA ...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Homo sapiens microRNA 51...

.1| PREDICTED: Glycine ma...
.1| Arabidopsis lyrata su...
.1| PREDICTED: Pan panisc...

Usually, you’ll be running one BLAST search at a time. Then, all you need to do is to pick up the first (and only)
BLAST record in blast_records:
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>>> from Bio import Blast
>>> blast_records = Blast.parse('"my_blast.xml")
>>> blast_record = next(blast_records)

or more elegantly:

>>> from Bio import Blast
>>> blast_record = Blast.read(result_stream)

or, equivalently,

>>> from Bio import Blast
>>> blast_record = Blast.read('"my_blast.xml")

(here, you don’t need to use a with block as Blast.read will read the whole file and close it immediately afterwards).

I guess by now you’re wondering what is in a BLAST record.

10.4 The BLAST Records, Record, and Hit classes

10.4.1 The BLAST Records class

A single BLAST output file can contain output from multiple BLAST queries. In Biopython, the information in a
BLAST output file is stored in an Bio.Blast.Records object. This is an iterator returning one Bio.Blast.Record
object (see subsection The BLAST Record class) for each query. The Bio.Blast.Records object has the following
attributes describing the BLAST run:

source: The input data from which the Bio.Blast.Records object was constructed (this could be a file name
or path, or a file-like object).

program: The specific BLAST program that was used (e.g., *blastn’).

version: The version of the BLAST program (e.g., ' BLASTN 2.2.27+").

reference: The literature reference to the BLAST publication.

db: The BLAST database against which the query was run (e.g., 'nr’).

query: A SeqRecord object which may contain some or all of the following information:
— query.id: Seqld of the query;
— query.description: Definition line of the query;
— query.seq: The query sequence.

param: A dictionary with the parameters used for the BLAST run. You may find the following keys in this
dictionary:

— 'matrix': the scoring matrix used in the BLAST run (e.g., ' BLOSUMG62’) (string);

'expect': threshold on the expected number of chance matches (float);

'include': e-value threshold for inclusion in multipass model in psiblast (float);

'sc-match': score for matching nucleotides (integer);

— "sc-mismatch': score for mismatched nucleotides (integer;

'gap-open': gap opening cost (integer);
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— 'gap-extend': gap extension cost (integer);

— "filter': filtering options applied in the BLAST run (string);
— 'pattern': PHI-BLAST pattern (string);

— 'entrez-query': Limit of request to Entrez query (string).

* mbstat: A dictionary with Mega BLAST search statistics. See the description of the Record. stat attribute be-
low (in subsection The BLAST Record class) for a description of the items in this dictionary. Only older versions
of Mega BLAST store this information. As it is stored near the end of the BLAST output file, this attribute can
only be accessed after the file has been read completely (by iterating over the records until a StopIteration is
issued).

For our example, we find:

>>> blast_records
<Bio.Blast.Records source="my_blast.xml' program='blastn' version='BLASTN 2.2.27+' db=
- 'refseq_rna'>
>>> blast_records.source
'my_blast.xml'
>>> blast_records.program
'blastn’
>>> blast_records.version
'BLASTN 2.2.27+'
>>> blast_records.reference
'Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng..
—~Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new.
-.generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.'
>>> blast_records.db
'refseq_rna'
>>> blast_records.param
{'expect': 10.0, 'sc-match': 2, 'sc-mismatch': -3, 'gap-open': 5, 'gap-extend': 2,
~'"filter': 'L;m;'}
>>> print(blast_records)
Program: BLASTN 2.2.27+
db: refseq_rna

Query: 42291 (length=61)
mystery_seq
Hits: ---- ----- == - oo e e p -

1 gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 52...
1 1 gi|301171311|ref|NR_035856.1|] Pan troglodytes microRNA...
2 1 gi|270133242|ref|NR_032573.1| Macaca mulatta microRNA ...
3 2 gi|301171322|ref|NR_035857.1|] Pan troglodytes microRNA...

10.4. The BLAST Records, Record, and Hit classes 235




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

10.4.2 The BLAST Record class

A Bio.Blast.Record object stores the information provided by BLAST for a single query. The Bio.Blast.Record
class inherits from 1list, and is essentially a list of Bio.Blast.Hit objects (see section The BLAST Hit class). A
Bio.Blast.Record object has the following two attributes:

e query: A SeqRecord object which may contain some or all of the following information:
— query.id: Seqld of the query;
— query.description: Definition line of the query;
— query.seq: The query sequence.
e stat: A dictionary with statistical data of the BLAST hit. You may find the following keys in this dictionary:
— "db-num': number of sequences in BLAST db (integer);
— 'db-len': length of BLAST db (integer);
— 'hsp-len': effective HSP (High Scoring Pair) length (integer);
— 'eff-space': effective search space (float);

— 'kappa': Karlin-Altschul parameter K (float);

'lambda’: Karlin-Altschul parameter Lambda (float);

'entropy': Karlin-Altschul parameter H (float)
* message: Some (error?) information.

Continuing with our example,

>>> blast_record
<Bio.Blast.Record query.id='42291"; 100 hits>
>>> blast_record.query
SeqRecord(seq=Seq(None, length=61), id='42291', name='<unknown name>', description=
<~ 'mystery_seq', dbxrefs=[])
>>> blast_record.stat
{'db-num': 3056429, 'db-len': 673143725, 'hsp-len': 0, 'eff-space': 0, 'kappa': 0.41,
—'lambda': 0.625, 'entropy': 0.78}
>>> print(blast_record)

Query: 42291 (length=61)

mystery_seq
HitsS: ———- ——mmm oo
# # HSP 1ID + description

0 1 gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 52...
1 1 gi|301171311|ref|NR_035856.1| Pan troglodytes microRNA...
2 1 gi|270133242|ref|NR_032573.1| Macaca mulatta microRNA ...
3 2 gi|301171322|ref|NR_035857.1| Pan troglodytes microRNA...

As the Bio.Blast.Record class inherits from 1ist, you can use it as such. For example, you can iterate over the
record:

>>> for hit in blast_record:
hit

(continues on next page)
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(continued from previous page)

<Bio.Blast.Hit target.id='gi|262205317|ref|NR_030195.1|"' query.id="42291'; 1 HSP>
<Bio.Blast.Hit target.id='gi|301171311|ref|NR_035856.1|"' query.id="'42291'; 1 HSP>
<Bio.Blast.Hit target.id='gi|270133242|ref|NR_032573.1|"' query.id="'42291'; 1 HSP>
<Bio.Blast.Hit target.id='gi|301171322|ref|NR_035857.1|"' query.id='42291'; 2 HSPs>
<Bio.Blast.Hit target.id='gi|301171267|ref|NR_035851.1|" query.id="'42291'; 1 HSP>

To check how many hits the blast_record has, you can simply invoke Python’s 1en function:

>>> len(blast_record)
100

Like Python lists, you can retrieve hits from a Bio.Blast.Record using indices:

>>> blast_record[0] # retrieves the top hit

<Bio.Blast.Hit target.id='gi|262205317|ref|NR_030195.1|"' query.id="42291'; 1 HSP>
>>> blast_record[-1] # retrieves the last hit

<Bio.Blast.Hit target.id='gi|397513516|ref|XM_003827011.1|"' query.id='42291'; 1 HSP>

To retrieve multiple hits from a Bio.Blast.Record, you can use the slice notation. This will return a new Bio.
Blast.Record object containing only the sliced hits:

>>> blast_slice = blast_record[:3] # slices the first three hits
>>> print(blast_slice)
Query: 42291 (length=61)
mystery_seq
Hits: ---- ----- ——mmmmmmm -
# # HSP 1ID + description

0 1 gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 52...
1 1 gi|301171311|ref|NR_035856.1] Pan troglodytes microRNA...
2 1 gi|270133242|ref|NR_032573.1|] Macaca mulatta microRNA ...

To create a copy of the Bio.Blast.Record, take the full slice:

>>> blast_record_copy = blast_record[:]

>>> type(blast_record_copy)

<class 'Bio.Blast.Record'>

>>> blast_record_copy # list of all hits
<Bio.Blast.Record query.id='42291"; 100 hits>

This is particularly useful if you want to sort or filter the BLAST record (see Sorting and filtering BLAST output), but
want to retain a copy of the original BLAST output.

You can also access blast_record as a Python dictionary and retrieve hits using the hit’s ID as key:

>>> blast_record['gi|262205317|ref|NR_030195.1|"]
<Bio.Blast.Hit target.id='gi|262205317 |ref|NR_030195.1|" query.id="'42291'; 1 HSP>

If the ID is not found in the blast_record, a KeyError is raised:

>>> blast_record["unicorn_gene"]
Traceback (most recent call last):
(continues on next page)
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(continued from previous page)

KeyError: 'unicorn_gene'

You can get the full list of keys by using .keys () as usual:

>>> blast_record.keys()
['gi|262205317 |ref|NR_030195.1|"', 'gi|301171311|ref|NR_035856.1|"', 'gi|270133242|ref|NR_
—032573.1]", ...]

What if you just want to check whether a particular hit is present in the query results? You can do a simple Python
membership test using the in keyword:

>>> "gi|262205317 |ref|NR_030195.1|" in blast_record
True
>>> "gi[262205317 | ref|NR_030194.1|" in blast_record
False

Sometimes, knowing whether a hit is present is not enough; you also want to know the rank of the hit. Here, the index
method comes to the rescue:

>>> blast_record.index("gi|301171437 |ref|NR_035870.1|")
22

Remember that Python uses zero-based indexing, so the first hit will be at index O.

10.4.3 The BLAST Hit class

Each Bio.Blast.Hit object in the blast_record list represents one BLAST hit of the query against a target.

>>> hit = blast_record[0]

>>> hit

<Bio.Blast.Hit target.id='gi|262205317|ref|NR_030195.1|"' query.id='42291'; 1 HSP>

>>> hit.target

SeqRecord(seq=Seq(None, length=61), id='gi|262205317|ref|NR_030195.1|"', name='NR_030195',
<, description="Homo sapiens microRNA 520b (MIR520B), microRNA', dbxrefs=[])

We can get a summary of the hit by printing it:

>>> print(blast_record[3])
Query: 42291
mystery_seq
Hit: gi|301171322|ref|NR_035857.1| (length=86)
Pan troglodytes microRNA mir-520c (MIR520C), microRNA

PR === occo=ss== cocosssos  cososs  coososoooossoos | oococosooosoossoossoo
# E-value Bit score Span Query range Hit range
® 8.9e-20 100.47 60 [1:61] [13:73]
1 3.3e-06 55.39 60 [0:60] [73:13]

You see that we’ve got the essentials covered here:

* A hit is always for one query; the query ID and description are shown at the top of the summary.
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* A hit consists of one or more alignments of the query against one target sequence. The target information is
shown next is the summary. As shown above, the target can be accessed via the target attribute of the hit.

* Finally, there’s a table containing quick information about the alignments each hit contains. In BLAST parlance,
these alignments are called “High-scoring Segment Pairs”, or HSPs (see section The BLAST HSP class). Each
row in the table summarizes one HSP, including the HSP index, e-value, bit score, span (the alignment length
including gaps), query coordinates, and target coordinates.

The Bio.Blast.Hit class is a subclass of Bio.Align.Alignments (plural; see Section The Alignments class), and
therefore in essence is a list of Bio.Align.Alignment (singular; see Section Alignment objects) objects. In particular
when aligning nucleotide sequences against the genome, the Bio.Blast.Hit object may consist of more than one Bio.
Align.Alignment if a particular query aligns to more than one region of a chromosome. For protein alignments,
usually a hit consists of only one alignment, especially for alignments of highly homologous sequences.

>>> type(hit)

<class 'Bio.Blast.Hit'>

>>> from Bio.Align import Alignments
>>> isinstanceChit, Alignments)

True

>>> len(hit)

1

For BLAST output in the XML2 format, a hit may have several targets with identical sequences but different sequence
IDs and descriptions. These targets are accessible as the hit.targets attribute. In most cases, hit.targets has
length 1 and only contains hit.target:

>>> from Bio import Blast
>>> blast_record = Blast.read("xml_2900_blastx_001_v2.xml")
>>> for hit in blast_record:

print(lenchit.targets))

N N L S S

However, as you can see in the output above, the third hit has multiple targets.

>>> hit = blast_record[2]

>>> hit.targets[0].seq
Seq(None, length=246)

>>> hit.targets[1].seq
Seq(None, length=246)

>>> hit.targets[0].id
'gi|684409690 | ref|XP_009175831.1]"
>>> hit.targets[1].id

'gi| 663044098 |gb|KER20427.1|"
>>> hit.targets[0].name
'XP_009175831"'

(continues on next page)
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>>> hit.targets[1].name

'KER20427"'

>>> hit.targets[0].description

'hypothetical protein T265_11027 [Opisthorchis viverrini]'
>>> hit.targets[1].description

'hypothetical protein T265_11027 [Opisthorchis viverrini]'

As the sequence contents for the two targets are identical to each other, their sequence alignments are also identical. The
alignments for this hit therefore only refers to hit.targets[0] (which is identical to hit.target), as the alignment
for hit.targets[1] would be the same anyway.

10.4.4 The BLAST HSP class

Let’s return to our main example, and look at the first (and only) alignment in the first hit. This alignment is an instance
of the Bio.Blast.HSP class, which is a subclass of the Alignment class in Bio.Align:

>>> from Bio import Blast

>>> blast_record = Blast.read('"my_blast.xml")
>>> hit = blast_record[0]

>>> len(hit)

1

>>> alignment = hit[0]

>>> alignment

<Bio.Blast.HSP target.id='gi|262205317 |ref|NR_030195.1|"' query.id='42291"; 2 rows x 61.
—columns>

>>> type(alignment)

<class 'Bio.Blast.HSP'>

>>> from Bio.Align import Alignment

>>> isinstance(alignment, Alignment)

True

The alignment object has attributes pointing to the target and query sequences, as well as a coordinates attribute
describing the sequence alignment.

>>> alignment.target
SeqgRecord(seq=Seq (' CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT. ..GGG'), id=
—'9i262205317 |[ref|NR_030195.1|"', name='NR_030195', description="Homo sapiens microRNA._
—520b (MIR520B), microRNA', dbxrefs=[])
>>> alignment.query
SegRecord(seq=Seq (' CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT. ..GGG'), id=
. '42291"', name='<unknown name>', description='mystery_seq', dbxrefs=[])
>>> alignment.target
SeqgRecord(seq=Seq (' CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT. ..GGG'), id=
< 'gi]262205317 |ref|NR_030195.1|"', name="'NR_030195', description='Homo sapiens microRNA._
—520b (MIR520B), microRNA', dbxrefs=[])
>>> alignment.query
SegRecord(seq=Seq (' CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT. ..GGG'), id=
<, '42291"', name='<unknown name>', description='mystery_seq', dbxrefs=[])
>>> print(alignment.coordinates)

[[ 061]

[ 0 6111
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For translated BLAST searches, the features attribute of the target or query may contain a SeqFeature of type CDS
that stores the amino acid sequence region. The qualifiers attribute of such a feature is a dictionary with a single
key 'coded_by"'; the corresponding value specifies the nucleotide sequence region, in a GenBank-style string with
1-based coordinates, that encodes the amino acid sequence.

Each Alignment object has the following additional attributes:

» score: score of the High Scoring Pair (HSP);

e annotations: a dictionary that may contain the following keys:
— 'bit score': score (in bits) of HSP (float);
— 'evalue': e-value of HSP (float);
— 'identity’: number of identities in HSP (integer);
— 'positive': number of positives in HSP (integer);
— 'gaps': number of gaps in HSP (integer);
— 'midline': formatting middle line.

The usual Alignment methods (see Section Alignment objects) can be applied to the alignment. For example, we
can print the alignment:

>>> print(alignment)

Query : 42291 Length: 61 Strand: Plus
mystery_seq

Target: gi|262205317|ref|NR_030195.1| Length: 61 Strand: Plus
Homo sapiens microRNA 520b (MIR520B), microRNA

Score:111 bits(122), Expect:5e-23,
Identities:61/61(100%), Positives:61/61(100%), Gaps:0.61(0%)

911262205 ® CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGG
O [HEEEEEEEErErrr et e e et e e e e e e e e e e ey
42291 ® CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGG
911262205 60 G 61
60 | 61
42291 60 G 61

Let’s just print out some summary info about all hits in our BLAST record greater than a particular threshold:

>>> E_VALUE_THRESH = 0.04
>>> for alignments in blast_record:
for alignment in alignments:
if alignment.annotations["evalue"] < E_VALUE_THRESH:

print ("****Alignment****")

print("sequence:", alignment.target.id, alignment.target.description)
print("length:", len(alignment.target))

print("score:", alignment.score)

print("e value:", alignment.annotations["evalue"])

print(alignment[:, :50])

****Aligmnent****
sequence: gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 520b (MIR520B), microRNA

(continues on next page)
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length: 61
score: 122.0
e value: 4.91307e-23

gi|262205 0 CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTC 50

O THEEEEEEEEEEEErr et e e e e e e e e e e e e e e e e e e e e 50
42291 0 CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTC 50
****Alignment****

sequence: ¢gi|301171311|ref|NR_035856.1| Pan troglodytes microRNA mir-520b (MIR520B),..
—»microRNA

length: 60

score: 120.0

e value: 1.71483e-22

gi|301171 0 CCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCC 50

O THEEEEEEEEEEEErrr ettt e e e e e e e e e e e e e e e e e e e e 50
42291 1 CCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCC 51
****Alignment****

sequence: ¢gi|270133242|ref|NR_032573.1| Macaca mulatta microRNA mir-519a (MIR519A),.
—»microRNA

length: 85

score: 112.0

e value: 2.54503e-20

91270133 12 CCCTCTAGAGGGAAGCGCTTTCTGTGGTCTGAAAGAAAAGAAAGTGCTTC 62
O [T EErEr e e e e e e e e e e e e e e e 50
42291 ® CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTC 50

10.4.5 Sorting and filtering BLAST output

If the ordering of hits in the BLAST output file doesn’t suit your taste, you can use the sort method to resort the hits
in the Bio.Blast.Record object. As an example, here we sort the hits based on the sequence length of each target,
setting the reverse flag to True so that we sort in descending order.

>>> for hit in blast_record[:5]:
print(f"/hit.target.id} {lenChit.target) ")

911262205317 |ref|NR_030195.1| 61
9i[301171311|ref|NR_035856.1| 60
911270133242 |ref|NR_032573.1| 85
9i[301171322|ref|NR_035857.1| 86
9i[301171267 |ref|NR_035851.1| 80

>>> sort_key = lambda hit: lenchit.target)

>>> blast_record.sort(key=sort_key, reverse=True)

>>> for hit in blast_recordt[:5]:
print(f"/hit.target.id} {lenChit.target) ")

gi]397513516|ref|XM_003827011.1| 6002
911390332045 |ref|XM_776818.2| 4082
911390332043 |ref|XM_003723358.1| 4079

(continues on next page)
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9i[356517317 |ref|XM_003527287.1] 3251
9i[356543101|ref|XM_003539954.1| 2936

This will sort blast_record in place. Use original_blast_record = blast_record[:] before sorting if you
want to retain a copy of the original, unsorted BLAST output.

To filter BLAST hits based on their properties, you can use Python’s built-in filter with the approciate callback
function to evaluate each hit. The callback function must accept as its argument a single Hit object and return True
or False. Here is an example in which we filter out Hit objects that only have one HSP:

>>> filter_func = lambda hit: lenchit) > 1 # the callback function

>>> len(blast_record) # no. of hits before filtering

100

>>> blast_record[:] = filter(filter_func, blast_record)

>>> len(blast_record) # no. of hits after filtering

37

>>> for hit in blast_record[:5]: # quick check for the hit lengths
print(£f"/hit.target.id lenChit) /')

gi]301171322|ref|NR_035857.1]
911262205330 |ref|NR_030198.1]
0911301171447 |ref|NR_035871.1]
9i[262205298|ref|NR_030190.1|
g9i]270132717 |ref|NR_032716.1]

NN DNDNDDN

Similarly, you can filter HSPs in each hit, for example on their e-value:

>>> filter_func = lambda hsp: hsp.annotations["evalue"] < 1.0e-12
>>> for hit in blast_record:
hit[:] = filter(filter_func, hit)

Probably you’d want to follow this up by removing all hits with no HSPs remaining:

>>> filter_func = lambda hit: lenchit) > 0

>>> blast_record[:] = filter(filter_func, blast_record)
>>> len(blast_record)

16

Use Python’s built-in map function to modify hits or HSPs in the BLAST record. The map function accepts a callback
function returning the modified hit object. For example, we can use map to rename the hit IDs:

>>> for hit in blast_record[:5]:
print(hit.target.id)

gi[301171322|ref|NR_035857.1]
911262205330 |ref|NR_030198.1|
gi|301171447 |ref|NR_035871.1]|
gi[262205298 | ref|NR_030190.1|
gi|270132717 |ref|NR_032716.1|
>>> import copy
>>> original_blast_record = copy.deepcopy(blast_record)
>>> def map_func(hit):
(continues on next page)

10.4. The BLAST Records, Record, and Hit classes 243




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

(continued from previous page)

# renames 'gi[301171322|ref|NR_035857.1|" to "NR_035857.1"
hit.target.id = hit.target.id.split("|")[3]
return hit

>>> blast_record[:] = map(map_func, blast_record)
>>> for hit in blast_record[:5]:
printChit.target.id)

NR_035857.1

NR_030198.1

NR_035871.1

NR_030190.1

NR_032716.1

>>> for hit in original_blast_record[:5]:
print(hit.target.id)

911301171322 |ref|NR_035857.1]
9i[262205330|ref|NR_030198.1|
gi]301171447 |ref|NR_035871.1]
011262205298 |ref|NR_030190.1|
911270132717 |ref|NR_032716.1]

Note that in this example, map_func modifies the hit in-place. In contrast to sorting and filtering (see above), using
original_blast_record = blast_record[:] is not sufficient to retain a copy of the unmodified BLAST record,
as it creates a shallow copy of the BLAST record, consisting of pointers to the same Hit objects. Instead, we use
copy .deepcopy to create a copy of the BLAST record in which each Hit object is duplicated.

10.5 Writing BLAST records

Use the write function in Bio.Blast to save BLAST records as an XML file. By default, the (DTD-based) XML
format is used; you can also save the BLAST records in the (schema-based) XML?2 format by using the fmt="XML2"
argument to the write function.

>>> from Bio import Blast

>>> stream = Blast.gblast("blastn", "nt", "8332116")
>>> records = Blast.parse(stream)

>>> Blast.write(records, "my_gblast_output.xml™)

or

[>>> Blast.write(records, "my_qgblast_output.xml", fmt="XML2") ]

In this example, we could have saved the data returned by Blast.qgblast directly to an XML file (see section Saving
BLAST results). However, by parsing the data returned by gblast into records, we can sort or filter the BLAST records
before saving them. For example, we may be interested only in BLAST HSPs with a positive score of at least 400:

>>> filter_func = lambda hsp: hsp.annotations["positive"] >= 400
>>> for hit in records[0]:
hit[:] = filter(filter_func, hit)

>>> Blast.write(records, "my_gblast_output_selected.xml")

244 Chapter 10. BLAST (new)



Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

Instead of a file name, the second argument to Blast.write can also be a file stream. In that case, the stream must be
opened in binary format for writing:

>>> with open("my_gblast_output.xml", "wb") as stream:
Blast.write(records, stream)

10.6 Dealing with PSI-BLAST

You can run the standalone version of PSI-BLAST (psiblast) directly from the command line or using python’s
subprocess module.

At the time of writing, the NCBI do not appear to support tools running a PSI-BLAST search via the internet.

Note that the Bio.Blast parser can read the XML output from current versions of PSI-BLAST, but information like
which sequences in each iteration is new or reused isn’t present in the XML file.

10.7 Dealing with RPS-BLAST

You can run the standalone version of RPS-BLAST (rpsblast) directly from the command line or using python’s
subprocess module.

At the time of writing, the NCBI do not appear to support tools running an RPS-BLAST search via the internet.

You can use the Bio.Blast parser to read the XML output from current versions of RPS-BLAST.
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CHAPTER
ELEVEN

BLAST (OLD)

Hey, everybody loves BLAST right? I mean, geez, how can it get any easier to do comparisons between one of your
sequences and every other sequence in the known world? But, of course, this section isn’t about how cool BLAST is,
since we already know that. It is about the problem with BLAST — it can be really difficult to deal with the volume of
data generated by large runs, and to automate BLAST runs in general.

Fortunately, the Biopython folks know this only too well, so they’ve developed lots of tools for dealing with BLAST
and making things much easier. This section details how to use these tools and do useful things with them.

Dealing with BLAST can be split up into two steps, both of which can be done from within Biopython. Firstly, running
BLAST for your query sequence(s), and getting some output. Secondly, parsing the BLAST output in Python for further
analysis.

Your first introduction to running BLAST was probably via the NCBI web-service. In fact, there are lots of ways you
can run BLAST, which can be categorized in several ways. The most important distinction is running BLAST locally
(on your own machine), and running BLAST remotely (on another machine, typically the NCBI servers). We're going
to start this chapter by invoking the NCBI online BLAST service from within a Python script.

NOTE: The following Chapter BLAST and other sequence search tools describes Bio.SearchIO. We intend this to
ultimately replace the older Bio.Blast module, as it provides a more general framework handling other related se-

quence searching tools as well. However, for now you can use either that or the older Bio.Blast module for dealing
with NCBI BLAST.

11.1 Running BLAST over the Internet

We use the function gblast() in the Bio.Blast.NCBIWWW module to call the online version of BLAST. This has
three non-optional arguments:

* The first argument is the blast program to use for the search, as a lower case string. The options and descriptions of
the programs are available at https://blast.ncbi.nlm.nih.gov/Blast.cgi. Currently gblast only works with blastn,
blastp, blastx, tblast and tblastx.

» The second argument specifies the databases to search against. Again, the options for this are available on the
NCBI Guide to BLAST https://blast.ncbi.nlm.nih.gov/doc/blast-help/.

 The third argument is a string containing your query sequence. This can either be the sequence itself, the sequence
in fasta format, or an identifier like a GI number.

The NCBI guidelines, from https://blast.ncbi.nlm.nih.gov/doc/blast-help/developerinfo.html#developerinfo state:
1. Do not contact the server more often than once every 10 seconds.
2. Do not poll for any single RID more often than once a minute.

3. Use the URL parameter email and tool, so that the NCBI can contact you if there is a problem.
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4. Run scripts weekends or between 9 pm and 5 am Eastern time on weekdays if more than 50 searches will be
submitted.

To fulfill the third point, one can set the NCBIWWW. email variable.

>>> from Bio.Blast import NCBIWWW
>>> NCBIWWW.email = "A.N.Other@example.com"

The gblast function also takes a number of other option arguments, which are basically analogous to the different
parameters you can set on the BLAST web page. We’ll just highlight a few of them here:

* The argument url_base sets the base URL for running BLAST over the internet. By default it connects to the
NCBI, but one can use this to connect to an instance of NCBI BLAST running in the cloud. Please refer to the
documentation for the gblast function for further details.

¢ The gblast function can return the BLAST results in various formats, which you can choose with the optional
format_type keyword: "HTML", "Text", "ASN.1", or "XML". The default is "XML", as that is the format
expected by the parser, described in section Parsing BLAST output below.

* The argument expect sets the expectation or e-value threshold.

For more about the optional BLAST arguments, we refer you to the NCBI’s own documentation, or that built into
Biopython:

>>> from Bio.Blast import NCBIWWW
>>> help (NCBIWWW.gblast)

Note that the default settings on the NCBI BLAST website are not quite the same as the defaults on QBLAST. If you
get different results, you’ll need to check the parameters (e.g., the expectation value threshold and the gap values).

For example, if you have a nucleotide sequence you want to search against the nucleotide database (nt) using BLASTN,
and you know the GI number of your query sequence, you can use:

>>> from Bio.Blast import NCBIWWW
>>> result_handle = NCBIWWW.gblast("blastn", "nt", "8332116")

Alternatively, if we have our query sequence already in a FASTA formatted file, we just need to open the file and read
in this record as a string, and use that as the query argument:

>>> from Bio.Blast import NCBIWWW
>>> fasta_string = open('"m_cold.fasta").read()
>>> result_handle = NCBIWWW.gblast("blastn", "nt", fasta_string)

We could also have read in the FASTA file as a SeqRecord and then supplied just the sequence itself:

>>> from Bio.Blast import NCBIWWW

>>> from Bio import SeqIO

>>> record = SeqIO.read("m_cold.fasta", format="fasta")

>>> result_handle = NCBIWWW.gblast("blastn", "nt", record.seq)

Supplying just the sequence means that BLAST will assign an identifier for your sequence automatically. You might
prefer to use the SeqRecord object’s format method to make a FASTA string (which will include the existing identifier):

>>> from Bio.Blast import NCBIWWW

>>> from Bio import SeqIO

>>> record = SeqlO.read("m_cold.fasta", format="fasta")

>>> result_handle = NCBIWWW.gblast("blastn", "nt", record.format("fasta"))
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This approach makes more sense if you have your sequence(s) in a non-FASTA file format which you can extract using
Bio.SeqIO (see Chapter Sequence Input/Output).

Whatever arguments you give the gblast () function, you should get back your results in a handle object (by default
in XML format). The next step would be to parse the XML output into Python objects representing the search results
(Section Parsing BLAST output), but you might want to save a local copy of the output file first. I find this especially
useful when debugging my code that extracts info from the BLAST results (because re-running the online search is
slow and wastes the NCBI computer time).

We need to be a bit careful since we can use result_handle.read() to read the BLAST output only once — calling
result_handle.read() again returns an empty string.

>>> with open("my_blast.xml", "w") as out_handle:
out_handle.write(result_handle.read())

>>> result_handle.close()

After doing this, the results are in the file my_blast.xml and the original handle has had all its data extracted (so we
closed it). However, the parse function of the BLAST parser (described in Parsing BLAST output) takes a file-handle-
like object, so we can just open the saved file for input:

[>>> result_handle = open("my_blast.xml")

Now that we’ve got the BLAST results back into a handle again, we are ready to do something with them, so this leads
us right into the parsing section (see Section Parsing BLAST output below). You may want to jump ahead to that now

11.2 Running BLAST locally

11.2.1 Introduction
Running BLAST locally (as opposed to over the internet, see Section Running BLAST over the Internet) has at least
major two advantages:

* Local BLAST may be faster than BLAST over the internet;

* Local BLAST allows you to make your own database to search for sequences against.

Dealing with proprietary or unpublished sequence data can be another reason to run BLAST locally. You may not be
allowed to redistribute the sequences, so submitting them to the NCBI as a BLAST query would not be an option.

Unfortunately, there are some major drawbacks too — installing all the bits and getting it setup right takes some effort:
* Local BLAST requires command line tools to be installed.
* Local BLAST requires (large) BLAST databases to be setup (and potentially kept up to date).

To further confuse matters there are several different BLAST packages available, and there are also other tools which
can produce imitation BLAST output files, such as BLAT.
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11.2.2 Standalone NCBI BLAST+

The “new” NCBI BLAST+ suite was released in 2009. This replaces the old NCBI “legacy” BLAST package (see
below).

This section will show briefly how to use these tools from within Python. If you have already read or tried the alignment
tool examples in Section Alignment Tools this should all seem quite straightforward. First, we construct a command
line string (as you would type in at the command line prompt if running standalone BLAST by hand). Then we can
execute this command from within Python.

For example, taking a FASTA file of gene nucleotide sequences, you might want to run a BLASTX (translation) search
against the non-redundant (NR) protein database. Assuming you (or your systems administrator) has downloaded and
installed the NR database, you might run:

[$ blastx -query opuntia.fasta -db nr -out opuntia.xml -evalue 0.001 -outfmt 5 J

This should run BLASTX against the NR database, using an expectation cut-off value of 0.001 and produce XML
output to the specified file (which we can then parse). On my computer this takes about six minutes - a good reason to
save the output to a file so you can repeat any analysis as needed.

From within python we can use the subprocess module to build the command line string, and run it:

>>> import subprocess

>>> cmd = "blastx -query opuntia.fasta -db nr -out opuntia.xml"
>>> cmd += " -evalue 0.001 -outfmt 5"

>>> subprocess.run(cmd, shell=True)

In this example there shouldn’t be any output from BLASTX to the terminal. You may want to check the output file
opuntia.xml has been created.

As you may recall from earlier examples in the tutorial, the opuntia. fasta contains seven sequences, so the BLAST
XML output should contain multiple results. Therefore use Bio.Blast.NCBIXML.parse() to parse it as described
below in Section Parsing BLAST output.

11.2.3 Other versions of BLAST

NCBI BLAST+ (written in C++) was first released in 2009 as a replacement for the original NCBI “legacy” BLAST
(written in C) which is no longer being updated. There were a lot of changes — the old version had a single core command
line tool blastall which covered multiple different BLAST search types (which are now separate commands in
BLAST+), and all the command line options were renamed. Biopython’s wrappers for the NCBI “legacy” BLAST
tools have been deprecated and will be removed in a future release. To try to avoid confusion, we do not cover calling
these old tools from Biopython in this tutorial.

You may also come across Washington University BLAST (WU-BLAST), and its successor, Advanced Biocomput-
ing BLAST (AB-BLAST, released in 2009, not free/open source). These packages include the command line tools
wu-blastall and ab-blastall, which mimicked blastall from the NCBI “legacy” BLAST suite. Biopython
does not currently provide wrappers for calling these tools, but should be able to parse any NCBI compatible output
from them.
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11.3 Parsing BLAST output

As mentioned above, BLAST can generate output in various formats, such as XML, HTML, and plain text. Originally,
Biopython had parsers for BLAST plain text and HTML output, as these were the only output formats offered at the
time. Unfortunately, the BLAST output in these formats kept changing, each time breaking the Biopython parsers.
Our HTML BLAST parser has been removed, while the deprecated plain text BLAST parser is now only available via
Bio.SearchIO. Use it at your own risk, it may or may not work, depending on which BLAST version you’re using.

As keeping up with changes in BLAST became a hopeless endeavor, especially with users running different BLAST
versions, we now recommend to parse the output in XML format, which can be generated by recent versions of BLAST.
Not only is the XML output more stable than the plain text and HTML output, it is also much easier to parse automat-
ically, making Biopython a whole lot more stable.

You can get BLAST output in XML format in various ways. For the parser, it doesn’t matter how the output was
generated, as long as it is in the XML format.

* You can use Biopython to run BLAST over the internet, as described in section Running BLAST over the Internet.
* You can use Biopython to run BLAST locally, as described in section Running BLAST locally.

* You can do the BLAST search yourself on the NCBI site through your web browser, and then save the results.
You need to choose XML as the format in which to receive the results, and save the final BLAST page you get
(you know, the one with all of the interesting results!) to a file.

* You can also run BLAST locally without using Biopython, and save the output in a file. Again, you need to
choose XML as the format in which to receive the results.

The important point is that you do not have to use Biopython scripts to fetch the data in order to be able to parse it.
Doing things in one of these ways, you then need to get a handle to the results. In Python, a handle is just a nice general
way of describing input to any info source so that the info can be retrieved using read() and readline() functions
(see Section What the heck is a handle?).

If you followed the code above for interacting with BLAST through a script, then you already have result_handle,
the handle to the BLAST results. For example, using a GI number to do an online search:

>>> result_handle = NCBIWWW.gblast("blastn", "nt", "8332116")

>>> from Bio.Blast import NCBIWWW ’

If instead you ran BLAST some other way, and have the BLAST output (in XML format) in the file my_blast.xml,
all you need to do is to open the file for reading:

[>>> result_handle = open("my_blast.xml") ]

Now that we’ve got a handle, we are ready to parse the output. The code to parse it is really quite small. If you expect
a single BLAST result (i.e., you used a single query):

>>> from Bio.Blast import NCBIXML
>>> blast_record = NCBIXML.read(result_handle)

or, if you have lots of results (i.e., multiple query sequences):

>>> from Bio.Blast import NCBIXML
>>> blast_records = NCBIXML.parse(result_handle)

Just like Bio.SeqIO and Bio.Align (see Chapters Sequence Input/Output and Sequence alignments), we have a pair
of input functions, read and parse, where read is for when you have exactly one object, and parse is an iterator for
when you can have lots of objects — but instead of getting SeqRecord or MultipleSeqAlignment objects, we get
BLAST record objects.
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To be able to handle the situation where the BLAST file may be huge, containing thousands of results, NCBIXML.
parse() returns an iterator. In plain English, an iterator allows you to step through the BLAST output, retrieving
BLAST records one by one for each BLAST search result:

>>> from Bio.Blast import NCBIXML
>>> blast_records = NCBIXML.parse(result_handle)
>>> blast_record = next(blast_records)
# ... do something with blast_record
>>> blast_record = next(blast_records)
# ... do something with blast_record
>>> blast_record = next(blast_records)
# ... do something with blast_record
>>> blast_record = next(blast_records)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
# No further records

Or, you can use a for-loop:

>>> for blast_record in blast_records:
pass # Do something with blast_record

Note though that you can step through the BLAST records only once. Usually, from each BLAST record you would
save the information that you are interested in. If you want to save all returned BLAST records, you can convert the
iterator into a list:

[>>> blast_records = list(blast_records)

Now you can access each BLAST record in the list with an index as usual. If your BLAST file is huge though, you may
run into memory problems trying to save them all in a list.

Usually, you’ll be running one BLAST search at a time. Then, all you need to do is to pick up the first (and only)
BLAST record in blast_records:

>>> from Bio.Blast import NCBIXML
>>> blast_records = NCBIXML.parse(result_handle)
>>> blast_record = next(blast_records)

or more elegantly:

>>> from Bio.Blast import NCBIXML
>>> blast_record = NCBIXML.read(result_handle)

I guess by now you’re wondering what is in a BLAST record.
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11.4 The BLAST record class

A BLAST Record contains everything you might ever want to extract from the BLAST output. Right now we’ll just
show an example of how to get some info out of the BLAST report, but if you want something in particular that is not
described here, look at the info on the record class in detail, and take a gander into the code or automatically generated
documentation — the docstrings have lots of good info about what is stored in each piece of information.

To continue with our example, let’s just print out some summary info about all hits in our blast report greater than a
particular threshold. The following code does this:

>>> E_VALUE_THRESH = 0.04

>>> for alignment in blast_record.alignments:
for hsp in alignment.hsps:
if hsp.expect < E_VALUE_THRESH:

print("****Alignment****")
print("sequence:", alignment.title)
print("length:", alignment.length)
print("e value:", hsp.expect)
printChsp.query[0:75] + "...")
print Chsp.match[0:75] + "...")
print(hsp.sbjct[0:75] + "...")

This will print out summary reports like the following:

Tk z':Al 1 gnment Fewhd

sequence: >gb|AF283004.1|AF283004 Arabidopsis thaliana cold acclimation protein WCOR413-
—like protein

alpha form mRNA, complete cds

length: 783

e value: 0.034
tacttgttgatattggatcgaacaaactggagaaccaacatgctcacgtcacttttagtcccttacatattcctce. ..
0 e 1 e
tacttgttggtgttggatcgaaccaattggaagacgaatatgctcacatcacttctcattccttacatcttcttce. ..

Basically, you can do anything you want to with the info in the BLAST report once you have parsed it. This will, of
course, depend on what you want to use it for, but hopefully this helps you get started on doing what you need to do!

An important consideration for extracting information from a BLAST report is the type of objects that the information
is stored in. In Biopython, the parsers return Record objects, either Blast or PSIBlast depending on what you are
parsing. These objects are defined in Bio.Blast.Record and are quite complete.

Figures Class diagram for the Blast Record class representing a BLAST report. and Class diagram for the PSIBlast
Record class. and are my attempts at UML class diagrams for the Blast and PSIBlast record classes. The PSIBlast
record object is similar, but has support for the rounds that are used in the iteration steps of PSIBlast.

If you are good at UML and see mistakes/improvements that can be made, please let me know.
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Header DatabaseReport Parameters

+application +database_name : list +matrix

+version +posted_date : list +gap_penalties

+date +num_letters_in_database : list +sc_match

+reference +num_sequences_in_database : 1is{ +sc_mismatch

+query +ka_params +num_hits

+query_letters +gapped +Nnum_sequences

+database +ka_params_gap +num_good_extends

+database_sequences +num_seqs_better_e

+database_letters Z& +hsps_no_gap
+hsps_prelim_gapped

A

+hsps_prelim_gapped_attempted
+hsps_gapped

+tquery_id

+query_length
+database_length
+effective_hsp_length
+effective_query_length
+effective_database_length
+effective_search_space
+effective_search_space_used
+frameshift

+threshold

+window_size
+dropoff_l1st_pass
+gap_x_dropofT
+gap_x_dropoff_final
+gap_trigger

+blast_cutoff

K

descri

Blast

+descriptions: 1list
+alignments: list
+multiple_alignment

tions

multiple alignment

alignments

Description

Alignment

+title

+score

+bits

+e
+num_alignments

MultipleAlignment

+title
+hit_id
+hit_def
+length
+hsps: 1list

hsps

HSP

+score
+bits

+expect
+num_alignments
+identities
+positives
+gaps
+align_length
+strand

+Trame

+query
+tquery_start
+query_end
+match

+sbjct
+sbjct_start
+sbjct_end

+alignment: list

Fig. 1: Class diagram for the Blast Record class representing a BLAST report.
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Header DatabaseReport Parameters

+application +database name: list +matrix

+version +posted_date: list +gap_penalties

+date +num_letters_in_database: list +sc_match

+reference +num_sequences_in_database: 1is{ +sc_mismatch

+query +ka_params +num_hits

+query letters +gapped +num_sequences

+database +ka_params_gap +num_good_extends

+database_sequences +num_seqs_better_e

+database_letters Z& +hsps_no_gap
+hsps_prelim_gapped

Z& +hsps_prelim_gapped_attempted

+hsps_gapped
+query_id

+query_length
+database_length
+effective_hsp_length
+effective_query_length
+effective_database_length
+effective_search_space
+effective_search_space used
+frameshift

+threshold

+window size
+dropoff_lst_pass
+gap_x_dropofT
+gap_x_dropoff_final
+gap_trigger

+blast_cutoff

iy

PSIBlast

+converged
+rounds: list

rounds

Round

+number
+reused_seqs: list
+new_seqs: list
+alignments: list
+multiple_alignment

alignments

Alignment
+title
+hit_id
+hit_def MultipleAlignment

+length ) +alignment: list
+hsps: list

multiple alignment

HSP

+score
+bits

+expect
+num_alignments
+identities
+positives
+gaps
+align_length
+strand

+Trame

+query
+query_start
+query_end
+match

+sbjct
+sbjct_start
+sbjct_end

Fig. 2: Class diagram for the PSIBlast Record class.
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11.5 Dealing with PSI-BLAST

You can run the standalone version of PSI-BLAST (the legacy NCBI command line tool blastpgp, or its replacement
psiblast) directly from the command line or using python’s subprocess module.

At the time of writing, the NCBI do not appear to support tools running a PSI-BLAST search via the internet.

Note that the Bio.Blast.NCBIXML parser can read the XML output from current versions of PSI-BLAST, but infor-
mation like which sequences in each iteration is new or reused isn’t present in the XML file.

11.6 Dealing with RPS-BLAST

You can run the standalone version of RPS-BLAST (either the legacy NCBI command line tool rpsblast, or its
replacement with the same name) directly from the command line or using python’s subprocess module.

At the time of writing, the NCBI do not appear to support tools running an RPS-BLAST search via the internet.

You can use the Bio.Blast.NCBIXML parser to read the XML output from current versions of RPS-BLAST.
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CHAPTER
TWELVE

BLAST AND OTHER SEQUENCE SEARCH TOOLS

Biological sequence identification is an integral part of bioinformatics. Several tools are available for this, each with
their own algorithms and approaches, such as BLAST (arguably the most popular), FASTA, HMMER, and many more.
In general, these tools usually use your sequence to search a database of potential matches. With the growing number of
known sequences (hence the growing number of potential matches), interpreting the results becomes increasingly hard
as there could be hundreds or even thousands of potential matches. Naturally, manual interpretation of these searches’
results is out of the question. Moreover, you often need to work with several sequence search tools, each with its own
statistics, conventions, and output format. Imagine how daunting it would be when you need to work with multiple
sequences using multiple search tools.

We know this too well ourselves, which is why we created the Bio. SearchIO submodule in Biopython. Bio.SearchIO
allows you to extract information from your search results in a convenient way, while also dealing with the different
standards and conventions used by different search tools. The name SearchIO is a homage to BioPerl’s module of the
same name.

In this chapter, we’ll go through the main features of Bio.SearchIO to show what it can do for you. We’ll use two
popular search tools along the way: BLAST and BLAT. They are used merely for illustrative purposes, and you should
be able to adapt the workflow to any other search tools supported by Bio.SearchIO in a breeze. You're very welcome
to follow along with the search output files we’ll be using. The BLAST output file can be downloaded here, and the
BLAT output file here or are included with the Biopython source code under the Doc/examples/ folder. Both output
files were generated using this sequence:

>mystery_seq
CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

The BLAST result is an XML file generated using blastn against the NCBI refseq_rna database. For BLAT, the
sequence database was the February 2009 hg19 human genome draft and the output format is PSL.

We’ll start from an introduction to the Bio.SearchIO object model. The model is the representation of your search
results, thus it is core to Bio.SearchIO itself. After that, we’ll check out the main functions in Bio.SearchIO that
you may often use.

Now that we’re all set, let’s go to the first step: introducing the core object model.
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12.1 The SearchlO object model

Despite the wildly differing output styles among many sequence search tools, it turns out that their underlying concept
is similar:

 The output file may contain results from one or more search queries.
* In each search query, you will see one or more hits from the given search database.

* In each database hit, you will see one or more regions containing the actual sequence alignment between your
query sequence and the database sequence.

* Some programs like BLAT or Exonerate may further split these regions into several alignment fragments (or
blocks in BLAT and possibly exons in exonerate). This is not something you always see, as programs like
BLAST and HMMER do not do this.

Realizing this generality, we decided use it as base for creating the Bio.SearchIO object model. The object model
consists of a nested hierarchy of Python objects, each one representing one concept outlined above. These objects are:

* QueryResult, to represent a single search query.

» Hit, torepresent a single database hit. Hit objects are contained within QueryResult and in each QueryResult
there is zero or more Hit objects.

* HSP (short for high-scoring pair), to represent region(s) of significant alignments between query and hit se-
quences. HSP objects are contained within Hit objects and each Hit has one or more HSP objects.

* HSPFragment, to represent a single contiguous alignment between query and hit sequences. HSPFragment
objects are contained within HSP objects. Most sequence search tools like BLAST and HMMER unify HSP and
HSPFragment objects as each HSP will only have a single HSPFragment. However there are tools like BLAT
and Exonerate that produce HSP containing multiple HSPFragment. Don’t worry if this seems a tad confusing
now, we’ll elaborate more on these two objects later on.

These four objects are the ones you will interact with when you use Bio.SearchIO. They are created using one of the
main Bio.SearchIO methods: read, parse, index, or index_db. The details of these methods are provided in later
sections. For this section, we’ll only be using read and parse. These functions behave similarly to their Bio.SeqIO
and Bio.AlignIO counterparts:

* read is used for search output files with a single query and returns a QueryResult object

» parse is used for search output files with multiple queries and returns a generator that yields QueryResult
objects

With that settled, let’s start probing each Bio.SearchIO object, beginning with QueryResult.

12.1.1 QueryResult

The QueryResult object represents a single search query and contains zero or more Hit objects. Let’s see what it looks
like using the BLAST file we have:

>>> from Bio import SearchIO
>>> blast_qgresult = SearchIO.read("my_blast.xml", "blast-xml")
>>> print(blast_gresult)
Program: blastn (2.2.27+)

Query: 42291 (61)

mystery_seq

Target: refseq_rna

HitsS: ———- ——--m  mm oo

(continues on next page)
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# # HSP

O o0 NI WN R

_
(=]

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
97
98
99

NNNNRNNNNRRRRRRNRRRRNRRRNRDNR R R

N

ID + description

gi]262205317 |ref|NR_030195.
gi[301171311|ref|NR_035856.
g9i]270133242|ref|NR_032573.
9i[301171322|ref|NR_035857.
gi|301171267|ref|NR_035851.
91262205330 | ref|NR_030198.
011262205302 |ref|NR_030191.
g9i[301171259|ref|NR_035850.
011262205451 |ref|NR_030222.
gi|301171447 |ref|NR_035871.
gi|301171276|ref|NR_035852.
gi]262205290 |ref|NR_030188.
gi[301171354|ref|NR_035860.
011262205281 |ref|NR_030186.
911262205298 | ref|NR_030190.
gi|301171394|ref|NR_035865.
gi]262205429|ref|NR_030218.
gi]262205423 |ref|NR_030217.
9i[301171401|ref|NR_035866.
011270133247 |ref|NR_032574.
gi|262205309|ref|NR_030193.
gi|270132717 | ref|NR_032716.
gi[301171437 |ref|NR_035870.
gi|270133306|ref|NR_032587.
09i[301171428|ref|NR_035869.
gi|301171211|ref|NR_035845.
gi|301171153|ref|NR_035838.
gi|301171146|ref|NR_035837.
gi|270133254|ref|NR_032575.
011262205445 |ref|NR_030221.

gi|356517317 | ref|XM_003527287
gi|297814701|ref|XM_002875188
gi[397513516|ref|XM_003827011

(continued from previous page)

Homo sapiens microRNA 52...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Homo sapiens microRNA 52...
Homo sapiens microRNA 51...
Pan troglodytes microRNA...
Homo sapiens microRNA 51...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Homo sapiens microRNA 51...
Pan troglodytes microRNA...
Homo sapiens microRNA 52...
Homo sapiens microRNA 52...
Pan troglodytes microRNA...
Homo sapiens microRNA 51...
Homo sapiens microRNA 52...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Homo sapiens microRNA 52...
Macaca mulatta microRNA ...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Pan troglodytes microRNA...
Macaca mulatta microRNA ...
Homo sapiens microRNA 51...

.1| PREDICTED: Glycine ma...
.1| Arabidopsis lyrata su...
.1| PREDICTED: Pan panisc...

We’ve just begun to scratch the surface of the object model, but you can see that there’s already some useful information.
By invoking print on the QueryResult object, you can see:

* The program name and version (blastn version 2.2.27+)

e The query ID, description, and its sequence length (ID is 42291, description is ‘mystery_seq’, and it is 61 nu-

cleotides long)

 The target database to search against (refseq_rna)

* A quick overview of the resulting hits. For our query sequence, there are 100 potential hits (numbered 0-99 in
the table). For each hit, we can also see how many HSPs it contains, its ID, and a snippet of its description.
Notice here that Bio.SearchIO truncates the hit table overview, by showing only hits numbered 0-29, and then

97-99.

Now let’s check our BLAT results using the same procedure as above:

12.1. The SearchlO object model
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>>> blat_gresult = SearchIO.read("my_blat.psl"”, "blat-psl")
>>> print(blat_qresult)
Program: blat (<unknown version>)
Query: mystery_seq (61)
<unknown description>
Target: <unknown target>
Hits: ——-- oo o oo

0 17 chrl9 <unknown description>

You’ll immediately notice that there are some differences. Some of these are caused by the way PSL format stores its
details, as you’ll see. The rest are caused by the genuine program and target database differences between our BLAST
and BLAT searches:

* The program name and version. Bio.SearchIO knows that the program is BLAT, but in the output file there is
no information regarding the program version so it defaults to ‘<unknown version>’.

* The query ID, description, and its sequence length. Notice here that these details are slightly different from the
ones we saw in BLAST. The ID is ‘mystery_seq’ instead of 42991, there is no known description, but the query
length is still 61. This is actually a difference introduced by the file formats themselves. BLAST sometimes
creates its own query IDs and uses your original ID as the sequence description.

* The target database is not known, as it is not stated in the BLAT output file.

* And finally, the list of hits we have is completely different. Here, we see that our query sequence only hits the
‘chr19’ database entry, but in it we see 17 HSP regions. This should not be surprising however, given that we
are using a different program, each with its own target database.

All the details you saw when invoking the print method can be accessed individually using Python’s object attribute
access notation (a.k.a. the dot notation). There are also other format-specific attributes that you can access using the
same method.

>>> print (" " % (blast_qresult.program, blast_gresult.version))
blastn 2.2.27+
>>> print (" " % (blat_gresult.program, blat_qresult.version))

blat <unknown version>
>>> blast_qresult.param_evalue_threshold # blast-xml specific
10.0

For a complete list of accessible attributes, you can check each format-specific documentation. e.g. Bio.SearchlIO.
BlastIO and Bio.SearchIO.BlatIO.

Having looked at using print on QueryResult objects, let’s drill down deeper. What exactly is a QueryResult? In
terms of Python objects, QueryResult is a hybrid between a list and a dictionary. In other words, it is a container
object with all the convenient features of lists and dictionaries.

Like Python lists and dictionaries, QueryResult objects are iterable. Each iteration returns a Hit object:

>>> for hit in blast_qresult:
hit

Hit(id='gi|262205317 |ref|NR_030195.1|", query_id='42291"', 1 hsps)
Hit(id="'gi|301171311|ref|NR_035856.1|"', query_id='42291', 1 hsps)
Hit(id="'gi|270133242|ref|NR_032573.1|"', query_id='42291', 1 hsps)
Hit(id="'gi|301171322|ref|NR_035857.1|"', query_id='42291', 2 hsps)

(continues on next page)
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(continued from previous page)

Hit(id='gi|301171267|ref|NR_035851.1|"', query_id='42291', 1 hsps)

To check how many items (hits) a QueryResult has, you can simply invoke Python’s 1en method:

>>> len(blast_qresult)
100

>>> len(blat_qresult)
1

Like Python lists, you can retrieve items (hits) from a QueryResult using the slice notation:

>>> blast_qresult[0] # retrieves the top hit

Hit(id="gi|262205317 |ref|NR_030195.1|"', query_id='42291', 1 hsps)
>>> blast_gresult[-1] # retrieves the last hit
Hit(id="gi|397513516|ref|XM_003827011.1|"', query_id='42291"', 1 hsps)

To retrieve multiple hits, you can slice QueryResult objects using the slice notation as well. In this case, the slice will
return a new QueryResult object containing only the sliced hits:

>>> blast_slice = blast_qresult[:3] # slices the first three hits
>>> print(blast_slice)
Program: blastn (2.2.27+)

Query: 42291 (61)

mystery_seq

Target: refseq_rna

S et

# # HSP 1ID + description

0 1 gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 52...
1 1 gi|301171311|ref|NR_035856.1] Pan troglodytes microRNA...
2 1 gi|270133242|ref|NR_032573.1|] Macaca mulatta microRNA ...

Like Python dictionaries, you can also retrieve hits using the hit’s ID. This is particularly useful if you know a given
hit ID exists within a search query results:

>>> blast_qresult["gi|262205317|ref|NR_030195.1|"]
Hit(id='gi|262205317 |ref|NR_030195.1|"', query_id='42291"', 1 hsps)

You can also get a full list of Hit objects using hits and a full list of Hit IDs using hit_keys:

>>> blast_qgresult.hits

[...] # list of all hits
>>> blast_qresult.hit_keys
[...] # list of all hit IDs

What if you just want to check whether a particular hit is present in the query results? You can do a simple Python
membership test using the in keyword:

>>> "gi[262205317 |ref|NR_030195.1|" in blast_gresult
True
>>> "gi|262205317 |ref|NR_030194.1|" in blast_qgresult
False
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Sometimes, knowing whether a hit is present is not enough; you also want to know the rank of the hit. Here, the index
method comes to the rescue:

>>> blast_qgresult.index("gi|301171437 |ref|NR_035870.1[")
22

Remember that we’re using Python’s indexing style here, which is zero-based. This means our hit above is ranked at
no. 23, not 22.

Also, note that the hit rank you see here is based on the native hit ordering present in the original search output file.
Different search tools may order these hits based on different criteria.

If the native hit ordering doesn’t suit your taste, you can use the sort method of the QueryResult object. It is very
similar to Python’s 1ist.sort method, with the addition of an option to create a new sorted QueryResult object or
not.

Here is an example of using QueryResult.sort to sort the hits based on each hit’s full sequence length. For this
particular sort, we’ll set the in_place flag to False so that sorting will return a new QueryResult object and leave
our initial object unsorted. We’ll also set the reverse flag to True so that we sort in descending order.

>>> for hit in blast_qresult[:5]: # id and sequence length of the first five hits
print (" " % (hit.id, hit.seq_len))

911262205317 |ref|NR_030195.1| 61
911301171311 |ref|NR_035856.1| 60
911270133242 |ref|NR_032573.1| 85
9i|301171322|ref|NR_035857.1| 86
9i[301171267 |ref|NR_035851.1| 80

>>> sort_key = lambda hit: hit.seq_len
>>> sorted_qresult = blast_gresult.sort(key=sort_key, reverse=True, in_place=False)
>>> for hit in sorted_qresult[:5]:

print (" " % (hit.id, hit.seqg_len))

911397513516 |ref|XM_003827011.1| 6002
911390332045 |ref|XM_776818.2| 4082

9i[390332043|ref|XM_003723358.1| 4079
911356517317 |ref|XM_003527287.1| 3251
911356543101 |ref|XM_003539954.1| 2936

The advantage of having the in_place flag here is that we’re preserving the native ordering, so we may use it again
later. You should note that this is not the default behavior of QueryResult.sort, however, which is why we needed
to set the in_place flag to True explicitly.

At this point, you’ve known enough about QueryResult objects to make it work for you. But before we go on to the
next object in the Bio.SearchIO model, let’s take a look at two more sets of methods that could make it even easier
to work with QueryResult objects: the filter and map methods.

If you’re familiar with Python’s list comprehensions, generator expressions or the built-in filter and map functions,
you’ll know how useful they are for working with list-like objects (if you’re not, check them out!). You can use these
built-in methods to manipulate QueryResult objects, but you’ll end up with regular Python lists and lose the ability
to do more interesting manipulations.

That’s why, QueryResult objects provide its own flavor of filter and map methods. Analogous to filter, there are
hit_filter and hsp_filter methods. As their name implies, these methods filter its QueryResult object either
on its Hit objects or HSP objects. Similarly, analogous to map, QueryResult objects also provide the hit_map and
hsp_map methods. These methods apply a given function to all hits or HSPs in a QueryResult object, respectively.
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Let’s see these methods in action, beginning with hit_filter. This method accepts a callback function that checks
whether a given Hit object passes the condition you set or not. In other words, the function must accept as its argument
a single Hit object and returns True or False.

Here is an example of using hit_filter to filter out Hit objects that only have one HSP:

>>> filter_func = lambda hit: lenChit.hsps) > 1 # the callback function

>>> len(blast_qresult) # no. of hits before filtering

100

>>> filtered_qresult = blast_qresult.hit_filter(filter_func)

>>> len(filtered_qresult) # no. of hits after filtering

37

>>> for hit in filtered_qgresult[:5]: # quick check for the hit lengths
print (" " % (hit.id, lenchit.hsps)))

9i[301171322|ref|NR_035857.1]|
911262205330 |ref|NR_030198.1]
gi]301171447 |ref|NR_035871.1]
011262205298 |ref|NR_030190.1|
9il270132717 |ref|NR_032716.1]|

N NN NN

hsp_filter works the same as hit_filter, only instead of looking at the Hit objects, it performs filtering on the
HSP objects in each hits.

As for the map methods, they too accept a callback function as their arguments. However, instead of returning True or
False, the callback function must return the modified Hit or HSP object (depending on whether you’re using hit_map
or hsp_map).

Let’s see an example where we’re using hit_map to rename the hit IDs:

>>> def map_funcChit):
# renames 'gi[301171322|ref|NR_035857.1|" to "NR_035857.1"
hit.id = hit.id.split("|")[3]
return hit

>>> mapped_qgresult = blast_qresult.hit_map(map_func)
>>> for hit in mapped_qresult[:5]:
printChit.id)

NR_030195.
NR_035856.
NR_032573.
NR_035857.
NR_035851.

[ T T Ty

Again, hsp_map works the same as hit_map, but on HSP objects instead of Hit objects.
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12.1.2 Hit

Hit objects represent all query results from a single database entry. They are the second-level container in the Bio.
SearchIO object hierarchy. You’ve seen that they are contained by QueryResult objects, but they themselves contain
HSP objects.

Let’s see what they look like, beginning with our BLAST search:

>>> from Bio import SearchIO
>>> blast_qgresult = SearchIO.read("my_blast.xml", "blast-xml")
>>> blast_hit = blast_qresult[3] # fourth hit from the query result
>>> print(blast_hit)
Query: 42291
mystery_seq
Hit: gi|301171322|ref|NR_035857.1| (86)
Pan troglodytes microRNA mir-520c (MIR520C), microRNA

HSPs: -~ - -~ - - -\ ——-- e
# E-value Bit score Span Query range Hit range
0 8.9e-20 100.47 60 [1:61] [13:73]
1 3.3e-06 55.39 60 [0:60] [13:73]

You see that we’ve got the essentials covered here:

* The query ID and description is present. A hit is always tied to a query, so we want to keep track of the originating
query as well. These values can be accessed from a hit using the query_id and query_description attributes.

* We also have the unique hit ID, description, and full sequence lengths. They can be accessed using id,
description, and seq_len, respectively.

* Finally, there’s a table containing quick information about the HSPs this hit contains. In each row, we’ve got the
important HSP details listed: the HSP index, its e-value, its bit score, its span (the alignment length including
gaps), its query coordinates, and its hit coordinates.

Now let’s contrast this with the BLAT search. Remember that in the BLAT search we had one hit with 17 HSPs.

>>> blat_gresult = SearchIO.read("my_blat.psl"”, "blat-psl")
>>> blat_hit = blat_gresult[0] # the only hit
>>> print(blat_hit)
Query: mystery_seq
<unknown description>
Hit: chr19 (59128983)
<unknown description>

HSPs: -- - - -—————--- —— o e -
# E-value Bit score Span Query range Hit range
0 ? ? ? [0:61] [54204480:54204541]
1 ? ? ? [0:61] [54233104:54264463]
2 ? ? ? [0:61] [54254477:54260071]
3 ? ? ? [1:61] [54210720:54210780]
4 ? ? ? [0:60] [54198476:54198536]
5 ? ? ? [0:61] [54265610:54265671]
6 ? ? ? [0:61] [54238143:54240175]
7 ? ? ? [0:60] [54189735:54189795]
8 ? ? ? [0:61] [54185425:54185486]
9 ? ? ? [0:60] [54197657:54197717]

(continues on next page)
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10 ? ? ? [0:61] [54255662:54255723]
11 ? ? ? [0:61] [54201651:54201712]
12 ? ? ? [8:60] [54206009:54206061]
13 ? ? ? [10:61] [54178987:54179038]
14 ? ? ? [8:61] [54212018:54212071]
15 ? ? ? [8:51] [54234278:54234321]
16 ? ? ? [8:61] [54238143:54238196]

Here, we’ve got a similar level of detail as with the BLAST hit we saw earlier. There are some differences worth
explaining, though:

* The e-value and bit score column values. As BLAT HSPs do not have e-values and bit scores, the display defaults
to ‘7.

* What about the span column? The span values is meant to display the complete alignment length, which consists
of all residues and any gaps that may be present. The PSL format do not have this information readily available
and Bio.SearchIO does not attempt to try guess what it is, so we get a ‘7’ similar to the e-value and bit score
columns.

In terms of Python objects, Hit behaves almost the same as Python lists, but contain HSP objects exclusively. If you’re
familiar with lists, you should encounter no difficulties working with the Hit object.

Just like Python lists, Hit objects are iterable, and each iteration returns one HSP object it contains:

>>> for hsp in blast_hit:
hsp

HSP(hit_id="gi|301171322|ref|NR_035857.1|"', query_id='42291', 1 fragments)
HSP(hit_id="gi|301171322|ref|NR_035857.1|"', query_id='42291', 1 fragments)

You can invoke 1len on a Hit to see how many HSP objects it has:

>>> len(blast_hit)
2

>>> len(blat_hit)
17

You can use the slice notation on Hit objects, whether to retrieve single HSP or multiple HSP objects. Like
QueryResult, if you slice for multiple HSP, a new Hit object will be returned containing only the sliced HSP ob-
jects:

>>> blat_hit[0] # retrieve single items
HSP(hit_id="chrl19', query_id="mystery_seq', 1 fragments)
>>> sliced_hit = blat_hit[4:9] # retrieve multiple items
>>> len(sliced_hit)
5
>>> print(sliced_hit)
Query: mystery_seq
<unknown description>
Hit: chr19 (59128983)
<unknown description>
HSPs: -~ - -~ - - -\ ——-- e
# E-value Bit score Span Query range Hit range

0 ? ? ? [0:60] [54198476:54198536]

(continues on next page)
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[0:61] [54265610:54265671]
[0:61] [54238143:54240175]
[0:60] [54189735:54189795]
[0:61] [54185425:54185486]

B W N =
NN N N
NN N N
NN N N

You can also sort the HSP inside a Hit, using the exact same arguments like the sort method you saw in the QueryResult
object.

Finally, there are also the filter and map methods you can use on Hit objects. Unlike in the QueryResult object,
Hit objects only have one variant of filter (Hit.filter) and one variant of map (Hit.map). Bothof Hit.filter
and Hit.map work on the HSP objects a Hit has.

12.1.3 HSP

HSP (high-scoring pair) represents region(s) in the hit sequence that contains significant alignment(s) to the query
sequence. It contains the actual match between your query sequence and a database entry. As this match is determined
by the sequence search tool’s algorithms, the HSP object contains the bulk of the statistics computed by the search
tool. This also makes the distinction between HSP objects from different search tools more apparent compared to the
differences you’ve seen in QueryResult or Hit objects.

Let’s see some examples from our BLAST and BLAT searches. We’ll look at the BLAST HSP first:

>>> from Bio import SearchIO
>>> blast_qgresult = SearchIO.read("my_blast.xml", "blast-xml")
>>> blast_hsp = blast_qresult[0][0] # first hit, first hsp
>>> print(blast_hsp)
Query: 42291 mystery_seq
Hit: gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 520b (MIR520...
Query range: [0:61] (1)
Hit range: [0:61] (1)
Quick stats: evalue 4.9e-23; bitscore 111.29
Fragments: 1 (61 columns)
Query - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG
FETEETEETEE et e r et e et e e e et e e e et e et et e e
Hit - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

Just like QueryResult and Hit, invoking print on an HSP shows its general details:
* There are the query and hit IDs and descriptions. We need these to identify our HSP.

* We’ve also got the matching range of the query and hit sequences. The slice notation we’re using here is an
indication that the range is displayed using Python’s indexing style (zero-based, half open). The number inside
the parenthesis denotes the strand. In this case, both sequences have the plus strand.

* Some quick statistics are available: the e-value and bitscore.
* There is information about the HSP fragments. Ignore this for now; it will be explained later on.
¢ And finally, we have the query and hit sequence alignment itself.

These details can be accessed on their own using the dot notation, just like in QueryResult and Hit:

>>> blast_hsp.query_range
0, 61)
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>>> blast_hsp.evalue
4.91307e-23

They’re not the only attributes available, though. HSP objects come with a default set of properties that makes it easy
to probe their various details. Here are some examples:

>>> blast_hsp.hit_start # start coordinate of the hit sequence

0

>>> blast_hsp.query_span # how many residues in the query sequence
61

>>> blast_hsp.aln_span # how long the alignment is

61

Check out the HSP documentation under Bio. SearchIO for a full list of these predefined properties.

Furthermore, each sequence search tool usually computes its own statistics / details for its HSP objects. For example,
an XML BLAST search also outputs the number of gaps and identical residues. These attributes can be accessed like
s0:

>>> blast_hsp.gap_num # number of gaps

0

>>> blast_hsp.ident_num # number of identical residues
61

These details are format-specific; they may not be present in other formats. To see which details are available for a
given sequence search tool, you should check the format’s documentation in Bio.SearchIO. Alternatively, you may
alsouse .__dict__.keys() for a quick list of what’s available:

>>> blast_hsp. _dict__.keys(Q)
['bitscore', 'evalue', 'ident_num', 'gap_num', 'bitscore_raw', 'pos_num', '_items']

Finally, you may have noticed that the query and hit attributes of our HSP are not just regular strings:

>>> blast_hsp.query

SegRecord(seq=Seq (' CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT. . .GGG'), id=
-,'42291"', name='aligned query sequence', description='mystery_seq', dbxrefs=[])

>>> blast_hsp.hit

SegRecord(seq=Seq (' CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT. ..GGG'), id=
. 'gi]262205317 |ref|NR_030195.1|"', name="aligned hit sequence', description='Homo.,
<»sapiens microRNA 520b (MIR520B), microRNA', dbxrefs=[])

They are SeqRecord objects you saw earlier in Section Sequence annotation objects! This means that you can do all
sorts of interesting things you can do with SeqRecord objects on HSP. query and/or HSP.hit.

It should not surprise you now that the HSP object has an alignment property which is a MultipleSegAlignment
object:

>>> print(blast_hsp.aln)

Alignment with 2 rows and 61 columns
CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAG. . .GGG 42291
CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAG. . .GGG gi 262205317 |ref|NR_030195.1]

Having probed the BLAST HSP, let’s now take a look at HSPs from our BLAT results for a different kind of HSP. As
usual, we’ll begin by invoking print on it:

12.1. The SearchlO object model 267




Biopython Tutorial, Cookbook, and APl Documentation, Release 1.84

>>> blat_gresult = SearchIO.read("my_blat.psl"”, "blat-psl")

>>> blat_hsp = blat_gresult[0][0]

# first hit, first hsp

>>> print(blat_hsp)

Query: mystery_seq <unknown description>
Hit: chrl9 <unknown description>
Query range: [0:61] (1)
Hit range: [54204480:54204541] (1)
Quick stats: evalue ?; bitscore ?
Fragments: 1 (? columns)

Some of the outputs you may have already guessed. We have the query and hit IDs and descriptions and the sequence
coordinates. Values for evalue and bitscore is ‘?” as BLAT HSPs do not have these attributes. But The biggest difference
here is that you don’t see any sequence alignments displayed. If you look closer, PSL formats themselves do not have
any hit or query sequences, so Bio.SearchIO won’t create any sequence or alignment objects. What happens if you
try to access HSP. query, HSP.hit, or HSP.aln? You’ll get the default values for these attributes, which is None:

>>> blat_hsp.hit is None

True

>>> blat_hsp.query is None
True

>>> blat_hsp.aln is None
True

This does not affect other attributes, though. For example, you can still access the length of the query or hit alignment.
Despite not displaying any attributes, the PSL format still have this information so Bio.SearchIO can extract them:

>>> blat_hsp.query_span # length of query match
61

>>> blat_hsp.hit_span # length of hit match

61

Other format-specific attributes are still present as well:

>>> blat_hsp.score # PSL score

61

>>> blat_hsp.mismatch_num # the mismatch column
0

So far so good? Things get more interesting when you look at another ‘variant” of HSP present in our BLAT results. You
might recall that in BLAT searches, sometimes we get our results separated into ‘blocks’. These blocks are essentially
alignment fragments that may have some intervening sequence between them.

Let’s take a look at a BLAT HSP that contains multiple blocks to see how Bio.SearchIO deals with this:

>>> blat_hsp2 = blat_qresult[0][1]
>>> print(blat_hsp2)

# first hit, second hsp

Query: mystery_seq <unknown description>
Hit: chrl9 <unknown description>
Query range: [0:61] (1)
Hit range: [54233104:54264463] (1)
Quick stats: evalue ?; bitscore ?
BEAGENESE === ==—-cccsossso=e soccooooososSososossss  Soooosooossosssosossos

(continues on next page)
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? [0:18] [54233104:54233122]
1 ? [18:61] [54264420:54264463]

What’s happening here? We still some essential details covered: the IDs and descriptions, the coordinates, and the
quick statistics are similar to what you’ve seen before. But the fragments detail is all different. Instead of showing
‘Fragments: 1°, we now have a table with two data rows.

This is how Bio. SearchIO deals with HSPs having multiple fragments. As mentioned before, an HSP alignment may
be separated by intervening sequences into fragments. The intervening sequences are not part of the query-hit match,
so they should not be considered part of query nor hit sequence. However, they do affect how we deal with sequence
coordinates, so we can’t ignore them.

Take a look at the hit coordinate of the HSP above. In the Hit range: field, we see that the coordinate is
[54233104:54264463]. But looking at the table rows, we see that not the entire region spanned by this coordinate
matches our query. Specifically, the intervening region spans from 54233122 to 54264420.

Why then, is the query coordinates seem to be contiguous, you ask? This is perfectly fine. In this case it means that
the query match is contiguous (no intervening regions), while the hit match is not.

All these attributes are accessible from the HSP directly, by the way:

>>> blat_hsp2.hit_range # hit start and end coordinates of the entire HSP
(54233104, 54264463)

>>> blat_hsp2.hit_range_all # hit start and end coordinates of each fragment
[(54233104, 54233122), (54264420, 54264463)]

>>> blat_hsp2.hit_span # hit span of the entire HSP

31359

>>> blat_hsp2.hit_span_all # hit span of each fragment

[18, 43]

>>> blat_hsp2.hit_inter_ranges # start and end coordinates of intervening regions in.,
—the hit sequence

[ (54233122, 54264420)]

>>> blat_hsp2.hit_inter_spans # span of intervening regions in the hit sequence
[31298]

Most of these attributes are not readily available from the PSL file we have, but Bio.SearchIO calculates them for
you on the fly when you parse the PSL file. All it needs are the start and end coordinates of each fragment.

What about the query, hit, and aln attributes? If the HSP has multiple fragments, you won’t be able to use these
attributes as they only fetch single SeqRecord or MultipleSeqAlignment objects. However, you can use their *_all
counterparts: query_all, hit_all, and aln_all. These properties will return a list containing SeqRecord or
MultipleSegAlignment objects from each of the HSP fragment. There are other attributes that behave similarly,
i.e. they only work for HSPs with one fragment. Check out the HSP documentation under Bio. SearchIO for a full
list.

Finally, to check whether you have multiple fragments or not, you can use the is_fragmented property like so:

>>> blat_hsp2.is_fragmented # BLAT HSP with 2 fragments

True

>>> blat_hsp.is_fragmented # BLAT HSP from earlier, with one fragment
False

Before we move on, you should also know that we can use the slice notation on HSP objects, just like QueryResult or
Hit objects. When you use this notation, you’ll get an HSPFragment object in return, the last component of the object
model.
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12.1.4 HSPFragment

HSPFragment represents a single, contiguous match between the query and hit sequences. You could consider it the
core of the object model and search result, since it is the presence of these fragments that determine whether your
search have results or not.

In most cases, you don’t have to deal with HSPFragment objects directly since not that many sequence search tools
fragment their HSPs. When you do have to deal with them, what you should remember is that HSPFragment objects
were written with to be as compact as possible. In most cases, they only contain attributes directly related to sequences:
strands, reading frames, molecule types, coordinates, the sequences themselves, and their IDs and descriptions.

These attributes are readily shown when you invoke print on an HSPFragment. Here’s an example, taken from our
BLAST search:

>>> from Bio import SearchIO
>>> blast_qgresult = SearchIO.read("my_blast.xml", "blast-xml")
>>> blast_frag = blast_qresult[0][0][0] # first hit, first hsp, first fragment
>>> print(blast_frag)
Query: 42291 mystery_seq
Hit: gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 520b (MIR520...
Query range: [0:61] (1)
Hit range: [0:61] (1)
Fragments: 1 (61 columns)
Query - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG
FEEEETEETEE et et et e e e e e e e e e e et e e e e e
Hit - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

At this level, the BLAT fragment looks quite similar to the BLAST fragment, save for the query and hit sequences
which are not present:

>>> blat_gresult = SearchIO.read("my_blat.psl"”, "blat-psl")
>>> blat_frag = blat_qresult[0][0][0] # first hit, first hsp, first fragment
>>> print(blat_frag)
Query: mystery_seq <unknown description>
Hit: chrl9 <unknown description>

Query range: [0:61] (1)

Hit range: [54204480:54204541] (1)

Fragments: 1 (? columns)

In all cases, these attributes are accessible using our favorite dot notation. Some examples:

>>> blast_frag.query_start # query start coordinate

0

>>> blast_frag.hit_strand # hit sequence strand

1

>>> blast_frag.hit # hit sequence, as a SeqRecord object

SeqRecord(seq=Seq (' CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT. . .GGG'), id=
—'9i262205317 |ref|NR_030195.1|", name='aligned hit sequence', description='Homo..
<»sapiens microRNA 520b (MIR520B), microRNA', dbxrefs=[])
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12.2 A note about standards and conventions

Before we move on to the main functions, there is something you ought to know about the standards Bio.SearchIO
uses. If you’ve worked with multiple sequence search tools, you might have had to deal with the many different ways
each program deals with things like sequence coordinates. It might not have been a pleasant experience as these search
tools usually have their own standards. For example, one tools might use one-based coordinates, while the other uses
zero-based coordinates. Or, one program might reverse the start and end coordinates if the strand is minus, while others
don’t. In short, these often creates unnecessary mess must be dealt with.

We realize this problem ourselves and we intend to address it in Bio.SearchIO. After all, one of the goals of Bio.
SearchlIO is to create a common, easy to use interface to deal with various search output files. This means creating
standards that extend beyond the object model you just saw.

Now, you might complain, “Not another standard!”. Well, eventually we have to choose one convention or the other,
so this is necessary. Plus, we’re not creating something entirely new here; just adopting a standard we think is best for
a Python programmer (it is Biopython, after all).

There are three implicit standards that you can expect when working with Bio.SearchIO:

» The first one pertains to sequence coordinates. In Bio.SearchIO, all sequence coordinates follows Python’s
coordinate style: zero-based and half open. For example, if in a BLAST XML output file the start and end
coordinates of an HSP are 10 and 28, they would become 9 and 28 in Bio.SearchIO. The start coordinate
becomes 9 because Python indices start from zero, while the end coordinate remains 28 as Python slices omit
the last item in an interval.

* The second is on sequence coordinate orders. In Bio. SearchIO, start coordinates are always less than or equal
to end coordinates. This isn’t always the case with all sequence search tools, as some of them have larger start
coordinates when the sequence strand is minus.

* The last one is on strand and reading frame values. For strands, there are only four valid choices: 1 (plus strand),
-1 (minus strand), 0 (protein sequences), and None (no strand). For reading frames, the valid choices are integers
from -3 to 3 and None.

Note that these standards only exist in Bio.SearchIO objects. If you write Bio.SearchIO objects into an output
format, Bio.SearchIO will use the format’s standard for the output. It does not force its standard over to your output
file.

12.3 Reading search output files

There are two functions you can use for reading search output files into Bio.SearchIO objects: read and parse.
They’re essentially similar to read and parse functions in other submodules like Bio.SeqIO or Bio.AlignIO. In
both cases, you need to supply the search output file name and the file format name, both as Python strings. You can
check the documentation for a list of format names Bio.SearchIO recognizes.

Bio.SearchIO.read is used for reading search output files with only one query and returns a QueryResult object.
You’ve seen read used in our previous examples. What you haven’t seen is that read may also accept additional
keyword arguments, depending on the file format.

Here are some examples. In the first one, we use read just like previously to read a BLAST tabular output file. In the
second one, we use a keyword argument to modify so it parses the BLAST tabular variant with comments in it:

>>> from Bio import SearchIO

>>> qresult = SearchlIO.read('tab_2226_tblastn_003.txt", "blast-tab")
>>> qresult

QueryResult(id="'gi| 16080617 |ref|NP_391444.1|"', 3 hits)

>>> qresult2 = SearchIO.read("tab_2226_tblastn_007.txt", "blast-tab", comments=True)
(continues on next page)
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>>> qresult2
QueryResult(id='gi| 16080617 |ref|NP_391444.1|"', 3 hits)

These keyword arguments differs among file formats. Check the format documentation to see if it has keyword argu-
ments that modifies its parser’s behavior.

As for the Bio.SearchIO.parse, it is used for reading search output files with any number of queries. The function
returns a generator object that yields a QueryResult object in each iteration. Like Bio.SearchIO.read, it also
accepts format-specific keyword arguments:

>>> from Bio import SearchIO
>>> qresults = SearchIO.parse('tab_2226_tblastn_001.txt", "blast-tab")
>>> for qresult in gresults:

print(gresult.id)

gi| 16080617 |ref|NP_391444.1|
gi|11464971:4-101
>>> qresults2 = SearchlIO.parse("tab_2226_tblastn_005.txt", "blast-tab", comments=True)
>>> for qresult in gresults2:
print(gresult.id)

random_s00
gi| 16080617 |ref|NP_391444.1|
gi|11464971:4-101

12.4 Dealing with large search output files with indexing

Sometimes, you’re handed a search output file containing hundreds or thousands of queries that you need to parse. You
can of course use Bio.SearchIO.parse for this file, but that would be grossly inefficient if you need to access only
a few of the queries. This is because parse will parse all queries it sees before it fetches your query of interest.

In this case, the ideal choice would be to index the file using Bio.SearchI0. index or Bio.SearchIO.index_db. If
the names sound familiar, it’s because you’ve seen them before in Section Sequence files as Dictionaries — Indexed files.
These functions also behave similarly to their Bio.SeqIO counterparts, with the addition of format-specific keyword
arguments.

Here are some examples. You can use index w