42 template<
typename Type>
45 template<
typename Type>
48 template<
typename Type>
51 template<
typename Type>
54 template<
typename Type>
57 template<
typename Type>
60 template<
typename Type>
63 template<
typename Type>
73 template<
typename Type>
79 union { Type
x; Type
s; Type
r; };
80 union { Type
y; Type
t; Type
g; };
81 union { Type
z; Type
u; Type
b; };
84 explicit Vec3(
const Type &scalar) :
x(scalar),
y(scalar),
z(scalar) { }
92 explicit Vec3(
const Type &p1,
const Type &p2,
const Type &p3) :
x(p1),
y(p2),
z(p3) { }
93 explicit Vec3(
const Type *array_xyz) :
x(array_xyz[0]),
y(array_xyz[1]),
z(array_xyz[2]) { }
105 static Type
dot(
const Vec3<Type>& vector1,
const Vec3<Type>& vector2) {
return vector1.x*vector2.x + vector1.y*vector2.y + vector1.z*vector2.z; }
141 Type diff_x = second.x - first.x; Type diff_y = second.y - first.y; Type diff_z = second.z - first.z;
142 return (diff_x >= -epsilon && diff_x <= epsilon && diff_y >= -epsilon && diff_y <= epsilon && diff_z >= -epsilon && diff_z <= epsilon);
249 bool operator < (const Vec3<Type>& vector)
const {
return z < vector.z || (
z == vector.z && (
y < vector.y || (
y == vector.y &&
x < vector.x))); }
253 template<
typename Type>
257 template<
typename Type>
261 template<
typename Type>
265 template<
typename Type>
269 template<
typename Type>
273 template<
typename Type>
277 template<
typename Type>
281 template<
typename Type>
285 template<
typename Type>
289 template<
typename Type>
293 template<
typename Type>
297 template<
typename Type>
302 template<
typename Type>
306 matrix[0 * 3 + 0] *
v.x + matrix[0 * 3 + 1] *
v.y + matrix[0 * 3 + 2] *
v.z,
307 matrix[1 * 3 + 0] *
v.x + matrix[1 * 3 + 1] *
v.y + matrix[1 * 3 + 2] *
v.z,
308 matrix[2 * 3 + 0] *
v.x + matrix[2 * 3 + 1] *
v.y + matrix[2 * 3 + 2] *
v.z);
313 template<
typename Type>
317 matrix[0 * 3 + 0] *
v.x + matrix[1 * 3 + 0] *
v.y + matrix[2 * 3 + 0] *
v.z,
318 matrix[0 * 3 + 1] *
v.x + matrix[1 * 3 + 1] *
v.y + matrix[2 * 3 + 1] *
v.z,
319 matrix[0 * 3 + 2] *
v.x + matrix[1 * 3 + 2] *
v.y + matrix[2 * 3 + 2] *
v.z);
394 template<
typename Type>
403 template<
typename Type>
406 template<
typename Type>
Vec3< float > Vec3f
Definition: vec3.h:415
Angle class.
Definition: angle.h:59
void operator-=(const Vec3< Type > &vector)
-= operator.
Definition: vec3.h:219
Type g
Definition: vec3.h:80
Vec3< unsigned int > Vec3ui
Definition: vec3.h:413
Vec3< Type > & normalize()
Normalizes this vector.
Definition: vec3.h:404
Type s
Definition: vec3.h:79
Type x
Definition: vec3.h:79
Type b
Definition: vec3.h:81
Type length() const
Returns the length (magnitude) of this vector.
Definition: vec3.h:395
Vec3< Type > & operator=(const Vec3< Type > &vector)
= operator.
Definition: vec3.h:240
void operator*=(const Vec3< Type > &vector)
*= operator.
Definition: vec3.h:228
Vec2< Type > operator/(const Vec2< Type > &v1, const Vec2< Type > &v2)
/ operator.
Definition: vec2.h:302
Type y
Definition: vec3.h:80
Vec3(const Vec4< Type > ©)
Definition: vec3.h:86
static Vec3< Type > rotate(const Vec3< Type > &vector, const Angle &angle, const Vec3< Type > &axis)
Rotate a vector around an axis. Same as glRotate[f|d](angle, a);.
Type u
Definition: vec3.h:81
Type x
Definition: vec4.h:79
Vec3< unsigned char > Vec3ub
Definition: vec3.h:409
Vec3(const Type &scalar)
Definition: vec3.h:84
Vec3< short > Vec3s
Definition: vec3.h:412
Type r
Definition: vec3.h:79
Vec3< int > Vec3i
Definition: vec3.h:414
static Vec3< Type > cross(const Vec3< Type > &vector1, const Vec3< Type > &vector2)
Calculate the cross product between two vectors.
void operator+=(const Vec3< Type > &vector)
+= operator.
Definition: vec3.h:213
Vec2< Type > operator+(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:266
Vec3()
Definition: vec3.h:83
Type datatype
Definition: vec3.h:77
Vec3< unsigned short > Vec3us
Definition: vec3.h:411
static bool is_equal(const Vec3< Type > &first, const Vec3< Type > &second, Type epsilon)
Returns true if equal within the bounds of an epsilon.
Definition: vec3.h:139
Vec3< char > Vec3b
Definition: vec3.h:410
2D vector
Definition: line.h:46
3D matrix
Definition: mat2.h:47
Type y
Definition: vec2.h:81
Type dot(const Vec3< Type > &vector) const
Dot products this vector with an other vector.
Definition: vec3.h:163
Vec2< Type > operator*(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:290
Type z
Definition: vec4.h:81
void operator/=(const Vec3< Type > &vector)
/= operator.
Definition: vec3.h:234
Vec3(const Type &p1, const Type &p2, const Type &p3)
Definition: vec3.h:92
Vec3(const Vec2< Type > ©, const Type &p3)
Definition: vec3.h:85
Type t
Definition: vec3.h:80
Angle angle(const Vec3< Type > &vector) const
Calculate the angle between this vector and an other vector.
Type x
Definition: vec2.h:80
static Type dot(const Vec3< Type > &vector1, const Vec3< Type > &vector2)
Dot products between two vectors.
Definition: vec3.h:105
bool is_equal(const Vec3< Type > &other, Type epsilon) const
Returns true if equal within the bounds of an epsilon.
Definition: vec3.h:210
Type z
Definition: vec3.h:81
Angle angle_normed(const Vec3< Type > &vector) const
Calculate the angle between this vector and an other vector, where the vectors are unit vectors...
Type y
Definition: vec4.h:80
bool operator==(const Vec3< Type > &vector) const
== operator.
Definition: vec3.h:243
Type distance(const Vec3< Type > &vector) const
Calculate the distance between this vector and an other vector.
Vec3< double > Vec3d
Definition: vec3.h:416
bool operator!=(const Vec3< Type > &vector) const
!= operator.
Definition: vec3.h:246
static Vec3< Type > reflect(const Vec3< Type > &incident, const Vec3< Type > &normal)
Calculate the reflection direction for an incident vector.
Vec3< Type > operator-() const
operator.
Definition: vec3.h:225
Vec3(const Type *array_xyz)
Definition: vec3.h:93
4D vector
Definition: size.h:47
Vec2< Type > operator-(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:278
Vec3< Type > & round()
Rounds all components on this vector.