
Warewulf User Guide
Release 4.6.0

Warewulf Project Contributors

Mar 28, 2025

GETTING STARTED

1 Introduction 3

2 Cluster Provisioning 5

3 Network Planning 7

4 Enterprise Linux Quickstart 11

5 SUSE Quickstart 15

6 Debian Quickstart 19

7 Glossary 23

8 Server Installation 25

9 Controlling Warewulf 29

10 Server Configuration 31

11 Using dnsmasq 37

12 Security 39

13 Bootloaders 41

14 Upgrading Warewulf 47

15 Cluster Nodes 49

16 Node Profiles 53

17 Network Interfaces 57

18 IPMI 59

19 Provisioning disks 63

20 Node Images 67

21 Image Kernels 75

22 Syncuser 77

i

23 SELinux-enabled Images 79

24 Overlays 81

25 Templates 87

26 Troubleshooting 91

27 Known issues 95

28 Contributing 97

29 Development Environment 99

30 Documentation 101

31 Debugging 103

32 wwctl 105

33 wwctl clean 107

34 wwctl configure 109

35 wwctl configure dhcp 111

36 wwctl configure hostfile 113

37 wwctl configure nfs 115

38 wwctl configure ssh 117

39 wwctl configure tftp 119

40 wwctl image 121

41 wwctl image build 123

42 wwctl image copy 125

43 wwctl image delete 127

44 wwctl image exec 129

45 wwctl image import 131

46 wwctl image kernels 133

47 wwctl image list 135

48 wwctl image rename 137

49 wwctl image shell 139

50 wwctl image show 141

51 wwctl image syncuser 143

52 wwctl node 145

ii

53 wwctl node add 147

54 wwctl node console 149

55 wwctl node delete 151

56 wwctl node edit 153

57 wwctl node export 155

58 wwctl node import 157

59 wwctl node list 159

60 wwctl node sensors 161

61 wwctl node set 163

62 wwctl node status 165

63 wwctl overlay 167

64 wwctl overlay build 169

65 wwctl overlay chmod 171

66 wwctl overlay chown 173

67 wwctl overlay create 175

68 wwctl overlay delete 177

69 wwctl overlay edit 179

70 wwctl overlay import 181

71 wwctl overlay list 183

72 wwctl overlay mkdir 185

73 wwctl overlay show 187

74 wwctl power 189

75 wwctl power cycle 191

76 wwctl power off 193

77 wwctl power on 195

78 wwctl power reset 197

79 wwctl power soft 199

80 wwctl power status 201

81 wwctl profile 203

82 wwctl profile add 205

iii

83 wwctl profile delete 207

84 wwctl profile edit 209

85 wwctl profile list 211

86 wwctl profile set 213

87 wwctl server 215

88 wwctl ssh 217

89 wwctl upgrade 219

90 wwctl upgrade config 221

91 wwctl upgrade nodes 223

92 wwctl version 225

93 v4.6.0 Release Notes 227

iv

Warewulf User Guide, Release 4.6.0

Welcome to the Warewulf User Guide!

GETTING STARTED 1

Warewulf User Guide, Release 4.6.0

2 GETTING STARTED

CHAPTER

ONE

INTRODUCTION

Warewulf is an operating system provisioning platform for Linux clusters. Since its initial release in 2001, Warewulf
has become the most popular open source and vendor-agnostic provisioning system within the global HPC community.
Warewulf is known for its massive scalability and simple management of stateless (disk optional) provisioning.

Warewulf leverages a simple administrative model centralizing administration around virtual node images which are
used to provision out to the cluster nodes. This means you can have hundreds or thousands of cluster nodes all
booting and running on the same node image. As of Warewulf v4, the node image can be managed using industry-
standard container tooling and/or CI/CD pipelines. This can be as simple as DockerHub or your own private GitLab
CI infrastructure. With this architecture, Warewulf combines the best of High Performance Computing (HPC), Cloud,
Hyperscale, and Enterprise deployment principals to create and maintain large scalable stateless clusters.

Warewulf is used most prominently in High Performance Computing (HPC) clusters, but its architecture is flexible
enough to be used in most any clustered Linux environment, including clustered web servers, rendering farms, and
even Kubernetes and cloud deployments.

1.1 Warewulf design

Warewulf has had a number of iterations since its inception in 2001, but its design tenets have always remained the
same: a simple, scalable, stateless, and flexible provisioning system for all types of clusters.

• Lightweight: Warewulf provisions stateless operating system images and then gets out of the way. There are
no underlying system dependencies or requisite changes to the provisioned cluster node operating system.

• Simple: Warewulf is used by hobbyists, researchers, scientists, engineers and systems administrators alike.

• Flexible: Warewulf can address the needs of any environment–from a computer lab with graphical workstations,
to under-the-desk clusters, to supercomputing centers providing HPC services to thousands of users.

• Agnostic: From the Linux distribution of choice to the underlying hardware, Warewulf is agnostic and standards
compliant. From ARM to x86, Atos to Dell, Debian, SUSE, Rocky, CentOS, and RHEL, Warewulf can be used
in most any environment.

• Secure: Warewulf support SELinux out-of-the-box. Just install SELinux in your node image and let Warewulf
do the rest!

• Open Source: Warewulf is and has always been open source. It can be used in any environment, whether
public, private, non-profit, or commercial. And the Warewulf project is always welcoming of contribution from
its community of users, with major features often beginning as external contributions.

3

Warewulf User Guide, Release 4.6.0

1.2 Warewulf architecture

Warewulf v4 has a simple but flexible base architecture:

A Warewulf server stores information about the cluster and the nodes in it, and provides a command-line interface
(wwctl) for managing nodes, their images, and their overlays.

Cluster nodes are defined in a flexible YAML file, including their network configuration and image and overlay
assignments.

Node profiles provide a flexible abstraction for applying configuration to multiple nodes.

Node images provide a bootable operating system image, including the kernel that will be used to boot the cluster
node. Node images provide a base operating system and, by default, run entirely in memory. This means that when
you reboot the node, the node retains no information about Warewulf or how it booted; but it also means that they
return to their initial known-good state.

Overlays customize the provisioned operating system image with static files and dynamic templates applied with the
node image and, optionally, periodically at runtime.

1.3 Beowulf overview

Warewulf is designed to support the original Beowulf Cluster concept. (Thus its name, a softWARE implementation
of the beoWULF.) The architecture is characterized by a group of similar cluster nodes all connected together using
standard commodity equipment on an internal cluster network. The server node (often historically referred to as the
“master” or “head” node) is “dual homed” (i.e., it has two network interfaces) with one of these network interfaces
attached to an external network and the other connected to the internal cluster network.

This simple topology is the foundation for creating a scalable HPC cluster resource. Even today, almost 30 years after
the inception of this architecture, this is the baseline architecture that virtually all HPC systems are built to.

An HPC cluster often includes dedicated storage, scheduling and resource management, monitoring, interactive sys-
tems, and other components. For smaller systems, many of these components can be deployed to a single server node;
but, as the system scales, it may be better to have groups of nodes dedicated to these different services.

Warewulf is flexible enough to start with a simple “head node” Beowulf style cluster deployment and to grow as needs
for the cluster and its environment change.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/Beowulf_cluster

CHAPTER

TWO

CLUSTER PROVISIONING

Clusters have many scalability factors to consider. Often overlooked among them is “administrative scaling”– the
systems administration overhead of a person or team maintaining a large number of systems. While homogeneous
configurations do improve administrative scaling, each installed server is still subject to version and configuration
drift, eventually becoming a point of discrete administration and debugging. The larger the cluster, the harder this
problem is to solve.

This is the problem that Warewulf was created solve.

2.1 Provisioning Overview

Provisioning is the process of preparing a system for use, typically by providing and configuring an operating system.
There are many ways to accomplish this, from copying hard drives, to scripted installs, to automated installs. Each has
its place, and there are many tools available to facilitate each method.

Before dedicated cluster provisioning systems, administrators would visit each cluster node and install it from scratch,
with an ISO, CD, or USB flash drive. This is obviously not scalable. Because the nodes in a cluster environment are
typically identical, it is much more efficient to group sets of nodes together to be provisioned in bulk.

2.2 Why Stateless Provisioning

Warewulf further improves on the automated provisioning process by skipping the installation completely; it boots
directly into the runtime operating system without ever doing an installation.

Stateless provisioning means you never have to install another compute node. Think of it like booting a LiveOS or
LiveISO on nodes over the network. This means that no node requires discrete administration, but rather the entire
cluster is administrated as a single unit. There is no version drift, because it is not possible for nodes to fall out of
sync. Every reboot makes it exactly the same as its neighbors.

2.3 Cluster Node Requirements

The only requirement to provision a node with Warewulf is that the node is set to PXE boot. You may need to change
the boot order if there is a local disk present and bootable. This is a configuration change you will have to make in the
BIOS of the cluster node.

This configuration is different for each vendor platform. For more information, consult your system documentation or
contact your hardware vendor support.

5

Warewulf User Guide, Release 4.6.0

Note: Hardware vendors are often able to preconfigure your cluster nodes with values of your choosing. Ask them to
provide a text file that includes all of the network interface MAC addresses of the clusters nodes in the order they are
racked–this simplifies the process of adding nodes to Warewulf.

2.4 The Provisioning Process

When a cluster node boots from Warewulf, the following process occurs:

1. The system firmware (either BIOS or UEFI) initializes hardware, including local network interfaces.

2. The system uses an in-firmware PXE client to obtain a BOOTP/DHCP address from the network.

3. The DHCP server (hosted either on the Warewulf server or externally) responds with an address suitable for
provisioning, along with a “next-server” option directing the cluster node to download (via TFTP) and execute
a bootloader (either iPXE or GRUB) with a Warewulf-provided configuration.

4. The bootloader configuration directs the cluster node to download and bootstrap the configured kernel, image,
and overlays from the Warewulf (HTTP) server.

• In a single-stage provisioning configuration, the desired image and overlays are combined and provisioned
immediately by the bootloader as the kernel’s initial root file system. This is straightfoward, but does not
work in all environments: some systems have memory layouts that are not handled properly by either iPXE
or GRUB for sufficiently large image sizes, leading to strange, unpredictable results.

• In a two-stage provisioning configuration, a small initial root fs (created by dracut) is provisioned first,
and this image uses the provisioned Linux kernel to retrieve and deploy the full image and overlays. Per-
haps counter-intuitively, the two-stage provisioning process is often quicker than the single-stage process,
because the Linux environment is more I/O efficient than the bootloader itself.

5. Optionally included in a configured overlay, wwclient is left resident on the cluster node and periodically
refreshes configured runtime overlays.

6 Chapter 2. Cluster Provisioning

CHAPTER

THREE

NETWORK PLANNING

A clustered resource depends on a cluster network. This network can be either persistent (it is always “up” even
after provisioning) or temporary, only used for provisioning and/or out of band system control and management (e.g.,
IPMI).

The cluster network must be dedicated to the cluster because Warewulf uses network services (particularly DHCP)
which may conflict with services on another mixed-use network. A dedicated cluster network is also important for
security, as the cluster network often has an implicit level of trust associated with it.

The Warewulf server is often “dual homed,” meaning that it has separate network interfaces connected to each of the
cluster network and an external network. But it is also possible for the cluster network to be routable from other, more
general-purpose networks.

Many clusters have more than one internal network. This is common for performance critical HPC clusters that
implement a high speed and low latency network like InfiniBand. In this case, this network is used for high speed data
transfers for inter-process communication between compute nodes and file system IO.

Warewulf will need to be configured to use the private cluster management network. Warewulf will use this network
for booting the nodes over PXE. There are three network protocols used to accomplish this DHCP/BOOT, TFTP, and
HTTP on port 9873. Warewulf will use the operating system’s provided version of DHCP (ISC-DHCP) and TFTP
for the PXE bootstrap to iPXE, and then iPXE will use Warewulf’s internal HTTP services to transfer the larger files
for provisioning.

3.1 Addressing

The addressing scheme of your private cluster network is 100% up to the system integrator, but for large clusters, many
organizations like to organize the address allocations. Below is a recommended IP addressing scheme which we will
use for the rest of this document.

• 10.0.0.1: Private network address IP

• 255.255.252.0: Private network subnet mask (10.0.0.0/22)

Here is an example of how the cluster’s address can be divided for a 255 node cluster:

• 10.0.0.1 - 10.0.0.255: Cluster infrastructure including this host, schedulers, file systems, routers,
switches, etc.

• 10.0.1.1 - 10.0.1.255: DHCP range for booting nodes

• 10.0.2.1 - 10.0.2.255: Static node addresses

• 10.0.3.1 - 10.0.3.255: IPMI and/or out of band addresses for the compute nodes

7

Warewulf User Guide, Release 4.6.0

3.2 Multiple networks

It is possible to configure several networks not just for the nodes but also for the management of dhcpd and tftp.
There are two ways to achieve this:

• Add the networks to the templates of dhcpd and/or the dnsmasq template directly.

• Add the networks to a dummy node and change the templates of dhcp and dnsmasq accordingly.

The first method is relatively trivial. The second method is described below.

As first the first step, add the dummy node.

wwctl node add deliverynet

Add the delivery networks to this node.

wwctl node set \
--ipaddr 10.0.20.250 \
--netmask 255.255.255.0 \
--netname deliver1 \
--nettagadd network=10.0.20.0,dynstart=10.10.20.10,dynend=10.10.20.50 \
deliverynet

wwctl node set \
--ipaddr 10.0.30.250 \
--netmask 255.255.255.0 \
--netname deliver2 \
--nettagadd network=10.0.30.0,dynstart=10.10.30.10,dynend=10.10.30.50 \
deliverynet

The ip address is used as the network address of host in the delivery network and an additional tags is used for definition
of the network itself and the dynamic dhcp range. You can check the result with wwctl node list.

wwctl node list -a deliverynet
NODE FIELD PROFILE VALUE
deliverynet Id -- deliverynet
deliverynet Comment default This profile is automatically
↪→included for each node
deliverynet ImageName default leap15.5
deliverynet Ipxe -- (default)
deliverynet RuntimeOverlay -- (hosts,ssh.authorized_keys)
deliverynet SystemOverlay -- (wwinit,wwclient,hostname,ssh.
↪→host_keys,systemd.netname,NetworkManager)
deliverynet Root -- (initramfs)
deliverynet Init -- (/sbin/init)
deliverynet Kernel.Args -- (quiet crashkernel=no net.
↪→ifnames=1)
deliverynet Profiles -- default
deliverynet PrimaryNetDev -- (deliver1)
deliverynet NetDevs[deliver2].Type -- (ethernet)
deliverynet NetDevs[deliver2].OnBoot -- (true)
deliverynet NetDevs[deliver2].Ipaddr -- 10.0.30.250
deliverynet NetDevs[deliver2].Netmask -- 255.255.255.0
deliverynet NetDevs[deliver2].Tags[dynend] -- 10.10.30.50
deliverynet NetDevs[deliver2].Tags[dynstart] -- 10.10.30.10
deliverynet NetDevs[deliver2].Tags[network] -- 10.0.30.0
deliverynet NetDevs[deliver1].Type -- (ethernet)

(continues on next page)

8 Chapter 3. Network Planning

Warewulf User Guide, Release 4.6.0

(continued from previous page)

deliverynet NetDevs[deliver1].OnBoot -- (true)
deliverynet NetDevs[deliver1].Ipaddr -- 10.0.20.250
deliverynet NetDevs[deliver1].Netmask -- 255.255.255.0
deliverynet NetDevs[deliver1].Primary -- (true)
deliverynet NetDevs[deliver1].Tags[network] -- 10.0.20.0
deliverynet NetDevs[deliver1].Tags[dynend] -- 10.10.20.50
deliverynet NetDevs[deliver1].Tags[dynstart] -- 10.10.20.10

Now the templates of dhcpd and/or dnsmasq must be modified.

wwctl overlay edit host etc/dhcpd.conf.ww
wwctl overlay edit host etc/dnsmasq.d/ww4-hosts.ww

For the dhcp template you should add following lines

{{/* multiple networks */}}
{{- range $node := $.AllNodes}}
{{- if eq $node.Id.Get "deliverynet" }}
{{- range $netname, $netdev := $node.NetDevs}}
network {{ $netname }}
subnet {{$netdev.Tags.network.Get}} netmask {{$netdev.Netmask.Get}} {

max-lease-time 120;
range {{$netdev.Tags.dynstart.Get}} {{$netdev.Tags.dynend.Get}};
next-server {{$netdev.Ipaddr.Get}};

}
{{- end }}
{{- end }}
{{- end }}

and for the dnsmasq the following lines should be added

{{/* multiple networks */}}
{{- range $node := $.AllNodes}}
{{- if eq $node.Id.Get "deliverynet" }}
{{- range $netname, $netdev := $node.NetDevs}}
network {{ $netname }}
dhcp-range={{$netdev.Tags.dynstart.Get}},{{$netdev.Tags.dynend.Get}},{{$netdev.
↪→Netmask.Get}},6h
{{- end }}
{{- end }}
{{- end }}

Note that the {{- if eq $node.Id.Get "deliverynet" }} is used to identify the dummy host which
carries the network information.

3.2. Multiple networks 9

Warewulf User Guide, Release 4.6.0

10 Chapter 3. Network Planning

CHAPTER

FOUR

ENTERPRISE LINUX QUICKSTART

Deploying Warewulf for Rocky Linux, CentOS, RHEL, and other related distributions.

4.1 Install Warewulf

The preferred way to install Warewulf on Enterprise Linux is using the the RPMs published in GitHub releases. For
example, to install the v4.6.0 release on Enterprise Linux 9:

dnf install https://github.com/warewulf/warewulf/releases/download/v4.6.0/warewulf-4.
↪→6.0-1.el9.x86_64.rpm

Packages are available for el8 and el9.

4.1.1 Install Warewulf from source

If you prefer, you can also install Warewulf from source.

dnf install git
dnf install epel-release
dnf install golang {libassuan,gpgme}-devel unzip tftp-server dhcp-server nfs-utils
↪→ipxe-bootimgs-{x86,aarch64}

git clone https://github.com/warewulf/warewulf.git
cd warewulf
PREFIX=/usr/local make defaults
make install

Note: Some packages, like libassuan-devel and gpgme-devel, require either PowerTools (EL8) or
CodeReady Builder (EL9) repositories.

dnf config-manager --set-enabled PowerTools # EL8
dnf config-manager --set-enabled crb # EL9

11

https://github.com/warewulf/warewulf/releases

Warewulf User Guide, Release 4.6.0

4.2 Configure firewalld

Restart firewalld to register the added service file, add the service to the default zone, and reload.

systemctl restart firewalld
firewall-cmd --permanent --add-service=warewulf
firewall-cmd --permanent --add-service=dhcp
firewall-cmd --permanent --add-service=nfs
firewall-cmd --permanent --add-service=tftp
firewall-cmd --reload

4.3 Configure Warewulf

Edit the file /etc/warewulf/warewulf.conf and ensure that you’ve set the appropriate configuration param-
eters. Here are some of the defaults for reference assuming that 10.0.0.1/22 is the IP address of your cluster’s
private network interface.

ipaddr: 10.0.0.1
netmask: 255.255.252.0
network: 10.0.0.0
warewulf:

port: 9873
secure: false
update interval: 60
autobuild overlays: true
host overlay: true
datastore: /usr/share
grubboot: false

dhcp:
enabled: true
template: default
range start: 10.0.1.1
range end: 10.0.1.255
systemd name: dhcpd

tftp:
enabled: true
tftproot: /var/lib/tftpboot
systemd name: tftp
ipxe:
"00:00": undionly.kpxe
"00:07": ipxe-snponly-x86_64.efi
"00:09": ipxe-snponly-x86_64.efi
00:0B: arm64-efi/snponly.efi

nfs:
enabled: true
export paths:
- path: /home
export options: rw,sync

- path: /opt
export options: ro,sync,no_root_squash

systemd name: nfs-server
image mounts:
- source: /etc/resolv.conf

dest: /etc/resolv.conf

(continues on next page)

12 Chapter 4. Enterprise Linux Quickstart

Warewulf User Guide, Release 4.6.0

(continued from previous page)

readonly: true
paths:

bindir: /usr/bin
sysconfdir: /etc
localstatedir: /var/lib
ipxesource: /usr/share/ipxe
srvdir: /var/lib
firewallddir: /usr/lib/firewalld/services
systemddir: /usr/lib/systemd/system
wwoverlaydir: /var/lib/warewulf/overlays
wwchrootdir: /var/lib/warewulf/chroots
wwprovisiondir: /var/lib/warewulf/provision
wwclientdir: /warewulf

Note: The DHCP range from 10.0.1.1 to 10.0.1.255 is dedicated for DHCP during node boot and should not
overlap with any static IP address assignments.

4.4 Enable and start the Warewulf service

Warewulf provides a service, warewulfd, which responds to node boot requests.

systemctl enable --now warewulfd

4.5 Configure system services automatically

There are a number of services and configurations that Warewulf relies on to operate. You can configure all such
services with wwctl configure --all.

wwctl configure --all

Note: If you just installed the system fresh and have SELinux enforcing, you may need to run restorecon -Rv
/var/lib/tftpboot/ to label files written to q`tftpboot``.

4.6 Add a base node image

This will pull a basic node image from Docker Hub and set it for the “default” node profile.

wwctl image import docker://ghcr.io/warewulf/warewulf-rockylinux:9 rockylinux-9 --
↪→build
wwctl profile set default --image rockylinux-9

4.4. Enable and start the Warewulf service 13

Warewulf User Guide, Release 4.6.0

4.7 Configure the default node profile

In this example, all nodes share the netmask and gateway configuration, so we can set them in the default profile.

wwctl profile set -y default --netmask=255.255.252.0 --gateway=10.0.0.1
wwctl profile list

4.8 Add a node

Adding nodes can be done while setting configurations in one command. Here we set the IP address of the default
interface; and setting the node to be discoverable causes the HW address to be added to the configuration as the node
boots.

Node names must be unique. If you are managing multiple clusters with overlapping names, distinguish them using
dot notation.

wwctl node add n1 --ipaddr=10.0.2.1 --discoverable=true
wwctl node list -a n1

The full node configuration comes from both cascading profiles and node configurations which always supersede
profile configurations.

4.9 Build overlays

The default configuration should cause node overlays to be built automatically when they are required; but you can
build them explicitly, just to be sure.

Warning: Overlay autobuild has been broken at various times prior to v4.5.6; so it’s a reasonable practice to
rebuild overlays manually after changes to the cluster.

you can also supply an `n1` argument to build for the specific node
wwctl overlay build

4.10 Boot

Turn on your compute node and watch it boot!

14 Chapter 4. Enterprise Linux Quickstart

CHAPTER

FIVE

SUSE QUICKSTART

Deploying Warewulf for openSUSE Leap and SLES 15.

5.1 Install Warewulf and dependencies

sudo zypper install -t pattern devel_basis
sudo zypper install go
sudo zypper install tftp dhcp-server nfs-kernel-server

sudo systemctl stop firewalld
sudo systemctl disable firewalld

git clone https://github.com/warewulf/warewulf.git
cd warewulf
PREFIX=/usr SYSCONFDIR=/etc TFTPDIR=/srv/tftproot LOCALSTATEDIR=/var/lib make clean
↪→defaults
make all
sudo make install

The standard configuration template for the dhcpd service is installed at the wrong location, you have to fix this with

mv /var/lib/warewulf/overlays/host/etc/dhcp/dhcpd.conf.ww /var/lib/warewulf/overlays/
↪→host/etc/dhcpd.conf.ww

5.2 Install Warewulf from the open build service

You can also just install the ‘warewulf4’ package with zypper from the openbuild service. Up to date versions are
available on the devel project

https://build.opensuse.org/project/show/network:cluster

15

Warewulf User Guide, Release 4.6.0

5.3 Configure the controller

Edit the file /etc/warewulf/warewulf.conf and ensure that you’ve set the appropriate configuration para-
maters. Here are some of the defaults for reference assuming that 192.168.200.1 is the IP address of your cluster’s
private network interface:

ipaddr: 192.168.200.1
netmask: 255.255.255.0
network: 192.168.200.0
warewulf:

port: 9873
secure: false
update interval: 60
autobuild overlays: true
host overlay: true

dhcp:
enabled: true
range start: 192.168.200.50
range end: 192.168.200.99
systemd name: dhcpd

tftp:
enabled: true
systemd name: tftp

nfs:
enabled: true
export paths:
- path: /home
export options: rw,sync

- path: /opt
export options: ro,sync,no_root_squash

systemd name: nfs-server
image mounts:
- source: /etc/resolv.conf
dest: /etc/resolv.conf
readonly: true

Note: The DHCP range ends at 192.168.200.99 and as you will see below, the first node static IP address (post
boot) is configured to 192.168.200.100.

5.4 Start and enable the Warewulf service

Start and enable the warewulfd service
sudo systemctl enable --now warewulfd

16 Chapter 5. SUSE Quickstart

Warewulf User Guide, Release 4.6.0

5.5 Configure system services automatically

There are a number of services and configurations that Warewulf relies on to operate. If you wish to configure all
services, you can do so individually (omitting the --all) will print a help and usage instructions.

Note: If the dhcpd service was not used before you will have to add the interface on which the cluster network is
running to the DHCP_INTERFACE in the file /etc/sysconfig/dhcpd.

sudo wwctl configure --all

5.6 Pull and build the image

This will pull a basic image from Docker Hub and set it in the “default” node profile.

$ sudo wwctl image import docker://registry.opensuse.org/science/warewulf/leap-15.4/
↪→containers/kernel:latest leap15.4
$ sudo wwctl profile set default --image leap15.4

5.7 Set up the default node profile

The --setdefault arguments above will automatically set those entries in the default profile, but if you wanted to
set them by hand to something different, you can do the following:

sudo wwctl profile set -y -C leap15.4

Next we set some default networking configurations for the first ethernet device. On modern Linux distributions, the
name of the device is not critical, as it will be setup according to the HW address. Because all nodes will share the
netmask and gateway configuration, we can set them in the default profile as follows:

sudo wwctl profile set -y default --netname default --netmask 255.255.255.0 --gateway
↪→192.168.200.1
sudo wwctl profile list -a

5.8 Add a node

Adding nodes can be done while setting configurations in one command. Here we are setting the IP address of eth0
and setting this node to be discoverable, which will then automatically have the HW address added to the configuration
as the node boots.

Node names must be unique. If you have node groups and/or multiple clusters, designate them using dot notation.

Note that the full node configuration comes from both cascading profiles and node configurations which always su-
persede profile configurations.

sudo wwctl node add n0000.cluster --netdev eth0 --ipaddr 192.168.200.100 --
↪→discoverable true
sudo wwctl node list -a n0000.cluster

5.5. Configure system services automatically 17

Warewulf User Guide, Release 4.6.0

5.9 Warewulf Overlays

There are two types of overlays: system and runtime overlays.

System overlays are provisioned to the node before /sbin/init is called. This enables us to prepopulate node
configurations with content that is node specific like networking and service configurations.

Runtime overlays are re-applied periodically during the normal runtime of the node. Because these overlays are
provisioned at periodic intervals, they are very useful for content that changes, like users and groups.

Overlays are generated from a template structure that is viewed using the wwctl overlay commands. Files that
end in the .ww suffix are templates and abide by standard text/template rules. This supports loops, arrays, variables,
and functions making overlays extremely flexible.

All overlays are compiled before being provisioned. This accelerates the provisioning process because there is less to
do when nodes are being managed at scale.

Here are some of the common overlay commands:

sudo wwctl overlay list -l
sudo wwctl overlay list -ls
sudo wwctl overlay edit default /etc/hello_world.ww
sudo wwctl overlay build -a

Boot your compute node and watch it boot!

18 Chapter 5. SUSE Quickstart

CHAPTER

SIX

DEBIAN QUICKSTART

Deploying Warewulf for Debian 12.

6.1 Install the basic services

sudo apt install firewalld nfs-kernel-server tftpd-hpa isc-dhcp-server

Note: If you get an error message concerning isc-dhcp-server.service you probably need to configure the network
intarface that isc-dhcp-server will listen to. Run sudo dpkg-reconfigure isc-dhcp-server and enter
the name of your cluster’s private network interface (e.g. enp2s0). After that, you might also need to run sudo
systemctl enable isc-dhcp-server.

6.2 Install Warewulf and dependencies

sudo apt install build-essential curl unzip

sudo apt install git golang libnfs-utils libgpgme-dev libassuan-dev

mkdir ~/git
cd ~/git
git clone https://github.com/warewulf/warewulf.git
cd warewulf
git checkout main # or switch to a tag like 'v4.6.0'
make all && sudo make install

6.3 Configure firewalld

Restart firewalld to register the added service file, add the service to the default zone, and reload.

sudo systemctl restart firewalld
sudo firewall-cmd --permanent --add-service warewulf
sudo firewall-cmd --permanent --add-service dhcp
sudo firewall-cmd --permanent --add-service nfs
sudo firewall-cmd --permanent --add-service tftp
sudo firewall-cmd --reload

19

Warewulf User Guide, Release 4.6.0

6.4 Configure the controller

Edit the file /etc/warewulf/warewulf.conf and ensure that you’ve set the appropriate configuration param-
eters. Here are some of the defaults for reference assuming that 192.168.200.1 is the IP address of your cluster’s
private network interface:

ipaddr: 192.168.200.1
netmask: 255.255.255.0
network: 192.168.200.0
warewulf:

port: 9873
secure: false
update interval: 60
autobuild overlays: true
host overlay: true

dhcp:
enabled: true
range start: 192.168.200.50
range end: 192.168.200.99
systemd name: isc-dhcp-server

tftp:
enabled: true
systemd name: tftpd-hpa

nfs:
enabled: true
export paths:
- path: /home

export options: rw,sync
- path: /opt

export options: ro,sync,no_root_squash
systemd name: nfs-server

Note: The DHCP range ends at 192.168.200.99 and as you will see below, the first node static IP address (post
boot) is configured to 192.168.200.100.

6.5 Start and enable the Warewulf service

Start and enable the warewulfd service
sudo systemctl enable --now warewulfd

6.6 Configure system services automatically

There are a number of services and configurations that Warewulf relies on to operate. If you wish to configure all
services, you can do so individually (omitting the --all) will print a help and usage instructions.

sudo wwctl configure --all

Note: If you just installed the system fresh and have SELinux enforcing, you may need to reboot the system at
this stage to properly set the contexts of the TFTP contents. After rebooting, you might also need to run $ sudo

20 Chapter 6. Debian Quickstart

Warewulf User Guide, Release 4.6.0

restorecon -Rv /var/lib/tftpboot/ if there are errors with TFTP still.

6.7 Pull and build the image

This will pull a basic image from Docker Hub and set it for the “default” node profile.

wwctl image import docker://ghcr.io/warewulf/warewulf-debian:12.0 debian-12.0
wwctl profile set default --image=debian-12.0

6.8 Set up the default node profile

Node configurations can be set via node profiles. Each node by default is configured to be part of the default node
profile, so any changes you make to that profile will affect all nodes.

The following command will set the image we just imported above to the default node profile:

sudo wwctl profile set --yes --image debian-12.0 "default"

Next we set some default networking configurations for the first ethernet device. On modern Linux distributions, the
name of the device is not critical, as it will be setup according to the HW address. Because all nodes will share the
netmask and gateway configuration, we can set them in the default profile as follows:

sudo wwctl profile set --yes --netdev eth0 --netmask 255.255.255.0 --gateway 192.168.
↪→200.1 "default"

Once those configurations have been set, you can view the changes by listing the profiles as follows:

sudo wwctl profile list -a

6.9 Add a node

Adding nodes can be done while setting configurations in one command. Here we are setting the IP address of eth0
and setting this node to be discoverable, which will then automatically have the HW address added to the configuration
as the node boots.

Node names must be unique. If you have node groups and/or multiple clusters, designate them using dot notation.

Note that the full node configuration comes from both cascading profiles and node configurations which always su-
persede profile configurations.

sudo wwctl node add n0000.cluster --ipaddr 192.168.200.100 --discoverable true

At this point you can view the basic configuration of this node by typing the following:

sudo wwctl node list -a n0000.cluster

To make node changes effective, it is a good practice to update Warewulf overlays with the following command:

sudo wwctl overlay build

Now, turn on your compute node and watch it boot!

6.7. Pull and build the image 21

Warewulf User Guide, Release 4.6.0

22 Chapter 6. Debian Quickstart

CHAPTER

SEVEN

GLOSSARY

Cluster network A dedicated network for the Warewulf cluster. Used for provisioning communication between
cluster nodes and the Warewulf server.

External services The Warewulf server can configure external services to support the provisioning process. For
example, the Warewulf server typically deploys and configures a DHCP server (either ISC DHCP or dnsqmasq)
and a TFTP server.

Image The node images that Warewulf manages and provisions. Images may be imported from OCI image registries,
OCI image archives, Apptainer sandboxes, and manual chroot directories.

Warewulf images are maintained as an uncompressed “virtual node file system” (VNFS, sometimes also referred
to as a “chroot”). These virtual file systems are then built as single-file images which may be used to provision
a node.

Kernel In addition to an image, Warewulf also requires a kernel (typically a Linux kernel) in order to provision a
node.

Warewulf (after v4.3.0) automatically provisions a kernel detected and extracted from the image itself. In most
cases, kernels may be installed in the image using normal system packages, and no special consideration is
necessary.

Node Warewulf nodes are the systems that are being provisioned by Warewulf. The roles of these systems could be
“compute”, “storage”, “GPU”, “IO”, etc.

nodes.conf One of two primary Warewulf configuration files, nodes.conf is a YAML document which records
all configuration parameters for Warewulf’s nodes and profiles. It does not contain the images or overlays, but
refers to them by name.

This file is sometimes referred to as the “nodes database” or “node registry.”

Overlay Warewulf overlays provide customization for the provisioned image. Overlays may be configured on nodes
or profiles, as either system or runtime overlays.

System overlays are applied only once, when a node is first provisioned.

Runtime overlays are applied when a node is first provisioned and periodically during the runtime of the node.
(The default period is 1 minute.)

Warewulf includes a number of distribution overlays; but additional site overlays can be added to a Warewulf
environment.

Profile Warewulf profiles are abstract nodes that carry the same configuration attributes but do not provision any
specific node. Warewulf nodes may then refer to one or more such profiles for their configuration. In this way,
profiles provide a simple mechanism for applying configuration to a group of nodes, and this configuration may
be mixed with configuration from other profiles.

23

Warewulf User Guide, Release 4.6.0

Server, Warewulf The Warewulf controller runs the Warewulf daemon (warewulfd) and is responsible for the
management, control, and administration of the cluster. This system may also sometimes be referred to as the
“master,” “head,” or “admin” node.

A typical Warewulf controller also runs a DHCP service and a TFTP service, and often an NFS service; though
these services may be managed separately and on separate servers.

Two-stage boot A two-stage boot uses an intermediate image (often called “initrd,” or “initramfs”) to initialize hard-
ware and load the final image. This contrasts with Warewulf’s default “single stage” behavior, which effectively
uses the final image as a large initial root file system.

The Warewulf two-stage boot process currently supports Dracut-based images.

warewulf.conf One of two primary Warewulf configuration files, warewulf.conf is a YAML document which
records all configuration parameters for the Warewulf server and its optional subservices.

wwclient Warewulf adds a wwclient daemon to provisioned nodes. This daemon is responsible for periodically
fetching and applying runtime overlays.

wwctl The main administrative interface for Warewulf is the wwctl command, which provides commands to manage
nodes, profiles, images, overlays, kernels, and more.

wwinit Warewulf performs some setup during the provisioning process before control is passed to the provisioned
operating system. This process is referred to as “wwinit,” and is implemented and configured by a script and
overlay of the same name.

24 Chapter 7. Glossary

CHAPTER

EIGHT

SERVER INSTALLATION

There are multiple methods to install a Warewulf server. This page describes some of those methods.

8.1 Binary RPMs

The Warewulf project builds binary RPMs as part of its CI/CD process. You can obtain them from the GitHub releases
page.

8.1.1 Rocky Linux 9

dnf install https://github.com/warewulf/warewulf/releases/download/v4.6.0rc2/
↪→warewulf-4.6.0rc2-1.el9.x86_64.rpm

8.1.2 openSuse Leap

zypper install https://github.com/warewulf/warewulf/releases/download/v4.6.0rc2/
↪→warewulf-4.6.0rc2-1.suse.lp155.x86_64.rpm

8.2 Container images

Warewulf can be built in a Linux container. This can be especially useful for testing and development, or to replace
traditional package installation. It is also possible to only use the container for building and the install it in the host
system afterwards. For that look at the INSTALL, UNINSTALL and PURGE labels inside the Dockerfile

8.2.1 Docker

docker build -t warewulf .
docker run -d --replace --name warewulf-test --privileged --net=host -v /:/host -v /
↪→etc/warewulf:/etc/warewulf -v /var/lib/warewulf/:/var/lib/warewulf/ -e
↪→NAME=warewulf-test -e IMAGE=warewulf warewulf

25

https://github.com/warewulf/warewulf/releases
https://github.com/warewulf/warewulf/blob/main/Dockerfile

Warewulf User Guide, Release 4.6.0

8.2.2 Systemd-nspawn

Warewulf runs multiple services inside one single container and uses systemd as init system. As such, it might be
better to use systemd-nspawn, which was explicitly made to run containers with a full init system.

docker build -t warewulf .
mkdir warewulf-nspawn
docker export "$(docker create --name warewulf-test warewulf true)" | tar -x -C
↪→warewulf-nspawn
systemd-nspawn -D warewulf-nspawn/ passwd
systemd-nspawn -D warewulf-nspawn/ --boot

8.3 Compiled from Source

Before you build the Warewulf source code you will first need to install the build dependencies:

• make: This should be available via your Linux distribution’s package manager (e.g. dnf install make)

• go: Golang is also available on most current Linux distributions, but you can also install the most recent version.

• Depending on your Linux Distribution, you may need to install other development packages. Typically it is
recommended to install the entire development group.

dnf groupinstall "Development Tools"

Once these dependencies are installed, you can obtain and build the source code.

8.3.1 Release Tarball

The Warewulf project releases source distributions alongside its binary RPMs. You can obtain them from the GitHub
releases page.

Select the version you wish to install and download the tarball to any location on the server, then follow these directions
making the appropriate substitutions:

curl -LO https://github.com/warewulf/warewulf/releases/download/v4.6.0rc2/warewulf-4.
↪→6.0rc2.tar.gz
tar -xf warewulf-4.6.0rc2.tar.gz
cd warewulf-4.6.0rc2
make all && sudo make install

8.3.2 Git

You can install different versions of Warewulf from its Git tags or branches. The main branch is where most active
development occurs, so if you want to obtain the latest and greatest version of Warewulf, this is where to go. But be
forewarned, using a snapshot from main is not guaranteed to be stable or generally supported for production.

If you are building for production, it is best to download a release tarball from the main site, the GitHub releases page,
or from a Git tag.

git clone https://github.com/warewulf/warewulf.git
cd warewulf
git checkout main # or switch to a tag like 'v4.6.0rc2'
make all && sudo make install

26 Chapter 8. Server Installation

https://www.freedesktop.org/software/systemd/man/latest/systemd-nspawn.html
https://golang.org/dl/
https://github.com/warewulf/warewulf/releases
https://github.com/warewulf/warewulf/releases

Warewulf User Guide, Release 4.6.0

8.3.3 Runtime Dependencies

In its default configuration, Warewulf requires some operating system provided services. Generally these are provided
by your distribution.

• dhcp-server

• tftp-server

• nfs-utils

If you are using an Enterprise Linux compatible distribution you can install them with dnf install
dhcp-server tftp-server nfs-utils.

8.4 Starting warewulfd

The Warewulf installation registers the Warewulf service with systemd, so it should be as easy to start/stop/check as
any other systemd service:

systemctl enable --now warewulfd

8.4. Starting warewulfd 27

Warewulf User Guide, Release 4.6.0

28 Chapter 8. Server Installation

CHAPTER

NINE

CONTROLLING WAREWULF

Warewulf’s command-line interface is based primarily around the wwctl command. This command has sub-
commands for each major component of Warewulf’s functionality.

• configure: configures the Warewulf server and its external services

• node: manages nodes in the cluster

• profiles: defines common sets of node configuration which can be applied to multiple nodes

• image: configures (node) images

• overlays: manages overlays

wwctl also provides additional helpers for interacting with cluster nodes over SSH and IPMI.

• power: turns nodes on and off

• ssh: provides basic parallel ssh functionality

All of these subcommands (and their respective sub-subcommands) have built-in help with either wwctl help or
--help.

9.1 Hostlists

Many of the commands (e.g., wwctl node list support a “hostlist” syntax for referring to multiple nodes at once.
Hostlist expressions support both ranges and comma-separated numerical lists.

For example:

• node[1-2] expands to node1 node2

• node[1,3] expands to node1 node3

• node[1,5-6] expands to node1 node5 node6

9.2 Node status

During the whole provisioning process of your nodes, you can check their status through the following command :

wwctl node status
NODENAME STAGE SENT LASTSEEN (s)
==
n1 RUNTIME_OVERLAY __RUNTIME__.img.gz 16

For each node, there are 4 different stages:

29

Warewulf User Guide, Release 4.6.0

• IPXE

• KERNEL

• SYSTEM_OVERLAY

• RUNTIME_OVERLAY

You can use the wwctl node status to check communication between the Warewulf server (warewulfd) and
the Warewulf client (wwclient).

30 Chapter 9. Controlling Warewulf

CHAPTER

TEN

SERVER CONFIGURATION

By default, the Warewulf server configuration is located at /etc/warewulf/warewulf.conf. This is a YAML-
formatted configuration file used by to configured the Warewulf server itself and its external services.

An initial warewulf.conf is packaged with Warewulf. Each section is covered in detail below.

Once Warewulf has been installed and configured:

• run wwctl configure --all to reconfigure external services

• run systemctl restart warewulfd to apply the configuration to the Warewulf server

Re-run both of these commands when making changes to warewulf.conf.

ipaddr: 192.168.1.1
netmask: 255.255.255.0
network: 192.168.1.0
warewulf:

port: 9873
secure: true
update interval: 60
autobuild overlays: true
host overlay: true
grubboot: false

dhcp:
enabled: true
template: default
systemd name: dhcpd

tftp:
enabled: true
tftproot: /var/lib/tftpboot
systemd name: tftp
ipxe:
00:0B: arm64-efi/snponly.efi
"00:00": undionly.kpxe
"00:07": ipxe-snponly-x86_64.efi
"00:09": ipxe-snponly-x86_64.efi

nfs:
enabled: true
systemd name: nfsd

ssh:
key types:
- ed25519
- ecdsa
- rsa
- dsa

image mounts:
(continues on next page)

31

Warewulf User Guide, Release 4.6.0

(continued from previous page)

- source: /etc/resolv.conf
dest: /etc/resolv.conf

paths:
bindir: /usr/bin
sysconfdir: /etc
localstatedir: /var/lib
cachedir: /var/cache
ipxesource: /usr/share/ipxe
srvdir: /var/lib
firewallddir: /usr/lib/firewalld/services
systemddir: /usr/lib/systemd/system
datadir: /usr/share
wwoverlaydir: /var/lib/warewulf/overlays
wwchrootdir: /var/lib/warewulf/chroots
wwprovisiondir: /var/lib/warewulf/provision
wwclientdir: /warewulf

10.1 warewulf

ipaddr: 192.168.1.1
netmask: 255.255.255.0
network: 192.168.1.0
warewulf:

port: 9873
secure: true
update interval: 60
autobuild overlays: true
host overlay: true
grubboot: false

• ipaddr: The Warewulf server address on the cluster network. This configuration must match the server’s IP
address.

If ipaddr is specified as a CIDR address, netmask and network may be omitted.

• netmask: The netmask for the cluster network.

• network: The address of the cluster network itself.

• warewulf:port: This is the port that the Warewulf web server will be listening on. It is recommended not
to change this so there is no misalignment with node’s expectations of how to contact the Warewulf service.

• warewulf:secure: When true, this limits the Warewulf server to only respond to runtime overlay requests
originating from a privileged port. This prevents non-root users from requesting the runtime overlay, which may
contain sensitive information.

When true, wwclient uses TCP port 987 by default. (A different port can be specified at
wwclient:port.)

Changing this option requires rebuilding node overlays and rebooting compute nodes to configure them to use a
privileged port for wwclient.

• warewulf:update interval: This defines the frequency (in seconds) with which the Warewulf client on
the compute node fetches overlay updates.

• warewulf:autobuild overlays: Controls whether per-node overlays will automatically be rebuilt.
(e.g., when an underlying overlay is changed)

32 Chapter 10. Server Configuration

Warewulf User Guide, Release 4.6.0

Overlay autobuild is not 100% reliable; but it is particularly useful for building overlays for new nodes.

• warewulf:host overlay: Controls whether the special host overlay is applied to the Warewulf server
during configuration. (The host overlay is used to configure external services.)

• warewulf::grubboot: Controls whether iPXE (default) or GRUB is used as the network bootloader.

10.2 dhcp

The DHCP external service can be configured explicitly with wwctl configure dhcp. This (re)writes the DHCP
configuration and enables and (re)starts the DHCP service.

dhcp:
enabled: true
template: default
systemd name: dhcpd

• dhcp:enabled: Whether Warewulf should configure a DHCP server on the cluster network. Set to false
when managing DHCP separately.

• dhcp:template An optional DHCP template variable to control the generation of the DHCP template.

Specifying template: static populates dhcpd.conf with static leases for each host, bypassing the
DHCP range. (Run wwctl configure dhcp to update dhcpd.conf when nodes are added, removed, or
changed.)

• dhcp:range start and dhcp:range end: Defines a dynamic DHCP range to use when provisioning
cluster nodes. This address range must exist in the cluster network defined above. (Otherwise, the DHCP server
will fail to start).

This range should not overlap with IP addresses assigned to nodes in nodes.conf.

• dhcp:systemd name: Identifies the systemd service that manages the DHCP service. Used during wwctl
configure dhcp to restart the service.

10.3 tftp

The TFTP external service can be configured explicitly with wwctl configure tftp. This writes the appropriate
bootloader executables to the TFTP root directory and enables the TFTP service.

tftp:
enabled: true
tftproot: /var/lib/tftpboot
systemd name: tftp
ipxe:
00:0B: arm64-efi/snponly.efi
"00:00": undionly.kpxe
"00:07": ipxe-snponly-x86_64.efi
"00:09": ipxe-snponly-x86_64.efi

• tftp:enabled: Whether Warewulf should configure a TFTP server on the cluster network. Set to false
when managing TFTP separately.

• tftp:tftproot: Identifies the local path being served by the managed TFTP server. Warewulf creates a
warewulf/ subdirectory and copies iPXE and/or GRUB bootloader files to this location depending on the
server configuration.

10.2. dhcp 33

Warewulf User Guide, Release 4.6.0

• systemd name: Identifies the systemd service that manages the TFTP service. Used during wwctl
configure tftp to restart the service.

• ipxe: A map of DHCP option architecture-types to the iPXE binary that should be used for that architecture.
iPXE binaries are searched for in paths:ipxesource. By default, these paths correspond to the location
of the correct iPXE binary for each architecture in the distribution iPXE packages; but they can be specified
explicitly when providing a local iPXE build.

10.4 nfs

The NFS external service can be configured explicitly with wwctl configure nfs. This configures the NFS
server (particularly /etc/exports) on the Warewulf server and enables and starts the NFS service.

nfs:
enabled: true
export paths:
- path: /home

export options: rw,sync
- path: /opt

export options: ro,sync,no_root_squash
systemd name: nfsd

• nfs:enabled: Whether Warewulf should configure an NFS server on the cluster network. Set to false
when not required or when managing NFS separately.

• nfs:export paths: A list of NFS exports to configure on the Warewulf server. Each export defines a path
to be exported and the export options for that export.

• systemd name: Identifies the systemd service that manages the NFS service. Used during wwctl
configure nfs to restart the service.

10.5 ssh

New in Warewulf v4.5.1

SSH key types to generate during wwctl configure ssh. This create the appropriate host keys (stored in /etc/
warewulf/keys/) and authentication keys for passwordless ssh to cluster nodes. It also installs shell profiles /
etc/profile.d/ssh_setup.csh and /etc/profile.d/ssh_setup.sh to initialize authentication keys
for new users if and when they log into the Warewulf server.

ssh:
key types:
- ed25519
- ecdsa
- rsa
- dsa

• ssh:key types: Warewulf generate host keys for each listed key type.

The first listed key type is used to generate authentication ssh keys.

34 Chapter 10. Server Configuration

Warewulf User Guide, Release 4.6.0

10.6 image mounts

A list of paths to temporarily mount from the Warewulf server into an image during wwctl image exec and
wwctl image shell, typically to allow them to operate in the host environment prior to deployment.

image mounts:
- source: /etc/resolv.conf
dest: /etc/resolv.conf

• image mounts:source: The path on the Warewulf server to mount into the image.

• image mounts:dest: The path in the image to use for the mount.

• image mounts::readonly: Whether the mount should be read-only (true) or allow writes into the server
path (false).

• image mounts::copy: When true, copy files into the image rather than mount. This is useful for initial-
izing files with a starting value from the Warewulf server that should then be maintained as part of the image.

10.7 paths

New in Warewulf v4.5.0

Override paths to images, overlays, and other Warewulf components.

paths:
sysconfdir: /etc
cachedir: /var/cache
ipxesource: /usr/share/ipxe
datadir: /usr/share
wwoverlaydir: /var/lib/warewulf/overlays
wwchrootdir: /var/lib/warewulf/chroots
wwprovisiondir: /var/lib/warewulf/provision
wwclientdir: /warewulf

• paths:sysconfdir: The parent directory for the warewulf configuration directory, which stores
warewulf.conf and nodes.conf.

• paths::cachedir: The parent directory for the warewulf cache of OCI images during wwctl image
import.

• paths:ipxesource: Where to get iPXE binaries. These files are copied to warewulf.
conf:tftp:tftproot by wwctl configure tftp.

• datadir: Parent directory for distribution overlays and BMC templates.

• paths:wwoverlaydir: Parent directory for site overlays.

• paths:wwchrootdir: Parent directory for Warewulf images.

• paths:wwprovisiondir: The destination for built images and overlay images.

• paths:wwclientdir: Where wwclient looks for its configuration on a provisioned node.

10.6. image mounts 35

Warewulf User Guide, Release 4.6.0

10.8 wwclient

Configuration for the wwclient service on cluster nodes.

wwclient:
port: 987

• wwclient:port: The source port used by wwclient. By default an ephemeral port is selected; but
warewulf.conf:warewulf:secure: true requires a known privileged port.

wwclient will use the TCP port “987” by default if secure: true; but, if that port is otherwise in use, a
different port may be specified.

10.9 hostfile

There are no explicit “hostfile” configuration options in warewulf.conf; but wwctl configure hostfile
updates the Warewulf server’s /etc/hosts file to include expected configuration for the server itself as well as the
known names of the cluster nodes and thier interfaces.

Entries from the Warewulf server’s /etc/hosts file are distributed to cluster nodes by the “hosts” overlay.

36 Chapter 10. Server Configuration

CHAPTER

ELEVEN

USING DNSMASQ

As an experimental feature, it is possible to use dnsmasq instead of the ISC dhcpd server and TFTP server.

In order to keep the file /etc/dnsmasq.d/ww4-hosts.conf is created and must be included in the main
dnsmasq.conf via the conf-dir=/etc/dnsmasq.d option.

11.1 Installation

Before the installation, make sure that dhcpd and tftp are disabled. You can do that with the commands:

systemctl disable --now dhcpd
systemctl disable --now tftp

Now you can install dnsmasq.

Rocky Linux
dnf install dnsmasq

SUSE
zypper install dnsmasq

After the installation, instruct warewulf to use dnsmasq as its dhcpd and tftp service. This is done in the server
configuration file, typically at /etc/warewulf/warewulf.conf:

tftp:
systemd name: dnsmasq

dhcp:
systemd name: dnsmasq

The configuration of dnsmasq often doesn’t need to be changed, as the default configuration includes all files with
following pattern /etc/dnsmasq.d/*conf into its configuration. This configuration is created by the overlay
template host:/etc/dnsmasq.d/ww4-hosts.conf.ww.

Note: In certain distributions, such as Rocky Linux 9, dnsmasq is configured to listen locally via the
interface=lo option by default. Replace this entry in /etc/dnsmasq.conf with the interface associated
with your Warewulf network, or remove/comment out the interface option entirely to enable listening on all interfaces.

Once the Warewulf configuration has been updated, re-deploy the configuration and restart warewulfd.

wwctl configure --all
systemctl restart warewulfd.service

37

Warewulf User Guide, Release 4.6.0

38 Chapter 11. Using dnsmasq

CHAPTER

TWELVE

SECURITY

While certain parallelization and high performance library capabilities still require lowering the security threshold
within a cluster, Warewulf strives to support good security practices within the cluster wherever possible.

12.1 Provisioning Security

Provisioning is, by default, a relatively “insecure” process: there is generally nothing preventing a user on a cluster
node from spoofing a provision request and downloading the node image and overlays for inspection. If any of these
include secrets (e.g., private keys) they are at risk of exposure.

There are multiple ways to secure the Warewulf provisioning process:

• The best way to secure the provisioning process is to dedicate a vLAN specifically for provisioning, and then
not make that vLAN available in the provisioned environment. Warewulf can be used in such an environment
(without wwclient) but you must consult your switch documentation and features to implement a default
vLAN for provisioning and to ensure that the runtime operating system is configured for a different tagged
vLAN once booted.

• Warewulf can leverage hardware “asset tags” which almost all vendors support. This is a configurable firmware
string that is accessible only via root or physical access. During provisioning (as well as post provisioning via
wwclient) Warewulf sends the detected asset tag to the Warewulf server as a “shared secret” token. If the node
is also configured with an asset key on the Warewulf server (e.g., via wwctl node set --assetkey
"..."), the Warewulf server will only respond to requests with a matching asset tag.

• If the Warewulf server is configured with warewulf:secure: true, then it will only provide the runtime
overlay to a wwclient communicating from a privileged (< 1024) TCP port. This prevents unprivileged cluster
users from being able to retrieve the runtime overlay.

• When the nodes are booted via shim and grub Secure Boot can be enabled. This means that the nodes only boot
the kernel which is provided by the distributor and also custom complied modules can’t be loaded.

12.2 SELinux

The Warewulf server can be run with SELinux enabled in “targeted” and “enforcing” mode.

For more information about running SELinux-enabled cluster node images, see SELinux-Enabled Images.

39

Warewulf User Guide, Release 4.6.0

12.3 firewalld

If the Warewulf server is running firewalld, the following services must be added for them to function:

firewall-cmd --permanent --add-service=warewulf
firewall-cmd --permanent --add-service=dhcp
firewall-cmd --permanent --add-service=nfs
firewall-cmd --permanent --add-service=tftp
firewall-cmd --reload

Note: The DHCP, TFTP, and NFS services may be managed manually, apart from the Warewulf server. In that case,
they may be omitted from the firewalld configuration on the Warewulf server; but they must be accessible from
where they are served.

12.4 nftables

If the Warewulf server is running nftables directly, without firewalld, ensure that TCP port 9873 must be
permitted for cluster nodes to communicate with the Warewulf server.

nft add rule inet filter input tcp dport 9873 accept
nft list ruleset >/etc/nftables.conf
systemctl restart nftables

40 Chapter 12. Security

CHAPTER

THIRTEEN

BOOTLOADERS

Warewulf uses iPXE as its default network bootloader. As a tech preview, support for GRUB is also available, which
adds support for secure boot.

Also as a tech preview, Warewulf may also use iPXE or GRUB to boot a dracut initramfs as an initial stage before
loading the image. This is called a two-stage boot.

13.1 Booting with iPXE

The /etc/warewulf/ipxe/ directory contains text/templates that are used by the Warewulf configuration process
to configure the ipxe service.

Starting in v4.5.0, Warewulf no longer includes an iPXE binary. In stead, by default Warewulf uses the iPXE that
comes with the host OS.

Unfortunately, we’ve encountered a few instances where bugs in the OS-provided iPXE that sometimes make booting
a full OS image as an “initrd” unreliable.

Building iPXE locally, using a more recent “version” of the iPXE source code, can alleviate some of these issues.

Another alternative is Booting with dracut, which uses the Linux kernel to load the full OS image, avoiding the issue
entirely.

13.1.1 Building iPXE locally

By default (as of v4.5.0) Warewulf packages use iPXE from the host operating system rather than bundling iPXE
binaries with Warewulf. However, sometimes the specific build included in the host OS has bugs or missing features,
and a local build of iPXE is necessary.

The Warewulf project provides a build-ipxe.sh script to simplify the process of building iPXE locally.

curl -LO https://raw.githubusercontent.com/warewulf/warewulf/main/scripts/build-
↪→ipxe.sh
bash build-ipxe.sh -h
Usage: build-ipxe.sh

[-h] (help)
TARGETS: bin-x86_64-pcbios/undionly.kpxe bin-x86_64-efi/snponly.efi bin-arm64-efi/
↪→snponly.efi
IPXE_BRANCH: master
DESTDIR: /usr/local/share/ipxe

41

https://github.com/warewulf/warewulf/blob/main/scripts/build-ipxe.sh

Warewulf User Guide, Release 4.6.0

Running build-ipxe.sh

The script, by default, builds iPXE for x86_64 BIOS, x86_64 EFI, and arm64 EFI from the master branch on the iPXE
project GitHub and stores the resultant builds in /usr/local/share/ipxe/. (These parameters can be adjusted
by setting TARGETS, IPXE_BRANCH, and DESTDIR environment variables, with the current values shown in the -h
output for reference.)

mkdir -p /usr/local/share/ipxe
bash build-ipxe.sh
[...]
ls -1 /usr/local/share/ipxe/
bin-arm64-efi-snponly.efi
bin-x86_64-efi-snponly.efi
bin-x86_64-pcbios-undionly.kpxe

Note: Building for aarch64 requires the package gcc-aarch64-linux-gnu.

Build options

By default, build-ipxe.sh enables support for ZLIB and GZIP images, as well as commands for managing
VLANs and the framebuffer console. The x86_64 build also enables support for the serial console.

Additional build options can be configured by editing the build-ipxe.sh script. For example, the x86_64 build is
configured in the configure_x86_64 function.

function configure_x86_64 {
sed -i.bak \

-e 's,//\(#define.*CONSOLE_SERIAL.*\),\1,' \
-e 's,//\(#define.*CONSOLE_FRAMEBUFFER.*\),\1,' \
config/console.h

sed -i.bak \
-e 's,//\(#define.*IMAGE_ZLIB.*\),\1,' \
-e 's,//\(#define.*IMAGE_GZIP.*\),\1,' \
-e 's,//\(#define.*VLAN_CMD.*\),\1,' \
config/general.h

}

For example, the imgextract command can be explicitly enabled.

function configure_x86_64 {
sed -i.bak \

-e 's,//\(#define.*CONSOLE_SERIAL.*\),\1,' \
-e 's,//\(#define.*CONSOLE_FRAMEBUFFER.*\),\1,' \
config/console.h

sed -i.bak \
-e 's,//\(#define.*IMAGE_ZLIB.*\),\1,' \
-e 's,//\(#define.*IMAGE_GZIP.*\),\1,' \
-e 's,//\(#define.*VLAN_CMD.*\),\1,' \
-e 's,//\(#define.*IMAGE_ARCHIVE_CMD.*\),\1,' \
config/general.h

}

Note: IMG_ARCHIVE_CMD is already enabled by default in the iPXE master branch, but only takes effect when at
least one archive image format is configured. This is the case in the default state of build-ipxe.sh, which enables

42 Chapter 13. Bootloaders

https://ipxe.org/buildcfg/image_zlib
https://ipxe.org/buildcfg/image_gzip
https://ipxe.org/buildcfg/vlan_cmd
https://ipxe.org/buildcfg/console_framebuffer
https://ipxe.org/buildcfg/console_serial
https://ipxe.org/buildcfg
https://ipxe.org/buildcfg/image_archive_cmd

Warewulf User Guide, Release 4.6.0

support for ZLIB and GZIP archive image formats.

Configuring Warewulf (>= v4.5.0)

In Warewulf v4.5.0, Warewulf can be configured to use these files using the tftp.ipxe and paths.ipxesource
configuration parameters in warewulf.conf.

warewulf.conf
tftp:
ipxe:
"00:00": bin-x86_64-pcbios-undionly.kpxe
"00:07": bin-x86_64-efi-snponly.efi
"00:09": bin-x86_64-efi-snponly.efi
"00:0B": bin-arm64-efi-snponly.efi

paths:
ipxesource: /usr/local/share/ipxe

Restart warewulfd following the change to warewulf.conf. Then remove any previously-provisioned files from
/var/lib/tftpboot/warewulf/ and use wwctl configure tftp and wwctl configure dhcp to
re-provision the TFTP files and update the DHCP configuration.

sudo systemctl restart warewulfd
rm /var/lib/tftpboot/warewulf/*
wwctl configure tftp
Writing PXE files to: /var/lib/tftpboot/warewulf
Enabling and restarting the TFTP services
wwctl configure dhcp
Building overlay for wwctl1: host
Enabling and restarting the DHCP services

Configuring Warewulf (< v4.5.0)

Prior to v4.5.0, Warewulf packages included bundled builds of iPXE and did not provide a mechanism for configuring
which iPXE to use. To use a custom iPXE before v4.5.0, replace the bundled builds included with Warewulf. After that,
remove any previously-provisioned files from /var/lib/tftpboot/warewulf/ and use wwctl configure
tftp to re-provision the TFTP files.

cp /usr/local/share/ipxe/bin-arm64-efi-snponly.efi /usr/share/warewulf/ipxe/arm64.
↪→efi
cp /usr/local/share/ipxe/bin-x86_64-efi-snponly.efi /usr/share/warewulf/ipxe/x86_64.
↪→efi
cp /usr/local/share/ipxe/bin-x86_64-pcbios-undionly.kpxe /usr/share/warewulf/ipxe/
↪→x86_64.kpxe
rm /var/lib/tftpboot/warewulf/*
wwctl configure tftp
Writing PXE files to: /var/lib/tftpboot/warewulf
Enabling and restarting the TFTP services

13.1. Booting with iPXE 43

Warewulf User Guide, Release 4.6.0

13.2 Booting with GRUB

Support for GRUB as a network bootloader (replacing iPXE) is available in Warewulf as a technology preview.

Instead of the iPXE starter a combination of shim and GRUB can be used with the advantage that secure boot can be
used. That means that only the signed kernel of a distribution can be booted. This can be a huge security benefit for
some scenarios.

In order to enable the grub boot method it has to be enabled in warewulf.conf.

warewulf:
grubboot: true

Nodes which are not known to Warewulf are booted with the shim/grub from the Warewulf server host.

13.2.1 Secure boot

If secure boot is enabled at every step a signature is checked and the boot process fails if this check fails. The shim
typically only includes the key for a single operating system, which means that each distribution needs separate shim
and grub executables. Warewulf extracts these binaries from the images. If the node is unknown to Warewulf or can’t
be identified during the TFTP boot phase, the shim/grub binaries of the host in which Warewulf is running are used.

13.2.2 Install shim and efi

shim.efi and grub.efi must be installed in the image for it to be booted by GRUB.

wwctl image shell leap15.5
[leap15.5] Warewulf> zypper install grub2 shim

wwctl image shell rocky9
[rocky9] Warewulf> dnf install shim-x64.x86_64 grub2-efi-x64.x86_64

These packages must also be installed on the Warewulf server host to enable node discovery using GRUB.

13.2.3 HTTP boot

Modern EFI systems have the possibility to directly boot per http. The flow diagram is the following:

Warewulf delivers the initial shim.efi and grub.efi via http as taken directly from the node’s assigned image.

13.3 Booting with dracut

Some systems, typically due to limitations in their BIOS or EFI firmware, are unable to load image of a certain size
directly with a traditional bootloader, either iPXE or GRUB. As a workaround for such systems, Warewulf can be
configured to load a dracut initramfs from the image and to use that initramfs to load the full image.

Warewulf provides a dracut module to configure the dracut initramfs to load the image. This module is available in
the warewulf-dracut subpackage, which must be installed in the image.

With the warewulf-dracut package installed, you can build an initramfs inside the image.

dnf -y install warewulf-dracut
dracut --force --no-hostonly --add wwinit --regenerate-all

44 Chapter 13. Bootloaders

https://www.suse.com/c/uefi-secure-boot-details/

Warewulf User Guide, Release 4.6.0

Note: In some systems, such as rockylinux:8, it may be necessary to remove /etc/machine-id for dracut
to properly generate the initramfs in the location that Warewulf is expecting.

To direct iPXE to fetch the node’s initramfs image and boot with dracut semantics, set an IPXEMenuEntry tag for
the node.

Note: Warewulf configures iPXE with a template located at /etc/warewulf/ipxe/default.ipxe. Inspect
the template to learn more about the dracut booting process.

wwctl node set wwnode1 --tagadd IPXEMenuEntry=dracut

Note: The IPXEMenuEntry variable may be set at the node or profile level.

Alternatively, to direct GRUB to fetch the node’s initramfs image and boot with dracut semantics, set a
GrubMenuEntry tag for the node.

Note: Warewulf configures GRUB with a template located at /etc/warewulf/grub/grub.cfg.ww. Inspect
the template to learn more about the dracut booting process.

wwctl node set wwnode1 --tagadd GrubMenuEntry=dracut

Note: The GrubMenuEntry variable may be set at the node or profile level.

During boot, warewulfd will detect and dynamically serve an initramfs from a node’s image in much the same way
that it can serve a kernel from an image. This image is loaded by iPXE (or GRUB) which directs dracut to fetch the
node’s image during boot.

The wwinit module provisions to tmpfs. By default, tmpfs is permitted to use up to 50% of physical memory. This
size limit may be adjusted using the kernel argument wwinit.tmpfs.size. (This parameter is passed to the size option
during tmpfs mount. See tmpfs(5) for more details.)

13.3. Booting with dracut 45

Warewulf User Guide, Release 4.6.0

46 Chapter 13. Bootloaders

CHAPTER

FOURTEEN

UPGRADING WAREWULF

New versions of Warewulf might introduce changes to warewulf.conf and nodes.conf. The wwctl
upgrade command can help ease the transition between versions.

Note: wwctl upgrade will back up any files before it changes them (to <name>-old) but it is good practice to
back up your configuration manually.

wwctl upgrade config
wwctl upgrade nodes --add-defaults --replace-overlays

Both upgrade commands support specifying --output-path=- to print the upgraded configuration file to standard
out for inspection before replacing the configuration files.

47

Warewulf User Guide, Release 4.6.0

48 Chapter 14. Upgrading Warewulf

CHAPTER

FIFTEEN

CLUSTER NODES

Warewulf cluster node configuration is persisted in nodes.conf (also known as the “node registry” or “node
database”). Editing this file directly is supported; but it is often better to manage it using the wwctl command.

Note: The nodes.conf file is YAML document that can be edited directly or managed with configuation manage-
ment; but its internal structure is technically undocumented and subject to change between versions. After Warewulf
v4.6.0, the wwctl upgrade nodes command can be used to update a nodes.conf from a previous Warewulf
v4 version.

Warning: When nodes.conf is edited directly, warewulfd must be restarted to reflect the changes.

systemctl restart warewulfd.service

15.1 Adding a Cluster Node

Adding a cluster node is as simple as running wwctl node add.

wwctl node add n1 --ipaddr=10.0.2.1
Added node: n1

Several nodes can be added with a node range. In this case, the provided IP address is automatically incremented.

wwctl node add n[2-4] --ipaddr=10.0.2.2
Added node: n2
Added node: n3
Added node: n4

wwctl node list --net n[1-4]
NODE NETWORK HWADDR IPADDR GATEWAY DEVICE
---- ------- ------ ------ ------- ------
n1 default -- 10.0.2.1 <nil> --
n2 default -- 10.0.2.2 <nil> --
n3 default -- 10.0.2.3 <nil> --
n4 default -- 10.0.2.4 <nil> --

49

Warewulf User Guide, Release 4.6.0

15.2 Listing Nodes

Once you have configured one or more nodes, you can list them and their attributes with wwctl node list.

wwctl node list n[1-5]
NODE NAME PROFILES NETWORK
--------- -------- -------
n1 default --
n2 default --
n3 default --
n4 default --
n5 default --

You can also see the node’s full attribute list by specifying --all.

wwctl node list --all n1
NODE FIELD PROFILE VALUE
---- ----- ------- -----
n1 Profiles -- default
n1 Comment default This profile is automatically included for each node
n1 Ipxe default default
n1 RuntimeOverlay default hosts,ssh.authorized_keys
n1 SystemOverlay default wwinit,wwclient,fstab,hostname,ssh.host_keys,issue,
↪→resolv,udev.netname,systemd.netname,ifcfg,NetworkManager,debian.interfaces,wicked,
↪→ignition
n1 Kernel.Args default quiet,crashkernel=no
n1 Init default /sbin/init
n1 Root default initramfs
n1 Resources[fstab] default [{"file":"/home","mntops":"defaults,nofail","spec":
↪→"warewulf:/home","vfstype":"nfs"},{"file":"/opt","mntops":"defaults,noauto,nofail,ro
↪→","spec":"warewulf:/opt","vfstype":"nfs"}]

15.3 Setting Node Fields

Node fields are set using the wwctl node set command. A list of all available fields is available with wwctl
node set --help.

You can also edit nodes as YAML data in an interactive editor using wwctl node edit.

15.3.1 List values

Some node fields, such as overlays and kernel aruments, accept a list of values. These may be specified as a comma-
separated list or as multiple arguments.

To include an explicit comma in the value, enclose the value in inner-quotes.

wwctl node set n1 \
--kernelargs 'quiet,crashkernel=no,nosplash' \
--kernelargs='"console=ttyS0,115200"'

50 Chapter 15. Cluster Nodes

Warewulf User Guide, Release 4.6.0

15.3.2 Un-setting Node Fields

To un-set a field value, set the value to UNDEF.

wwctl node set n1 \
--image=UNDEF

15.4 Configuring an Image

One of the main things to configure for a cluster node is the image that it should provision.

wwctl node set n1 \
--image=rockylinux-9

Images are covered in more detail in their own section.

15.5 Configuring the Network

By default, network configurations are applied to a “default” network interface.

wwctl node set n1 \
--netdev=eno1 \
--hwaddr=00:00:00:00:00:01 \
--ipaddr=10.0.2.1 \
--netmask=255.255.255.0

Network interface configuration is covered in more detail in its own section.

15.6 Node Discovery

The MAC / hardware address (--hwaddr) of a cluster node can be automatically discovered by marking the node
--discoverable. If a node attempts to provision against Warewulf using an interface that is unknown to Warewulf,
its hardware address becomes associated with the first discoverable node. (Multiple discoverable nodes are sorted
lexically, first by cluster, then by ID.)

Once a node has been discovered its “discoverable” field is automatically cleared.

15.7 Tags

Cluster nodes support multiple key-value pair tags. Tags may be applied to the node directly, to network interfaces,
and even to IPMI interfaces.

wwctl node set n1 --tagadd="localtime=UTC"
wwctl node set n1 --nettagadd="DNS1=1.1.1.1"

15.4. Configuring an Image 51

Warewulf User Guide, Release 4.6.0

15.8 Resources

Cluster nodes support generic “resources” that may hold arbitrarily complex YAML data. This data, along with tags,
may be used by both distribution and site overlays.

nodeprofiles:
default:
resources:
fstab:

- spec: warewulf:/home
file: /home
vfstype: nfs
mntops: defaults
freq: 0
passno: 0

- spec: warewulf:/opt
file: /opt
vfstype: nfs
mntops: defaults,ro
freq: 0
passno: 0

Resources can only be managed with wwctl node edit.

52 Chapter 15. Cluster Nodes

CHAPTER

SIXTEEN

NODE PROFILES

Node profiles provide a way to scalably group node configurations together. Instead of redundant configurations for
each node, you can set common fields in a profile and then apply one or more profiles to each node.

Profiles may, themselves, reference other profiles, supporting complex mixtures of profile configuration and negation.

16.1 The Default Profile

A default Warewulf installation will come with a single “default” profile pre-defined in nodes.conf.

wwctl profile list
PROFILE NAME COMMENT/DESCRIPTION
------------ -------------------
default This profile is automatically included for each node

If the default profile exists, each new node automatically includes it when it is added.

You can view the fields of a profile with wwctl profile --all.

wwctl profile list default --all
PROFILE FIELD VALUE
------- ----- -----
default Profiles --
default Comment This profile is automatically included for each node
default ClusterName --
default ImageName --
default Ipxe default
default RuntimeOverlay hosts,ssh.authorized_keys
default SystemOverlay wwinit,wwclient,fstab,hostname,ssh.host_keys,issue,resolv,
↪→udev.netname,systemd.netname,ifcfg,NetworkManager,debian.interfaces,wicked,ignition
default Kernel.Version --
default Kernel.Args quiet,crashkernel=no
default Init /sbin/init
default Root initramfs
default PrimaryNetDev --
default Resources[fstab] [{"file":"/home","mntops":"defaults,nofail","spec":
↪→"warewulf:/home","vfstype":"nfs"},{"file":"/opt","mntops":"defaults,noauto,nofail,ro
↪→","spec":"warewulf:/opt","vfstype":"nfs"}]

wwctl node list --all indicates which profile defines each field.

wwctl node list n1 --all
NODE FIELD PROFILE VALUE

(continues on next page)

53

Warewulf User Guide, Release 4.6.0

(continued from previous page)

---- ----- ------- -----
n1 Profiles -- default
n1 Comment default This profile is automatically included for each node
n1 Ipxe default default
n1 RuntimeOverlay default hosts,ssh.authorized_keys
n1 SystemOverlay default wwinit,wwclient,fstab,hostname,ssh.host_keys,issue,
↪→resolv,udev.netname,systemd.netname,ifcfg,NetworkManager,debian.interfaces,wicked,
↪→ignition
n1 Kernel.Args default quiet,crashkernel=no
n1 Init default /sbin/init
n1 Root default initramfs
n1 Resources[fstab] default [{"file":"/home","mntops":"defaults,nofail","spec":
↪→"warewulf:/home","vfstype":"nfs"},{"file":"/opt","mntops":"defaults,noauto,nofail,ro
↪→","spec":"warewulf:/opt","vfstype":"nfs"}]

16.2 Setting Profile Fields

(Almost) any node fields can be set on a profile, but some fields don’t really make sense anywhere but a node (e.g.,
--hwaddr and --ipaddr).

wwctl profile set default \
--image=rockylinux-9 \
--netmask=255.255.255.0

16.3 Multiple Profiles

It’s possible to create multiple profiles, and even to apply multiple profiles to each node.

wwctl profile add net
wwctl profile set net --netmask=255.255.255.0

wwctl profile add image
wwctl profile set image --image=rockylinux-9

wwctl node set n1 --profile="default,net,image"

Note: If two profiles set the same field, the right-most profile in the node’s list takes precedence. Field values set
directly on nodes take precedence over profile field values.

wwctl node list n1 --all
NODE FIELD PROFILE VALUE
---- ----- ------- -----
n1 Profiles -- default,net,image
n1 Comment default This profile is automatically included for
↪→each node
n1 ImageName image rockylinux-9
n1 Ipxe default default
n1 RuntimeOverlay default hosts,ssh.authorized_keys
n1 SystemOverlay default wwinit,wwclient,fstab,hostname,ssh.host_keys,
↪→issue,resolv,udev.netname,systemd.netname,ifcfg,NetworkManager,debian.interfaces,
↪→wicked,ignition

(continues on next page)

54 Chapter 16. Node Profiles

Warewulf User Guide, Release 4.6.0

(continued from previous page)

n1 Kernel.Args default quiet,crashkernel=no
n1 Init default /sbin/init
n1 Root default initramfs
n1 NetDevs[default].Netmask net 255.255.255.0
n1 Resources[fstab] default [{"file":"/home","mntops":"defaults,nofail",
↪→"spec":"warewulf:/home","vfstype":"nfs"},{"file":"/opt","mntops":"defaults,noauto,
↪→nofail,ro","spec":"warewulf:/opt","vfstype":"nfs"}]

Using multiple profiles makes it easy to work with multiple, heterogeneous groups of cluster nodes and to test new
configurations on smaller subsets of nodes. For example, you can use this method to run a different kernel on only a
subset or group of cluster nodes without changing any other node attributes.

16.4 Negating Profiles

Profiles may be negated by later profiles. For example, a profile list p2,~p1 adds the profile p2 to a node and removes
a previously-applied p1 profile from a node.

16.5 Using Profiles Effectively

There are a lot of ways to use profiles to facilitate complex cluster configurations; but they are not required. It is
completely possible to not use profiles at all, and to simply set all fields directly on cluster nodes.

If you do use profiles, some fields lend themselves most naturally to being set on profiles. Network subnet masks
(--netmask) and gateways (--gateway) are common profile fields, as is --image. Most IPMI fields make
sense on a profile, and it is also common to configure tags and resources on a profile for easy application to multiple
nodes.

Node-specific information, like HW/MAC addresses (--hwaddr) and IP addresses (--ipaddr, --ipmiaddr)
should always be put in a node configuration rather than a profile configuration.

16.4. Negating Profiles 55

Warewulf User Guide, Release 4.6.0

56 Chapter 16. Node Profiles

CHAPTER

SEVENTEEN

NETWORK INTERFACES

By default, network configurations are applied to a “default” network interface.

wwctl node set n1 \
--netdev=eno1 \
--hwaddr=00:00:00:00:00:01 \
--ipaddr=10.0.2.1 \
--netmask=255.255.255.0

Each cluster node can have multiple network interfaces, differentiated by specifying --netname.

wwctl node set n1 \
--netname=infiniband \
--netdev=ib1 \
--ipaddr=10.0.3.1 \
--netmask=255.255.255.0

Warning: Due to the way network interface names are assigned by the Linux kernel, and later reassigned by udev
and systemd, the use of eth0, eth1, etc. as interface is strongly discouraged. We recommend the use of the
original predictable names assigned to the interfaces (e.g., eno1), as otherwise an interface may fail to be named
correct if its desired name conflicts with the kernel-assigned name of another interface during the boot process.

17.1 Bonding

Support for bonded / link aggregation network interfaces depends on the network overlay being used.

The ifcfg and NetworkManager overlays can configure a network bond like this:

network devices:
bond0:
type: Bond
device: bond0
ipaddr: 192.168.3.100
netmask: 255.255.255.0

en1:
device: en1
hwaddr: e6:92:39:49:7b:03
tags:
master: bond0

en2:
device: en2

(continues on next page)

57

Warewulf User Guide, Release 4.6.0

(continued from previous page)

hwaddr: 9a:77:29:73:14:f1
tags:
master: bond0

17.2 VLAN

You can set the type also to vlan.

Some network configuration systems use the network device name (e.g., of the form eno1.100) to configure VLANs.
Other network systems need additional network tags:

• vlan_id: configures the VLAN ID of the interface

• parent_device: configures which physical interface to use

wwctl node set \
--netdev vlan42 \
--ipaddr 10.0.42.1 \
--netmask 255.255.252.0 \
--netname iband \
--type vlan \
--nettagadd "vlan_id=42,parent_device=eth0" \
n001

17.3 Static Routes

The included Warewulf network overlays support the configuration of static routes using a network tag of the form
route<N>=<dest>,<gateway>.

wwctl node set n001 \
--nettagadd "route1=192.168.2.0/24,192.168.1.254"

58 Chapter 17. Network Interfaces

CHAPTER

EIGHTEEN

IPMI

Warewulf can use IPMI to control cluster node power state or to connect to a serial console.

18.1 Configuration

Typically, common settings for IPMI interfaces are set on a profile, leaving only the IP address set per-node.

If --ipmiwrite is set to true, the wwinit overlay will write the desired IPMI configuration to the node’s BMC
during boot.

wwctl profile set default \
--ipminetmask=255.255.255.0 \
--ipmiuser=admin \
--ipmipass=passw0rd \
--ipmiinterface=lanplus \
--ipmiwrite

wwctl node set n1 \
--ipmiaddr=192.168.2.1

wwctl node list has a specific overview for IPMI settings.

wwctl node list --ipmi
NODE IPMI IPADDR IPMI PORT IPMI USERNAME IPMI INTERFACE
---- ----------- --------- ------------- --------------
n1 192.168.1.11 -- hwadmin lanplus
n2 192.168.1.12 -- hwadmin lanplus
n3 192.168.1.13 -- hwadmin lanplus
n4 192.168.1.14 -- hwadmin lanplus

18.2 Power

The wwctl power command can query and set the current power state of cluster nodes.

wwctl power status n1 # query the current power status
wwctl power off n1 # power off a cluster node
wwctl power on n1 # power on a cluster node
wwctl power reset n1 # forcibly reboot a node
wwctl power soft n1 # ask a node to shut down gracefully
wwctl power cycle n1 # power a cluster node off, then back on

59

Warewulf User Guide, Release 4.6.0

Node ranges are supported; e.g., n[1-10].

18.3 Console

If your node is setup to use serial over lan (SOL), Warewulf can connect a console to the node.

wwctl node console n1

18.4 Customization

Warewulf doesn’t manage IPMI interfaces directly, but uses ipmitool. This is configured with a template which
defines Warewulf’s IPMI behavior.

{{/* used command to access the ipmi interface of the nodes */}}
{{- $escapechar := "~" }}
{{- $port := "623" }}
{{- $interface := "lan" }}
{{- $args := "" }}
{{- if .EscapeChar }} $escapechar = .EscapeChar {{ end }}
{{- if .Port }} {{ $port = .Port }} {{ end }}
{{- if .Interface }} {{ $interface = .Interface }} {{ end }}
{{- if eq .Cmd "PowerOn" }} {{ $args = "chassis power on" }} {{ end }}
{{- if eq .Cmd "PowerOff" }} {{ $args = "chassis power off" }} {{ end }}
{{- if eq .Cmd "PowerCycle" }} {{ $args = "chassis power cycle" }} {{ end }}
{{- if eq .Cmd "PowerReset" }} {{ $args = "chassis power reset" }} {{ end }}
{{- if eq .Cmd "PowerSoft" }} {{ $args = "chassis power soft" }} {{ end }}
{{- if eq .Cmd "PowerStatus" }} {{ $args = "chassis power status" }} {{ end }}
{{- if eq .Cmd "SDRList" }} {{ $args = "sdr list" }} {{ end }}
{{- if eq .Cmd "SensorList" }} {{ $args = "sensor list" }} {{ end }}
{{- if eq .Cmd "Console" }} {{ $args = "sol activate" }} {{ end }}
{{- $cmd := printf "ipmitool -I %s -H %s -p %s -U %s -P %s -e %s %s" $interface .
↪→Ipaddr $port .UserName .Password $escapechar $args }}
{{ $cmd }}

A different template can be used to change the IPMI behavior using the --ipmitemplate field. Referenced tem-
plates must be located in warewulf.conf:Paths.Datadir (/usr/lib/warewulf/bmc/).

All IPMI specific fields are accessible in the template:

Parameter Template variable
--ipmiaddr .Ipaddr
--ipminetmask .Netmask
--ipmiport .Port
--ipmigateway .Gateway
--ipmiuser .UserName
--ipmipass .Password
--ipmiinterface .Interface
--ipmiwrite .Write
--ipmiescapechar .EscapeChar
--ipmitemplate .Template

Additionally, the .Cmd variable includes the relevant wwctl power subcommand.

60 Chapter 18. IPMI

Warewulf User Guide, Release 4.6.0

• PowerOn

• PowerOff

• PowerCycle

• PowerReset

• PowerSoft

• PowerStatus

• SDRList

• SensorList

• Console

18.4. Customization 61

Warewulf User Guide, Release 4.6.0

62 Chapter 18. IPMI

CHAPTER

NINETEEN

PROVISIONING DISKS

As a tech preview, Warewulf provides structures to define disks, partitions, and file systems. These structures can
generate a configuration for Ignition to provision partitions and file systems dynamically on cluster nodes.

Ignition can, for example, create swap partitions or /scratch file systems.

Note: Warewulf is not currently able to provision the node image onto an explicitly provisioned root file system.

19.1 Requirements

Partition and file system creation requires both ignition and sgdisk to be installed in the image.

19.1.1 Rocky Linux

dnf install ignition gdisk

Note: Packages for Ignition are not currently available for Rocky Linux 8, but it is available for Rocky Linux 9 as
part of “appstream.”

19.1.2 openSuse Leap

zypper install ignition gptfdisk

19.2 Disks and partitions

A node or profile can have several disks. Each disk is identified by the path to its block device. Each disk holds a map
to its partitions and a bool switch to indicate if an existing, non-matching partition table should be overwritten.

Each partition is identified by its label. The partition number can be omitted, but specifying it is recommended
as Ignition may fail without it. Partition sizes should also be set (specified in MiB), except for the last partition:
if no size is given, the maximum available size is used. Each partition has the switches should_exist and
wipe_partition_entry which control the partition creation process. When omitting a partition number the
wipe_partition_entry should be true, as this allows ignition to replace the existing partition.

63

https://coreos.github.io/ignition/

Warewulf User Guide, Release 4.6.0

wwctl node set n1 \
--diskname /dev/vda --diskwipe \
--partname scratch --partcreate --partnumber 1

19.3 File systems

File systems are identified by their underlying block device, preferably using the /dev/by-partlabel format. Ex-
cept for a swap partition, an absolute path for the mount point must be specified for each file system. Depending on the
image used, valid formats are btrfs, ext3, ext4, and xfs. Each file system has the switch wipe_filesystem
to control whether an existing file system is wiped.

wwctl node set n1 \
--diskname /dev/vda --partname scratch \
--fsname scratch --fsformat btrfs --fspath /scratch

19.4 Boot-time configuration

Ignition uses systemd, as the underlying sgdisk command relies on dbus notifications.

1. ignition-disks-ww4.service uses Ignition to create the specified partitions and file systems.

2. ww4-disks.target depends on a matching .mount unit for each mounted file system.

3. Each .mount creates the necessary mount points in the root file system and mounts the provisioned file systems
during boot.

These services and mount units are generated by the ignition overlay and depend on the existence of the file
/warewulf/ignition.json, also generated by the ignition overlay.

19.5 Example disk configurations

This command formats a btrfs file system on a “scratch” partion of “vda” and mounts it at /scratch.

wwctl node set n1 \
--diskname /dev/vda --diskwipe \
--partname scratch --partcreate --partnumber 1 \
--fsname scratch --fsformat btrfs --fspath /scratch

This command adds a swap partition to the “vda” disk.

wwctl node set n1 \
--diskname /dev/vda \
--partname swap --partsize=1024 --partnumber 2 \
--fsname swap --fsformat swap --fspath swap

64 Chapter 19. Provisioning disks

Warewulf User Guide, Release 4.6.0

19.6 Re-using or wiping disks

For empty disks the desired configuration is created and the filesystems are mounted. If partitions or file systems
already exist on the disk, ignition tries to reuse existing file systems by default.

To ignore existing file systems and provision fresh file systems on each boot, specify the --fswipe` flag for that
filesystem, and --diskwipe for the disk, as necessary.

If you would like to re-use existing partitions but want to replace existing file systems once, you may

• wipe the existing data with tools like wipefs or dd1; or

• set the --fswipe flag and remove it after one reboot.

See the upstream ignition documentation for additional information.

1 With wipefs you have to remove the filesystem and parition information. E.g., use wipefs -fa /dev/vda* to remove all file system
information and partition information.

19.6. Re-using or wiping disks 65

https://coreos.github.io/ignition/operator-notes/#filesystem-reuse-semantics

Warewulf User Guide, Release 4.6.0

66 Chapter 19. Provisioning disks

CHAPTER

TWENTY

NODE IMAGES

Warewulf node images are a “Virtual Node File System” (VNFS) that serves as a base image for cluster nodes. This
is similar to a “golden master” image, except that the image source exists mutably within a directory on the Warewulf
control node (e.g. a chroot()).

Warewulf node images have several similarities to Linux containers; so Warewulf v4 integrates directly within the
container ecosystem to facilitate the process of image creation and image management: images can be built, for
example, with Docker, Podman, or Apptainer, and imported directly from OCI registries or local container image
archives. But you can also still build your own chroot directories manually.

20.1 Structure

A Warewulf image is a directory that populates the base runtime root file system of a cluster node. The image source
directory must contain a single rootfs directory which represents the actual root directory for the image.

/var/lib/warewulf/chroots/rockylinux-9
rootfs

afs
bin -> usr/bin
boot
dev
etc
home
lib -> usr/lib
lib64 -> usr/lib64
media
mnt
opt
proc
root
run
sbin -> usr/sbin
srv
sys
tmp
usr
var

67

Warewulf User Guide, Release 4.6.0

20.2 Importing Images

Before any cluster nodes can be provisioned, you must import an image. Images may be imported from an OCI
registry, a local OCI archive, or a local directory or Apptainer sandbox.

20.2.1 OCI Registry

You can import node images from an OCI registry, public or private.

wwctl image import docker://ghcr.io/warewulf/warewulf-rockylinux:8 rockylinux-8
Getting image source signatures
Copying blob d7f16ed6f451 done
Copying config da2ca70704 done
Writing manifest to image destination
Storing signatures
[LOG] info unpack layer:
↪→sha256:d7f16ed6f45129c7f4adb3773412def4ba2bf9902de42e86e77379a65d90a984
Updating the image's /etc/resolv.conf
Building image: rockylinux-8

Note: Most images in Docker Hub are not “bootable”: they typically do not include a kernel, and likely don’t include
any init system. For this reason, don’t expect a base image from DockerHub (e.g. docker://rockylinux or
docker://debian) to boot properly with Warewulf.

The Warewulf project maintains a set of example node images that are configured to boot when used with Warewulf.
These images can be imported directly into Warewulf or used as base images for local custom image.

A few environmental variables can be used to control communication with the OCI registry:

WAREWULF_OCI_USERNAME
WAREWULF_OCI_PASSWORD
WAREWULF_OCI_NOHTTPS

They can be overwritten with --nohttps, --username and --password.

wwctl import --username tux --password supersecret docker://ghcr.io/privatereg/
↪→rocky:8

You can also set HTTP_PROXY, HTTPS_PROXY, and NO_PROXY (or their lower-case versions) to use a proxy during
wwctl image import.

export HTTPS_PROXY=squid.localdomain
wwctl image import docker://ghcr.io/warewulf/warewulf-rockylinux:8

See ProxyFromEnvironment for more information.

Note: OCI and ORAS registries typically use HTTPS, so you probably need to set HTTPS_PROXY or
https_proxy rather than the HTTP variants.

The above is just an example. Consideration should be done before doing it this way if you are in a security sensitive
environment or shared environments as this command line wil show up in the process table.

68 Chapter 20. Node Images

https://github.com/warewulf/warewulf-node-images
https://pkg.go.dev/net/http#ProxyFromEnvironment

Warewulf User Guide, Release 4.6.0

20.2.2 Local OCI Archive

It is also possible to import an image from a local OCI archive. For example, Podman can save a .tar archive of an
OCI image.

podman save ghcr.io/warewulf/warewulf-rockylinux:8 >rockylinux-8.tar
wwctl image import rockylinux-8.tar rockylinux-8

20.2.3 Local Directories and Apptainer Sandboxes

Chroot directories and Apptainer sandbox images can also be imported directly.

apptainer build --sandbox ./rockylinux-8/ docker://ghcr.io/warewulf/warewulf-
↪→rockylinux:8
wwctl image import ./rockylinux-8/ rockylinux-8

20.3 Listing Imported Images

Once the image has been imported, you can list them all with wwctl image list.

wwctl image list
IMAGE NAME

rockylinux-8

Additional detail is available using wwctl image list --long, among others. (See --help for more options.)

wwctl image list --long
IMAGE NAME NODES KERNEL VERSION CREATION TIME MODIFICATION TIME
↪→SIZE
---------- ----- -------------- ------------- ----------------- ---
↪→-
rockylinux-8 0 4.18.0-553.30.1 11 Feb 25 13:57 MST 11 Feb 25 13:57 MST 1.
↪→4 GiB

20.4 Modifying Images Interactively

An image that has been imported into Warewulf remains mutable, and can be modified on the Warewulf server. For
example, you can “shell” into the image and make changes interactively.

wwctl image shell rockylinux-8
[warewulf:rockylinux-8] /# dnf -y install apptainer
[...]

Installed:
apptainer-1.3.6-1.el8.aarch64
fakeroot-1.33-1.el8.aarch64
fakeroot-libs-1.33-1.el8.aarch64
fuse3-libs-3.3.0-19.el8.aarch64
lzo-2.08-14.el8.aarch64
squashfs-tools-4.3-21.el8.aarch64

(continues on next page)

20.3. Listing Imported Images 69

Warewulf User Guide, Release 4.6.0

(continued from previous page)

Complete!

20.4.1 Binding Files and Directories

You can --bind directories from the Warewulf server into the image when using the exec command. This is partic-
ularly useful for installing locally-built packages.

wwctl image shell --bind /var/lib/mock/rocky+epel-9-$(arch)/result:/mnt
[warewulf:rockylinux-8] /# dnf -y install /mnt/warewulf-dracut-*.noarch.rpm

Note: As with any mount command, both the source and the target must exist. This is why the example uses the
/mnt/ directory location, as it is almost always present and empty in every Linux distribution (as prescribed by the
LSB file hierarchy standard).

Files may also be automatically bound into the image during wwctl image shell by configuring warewulf.
conf:image mounts.

image mounts:
- source: /etc/resolv.conf

dest: /etc/resolv.conf
readonly: true

Note: Instead of readonly: true you can set copy: true. This causes the source file to be copied to the
image and removed if it was not modified. This can be useful for files used for registrations.

When the command completes, if anything within the image changed, the image will be rebuilt into a bootable static
object automatically. (To skip the automatic image rebuild, specify --build=false.)

If the files /etc/passwd or /etc/group were updated, there will be an additional check to confirm if the users
are in sync as described in `Syncuser`_ section.

20.4.2 Specifying a Prompt

Warewulf sets a custom prompt during a wwctl image shell session. This prompt may be customized using the
WW_PS1 variable, which is used to construct the final PS1 variable for the shell.

export WW_PS1="\u@\h:\w\$ "
wwctl image shell rockylinux-8
[warewulf:rockylinux-8] root@rocky:/$

70 Chapter 20. Node Images

Warewulf User Guide, Release 4.6.0

20.4.3 Shell History

By default, Warewulf image shell sessions don’t retain history; but you can specify a history file by specifying
WW_HISTFILE. Note that this file is stored within the image; you may want to Excluding Files it when the image is
built.

20.4.4 Running Specific Commands

A single command can also be executed in an image, as an alternative to an interactive shell.

wwctl image exec rockylinux-8 -- /usr/bin/dnf -y install apptainer

20.5 Building Images

Warewulf images must be built (e.g., with wwctl image build) into compressed images for distribution to cluster
nodes during provisioning.

wwctl image build rockylinux-9
Building image: rockylinux-9
Created image for Image rockylinux-9: /var/lib/warewulf/provision/images/rockylinux-9.
↪→img
Compressed image for Image rockylinux-9: /var/lib/warewulf/provision/images/
↪→rockylinux-9.img.gz

20.5.1 Excluding Files

Warewulf can exclude files from an image to prevent them from being delivered to the compute node. This is typically
used to reduce the size of the image when some files are unnecessary.

Patterns for excluded files are read from the file /etc/warewulf/excludes in the image itself. For example, the
default Rocky Linux images exclude these paths:

/boot/
/usr/share/GeoIP

/etc/warewulf/excludes supports the patterns implemented by filepath.Match.

20.5.2 Exit Script

Warewulf executes the script /etc/warewulf/image_exit.sh in the image after a wwctl image shell
or wwctl image exec and prior to (re)building the final node image for delivery. This is typically used to remove
cache or log files that may have been generated by the executed command or interactive session.

For example, the default Rocky Linux images runs dnf clean all to remove any package repository caches that
may have been generated.

20.5. Building Images 71

https://pkg.go.dev/path/filepath#Match

Warewulf User Guide, Release 4.6.0

20.6 Defining New Images

It is absolutely possible to import a base image into Warewulf and make all changes interactively with wwctl image
shell; but it is often better to define new images with a container image definition file. This can be done using the
OCI and Singularity (Apptainer) ecoystems.

20.6.1 Podman

An OCI Containerfile can build from an existing container image to add local customizations.

FROM ghcr.io/warewulf/warewulf-rockylinux:9

RUN dnf -y install epel-release \
&& dnf -y install apptainer

podman build . --file Containerfile --tag custom-image
[...]
Successfully tagged localhost/custom-image:latest

wwctl image import $(podman image mount localhost/custom-image) custom-image
podman image unmount localhost/custom-image

20.6.2 Apptainer

It is absolutely possible to create an OCI base image from scratch, but it is particularly easy to do with Apptainer.

Consider the following file called warewulf-rockylinux-9.def :

Bootstrap: yum
MirrorURL: https://download.rockylinux.org/pub/rocky/9/BaseOS/x86_64/os/
Include: dnf

%post
dnf -y install --allowerasing \

NetworkManager \
basesystem \
bash \
curl-minimal \
kernel \
nfs-utils \
openssh-server \
systemd

dnf -y remove \
glibc-gconv-extra

rm -rf /boot/* /run/*
dnf clean all

Warewulf cannot directly import a container image from an Apptainer SIF yet, so an Apptainer image must be built as
a sandbox.

apptainer build --sandbox warewulf-rockylinux-9 warewulf-rockylinux-9.def
[...]

(continues on next page)

72 Chapter 20. Node Images

https://docs.docker.com/build/building/base-images/

Warewulf User Guide, Release 4.6.0

(continued from previous page)

INFO: Creating sandbox directory...
INFO: Build complete: warewulf-rockylinux-9

Once a sandbox container image has been built, it can be imported into Warewulf.

wwctl container import ./warewulf-rockylinux-9 rockylinux-9

Note: Although warewulf does not currently support importing a SIF directly, a SIF can be converted to a sandbox
with Apptainer and then imported into Warewulf.

apptainer build --sandbox my-sandbox my-image.sif
wwctl container import ./my-sandbox my-image

20.7 Duplicating an image

It is possible to duplicate an installed image by using:

wwctl image copy IMAGE_NAME DUPLICATED_IMAGE_NAME

This kind of duplication can be useful if you are looking for canary tests.

Note: If an image source includes persistent sockets, these sockets may cause the copy operation to fail.

Copying sources...
ERROR : could not duplicate image: lchown /var/lib/warewulf/chroots/rocky-8/rootfs/
↪→run/user/0/gnupg/d.kg8ijih5tq41ixoeag4p1qup/S.gpg-agent: no such file or directory

To resolve this, remove the sockets from the image source.

find $(wwctl image show rocky-8) -type s -delete

20.8 Image Architecture

By default, Warewulf will try to import an image of the same platform (e.g., amd64, arm64) as the local system. To
specify the platform to import, either specify WAREWULF_OCI_PLATFORM or use the argument –platform during
import.

It is possible to build, edit, and provision images of different architectures (i.e. aarch64) from an x86_64 host by using
QEMU. Simply run the appropriate command below based on your image management tools.

docker run --rm --privileged multiarch/qemu-user-static --reset -p yes
podman run --rm --privileged multiarch/qemu-user-static --reset -p yes
apptainer run docker://multiarch/qemu-user-static --reset -p yes

Then, wwctl image exec will work regardless of the architecture of the image. For more information about
QEMU, see their GitHub

To use wwclient on a booted image using a different architecture, wwclient must be compiled for the specific archi-
tecture. This requires GOLang build tools 1.21 or newer. Below is an example for building wwclient for arm64:

20.7. Duplicating an image 73

https://github.com/multiarch/qemu-user-static

Warewulf User Guide, Release 4.6.0

git clone https://github.com/warewulf/warewulf
cd warewulf
GOARCH=arm64 PREFIX=/ make wwclient
mkdir -p /var/lib/warewulf/overlays/wwclient_arm64/rootfs/warewulf
cp wwclient /var/lib/warewulf/overlays/wwclient_arm64/rootfs/warewulf

Then, apply the new “wwclient_arm64” system overlay to your arm64 node/profile

20.9 Read-only images

An image may be marked “read-only” by creating a readonly file in its source directory, typically next to rootfs.

Note: Read-only images are a preview feature primarily meant to enable future support for image subscriptions and
updates.

74 Chapter 20. Node Images

CHAPTER

TWENTYONE

IMAGE KERNELS

Warewulf nodes require a Linux kernel to boot. As of Warewulf v4.6, the kernel you wish to use must be present in the
relevant image. Warewulf locates and provisions the kernel automatically for any node configured to use that image.

You can see what kernels are available in imported images by using the wwctl image kernels command.

wwctl image kernels
Image Kernel Version
↪→ Default Nodes
----- ------ -------
↪→ ------- -----
newroot-test /boot/vmlinuz-5.14.0-427.37.1.el9_4.aarch64 5.14.0-427.
↪→37.1 true 0
newroot-test /lib/modules/5.14.0-427.37.1.el9_4.aarch64/vmlinuz 5.14.0-427.
↪→37.1 false 0
rocky-8 /boot/vmlinuz-4.18.0-372.13.1.el8_6.x86_64 4.18.0-372.
↪→13.1 true 2
rocky-8 /lib/modules/4.18.0-372.13.1.el8_6.x86_64/vmlinuz 4.18.0-372.
↪→13.1 false 0
rocky-9.3 /lib/modules/5.14.0-362.13.1.el9_3.aarch64/vmlinuz 5.14.0-362.
↪→13.1 true 0
rockylinux-9-custom /lib/modules/5.14.0-427.40.1.el9_4.aarch64/vmlinuz 5.14.0-427.
↪→40.1 true 0

21.1 Kernel Version

If an image includes multiple kernels, the desired kernel may be selected by specifying the desired version or an
explicit path.

wwctl node set n1 --kernelversion=4.18.0-372.13.1
wwctl node set n1 --kernelversion=/boot/vmlinuz-4.18.0-372.13.1.el8_6.x86_64

75

Warewulf User Guide, Release 4.6.0

76 Chapter 21. Image Kernels

CHAPTER

TWENTYTWO

SYNCUSER

Warewulf can optionally synchronize UIDs and GIDs from the Warewulf server to an image. This can be particularly
useful when there is no central directory (e.g., an LDAP server).

Note: Some system services (notably “munge”) require a user to have the same UID across all nodes.

Combined with the “syncuser” overlay, Warewulf syncuser also supports defining local users on the Warewulf server
for synchronization to cluster nodes.

If there is mismatch between the server and the image, the import command will generate a warning.

Syncuser may be invoked during image import, exec, shell, or build.

wwctl image import --syncuser docker://ghcr.io/warewulf/warewulf-rockylinux:9
↪→rockylinux-9
wwctl image exec --syncuser rockylinux-9 -- /usr/bin/echo "Hello, world!"
wwctl image shell --syncuser rockylinux-9
wwctl image build --syncuser rockylinux-9
wwctl image syncuser rockylinux-9

After syncuser, /etc/passwd and /etc/group in the image are updated, and permissions on files belonging to
these UIDs and GIDs are updated to match.

77

Warewulf User Guide, Release 4.6.0

78 Chapter 22. Syncuser

CHAPTER

TWENTYTHREE

SELINUX-ENABLED IMAGES

Warewulf supports booting SELinux-enabled images, though nodes using SELinux must be configured to use tmpfs
for their image file system. (“ramfs,” often used by default, does not support extended file attributes, which are required
for SELinux context labeling.)

wwctl profile set default --root tmpfs

Note: Versions of Warewulf prior to v4.5.8 also required a kernel argument “rootfstype=ramfs” in order for wwinit
to copy the node image to tmpfs; but this is no longer required.

Once that is done, enable SELinux in /etc/sysconfig/selinux and install the appropriate packages in the
image. An example of such an image is available in the warewulf-node-images repository.

SELinux requires extended attributes, which aren’t supported on a default initrootfs. Nodes using SELinux
should specify --root=tmpfs.

79

https://github.com/warewulf/warewulf-node-images/tree/main/examples/rockylinux-9-selinux

Warewulf User Guide, Release 4.6.0

80 Chapter 23. SELinux-enabled Images

CHAPTER

TWENTYFOUR

OVERLAYS

Warewulf supplements provisioned node images with an “overlay” system. Overlays are collections of files and
Templates that are rendered and built per-node and then applied over the image during the provisioning process.

Overlays are the primary mechanism for adding functionality Warewulf. Much of even core functionality in Warewulf
is implemented as distribution overlays, and this flexibility is also available for local, custom overlays. By combin-
ing templates with tags, network tags, and resources, the node registry (nodes.conf) can become an expressive
metadata store for arbitrary cluster node configuration.

You can list the available overlays with wwctl overlay list, and the files within the overlays with wwctl
overlay list --all.

wwctl overlay list --all fstab
OVERLAY NAME FILES/DIRS SITE
------------ ---------- ----
fstab etc/ false
fstab etc/fstab.ww false

24.1 Structure

An overlay is a directory that is applied to the root of a cluster node’s runtime file system. The overlay source directory
should contain a single rootfs directory which represents the actual root directory for the overlay.

/usr/share/warewulf/overlays/issue
rootfs

etc
issue.ww

24.2 Adding Overlays to Nodes

A node or profile can configure an overlay in two different ways:

• An overlay can be configured to apply only during boot, along with the node image. These overlays are called
system overlays.

• An overlay can be configured to also apply periodically while the system is running. These overlays are called
runtime overlays.

81

Warewulf User Guide, Release 4.6.0

wwctl profile set default \
--system-overlays="wwinit,,wwclient,fstab,hostname,ssh.host_keys,systemd.netname,

↪→NetworkManager" \
--runime-overlays="hosts,ssh.authorized_keys"

Multiple overlays can be applied to a single node, and overlays from multiple profiles are appended together when
applied to a single node.

24.3 Building Overlays

Overlays are built (e.g., with wwctl overly build) into compressed overlay images for distribution to cluster
nodes. These images typically match these two use cases: system and runtime. As such, each cluster node typically
has two overlay images.

wwctl overlay build
Building system overlay image for n1
Created image for n1 system overlay: /var/lib/warewulf/provision/overlays/n1/__SYSTEM_
↪→_.img
Compressed image for n1 system overlay: /var/lib/warewulf/provision/overlays/n1/__
↪→SYSTEM__.img.gz
Building runtime overlay image for n1
Created image for n1 runtime overlay: /var/lib/warewulf/provision/overlays/n1/__
↪→RUNTIME__.img
Compressed image for n1 runtime overlay: /var/lib/warewulf/provision/overlays/n1/__
↪→RUNTIME__.img.gz

Overlay images for multiple node are built in parallel. By default, each CPU in the Warewulf server will build overlays
independently. The number of workers can be specified with the --workers option.

Warewulf will attempt to build/update overlays as needed (configurable in the warewulf.conf); but not all cases
are detected, and manual overlay builds are often necessary.

24.4 Creating and Modifying Overlays

You can add a new overlay to Warewulf with wwctl overlay create.

wwctl overlay create issue

A new overlay is just an empty directory. For it to be useful it needs to contain some files.

For example, wwctl overlay import imports files from the Warewulf server into the overlay.

wwctl overlay import --parents issue /etc/issue

This imports /etc/issue from the Warewulf server into the new issue overlay.

Note: The issue overlay already existed as a distribution overlay. Creating one shadows the distribution overlay
with a new site overlay, allowing for local modification.

Any modification to a distribution overlay first transparently creates a new site overlay and applies any changes there:
distribution overlays should always remain unmodified.

You can also edit a new or existing overlay file in an interactive editor.

82 Chapter 24. Overlays

Warewulf User Guide, Release 4.6.0

wwctl overlay edit issue /etc/issue

Use wwctl overlay show to inspect the content of an overlay file.

wwctl overlay show issue /etc/issue

Overlay files that end with .ww are templates. You can use wwctl overlay show --render=<node> to
show how a given template file would be rendered for distribution to a given cluster node.

wwctl overlay delete issue /etc/issue
wwctl overlay import issue /etc/issue /etc/issue.ww
wwctl overlay show issue /etc/issue.ww --render=n1

More information about templates is available in its own section.

The content of the file for the given overlay is displayed with this command. With the --render option a template
is rendered as it will be rendered for the given node. The node name is a mandatory argument to the --render flag.
Additional information for the file can be suppressed with the --quiet option.

Note: It is not possible to delete files with an overlay.

24.4.1 Permissions

Overlay files are distributed to cluster nodes with the same user, group, and mode that they have on the Warewulf
server. Use wwctl overlay chown and wwctl overlay chmod to adjust them as necessary.

wwctl overlay chown issue /etc/issue.ww root root
wwctl overlay chmod issue /etc/issue.ww 0644

24.5 Distribution Overlays

Warewulf distinguishes between distribution overlays, which are included with Warewulf, and site overlays, which
are created or added locally. A site overlay always takes precedence over a distribution overlay with the same name.
Any modification of a distribution overlay with wwctl actually makes changes to an automatically-generated site
overlay cloned from the distribution overlay.

Site overlays are often stored at /var/lib/warewulf/overlays/. Distribution overlays are often stored at
/usr/share/warewulf/overlays/. But these paths are dependent on compilation, distribution, packaging,
and configuration settings.

24.5.1 wwinit

The wwinit overlay performs initial configuration of the Warewulf node. Its wwinit script runs before systemd or
other init is called and contains all configurations which are needed to boot.

In particular:

• Configure the loopback interface

• Configure the BMC based on the node’s configuration

• Update PAM configuration to allow missing shadow entries

24.5. Distribution Overlays 83

Warewulf User Guide, Release 4.6.0

• Relabel the file system for SELinux

Other overlays may place additional scripts in /warewulf/init.d/ to affect node configuration in this pre-boot
environment.

24.5.2 wwclient

All configured overlays are provisioned initially along with the node image itself; but wwclient periodically fetches
and applies the runtime overlay to allow configuration of some settings without a reboot.

24.5.3 Network interfaces

Warewulf ships with support for many different network interface configuration systems. All of these are applied by
default; but the list may be trimmed to the desired system.

• ifcfg

• NetworkManager

• debian.interfaces

• wicked

Warewulf also configures both systemd and udev with the intended names of configured network interfaces, typically
based on a known MAC address.

• systemd.netname

• udev.netname

Several of the network configuration overlays support netdev tags to further customize the interface:

• ``DNS[0-9]*``: one or more DNS servers

• ``DNSSEARCH``: domain search path

• ``MASTER``: the master for a bond interface

NetworkManager

• ``parent_device``: the parent device of a vlan interface

• ``vlan_id``: the vlan id for a vlan interface

• ``downdelay``, ``updelay``, ``miimon``, ``mode``, ``xmit_hash_policy``: bond device settings

24.5.4 Basics

The hostname overlay sets the hostname based on the configured Warewulf node name.

The hosts overlay configures /etc/hosts to include all Warewulf nodes.

The issue overlay configures a standard Warewulf status message for display during login.

The resolv overlay configures /etc/resolv.conf based on the value of “DNS” nettags. (In most situations this
should be unnecessary, as the network interface configuration should handle this dynamically.)

84 Chapter 24. Overlays

Warewulf User Guide, Release 4.6.0

24.5.5 fstab

The fstab overlay configures /etc/fstab based on the data provided in the “fstab” resource. It also creates entries
for file systems defined by Ignition.

nodeprofiles:
default:
resources:
fstab:

- spec: warewulf:/home
file: /home
vfstype: nfs

- spec: warewulf:/opt
file: /opt
vfstype: nfs

24.5.6 ssh

Two SSH overlays configure host keys (one set for all node in the cluster) and authorized_keys for the root
account.

• ssh.authorized_keys

• ssh.host_keys

24.5.7 syncuser

The syncuser overlay updates /etc/passwd and /etc/group to include all users on both the Warewulf server
and from the image.

To function properly, wwctl image syncuser (or the --syncuser option during import, exec, shell, or
build) must have also been run on the image to synchronize its user and group IDs with those of the server.

If a PasswordlessRoot tag is set to “true”, the overlay will also insert a “passwordless” root entry. This can be
particularly useful for accessing a cluster node when its network interface is not properly configured.

24.5.8 ignition

The ignition overlay defines partitions and file systems on local disks.

24.5.9 debug

The debug overlay is not intended to be used in configuration, but is provided as an example. In particular, the
provided tstruct.md.ww demonstrates the use of most available template metadata.

wwctl overlay show --render=<nodename> debug tstruct.md.ww

24.5. Distribution Overlays 85

Warewulf User Guide, Release 4.6.0

24.5.10 localtime

The localtime overlay configures the timezone of a cluster node to match that of the Warewulf server; alternatively, a
different timezone may be specified with a localtime tag.

wwctl profile set default --tagadd="localtime=UTC"

24.5.11 host

Configuration files used for the configuration of the Warewulf host / server are stored in the host overlay. Unlike other
overlays, it must have the name host. Existing files on the host are copied to backup files with a wwbackup suffix
at the first run. (Subsequent use of the host overlay won’t overwrite existing wwbackup files.)

The following services get configuration files via the host overlay:

• ssh keys are created with the scrips ssh_setup.sh and ssh_setup.csh

• hosts entries are created by manipulating /etc/hosts with the template hosts.ww

• nfs kernel server receives its exports from the template exports.ww

• the dhcpd service is configured with dhcpd.conf.ww

86 Chapter 24. Overlays

CHAPTER

TWENTYFIVE

TEMPLATES

Templates (denoted in overlays with a .ww suffix) allow you to create dynamic configuration specifically for the node
that it is applied to. Templates have access to all metadata from the node registry (nodes.conf) and much of the
server configuration (warewulf.conf), and can also reference and import files from the server file system.

Warewulf uses the text/template engine to facilitate implementing dynamic content. This template format is
documented at pkg.go.dev/text/template.

Note: When the template is rendered within a built overlay image, the .ww will be dropped, so /etc/hosts.ww
will end up being /etc/hosts.

25.1 Non-Overlay Templates

Most Warewulf templates are included in overlays, but there are a few non-overlay templates as well.

• /etc/warewulf/ipxe/: includes iPXE script templates to direct iPXE during the network boot process.

• /etc/warewulf/grub/: includes GRUB script templates to direct GRUB during the network boot process.

• /usr/share/warewulf/bmc/: includes templates to generate BMC control commands for the wwctl
power, wwctl sensor, and wwctl console commands.

25.2 Template functions

Warewulf templates have access to a number of functions that assist in creating more dynamic and expressive tem-
plates.

25.2.1 Default functions

text/template includes a number of default functions that are available during Warewulf template processing.

87

https://pkg.go.dev/text/template
https://pkg.go.dev/text/template#hdr-Functions

Warewulf User Guide, Release 4.6.0

25.2.2 Sprig

Supplementing the default functions, Warewulf templates also have access to Sprig functions.

25.2.3 Include

Reads content from the given file into the template. If the file does not begin with / it is considered relative to
Paths.Sysconfdir.

{{ Include "/root/.ssh/authorized_keys" }}

25.2.4 IncludeFrom

Reads content from the given file from the given image into the template.

{{ IncludeFrom $.ImageName "/etc/passwd" }}

25.2.5 IncludeBlock

Reads content from the given file into the template, stopping when the provided abort string is found.

{{ IncludeBlock "/etc/hosts" "# Do not edit after this line" }}

25.2.6 ImportLink

Causes the processed template file to become a symlink to the same target as the referenced symlink.

{{ ImportLink "/etc/localtime" }}

25.2.7 basename

Returns the base name of the given path.

{{- range $type, $name := $.Tftp.IpxeBinaries }}
if option architecture-type = {{ $type }} {

filename "/warewulf/{{ basename $name }}";
}

{{- end }}

88 Chapter 25. Templates

https://masterminds.github.io/sprig/

Warewulf User Guide, Release 4.6.0

25.2.8 file

Write the content from the template to the specified file name. May be specified more than once in a template to write
content to multiple files.

{{- range $devname, $netdev := .NetDevs }}
{{- $filename := print "ifcfg-" $devname ".conf" }}
{{ file $filename }}
{{/* content here */}}
{{- end }}

25.2.9 softlink

Causes the processed template file to become a symlink to the referenced target.

{{ printf "%s/%s" "/usr/share/zoneinfo" .Tags.localtime | softlink }}

25.2.10 readlink

Equivalent to filepath.EvalSymlinks. Returns the target path of a named symlink.

{{ readlink /etc/localtime }}

25.2.11 IgnitionJson

Generates JSON suitable for use by Ignition to create

25.2.12 abort

Immediately aborts processing the template and does not write a file.

{{ abort }}

25.2.13 nobackup

Disables the creation of a backup file when replacing files with the current template.

{{ nobackup }}

25.2. Template functions 89

Warewulf User Guide, Release 4.6.0

25.2.14 UniqueField

UniqueField returns a filtered version of a multi-line input string. input is expected to be a field-separated format with
one record per line (terminated by n). Order of lines is preserved, with the first matching line taking precedence.

For example, the following template snippet has been used in the syncuser overlay to generate a combined /etc/
passwd.

{{
printf "%s\n%s"

(IncludeFrom $.ImageName "/etc/passwd" | trim)
(Include (printf "%s/%s" .Paths.Sysconfdir "passwd") | trim)

| UniqueField ":" 0 | trim
}}

25.3 Examples

Many example templates are included in the distribution overlays. The debug template also includes a tstruct.ww
template that includes much of the available metadata.

wwctl overlay show debug tstruct.ww
wwctl overlay show debug tstruct.ww --render=n1

25.3.1 Node-Specific Files

Sometimes there is the need to have specific files for each cluster node which can’t be generated by a template (e.g., a
per-node Kerberos keytab). You can include these files with following template:

{{ Include (printf "/srv/%s/%s" .Id "payload") }}

90 Chapter 25. Templates

CHAPTER

TWENTYSIX

TROUBLESHOOTING

26.1 warewulfd

The Warewulf server (warewulfd) sends logs to the systemd journal.

journalctl -u warewulfd.service

To increase the verbosity of the log, specify either --verbose or --debug in the warewulfd OPTIONS.

echo "OPTIONS=--debug" >>/etc/default/warewulfd
systemctl restart warewulfd.service

26.2 iPXE

If you’re using iPXE to boot (the default), you can get a command prompt by pressing with C-b during boot.

From the iPXE command prompt, you can run the same commands from default.ipxe to troubleshoot potential boot
problems.

For example, the following commands perform a (relatively) normal Warewulf boot. (Substitute your Warewulf
server’s IP address in place of 10.0.0.1, update the port number if you have changed it from the default of 9873,
and substitute your cluster node’s MAC address in place of 00:00:00:00:00:00.)

set uri http://10.0.0.1:9873/provision/00:00:00:00:00:00
kernel --name kernel ${uri}?stage=kernel
imgextract --name image ${uri}?stage=image&compress=gz
imgextract --name system ${uri}?stage=system&compress=gz
imgextract --name runtime ${uri}?stage=runtime&compress=gz
boot kernel initrd=image initrd=system initrd=runtime

• The uri variable points to warewulfd for future reference. This includes the cluster node’s MAC address so
that Warewulf knows what image and overlays to provide.

• The kernel command fetches a kernel for later booting.

• The imgextract command fetches and decompresses the images that will make up the booted noe image. In
a typical environment this is used to load a minimal “initial ramdisk” which, then, boots the rest of the system.
Warewulf, by default, loads the entire image as an initial ramdisk, and also loads the system and runtime overlays
at this time time.

• The boot command tells iPXE to boot the system with the given kernel and ramdisks.

91

https://github.com/warewulf/warewulf/blob/main/etc/ipxe/default.ipxe

Warewulf User Guide, Release 4.6.0

Note: This example does not provide assetkey information to warewulfd. If your nodes have defined asset tags,
provide it in the uri variable for the node you are trying to boot.

For example, you may want to try booting to a pre-init shell with debug logging enabled. To do so, substitute the
boot command above.

boot kernel initrd=image initrd=system initrd=runtime rdinit=/bin/sh

Note: You may be more familiar with specifying init= on the kernel command line. rdinit indicates “ramdisk
init.” Since Warewulf, by default, boots the node image as an initial ramdisk, we must use rdinit= here.

26.3 GRUB

If you’re using GRUB to boot, you can get a command prompt by pressing “c” when prompted during boot.

From the GRUB command prompt, you can enter the same commands that you would otherwise find in grub.cfg.ww.

For example, the following commands perform a (relatively) normal Warewulf boot. (Substitute your Warewulf
server’s IP address in place of 10.0.0.1, and update the port number if you have changed it from the default of 9873.)

uri="(http,10.0.0.1:9873)/provision/${net_default_mac}"
linux "${uri}?stage=kernel" wwid=${net_default_mac}
initrd "${uri}?stage=image&compress=gz" "${uri}?stage=system&compress=gz" "${uri}?
↪→stage=runtime&compress=gz"
boot

• The uri variable points to warewulfd for future reference. ${net_default_mac} provides Warewulf
with the MAC address of the booting node, so that Warewulf knows what image and overlays to provide it.

• The linux command tells GRUB what kernel to boot, as provided by warewulfd. The wwid kernel argu-
ment helps wwclient identify the node during runtime.

• The initrd command tells GRUB what images to load into memory for boot. In a typical environment this is
used to load a minimal “initial ramdisk” which, then, boots the rest of the system. Warewulf, by default, loads
the entire image as an initial ramdisk, and also loads the system and runtime overlays at this time time.

• The boot command tells GRUB to boot the system with the previously-defined configuration.

Note: This example does not provide assetkey information to warewulfd. If your nodes have defined asset tags,
provide it in the uri variable for the node you are trying to boot.

For example, you may want to try booting to a pre-init shell with debug logging enabled. To do so, substitute the
linux command above.

linux "${uri}?stage=kernel" wwid=${net_default_mac} debug rdinit=/bin/sh

Note: You may be more familiar with specifying init= on the kernel command line. rdinit indicates “ramdisk
init.” Since Warewulf, by default, boots the node image as an initial ramdisk, we must use rdinit= here.

92 Chapter 26. Troubleshooting

https://github.com/warewulf/warewulf/blob/main/etc/grub/grub.cfg.ww

Warewulf User Guide, Release 4.6.0

26.4 Dracut

By default, dracut simply panics and terminates when it encounters an issue.

Dracut looks at the kernel command line for its configuration. You can configure it for additional logging and to switch
to an interactive shell on error:

wwctl profile set default --kernelargs=rd.shell,rd.debug,log_buf_len=1M

For more information on debugging Dracut problems, see the Fedora dracut problems guide.

26.5 Ignition

If partition creation doesn’t work as expected you have a few options to investigate:

• Add systemd.log_level=debug and or rd.debug to the kernelArgs of the node you’re working on.

• After the next boot you should be able to find verbose information on the node with journalctl -u
ignition-ww4-disks.service.

• You could also check the content of /warewulf/ignition.json.

• You could try to tinker with /warewulf/ignition.json calling

/usr/lib/dracut/modules.d/30ignition/ignition \
--platform=metal \
--stage=disks \
--config-cache=/warewulf/ignition.json \
--log-to-stdout

after each iteration on the node directly until you find the settings you need. (Make sure to unmount all partitions
if ignition was partially successful.)

• Sometimes you need to add should_exist: "true" for the swap partition as well.

26.6 Running Containers on Cluster Nodes

Some container runtimes, notably Podman, require file system features that are not available in initrootfs. Cluster
nodes using Podman (and some other container runtimes) should be configured with --root=tmpfs.

26.4. Dracut 93

https://docs.fedoraproject.org/en-US/quick-docs/debug-dracut-problems/

Warewulf User Guide, Release 4.6.0

94 Chapter 26. Troubleshooting

CHAPTER

TWENTYSEVEN

KNOWN ISSUES

27.1 SELinux and IPMI Write not Working When Using Two-Stage
Boot

The dracut implementation of two-stage boot in versions of Warewulf prior to v4.6.0 bypasses the wwinit process
by default, invoking the image’s init system directly. While cluster nodes will often still boot mostly successfully this
way, features implemented by wwinit will not complete. In particular, SELinux relabeling and IPMI write are not
executed.

To ensure that dracut runs the full wwinit process, pass init=/init or init=/warewulf/wwinit on the
kernel command line.

wwctl profile set default --kernelargs="init=/init"

27.2 Images are Read-Only

Warewulf v4.5 uses the permissions on an image’s rootfs/ to determine a “read-only” state of the image: if the
root directory of the image is u-w, it will be mounted read-only during wwctl image <exec|shell, preventing
interactive changes to the image.

In the past, the root directory was u+w, but Enterprise Linux 9.5 (including Red Hat, Rocky, _et al._) includes an
update to the filesystem package that marks the root directory u-w. This causes Warewulf images to be “read
only” by default.

To mark a Warewulf image as writeable, use chmod u+w.

chmod u+w $(wwctl image show rockylinux-9.5)

This behavior is changed in v4.6 to use an explicit readonly file stored outside of rootfs/.

95

Warewulf User Guide, Release 4.6.0

27.3 Image Sockets Cause Build Failures

If an image source directory includes persistent sockets, these sockets may cause the import operation to fail.

Copying sources...
ERROR : could not import image: lchown ./rockylinux-8/run/user/0/gnupg/d.
↪→kg8ijih5tq41ixoeag4p1qup/S.gpg-agent: no such file or directory

To resolve this, remove the sockets from the source directory.

find ./rockylinux-8/ -type s -delete

This issue was fixed in an upstream library and should be resolved in Warewulf v4.6.0.

27.4 Image Size Considerations

Node images can grow quickly as packages and other files are added to them. Even these larger images are often not
an issue in modern environments; but some architectural limits exist that can impede the use of images larger than a
few gigabytes. Workarounds exist for these issues in most circumstances:

• Warewulf’s two-stage boot support effectively eliminates this problem by handling the bulk of the image man-
agement within Linux. This feature is currently in preview, and is subject to change; but it is likely to become
the default boot method in a future release.

• Systems booting in legacy / BIOS mode, being a 32-bit environment, cannot boot an image that requires more
than 4GB to decompress. This means that the compressed image and the decompressed image together must be
< 4GB. This is typically reported by the system as “No space left on device (https://ipxe.org/34182006).”

The best work-around for this limitation is to switch to UEFI. UEFI is 64-bit and should support booting signif-
icantly larger images, though sometimes system-specific implementation details have led to artificial limitations
on image size.

• The Linux kernel itself can only decompress an image up to 4GB due to the use of 32-bit integers in critical
sections of the kernel initrd decompression code.

The best work-around for this limitation is to use an iPXE with support for imgextract. This allows iPXE to
decompress the image rather than the kernel.

• Some BIOS / firmware retain a “memory hole” feature for legacy devices, e.g., reserving a 1MB block of
memory at the 15MB-16MB address range. this feature can interfere with booting stateless node images.

If you are still getting “Not enough memory” or “No space left on device” errors, try disabling any “memory
hole” features or updating your system BIOS or firmware.

96 Chapter 27. Known issues

https://github.com/warewulf/warewulf/issues/892
https://ipxe.org/34182006
https://ipxe.org/cmd/imgextract

CHAPTER

TWENTYEIGHT

CONTRIBUTING

Warewulf is an open source project, and we are grateful for any support or contributions. Helping other users, raising
issues, writing documentation, and contributing code are all ways to help!

28.1 Join the community

Whether you develop Warewulf or use it to deploy clusters, we hope ypu’ll spread the word! Share your experiences
online. Ask your distribution to include support for Warewulf. Consider giving a talk at a conference or meetup!

28.1.1 Warewulf on Slack

Many members of the Warewulf community, including its developers, communicate via Slack. It’s a great place to get
help with an issue or talk about your deployment.

An invite link is available at https://warewulf.org/help/ <https://warewulf.org/help/>.

28.1.2 OpenHPC

OpenHPC includes Warewulf v4 (and Warewulf 3 before it) as a supported cluster management system and deployment
strategy. Participating in the OpenHPC community is also a great way to support Warewulf!

28.2 Raise an Issue

For general bugs/issues, you can open an issue at the GitHub repo.

28.3 Contribute to the Code

We use the traditional GitHub Flow to develop. This means that you fork the main repo, create a new branch to make
changes, and submit a pull request (PR) to the main branch.

Check out our official CONTRIBUTING.md document.

97

https://github.com/warewulf/warewulf/issues/new
https://guides.github.com/introduction/flow
https://help.github.com/articles/creating-a-pull-request
https://github.com/warewulf/warewulf/blob/main/CONTRIBUTING.md

Warewulf User Guide, Release 4.6.0

98 Chapter 28. Contributing

CHAPTER

TWENTYNINE

DEVELOPMENT ENVIRONMENT

To develop and test the Warewulf server, you need a single system (typically a virtual machine) to serve as a test server
deployment. To actually test provisioning your development server also needs a dedicated network that it can run
DHCP on. This can typically be provisioned as a virtual network bridge in virtual machine software.

Options include:

• KVM / Libvirt

• VirtualBox

• VMWare

• UTM

A Warewulf development environment should likely use Rocky Linux 9 or openSUSE LEAP 15, though there are
ongoing development efforts using Debian and Ubuntu as well.)

29.1 Compiling Warewulf for a Development Server

Rocky Linux 9
dnf -y install git epel-release golang {libassuan,gpgme}-devel unzip tftp-server dhcp-
↪→server nfs-utils ipxe-bootimgs-{x86,aarch64}

git clone https://github.com/warewulf/warewulf.git
cd warewulf
env \
PREFIX=/opt/warewulf \
SYSCONFDIR=/etc \
IPXESOURCE=/usr/share/ipxe \
WWPROVISIONDIR=/opt/warewulf/provision \
WWOVERLAYDIR=/opt/warewulf/overlays \
WWCHROOTDIR=/opt/warewulf/chroots \
make all

make install

These paths balance isolation (e.g., installing binaries in /opt/warewulf/bin/) with integration (e.g., storing
configuration in /etc/warewulf/ and using local Dracut and iPXE paths).

After making changes to the source, simply running make install should be enough to update installed binaries.

You should likely also disable any local firewall. Otherwise, consult the general installation guide for configuration
details.

systemctl disable --now firewalld

99

Warewulf User Guide, Release 4.6.0

29.2 Running the Test Suite

Warewulf includes an ever-growing test suite. Alias targets in the Makefile support running it quickly, easily, and
consistently.

make test

Additional tests exist as well to perform various checks on the golang source. These checks are run automatically by
GitHub as part of the Warewulf CI process; but it is a good idea to run them locally before submitting a new PR.

make vet
make staticcheck
make lint

New code, and code changes, should often be accompanied by updates to the test suite.

More information:

• The golang testing package

• Table Driven Tests

• Testift assert

• Warewulf testenv

29.3 Using a Dev Container

Visual Studio Code (VSC) can utilize a Dev Container for a self-contained environment that has all the necessary tools
and dependencies to build and test Warewulf. The Dev Container is based on the Rocky 9 image and is built using the
devcontainer.json file in the .devcontainer directory of the Warewulf repository. To use this working Docker/Podman
and VSC installations are required. To use the Dev Container, click the “Open a Remote Window” button on the
bottom left of the editor (>< icon) and select “Reopen in Container”. This will build the container and open a new
VSC window with the container as the development environment.

100 Chapter 29. Development Environment

https://pkg.go.dev/testing
https://go.dev/wiki/TableDrivenTests
https://pkg.go.dev/github.com/stretchr/testify/assert
https://pkg.go.dev/github.com/warewulf/warewulf/internal/pkg/testenv

CHAPTER

THIRTY

DOCUMENTATION

You can contribute to the documentation by raising an issue to suggest an improvement or by sending a pull request
on our GitHub repository.

The current documentation is generated with Sphinx.

For more information on using Git and GitHub to create a pull request suggesting additions and edits to the docs, see
the section on contributing to the code. The procedure is identical for contributions to documentation and code.

101

https://github.com/warewulf/warewulf/issues/new
https://github.com/warewulf/warewulf/compare
https://github.com/warewulf/warewulf
https://www.sphinx-doc.org/

Warewulf User Guide, Release 4.6.0

102 Chapter 30. Documentation

CHAPTER

THIRTYONE

DEBUGGING

Whether developing a new feature or fixing a bug, using the automated test suite together with a debugger is a potent
combination. This guide here can’t substitute for full documentation on a given debugger; but it might help you get
started debugging Warewulf.

31.1 Validating the code with vet

The Warewulf Makefile includes a vet target which runs go vet on the full codebase.

make vet

31.2 Running the Full Test Suite

The Warewulf Makefile includes a test target which runs the full test suite.

make test

Individual test cases are particularly useful when coupled with a debugger. For example, you can install delve as a
regular user directly with Go.

$ go install github.com/go-delve/delve/cmd/dlv@latest

Visual Studio Code also includes a full-featured golang debugger that includes testsuite integration.

103

Warewulf User Guide, Release 4.6.0

104 Chapter 31. Debugging

CHAPTER

THIRTYTWO

WWCTL

Warewulf Control

32.1 Synopsis

Control interface to the Warewulf Cluster Provisioning System.

32.2 Options

-d, --debug Run with debugging messages enabled.
-h, --help help for wwctl
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

32.3 SEE ALSO

• wwctl clean - Clean up

• wwctl configure - Manage system services

• wwctl image - Operating system image management

• wwctl node - Node management

• wwctl overlay - Warewulf Overlay Management

• wwctl power - Warewulf node power management

• wwctl profile - Node configuration profile management

• wwctl server - Start Warewulf server

• wwctl ssh - SSH into configured nodes in parallel

• wwctl upgrade - Upgrade configuration files

• wwctl version - Version information

105

Warewulf User Guide, Release 4.6.0

106 Chapter 32. wwctl

CHAPTER

THIRTYTHREE

WWCTL CLEAN

Clean up

33.1 Synopsis

This command cleans the OCI cache and removes leftovers from deleted nodes

wwctl clean

33.2 Options

-h, --help help for clean

33.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

33.4 SEE ALSO

• wwctl - Warewulf Control

107

Warewulf User Guide, Release 4.6.0

108 Chapter 33. wwctl clean

CHAPTER

THIRTYFOUR

WWCTL CONFIGURE

Manage system services

34.1 Synopsis

This application allows you to manage and initialize Warewulf dependent system services based on the configuration
in the warewulf.conf file.

wwctl configure [OPTIONS]

34.2 Options

-a, --all Configure all services
-h, --help help for configure

34.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

34.4 SEE ALSO

• wwctl - Warewulf Control

• wwctl configure dhcp - Manage and initialize DHCP

• wwctl configure hostfile - update hostfile on master

• wwctl configure nfs - Manage and initialize NFS

• wwctl configure ssh - Manage and initialize SSH

• wwctl configure tftp - Manage and initialize TFTP

109

Warewulf User Guide, Release 4.6.0

110 Chapter 34. wwctl configure

CHAPTER

THIRTYFIVE

WWCTL CONFIGURE DHCP

Manage and initialize DHCP

35.1 Synopsis

DHCP is a dependent service to Warewulf. This command will configure DHCP as defined in the warewulf.conf file.

wwctl configure dhcp [OPTIONS]

35.2 Options

-h, --help help for dhcp

35.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

35.4 SEE ALSO

• wwctl configure - Manage system services

111

Warewulf User Guide, Release 4.6.0

112 Chapter 35. wwctl configure dhcp

CHAPTER

THIRTYSIX

WWCTL CONFIGURE HOSTFILE

update hostfile on master

36.1 Synopsis

Manage the hostfile on the master node

wwctl configure hostfile [OPTIONS]

36.2 Options

-h, --help help for hostfile

36.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

36.4 SEE ALSO

• wwctl configure - Manage system services

113

Warewulf User Guide, Release 4.6.0

114 Chapter 36. wwctl configure hostfile

CHAPTER

THIRTYSEVEN

WWCTL CONFIGURE NFS

Manage and initialize NFS

37.1 Synopsis

NFS is an optional dependent service of Warewulf, this tool will automatically configure NFS as per the configuration
in the warewulf.conf file.

wwctl configure nfs [OPTIONS]

37.2 Options

-h, --help help for nfs

37.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

37.4 SEE ALSO

• wwctl configure - Manage system services

115

Warewulf User Guide, Release 4.6.0

116 Chapter 37. wwctl configure nfs

CHAPTER

THIRTYEIGHT

WWCTL CONFIGURE SSH

Manage and initialize SSH

38.1 Synopsis

SSH is an optionally dependent service for Warewulf, this tool will automatically setup the ssh keys nodes using the
‘default’ system overlay as well as user owned keys.

wwctl configure ssh [OPTIONS]

38.2 Options

-h, --help help for ssh
-t, --keytypes stringArray ssh key types to be created

38.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

38.4 SEE ALSO

• wwctl configure - Manage system services

117

Warewulf User Guide, Release 4.6.0

118 Chapter 38. wwctl configure ssh

CHAPTER

THIRTYNINE

WWCTL CONFIGURE TFTP

Manage and initialize TFTP

39.1 Synopsis

TFTP is a dependent service of Warewulf, this tool will enable the tftp services on your Warewulf master.

wwctl configure tftp [OPTIONS]

39.2 Options

-h, --help help for tftp
-s, --show Show configuration (don't update)

39.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

39.4 SEE ALSO

• wwctl configure - Manage system services

119

Warewulf User Guide, Release 4.6.0

120 Chapter 39. wwctl configure tftp

CHAPTER

FORTY

WWCTL IMAGE

Operating system image management

40.1 Synopsis

Starting with version 4, Warewulf uses images to build the bootable node images. These commands will help you
import, manage, and transform images into bootable Warewulf images.

40.2 Options

-h, --help help for image

40.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

40.4 SEE ALSO

• wwctl - Warewulf Control

• wwctl image build - (Re)build a bootable image

• wwctl image copy - Copy an existing image

• wwctl image delete - Delete an imported image

• wwctl image exec - Run a command inside of a Warewulf image

• wwctl image import - Import an image into Warewulf

• wwctl image kernels - List available image kernels

• wwctl image list - List imported Warewulf images

• wwctl image rename - Rename an existing image

• wwctl image shell - Run a shell inside of a Warewulf image

121

Warewulf User Guide, Release 4.6.0

• wwctl image show - Show root fs dir for image

• wwctl image syncuser - Synchronizes user in image

122 Chapter 40. wwctl image

CHAPTER

FORTYONE

WWCTL IMAGE BUILD

(Re)build a bootable image

41.1 Synopsis

This command will build a bootable image from an imported IMAGE(s).

wwctl image build [OPTIONS] IMAGE [...]

41.2 Options

-a, --all (re)Build all images
-f, --force Force rebuild, even if it isn't necessary
-h, --help help for build

--syncuser Synchronize UIDs/GIDs from host to image

41.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

41.4 SEE ALSO

• wwctl image - Operating system image management

123

Warewulf User Guide, Release 4.6.0

124 Chapter 41. wwctl image build

CHAPTER

FORTYTWO

WWCTL IMAGE COPY

Copy an existing image

42.1 Synopsis

This command will duplicate an imported image.

wwctl image copy IMAGE NEW_NAME

42.2 Options

-b, --build Build image after copy
-h, --help help for copy

42.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

42.4 SEE ALSO

• wwctl image - Operating system image management

125

Warewulf User Guide, Release 4.6.0

126 Chapter 42. wwctl image copy

CHAPTER

FORTYTHREE

WWCTL IMAGE DELETE

Delete an imported image

43.1 Synopsis

This command will delete IMAGEs that have been imported into Warewulf.

wwctl image delete [OPTIONS] IMAGE [...]

43.2 Options

-h, --help help for delete
-y, --yes Set 'yes' to all questions asked

43.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

43.4 SEE ALSO

• wwctl image - Operating system image management

127

Warewulf User Guide, Release 4.6.0

128 Chapter 43. wwctl image delete

CHAPTER

FORTYFOUR

WWCTL IMAGE EXEC

Run a command inside of a Warewulf image

44.1 Synopsis

Run a COMMAND inside of a warewulf IMAGE. This is commonly used with an interactive shell such as /bin/bash
to run a virtual environment within the image.

wwctl image exec [OPTIONS] IMAGE COMMAND

44.2 Options

-b, --bind stringArray source[:destination[:{ro|copy}]]
Bind a local path which must exist into the image. If

↪→destination is not
set, uses the same path as source. "ro" binds read-only.

↪→"copy" temporarily
copies the file into the image.

--build (Re)build the image automatically (default true)
-h, --help help for exec
-n, --node string Create a read only view of the image for the given node

--syncuser Synchronize UIDs/GIDs from host to image

44.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

129

Warewulf User Guide, Release 4.6.0

44.4 SEE ALSO

• wwctl image - Operating system image management

130 Chapter 44. wwctl image exec

CHAPTER

FORTYFIVE

WWCTL IMAGE IMPORT

Import an image into Warewulf

45.1 Synopsis

This command will pull and import an image into Warewulf from SOURCE, optionally renaming it to NAME. The
SOURCE must be in a supported URI format. Formats are:

• docker://registry.example.org/example:latest

• docker-daemon://example:latest

• file://path/to/archive/tar/ball

• /path/to/archive/tar/ball

• /path/to/chroot/

Imported images are used to create bootable images.

wwctl image import [OPTIONS] SOURCE [NAME]

45.2 Examples

wwctl image import docker://ghcr.io/warewulf/warewulf-rockylinux:8 rockylinux-8

45.3 Options

-b, --build Build image after pulling
-f, --force Force overwrite of an existing image
-h, --help help for import

--nohttps Ignore wrong TLS certificates, superseedes env WAREWULF_OCI_
↪→NOHTTPS

--password string Set password for the access to the registry, superseedes env
↪→WAREWULF_OCI_PASSWORD

--platform string Set other hardware platform e.g. amd64 or arm64, superseedes
↪→env WAREWULF_OCI_PLATFORM

--syncuser Synchronize UIDs/GIDs from host to image

(continues on next page)

131

file://path/to/archive/tar/ball

Warewulf User Guide, Release 4.6.0

(continued from previous page)

-u, --update Update and overwrite an existing image
--username string Set username for the access to the registry, superseedes env

↪→WAREWULF_OCI_USERNAME

45.4 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

45.5 SEE ALSO

• wwctl image - Operating system image management

132 Chapter 45. wwctl image import

CHAPTER

FORTYSIX

WWCTL IMAGE KERNELS

List available image kernels

46.1 Synopsis

This command lists the kernels that are available in the imported images.

wwctl image kernels [OPTIONS]

46.2 Options

-h, --help help for kernels

46.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

46.4 SEE ALSO

• wwctl image - Operating system image management

133

Warewulf User Guide, Release 4.6.0

134 Chapter 46. wwctl image kernels

CHAPTER

FORTYSEVEN

WWCTL IMAGE LIST

List imported Warewulf images

47.1 Synopsis

This command will show you the images that are imported into Warewulf.

wwctl image list [OPTIONS]

47.2 Options

-c, --chroot show size of chroot
--compressed show size of the compressed image

-h, --help help for list
-k, --kernel show kernel version
-l, --long show all
-s, --size show size information

47.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

47.4 SEE ALSO

• wwctl image - Operating system image management

135

Warewulf User Guide, Release 4.6.0

136 Chapter 47. wwctl image list

CHAPTER

FORTYEIGHT

WWCTL IMAGE RENAME

Rename an existing image

48.1 Synopsis

This command will rename an existing image.

wwctl image rename IMAGE NEW_NAME

48.2 Options

-b, --build Build image after rename
-h, --help help for rename

48.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

48.4 SEE ALSO

• wwctl image - Operating system image management

137

Warewulf User Guide, Release 4.6.0

138 Chapter 48. wwctl image rename

CHAPTER

FORTYNINE

WWCTL IMAGE SHELL

Run a shell inside of a Warewulf image

49.1 Synopsis

Run a interactive shell inside of a warewulf IMAGE.

wwctl image shell [OPTIONS] IMAGE

49.2 Options

-b, --bind stringArray source[:destination[:{ro|copy}]]
Bind a local path which must exist into the image. If

↪→destination is not
set, uses the same path as source. "ro" binds read-only.

↪→"copy" temporarily
copies the file into the image.

--build (Re)build the image automatically (default true)
-h, --help help for shell
-n, --node string Create a read only view of the image for the given node

--syncuser Synchronize UIDs/GIDs from host to image

49.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

139

Warewulf User Guide, Release 4.6.0

49.4 SEE ALSO

• wwctl image - Operating system image management

140 Chapter 49. wwctl image shell

CHAPTER

FIFTY

WWCTL IMAGE SHOW

Show root fs dir for image

50.1 Synopsis

Shows the base directory for the chroot of the given image. More information about the image can be shown with the
‘-a’ option.

wwctl image show [OPTIONS] IMAGE

50.2 Options

-a, --all Show all information about an image
-h, --help help for show

50.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

50.4 SEE ALSO

• wwctl image - Operating system image management

141

Warewulf User Guide, Release 4.6.0

142 Chapter 50. wwctl image show

CHAPTER

FIFTYONE

WWCTL IMAGE SYNCUSER

Synchronizes user in image

51.1 Synopsis

Synchronize the uids and gids from the host to the image. Users/groups which are only present in the image will be
preserved if no uid/gid collision is detected. File ownerships are also changed.

wwctl image syncuser [OPTIONS] IMAGE

51.2 Options

--build Build image after syncuser is completed
-h, --help help for syncuser

--write Synchronize uis/gids and write files in image (default true)

51.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

51.4 SEE ALSO

• wwctl image - Operating system image management

143

Warewulf User Guide, Release 4.6.0

144 Chapter 51. wwctl image syncuser

CHAPTER

FIFTYTWO

WWCTL NODE

Node management

52.1 Synopsis

Management of node settings. All node ranges can use brackets to identify node ranges. For example: n00[00-
4].cluster[0-1] will identify the first 5 nodes in cluster0 and cluster1.

52.2 Options

-h, --help help for node

52.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

52.4 SEE ALSO

• wwctl - Warewulf Control

• wwctl node add - Add new node to Warewulf

• wwctl node console - Connect to IPMI console

• wwctl node delete - Delete a node from Warewulf

• wwctl node edit - Edit node(s) with editor

• wwctl node export - Export nodes as yaml to stdout

• wwctl node import - Import node(s) from yaml file

• wwctl node list - List nodes

• wwctl node sensors - Show node IPMI sensor information

• wwctl node set - Configure node properties

145

Warewulf User Guide, Release 4.6.0

• wwctl node status - View the provisioning status of nodes

146 Chapter 52. wwctl node

CHAPTER

FIFTYTHREE

WWCTL NODE ADD

Add new node to Warewulf

53.1 Synopsis

This command will add a new node named NODENAME to Warewulf.

wwctl node add [OPTIONS] NODENAME

53.2 Options

--asset string Set the node's Asset tag (key)
-c, --cluster string Set cluster group

--comment string Set arbitrary string comment
-e, --discoverable WWbool[=true] Make discoverable in given network (true/false)

--diskname string set diskdevice name
--diskwipe whether or not the partition tables shall be wiped
--fsformat string format of the file system
--fsname string set the file system name which must match a

↪→partition name
--fspath string the mount point of the file system
--fswipe wipe file system at boot

-G, --gateway ip Set the node's network device gateway
-h, --help help for add
-H, --hwaddr string Set the device's HW address for given network

--image string Set image name
-i, --init string Define the init process to boot the image
-I, --ipaddr ip IPv4 address in given network

--ipaddr6 ip IPv6 address
--ipmiaddr ip Set the IPMI IP address
--ipmiescapechar string Set the IPMI escape character (defaults: '~')
--ipmigateway ip Set the IPMI gateway
--ipmiinterface string Set the node's IPMI interface (defaults: 'lan')
--ipminetmask ip Set the IPMI netmask
--ipmipass string Set the IPMI password
--ipmiport string Set the IPMI port
--ipmitagadd stringToString add ipmi tags (default [])
--ipmitemplate string template used for ipmi command
--ipmiuser string Set the IPMI username
--ipmiwrite WWbool[=true] Enable the write of impi configuration (true/false)

(continues on next page)

147

Warewulf User Guide, Release 4.6.0

(continued from previous page)

--ipxe string Set the iPXE template name
-A, --kernelargs strings Set kernel arguments

--kernelversion string Set kernel version
--mtu string Set the mtu

-N, --netdev string Set the device for given network
-M, --netmask ip Set the networks netmask

--netname string network which is modified (default "default")
--nettagadd stringToString add network tags (default [])
--onboot WWbool[=true] Enable/disable network device (true/false)
--partcreate create partition if not exist
--partname string set the partition name so it can be used by a file

↪→system
--partnumber string set the partition number, if not set next free

↪→slot is used
--partsize string set the size of the partition, if not set maximal

↪→possible size is used
-p, --primarynet string Set the primary network interface
-P, --profile strings Set the node's profile members (comma separated)

--root string Define the rootfs
-R, --runtime-overlays strings Set the runtime overlay
-O, --system-overlays strings Set the system overlay

--tagadd stringToString add tags (default [])
-T, --type string Set device type of given network

53.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

53.4 SEE ALSO

• wwctl node - Node management

148 Chapter 53. wwctl node add

CHAPTER

FIFTYFOUR

WWCTL NODE CONSOLE

Connect to IPMI console

54.1 Synopsis

Start a new IPMI console for NODENAME.

wwctl node console [OPTIONS] NODENAME

54.2 Options

-h, --help help for console

54.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

54.4 SEE ALSO

• wwctl node - Node management

149

Warewulf User Guide, Release 4.6.0

150 Chapter 54. wwctl node console

CHAPTER

FIFTYFIVE

WWCTL NODE DELETE

Delete a node from Warewulf

55.1 Synopsis

This command will remove NODE(s) from the Warewulf node configuration.

wwctl node delete [OPTIONS] NODE [NODE ...]

55.2 Options

-h, --help help for delete
-y, --yes Set 'yes' to all questions asked

55.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

55.4 SEE ALSO

• wwctl node - Node management

151

Warewulf User Guide, Release 4.6.0

152 Chapter 55. wwctl node delete

CHAPTER

FIFTYSIX

WWCTL NODE EDIT

Edit node(s) with editor

56.1 Synopsis

This command opens an editor for the given nodes.

wwctl node edit [OPTIONS] NODENAME

56.2 Options

-h, --help help for edit
--noheader Do not print header

56.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

56.4 SEE ALSO

• wwctl node - Node management

153

Warewulf User Guide, Release 4.6.0

154 Chapter 56. wwctl node edit

CHAPTER

FIFTYSEVEN

WWCTL NODE EXPORT

Export nodes as yaml to stdout

57.1 Synopsis

This command exports the given nodes as yaml to stdout.

wwctl node export NODENAME

57.2 Options

-h, --help help for export

57.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

57.4 SEE ALSO

• wwctl node - Node management

155

Warewulf User Guide, Release 4.6.0

156 Chapter 57. wwctl node export

CHAPTER

FIFTYEIGHT

WWCTL NODE IMPORT

Import node(s) from yaml file

58.1 Synopsis

This command imports all the nodes defined in a file. It will overwrite nodes with same name.

wwctl node import [OPTIONS] NODENAME

58.2 Options

-c, --cvs Import CVS file
-h, --help help for import

58.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

58.4 SEE ALSO

• wwctl node - Node management

157

Warewulf User Guide, Release 4.6.0

158 Chapter 58. wwctl node import

CHAPTER

FIFTYNINE

WWCTL NODE LIST

List nodes

59.1 Synopsis

This command lists all configured nodes. Optionally, it will list only nodes matching a PATTERN.

wwctl node list [OPTIONS] [PATTERN]

59.2 Options

-a, --all Show all node configurations
-h, --help help for list
-i, --ipmi Show node IPMI configurations
-j, --json Show json format
-l, --long Show long or wide format
-n, --net Show node network configurations
-y, --yaml Show yaml format

59.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

59.4 SEE ALSO

• wwctl node - Node management

159

Warewulf User Guide, Release 4.6.0

160 Chapter 59. wwctl node list

CHAPTER

SIXTY

WWCTL NODE SENSORS

Show node IPMI sensor information

60.1 Synopsis

Show IPMI sensor information for nodes matching PATTERN.

wwctl node sensors [OPTIONS] PATTERN

60.2 Options

--fanout int how many command should be executed in parallel (default 50)
-F, --full show detailed output.
-h, --help help for sensors
-s, --show only show command which will be executed

60.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

60.4 SEE ALSO

• wwctl node - Node management

161

Warewulf User Guide, Release 4.6.0

162 Chapter 60. wwctl node sensors

CHAPTER

SIXTYONE

WWCTL NODE SET

Configure node properties

61.1 Synopsis

This command sets configuration properties for nodes matching PATTERN.

Note: use the string ‘UNSET’ to remove a configuration

wwctl node set [OPTIONS] PATTERN

61.2 Options

-a, --all Set all nodes
--asset string Set the node's Asset tag (key)

-c, --cluster string Set cluster group
--comment string Set arbitrary string comment

-e, --discoverable WWbool[=true] Make discoverable in given network (true/false)
--diskdel string delete the disk from the configuration
--diskname string set diskdevice name
--diskwipe whether or not the partition tables shall be wiped

-f, --force Force configuration (even on error)
--fsdel string delete the fs from the configuration
--fsformat string format of the file system
--fsname string set the file system name which must match a

↪→partition name
--fspath string the mount point of the file system
--fswipe wipe file system at boot

-G, --gateway ip Set the node's network device gateway
-h, --help help for set
-H, --hwaddr string Set the device's HW address for given network

--image string Set image name
-i, --init string Define the init process to boot the image
-I, --ipaddr ip IPv4 address in given network

--ipaddr6 ip IPv6 address
--ipmiaddr ip Set the IPMI IP address
--ipmiescapechar string Set the IPMI escape character (defaults: '~')
--ipmigateway ip Set the IPMI gateway
--ipmiinterface string Set the node's IPMI interface (defaults: 'lan')
--ipminetmask ip Set the IPMI netmask

(continues on next page)

163

Warewulf User Guide, Release 4.6.0

(continued from previous page)

--ipmipass string Set the IPMI password
--ipmiport string Set the IPMI port
--ipmitagadd stringToString add ipmi tags (default [])
--ipmitagdel strings delete ipmi tags
--ipmitemplate string template used for ipmi command
--ipmiuser string Set the IPMI username
--ipmiwrite WWbool[=true] Enable the write of impi configuration (true/false)
--ipxe string Set the iPXE template name

-A, --kernelargs strings Set kernel arguments
--kernelversion string Set kernel version
--mtu string Set the mtu
--netdel string network to delete

-N, --netdev string Set the device for given network
-M, --netmask ip Set the networks netmask

--netname string network which is modified (default "default")
--nettagadd stringToString add network tags (default [])
--nettagdel strings delete network tags
--onboot WWbool[=true] Enable/disable network device (true/false)
--partcreate create partition if not exist
--partdel string delete the partition from the configuration
--partname string set the partition name so it can be used by a file

↪→system
--partnumber string set the partition number, if not set next free

↪→slot is used
--partsize string set the size of the partition, if not set maximal

↪→possible size is used
-p, --primarynet string Set the primary network interface
-P, --profile strings Set the node's profile members (comma separated)

--root string Define the rootfs
-R, --runtime-overlays strings Set the runtime overlay
-O, --system-overlays strings Set the system overlay

--tagadd stringToString add tags (default [])
--tagdel strings add tags

-T, --type string Set device type of given network
-y, --yes Set 'yes' to all questions asked

61.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

61.4 SEE ALSO

• wwctl node - Node management

164 Chapter 61. wwctl node set

CHAPTER

SIXTYTWO

WWCTL NODE STATUS

View the provisioning status of nodes

62.1 Synopsis

View and monitor the status of nodes as they are provisioned and check in.

wwctl node status [OPTIONS] [NODENAME...]

62.2 Options

-h, --help help for status
-l, --last Sort by the last check-in time
-r, --reverse Reverse the sort order
-t, --time int Filter by last checkin time (seconds)
-u, --unknown Only show nodes of unknown status
-U, --update int Set the update frequency for 'watch' (ms) (default 500)
-w, --watch Watch the status automatically

62.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

62.4 SEE ALSO

• wwctl node - Node management

165

Warewulf User Guide, Release 4.6.0

166 Chapter 62. wwctl node status

CHAPTER

SIXTYTHREE

WWCTL OVERLAY

Warewulf Overlay Management

63.1 Synopsis

Management interface for Warewulf overlays

63.2 Options

-h, --help help for overlay

63.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

63.4 SEE ALSO

• wwctl - Warewulf Control

• wwctl overlay build - (Re)build node overlays

• wwctl overlay chmod - Change file permissions in an overlay

• wwctl overlay chown - Change file ownership within an overlay

• wwctl overlay create - Initialize a new Overlay

• wwctl overlay delete - Delete Warewulf Overlay or files

• wwctl overlay edit - Edit or create a file within a Warewulf Overlay

• wwctl overlay import - Import a file into a Warewulf Overlay

• wwctl overlay list - List Warewulf Overlays and files

• wwctl overlay mkdir - Create a new directory within an Overlay

• wwctl overlay show - Show (cat) a file within a Warewulf Overlay

167

Warewulf User Guide, Release 4.6.0

168 Chapter 63. wwctl overlay

CHAPTER

SIXTYFOUR

WWCTL OVERLAY BUILD

(Re)build node overlays

64.1 Synopsis

This command builds overlays for given nodes.

wwctl overlay build [OPTIONS] NODENAME...

64.2 Options

-h, --help help for build
-o, --output string Do not create an overlay image for distribution but write to

the given directory. An overlay must also be ge given
↪→to use this option.
-O, --overlay strings Build only specific overlay(s)

--workers int The number of parallel workers building overlays (<=0
↪→indicates 1 worker per CPU)

64.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

64.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

169

Warewulf User Guide, Release 4.6.0

170 Chapter 64. wwctl overlay build

CHAPTER

SIXTYFIVE

WWCTL OVERLAY CHMOD

Change file permissions in an overlay

65.1 Synopsis

Changes the permissions of a single FILENAME within an overlay. You can use any MODE format supported by the
chmod command.

wwctl overlay chmod [OPTIONS] OVERLAY_NAME FILENAME MODE

65.2 Examples

wwctl overlay chmod default /etc/hostname.ww 0660

65.3 Options

-h, --help help for chmod

65.4 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

171

Warewulf User Guide, Release 4.6.0

65.5 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

172 Chapter 65. wwctl overlay chmod

CHAPTER

SIXTYSIX

WWCTL OVERLAY CHOWN

Change file ownership within an overlay

66.1 Synopsis

This command changes the ownership of a FILE within the system or runtime OVERLAY_NAME to the user specified
by UID. Optionally, it will also change group ownership to GID.

wwctl overlay chown [OPTIONS] OVERLAY_NAME FILE UID [GID]

66.2 Options

-h, --help help for chown

66.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

66.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

173

Warewulf User Guide, Release 4.6.0

174 Chapter 66. wwctl overlay chown

CHAPTER

SIXTYSEVEN

WWCTL OVERLAY CREATE

Initialize a new Overlay

67.1 Synopsis

This command creates a new empty overlay with the given OVERLAY_NAME.

wwctl overlay create [OPTIONS] OVERLAY_NAME

67.2 Options

-h, --help help for create

67.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

67.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

175

Warewulf User Guide, Release 4.6.0

176 Chapter 67. wwctl overlay create

CHAPTER

SIXTYEIGHT

WWCTL OVERLAY DELETE

Delete Warewulf Overlay or files

68.1 Synopsis

This command will delete FILEs within OVERLAY_NAME or the entire OVERLAY_NAME if no files are listed.
Use with caution!

wwctl overlay delete [OPTIONS] OVERLAY_NAME [FILE [FILE ...]]

68.2 Options

-f, --force Force deletion of a non-empty overlay
-h, --help help for delete
-p, --parents Remove empty parent directories

68.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

68.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

177

Warewulf User Guide, Release 4.6.0

178 Chapter 68. wwctl overlay delete

CHAPTER

SIXTYNINE

WWCTL OVERLAY EDIT

Edit or create a file within a Warewulf Overlay

69.1 Synopsis

This command will open the FILE for editing or create a new file within the OVERLAY_NAME. Note: files created
with a ‘.ww’ suffix will always be parsed as Warewulf template files, and the suffix will be removed automatically.

wwctl overlay edit [OPTIONS] OVERLAY_NAME FILE

69.2 Options

-h, --help help for edit
-m, --mode int32 Permission mode for directory (default 493)
-p, --parents Create any necessary parent directories

69.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

69.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

179

Warewulf User Guide, Release 4.6.0

180 Chapter 69. wwctl overlay edit

CHAPTER

SEVENTY

WWCTL OVERLAY IMPORT

Import a file into a Warewulf Overlay

70.1 Synopsis

This command imports the FILE into the Warewulf OVERLAY_NAME. Optionally, the file can be renamed to
NEW_NAME

wwctl overlay import [OPTIONS] OVERLAY_NAME FILE [NEW_NAME]

70.2 Options

-h, --help help for import
-n, --noupdate Don't update overlays
-p, --parents Create any necessary parent directories

--workers int The number of parallel workers building overlays (<=0 indicates 1
↪→worker per CPU)

70.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

70.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

181

Warewulf User Guide, Release 4.6.0

182 Chapter 70. wwctl overlay import

CHAPTER

SEVENTYONE

WWCTL OVERLAY LIST

List Warewulf Overlays and files

71.1 Synopsis

This command displays information about all Warewulf overlays or the specified OVERLAY_NAME. It also supports
listing overlay content information.

wwctl overlay list [OPTIONS] OVERLAY_NAME

71.2 Options

-a, --all List the contents of overlays
-h, --help help for list
-l, --long List 'long' of all overlay contents

71.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

71.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

183

Warewulf User Guide, Release 4.6.0

184 Chapter 71. wwctl overlay list

CHAPTER

SEVENTYTWO

WWCTL OVERLAY MKDIR

Create a new directory within an Overlay

72.1 Synopsis

This command creates a new directory within the Warewulf OVERLAY_NAME.

wwctl overlay mkdir [OPTIONS] OVERLAY_NAME DIRECTORY

72.2 Options

-h, --help help for mkdir
-m, --mode int32 Permission mode for directory (default 493)

72.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

72.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

185

Warewulf User Guide, Release 4.6.0

186 Chapter 72. wwctl overlay mkdir

CHAPTER

SEVENTYTHREE

WWCTL OVERLAY SHOW

Show (cat) a file within a Warewulf Overlay

73.1 Synopsis

This command displays the contents of FILE within OVERLAY_NAME.

wwctl overlay show [OPTIONS] OVERLAY_NAME FILE

73.2 Options

-h, --help help for show
-q, --quiet do not print information if multiple, backup files are written
-r, --render string node used for the variables in the template

73.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

73.4 SEE ALSO

• wwctl overlay - Warewulf Overlay Management

187

Warewulf User Guide, Release 4.6.0

188 Chapter 73. wwctl overlay show

CHAPTER

SEVENTYFOUR

WWCTL POWER

Warewulf node power management

74.1 Synopsis

This command controls the power state of nodes.

74.2 Options

-h, --help help for power

74.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

74.4 SEE ALSO

• wwctl - Warewulf Control

• wwctl power cycle - Power cycle the given node(s)

• wwctl power off - Power off the given node(s)

• wwctl power on - Power on the given node(s)

• wwctl power reset - Issue a reset to node(s)

• wwctl power soft - Gracefully shuts down the given node(s)

• wwctl power status - Show power status for the given node(s)

189

Warewulf User Guide, Release 4.6.0

190 Chapter 74. wwctl power

CHAPTER

SEVENTYFIVE

WWCTL POWER CYCLE

Power cycle the given node(s)

75.1 Synopsis

This command cycles power for a set of nodes specified by PATTERN.

wwctl power cycle [OPTIONS] [PATTERN ...]

75.2 Options

--fanout int how many command should be executed in parallel (default 50)
-h, --help help for cycle
-s, --show only show command which will be executed

75.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

75.4 SEE ALSO

• wwctl power - Warewulf node power management

191

Warewulf User Guide, Release 4.6.0

192 Chapter 75. wwctl power cycle

CHAPTER

SEVENTYSIX

WWCTL POWER OFF

Power off the given node(s)

76.1 Synopsis

This command will shutdown power to a set of nodes specified by PATTERN.

wwctl power off [OPTIONS] [PATTERN ...]

76.2 Options

--fanout int how many command should be executed in parallel (default 50)
-h, --help help for off
-s, --show only show command which will be executed

76.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

76.4 SEE ALSO

• wwctl power - Warewulf node power management

193

Warewulf User Guide, Release 4.6.0

194 Chapter 76. wwctl power off

CHAPTER

SEVENTYSEVEN

WWCTL POWER ON

Power on the given node(s)

77.1 Synopsis

This command will power on a set of nodes specified by PATTERN.

wwctl power on [OPTIONS] [PATTERN ...] [flags]

77.2 Options

--fanout int how many command should be executed in parallel (default 50)
-h, --help help for on
-s, --show only show command which will be executed

77.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

77.4 SEE ALSO

• wwctl power - Warewulf node power management

195

Warewulf User Guide, Release 4.6.0

196 Chapter 77. wwctl power on

CHAPTER

SEVENTYEIGHT

WWCTL POWER RESET

Issue a reset to node(s)

78.1 Synopsis

This command will issue a reset to a set of nodes specified by PATTERN.

wwctl power reset [OPTIONS] [PATTERN ...]

78.2 Options

--fanout int how many command should be executed in parallel (default 50)
-h, --help help for reset
-s, --show only show command which will be executed

78.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

78.4 SEE ALSO

• wwctl power - Warewulf node power management

197

Warewulf User Guide, Release 4.6.0

198 Chapter 78. wwctl power reset

CHAPTER

SEVENTYNINE

WWCTL POWER SOFT

Gracefully shuts down the given node(s)

79.1 Synopsis

This command uses the operating system to shut down the set of nodes specified by PATTERN.

wwctl power soft

79.2 Options

--fanout int how many command should be executed in parallel (default 50)
-h, --help help for soft
-s, --show only show command which will be executed

79.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

79.4 SEE ALSO

• wwctl power - Warewulf node power management

199

Warewulf User Guide, Release 4.6.0

200 Chapter 79. wwctl power soft

CHAPTER

EIGHTY

WWCTL POWER STATUS

Show power status for the given node(s)

80.1 Synopsis

This command displays the power status of a set of nodes specified by PATTERN.

wwctl power status [OPTIONS] [PATTERN ...]

80.2 Options

--fanout int how many command should be executed in parallel (default 50)
-h, --help help for status
-s, --show only show command which will be executed

80.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

80.4 SEE ALSO

• wwctl power - Warewulf node power management

201

Warewulf User Guide, Release 4.6.0

202 Chapter 80. wwctl power status

CHAPTER

EIGHTYONE

WWCTL PROFILE

Node configuration profile management

81.1 Synopsis

Management of node profile settings

81.2 Options

-h, --help help for profile

81.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

81.4 SEE ALSO

• wwctl - Warewulf Control

• wwctl profile add - Add a new node profile

• wwctl profile delete - Delete a node profile

• wwctl profile edit - Edit node(s) with editor

• wwctl profile list - List profiles and configurations

• wwctl profile set - Configure node profile properties

203

Warewulf User Guide, Release 4.6.0

204 Chapter 81. wwctl profile

CHAPTER

EIGHTYTWO

WWCTL PROFILE ADD

Add a new node profile

82.1 Synopsis

This command adds a new named PROFILE.

wwctl profile add PROFILE

82.2 Options

-c, --cluster string Set cluster group
--comment string Set arbitrary string comment
--diskname string set diskdevice name
--diskwipe whether or not the partition tables shall be wiped
--fsformat string format of the file system
--fsname string set the file system name which must match a

↪→partition name
--fspath string the mount point of the file system
--fswipe wipe file system at boot

-G, --gateway ip Set the node's network device gateway
-h, --help help for add
-H, --hwaddr string Set the device's HW address for given network

--image string Set image name
-i, --init string Define the init process to boot the image
-I, --ipaddr ip IPv4 address in given network

--ipaddr6 ip IPv6 address
--ipmiaddr ip Set the IPMI IP address
--ipmiescapechar string Set the IPMI escape character (defaults: '~')
--ipmigateway ip Set the IPMI gateway
--ipmiinterface string Set the node's IPMI interface (defaults: 'lan')
--ipminetmask ip Set the IPMI netmask
--ipmipass string Set the IPMI password
--ipmiport string Set the IPMI port
--ipmitagadd stringToString add ipmi tags (default [])
--ipmitemplate string template used for ipmi command
--ipmiuser string Set the IPMI username
--ipmiwrite WWbool[=true] Enable the write of impi configuration (true/false)
--ipxe string Set the iPXE template name

-A, --kernelargs strings Set kernel arguments

(continues on next page)

205

Warewulf User Guide, Release 4.6.0

(continued from previous page)

--kernelversion string Set kernel version
--mtu string Set the mtu

-N, --netdev string Set the device for given network
-M, --netmask ip Set the networks netmask

--netname string network which is modified (default "default")
--nettagadd stringToString add network tags (default [])
--onboot WWbool[=true] Enable/disable network device (true/false)
--partcreate create partition if not exist
--partname string set the partition name so it can be used by a file

↪→system
--partnumber string set the partition number, if not set next free slot

↪→is used
--partsize string set the size of the partition, if not set maximal

↪→possible size is used
-p, --primarynet string Set the primary network interface
-P, --profile strings Set the node's profile members (comma separated)

--root string Define the rootfs
-R, --runtime-overlays strings Set the runtime overlay
-O, --system-overlays strings Set the system overlay

--tagadd stringToString add tags (default [])
-T, --type string Set device type of given network

82.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

82.4 SEE ALSO

• wwctl profile - Node configuration profile management

206 Chapter 82. wwctl profile add

CHAPTER

EIGHTYTHREE

WWCTL PROFILE DELETE

Delete a node profile

83.1 Synopsis

This command deletes the node PROFILE. You may use a pattern for PROFILE.

wwctl profile delete [OPTIONS] PROFILE

83.2 Options

-h, --help help for delete
-y, --yes Set 'yes' to all questions asked

83.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

83.4 SEE ALSO

• wwctl profile - Node configuration profile management

207

Warewulf User Guide, Release 4.6.0

208 Chapter 83. wwctl profile delete

CHAPTER

EIGHTYFOUR

WWCTL PROFILE EDIT

Edit node(s) with editor

84.1 Synopsis

This command opens an editor for the given profiles.

wwctl profile edit [OPTIONS] NODENAME

84.2 Options

-h, --help help for edit
--noheader Do not print header

84.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

84.4 SEE ALSO

• wwctl profile - Node configuration profile management

209

Warewulf User Guide, Release 4.6.0

210 Chapter 84. wwctl profile edit

CHAPTER

EIGHTYFIVE

WWCTL PROFILE LIST

List profiles and configurations

85.1 Synopsis

This command will display configurations for PROFILE.

wwctl profile list [OPTIONS] [PROFILE ...]

85.2 Options

-a, --all Show all profile configurations
-h, --help help for list
-j, --json Show profile configurations via json format
-y, --yaml Show profile configurations via yaml format

85.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

85.4 SEE ALSO

• wwctl profile - Node configuration profile management

211

Warewulf User Guide, Release 4.6.0

212 Chapter 85. wwctl profile list

CHAPTER

EIGHTYSIX

WWCTL PROFILE SET

Configure node profile properties

86.1 Synopsis

This command sets configuration properties for the node PROFILE(s).

Note: use the string ‘UNSET’ to remove a configuration

wwctl profile set [OPTIONS] [PROFILE ...] [flags]

86.2 Options

-c, --cluster string Set cluster group
--comment string Set arbitrary string comment
--diskdel string delete the disk from the configuration
--diskname string set diskdevice name
--diskwipe whether or not the partition tables shall be wiped
--fsdel string delete the fs from the configuration
--fsformat string format of the file system
--fsname string set the file system name which must match a

↪→partition name
--fspath string the mount point of the file system
--fswipe wipe file system at boot

-G, --gateway ip Set the node's network device gateway
-h, --help help for set
-H, --hwaddr string Set the device's HW address for given network

--image string Set image name
-i, --init string Define the init process to boot the image
-I, --ipaddr ip IPv4 address in given network

--ipaddr6 ip IPv6 address
--ipmiaddr ip Set the IPMI IP address
--ipmiescapechar string Set the IPMI escape character (defaults: '~')
--ipmigateway ip Set the IPMI gateway
--ipmiinterface string Set the node's IPMI interface (defaults: 'lan')
--ipminetmask ip Set the IPMI netmask
--ipmipass string Set the IPMI password
--ipmiport string Set the IPMI port
--ipmitagadd stringToString add ipmi tags (default [])
--ipmitagdel strings delete ipmi tags

(continues on next page)

213

Warewulf User Guide, Release 4.6.0

(continued from previous page)

--ipmitemplate string template used for ipmi command
--ipmiuser string Set the IPMI username
--ipmiwrite WWbool[=true] Enable the write of impi configuration (true/false)
--ipxe string Set the iPXE template name

-A, --kernelargs strings Set kernel arguments
--kernelversion string Set kernel version
--mtu string Set the mtu
--netdel string network to delete

-N, --netdev string Set the device for given network
-M, --netmask ip Set the networks netmask

--netname string network which is modified (default "default")
--nettagadd stringToString add network tags (default [])
--nettagdel strings delete network tags
--onboot WWbool[=true] Enable/disable network device (true/false)
--partcreate create partition if not exist
--partdel string delete the partition from the configuration
--partname string set the partition name so it can be used by a file

↪→system
--partnumber string set the partition number, if not set next free slot

↪→is used
--partsize string set the size of the partition, if not set maximal

↪→possible size is used
-p, --primarynet string Set the primary network interface
-P, --profile strings Set the node's profile members (comma separated)

--root string Define the rootfs
-R, --runtime-overlays strings Set the runtime overlay
-O, --system-overlays strings Set the system overlay

--tagadd stringToString add tags (default [])
--tagdel strings add tags

-T, --type string Set device type of given network
-y, --yes Set 'yes' to all questions asked

86.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

86.4 SEE ALSO

• wwctl profile - Node configuration profile management

214 Chapter 86. wwctl profile set

CHAPTER

EIGHTYSEVEN

WWCTL SERVER

Start Warewulf server

87.1 Synopsis

Start Warewulf server

wwctl server [OPTIONS]

87.2 Options

-h, --help help for server

87.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

87.4 SEE ALSO

• wwctl - Warewulf Control

215

Warewulf User Guide, Release 4.6.0

216 Chapter 87. wwctl server

CHAPTER

EIGHTYEIGHT

WWCTL SSH

SSH into configured nodes in parallel

88.1 Synopsis

Easily ssh into nodes in parallel to run non-interactive commands

wwctl ssh [OPTIONS] NODE_PATTERN COMMAND

88.2 Options

-n, --dryrun Show commands to run
-f, --fanout int How many connections to run in parallel (default 32)
-h, --help help for ssh

--rsh string Path to use for RSH/SSH command (default "/usr/bin/ssh")
-s, --sleep int Seconds to sleep inbetween processes

88.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

88.4 SEE ALSO

• wwctl - Warewulf Control

217

Warewulf User Guide, Release 4.6.0

218 Chapter 88. wwctl ssh

CHAPTER

EIGHTYNINE

WWCTL UPGRADE

Upgrade configuration files

89.1 Synopsis

Upgrade warewulf.conf or nodes.conf from a previous version of Warewulf 4 to a format supported by the current
version.

89.2 Options

-h, --help help for upgrade

89.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

89.4 SEE ALSO

• wwctl - Warewulf Control

• wwctl upgrade config - Upgrade an existing warewulf.conf

• wwctl upgrade nodes - Upgrade an existing nodes.conf

219

Warewulf User Guide, Release 4.6.0

220 Chapter 89. wwctl upgrade

CHAPTER

NINETY

WWCTL UPGRADE CONFIG

Upgrade an existing warewulf.conf

90.1 Synopsis

Upgrades warewulf.conf from a previous version of Warewulf 4 to a format supported by the current version.

wwctl upgrade config [OPTIONS]

90.2 Options

-h, --help help for config
-i, --input-path string Path to a legacy warewulf.conf
-o, --output-path string Path to write the upgraded warewulf.conf to

90.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

90.4 SEE ALSO

• wwctl upgrade - Upgrade configuration files

221

Warewulf User Guide, Release 4.6.0

222 Chapter 90. wwctl upgrade config

CHAPTER

NINETYONE

WWCTL UPGRADE NODES

Upgrade an existing nodes.conf

91.1 Synopsis

Upgrades nodes.conf from a previous version of Warewulf 4 to a format supported by the current version.

wwctl upgrade nodes [OPTIONS]

91.2 Options

--add-defaults Configure a default profile and set default node
↪→values
-h, --help help for nodes
-i, --input-path string Path to a legacy nodes.conf
-o, --output-path string Path to write the upgraded nodes.conf to

--replace-overlays Replace 'wwinit' and 'generic' overlays with their
↪→split replacements

--with-warewulfconf string Path to a legacy warewulf.conf

91.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

91.4 SEE ALSO

• wwctl upgrade - Upgrade configuration files

223

Warewulf User Guide, Release 4.6.0

224 Chapter 91. wwctl upgrade nodes

CHAPTER

NINETYTWO

WWCTL VERSION

Version information

92.1 Synopsis

This command will print the Warewulf version.

wwctl version [flags]

92.2 Options

-f, --full List all compiled in variables.
-h, --help help for version

92.3 Options inherited from parent commands

-d, --debug Run with debugging messages enabled.
-v, --verbose Run with increased verbosity.

--warewulfconf string Set the warewulf configuration file

92.4 SEE ALSO

• wwctl - Warewulf Control

225

Warewulf User Guide, Release 4.6.0

226 Chapter 92. wwctl version

CHAPTER

NINETYTHREE

V4.6.0 RELEASE NOTES

v4.6.0 is a significant upgrade, with many changes relative to the v4.5.x series.

Particularly significant changes, especially those affecting the user interface, are described below. Additional changes
not impacting the user interface are listed in the CHANGELOG.

93.1 Documentation

The user documentation has been significantly refactored and re-written. The majority of changes mentioned here
should be documented in more detail there, as well, and the reorganization and deduplication supports better docu-
mentation maintenance in the future.

The documentation also now includes complete and automatically-generated references for all wwctl commands,
sub-comands, and options.

93.2 Upgrade

Warewulf v4.6.0 adds the wwctl upgrade command to assist with upgrading from previous versions of Warewulf
v4. This command updates existing configuration files for use with the current version.

There are two subcommands:

• wwctl upgrade config updates warewulf.conf.

• wwctl upgrade nodes updates nodes.conf.

Both of these will attempt to update their respective configuration file in-place, retaining a copy of the previous version
with a .bak suffix. Alternatively, you can see what each command will do by specifying an --output-file=-
option, to direct the output of the command to “standard out.”

wwctl upgrade nodes additionally requires two options to be specified:

• --add-defaults adds default settings to the default profile when those settings are absent. If you do not
wish to add defaults, specify --add-defaults=false.

For more information, see the section on the default profile, below.

• --replace-overlays replaces any reference to the “generic” or “wwinit” overlays with a new set of over-
lays that replace their behavior. Because an overlay named “wwinit” is present in both the legacy and the
upgraded state, --replace-overlays is not idempotent, and should only be used once. If you do not wish
to replace overlays, specify --replace-overlays=false.

For more information, see the section on overlays, below.

227

https://github.com/warewulf/warewulf/blob/main/CHANGELOG.md
https://warewulf.org/docs/

Warewulf User Guide, Release 4.6.0

93.3 The default profile

At various points Warewulf v4 has had a number of built-in default settings. These settings were once “compiled in,”
and more recently were moved to a dedicated defaults.conf file. In v4.6.0 these defaults have been moved to the
default profile, and are included in nodes.conf for new installations.

A legacy configuration from a previous Warewulf installation can be updated to include recommended defaults using
wwctl upgrade nodes --add-defaults. (For more information, refer to the section on upgrades, above.)

If the default overlay exists, it will be automatically (and explicitly) included by new nodes created with wwctl
node add. It is otherwise not “special,” and may be removed if a different organization is preferred.

A few wwctl commands have previously had --setdefault options to automatically update the default profile:
these options have been removed in v4.6.0.

93.4 Images

One of the more visible changes to Warewulf in v4.6.0: “containers” have been renamed to “images” (more specifi-
cally, “node images”) throughout the interface, documentation, and even code. This decision (requested by the user
community) is meant to alleviate confusion regarding whether Warewulf “containers” are “real” containers running on
a container runtime with potential performance and operational consequences.

Warewulf “containers” have never been “virtualized” or executed with a container runtime. Rather, the name “con-
tainer” was selected to imply the integration in v4 with the container ecosystem of tooling for defining, building,
storing, and testing node images. But this terminology ended up causing persistent confusion, so a more industry-
standard “node image” terminology has been adopted in stead.

The wwctl container command is retained as an alias for the new wwctl image command. The variables .
Container and .ContainerName are also retained as overlay template variables. These backwards-compatibility
retentions will continue to work through the v4.6.x series.

There are smaller changes to the image system, as well:

• wwctl image shell now supports a WW_HISTFILE environment variable to save shell history _inside_
the image.

• wwctl image shell now supports a WW_PS1 environment variable to specify the prompt for the interactive
shell. The default prompt has also been updated to indicate the current directory.

• wwctl image import now supports --username and --password parameters for authenticating to a
secure OCI registry.

• wwctl image import now supports a --nohttps parameter to use HTTP, rather than HTTPS, when
importing an image from an OCI registry.

• wwctl image import now supports a --platform parameter to specify a different target architecture
(e.g.., for importing an aarch64 image into an x86_64 Warewulf server). This simplifies importing images in a
multi-architecture environment.

• wwctl image <exec|shell|copy> all now support a --build flag to control whether the image
should be automatically rebuilt after the operation. (For exec and shell the default value is “true”, and
may be disabled with --build=false. For copy the default value is “false”, and may be enabled with
--build or --build=true.)

• Warewulf v4.5 used the permissions on an image’s rootfs/ directory to determine a “read-only” state of the
image. This behavior is now replaced with a sentinel readonly file stored alongside rootfs/ in the image
“chroot” directory. (For more information, see the “known issues” section in the Warewulf documentation.)

228 Chapter 93. v4.6.0 Release Notes

Warewulf User Guide, Release 4.6.0

93.5 Kernels

Warewulf v4.6.0 removes the wwctl kernel command, and all its subcommands, along with the wwctl
<node|profile> <add|set> --kerneloverride parameter. All kernels are now provisioned from an
associated node image. If more than one kernel is present in the image, Warewulf uses the highest-version, non-debug
kernel; but an explicit kernel version or kernel path can be specified with wwctl <node|profile> <add|set>
--kernelversion.

wwctl image kernels provides a new interface to show what kernels are available in each image, along with
information regarding the detected version, whether the kernel is the “default” for the image, and how many nodes
are configured to use it. (If no version is specified, the detected kernel version is provided to overlay templates as
.Kernel.Version).

Kernel arguments are also now represented as a list, rather than as a flat string. This allows kernel arguments to
be combined from various levels (e.g., profiles and the node) without having to re-specify the full argument list.
However, this also means that kernel arguments must be explicitly negated to remove them from prior specification.
(For example, you might need to specify both ~crashkernel=no and crashkernel=512MB.) List arguments to
wwctl <node|profile> <add|set> may be comma-separated; so arguments that contain a comma must now
be quoted on the command-line. (e.g., wwctl profile set default --cluster oso --kernelargs
'console=tty0,"console=ttyS0,115200"')

93.6 Overlays

wwctl overlay build has been enhanced to build overlays in parallel, and has also been made significantly
more efficient. As a result, building overlay images for large clusters now takes significantly less time. By default, the
number of parallel workers is equal to the number of CPUs on the Warewulf server; this can be adjusted with a new
wwctl overlay <import|build> --workers=0 parameter.

The “wwinit” and “generic” overlays have been split into multiple overlays based on discrete functionality. Their
equivalents may be substituted using wwctl upgrade nodes --replace-overlays. (See the section on
upgrading above.) This supports more precise removal of default overlay functionality from a given node or profile
by removing only a subset of the default overlays. (For example, you may wish to include only one of the network
management overlays, NetworkManager, ifcfg, wicked, or debian.interfaces.)

Overlays have been further separated into “distribution” and “site” overlays. All overlays provided with Warewulf
are “distribution” overlays, and should not be modified. New overlays, and modifications to distribution overlays,
are stored as “site” overlays. Site overlays are retained between Warewulf upgrades, and take precedence over a
distribution overlay of the same name.

wwctl overlay build --host and --nodes have been removed to clarify that the host overlay is not “built.”
To support development and debugging of the host overlay, wwctl overlay show --render=host now ren-
ders overlay templates as they would be applied to the Warewulf server. #623

There are smaller changes to the overlay system, as well:

• wwctl <node|profile> <add|set> [--system-overlays|--runtime-overlays] re-
places --wwinit and --runtime, respectively. (The original flags are retained, but deprecated.)

• wwctl overlay show --render can now accept the path to a template without its .ww suffix.

93.5. Kernels 229

Warewulf User Guide, Release 4.6.0

93.7 Templates

Overlay templates now have access to the full suite of Sprig template functions. Use of the local tr and slice
template functions in the distribution overlays has been replaced with their Sprig equivalents (replace and substr,
respectively).

An additional template function, UniqueField, was added to facilitate removing duplicate passwd and group entries
in the syncuser overlay. (For more information, see the section on syncuser, below.)

A set of new template functions, ImportLink, softlink, and readlink, add support for creating symbolic links from
overlay templates.

The new localtime overlay configures the timezone of a cluster node.

93.8 Network Overlays

The network overlays now support VLAN tagging, and static routes, and have improved support for configuring a
network bond. They also now support specifying a DNS search path.

Note: Not all functionality is supported by all network overlays.

There are smaller changes to the network overlays, as well:

• The NetworkManager overlay now prevents interfaces without a specified Ipaddr from activating DHCP.

• The NetworkManager overlay now only marks interfaces “unmanaged” if they have neither a Device name
nor an Hwaddr specified.

93.9 Profiles

Node profiles now support profiles themselves, allowing for complex nested hierarchies of nested profiles.

nodeprofiles:
default:
profiles:

- rocky
- net

rocky:
image name: rockylinux-9

net:
network devices:

default:
netmask: 255.255.255.0
gateway: 192.168.1.1

nodes:
n1:
profiles:

- default
network devices:
default:
ipaddr: 192.168.1.101

230 Chapter 93. v4.6.0 Release Notes

https://github.com/Masterminds/sprig

Warewulf User Guide, Release 4.6.0

93.10 Resources and NFS

Resources are similar to tags except that their value is an arbitrary data structure rather than just a string. This data is
represented as YAML data in nodes.conf, and these data structures may then be referenced by overlay templates
to implement more expressive cluster behavior.

Resources can currently only be defined with wwctl <node|profile> edit, or by editing nodes.conf di-
rectly.

Note: Resources are defined only at the root of nodes (and profiles), not on network interfaces and IPMI interfaces.

The premiere use of resources is in the refactoring of NFS client configuration.

93.11 NFS

Cluster node NFS mounts are no longer configured in warewulf.conf. In stead, a new fstab overlay configures
NFS (or any other) mounts on cluster nodes based on an fstab resource definition.

nodeprofiles:
default:
resources:
fstab:

- spec: warewulf:/home
file: /home
vfstype: nfs
mntops: defaults,nofail

- spec: warewulf:/opt
file: /opt
vfstype: nfs
mntops: defaults,noauto,nofail,ro

93.12 Syncuser

“Syncuser” has always been optional, but the output of certain commands has been updated to no longer imply that not
running syncuser is an error condition. The wwctl image build --syncuser now explicitly opts-in to auto-
matic syncuser during image build, and the wwctl image syncuser --write parameter is now automatically
enabled. (Specify --write=false to disable.)

Some syncuser functionality is now implemented in a new syncuser overlay. While this overlay is supplied by
wwctl upgrade nodes --replace-overlays, it is not included by default in the initial nodes.conf in
new deployments.

There are smaller changes to the syncuser, as well:

• The syncuser overlay now looks for the passwd and group databases in sysconfdir, rather than ex-
plicitly in /etc/. This change is primarily to support testing; but it does mean that if sysconfdir is a path
other than /etc/ then these databases must be provided explicitly (e.g., by copying them or symlinking them
into sysconfdir).

• The syncuser overlay now skips duplicate users and groups when generating synchronized passwd and
group databases.

93.10. Resources and NFS 231

Warewulf User Guide, Release 4.6.0

93.13 Network Boot and wwinit

The network boot and wwinit process have been made more consistent and verbose for both iPXE and GRUB meth-
ods. Additional output and logging provides more information about each step of the process as it happens to aid
in troubleshooting. And available network boot options are now presented using an iPXE menu, allowing a specific
method to be selected without using a custom iPXE script.

Utilizing the new iPXE menu, specifying an IPXEMenuEntry tag on a cluster node now selects the boot method to
use, similar to the previously-existing GRUBMenuEntry. The dracut.ipxe script has now been merged into the
default iPXE script, and specifying IPXEMenuEntry=dracut now replaces specifying a discrete dracut iPXE
template.

An issue that prevented nodes from booting in some circumstances with the Warewulf server configured in “secure”
mode have also been resolved: now, if the runtime overlay cannot be downloaded during boot, boot proceeds regard-
less, and wwclient applies the runtime overlay after boot when it is able to control its source port.

93.14 IPMI

The IPMI system has been refactored to use templates to define the required IPMI template from the cluster node
configuration. This is expected to support additional BMC implementation in the future.

93.15 CLI

There have been many enhancements to the wwctl command:

wwctl has been updated to use a different table-formatting library that produces more natural output without extra-
neous whitespace padding.

wwctl has been updated to add hostlist support to wwctl node and wwctl overlay build. Hostlists have
also been enhanced to support comma-separated hostlist patterns. (e.g., n[1-2],n5,n[8-9]) Other pattern formats
(regular expressions and globs) are no longer supported.

wwctl has been updated to add “tab completions” for additional parameters.

wwctl <node|profile> list [--yaml|--json] generates machine-readable output in YAML and JSON
format, and wwctl node export has been updated to match, including indicating node IDs.

wwctl now return a non-zero exit code on error.

There are smaller changes to the syncuser, as well:

• wwctl <node|profile> list --fullall has been removed.

• wwctl clean removes the OCI cache and vestigial overlay images from deleted nodes.

• wwctl container exec no longer requires a double hyphen (-- --) before flags.

232 Chapter 93. v4.6.0 Release Notes

Warewulf User Guide, Release 4.6.0

93.16 Debian/Ubuntu

Warewulf v4.6.0 does not yet fully support Debian or Ubuntu; but there have been multiple improvements towards
future support:

• warewulfd can now detect Ubuntu-style Dracut initrd images.

• A new netplan overlay adds support for modern Debian/Ubuntu network configuration.

• Multiple internal shell scripts have been updated for POSIX compatibility to support internal use of shells other
than Bash.

93.17 Server

The Warewulf server daemon (warewulfd) has been refactored to more closely behave like a 12-factor app. As
such, the ability to daemonize has been removed (as have the daemon management commands, wwctl server
<start,stop,status,restart,reload>). The server now always runs in the foreground and logs to stdout
rather than to /var/log/warewulfd.log or syslog.

The warewulfd.service systemd unit has been updated to read environment variables from /etc/default/
warewulfd, and now references an OPTIONS environment variable to supply additional arguments to the wwctl
server command. (e.g., OPTIONS=--debug)

wwctl auto-detects some network settings if they are not specified in warewulf.conf. These settings are now
written back to warewulf.conf after auto-detection. The ipaddr field of warewulf.conf can now also handle
a CIDR-formatted address, which internally populates the netmask and network fields. These network fields are
also provided to overlay templates in CIDR format as IpCIDR and NetworkCIDR fields.

A new warewulfd API endpoint at /overlay-file/{overlay}/{path...}?render={id} supports
fetching (and rendering) arbitrary overlay files.

There are smaller changes to the server, as well:

• wwctl configure ssh now generates ed25519 keys by default.

93.18 DHCP Server

The Warewulf server’s external DHCP service now more flexibly accounts for the presence or absence of an address
range. wwctl configure dhcp now generates a DHCP configuration without a defined range, generating as
much of the subnet and range definition as possible, for either a “default” configuration or a “static” configuration.

93.19 For Warewulf Developers

Finally, there are a number of changes that really only matter to Warewulf developers:

The minimum Go version is now 1.22.9, as required by updated dependencies.

Warewulf v4.6.0 includes a significant refactor of the internal datastructures that represent cluster nodes. The NodeInfo
structure (in-memory-only) has been merged with NodeConf, the YAML-backed data structure. In its place, a new
Field system supports tracks the source of node fields while values are merged from profiles for use explicitly during
wwctl node list --all.

The primary Warewulf Makefile has been enhanced with target help: just run make to see a list and descriptions of
notable targets.

93.16. Debian/Ubuntu 233

https://12factor.net/

Warewulf User Guide, Release 4.6.0

The official Warewulf RPM spec file has been updated to recommend the installation of ipmitool. It also simplifies
the permissions of installed files, and omits the gRPC API by default.

The GitHub CI process now runs “staticcheck,” and problems highlighted by it have been resolved. Recent problems
in the nightly build workflow have also been resolved.

A Visual Studio Code “development container” definition is now included in the repository.

234 Chapter 93. v4.6.0 Release Notes

	Introduction
	Cluster Provisioning
	Network Planning
	Enterprise Linux Quickstart
	SUSE Quickstart
	Debian Quickstart
	Glossary
	Server Installation
	Controlling Warewulf
	Server Configuration
	Using dnsmasq
	Security
	Bootloaders
	Upgrading Warewulf
	Cluster Nodes
	Node Profiles
	Network Interfaces
	IPMI
	Provisioning disks
	Node Images
	Image Kernels
	Syncuser
	SELinux-enabled Images
	Overlays
	Templates
	Troubleshooting
	Known issues
	Contributing
	Development Environment
	Documentation
	Debugging
	wwctl
	wwctl clean
	wwctl configure
	wwctl configure dhcp
	wwctl configure hostfile
	wwctl configure nfs
	wwctl configure ssh
	wwctl configure tftp
	wwctl image
	wwctl image build
	wwctl image copy
	wwctl image delete
	wwctl image exec
	wwctl image import
	wwctl image kernels
	wwctl image list
	wwctl image rename
	wwctl image shell
	wwctl image show
	wwctl image syncuser
	wwctl node
	wwctl node add
	wwctl node console
	wwctl node delete
	wwctl node edit
	wwctl node export
	wwctl node import
	wwctl node list
	wwctl node sensors
	wwctl node set
	wwctl node status
	wwctl overlay
	wwctl overlay build
	wwctl overlay chmod
	wwctl overlay chown
	wwctl overlay create
	wwctl overlay delete
	wwctl overlay edit
	wwctl overlay import
	wwctl overlay list
	wwctl overlay mkdir
	wwctl overlay show
	wwctl power
	wwctl power cycle
	wwctl power off
	wwctl power on
	wwctl power reset
	wwctl power soft
	wwctl power status
	wwctl profile
	wwctl profile add
	wwctl profile delete
	wwctl profile edit
	wwctl profile list
	wwctl profile set
	wwctl server
	wwctl ssh
	wwctl upgrade
	wwctl upgrade config
	wwctl upgrade nodes
	wwctl version
	v4.6.0 Release Notes

