
THE DIMENSIONALITY OF QUOTIENT ALGEBRAS

CHRIS KROOK

Once we have found a Gröbner basis GB for an ideal I in some free algebra
U , we can consider the quotient algebra Q = U/〈GB〉. It is not guaranteed that
this quotient algebra will always be finite dimensional. In fact, there are many
cases where the quotient algebra is infinite dimensional and has polynomial or even
exponential growth. We present some functions that investigate the dimensionality
of the quotient algebra.

Before continuing we observe that instead of looking at Q we can also look at the
monomial algebra Q′ := U/〈GB′〉 where GB′ := { Lt(b) | b ∈ GB }. We call Q′ the
associated algebra for Q. Although in general Q ′ will be a different algebra then Q,
they both have the same basis, since Q and Q′ give rise to the same normal words.
The dimensionality of the quotient algebra and other concepts of interest such as
the Hilbert series are equal for both the algebras Q and Q ′ since they depend only
on the bases. For this reason we will restrict ourselves to the study of monomial
algebras in the remainder of this paper.

1. The FinCheck-algorithm: determine whether the QA is finite or

infinite dimensional.

These monomial algebras will be determined by an alphabet A and a set of
monomials M, which is reduced such that none of the monomials in M divides
another monomial in M. Both the alphabet and the set of monomials are assumed
to be finite. Furthermore, all m ∈ M are words of finite length in A∗, which is the
space of all words over the alphabet A of finite or infinite length.

Definition 1. We call a monomial u normal (w.r.t. some reduced set M) if
M - u. By this notation we mean that no monomial in M divides u. We also speak
of normal words.

The basis of the monomial algebra will consist of all normal words w.r.t. M.
this basis is infinite if and only if it is possible to construct a normal word w ∈ A∗

of infinite length. It is obvious that this condition is sufficient, since the word w
will contain infinitely many different normal subwords. The other direction follows
directly from the assumption that our alphabet is finite. Thus up to a given length,
only finitely many words exist. This provides us with a direct and intuitive approach
to determine finiteness given A and M. We simply try to construct an infinite
normal word. If we succeed, we can conclude infiniteness of the monomial algebra.
Otherwise we conclude finiteness. Let’s make this more precise.

We will introduce the notion of a graph of normal words and use this graph to
obtain some information on the structure of infinite words.

1

2 CHRIS KROOK

Definition 2. Given an alphabet A and a set of monomials M, we can define the
Ufnarovski Graph1, GU . Its vertex set V consists of all normal words w ∈ AlM−1,
where lM := −1 + maxm∈M |m|. For each v, w ∈ V there is a directed edge v → w
if and only if there exist a, b ∈ A s.t. va = bw and M - va.

As one readily checks there is a one-to-one correspondence between paths of
length l in GU and normal words of length l + lM. This implies that each infinite
normal word corresponds to an infinite path in GU . Since the graph has a finite
number of vertices, due to the finiteness of A and M, this implies that such an
infinite path must contain a cycle. But then the word corresponding to merely
repeating this cycle is an infinite normal word as well.

Remark 1.1. If there exists an infinite word that is normal w.r.t. M, then either
it is cyclic or it gives rise to a cyclic infinite word that is also normal w.r.t. M.

We will use this in the proof of the following lemma.

Lemma 1.2. If there exists an infinite word w′ ∈ A∗ that is normal w.r.t. M,
then there also exists a cyclic infinite word w ∈ A∗ that is normal w.r.t. M s.t.

(1) ∀r,s≥1 w[1 . . . s] ≤ w[r . . . r + s − 1] .

Before giving the proof we introduce the notation u�v to denote that u is a prefix
of v and the notation u � v to denote that u is a proper prefix of v. Furthermore
ut denotes taking t concatenations of a word u.
Proof: Let w′ ∈ A∗ be infinite and normal w.r.t. M. Then according to remark
1.1, w′ gives rise to a cyclic infinite word w ′′ = v′∞, where v′ ∈ Ap for some finite
p > 0. We assume that v is the lexicographically smallest cyclic shift of v ′. Then
there is a u � v′ s.t. v′∞ = uv∞. Now define w := v∞ and the lemma follows
immediately. 2

Remark 1.3. For a given word u that is lexicographically smaller than all its cyclic
shifts, the word w = uqu′ with u′ � u and q ≥ 1, satisfies condition (1). This is an
immediate consequence of the property of u.

Corollary 1.4. In order to find infinite words, it is sufficient only to use words
satisfying (1). This implies that in its construction, given a word w ∈ Al satisfying
(1) we have the following two ways to proceed;

• if M|w then w := w′ where w′ is the smallest word satisfying w′ > w and
|w′| ≤ |w|. It is obvious that w′ will also satisfy condition (1) since the
symbol increased will be the last position of w′;

Example: A = {x, y}, xyxy ∈ M
. . . → xyxy → xyy → . . .

• if M - w then we want to extend the potential beginning of an infinite word,
such that (1) remains satisfied. For this purpose we can use a pointer that
moves along the word while lengthening it and is reset to the first position
if the word is increased. The pointer points to the next symbol to be added.
By doing so, w will always have the form mentioned in remark 1.3, thus

1This graph should not be confused with the graph of normal words GN which is generally
used for another type of graph. See for GU f.e. [1]

THE DIMENSIONALITY OF QUOTIENT ALGEBRAS 3

satisfying condition (1) . In the following example we denote the pointer
position using bold letters.

Example: A = {x, y},M = {xxx}
. . . → xxy → xxyx → xxyxx → xxyxxy → . . .

This leads to the following algorithm for constructing infinite words. Denote the
alphabet by A = {a1, . . . , ak}.

Algorithm 1.5. - construct an infinite word

(1) Build a tree T of reversed monomials from M.
(2) Start with the smallest word w := a1. Set a pointer p at the

first position, thus p := 1.
(3) Check whether M|w (F):

• if w is normal, then we:
(a) check if we can conclude infiniteness (z) in which

case we terminate instantly;
(b) extend word: w := w + w[p] and p := p + 1.

• if w is not normal, then we:
(a) check if w[1] = ak in which case we can conclude

finiteness and terminate instantly;
(b) increase w in a minimal way. i.e. w := u where u

is the smallest word satisfying w < u and |u| ≤ |w|.
Furthermore the pointer is reset to p := 1.

(4) Repeat step 3 until termination is achieved.

ad F: While constructing our word w we already know that the longest proper
prefix w′ of w is normal, thus we only have to check whether each suffix v of w is
normal. By use of a tree structure T to store the reversed monomials from M this
comes down to checking whether there is no branch b in T s.t. b� rev(v). This will
always take at most length(v) comparisons. (end of F)

ad z: We still need to work out how to conclude infiniteness from a word w such
that M - w. For this purpose we remember the Ufnarovski graph from definition
2 and in particular the one-to-one correspondence between infinite paths in GU

(i.e. cycles) and infinite words. This tells us how to adapt our algorithm to detect
infiniteness. While constructing our word w, we simultaneously build up that part
of GU that is on our route. Now we can easily check our word for cycles, by just
checking whether the vertex we want to add to our graph is already in the vertex
set. Let us give an example.

Example: A = {x, y},M = {xx, yyy}

w = x V = {}
w = xx V = {} M|w
w = xy V = {xy}
w = xyx V = {xy, yx}
w = xyxy V = {xy, yx} DONE

In the final step, we find a cycle and conclude infiniteness. The bold letters indicate
the position of the pointer.

4 CHRIS KROOK

Algorithm 1.5 actually automatically keeps track of the route in GU since all the
words on this route can simply be read from the word w itself.(end of z)

Lemma 1.6. Algorithm 1.5 terminates and concludes whether the monomial alge-
bra determined by an alphabet A and a set of monomials M, ordered lexicographi-
cally, is finite or infinite.

Proof: We need to show correct termination of the algorithm. In each step the
word w is increased lexicographically. Since GU consists of at most klM vertices, a
word length greater than k lM + lM, which corresponds to a path of length greater
than klM in GU implies a cycle and thus infiniteness. Thus assuming that an infinite
word exists, this will be found after a finite number of steps.
Now assume that all words are finite. There are only finitely many words with
length ≤ klM + lM thus in a finite number of steps w[1] = ak will hold. Notice that
from this point on, increasing w = (ak)q gives us w = (ak)q+1 and after finitely
many steps M|w will hold which implies finiteness since all attempts to create
infinite words have failed. 2

We will consider two small examples, showing how the algorithm works in both
the finite and the infinite case. Denoted are all words that are considered by the
algorithm.

Example: (infinite) A = {x, y},M = {xx, xyx, yyy}

w = x V = {}
w = xx V = {} M|w
w = xy V = {xy}
w = xyx V = {xy} M|w
w = xyy V = {xy, yy}
w = xyyx V = {xy, yy, yx}
w = xyyxy V = {xy, yy, yx} DONE

We conclude infiniteness since we encounter a cycle. The infinite normal word is
w = (xyy)∞. Notice that increasing the word xx in step 3, ensures that from that
point on no words containing xx will be considered. Therefore in the final step the
word xyyxy is checked in stead of first checking xyyxx. One can easily think of
examples where this principle reduces the number of words to be considered much
more.

Example: (finite) A = {x, y},M = {xx, yxy, yyy}

w = x V = {}
w = xx V = {} M|w
w = xy V = {xy}
w = xyx V = {xy, yx}
w = xyxy V = {xy, yx} M|w
w = xyy V = {xy, yy}
w = xyyx V = {xy, yy, yx}
w = xyyxy V = {xy, yy, yx} M|w
w = xyyy V = {xy, yy} M|w
w = y V = {}
w = yy V = {yy}
w = yyy V = {yy} M|w, DONE

THE DIMENSIONALITY OF QUOTIENT ALGEBRAS 5

We can conclude finiteness. Notice that in the case of finiteness we will always have
to consider all the possible words satisfying condition (1), having no proper prefix
dividable by M.

We have seen that in the finite case, our algorithm has to check many words. One
might wonder if there are also some bad scenarios in the infinite case. Unfortunately
there are. We will describe them using the Ufnarovski Graph GU .

Lemma 1.7. Let |A| = k. Then for each l ≥ 1 there exists a set M such that
lM = l and GU contains only a cycle of length kl, thus visiting all the vertices in
GU .

Proof: The cycle we’re looking for is well known and well studied and called the
De Bruijn-cycle. Construct a graph G which has as vertex set all possible words
of length l − 1. There is a directed edge from vertex u to vertex v if and only if
there exist a, b ∈ A such that ua = bv. Label this edge with b. Now notice that
for each vertex v we have degin(v) = degout(v) = k. Therefore there must exist
an Euler cycle in G and one readily sees that writing down the labels in this cycle
gives us exactly the De Bruijn-cycle we’re looking for, which is indeed a cycle of
length k · kl−1.

Now given the cycle in the graph GU , it’s easy to define the set M s.t. M
induces GU , just by preventing all edges not on the cycle to exist. 2

As an unwelcome result of lemma 1.7, there exists always a bad case in which
the length of the shortest cycle and thus the amount of comparisons needed to
conclude infiniteness grows exponentially in lM, roughly said the length of the
largest monomial in M.

2. The EPFinCheck-algorithm: Determine the growth of the QA

Sometimes we want to know more about the dimensionality of our algebra than
just whether it has a finite or infinite basis. Then we are interested in the actual
growth of the algebra. We will give a definition of the concept growth and we will
present an algorithm to compute it.

Definition 3. Given a monotone function f : N → R+ we define the growth of f
as the equivalence class [f] of f where

[f] = {g : N → R+ | ∃c1,c2,m1,m2∈N∀n∈N

1

c1

g(
n

m1

) ≤ f(n) ≤ c2g(m2n)}

Furthermore we can distinguish the following cases:

• if [f(n)] ≤ [1] then we say that f has finite growth;
• if [f(n)] ≤ [nd] for some d > 0 and d is a minimal natural number satisfying

this inequality, then we call f polynomial of degree d;
• if [f(n)] ≥ [an] for a > 1, then we call f exponential.

Growth of an algebra:
We need to relate this definition of growth with algebras, so we need to define a
useful function on our algebra. In section 1 we were interested whether a monomial
algebra induced by an alphabet A and a set of monomials M was finite or not, i.e.
whether the number of normal words of finite length was finite. This hints us in
the direction of a nice growth function on algebras. We will let our function count

6 CHRIS KROOK

the number of words of up to each given length n. More formally, we consider our
algebra A which is graded, i.e. A =

⊕
i Ai, where Ai is the subspace consisting of

all words of length i. Now define f : N → R+ by f(n) = dim(
∑n

i=1 Ai).

Growth of a graph:
In practice however, we will translate the problem of computing the growth of the
algebra, into the problem of computing the growth of the graph GU . So we will
also define a growth function on graphs. Let G be a finite graph. The intended
function counts the number of different paths in G up to each given length n. Thus
we define f : N → R+ by f(n) = #different paths in G of length up to n.

Note that our algebra corresponds to the graph GU in such a way that there
exists a bijection between words of length n in the algebra and paths of length n
in the graph. Thus these notions of growth are equivalent.

One readily sees that if a graph contains a cycle, there exist paths of length n
for all n ∈ N, thus the graph must be at least polynomial. We can intuitively see a
relation between the growth of a graph and the number of cycles in it.

• If a finite graph contains no cycles, then the total number of different paths
is finite and thus the graph has finite growth.

• If a finite graph contains a path visiting d non intersecting cycles, then it
has at least polynomial growth of degree d. Intuitively, there are k + d− 1
road segments, k of which are cycles and d−1 of which are connecting paths
between the cycles. The number of paths that contain k cycles equals the
number of ways to appoint k cycles in a set of k+d−1 road segments which
equals Binomial(k + d− 1, k) which is polynomial in k. Since the length of
the cycles is upper bounded, this gives us polynomial growth in the length
of the paths as well.

• If a graph contains 2 intersecting cycles, then the number of different paths
of length up to n grows exponentially in n. Intuitively each time you reach
a vertex v that is contained in both cycles, you can go 2 ways. So there are
already 2k different paths that visit v k times.

This topic is dealt with more thoroughly in [2]. There one can also find a proof of
the above intuitive remark.

2.1. Constructing an infinite word. We will next present an algorithm that is
based on algorithm 1.5 and that can distinguish the three cases; finiteness, polyno-
mial growth and exponential growth. But in case of polynomial growth it doesn’t
always compute the exact degree, but will upper and lower bound this.

Algorithm 2.1. - construct an infinite word and look for

intersecting cycles

(1) Build a tree T of reversed obstructions from M.
(2) Start with the smallest word w := a1. Set a pointer p at the

first position, thus p := 1. Furthermore let cycles := {}.
(3) Check whether M|w (F):

• if w is normal, then we:
(a) if w contains a cycle of subwords of length lM:

THE DIMENSIONALITY OF QUOTIENT ALGEBRAS 7

– that intersects with a cycle in the list cycles then
we can conclude exponential growth and termi-
nate immediately.

– that doesn’t intersect with any cycle in the list
cycles, then we add a pair of indices {i1, i2} to
the list cycles s.t. w[i1 . . . i2 + lM] is the cycle.

(b) extend word: w := w + w[p] and p := p + 1.
• if w is not normal, then we:

(a) check if w[1] = ak in which case we have checked
all words. We can conclude polynomial growth of
degree dlow ≤ d ≤ dupp (z) and will terminate
immediately. d = 0 corresponds to finiteness.

(b) – Increase w in a minimal way. i.e. w := u where
u is the smallest word satisfying w < u and |u| ≤
|w|.

– The pointer is reset to p := 1.
– Furthermore the list cycles is updated as to only

consider beginnings of cycles in the new word u.
Thus for each pair {i1, i2} in cycles, it is deleted
if |u| ≤ i1 or it is replaced by {i1, |u| − lM + 1}
if i1 < |u| ≤ i2 + lM.

(4) Repeat step 3 until termination is achieved.

ad F: See the remark at algorithm 1.5 for more details on how T is used for this.
(end of F)

ad z: As we mentioned earlier our algorithm only gives an upper bound and a
lower bound on the degree of polynomial growth. The upper bound dupp is equal to
the total number of cycles encountered in the entire check. The lower bound dlow

is equal to the maximum number of disjunct cycles encountered within one word
during the entire check. We will give two examples to clarify the algorithm and to
show the complications that can occur in the computations, which cause the use of
bounds in stead of an accurate value.

Example: A = {x, y},M = {yxx, yy}
We use the graph GU in our example.

y

xx→ xy � xy

In this case no problems occur and polynomial growth of degree 2 is detected.
Algorithm 2.1 first notices that xxx contains a cycle and then tries to expand xx
further. In doing so the word xxyxy is encountered which also contains a cycle.
Since |cycles| = 2 for this word, which implies that there is a word containing 2
cycles, we have dlow = 2. On the other hand no other cycles are encountered, thus

8 CHRIS KROOK

d = dlow = dupp = 2. More precisely algorithm 2.1 follows the following steps.

w = x V = {} cycles = {}
w = xx V = {xx} cycles = {}
w = xxx V = {xx} cycles = {{1, 2}}
w = xxy V = {xx, xy} cycles = {{1, 1}}
w = xxyx V = {xx, xy, yx} cycles = {{1, 1}}
w = xxyxx V = {xx, xy, yx} cycles = {{1, 1}} M|w
w = xxyxy V = {xx, xy, yx} cycles = {{1, 1}, {2, 4}}
w = xxyy V = {xx, xy} cycles = {{1, 1}, {2, 2}} M|w
w = xy V = {xy} cycles = {}
w = y V = {} cycles = {}
w = yy V = {yy} cycles = {} M|w, DONE

The list cycles holds all pairs of indices {i1, i2} s.t. w[i1 . . . i2] is the beginning of
a cycle. Thus i2 is sometimes lowered if w is increased. Notice that if a cycle is
encountered that begins with a word w of length lM and this cycle is fully examined,
i.e. increasing of the word means removing the cycle starting with w from the list
cycles, we can add w to M. We won’t miss out on exponential growth, for this
would have been detected in examining this cycle. In this way we may loose more
information on the actual degree of growth though.

Example: A = {x, y},M = {xxy, yy}
We now give an example where the degree of the polynomial growth is not detected.

xy � yx →
y

xx

Algorithm 2.1 follows the following steps.

w = x V = {} cycles = {}
w = xx V = {xx} cycles = {}
w = xxx V = {xx} cycles = {{1, 2}}
w = xxy V = {xx} cycles = {{1, 1}} M|w
w = xy V = {xy} cycles = {}
w = xyx V = {xy, yx} cycles = {}
w = xyxy V = {xy, yx} cycles = {{1, 3}}
w = xyy V = {xy, yy} cycles = {{1, 1}} M|w
w = y V = {} cycles = {}
w = yy V = {yy} cycles = {} M|w, DONE

Observe that dlow = 1 since the maximum number of disjunct cycles encountered
at any stage is 1. Furthermore dupp = 2 since in total 2 cycles are encountered.
However, d = 2. The reason that this is not detected by the algorithm is that it
won’t go back from a cycle to a lexicographical smaller cycle. Remember that at all
times we increase words such that they satisfy equality (1) in section 1. (end of z)

3. Computing Hilbert Series

We also offer a function to compute partial Hilbert Series of a monomial algebra.
This Hilbert series can be used as a measurement of growth and can be used to
bound Gröbner basis computations.

THE DIMENSIONALITY OF QUOTIENT ALGEBRAS 9

Given a graded algebra A =
⊕∞

i=0 Ai where all the subspaces Ai are finite
dimensional, define the Hilbert series by

HA :=

∞∑

i=0

(dim Ai)t
i.

Note that the monomial algebra we consider can always be split up into homoge-
neous subspaces, i.e. Ai is the subspace spanned by monomials of length i. It is
immediately clear from the definition that all the coefficients of the Hilbert series
will be non-negative. The function offered is an implementation of an algorithm
described in [3] and it uses the concept of a graph of chains and some cohomology
result.

4. The PreProcess-algorithm

Sometimes the set of monomials M can be easily reduced, which can save us a
lot of time later on. By reduction, we mean that we can simplify the set in such
a way that it doesn’t effect the growth of the related monomial algebra. It will
however change the set of normal words, and thus generate a different algebra. We
distinguish the following two possibilities of reduction. Let A = {a1, . . . , ak} and
w ∈ A∗.

(1) if wa1, . . . , wak ∈ M then M := (M\{wa1, . . . , wak}) ∪ {w}
(2) if a1w, . . . , akw ∈ M then M := (M\{a1w, . . . , akw}) ∪ {w}

We are only interested in the second type of reduction, which we call left-reduction,
since the first type of reduction is standard implemented in algorithm 1.5 and 2.1
and can be achieved by mere bookkeeping, as is stated in the following remark.

Remark 4.1. Consider a word w = uv where v is a normal word of length lM.
If no extension of v leads to an infinite word, then we should not consider words
containing v anymore in the remainder of our search and we can achieve this by
adding v to M. By doing so, in the rest of the check, each word w ′ = u′v where
u′ > u will be recognized as a dead end immediately, without needing further
checks.

Sometimes it is not directly obvious that left-reduction is possible. Consider the
following example.

Example: A = {x, y},M = {xx, yxy}
We can see that since xx is an obstruction, we can replace it by the monomials
xxx, xxy and yxx. Now since xxy and yxy are both obstructions, we can replace
them by the obstruction xy. We finally replace xxx and yxx back by xx. Thus M
can be left-reduced to M = {xx, xy}.

One readily checks that if we would also have been interested in right-reduction,
then by applying reduction more than once we could even reduce the set M to
M = {x}, from which it would be instantly clear that yy . . . is an infinite normal
word.

Thus in order to find all possibilities of left-reduction, we sometimes need to add
subwords to the right of existing obstructions first. We will make this more precise.

Definition 4. Given an alphabet A of size k. We call a set of obstructions M left-
reduced if for all obstructions m ∈ M we have |{n ∈ M | n[2..|n|]�m[2..|m|]}| < k.

10 CHRIS KROOK

Note that indeed equality would imply that left-reduction is possible; suppose
ni (i = 1, . . . , k) are different obstructions such that ni[2..|ni|] � m[2..|m|]. Then
since ni (i = 1, . . . , k) are obstructions and thus don’t divide one another, n1[1], n2[1], . . . , nk[1]
are all different and form the k leafs of a full subtree.

We can choose to reduce our monomial set M while building the tree T before-
hand of algorithms 1.5 and 2.1. Reduction doesn’t alter infinite paths, but only
cuts down dead-ends. Therefore these algorithms, which all look for infinite paths,
still work on our reduced set and return the same result.

Since left-reduction changes the group of normal words, the Hilbert series of this
new algebra will differ from the original one, so we should not preprocess before
computing the Hilbert series. Definition 4 hints us to a reduction-algorithm.

Algorithm 4.2. - Reducing a monomial set while building

the corresponding tree

(1) Initialize T = [].
(2) For all u ∈ M consider all relevant expansions of u:

i.e. for all v ∈ M with |v| > |u| and v[2..|u|] = u[2..|u|]
consider suffix w of v of length |v| − |u|
and do:

• Add uw to T .
• Reduce T such that it doesn’t contain full subtrees.

(3) Let M′ be the set belonging to T .
(4) If M 6= M′ then go to step 2 with M := M′.
(5) Return(M).

The recursive character of the algorithm is due to the fact that new possibilities
of left-reduction may occur after a reduction step. This occurs in the following
example.

Example: A = {x, y},M = {xx, yxy, yyx}
We will show the reduction process using the tree-notation of reversed obstructions.

��
x

@@
y

���x

@@
y

@@
y

HHH
y

��
x

@@
y

1
−→

��
x

@@
y

���x

@@
y

@@
y

HHH
y

��
x

@@
y

��
x

2
−→

��
x

@@
y

���x

@@
y

@@
y

HHH
y

��
x

3
−→

��
x

@@
y

���x

@@
y

@@
y

HHH
y

��
x

��
x

4
−→

��
x ���x

@@
y

HHH
y

��
x

5
−→ ���x HHH

y

��
x

(1) the extension xxy of the word xx is added to the tree;
(2) branches xxy and yxy can be reduced to branch xy;
(3) the extension xyx of the word xy is added to the tree;
(4) branches xyx and yyx are reduced to branch yx;
(5) branches xx and yx are reduced to branch x.

Step 1 and 2 occur in the first recursion step, step 3, 4 and 5 in the second recursion
step.

THE DIMENSIONALITY OF QUOTIENT ALGEBRAS 11

In stead of full preprocessing we can also choose to upper bound the number
of recursions. In this way we have some control over the amount of preprocessing.
Unfortunately it is unclear what amount of preprocessing could best be used in
each individual case.

References

[1] P.Nordbeck; Canonical Bases for Algebraic Computations

Doctoral Thesis in Mathematical Sciences, LTH Lund (2001)
[2] V.A. Ufnarovski; A Growth Criterion for Graphs and Algebras Defined by Words

Mathematical Notes 31, 238-241 (1982)
[3] V.A. Ufnarovski; Combinatorial and Asymptotic Methods In Algebra

Algebra-VI, Encyclopedia of Mathematical Sciences, Volume 57, Springer (1995),5-196

E-mail address: C.Krook@student.tue.nl

