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Chapter 1

Introduction

In Eindhoven the computer algebra package GBNP (Gröbner basis for non-commutative polyno-
mials) has been developed by Dié A. H. Gijsbers and Arjeh M. Cohen. This computer algebra
package makes it possible, given an algebra by means of its generators and relations, to find a
matrix representation of the same algebra (if finite dimensional) (see also http://www.win.tue.

nl/~amc/pub/grobner/doc.html). Information about Gröbner bases can be found in Chapter 2.
During an internship at the University of St. Andrews, a part of my 5 year study program

of Technical Mathematics at the Eindhoven University of Technology, I worked on and with this
package. This paper is the result of that internship. My guide in Eindhoven was Arjeh M. Cohen,
and my guide in St. Andrews was Steve A. Linton, who is the maintainer of GAP, which stands for
Groups, Algorithms and Programming, and has written some articles about vector enumeration.
Vector enumeration will be explained briefly in Chapter 3.

I have developed the package further, extending the package to allow use of arbitrary fields
and modules. More details about modules can be found in Section 2.4. Furthermore it is now
possible to make the package available as a part (share package) of GAP. More about this can be
found in Chapter 4.

Some significant speed improvements in the implementation have been obtained by the use of
a particular data structure, see Section 5.4. A simpler version of this data structure has already
been used by Chris Krook [5], but it was not clear if and how this data structure could be used
to make further improvements. Also some other improvements were made. These improvements
are described in Chapter 5.
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Chapter 2

Gröbner bases

2.1 Introduction

This chapter contains a brief introduction to non-commutative Gröbner bases. It follows the
introduction from the proof of the correctness of the algorithm used by GBNP, written by the
authors of GBNP, Arjeh M. Cohen and Dié A.H. Gijsbers[1]. This differs only slightly from the
notation used by Teo Mora[8].

First we discuss some definitions. In Section 2.2 we discuss two-sided ideals as used in GBNP.
In Section 2.4 we discuss some study about how to combine the right ideals with the two-sided
ideals and study the module of a quotient algebra.

2.2 Definitions

Let k be a field and T be a free monoid on n generators x1, . . . , xn. An element of the monoid
ring k〈T 〉 is called a non-commutative polynomial or sometimes polynomial.

Gröbner bases are about unique reduction: the order of the reduction does not matter. To be
able to speak about a reduction, we first have to define an ordering:

Definition 2.1. An ordering < on T is called a reduction ordering if for all t1, t2, l, r ∈ T , with
t1 < t2 we have 1 ≤ lt1r < lt2r.

The reduction ordering which is used in the package GBNP is “total degree first, then lexico-
graphic” (Mora calls this the deglex ordering).

It is now possible to write a polynomial in an ordered way.

Definition 2.2. Given an ordering on T it is possible to write each polynomial f ∈ k〈T 〉 in a
unique way as a linear combination of monomials ti:

f =
s

∑

i=1

citi

with ci ∈ k \{0} and ti ∈ T , such that t1 > · · · > ts. This decomposition is called the ordered form
of f . The polynomial f is called monic if c1 = 1. The largest monomial with nonzero coefficient
of f , t1, is denoted as L(f) and called the leading term.

Given a list of polynomials known to be zero, a polynomial can be reduced to a smaller
polynomial modulo the polynomials in the list. With a reduction ordering this process ends in
a finite number of steps. The resulting polynomial is not unique in general. The order of the
reduction might influence the result. For a Gröbner basis the polynomial that cannot be reduced
further is always the same. In that case the reduction is unique:

9
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Definition 2.3. Let G ⊂ k〈T 〉, and denote by I the ideal generated by G. A normal form of
�

∈ k〈T 〉 with respect to G is an element h ∈ k〈T 〉 such that f − h ∈ I and either h = 0 or
L(g) 6 |L(h) for all g ∈ G.
Moreover, G is a Gröbner basis of I if G is a basis of I and if 0 is a normal form with respect to
G of each element of I.

Let G be a basis for an ideal I . If G is not a Gröbner basis then some words in the ideal I do
not have normal form 0. They can be found by generating new relations of the relations in G.

Definition 2.4. Let G = (gi)1≤i≤n be a list of monic polynomials. An obstruction of G is a
six-tuple (l, i, r; λ, j, ρ) with i, j ∈ {1, . . . , n} and l, λ, r, ρ ∈ T such that L(gi) ≤ L(gj) and
lL(gi)r = λL(gj)ρ. Given an obstruction we define the corresponding S-polynomial as

s(l, i, r; λ, j, ρ) = lgir − λgjρ

If a relation does not add anything new, then it does not need to be added to G. Such is the
case with weak obstructions:

Definition 2.5. Given a list G = (gi)1≤i≤k of monic polynomials a polynomial f is called weak
with respect to G if there are ch ∈ k and lh, rh ∈ T such that lhL(gh)rh ≤ L(f) and

f =
∑

h

chlhghrh.

An obstruction (l, i, r; λ, j, ρ) of G is called weak if its S-polynomial s(l, i, r; λ, j, ρ) is weak with
respect to G.

It is possible to decrease the number of useful obstructions even further. The obstructions can
also be used to reduce each other. The reader is referred to [1] for details. A set of polynomials
that is large enough to contain the same information as the total set of instructions is called a
basic set.

Lemma 2.1 (Lemma 2.2 from [1]). There is a finite basic set H of S-polynomials of G.
Moreover, H can be chosen so that every member of H is an S-polynomial of G with overlap and
with at least one of the two parameters {l, λ} and one of {r, ρ} equal to 1.

It is now possible to distinguish between three kinds of obstruction:

Definition 2.6. Let s = (l, i, r; λ, j, ρ) be an obstruction of the list G of monic polynomials in
k〈T 〉.

• If l = 1 then s is called a right obstruction (s = (1, i, 1; λ, j, ρ) or s = (1, i, r; λ, j, 1)).

• If r = 2 and l 6= 1 then s is called a left obstruction (s = (l, i, 1; 1, j, ρ)).

• The remaining obstructions with λ = ρ = 1 are called central obstructions (s = (l, i, r; 1, j, 1)).

2.3 Outline of the algorithm

The algorithm is only described briefly here and can be found in detail in [1].

Let I be a two-sided ideal of k〈T 〉 and let G, D be finite subsets of k〈T 〉. Suppose G is a basis
for I and D is a basic set for G.

The two-sided algorithm basically moves elements from D to G until D is empty. G is then a
Gröbner basis.
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2.3.1 Start of the algorithm

To start a computation initialize as follows:

• Let G be list of polynomials, after some “cleaning operations” to fulfill an invariant, which
is not described here.

• Let D be the normal forms of the left, right and central obstructions of G (this is a basic
set).

• Some cleaning is also needed to fulfill an additional requirement.

2.3.2 Algorithm step

1. One polynomial is moved from D to G.

2. The left, right and central obstructions of that polynomial are calculated, reduced and added
to D so that D stays basic for the new G.

3. Check if the polynomials in G can be reduced and if they can, reduce them and add new
S-polynomials to D.

4. Reduce all polynomials in D.

2.3.3 End of the algorithm

The algorithm ends if no more obstructions need to be added:

Theorem 2.1 (Theorem 3.1 from [1]). If D is the empty set, then G is a Gröbner basis for I.

2.3.4 About termination

About the original Buchberger algorithm the following is known:

Lemma 2.2 (adapted from [3], Proposition 2.8). If the (two-sided) ideal of leading terms
has a finite number of monomial generators, then the algorithm terminates in a finite number of
steps and yields a finite Gröbner basis.

This means that if a finite Gröbner basis exists, its leading terms will generate the two-sided
ideal of leading terms and therefore the algorithm will end. The original algorithm also adds a lot
of weak obstructions.

Note that not all ideals have a finite number of monomial generators because of the word
problem. Furthermore it may depend on the ordering whether or not a finite Gröbner basis exists.

2.4 Modules

2.4.1 Introduction

The vector enumerator gives a representation of a right-module. In this section it will be described
how similar functionality has been added to GBNP.

In this section all modules are right modules. Let G ⊂ k〈T 〉 be a basis for an ideal I = 〈AGA〉
in a free noncommutative algebra A. Let P be A/I . Let As be a vector space of dimension s over
A. Let W ⊆ As be a set of relations. It is sometimes possible to compute (A/I)s/W , where W is
the image of W in (A/I)s.
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2.4.2 Ordering

There are several possibilities for a reduction ordering for modules. In this paragraph the dis-
cussion will be mainly about how the ordering used in the original algorithm (first degree, then
lexicographic) can be extended to modules.

Except for degree and lexicographical order there is now another way of ordering monomials:
by means of the generator of the module. It seems logical to use the reverse order for this (so
that for e1,e2 standard generators of the module A2 and m a monomial in the algebra, (m, 0) =
e1 ∗ m > e2 ∗ m = (0, m)).

It is possible to use the order of the generators of the module, as the dominant part of the
ordering, after the degree, or as the least dominant ordering:

• module generators, degree, lexicographic. This ordering does not always result in the shortest
words, but it is a reduction ordering, because it is possible to assign weights to the module
generators for each finitely generated ideal. The advantage of this ordering is that it is easy
to split polynomials up into groups with the same module generator.

• degree, module generators, lexicographic. Monomials of the same length are first sorted by
module generator and then lexicographically.

• degree, lexicographic, module generators. This ordering might be the most natural, but it
is a bit harder to implement. It might be desired to change the ordering functions so that
this can be done in the future.

The ordering from the original package can be extended to the second ordering with no changes
in the implementation. It is possible to use the last ordering but this would be less efficient in the
current representation.

2.4.3 Using the original algorithm for modules

We will now show that it is possible to use the original Gröbner basis algorithm after a transfor-
mation.

Let k be a field and A be the algebra k〈T 〉. Let M = {m1, . . . , ms} be a set of generators of a
free A-module. Write F = k〈T ∪M〉 and G = k〈T ∪M ∪ {e}〉. Note the free A-module generated
by M is a submodule of the A-module on F . This may be viewed as a left A-module.

Let R ⊆ A ⊆ F be a set of relations. Let W ⊆ As ⊆ F be a set of A-module relations. Let We =
{x · e − x | x ∈ T ∪ M ∪ {e}}∪ {e · t − t | t ∈ T}. Let WM = {x · mi | x ∈ T ∪ M ∪ {e}, mi ∈ M}.
Note that We contains the relation e2 − e, so e is an idempotent and that We, WM ⊂ F .

Theorem 2.2. F/〈FWM F 〉 ∼= A ⊕ m1A ⊕ · · · ⊕ msA as free A-algebras of rank s + 1.

Proof. Let x be a monomial in G. It is possible that x = 1, in which case x ∈ A. Suppose x 6= 1.
A monomial x ∈ G can fall into three categories, when it comes to containing mi.

• x does not contain any m ∈ M . Then x ∈ A.

• x contains any m ∈ M , which is not at the left of x. In this case it is possible to reduce x
to zero with the rules in WM .

• x contains one m ∈ M , and does contain that m at the left. Then x ∈ m1A ⊕ · · · ⊕ msA
and more specifically x ∈ mA.

Multiplication of two monomials a and b is as follows:

• if a, b ∈ A then a · b ∈ A.

• if a ∈ A, a 6= 1 and b ∈ m1A ⊕ · · · ⊕ msA then a · b = 0 (after reduction with WM ).

• if a = 1 ∈ A and b ∈ m1A ⊕ · · · ⊕ msA then a · b = b.
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• if a ∈ m1A ⊕ · · · ⊕ msA and b ∈ A then a · b ∈ m1A ⊕ · · · ⊕ msA.

• if a, b ∈ m1A ⊕ · · · ⊕ msA then a · b = 0 (after reduction with WM ).

Because the special case a = 1 ∈ A is not desired we add an idempotent e to F , forming G.

Theorem 2.3. G/〈GWeG, GWMG〉 ∼= (A + ek) ⊕ m1A ⊕ · · · ⊕ msA as A-algebras where A + ek
is the A-module spanned by a free submodule A and an additional generator e satisfying e · t = t,
for t ∈ T .

Proof. Let x be a monomial in G. It is possible that x = 1 or x = e, in which in both cases
x ∈ A + ek. Suppose x 6= 1, e. If x contains e than it is possible to reduce it with the rules in We.
So we may suppose that x does not contain e.

A monomial x ∈ G can fall into three categories, when it comes to containing mi.

• x does not contain any m ∈ M . Then x ∈ A + ek.

• x contains any m ∈ M , which is not at the left of x. In this case it is possible to reduce x
to zero with the rules in WM .

• x contains one m ∈ M , and does contain that m at the left. Then x ∈ m1A ⊕ · · · ⊕ msA
and more specifically x ∈ mA.

Multiplication of two monomials a and b is as follows:

• if a, b ∈ A + ek then a · b ∈ A + ek (apply reduction with the rules in We if necessary).

• if a ∈ A + ek, a 6= 1 and b ∈ m1A ⊕ · · · ⊕ msA then a · b = 0 (after reduction with WM ).

• if a = 1 ∈ A + ek and b ∈ m1A ⊕ · · · ⊕ msA then a · b = b.

• if a ∈ m1A⊕ · · · ⊕msA and b ∈ A + ek then a · b ∈ m1A⊕ · · · ⊕msA (apply reduction with
We if necessary).

• if a, b ∈ m1A ⊕ · · · ⊕ msA then a · b = 0 (after reduction with WM ).

Define A0 ⊆ A to be the set of monomials with constant 0. Consider the mapping from
F/〈FWMF 〉 to G/〈GWMG, GWeG〉 which is formed by right-multiplication with e. This mapping
is injective and the only elements that are mapped onto something in another residue class are the
constants k that are mapped into ek, so F/〈FWMF 〉 ∼= (A0 +ek)⊕m1A⊕· · ·⊕msA as A-modules
and even as rings, with multiplication of two monomials a and b as follows:

• if a, b ∈ A0 + ek then a · b ∈ A0 + ek (apply reduction with the rules in We if necessary).

• if a ∈ A0 + ek and b ∈ m1A ⊕ · · · ⊕ msA then a · b = 0 (after reduction with WM ).

• if a ∈ m1A⊕ · · ·⊕msA and b ∈ A0 + ek then a · b ∈ m1A⊕ · · ·⊕msA (apply reduction with
We if necessary).

• if a, b ∈ m1A ⊕ · · · ⊕ msA then a · b = 0 (after reduction with WM ).

Theorem 2.4. Let R ⊆ A ⊆ F and W ⊆ As ⊆ F . Map these rules onto F/〈FWMF 〉, by mapping
A onto A and the i-th dimension of As onto miA. Map these relations into G/〈GWM G∪GWeG〉
by multiplying with e. Call the total set of relations W ∗ ⊆ G/〈GWM G ∪ GWeG〉. The Gröbner
basis of W ∗ ∪WM ∪We contains the Gröbner basis of R and is finite if the Gröbner basis of R is
finite. Furthermore the part of the quotient algebra starting with mi gives a representation of the
A-module with relations R and W .

Note that in the implementation it is not necessary to add WM and We explicitly.
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A basic set for modules

Here I will look which obstructions (l, i, r; λ, j, ρ) need to be considered for obtaining a basic set
of a combination R∪W ⊆ G/〈GWM G∪GWeG〉, where W ∈ A and R ∈ m1A⊕ · · · ⊕msA. I will
use that either r = 1 or ρ = 1 (see lemma 2.1).

• Both i, j ∈ W . Without loss of generality take r = 1 : ([], i, []; [], j, ρ), or L(wi) = L(wj)ρ.
Note that this is a weak obstruction, unless it is a reduction of a module relation by another
module relation.

• One of i and j is an element of W . Let wi be the module relation.

– r = 1 : ([], i, []; λ, j, ρ) or L(wi) = λL(gj)ρ. Note that this is a weak obstruction, unless
it is a reduction of a module rule by a two-sided rule.

– ρ = 1 : ([], i, r; λ, j, []) or L(wi)r = λL(gj).

• Both i, j ∈ R. This will lead to the same obstructions as with the two-sided Gröbner basis.
If the set of two-sided relations is already a two-sided Gröbner basis, this will lead to weak
obstructions.

Since the whole Gröbner basis for the relations in G is needed, it might as well be calculated
at the start and indeed doing so will make the algorithm faster in practice.

Calculating a (partial) quotient algebra

There are cases where it is not necessary to calculate the whole Gröbner basis to be able to produce
the quotient algebra. When the quotient algebra of the partial Gröbner basis with obstructions
is finite, it should be possible to construct the quotient algebra by checking the same relations
(possibly in a slightly adapted form) as used in vector enumeration.



Chapter 3

Vector enumerator

3.1 Introduction

Steve Linton has written two articles about vector enumeration. The first is called “Constructing
Matrix Representations of Finitely Presented Groups” [6] and the second is called “On vector
enumeration” [7].

In this chapter a brief outline of the algorithm will be given. Proofs are omitted here.

3.2 Definitions

Let R be a basis for an ideal I = 〈ARA〉 in a free noncommutative algebra A. Let P be A/I . Let
As be the free module of rank s over A. Let W ⊆ As be a finite set of relations. It is sometimes
possible to compute (A/I)s/W̄ , where W̄ is the image of W in (A/I)s.

3.3 Table

The information is stored in a table. The indices are taken from a set of available indices. For a
row with index b the entries are

• pb: the monomial of the row,

• db: true if pb is a linear combination of smaller monomials (if db is true the entry is called
deleted),

• rb: reduction if reduction is possible,

• vb,x: result of pb ∗ x.

The values of vb,x are entered as they become known. The table is started with the monomials
pb(i), which denote the i module generators.

3.4 Adding rows to the table

When an equation is evaluated, the monomials are constructed by right-multiplication. For each
intermediate value that cannot be reduced and is not already in the table, a new row in the table
will be added. This means that all prefixes of a monomial (including the monomial itself) should
either be reducible or in the table.

15
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3.5 Applying the relators

The basic step consists of checking some equations, which are known to hold. Three types of
equations are checked:

• For all rows in the table it is checked that pb.wi = 0 (for wi ∈ W ) (comparable with an
S-polynomial between a module and an algebra relation).

• For all module rules it is checked that they hold.

• And last pbx = pbx. This is an extra equation to calculate all vb,n that are ⊥.

If the equation does not hold yet, then a new relation has been discovered. Such a relation is
called a coincidence.

3.6 Pressing coincidences

If a linear relation is found among the undeleted members of the table it is possible to reduce the
table, by substituting one of the monomials with the relation found for that monomial.

In case more than one coincidence is found at the same time, a stack is used.

3.7 Starting and finishing conditions

At the start s rows are created in the table. The monomials of those rows, pb(i), are the s module
generators.

If at a certain moment all the relations are satisfied and the table is closed (all vb,x are unempty),
the algorithm is finished. Note that the algorithm only finishes if the quotient algebra is finite.

3.8 Comparison

The strength of vector enumeration lies in the ability to find small modules in larger spaces.
It might be worse when calculating larger quotient spaces, especially those for which there is a
relatively small Gröbner basis.



Chapter 4

Making GBNP a GAP-package

4.1 Introduction

Several steps have to be taken in order to make GBNP a GAP package. In this chapter some of
these actions will be described:

• supply documentation in: GAPDoc, README, PackageInfo.g

• rename functions: use a record and unique function names.

• structure the package, a part of which is to use .gi and .gd files, combined with the functions
DeclareGlobalFunction and InstallGlobalFunction.

• look for better interworking with GAP.

• make some test cases (maybe from the examples) to be checked with ReadTest.

• verbose functions should use Info instead of Print.

For more information on the structure of a package, see Appendix A from the example package doc-
umentation, which is found at http://www.gap-system.org/pkg/example/htm/chap00A.htm.

4.2 Documentation

4.2.1 GAPDoc

GAPDoc is a GAP package which defines an abstract markup language for GAP-documentation
using XML. The package also provides the tools needed to convert this documentation to the
formats needed by GAP. More about GAPDoc can be found at the GAPDoc website:
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/

The new documentation for the GBNP package is based on the old documentation on the web,
including some information from the files (functions and arguments). For each function intended
to be called by the user, has a documentation in GAPDoc format has been made, using the
comments from the files.

The list of files has been moved to an appendix and a new appendix has been made consisting
of the examples. The examples have been altered a bit, so that they will produce less output if
necessary and references have been added to other parts of the documentation. More information
about this can be found in Section 4.2.4.

References to files must be changed to references to functions or sections of functions when
possible.

17
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4.2.2 GAPDoc:Include

It is possible in GAPDoc to split documentation over multiple files. In particular it is possible to
include function descriptions in GAPDoc markup of information from before the functions in the
source-code. A piece of GAPDoc is delimited by “### <#GAPDoc>” and “### </GAPDoc>” (where
“###” are the comment characters). Such a piece can be included with <Include Label="Name">.
Note that this is not a valid XML element, only something to be preprocessed by GAPDoc. A
small example can be found in the next section.

The list of all files which are checked for pieces of GAPDoc markup is found in make_doc.g.

4.2.3 GAPDoc:Functions

The descriptions of the functions (including descriptions of arguments and return values) are put
in the source (.gi-file) as much as possible. This makes it easier to adjust it, when a function
is changed. GAPDoc Markup is added to the comments before a function so that they can be
included in the package documentation.

Including files in GAPDoc is described in Section 4.2.2. Only the files listed in make_doc.g

will be checked for GAPDoc-parts (see also Section 4.2.6). Below a small example will be given
from grobner.gi:

### <#GAPDoc Label="Grobner">

### <ManSection Label="Grobner">

### <Func Name="Grobner" Comm="Buchberger’s algorithm with normalform"

### Arg="KI" />

###

### <Returns>

### G, a Gröbner Basis (if found...the general problem is unsolvable).

### </Returns>

###

### <Description>

### For a list of noncommutative polynomials <A>KI</A> this function will use

### Buchberger’s algorithm with normalform to find a Grobner Basis

### <C>G</C> (if possible, the general problem is unsolvable).

### </Description>

### </ManSection>

### <#/GAPDoc>

The outermost #GAPDoc-tags are for the preprocessor to know what to include. The ManSection

tag is explained in the GAPDoc manual, so I will only explain it briefly here. It is a subsubsection
used for explaining functions, variables, methods, infolevels, etc. The Func element describes which
function the ManSection is about and what the name and arguments of the function are (and has
an optional comment, which should describe the function in one sentence). The Returns element
gives information about the return value(s) of the function. The Description element (which
mentions the arguments again, because only the names were mentioned before) should describe
in some more words what the function does. Several other functions could be mentioned here
(like Preprocess, which is mentioned in EPFinCheck). For more informations about references
see 4.2.5.

Some other GAPDoc tags that are used are <A>..</A> (function argument) and <C>..</C>

(code). More information can be found in the GAPDoc manual.
This example can be included in a section with Gröbner functions as follows:

<Section Label="grobner">

<Heading>Gröbner functions, standard variant</Heading>

<#Include Label="Grobner">

<#Include Label="SGrobner">

</Section>
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4.2.4 GAPDoc:Examples

Introduction

Including examples in the documentation makes it easier to view them when viewing a link-capable
version of the documentation and allows to include links to relevant sections of the documentation
functions that are used.

Decrease the output

Some examples produce large sums of output. It is impossible to include all of this in the doc-
umentation. Most of this large output is not even necessary and can be hidden with ;;, or by
setting a lower InfoLevel (see 4.6).

Sometimes only a part of the result suffices to demonstrate something and therefore only a
part will be shown (like in Example 8, an example of the trace variant).

References from examples

A lot of references can be added from the examples to provide a better interaction. It is possible
to add a link for most functions in the text and sometimes a reference to a section. For references
in GAPDoc, see Section 4.2.5.

Changes

Apart from reducing output and adding text and references, some changes have been made to the
examples. Some comparable functions have been added or the examples have been extended a
bit (like in Example 6, where it is shown how it is easier to input the relations with GP2NPList).
Examples 16 and 17 have been combined, because there was a large overlap.

Auto generation and testing: conversion details

The files that are included are mostly in xml-format. These xml-files are generated from .g-files
by running GAP and then a unix program: sed.

First GAP is run with the command (where ${1} is the name of the file without .g):

{ echo "LogTo(\"${1}.txt\");"; cat "${1}.g"; } |gap

This will produce a txt file which can be used with ReadTest. An XML file can be created with
a few regular expressions:

s,^gap> $,,

s,<L>,<Listing><\!\[CDATA\[,

s,</L>,\]\]></Listing>,

s,^gap> # ,,

The first line will empty all lines which were empty. The second and third line function as an
abbreviation for <L> and </L> tags which can be used as a small tag around GAP code listings.
(When including a whole example in the documentation this tag is used around all pieces of GAP-
code. The non-GAP-code will be after a ’# ’). The fourth line removes gap > # from before
the lines that are actually XML code.

In the generation of the examples without the comments the command grep -v ’^#’ is used.

Auto generation and testing: an example file

# <#GAPDoc Label="Example00">

# <Section Label="Example00"><Heading>Example 0</Heading>

# This example will demonstrate the loading of <Package>GBNP</Package>.

# <P/>
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# Require the loading of the package and set the standard info level to 2 and

# the time infolevel to 1 (for more information about the info level, see

# chapter <Ref Chap="Info"/>).

# <L>

RequirePackage("GBNP");

SetInfoLevel(InfoGBNP,2);

SetInfoLevel(InfoGBNPTime,1);

# </L>

# </Section>

# <#/GAPDoc>

<Include Label="Example00"> could then be used to include this example in a GAPDoc docu-
ment after the filename of the example has been added to make_doc.g.

Auto generation and testing: how to make different example formats

To make the different formats of the examples go to the directory doc/examples/. There is a
GNUmakefile for autogeneration of the necessary files. The original files have extension .g. The
output from GAP is in the files with extension .txt and the files that will be included have
extension .xml. There is also an \examples directory where the examples without comments can
be found (for cut and paste). These examples can be generated there with make example<n>.g

where <n> is the number of the example.

Auto generation and testing: how to make tests

For each example it is possible to make a test in test/ by going there and typing make name.test.
To check the tests type make all.txt (if necessary use touch all.g to make sure this file is
newer). If all differences are explainable it is possible to type make *.test to update the test
files. It is possible to do something with the GAPStones which are an indicator for speed, but this
is not done yet (for more info on GAPStones, see also (Reference: Test Files)).

4.2.5 GAPDoc:References

In GAPDoc it is possible to add references, which can be converted to produce clickable links.
This can be very useful, especially in examples. Most references are to functions, sections of this
manual or sections of another GAP manual.

GAPDoc references

The standard reference in GAPDoc will look like <Ref What="Name">, where What is the type of
the reference (to a function (Func) or maybe to a chapter (Chap) and Name is the text of the label
which is given as an attribute in the item that is referred to (<Func Label="example" .../>).

More can be found about this in the GAPDoc documentation on <Ref>.

When entering documentation, it might be useful to make macros for function and section
references, since they occur often.

Function references

In a function reference (<Ref Func="Name" Style="Text"/>) it might be useful to add the
Style="Text" attribute which will also print the name of the function. The Style="Number"

attribute should only print the number.
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Section references

When using references to a section (<Ref Type="Sect"/>) it is advised not to use the option
Style="Text" because this might give errors.

References to other GAP manuals

A references to another part of the GAP manual (<Ref BookName="<book>" Label="<topic>"/>)
will insert a link to the place which would be found with ?<book>: <topic> from inside GAP.
If it is not possible to use external links, just (<book>: <topic>) will be printed instead. An
example would be <Ref BookName="GapDoc" Label="Ref"/>.

Bibliography and URLs

It is possible to add URLs with <URL ...>. It is possible to add references to the bibliography
with <Cite Key="Name"/>. I have found no way to include references without citing them (like
the LATEX-command nocite).

To include the url in the bibliography I used a LATEX-package called urlbst (it can be obtained
from CTAN:biblio/bibtex/contrib/urlbst/)) which makes it possible to create bibtex styles which
support URLs. I copied the file plainurl.bst from the package to the documentation directory
and can now use Style="plainurl" in the Bibliography tag, which will lead to the LATEX-
command \bibliographystyle{plainurl}.

4.2.6 Producing the GAPDoc documentation

The examples have to be run to generate the XML files which can be included with GAPDoc. See
also 4.2.4. There is a make target that runs the examples and makes the documentation. This
target is doc.

The documentation can be generated from inside GAP with the GAPDoc-package by use of a
script (there is also a chapter about this in the GAPDoc-documentation). An annotated version
of this script can also be found in the main directory of the package and is named make_doc.g.
Reading this document into GAP should be enough to update the documentation.

Whenever a new version of the documentation is produced we can run this script to create the
new files and then later package them.

4.2.7 README

Each package needs a README file, including installation instructions and names of the package
authors and their email-addresses. This file is created from the original text documentation.
Installation instructions were added. The address of the authors has been added at the bottom of
the file.

4.2.8 PackageInfo.g

In this file a lot of info about the package and maintainers can be found.
Some things that still need to be checked:

• The current Status here is “dev”, which might be changed later.

• The postal address for both A.M. Cohen and D.A.H. Gijsbers is set to RIACA.

• All URLs should be checked. The start is http://www.win.tue.nl/~amc/pub/grobner/,
but not all files will actually be there.

• The (optional) title PackageDoc.LongTitle for use with ?books, has been set to ‘Non-
commutative Gröbner bases’.
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• BannerString can be changed to make a banner other than the standard banner. The
standard banner is:

-----------------------------------------------------------------------------

Loading GBNP 0.9 (Non-commutative Gröbner basis)

by A.M. Cohen (http://www.win.tue.nl/~amc) and

D.A.H. Gijsbers (D.A.H.Gijsbers@tue.nl).

-----------------------------------------------------------------------------

• TestFile contains tests (edited examples). It is best to test a lot of functions here, but to
use only rather small examples. If there are test that take a long time (several minutes or
more), those should be run locally at Eindhoven. Other tests can be run if people want to
run the complete set of GAP package tests.

The only example that takes more than a few seconds to run is Example 10 (about 3 minutes).

• The easiest archive format seems to be .tar.gz. The other formats can be generated from
that. There is a Makefile in the main package directory which will create the total archive
and the documentation archive with the command make (they can be remade by first using
make clean). This Makefile assumes that gap is in the path (for remaking the documen-
tation).

4.3 Splitting declaration and implementation

In the .gd file the functions are declared and in the .gi files the functions will be implemented.
More information about this can be found in the the GAP Programmers tutorial (?Prg Tuto-
rial:Declaration and Implementation Part) and in the extending reference manual (?Extending:The
Files of a GAP Package).

This comes down to the use of DeclareGlobalFunction("FuncName"); and in the implemen-
tation:

InstallGlobalFunction(

FuncName,function(args)

...

end);

The .gd files will be read from init.g and the .gi files from read.g, with the commands
ReadPackage("file.gd"); or ReadPackage("file.gi");. In the last one the order does matter.

Note that GAP used ReadPkg instead of ReadPackage before version 4.4.

4.4 Function names

4.4.1 GBNP-record

Global function names should be unique. There are two issues: people can overwrite a function by
mistake, which leads to bugs or if they would know about the functions they could be restricted
because the name they want to use for a function of their own exists already in a package.

Since GBNP is not always loaded it is not a problem to use a lot of short function names, but
it is useful to extend the names to something a user wouldn’t choose. For example an arithmetic
function with a short name like Lt had better be named LtNP, to allow the existence of another
Lt procedure.

Local function names can be put in a record (GBNP.*) which protects them from being overwrit-
ten by accident, while they are still not taking up a large part of the namespace. The record GBNP is
protected by declaring it as a global variable with DeclareGlobalVariableand InstallVariable.
More information about this can be found at (Prg Tutorial: DeclareGlobalVariable). Note that
this change also allows the declaration of local functions in any order.
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These changes have mostly been done. The function NondivMonsByLevel has been put in the
record, and the functions StrongNormalForm(Trace)NP have not, because they might be useful
to solve the word problem. ?

4.4.2 Global Variables

It is not good to have global variables like F, A and g as originally used in npformat.g. The
functions NP2GPList and NP2GP have been rewritten to include an argument A, the algebra. The
field can be acquired with the function LeftActingDomain and the generators can be acquired
with one of the functions GeneratorsOfAlgebra and GeneratorsOfAlgebraWithOne.

If it is not possible to do without a global variable it can be kept in the GBNP record or it has
to be declared with DeclareGlobalVariable.

The variables in the GBNP record are combined into a single options record and there are some
functions, like GBNP.GetOptions(), which can retrieve the options.

The advantage of giving the values as an argument of a function is that it is easier in successive
calculations or when running something from a GAP break loop. The disadvantage is that this
variable has to be entered every time by the user and given to a lot of internal functions.

4.5 Better interworking

There now are a few examples of entering relations from an associative free algebra created with the
GAP-function AssociativeFreeAlgebraWithOne. Furthermore it is possible to display generators
of NP-polynomials like they were displayed in the algebra with GBNP.ConfigPrint.

It might be possible to add other ways to allow better interworking. XXX suggestions.

4.6 Verbose Functions

Some functions print a lot of information. The Print statements have been changed to Info

statements. This command enables the user to choose how much information will be printed.
There is a new chapter in the documentation about this. The Info command has two extra
parameters, the first is the InfoClass (which would be InfoGBNP or InfoGBNPTime) and the
second is the level, from which the information will be evaluated and printed. Note that an Info

command always prints an extra newline at the end. For more information see the Info chapter
in the documentation of GBNP.

The extra newline in PrintNPListTrace has been removed so the output of this function looks
more like that of PrintNPList. The function PrintTraceList still prints a newline after the
polynomials but no longer also after the last one.

4.7 Tests

The only tests at the moment are the examples. They can be automatically generated, except
for the file all.g, in which the files to test are added by hand. For more information about the
autogeneration of test files see Section 4.2.4.

4.8 Printing symbols

There are some new ways to print symbols. These different options can be set using the function
GBNP.ConfigPrint, which changes the function GBNP.Transletter.

It is possible to use the syntax to name symbols the same way as when constructing a free
algebra (Reference: FreeAssociativeAlgebra). It is also possible to give an algebra as an argu-
ment and the function will use the names from that algebra (it gets them from the family with
ElementsFamily(FamilyObj(a))!.names). This is used in Example 21 (?GBNP: Example 21).
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This function is described in detail in the package documentation.



Chapter 5

Some improvements in the
implementation

5.1 Introduction

First I used profiling (see also Section A.2) to check which functions took the most time, to
concentrate on improving those. I noticed that a lot of time was spent in the GBNP.Occur function.
This is the function that is used to check whether a monomial is contained in another monomial.
I have tried to reduce the number of calls of this function (see Section 5.2) and to speed it up.

In some cases it is enough to check on the right, which is what GBNP.RightOccur does. This
function can be done quicker with a tree structure (see Section 5.3).

This gave such an improvement that I tried to adapt this data structure so that it could be
used in more cases. This will be described in the Sections 5.4 and 5.5.

When using very large input some other problems arise, such as the time it takes to do opera-
tions on lists. This will be discussed in Section 5.7, together with some suggestions.

5.2 Occur

There are some possibilities to speed up the function GBNP.Occur, the fastest of which is the tree
structure which will be described in Section 5.4. There are some other improvements, but they
cannot be combined with the improvements from the tree structure. But they can be used where
the latter cannot: in parts IIIc and IIId of the loop, where G and todo are reduced with the added
polynomial.

The Number of calls to Occur can be further reduced by using cheap checks in advance. It is
possible to check that all the generators of the substring are in the word. This can be checked
quickly by use of boolean lists , see Reference: Boolean Lists (an efficient way to store and calculate
with lists of booleans). A boolean lists will have to be stored for each leading term, but the relative
amount of space needed is small (about 1

8
th the number of generators in bytes per leading term).

5.3 RightOccur

For some of the calls to GBNP.Occur it is only necessary to check whether a leading term occurs
at the end of the monomial. These calls can be replaced by calls to GBNP.RightOccur, which only
does that and hence is quicker.

A place where this is very useful is in GBNP.NondivMons, where the basis of the quotient algebra
is calculated. A monomial is in the basis of the quotient algebra if it cannot be reduced by the
Gröbner basis. A way to generate all basis elements is by starting with 1 as a candidate and
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Figure 5.1: RightOccur: does a monomial (above) contain a monomial from a list (below) at the
end ? The arrow indicates the direction in which the search is done.

obtaining other candidate basis elements by right-multiplying a basis element with a generator of
the algebra and then checking whether it can be reduced.

Lemma 5.1. For checking reduction in GBNP.NondivMons it is enough to check the tail (or right
part) of a candidate basis element.

Proof. Let w be a basis element of monomial basis of the quotient algebra and a a generator of the
algebra. Note that wa is a basis element of the quotient algebra iff it does not contain a leading
term of the Gröbner basis. Since w is a basis element of the quotient algebra, it does not contain a
leading element of the Gröbner basis and therefore the only place where wa can contain a leading
term of the Gröbner basis is on the right.

Instead of calling GBNP.Occur it is possible to call a function that only checks whether the tail
(or right part) matches a leading term of the Gröbner basis. The function GBNP.RightOccur does
that.

5.4 RightOccurInLst, RightOccur tree-structure

It is also possible to speed up repetitive calls of GBNP.RightOccur by building a tree structure
(it could also be seen as an implementation of a deterministic finite state automaton). How this
can be done will be described in this paragraph. This technique is especially useful if the Gröbner
basis is large.

5.4.1 Recursive definition

Arguments for the function f will be a a list of numbered monomials G and a monomial p. The
function should find one of the monomials in G that is at the end of p and then return the
corresponding number. If such a monomial can not be found in G then it should return 0.

The data structure used for G makes testing if a monomial of length 0 is contained easy (so
f.G. ⊥ is considered to be known.)

It is clear that f.∅.p = 0 and that if (⊥, i) ∈ G for some i then f.G.p = i. Now suppose
(⊥, i) 6∈ G. Then f.G. ⊥= 0 and if a is the last symbol of p (p = p′ a a) then f.G.p = f.G.(p′ a
a) = f.G′

a.p′, where G′
a = {(m, i)|(m a a, i) ∈ G}. Or in formulas:

f.∅.p =0

f.G.p =







i, if ∃i(⊥, i) ∈ G
0, if ¬∃i(⊥, i) ∈ G ∧ p =⊥
f.G′

a.p′, if ¬∃i(⊥, i) ∈ G ∧ p = p′ a a

(5.1)

It is possible to create a tree structure so that all G′
a can be obtained from it. Nodes with

(⊥, i) ∈ G will be end nodes with the number of the matching leading term from G (note that the
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empty tree will have to be a special case). Any other node will have outgoing branches for each a
which leads to a non-empty G′

a.

The empty tree can be represented by one node, with the number 0 or by a node with an
empty list of branches (the latter is more useful when constructing trees).

5.4.2 An example

Consider the following Gröbner basis:

e2, eh + e, fe− ef + h, f2, fh − f, he − eh − 2e, hf − fh + 2f, h2 − 2ef + h

of which the leading terms are:

e2(1), eh(2), fe(3), f2(4), fh(5), he(6), hf(7), h2(8).

Its tree is: ⊥

e:

e
e2:1

f
fe:3

h
he:6

f:

f
f2:4

h
hf:7

h:

e
eh:2

f
fh:5

h
h2:8

5.4.3 Creating a tree

A tree can be created by starting with the empty tree and then adding monomials (leading terms)
and their numbers. In this section we give a brief indication of how this works.

Adding a monomial can be done by extending the tree recursively. Suppose the monomial m
with number n is added to G and define G∗ = G ∪ {(m, n)}.

Recall the relations from 5.1:

f.G ∪ {(m, n)}.p =







i, if ∃i(⊥, i) ∈ G ∪ {(m, n)}
0, if ¬∃i(⊥, i) ∈ G ∪ {(m, n)} ∧ p =⊥
f.(G ∪ {(m′, n)})′a.p′, if ¬∃i(⊥, i) ∈ G ∪ {(m, n)} ∧ p = p′ a a

(5.2)

After splitting of m this results in:

f.G ∪ {(m, n)}.p =















i, if ∃i(⊥, i) ∈ G
0, if ¬∃i(⊥, i) ∈ G ∧ p =⊥ ∧m 6=⊥
n, if ¬∃i(⊥, i) ∈ G ∧ p =⊥ ∧m =⊥
f.(G ∪ {(m′, n)})′a.p′, if ¬∃i(⊥, i) ∈ G ∪ {(m, n)} ∧ p = p′ a a

(5.3)

This can be obtained by following the path for m (along other words with the same substring),
then extending it, when there are no other words with the same substring and then adding the
value, n.

5.4.4 LeftOccur-trees

It is possible to do the same from the left as from the right. This is very useful if there are
prefix rules, which can only apply from the left. A LeftOccur-tree is a RightOccur tree, with the
exception that the words are entered in reverse.
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Figure 5.2: OccurInLst: does a monomial (above) contain a monomial from a list (below)?
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Figure 5.3: left obstruction

5.5 Other uses for OccurTrees

5.5.1 Introduction

So far this test has only been applied at the right. But with a little change in the datastructure
it is possible to apply it from any startposition in a monomial (see 5.5.2).

Furthermore it is possible to adapt the functions a bit to speed up searches for obstructions
aswell (here only an overlap is needed).

To keep the data structure up to date, it is necessary to handle deletions, insertions and sorting
of G and todo. This can be achieved by the use of two arrays (as introduced in 5.5.5).

5.5.2 Using trees in OccurInLst

To check whether a monomial from the list R occurs in a monomial m, it is enough to check
whether a monomial from R occurs from each position p. Furthermore only the first match is
returned, so it is enough to return the check the first positions until a match has been found.

The shortest (smallest) monomial will always match first and will be the one returned.

5.5.3 Obstruction searching

To find all left obstructions between a monomial and a list of monomials, one must find all
monomials where the end of the first monomial is the beginning of the other monomial. When
given an ending part of the first monomial it is possible to use the tree-structure to look which
monomials in the list start with that. The same can be done for right obstructions.

More formal: remember the definition of f from 5.1. We will define a recursive definition g.
The search now is for all matchings. If G is empty then there will be no matching monomials, or
g.∅.p = ∅. If p =⊥ then for all matching monomials i we must have (m, i) ∈ G for certain monomial
m. The reason why the tree structure can be used unchanged is that the recursion is the same.
For left (right) obstructions define G′

a = {(m, i)|(a ` m, i) ∈ G} (G′
a = {(m, i)|(m a a, i) ∈ G})
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monomial list

k

j

j

k

tree2arr

arr2tree

Figure 5.4: arr2tree and tree2arr

and p = a ` p′a (p = p′a a a).

g.∅.p =∅

g.G.p =

{

{i|∃m(m, i) ∈ G}, if p =⊥
g.G′

a.p′, if p = a ` p′a

(5.4)

5.5.4 Removing elements and sorting arrays

During the Gröbner-loop the list G and todo are changed: elements are inserted and deleted and
occasionally the whole list is sorted. This would make the calculated tree useless, and a new tree
would have to be calculated. It is interesting to look for techniques that allow the numbers in
the tree to be the same. The numbers in the end nodes will no longer correspond to the place in
the list, but will first have to be translated. This is achieved by using two extra arrays (see also
Section 5.5.5).

It is also possible to use pointers instead of a number. When the array is sorted and the
numbering changed, it is then no longer necessary to update the tree structure. Furthermore it is
possible to access the polynomials more directly. The disadvantages are that it involves a lot of
recoding and possibly slows down other procedures. Because of the amount of recoding this has
not been done.

5.5.5 Extra arrays tree2arr and arr2tree

At an end node in a tree there will be a unique number, say j. The position of the corresponding
monomial in the list of monomials can be found in the array tree2arr. The number used in the
tree for a monomial k from the list can be found at position k in the array arr2tree.

After changing the order of the list of monomials or after inserting or deleting an element,
the information in the array tree2arr has become partially invalid. This can be fixed by setting
tree2arr[arr2tree[i]]=i for all positions i where the monomials have been changed.

The numbers in the tree must all be unique. It is possible to pick a new number for every new
monomial, but this will cause the array tree2arr to become very large. Instead a linked list is
used to keep track of which elements are not used, to be able to reuse them whenever possible.

5.6 Other improvements

5.6.1 Boolean lists

A boolean list is an efficient representation for a small set (like the set of generators of the algebra
and maybe the module if there is any). It is possible to reduce the number of calls to Occur by
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Figure 5.5: No occur trees can be used easily here.

checking whether a smaller word has symbols which all occur in the larger word before the call to
Occur. Since this check is more efficient than the check in Occur this can save quite some time
if not all monomials that are checked contain all generators (this is not very rare when there are
more generators, if there are only 2 generators then this will rarely be an improvement).

This is however slower than using occur trees and therefore remains only in a smaller part of
the code. Especially in some places, where it is hard to implement occur trees. For example when
it is checked if a lot of polynomials can be reduced with one polynomial.

5.6.2 Using a merge sort when adding

An addition was previously done by concatenating the lists and then calling CleanNP (which sorts
the lists). If the polynomials are already sorted then it is possible to use a faster kind of sorting:
merge sort. This has been implemented.

5.7 Further suggestions

5.7.1 Data structures

If the size of the input is very large (more than 10000 relations in the Gröbner basis). Other parts
of code start to cost time. Some of these are not completely optimized yet, while others come
from the inefficient handling of large lists. It might be useful to implement a data-structure which
allows for easy smallest element extraction and easy insertion and replacement.

Two possible candidates are Binary Search Trees and 3-Heaps. These will not be described in
detail here. These should be considered only if sorting and list assignment are starting to take a
large part of the algorithm’s time.

It might also be useful to use records as elements of the array instead of polynomials. The
advantage would be that the object does not change (only the polynomial member does) which
makes it easier to keep track of polynomials in an occurtree. The disadvantage is that this may
give a small overhead.

5.7.2 PositionSublist

The GAP function PositionSublist can be faster in finding sublists but a lot of time is spent
initialising. It is possible to write code that does the initialisation only once for a leading term.
This can be useful when checking whether a (small) list is occurring in several lists. This has
not been implemented because most of such checks have been removed with the introduction of
OccurTrees.

5.7.3 Other places to speed up

In some places it is not possible to use occur trees. If these start to take a large part of the
time, than it might be useful to speed these up in another way. This will however complicate the
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algorithm further. A possibility might be to check for several monomials instead of one (so that a
small occur tree can be used). This can be seen as a kind of prediction. If these results maintain
valid then they can be used.

5.7.4 Compiling

It is possible to compile functions in GAP. Compiling GAP-code has not made the code much
faster. It might still be useful to check whether rewriting the functions LtNP and LookUpOccurTree*

in c and leaving out unneccesary checks gives an improvement.

5.7.5 Partial prefix basis

It might be possible to stop the prefix and two-sided variant of the Gröbner basis algorithm earlier
if only a module is wanted. The basic idea is that if at a certain moment only a finite number of
prefixes cannot be reduced then the current relations are sufficient information to construct the
module.

5.7.6 Combining variants

The code will be easier to maintain if it does not consist of several versions of the same algorithm
which are slightly modified to be another version. It might be easier to maintain if variants are
combined. This also allows a combination of variants (a trace for a truncated basis for example).
But the resulting single procedure may be harder to understand.

Some work has been done to some combined optimized procedures, instead of optimising all
different variants. This is not finished and more work might be spend on this.

5.7.7 Optimisations where needed

Not all code is optimised. Mostly the places where a lot of time was spent, were optimised. This
might mean that for some cases the algorithm is not as fast as it could be. It might be useful to
consider profiling and specific optimisations if the total runtime is very long.
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Chapter 6

Application: Lie algebras

6.1 Introduction

One of the tasks of my internship was, if possible, to test the package on the search for finite-
dimensional associative algebras, of which the corresponding Lie algebra contains a given Lie
algebra. This chapter is about that part. First I will tell some things about Lie algebras. Then I
will tell some things I did and explain some of the results.

6.2 Introduction to Lie algebras

In this section a brief introduction to Lie algebras will be given. A good reference to Lie algebras
is [4].

In this chapter the Lie algebra product of x and y will be denoted [x, y], the bracket product.

Definition 6.1. A Lie algebra is a non-associative (not necessarily associative) algebra if the
following relations hold:

[x, x] = 0 (6.1)

[x, y] = −[y, x] (6.2)

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (6.3)

The second relation follows from the first (0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] =
[x, y] + [y, x]), but the first only follows from the second if the characteristic 6= 2.

The third relation is called the Jacobi identity.

Definition 6.2. It is possible to create a Lie algebra from an associative algebra A (for example
from an algebra of square matrices) by defining the Lie product as follows:

[x, y] = xy − yx

The Lie algebra obtained this way is called the corresponding Lie algebra of A (notation L(A)).

Extremal elements

Definition 6.3. Let L be a Lie algebra. An x ∈ L is called extremal if ad2

x(L) = 〈x〉 (where
ad2

x(L) = [x, [x,L]]).

This means that for each y the element [x, [x, y]] can be written as a scalar multiple of x:
[x, [x, y]] = 2g(x, y)x. If written out in the Lie algebra of an associative A the equation becomes:

x(xy − yx) − (xy − yx)x = 2g(x, y)x

33
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or
x2y − 2xyx + yx2 = 2g(x, y)x (6.4)

If x2 = 0 this can be reduced to
−2xyx = 2g(x, y)x. (6.5)

Enveloping algebra of a finite dimensional Lie algebra

Definition 6.4. Given a finite dimensional Lie algebra g over a field k, the enveloping algebra,
denoted by U(g), is defined to be the associative k-algebra generated by x1, . . . , xn subject to the
relations:

xjxi − xixj = [xj , xi], 1 ≤ i < j ≤ n

These relations form a Gröbner basis for the (infinite) universal enveloping algebra.

6.3 Construction

6.3.1 Introduction

The object is to find a finite dimensional (quotient) algebra of which the corresponding Lie algebra
contains a given Lie algebra. This is done in particular for split semi-simple Lie algebras.

First the simple Lie algebra is generated in GAP with the function SimpleLieAlgebra. Over
the rationals these give the Lie algebra with respect to a Chevalley basis (first the simple positive
root elements, then the other positive root elements, then the corresponding negative root elements
and as last the basis of the Cartan subalgebra). For the remainder of this chapter they will be
called (ei, fi, hi) (note that there are more ei and fi than hi).

Then the relations of the universal enveloping Lie algebra are calculated: for all generators xi

and xj of L with xi < xj add the relation xixj − xjxi = [xi, xj ] ⇔ xjxi − xixj + [xi, xj ]).
Then one or more relations are added to the relations of the universal enveloping Lie algebra

to try to make it finite and the Gröbner basis and quotient algebra are calculated.
We shall look for representations where extremal elements act quadratically, that is satisfy

x2 = 0.
Some of these representations of simple Lie algebras where the root elements are quadratic are

described in [9]. Note that the results from that paper apply in the cases where the characteristic
is not equal to two. For some Lie algebras characteristic 3 is a special case (as in the article.

Below it will be shown that any such representation can be found by adding extra relations
and that if a calculation results in a vector space that does not contain L then no such vector
space exists.

6.3.2 Construction

Let L be a Lie algebra. Let ρ : L → gl(V ) s.t. ρ(x)2 = 0 for all x ∈ E, where E is the set of
extremal elements in E. Let i be the Lie algebra embedding mapping L into U(L) the universal
enveloping algebra of L. Let ρ̃ be an associative algebra homomorphism from U(L) to gl(V ).

Lemma 6.1. Suppose ρ(x)2 = 0. Then ρ((ix)2) = 0.

Proof. If ρ(x)2 = 0 then also ρ̃(ix)2 = 0. Since ρ is an algebra homomorphism this means that
ρ̃((ix)2) = 0.

This means that a representation of a simple Lie algebra where the (extremal) root elements
are quadratic can be formed in the following way: Add the relations x2 = 0, to those of the
universal Lie algebra and calculate the quotient algebra of the Gröbner basis. V can then be the
quotient algebra and the transformations can be the left multiplication with the images of the Lie
algebra generators and any other example is a quotient of this one.
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6.3.3 Representations where only some root elements are quadratic

In principle x2 = 0 for x ∈ E gives infinitely many relations. However in practice it suffices to take
only a few of these. In particular in A1, it follows from the relations {G(1) = fe− ef + h, G(2) =
he − eh − 2e, G(3) = hf − fh + 2f} and the additional relation G(4) = e2 that f2 also is equal
to zero if the characteristic is not 2 or 3. In other words: if the positive root element is quadratic
then so is the corresponding negative root element. The trace of the computation verifying this
is:

- 1/24fG(1)ef^2 - 1/12fG(1)f - 1/24feG(1)f^2 - 1/12fG(1)hf +

1/24f^2eG(1)f + 1/12G(1)hf^2 + 1/24G(1)ef^3 - 1/24fG(1)ef^2 +

1/24eG(1)f^3 - 1/24f^3eG(1) - 1/ 24feG(1)f^2 + 1/24f^2G(1)ef +

1/12G(1)f^2 - 1/24feG(1)f^2 + 1/24f^2G(1)ef + 1/ 12f^2G(1) +

1/24f^2eG(1)f - 1/12fG(1)f + 1/24f^2G(1)ef - 1/12fG(1)hf - 1/6G( 1)f^2 -

1/24fG(1)ef^2 + 1/6fG(1)f + 1/12f^2G(1)h - 1/24f^3G(1)e + 1/24f^2eG( 1)f

- 1/24f^2G(2)f + 1/24f^3G(2) - 1/24f^2G(2)f - 1/24f^2G(2)f + 1/24fG(

2)f^2 - 1/24G(2)f^3 + 1/24fG(2)f^2 + 1/24fG(2)f^2 + 1/4G(3)f +

1/12fhG(3) - 1/ 12hG(3)f + 1/12feG(3)f - 1/12eG(3)f^2 - 1/12f^2eG(3) +

1/12fG(3)h - 1/12G( 3)hf + 1/12feG(3)f - 1/4fG(3) + 1/2fG(3) +

1/24f^2G(4)f^2 + 1/24G(4)f^4

- 1/ 24fG(4)f^3 + 1/24f^2G(4)f^2 - 1/24f^3G(4)f - 1/24f^3G(4)f +

1/24f^2G(4)f^2 - 1/24fG(4)f^3 - 1/24f^3G(4)f - 1/24fG(4)f^3 +

1/24f^2G(4)f^2 + 1/24f^2G( 4)f^2 + 1/24f^2G(4)f^2 - 1/24f^3G(4)f -

1/24fG(4)f^3 + 1/24f^4G(4)

When in A2 the equality x2 = 0 holds for one of the positive simple root element, then it also
holds for the other positive simple root element, given that the characteristic is not 2 or 3 (there
is a 6 in the trace output).

This is also the case for B2 and G2 for one of the root elements. This means that if adding the
relation e2

i for each positive simple root element is the same as adding the relation for a single long
root element. If there is a double or triple line in the Dynkin diagram then it might be possible to
get a larger quotient algebra by choosing only one root. In G2 this is even necessary, since adding
the relation e2

i for all positive simple root elements will give a trivial quotient algebra.

6.3.4 GF(2)/GF(3)

Characteristic 2

In characteristic 2 adding these relations does not give the desired result. It is however possible
to use the relation ei ∗ fi ∗ ei = ei instead.

Characteristic 3

In characteristic 3 only some small changes occur. A1, B2 (1) and C2 (2) no longer have a finite
Gröbner basis.

6.3.5 Expected results

Because of knowledge of quadratic modules, we expect the following values, see [9]:

An−1 12 + n2
∑n−1

i=2

(

n

i

)

Bn (long root) 12 + (2n + 1)2 + (22n)
Bn (short root) 12 + (2n)2)
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6.3.6 Lie algebras in other algebras

Sometimes it might be desirable to get a small quotient algebra. Cn has a small quotient algebra if
the short root element is set to zero. It is possible to represent an An−1 in this way. For example
the the quotient algebra of A4 has dimension 251, while the quotient algebra of C5 (shortest root)
only has dimension 101.

6.4 Results

Here are some tables of results. The first column is the type of the Lie algebra, the second
the dimension of the Lie algebra, the third the root element x for which the relation x2 = 0
was added, the fourth the size of the resulting Gröbner basis and the fifth the dimension of the
quotient algebra. If the dimension of the quotient algebra is 1 then only 1 is contained in the
quotient algebra (and not the Lie algebra). If the size of the Gröbner basis or quotient algebra is
“nf”, then it is was found to be infinite. The values for C6, 6 could not be calculated, but are put
in the table to indicate that they are different from C6, 1.

The following results are over the rationals:
type dim ei |GB| |B|
A1 3 1 8 5
A2 8 1 58 19
A3 15 1 216 69
A4 24 1 613 251
A5 35 1 1550 923
A6 48 1 3863 3431
B2 10 1 94 42
B2 10 2 97 17
B3 21 1 461 114
B3 21 3 436 65
B4 36 1 1498 338
B4 36 4 1362 257
B5 55 1 4005 1146
B5 55 5 3612 1025
B6 78 1 10034 4266
B6 78 6 9161 4097
C2 10 1 96 17
C2 10 2 94 42

type dim ei |GB| |B|
C3 21 1 433 37
C3 21 3 574 429
C4 36 1 1284 65
C4 36 4 3553 4862
C5 55 1 3009 101
C5 55 5 29576 58786
C6 78 1 6064 145
C6 78 6 ? ?
D4 28 1 834 193
D5 45 2 2429 613
D6 66 1 6220 2193
E6 78 1 8002 1459
E7 133 1 24776 1459
E8 248 1 248 1
F4 52 1 52 1
F4 52 2 3443 677
G2 14 1 14 1
G2 14 2 196 50

6.4.1 GF(2)

With the added relation e2
i = 0, the system does not result in a finite set of rules for A1, A2, B2,

B3, C3, G2, D4, F4, E6.

Using the relation eifiei = ei for all root elements i results in a finite basis for A2, A3, A4, B3,
B4, D4, E6 and G2. In the case of A1 the relation e2 = 0 is needed.
type dim |GB| |B|
A1 3 8 5
A2 8 58 19
A3 15 216 69
A4 24 813 251
B3 21 445 101
B4 36 1448 321
D4 28 834 193
E6 78 1459 834
G2 14 190 37



6.5. MEATAXE 37

6.4.2 GF(3)

Some results over GF(3): Same results for An, where n > 1, Bn, Cn (small root will give the same
result, the large root will lead to an infinite Gröbner basis), Dn, E6, F4, G2.
type dim ei |GB| |B|
A1 3 1 nf -
A2 8 1 58 19
B2 10 1 nf -
B2 10 2 97 17
C2 10 1 97 17
C2 10 2 nf -
D4 28 1 834 193
D5 45 1 2429 613
E6 78 1 8002 1459
F4 52 1 52 1∗

F4 52 4 3443 677
G2 14 1 28 nf∗

G2 14 2 196 50

6.5 Meataxe

The Meataxe (in GAP see Reference: The MeatAxe) can be used to split up matrix algebras over
a finite field. By using a large prime (like 251) it is possible to get information about how it would
be split up in the rationals.

A1 :1,2,2

A2 :1,3,3,3,3,3,3

B2,1:1,5,5,4,5,5,5,4,4,4

B2,2:1,4,4,4,4

C2,1:1,4,4,4,4

C2,2:1,4,4,5,4,4,5,5,5,5

G2,2:1,7,7,7,7,7,7,7

A3 :1,4,4,6,4,6,4,6,6,6,6,4,4,4,4

B3,3:1,8,8,8,8,8,8,8,8

C3,1:1,6,6,6,6,6,6

C4,1:1,8,8,8,8,8,8,8,8

C5,1:1,10,10,10,10,10,10,10,10,10,10

For A4 in C5, 1 the output is 1, 5× 5, 5× 5, 5× 5, 5× 5 (the same dimension as C5, 1 but it can
be split further).
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Appendix A

GAP-specific issues

A.1 Introduction

In this chapter several GAP-specific things will be mentioned which are useful when making
packages in GAP. They are included as a reference for the maintainers of GBNP.

A.2 Profiling

A.2.1 Introduction

The section of the GAP-manual on profiling says “Profiling can be used to determine in which
parts of a program how much time has been spent during runtime”. Thus profiling can be used
to learn to how many times certain functions get invocated and how much time is spend there.

This information can be helpful, when one is trying to optimize a GAP program. It is useful
to start with the functions where it matters most.

A.2.2 GAP profiling functions

There are several functions mentioned in the GAP-manual, and only the most important will be
mentioned here.

• ProfileFunctions(funcs) turns profiling on for all functions in the list funcs.

• ProfileGlobalFunctions(true/false) turns profiling on/off for all global functions (the
ones declared with DeclareGlobalFunction and installed with InstallGlobalFunction).

• ClearProfile() clears all stored profiling information.

• DisplayProfile() displays all profiling information.

• DisplayProfile(funcs) displays the profiling information for functions in the list funcs.

A.2.3 Example

The Gröbner basis of the Weyl group of E7 can be calculated in a way comparable with example
3 (Weyl group of E6), with a few extra relations, except the calculation lasts a bit longer. First
turn the profiling on:

RequirePackage(‘‘GBNP’’);

ProfileFunctions([GBNP.Occur,GBNP.OccurInLst]);

ProfileGlobalFunctions(true);

39
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Now read the file which does the calculations:

Read("example103.g");

The results can be shown with DisplayProfile();:

count self/ms chld/ms function

13944 20 0 Minimum

20512 30 10 Reversed

227555 210 20 GtNP

8370 390 0 List

4184 10 390 LTerms

198960 990 -20 Concatenation

49740 320 1010 Bimul

47964 1980 200 CleanNP

2545180 3160 -150 LtNP

47936 1220 2210 AddNP

2501425 48810 3280 LastReadValue

93352 2900 51890 LastReadValue

1 1710 60050 SGrobner

61780 TOTAL

Some values are smaller than 0. This is due to inaccuracy. They can be considered to be 0.
Unfortunately the functions from the GBNP record are shown with LastReadValue rather

than with there real names. To find out which function is meant, one can give the function as an
argument, for example DisplayProfile(GBNP.Occur); will output:

count self/ms chld/ms function

2501425 49040 2720 LastReadValue

12830 OTHER

61870 TOTAL

So most time goes to GBNP.Occur.

A.2.4 Profiling record functions

If it is desirable to check all functions in a record then the list of functions can be generated
with the following GAP command: List(RecNames(GBNP),x->GBNP.(x));. This list can then be
given as an argument to ProfileFunctions. If desired the profiling information can be displayed
separately for each such function:

for n in RecNames(GBNP) do

f:=GBNP.(n);

if (IsFunction(f)) then

Print(n, "\n"); # We want to know of which function the

# profiling information is.

DisplayProfile(f);

fi;

od;

Note that the lookup for record members by strings with the use of brackets is not efficient, but
in this case that is not an issue, since this loop will be run only once.

A.3 Methods and objects

Information about methods and objects can be found in the Programmers tutorial, see (Prg
Tutorial: Method Selection) and (Prg Tutorial: Creating New Objects). Some advantages of
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using objects would be that it is possible to store information (is the object sorted or clean, what
is the field, is it a Gröbner basis, is the quotient algebra known, is there a preferred way to print
this object).

It is also possible to use functions with the same name and let GAP choose the right one,
depending on the attributes of the object, or store the way to print a class of objects.

It might be worthwhile to look into this in the future. Some sheets of an introduction to this
can be found at http://turnbull.mcs.st-and.ac.uk/CIRCA/WkShopTalks/SL/package.pdf.

Some functions considering the displaying of objects are: ViewObj (a short understandable
output), PrintObj (for reading back in) and Display (view in a nicer, formatted format).

A.4 Demo Mode

For presentations it is possible to use the demonstration mode. There is not much documentation
about this in the GAP-manual. The first thing to do is to load the file lib\demo.g from the GAP
directory (use the full path for this). The function Demonstration now becomes available which
takes as argument a filename to read. By pressing enter the lines from the files will be evaluated
one by one.

This has some limitations however. One of them is that errors are not handled very well and
that it is impossible to enter more statements on one line. Testing such a demonstration first is
recommended.

A.5 Assertions

It is possible to program certain (possible expensive) checks in the code, which only will be
evaluated when a certain AssertionLevel is high enough. This is similar to the use of Info

and InfoLevels. More information about this can be found at (Reference: Assertions). At the
moment no assertions are used in GBNP.

A.6 Compiling

Functions can be compiled to make them a bit faster, see (Reference: The Compiler). For informa-
tion about which routines may benefit from compiling see (Reference : Suitability for Compilation)
(mostly functions which do extensive operations with basic data types, like lists and small integers).

This does not seem to help much in the case of GBNP. It might also be possible to add a few
small routines for sublist matching to the kernel of GAP.

A.7 Functions and different argument lengths

It is possible to write a function that can be called with a different number of arguments each
time. This can be done by declaring the function with one argument arg, which will become a list
of the arguments of the function. More about this can be found in (Reference: Function Calls).

A.8 SetHelpViewer

It is possible to view helpfiles in an external program that can view the whole book at once and
can follow links, like xdvi, xpdf or acroread. This can be set with the function SetHelpViewer.
More information about this function can be found at (Reference: SetHelpViewer). This command
might be put in the .gaprc-file to be executed every time before GAP starts.
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A.9 Set additional GAP home directories

Setting GAP-home with gap -l ’~/gap/;<System GAP Dir>’ makes it possible to have the
source of a package in your own directory (for testing or private usage or if you don’t have access
to the GAP directory).
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