
NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS

ARJEH M. COHEN

This report describes the theory behind the key algorithms in the package GBNP
for non-commutative polynomial rings. In Section 1, we deal with non-commutative
Gröbner bases. This enables us to construct quotient algebras of free algebras on a
finite number of generators. In Section 2, based on work contributed by Jan Willem
Knopper, we show how to use this set-up to construct modules for such quotient
algebras. Finally, in Section 3, based on work contributed by Chris Krook, we
demonstrate how to compute whether a quotient algebra is finite-dimensional when
given a Gröbner basis. In the infinite-dimensional case, it is also shown how to
analyze the growth of the quotient algebra.

1. Gröbner bases

In [6] Mora described an algorithm which, if it terminates, returns a non-
commutative Gröbner basis. Here we follow that paper to prove the correctness
of the algorithm as implemented by Dié Gijsbers and the author in GAP, cf. [1].
The algorithm is the core algorithm of the GAP package GBNP for computing with
non-commutative polynomials. Earlier versions of this section were written with
the help of Dié Gijsbers.

1.1. Basic notions. We start with some definitions and lemmas inspired by [6, 2].
We work with finitely presented algebras with a unit element 1 over a field k.
Let T be the free monoid on n generators, which will be denoted by x1, . . . , xn.
Here n is a natural number. We consider the monoid ring k〈T 〉, which has an
obvious k-vector space structure with basis T . The multiplication of the monoid
ring is a bilinear extension of the multiplication in T , so T is a monomial basis.
The elements of T are also called the monomials of k〈T 〉. The elements of k〈T 〉
are called non-commutative polynomials, and often just polynomials. The finitely
presented algebras we mentioned earlier are quotients of k〈T 〉 by two-sided ideals
that are finitely generated.

As usual in Gröbner basis theory, we need an appropriate ordering ’<’ on the
set T of monomials.

Definition 1. An ordering < on T is called a reduction ordering if for all t1, t2, l, r ∈
T with t1 < t2 we have 1 ≤ lt1r < lt2r.

An example of a reduction ordering is deglex, that is, ‘total degree first, then
lexicographic’. A very useful property of a reduction ordering is that if a, b ∈ T are
such that a divides b, denoted by a | b (that is, there are l, r ∈ T with b = lar),
then a ≤ b (for, 1 ≤ l and 1 ≤ r imply a = 1 a ≤ l a = l a 1 ≤ l a r).

Date: 18 November 2009.
With contributions by Dié Gijsbers, Chris Krook, and Jan Willem Knopper.

1



2 ARJEH M. COHEN

Definition 2. Given an ordering on T we can write each polynomial f ∈ k〈T 〉 in
a unique way as a linear combination of monomials ti:

f =
s∑

i=1

citi with ci ∈ k \ {0} and ti ∈ T, such that t1 > · · · > ts.

We call this decomposition the ordered form of f . The polynomial f is called monic
if c1 = 1.

For such an ordered form of f , we denote t1, the largest monomial with non-zero
coefficient of f , by L(f). We call it the leading monomial of f . By lc(f) we denote
the leading coefficient of f , that is, c1. The polynomial c−1

1 f ∈ k〈T 〉 is called the
monic version of f .

Gröbner bases deal with finitely generated (two-sided) ideals in k〈T 〉. A gener-
ating set of an ideal is called a basis of that ideal. The ‘best approximation’ of the
remainder of a division of a polynomial f by elements of a finite set G of elements
of k〈T 〉 is a crucial notion, usually referred to as a normal form of f with respect
to G.

Definition 3. Let G ⊂ k〈T 〉, and denote by I the ideal generated by G. A
normal form of f ∈ k〈T 〉 with respect to G is an element h ∈ k〈T 〉 such that
f = h +

∑t
i=1 ciligiri for certain gi ∈ G, ci ∈ k and li, ri ∈ T (i = 1, . . . , t) with

liL(gi)ri ≤ L(f), and either h = 0 or L(g) 6 | L(h) for all g ∈ G. We also say that f
can be reduced to h with respect to G. If f is a normal form of itself with respect
to G, then f is sometimes called reduced with respect to G.

Moreover, G is a Gröbner basis of I if G is a basis of I and if the leading monomial
of each non-zero element of I is a multiple of the leading monomial of an element
of G.

A normal form of a fixed polynomial in k〈T 〉 with respect G need not be unique.
If G is a Gröbner basis, then each polynomial in k〈T 〉 has a unique normal form
with respect to G.

The Gröbner basis of a fixed ideal depends on the choice of a reduction ordering.
Taking the reduction ordering on T to be deglex, we have a well-founded ordering
and hence a guarantee of termination of the normal form computation. We can
think of NormalForm(f,G) as a deterministic algorithm if we view G as a list and,
at every step, take the first element from the list whose leading monomial divides
L(f).

In the commutative case, S-polynomials are used for the Gröbner basis compu-
tation. In order to define their non-commutative analogues, we use obstructions.

Definition 4. Let G = (gi)1≤i≤q be a list of monic polynomials. An obstruction
of G is a six-tuple (l, i, r;λ, j, ρ) with i, j ∈ {1, . . . , q} and l, λ, r, ρ ∈ T such that
L(gi) ≤ L(gj) and lL(gi)r = λL(gj)ρ. For a given obstruction, we define the
corresponding S-polynomial as

s(l, i, r;λ, j, ρ) = lgir − λgjρ.

Our notation of an obstruction differs slightly from Mora’s in [6]. The symbols
for the six parameters are equal though.

Gröbner basis computations consist mainly of adding to G normal forms of S-
polynomials of elements from a basis. The next notion is needed to weed out
obstructions whose S-polynomials are not going to contribute to the computation.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 3

Definition 5. Given a list G = (gi)1≤i≤q of monic polynomials we call a polynomial
f weak with respect to G if there are ci ∈ k, li, ri ∈ T and ν(i) (i = 1, . . . , t) such
that,

for each i we have liL(gν(i))ri ≤ L(f) and f =
t∑

i=1

ciligν(i)ri.

We call an obstruction (l, i, r;λ, j, ρ) of G weak if its S-polynomial s(l, i, r;λ, j, ρ) is
weak with respect to G.

The S-polynomial of a weak obstruction (l, i, r;λ, j, ρ) can be written as follows
with ch ∈ k, lh, rh ∈ T , and ν(h) ∈ {1, . . . , q}.

s = lgir − λgjρ =
∑

h

chlhgν(h)rh with lhL(gν(h))rh ≤ L(s) < lL(gi)r.

Weakness can be tested effectively by solving a finite number of linear equations.
If the normal form of f with respect to G is equal to 0, then f is weak with respect
to G. The converse is not necessarily true, but see Theorem 1.5.

Observe that infinitely many obstructions can be found. The next lemma makes
a lot of them superfluous.

Lemma 1.1. Let G = (gh)h=1,...,q be a list of monic polynomials in k〈T 〉 and
(l, i, r;λ, j, ρ) a weak obstruction of G. Then all obstructions (l′, i, r′;λ′, j, ρ′) with
l′ = ω1l, r′ = rω2, λ′ = ω1λ, ρ′ = ρω2 and ω1, ω2 monomials, are also weak.

Proof. Denote by s the S-polynomial of (l, i, r;λ, j, ρ). By the weak obstruction
hypothesis we can write s = lgir−λgjρ =

∑
h chlhgν(h)rh with lhL(gν(h))rh ≤ L(s).

Now assume (l′, i, r′;λ′, j, ρ′) is an obstruction as in the hypotheses and denote by
s′ its S-polynomial. Then

s′ = l′gir
′ − λ′gjρ

′ = ω1(lgir − λgjρ)ω2 = ω1

∑
h

chlhgν(h)rhω2 = ω1sω2.

Now s′ =
∑

h chl′hgν(h)r
′
h with l′h = ω1lh and r′h = rhω2. From lhL(gν(h))rh ≤

L(s) we obtain l′hL(gν(h))r′h = ω1lhL(gν(h))rhω2 ≤ ω1L(s)ω2 = L(s′) and so the
obstruction is weak with respect to G. �

Definition 6. Let G be a list of monic polynomials in k〈T 〉 and H a set of polyno-
mials. An S-polynomial s is called reducible from H with respect to G if weakness
with respect to G of all elements of H implies weakness of s with respect to G.

In particular, if s is weak then it is reducible from ∅.
If we have obstructions (l, i, r;λ, j, ρ) and (l′, i, r′;λ′, j, ρ′) as in Lemma 1.1, then

s(l′, i, r′;λ′, j, ρ′) is reducible from {s(l, i, r;λ, j, ρ)}.
Observe that an obstruction (l, i, r;λ, j, ρ) is weak if L(gi) and L(gj) have no

overlap. This is our next focus (see [6, Lemma 5.4]).

Definition 7. For b ∈ T , two monomials t1 ≤ t2 in T are said to have overlap b if
there are a, c ∈ T such that t1 = ab and t2 = bc or t1 = ba and t2 = cb or t1 = b
and t2 = abc. If 1 is the only overlap between t1 and t2, the two monomials t1 and
t2 are said to have no overlap.

An obstruction (l, i, r;λ, j, ρ) is said to have no overlap if L(gi) and L(gj) do
not overlap in lL(gi)r, in the sense that there is a w ∈ T such that lL(gi)r =
lL(gi)wL(gj)ρ or lL(gi)r = λL(gj)wL(gi)r.



4 ARJEH M. COHEN

Clearly, if L(gi) and L(gj) have no overlap, then every obstruction (l, i, r;λ, j, ρ)
with l, r, ρ, λ ∈ T has no overlap. The converse is not true: if L(gi) = x1x2

and L(gj) = x2x3, then the overlap between these monomials is x2 whereas the
obstruction (1, i, xa

2x3;x1x
a
2 , j, 1) has no overlap for each a > 0.

Lemma 1.2. Suppose u, v, and w are monomials in T . If uw = wv, then there
exist x, y ∈ T and a ∈ N with u = xy, v = yx and w = (xy)ax.

Proof. Induction on the length of w. �

Lemma 1.3. Suppose, for certain i and j with i 6= j we have L(gi) = L(gj). Then,
for each k, each S-polynomial s(l, j, r;λ, k, ρ) is reducible from the S-polynomials
s(l′, i, r′;λ′, j, ρ′) and s(l′′, i, r′′;λ′′, k, ρ′′).

Proof. Immediate from

s(l, j, r;λ, k, ρ) = s(l, i, r;λ, k, ρ)− s(l, i, r; l, j, r).

�

1.2. Reducibility. Throughout this section we take G to be a list (gh)h=1,...,q of
monic polynomials in k〈T 〉.

Lemma 1.4. Every obstruction without overlap is reducible from an S-polynomial
with overlap with respect to G.

Proof. Let b = (l, i, r;λ, j, ρ) be an obstruction and denote by s its S-polynomial.
Then lL(gi)r = λL(gj)ρ. Suppose that b has no overlap. Then there exists w ∈ T
such that either r = wL(gj)ρ or l = λL(gj)w. Assume the former (the proof for
l = λL(gj)w being quite similar). Then also λ = lL(gi)w and by Lemma 1.1 b =
(l, i, wL(gj)ρ; lL(gi)w, j, ρ) is reducible from (1, i, wL(gj); L(gi)w, j, 1). Therefore,
we may and shall assume l = ρ = 1.

In the ordered form, the two polynomials gi, gj can be written as gi =
∑

h chth
and gj =

∑
p dpup for h = 1, . . . ,mi and p = 1, . . . ,mj with th, up ∈ T and

ch, dp ∈ k\{0} such that th > th+1 and up > up+1. Thus L(gi) = t1 and L(gj) = u1.
Now

s = gir − λgj

= giwL(gj)− L(gi)wgj

= giw(gj −
mj∑
p=2

dpup)− (gi −
mi∑
h=2

chth)wgj

=
mi∑
h=2

chthwgj −
mj∑
p=2

dpgiwup.

To prove that s is weak, it remains to verify that all monomials occurring on the
right hand side are less than or equal to L(s). This can only go wrong when the
leading monomials, say t2wL(gj) and L(gi)wu2 of the two summations on the right
hand side cancel each other:

c2t2wu1 = d2t1wu2.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 5

Since t2 < t1 and u2 < u1 this only occurs if c2 = d2 and there are v1, v2 ∈ T
such that t1 = t2 · v1 and u1 = v2 · u2 with v1w = wv2. By Lemma 1.2 the only
non-trivial solutions are those with v1 = xy, v2 = yx and w = (xy)ax for some
monomials x and y and a ∈ N. Without loss of generality we may assume that
y 6= 1 (for otherwise the leading monomials will have overlap x).

For brevity we denote the obstruction with w = (xy)ax by o(a). We expand gi

and gj and find

gi = t1 +
mi∑
h=2

chth = t2 · xy + c2t2 +
mi∑
h=3

chth

gj = u1 +
mj∑
p=2

dpup = yx · u2 + d2u2 +
mi∑
p=3

dpup

Expansion of the summations on the right hand side in the previous expansion
of s gives

s =
mi∑
h=2

chthwgj −
mj∑
p=2

dpgiwup

= c2t2wgj − d2giwu2 +
mi∑
h=3

chthwgj −
mj∑
p=3

dpgiwup

= c2(t1(xy)a−1xgj − gi(xy)a−1xu1) +
mi∑
h=3

chthwgj −
mj∑
p=3

dpgiwup

so, writing s(a− 1) for the S-polynomial of o(a− 1), we have

s = c2s(a− 1) +
mi∑
h=3

chthwgj −
mj∑
p=3

dpgiwup.

If again the leading terms t3wu1 and t1wu3 of the summations cancel each other
then t1 and u1 are not only multiples of t2 and u2 but also multiples of t3 and u3.
Then their corresponding polynomials can be extracted in the same way as done
for t2 and u2. After a finite number m of these extractions we find

s = c2s(a− 1) + c3s(a− 2) + . . . +
mi∑

h=m+2

chthwgj −
mj∑

p=m+2

dpgiwup.

Now tm+2wL(gj) or L(gi)wum+2 with cm+2 6= 0 or dm+2 6= 0 respectively, is the
leading term of the two summations on the right.

Assume that all s(a−b) are weak for 1 ≤ b ≤ a. Then we can express every s(a−b)
as a sum of polynomials lghr with leading term lL(gh)r less than or equal to L(s(a−
b)). By the shape of s(a− b) we know that th(xy)a−bxL(gj) = L(gi)(xy)a−bxup for
all th and tp that cancelled in the previous summations. So L(s(a− b)) is at most
tm+2(xy)a−bxL(gj) or L(gi)(xy)a−bxum+2.

This means that if all s(a− b) are weak then tm+2wL(gj) or L(gi)wum+2 is the
leading term of s = s(a) and all monomials on the right hand side are less than or



6 ARJEH M. COHEN

equal to L(s), proving that s(a) is weak. So s(a) is reducible from {s(a− b) | 1 ≤
b ≤ a}. By recursion now all s(a) are reducible from s(0).

Since reducibility is a transitive relation, it remains to show that s(0) is reducible
from an S-polynomial with overlap. Using the same substitution as before we find
s(0) = gixu2 − t2xgj . But t1 = t2 · xy and u1 = yx · u2, so the obstruction o(0) has
an overlap because y 6= 1. �

As a consequence, if an S-polynomial s(l, i, r;λ, j, ρ) is not weak with respect to
G, then the leading monomials of the two polynomials involved have an overlap.

Next we show that, although the set of all S-polynomials of G can be infinite,
we can restrict our analysis of obstructions to a finite set.

Definition 8. A set H of polynomials is called basic for G if every S-polynomial
of G is reducible from H with respect to G.

Theorem 1.5. For a finite list G of polynomials generating an ideal I of k〈T 〉, the
following statements are equivalent.

(i) G is a Gröbner basis.
(ii) The normal form of each polynomial of I is equal to 0.
(iii) Each S-polynomial of G is weak with respect to G.
(iv) The empty set is a basic set for G.

Proof. Write G = (gi)1≤i≤q.

(i) =⇒ (ii). Suppose G is a Gröbner basis and f ∈ I. If f = 0 we are done.
Otherwise, let i be the first index {1, . . . , q} for which L(gi) divides L(f). Then
there are a, b ∈ T such that aL(gi)b = L(f). Now f − agib ∈ I. By induction
with respect to the reduction ordering <, we have NormalForm(f − agib, G) =
0. As f − agib is the first step of the NormalForm algorithm for f , this implies
NormalForm(f,G) = 0, as required.

(ii) =⇒ (iii). Suppose s = s(li, r;λ, j, ρ). By (ii), NormalForm(s,G) = 0, so s is
weak.

(iii)⇔(iv). This is immediate from the definition of basic set.

(iii) =⇒ (i). Suppose f ∈ I and L(f) is not contained in the ideal generated by all
L(gi). Without loss of generality, we may take L(f) to be minimal with these prop-
erties as well as the maximum t over all leading monomials in an expression of f as a
linear combination of summands ahgν(h)bh with ah, bh ∈ k〈T 〉 and gν(h) ∈ G. By an
argument as in Lemma 1.4, there are at least two indices i and j such that aigν(i)bi

and ajgν(j)bj are distinct and occur in an expression of f as a linear combination
of multiples of the elements of G and satisfy t = L(aigν(i)bi) = L(ajgν(j)bj) > L(f).
Consider the S-polynomial s = s(L(ai), ν(i),L(bi); L(aj), ν(j),L(bj)). By (iii), s is
weak. Let w be an expression of s as a sum of multiples of gh whose leading terms
are smaller than t and consider the following expression

f = lc(aibi)lc(ajbj)−1ajgν(j)bj + lc(aibi)w +
∑

h6=i,j

ahgν(h)bh.

This expression for f has fewer summands with leading term equal to t. Continue
this way until this number is at most 1. Then we reach a contradiction. We conclude
that G is a Gröbner basis. �



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 7

Lemma 1.6. If G is finite, there is a finite basic set H of S-polynomials of G.
Moreover, H can be chosen so that every S-polynomial of G in H corresponds to an
obstruction (l, i, r;λ, j, ρ) with overlap and with at least one of the two parameters
{l, λ} and one of {r, ρ} equal to 1.

In fact, such an H can be found from the knowledge of the leading monomials
of elements of G only.

Proof. Let (l, i, r;λ, j, ρ) be an obstruction and write s = s(l, i, r;λ, j, ρ) for its
corresponding S-polynomial. Write L(gi) = m1 · · ·mp and L(gj) = n1 · · ·nq with
mu and nv monomials in T of degree 1 (that is, of the form xl for some l ∈
{1, . . . , n}). Recall that L(gi) ≤ L(gj) so p ≤ q.

From Lemma 1.4 we know that if s is not weak, then it must have some overlap.
In particular, L(gi) and L(gj) must have overlap. This can occur in three ways:

m1 · · ·mh = nq−h+1 · · ·nq 1 ≤ h < p,

n1 · · ·nh = mp−h+1 · · ·mp 1 ≤ h < p, or
m1 · · ·mp = nh+1 · · ·nh+p 1 ≤ h < q − p.

In particular, for every two polynomials the number of possible overlaps is finite.
We show that H needs to contain at most one S-polynomial for every overlap. This
suffices to prove the lemma.

Assume that L(gi) and L(gj) have a nontrivial overlap. To satisfy the equation
lL(gi)r = λL(gj)ρ, the factors of L(gi) that are not in the overlap have to be in λ
or ρ and, similarly, the parts of L(gj) that are not in the overlap have to be in l or
r. So for every obstruction corresponding to some overlap the monomials lL(gi)r
and λL(gj)ρ have to be equal to l′ωr′ and λ′ωρ′, respectively, with ω equal to

ω = n1 · · ·nq−hL(gi) = L(gj)mh+1 · · ·mp

ω = L(gi)nh+1 · · ·nq = m1 · · ·mp−hL(gj)
ω = n1 · · ·nhL(gi)nh+p+1 · · ·nq = L(gj)

in the respective cases. Now by Lemma 1.1 these obstructions are weak except
when l′ = r′ = λ′ = ρ′ = 1. So for every possible overlap there exists a single
S-polynomial such that all other obstructions are reducible from it with respect to
{gi, gj}; in the respective cases, the corresponding obstruction is

(n1 · · ·nq−h, i, 1; 1, j,mh+1 · · ·mp)
(1, i, nh+1 · · ·nq;m1 · · ·mp−h, j, 1)
(n1 · · ·nh, i, nh+p+1 · · ·nq; 1, j, 1)

This means that s need only be in H if at least one of the two parameters l and
λ is equal to 1 and at least one of the two parameters r and ρ is equal to 1. �

If, in the above setting, l = r = 1, then, as L(gi) ≤ L(gj), we must have
L(gi) = L(gj), and so λ = ρ = 1 as well. We distinguish between three kinds of
obstruction.

Definition 9. Let s = (l, i, r;λ, j, ρ) be an obstruction of the list G = (gi)1≤i≤q of
monic polynomials in k〈T 〉.

• If l = 1 then we call s a right obstruction.



8 ARJEH M. COHEN

• If r = 1 and l 6= 1 then s is called a left obstruction.
• The remaining obstructions with λ = ρ = 1 (so s = (l, i, r; 1, j, 1)) are called

central obstructions.

Proposition 1.7. Let G be a set of polynomials in k〈T 〉 and let H be the set of all
non-zero normal forms of S-polynomials with respect to G corresponding to all left,
right, and central obstructions of G. Then H is a basic set for G. If G is finite,
then so is H.

Proof. Follows directly from Lemma 1.6. �

As H is a finite set if G is finite, Condition (iv) of Theorem 1.5 can be used to
verify if G is a Gröbner basis.

Corollary 1.8. Let G and H be as in Proposition 1.7. Then G is a Gröbner basis
if and only if the normal form of each element of H with respect to G is zero.

Proof. Immediate from Conditions (ii) and (iv) of Theorem 1.5. �

The set of basic obstructions can be trimmed further.

Lemma 1.9. Let (l1, i, 1; 1, j, ρ1) and (ωl1, i, 1; 1, q, ρ2) be two obstructions with
respective S-polynomials s1 and s2. If ω 6= 1, then there exists an S-polynomial
s3 = s(ω, j, r3; 1, q, ρ3) with r3 = 1 or ρ3 = 1, such that s2 is reducible from the
union of the S-polynomials {s1, s3} and S-polynomials sp with L(sp) < L(s2).

Proof. We know that l1L(gi) = L(gj)ρ1 and ωl1L(gi) = L(gq)ρ2. Substitution
gives ωL(gj)ρ1 = L(gq)ρ2. This means that there exist obstructions of the form
(ω, j, ρ1; 1, q, ρ2). By Lemma 1.6 we can find one obstruction o3 by reducing ρ1 and
ρ2 to 1 and some ρ3. Here ρq1 = ρ3ρq2 , resulting in a left obstruction if q1 = 2 and
q2 = 1 and in a central obstruction if q1 = 1 and q2 = 2.

Now we have two polynomials s1 and s3. Suppose that they are weak. We have
to consider two cases. First assume ρ2 = ρ3ρ1 and s3 = s(ω, j, 1; 1, q, ρ3). Now

s2 = ωl1gi − gqρ3ρ1 = ω(l1gi − gjρ1) + (ωgj − gqρ3)ρ1 = ωs1 + s3ρ1

The monomials on the right hand side are less than or equal to L(s2) except possibly
when the leading monomials of the weak representations of ωs1 and s3ρ3 cancel each
other. In the exceptional case we can write s1 =

∑
h chlhgν(h)rh with lhL(gν(h))rh ≤

L(s1) and s3 =
∑

q cqlqgµ(q)rq with lqL(gµ(q))rq ≤ L(s3). Then there are indices
h0 and q0 with lh0L(gν(h0))rh0 = L(s1) and lq0L(gµ(q0))rq0 = L(s3). This leads to a
set of central obstructions op = (lhp , hp, rhp ; lfp , fp, rfp). If all of these obstructions
are weak then we can rewrite the right hand side of the equation for s2 and satisfy
the condition that all monomials on the right are less than or equal to L(s2). Thus
s2 is reducible from a set of S-polynomials containing s1, s3 and all S-polynomials
corresponding to the op and the latter have a leading monomial less than L(s2).

Finally assume ρ1 = ρ3ρ2 and s3 = s(ω, j, ρ3; 1, q, 1). Now

s2 = ωl1gi − gqρ2 = ω(l1gi − gjρ1) + (ωgjρ3 − gq)ρ2 = ωs1 + s3ρ2

and we can finish by a similar argument. �



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 9

1.3. The algorithm. For our non-commutative Gröbner basis computation we
use two sets of polynomials with properties specified in the following definition.
Observe that a normal form of a polynomial f with respect to a finite subset of
k〈T 〉 can be computed in much the same way as for the commutative case, so that
we may assume the presence of a (terminating) normal form algorithm.

Definition 10. Let I be a two sided ideal of k〈T 〉 and let G, D be finite subsets of
k〈T 〉. We say that (G, D) is a partial Gröbner pair for I if the following properties
are satisfied.

(i) All polynomials in G ∪D are monic.
(ii) G ∪D is a generating set for I.
(iii) Every element of D is reduced with respect to G.
(iv) The set D is basic for G.

Corollary 1.10. Let I be a two-sided ideal of k〈T 〉 and let (G, D) be a partial
Gröbner pair for I. If D is the empty set, then G is a Gröbner Basis for I.

Proof. Direct from Definition 10 and Theorem 1.5(iv). �

The Gröbner basis algorithm will start with a finite set G forming a basis of I
and with D the basic set determined by Proposition 1.7. The last condition is taken
care of by ’cleaning operations’. Observe that (G, D) is indeed a partial Gröbner
pair.

The main ingredient of the algorithm is an iteration step that changes the pair
(G, D) to another partial Gröbner pair (G′, D′) such that the ideal generated by
the leading monomials of G′ strictly contains the ideal generated by the leading
monomials of G. As the non-commutative polynomial ring k〈T 〉 is not Noetherian,
we cannot expect the algorithm to terminate in all cases. Termination happens if
D = ∅, in which case G will be a Gröbner basis of I, by Corollary 1.10. In the
iteration step one element from D is moved to G and care is taken to let the new
pair become partial Gröbner again. In the next theorem we discuss the algorithm.

Theorem 1.11. Let I be an ideal of k〈T 〉 and let (G, D) be a partial Gröbner pair
for I. The next routine of four steps computes a new partial Gröbner pair (G′, D′)
for I with the property that the leading monomials of G generate an ideal strictly
contained in the ideal generated by the leading monomials of G′. If D′ = ∅, the
routine leads to a halt and G′ is a Gröbner basis for I.

(1) Write G = {g1, . . . , gN−1}. Move one polynomial f from D to G. Now
G = {g1, . . . , gN−1, gN = f}.

(2) Compute the left, right, and central obstructions of G that involve N (these
are of the form (l, i, r;λ, N, ρ) or (l, N, r;λ, j, ρ) for certain i, j ∈ {1, . . . , N−
1} and l, r, λ, ρ ∈ T ). Add to D the non-zero normal forms of their S-
polynomials with respect to G, so that D becomes a basic set for the new
G.

(3) For each i ∈ {1, . . . , N − 1} compute the normal form g′i with respect to
G \ {gi} of gi. If g′i = 0 remove gi from G. Otherwise, if g′i is distinct from
gi,
(a) replace gi by the monic version of g′i;
(b) compute the left, right, and central obstructions of the new G involving

g′i;



10 ARJEH M. COHEN

(c) if the normal form with respect to G of the S-polynomial of such an
obstruction is non-zero then add to D the monic version of a normal
form of it.

(4) Replace each d ∈ D by the monic version of its normal form with respect
to G. If this normal form is zero, remove it from D.

Proof. We have to show that the four conditions of Definition 10 hold for the new
pair (G, D) obtained at the end of the routine of the theorem.
(i). Since all new polynomials in G and D are monic versions of non-zero polyno-
mials, they are monic, so condition (i) of Definition 10 is satisfied.
(ii). In (1), the set G∪D remains unchanged. In (2) polynomials from I are added
to D so G ∪ D still generates I. In (3) and (4), elements are replaced by their
normal forms with respect to subsets of G, so the generation of I by G∪D remains
intact.
(iii). Step (4) takes care of these normal form requirements on D.
(iv). The changes of G, at (1) and (3)(a), are followed by an update of the ob-
structions, at (2) and at (3)(b) and subsequent additions to D of normal forms of
S-polynomials, at (2) and (3)(c), to take care that (iv) is satisfied by Proposition
1.7.
The final assertion is a consequence of Corollary 1.10. �

The normal form of gi ∈ G with respect to G \ {gi} can change as a result of
a replacement of some gj by an element with smaller leading monomial. To avoid
entering a recursive procedure of unknown depth, we observe that if the normal
form of gi alters by changing an element gj , this happens via the construction of
a central obstruction between gi and gj . The normal form of the S-polynomial
corresponding to this obstruction is in fact the new form for gi. By adding this
S-polynomial to D we satisfy the definitions of G and D and make sure that the
normal form of gi will eventually become a member of G.

The theorem results in the procedure in Table 1, called SGrobnerLoop, that gives
an impression of core of the Gröbner basis computation in the GAP package GBNP
[1].

We briefly discuss the functions that are not standard GAP functions. The
function MkMonicNP makes a non-zero non-commutative polynomial monic by a
suitable scalar multiplication, LTerms (which still reflects the fact that some people
refer to members of T as terms instead of monomials) lists the leading monomials
of a list of polynomials, and NormalForm is as described below Definition 3.

The function Occur(m,t) finds an index i such that t is a subword of m beginning
at the i-th symbol; if there is no such occurrence, the function returns 0. In our
implementation a more efficient technique, viz. tries, cf. [3, Section 6.3], is used
to check multiple cases in one treatment instead of these individual invocations of
Occur.

The function Obs(N,G,D) occurs twice in SGrobnerLoop. It is actually a proce-
dure in the sense that it alters its argument D. First it computes obstructions of the
form (l, N, r;λ, j, ρ). It uses the Lemmas 1.1, 1.3, 1.4, 1.6, and 1.9 to minimize the
number of obstructions as much as possible. Instead of returning obstructions the
function computes the corresponding S-polynomials and adds their normal forms
with respect to G ∪D to D.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 11

SGrobnerLoop := function(G, D) local i, lG, Ls, s, l, h;

lG := Length(G);

while D 6= ∅ do s := D[1]; Ls := s[1][1];

Add(G, s);

Obs(lG + 1, G, D);

i := 1; l := lG;

while i < l do h := G[i];

if Occur(Ls, h[1][1]) > 0 then

RemoveElmList(G, i); s := NormalForm(h, G ∪D);

if s = 0 then lG := lG− 1;

else Add(G, MkMonicNP (s));

Central(lG, G, D); Obs(lG, G, D);

fi; l := l − 1;

else i := i + 1;

fi;

od; l := Length(D); i := 2;

while i ≤ l do h := D[i];

if Occur(Ls, h[1][1]) > 0 then

RemoveElmList(D, i); s := NormalForm(h, G ∪D);

if s 6= 0 then

InsertElmList(D, i, MkMonicNP (s)); i := i + 1;

else l := l − 1;

fi;

else i := i + 1;

fi;

od;

RemoveElmList(D, 1); s := LTerms(D); SortParallel(s, D, Lt);

od;

end;

Table 1. The procedure SGrobnerLoop

The last function that is not a standard GAP function is Central(N,G,D). Usually
central obstructions are subsumed by normal forms of the polynomials involved in
G. In the part of the loop where this function is placed however we stay away
from replacing a polynomial by a normal form of it with respect to the rest of G;
see the discussion before SGrobnerloop. This is to avoid a recursive procedure in
which for these new normal forms again obstructions have to be searched. Instead,
when we find a central obstruction, we add the normal form of its S-polynomial
with respect to G ∪ D to D. This means that we actually place the normal form
of the polynomial as a new polynomial in D. This guarantees that eventually we



12 ARJEH M. COHEN

will deal with this new polynomial and at that point the polynomial in G will be
substituted by its normal form.

The GAP function SortParallel(s,D,Lt), where s = LTerms(D), sees to it that
D is ordered according to increasing leading monomials.

2. Module construction in GBNP

This section describes the background of work carried out by Jan Willem Knop-
per during his stay at the University of St Andrews with Steve Linton.

2.1. Introduction. Steve Linton has written two articles about vector enumera-
tion. The first is called “Constructing Matrix Representations of Finitely Presented
Groups” [4] and the second is called “On vector enumeration” [5]. Inspired by these
papers, we outline a construction of modules using Gröbner basis methods, which
is implemented in GBNP. Let k be a field and A be the algebra k〈X〉, where
X = {x1, . . . , xn}. Let Gts be a set of generators of an ideal I (ideals are twosided
unless explicitly mentioned otherwise) of A. Put A = A/I. Let As be the free right
module of rank s over A and let Gp be a finite subset of As. The elements of Gp are
called module relations. Here the suffix p refers to prefix rules for the module and
ts to two-sided ideal rules. Denote by GpA the image in A

s
of the submodule of

As spanned by Gp. We describe a way to compute the quotient module A
s
/GpA,

if possible at all, by use of the Gröbner basis method.
In order to embed the data into a single ring of noncommutative polynomi-

als, we view As as the free A-module freely generated by M = {m1, . . . ,ms} and
introduce a new indeterminate e (for the identity) and view m1, . . . ,ms as in-
determinates over k〈X〉. So we will be working in the free algebra k〈X ∪ M ∪
{e}〉. Let We = {x · e− x | x ∈ X ∪M ∪ {e}} ∪ {e · t− t | t ∈ X}. Let WM =
{x ·mi | x ∈ X ∪M ∪ {e},mi ∈ M}. Note that We contains the relation e2 − e, so
e is an idempotent.

Theorem 2.1. k〈X ∪ M ∪ {e}〉/(We ∪ WM ) ∼= (A + ek) ⊕ m1A ⊕ · · · ⊕ msA as
A-algebras where A + ek is the A-module spanned by a free submodule A and an
additional generator e satisfying e · 1 = e and e · t = t for t ∈ X.

Proof. Let x be a monomial in k〈X ∪M ∪{e}〉. If x = 1 or x = e, then x ∈ A+ ek.
Suppose x 6= 1, e. If x contains a factor mi but does not begin with it, it can be
reduced to 0 modulo WM . If x contains e as a factor, but not the first, it can be
reduced by a rule in We so that it starts with e; in particular it does not start with
an mi and so we may assume that it does not contain a factor mi. As x 6= e, there
is another indeterminate y ∈ X ∪ {e} \M such that x begins with ey, say x = eyz.
But then it can be reduced to yz. Continuing this way, we may suppose that x
does not contain e. Thus, after reduction, each monomial x falls into one of two
categories:

• x does not contain any m ∈ M . Then x ∈ A + ek.
• x contains a single m ∈ M , contains no factor e, and begins with m, in

other words x ∈ mA.

In both cases, x ∈ (A + ek) ⊕ m1A ⊕ · · · ⊕ msA. It is easily seen that no further
collapse of monomials occurs modulo (We ∪ WM ), and so k〈X ∪ M ∪ {e}〉/(We ∪
WM ) ∼= (A + ek)⊕m1A⊕ · · · ⊕msA as k-modules.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 13

Right multiplication by elements of A on the quotient algebra of k〈X ∪M ∪{e}〉
by (We∪WM ) coincides with the right multiplication specified for (A+ke)⊕m1A⊕
· · · ⊕msA. Hence the isomorphism is an isomorphism of A-modules. �

Corollary 2.2. If F is a Gröbner basis in k〈X ∪M ∪ {e}〉 of W ∪G∪We ∪WM ,
where G ⊆ A and W ⊆ As, then F ∩ k〈X〉 is a Gröbner basis for (G) in k〈X〉.
Moreover, for x ∈ m1A⊕ · · ·⊕msA and a ∈ A, the normal form of xa with respect
to F belongs to m1A ⊕ · · · ⊕msA and gives a unique representative for the image
of xa in (m1A⊕ · · · ⊕msA)/(As ∩ F ).

In our implementation we do not add WM and We explicitly and work with W
as a set of module relations, kept separate from the set G of ideal relations.

Since the whole Gröbner basis for the relations in G is needed, it might as well
be calculated at the start; doing so will usually make the algorithm faster.

3. The Dimension of Quotient Algebras

This section was originally contributed by Chris Krook and describes his work
carried out during his stay at Lund University with Victor Ufnarovski.

Once we have found a Gröbner basis G for an ideal I in k〈T 〉, we can consider
the quotient algebra Q = k〈T 〉/(G). This quotient algebra need not be finite
dimensional. In fact, there are many cases where the quotient algebra is infinite
dimensional and has polynomial or even exponential growth. We present some
functions that investigate the dimension of the quotient algebra.

For the study of the dimension, instead of looking at Q, we only need consider the
monomial algebra Q′ := k〈T 〉/(G′) where G′ := { L(b) | b ∈ G }. Here, a monomial
algebra is a quotient algebra of k〈T 〉 by an ideal generated by monomials. Although
in general Q′ will be a different algebra from Q, their ideals have the same set of
standard monomials, that is, monomials not divisible by any leading monomial of a
non-zero element the ideal. The images of these standard monomials are a basis of
both quotient algebras (regardless of the reduction order chosen in the selection of
the leading monomials among G and G′), so both quotient algebras have essentially
the same basis of standard monomials. The dimension of the quotient algebra and
other concepts of interest such as the Hilbert series are equal for the algebras Q
and Q′ since they depend only on the standard monomials. For this reason we
will restrict ourselves to the study of monomial algebras in the remainder of this
chapter.

3.1. The algorithm FinCheckQA. The first goal is to determine whether the
quotient algebra is of finite or of infinite dimension. A monomial algebra is deter-
mined by an alphabet X and a set of monomials M , which is reduced in the sense
that none of the monomials in M divides another monomial in M . Both X and
M are assumed to be finite. Furthermore, each m ∈ M is a word of finite length
in X∗, the set of all words over the alphabet X of finite or infinite length. Recall
that we call a word u standard (with respect to M) if no monomial in M divides
u; notation M - u. Observe that if v is a standard monomial, the so is each of its
divisors.

The standard words with respect to M are a convenient basis of the monomial
algebra Q; of course we mean here their images under the canonical projection
A → Q, but we allow ourselves to be imprecise in this respect. This basis is infinite
if and only if it is possible to construct a standard word w ∈ X∗ of infinite length.



14 ARJEH M. COHEN

It is obvious that this condition is sufficient, since the word w will contain infinitely
many different standard subwords. The other direction follows directly from the
assumption that our alphabet is finite. Up to a given length, only finitely many
words exist. This provides us with a direct and intuitive approach to determine
finiteness given X and M . We simply try to construct an infinite standard word. If
we succeed, we can conclude that the dimension of the monomial algebra is infinite.
Otherwise we conclude that the dimension is finite.

In order to make this more precise, we introduce a graph on standard monomials
and use this graph to obtain some information on the structure of infinite words.

Definition 11. Given an alphabet X and a set of monomials M , we define the
Ufnarovski Graph1 (see [7]) ΓM . Its vertex set V consists of all standard words
w ∈ X lM , where lM := −1 + max{|m| | m ∈ M}, where |m| is the length of m.
For each v, w ∈ V there is a directed edge v → w if and only if there exist a, b ∈ X
such that va = bw and M - va.

As one readily checks there is a one-to-one correspondence between paths of
length l in ΓM and standard words of length l + lM . This implies that each infinite
standard word corresponds to an infinite path in ΓM . Since the graph has a finite
number of vertices, due to the finiteness of X and M , this implies that such an
infinite path must contain a cycle. But then the word corresponding to merely
repeating this cycle is an infinite standard word as well. Our conclusion is as
follows.

Remark 3.1. If there exists an infinite word that is standard with respect to M ,
then either it is cyclic or it gives rise to a cyclic infinite word that is also standard
with respect to M .

We will use this remark in the proof of the following lemma, in which the reduc-
tion ordering < is used.

Lemma 3.2. If there exists an infinite word w′ ∈ X∗ that is standard with respect
to M , then there also exists a cyclic infinite word w ∈ X∗ that is standard with
respect to M such that

(1) ∀r,s≥1 w[1..s] ≤ w[r..r + s− 1] .

Here w[p..q] stands for the subword of w obtained by removing the first until the
(p− 1)st and the (q + 1)st up to the last. Before giving the proof we introduce the
notation u E v to denote that u is a prefix of v and the notation u C v to denote
that u is a proper prefix of v. Furthermore ut denotes the concatenation of t copies
of a word u.

Proof. Let w′ ∈ X∗ be infinite and standard with respect to M . Then, according
to Remark 3.1, w′ gives rise to a cyclic infinite word w′′ = v′∞, where v′ ∈ Xp for
some finite p > 0. We assume that v is the lexicographically smallest cyclic shift
of v′. Then there is a u E v′ such that v′∞ = uv∞. Now define w := v∞ and the
lemma follows immediately. �

1This graph should not be confused with the graph of standard words.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 15

(1) Build the tree T of reversed monomials from M . It has root 1, leaves the
reversed members of M and nodes all prefixes, with v descending from u
whenever |v| = |u|+1 and u is a prefix of v. See Example 3.14 for a drawing
of T in case of an example.

(2) Start with the smallest word w := x1. Set a pointer p at the first position,
thus p := 1.

(3) Check whether M |w by use of T (F):
• if w is standard, then we:

(a) check if we can conclude the dimension is infinite (z) in which
case we terminate instantly;

(b) extend word: w := w + w[p] and p := p + 1.
• if w is not standard, then we:

(a) check if w[1] = xk in which case we can conclude the dimension
is finite and terminate instantly;

(b) increase w in a minimal way: w := u where u is the smallest
word satisfying w < u and |u| ≤ |w|. Furthermore the pointer is
reset to p := 1.

(4) Repeat Step (3) until termination is achieved.
Table 2. Construct an infinite word

Remark 3.3. For a given word u that is lexicographically smaller than all its cyclic
shifts, the word w = uqu′ with u′ C u and q ≥ 1, satisfies condition (1). This is an
immediate consequence of the property of u.

In order to find infinite words, it suffices to use only words satisfying (1). This
implies that in its construction, given a word w ∈ X l satisfying (1) we have the
following two ways to proceed;

• if M |w then w := w′ where w′ is the smallest word satisfying w′ > w and
|w′| ≤ |w|. It is obvious that w′ will also satisfy condition (1) since the
symbol increased will be the last position of w′. Example with X = {x, y}
and xyxy ∈ M : if w = xyxy then w′ = xyy.

• if M - w then we want to extend the potential beginning of an infinite word,
such that (1) remains satisfied. For this purpose we can use a pointer that
moves along the word while lengthening it and is reset to the first position
if the word is increased. The pointer points to the next symbol to be added.
By doing so, w will always have the form mentioned in Remark 3.3, thus
satisfying condition (1). In the following example we denote the pointer
position using bold letters. Example with X = {x, y} and M = {xxx}:
. . . → xxy → xxyx → xxyxx → xxyxxy → . . .

This leads to the following algorithm for constructing infinite words on the al-
phabet X = {x1, . . . , xk}.
ad F: While constructing our word w we already know that the longest proper
prefix w′ of w is standard, thus we only have to check whether each suffix v of w
is standard. By use of a tree structure T to store the reversed monomials from M
this comes down to checking whether there is no branch b in T such that bE rev(v).
This will always take at most |v| comparisons.



16 ARJEH M. COHEN

ad z: We still need to work out how to conclude infinite dimensionality from a word
w such that M - w. For this purpose, use the Ufnarovski graph ΓM from Definition
11 and in particular the one-to-one correspondence between infinite paths in ΓM

(i.e. cycles) and infinite words. This tells us how to adapt our algorithm to detect
that the dimension is infinite. While constructing our word w, we simultaneously
build up that part of ΓM that is on our route. Now we can easily check our word for
cycles, by just checking whether the vertex we want to add to our graph is already
in the vertex set.

Algorithm 2 automatically keeps track of the route in ΓM since all the words on
this route can simply be read from the word w itself.

Example 3.4. X = {x, y},M = {xx, yyy}
w = x V = {}
w = xx V = {} M |w
w = xy V = {xy}
w = xyx V = {xy, yx}
w = xyxy V = {xy, yx} DONE

In the final step, we find a cycle and conclude that the dimension is infinite. The
bold letters indicate the position of the pointer.

Lemma 3.5. Algorithm 2 terminates and concludes whether the monomial algebra
determined by an alphabet X and a set of monomials M , ordered lexicographically,
is finite or infinite.

Proof. We need to show termination of the algorithm. In each step the word w
is increased lexicographically. Since ΓM consists of at most klM vertices, a word
length greater than klM + lM , which corresponds to a path of length greater than
klM in ΓM implies a cycle and thus infinite dimensionality. Thus, if an infinite word
exists, one will be found after a finite number of steps.

Now assume that all words are finite. There are only finitely many words with
length ≤ klM + lM thus in a finite number of steps w[1] = xk will hold. Notice that
from this point on, increasing w = (xk)q gives us w = (xk)q+1 and after finitely
many steps M |w will hold, which implies finite dimensionality since all attempts to
create infinite words have failed. �

We will consider two small examples, showing how the algorithm works in both
the finite and the infinite case. All words considered by the algorithm are written
down.

Example 3.6. (infinite) X = {x, y},M = {xx, xyx, yyy}
w = x V = {}
w = xx V = {} M |w
w = xy V = {xy}
w = xyx V = {xy} M |w
w = xyy V = {xy, yy}
w = xyyx V = {xy, yy, yx}
w = xyyxy V = {xy, yy, yx} DONE

We conclude infinite dimensionality as we encounter a cycle. The infinite standard
word is w = (xyy)∞. Notice that increasing the word xx in the third step ensures
that, from that point on, no words containing xx will be considered. Therefore in



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 17

the final step the word xyyxy is checked instead of first checking xyyxx. One can
easily think of examples where this principle reduces the number of words to be
considered much more.

Example 3.7. (finite) X = {x, y},M = {xx, yxy, yyy}
w = x V = {}
w = xx V = {} M |w
w = xy V = {xy}
w = xyx V = {xy, yx}
w = xyxy V = {xy, yx} M |w
w = xyy V = {xy, yy}
w = xyyx V = {xy, yy, yx}
w = xyyxy V = {xy, yy, yx} M |w
w = xyyy V = {xy, yy} M |w
w = y V = {}
w = yy V = {yy}
w = yyy V = {yy} M |w,DONE

We conclude finite dimensionality. In the finite case we always have to consider all
possible words satisfying condition (1), having no proper prefix divisible by M .

We have seen that in the finite case, our algorithm has to check many words. One
might wonder if there are also some bad scenarios in the infinite case. Unfortunately
there are. We will describe them using the Ufnarovski Graph ΓM .

Lemma 3.8. Let |X| = n. Then for each l ≥ 1 there exists a set M such that
lM = l and ΓM contains only a cycle of length nl, thus visiting all the vertices in
ΓM .

Proof. The cycle we are looking for is well known as the De Bruijn-cycle. Construct
a graph G which has as vertex set all possible words of length l − 1. There is a
directed edge from vertex u to vertex v if and only if there exist a, b ∈ X such
that ua = bv. Label this edge with b. Now notice that for each vertex v we have
degin(v) = degout(v) = n. Therefore there must exist an Euler cycle in G and
one readily sees that writing down the labels in this cycle gives us exactly the De
Bruijn-cycle, a cycle of length n · nl−1 indeed.

Now given the cycle in the graph ΓM , it is easy to define the set M such that
M induces ΓM , just by preventing all edges not on the cycle to exist. �

As an unwelcome result of Lemma 3.8, there always exists a bad case in which
the length of the shortest cycle and thus the amount of comparisons needed to
conclude infinite dimensionality grows exponentially in lM , roughly said the length
of the largest monomial in M .

3.2. The algorithm FinCheckQA. The algorithm FinCheckQA determines the
growth of the QA. Sometimes we want to know more about the dimension of our
algebra than just whether it has a finite or infinite basis. The growth of the algebra
is such an example. We will give a definition of the concept growth and we will
present an algorithm for computing it.

Definition 12. Given a monotone function f : N → R+ we define the growth of f
as the equivalence class [f ] of f where

[f ] = {g : N → R+ | ∃c1,c2,m1,m2∈N∀z∈Nc−1
1 g(zm−1

1 ) ≤ f(z) ≤ c2g(m2z)}



18 ARJEH M. COHEN

The usual inequality for functions carries over to the equivalence classes. Fur-
thermore we can distinguish the following cases.

• If [f ] ≤ [1] then we say that f has finite growth,
• If [f ] ≤ [z 7→ zd] for some d > 0 and d is a minimal natural number

satisfying this inequality, then we call f polynomial of degree d.
• If [f ] ≥ [z 7→ az] for a > 1, then we call f exponential.

3.3. Growth of an algebra. In Section 3.1 we studied whether the dimension of
a monomial algebra determined by an alphabet X and a set of monomials M is
finite or not, i.e., whether the number of standard words of finite length was finite.
More generally, growth will be measured by counting the number of words up to
each given length. More formally, we consider our algebra Q which is graded as a
vector space by Q =

⊕
i Qi, where Qi is the subspace of Q spanned by all standard

words of length i. Now define the growth of the algebra Q as the function f : N → N
by f(n) = dim(

⊕n
i=1 Qi).

3.4. Growth of a graph. For computations we will translate the problem of com-
puting the growth of the algebra, into the problem of computing the growth of the
graph ΓM . So we will also define a growth function on graphs. Let G be a finite
graph. The intended function counts the number of different paths in G up to each
given length n. Thus we define f : N → N by f(z) = #different paths in G of
length up to z.

Note that our algebra corresponds to the graph ΓM in such a way that there
exists a bijection between words of length n in the algebra and paths of length n
in the graph. Hence these notions of growth are equivalent.

One readily sees that if a graph contains a cycle, there exist paths of length n
for all n ∈ N, thus the graph must be at least polynomial. We can intuitively see a
relation between the growth of a graph and the number of cycles in it.

• If a finite graph contains no cycles, then the total number of different paths
is finite and so the graph has finite growth.

• If a finite graph contains a path visiting d non-intersecting cycles, then it
has at least polynomial growth of degree d. Intuitively, there are k + d− 1
road segments, k of which are cycles and d−1 of which are connecting paths
between the cycles. The number of paths that contain k cycles equals the
number of ways to appoint k cycles in a set of k+d−1 road segments which
equals

(
k+d−1

k

)
which is polynomial in k. Since the length of the cycles is

upper bounded, this leads to polynomial growth in the length of the paths
as well.

• If a graph contains 2 intersecting cycles, then the number of different paths
of length up to n grows exponentially in n. Intuitively each time you reach
a vertex that is contained in both cycles, you can go 2 ways. So there are
already 2k different paths that visit the vertex k times.

This topic is dealt with more thoroughly in [8], which also contains a proof of the
above intuitive remark.

3.4.1. Constructing an infinite word. We will next present an algorithm that is
based on Algorithm 2 and that can distinguish the three cases; finiteness, polyno-
mial growth and exponential growth. In the case of polynomial growth, it does not
always compute the exact degree, but it will given an upper and a lower bound.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 19

(1) Build a tree T of reversed words from M .
(2) Start with the smallest word w := x1. Set a pointer p at the first position,

thus p := 1. Furthermore let cycles := {}.
(3) Check whether M |w (F).

• if w is standard, then
(a) if w contains a cycle of subwords of length lM

– that intersects with a cycle in the list cycles, then we con-
clude exponential growth and terminate.

– that does not intersect with any cycle in the list cycles, then
we add a pair of indices {i1, i2} to the list cycles such that
w[ i1..i2 + lM ] is the cycle.

(b) extend the word: w := w · w[p] and p := p + 1.
• if w is not standard, then

(a) check if w[1] = xk in which case we have checked all words. We
can conclude polynomial growth of degree dlow ≤ d ≤ dupp (z)
and will terminate. The upper bound dupp is equal to the total
number of cycles encountered in the entire check. The lower
bound dlow is equal to the maximum number of disjoint cycles
encountered within one word during the entire check. d = 0
corresponds to finiteness.

(b) – Increase w in a minimal way: w := u where u is the smallest
word satisfying w < u and |u| ≤ |w|.

– The pointer is reset to p := 1.
– Furthermore the list cycles is updated as to only consider

beginnings of cycles in the new word u. Thus for each pair
{i1, i2} in cycles, it is deleted if |u| ≤ i1 or it is replaced by
{i1, |u| − lM + 1} if i1 < |u| ≤ i2 + lM .

(4) Repeat Step (3) until termination is achieved.
Table 3. Construct an infinite word and look for intersecting cycles

As we mentioned earlier, our algorithm only gives an upper bound and a lower
bound on the degree of polynomial growth. We will give two examples to clarify
the algorithm and to show the complications that can occur in the computations,
which cause the use of bounds in stead of an accurate value.

Example 3.9. We take X = {x, y},M = {yxx, yy}, and use the Ufnarovski graph
ΓM .

y
xx→ xy � xy

In this case no problems occur and polynomial growth of degree 2 is detected.
Algorithm 3 first notices that xxx contains a cycle and then tries to expand xx
further. In this process the word xxyxy is encountered, which also contains a cycle.
Since |cycles| = 2 for this word, which implies that there is a word containing 2
cycles, we have dlow = 2. On the other hand no other cycles are encountered, so



20 ARJEH M. COHEN

d = dlow = dupp = 2. More precisely algorithm 3 follows the following steps.

w = x V = {} cycles = {}
w = xx V = {xx} cycles = {}
w = xxx V = {xx} cycles = {{1, 2}}
w = xxy V = {xx, xy} cycles = {{1, 1}}
w = xxyx V = {xx, xy, yx} cycles = {{1, 1}}
w = xxyxx V = {xx, xy, yx} cycles = {{1, 1}} M |w
w = xxyxy V = {xx, xy, yx} cycles = {{1, 1}, {2, 4}}
w = xxyy V = {xx, xy} cycles = {{1, 1}, {2, 2}} M |w
w = xy V = {xy} cycles = {}
w = y V = {} cycles = {}
w = yy V = {yy} cycles = {} M |w,DONE

The list cycles holds all pairs of indices {i1, i2} such that w[ i1..i2 ] is the beginning
of a cycle. Thus i2 is sometimes lowered if w is increased. Notice that if a cycle is
encountered that begins with a word w of length lM and this cycle is fully examined,
i.e. increasing of the word means removing the cycle starting with w from the list
cycles, we can add w to M . We do not miss out on exponential growth, for this
would have been detected in examining this cycle. In this way we may loose more
information on the actual degree of growth though.

Example 3.10. Take X = {x, y},M = {xxy, yy}. Then the degree of the polyno-
mial growth is not detected. The Ufnarovski graph ΓM is as follows.

xy � yx →y
xx

Algorithm 3 follows the following steps.

w = x V = {} cycles = {}
w = xx V = {xx} cycles = {}
w = xxx V = {xx} cycles = {{1, 2}}
w = xxy V = {xx} cycles = {{1, 1}} M |w
w = xy V = {xy} cycles = {}
w = xyx V = {xy, yx} cycles = {}
w = xyxy V = {xy, yx} cycles = {{1, 3}}
w = xyy V = {xy, yy} cycles = {{1, 1}} M |w
w = y V = {} cycles = {}
w = yy V = {yy} cycles = {} M |w,DONE

Observe that dlow = 1 since the maximum number of disjoint cycles encountered
at any stage is 1. Furthermore dupp = 2 since in total 2 cycles are encountered.
However, d = 2. The reason that this is not detected by the algorithm is that it
will not go back from a cycle to a lexicographical smaller cycle. Remember that at
all times we increase words in such a way that they satisfy equality (1) in section
3.1.

3.5. Computing Hilbert Series. The GBNP package also offers a function to
compute partial Hilbert Series of a monomial algebra. This Hilbert series can
be used as a measurement of growth and can be used to bound Gröbner basis
computations.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 21

Given a graded algebra Q =
⊕∞

i=0 Qi all of whose subspaces Qi are finite di-
mensional, define the Hilbert series by

HQ :=
∞∑

i=0

(dim Qi)ti.

Note that the monomial algebra we consider can always be split up into homoge-
neous subspaces, namely by taking Qi to be the subspace spanned by monomials
of length i. It is immediately clear from the definition that all the coefficients of
the Hilbert series will be non-negative. The function offered is an implementation
of an algorithm described in [9] and it uses the concept of a graph of chains and
some cohomology result.

3.6. The PreProcess algorithm. Sometimes the set of monomials M can be
easily reduced, which can save us a lot of time later on. By reduction, we mean
that we can simplify the set in such a way that it does not affect the growth of the
related monomial algebra. It will however change the set of standard words, and
thus generate a different algebra. We distinguish the following two possibilities of
reduction. Let X = {x1, . . . , xn} and w ∈ X∗.

(1) if wx1, . . . , wxk ∈ M then M := (M\{wx1, . . . , wxk}) ∪ {w}
(2) if x1w, . . . , xkw ∈ M then M := (M\{x1w, . . . , xkw}) ∪ {w}

Remark 3.11. We are only interested in the second type of reduction, which we
call left reduction, since the first type of reduction is implemented in Algorithms
2 and 3 and can be achieved by mere bookkeeping, as follows from the following
argument. Consider a word w = uv where v is a standard word of length lM .
If no extension of v leads to an infinite word, then we should not consider words
containing v anymore in the remainder of our search and we can achieve this by
adding v to M . By doing so, in the rest of the check, each word w′ = u′v where
u′ > u will be recognized as a dead end immediately, without needing further
checks.

Example 3.12. It is not always directly obvious that left reduction is possible.
To see this, take X = {x, y} and M = {xx, yxy}. As xx belongs to M , we can
temporarily add the monomials xxx, xxy, and yxx to M . Now both xxy and yxy
are in M , so we replace these by xy. Finally, we replace xxx and yxx back by xx.
Thus M is left reduced to M = {xx, xy}.

One readily checks that if we would also have been interested in right reduction,
then by applying reduction more than once we could even reduce the set M to
M = {x}, in which case it is clear that yy . . . is an infinite standard word.

Thus in order to find all possibilities of left reduction, we sometimes need to add
subwords to the right of existing member of (M) first. We will make this more
precise.

Definition 13. Given an alphabet X of size k. We call a set of monomials M left
reduced if, for each m ∈ M , we have |{ t ∈ M | t[2..|t|] C m[2..|m|]}| < n.

Equality would imply that left reduction is possible; suppose ni (i = 1, . . . , k)
are different monomials in M such that ni[2..|ni|] C m[2..|m|]. Then since ni (i =
1, . . . , k) belong to M and so do not divide one another, n1[1], n2[1], . . . , nk[1] are
all different and form the k leaves of a full subtree.



22 ARJEH M. COHEN

We can choose to reduce our monomial set M while building the tree T before
using Algorithms 2 and 3. Reduction does not alter infinite paths, but only cuts
down dead-ends. Therefore these algorithms, which all look for infinite paths, still
work on our reduced set and return the same result.

Since left reduction changes the set of standard words, the Hilbert series of this
new algebra will differ from the original one, so we should not preprocess before
computing the Hilbert series. Definition 13 hints us to a reduction algorithm.

Algorithm 3.13. Reduce a monomial set while building the corresponding tree

(1) Initialize T = [].
(2) For all u ∈ M consider all relevant expansions of u:

for all v ∈ M with |v| > |u| and v[2..|u|] = u[2..|u|]
• Let w be the suffix of v of length |v| − |u|.
• Add uw to T .
• Reduce T such that it does not contain full subtrees.

(3) Let M ′ be the set of words in M belonging to T .
(4) If M 6= M ′ then go to Step (2) with M := M ′.
(5) Return(M).

The recursive character of the algorithm is due to the fact that new possibilities
of left reduction may occur after a reduction step. This occurs in the following
example.

Example 3.14. Take X = {x, y} and M = {xx, yxy, yyx}. We will show the
reduction process using the tree notation of reversed members of M .

��
x

@@
y

���x

@@
y

@@
y

HHH
y

��
x

@@
y

(1)−→
��
x

@@
y

���x

@@
y

@@
y

HHH
y

��
x

@@
y

��
x

(2)−→
��
x

@@
y

���x

@@
y

@@
y

HHH
y

��
x

(3)−→

��
x

@@
y

�
��x

@@
y

@@
y

HHH
y

��
x

��
x

(4)−→
��
x �

��x

@@
y

HHH
y

��
x

(5)−→ �
��x HHH

y

��
x

(1) the extension xxy of the word xx is added to the tree;
(2) branches xxy and yxy can be reduced to branch xy;
(3) the extension xyx of the word xy is added to the tree;
(4) branches xyx and yyx are reduced to branch yx;
(5) branches xx and yx are reduced to branch x.

Steps (1) and (2) occur in the first recursion step, Steps (3), (4), and (5) in the
second recursion step.

Instead of full preprocessing we can also choose to upper bound the number of
recursions. In this way we have some control over the amount of preprocessing.

References

[1] A.M. Cohen & D.A.H. Gijsbers, GBNP, A GAP Package for Gröbner bases of non-

commutative polynomials.
http://www.win.tue.nl/~amc/pub/grobner/doc.html.



NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS 23

[2] Edward L. Green, Noncommutative Grobner bases, and projective resolutions, pp. 29-
60 in ”Computational Methods for Representations of groups and algebras (Essen 1997),

Birkhauser, Basel 1999.

[3] Donald E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, second
edition, Addison Wesley Longman, 1998.

[4] S. A. Linton, Constructing matrix representations of finitely presented groups, Computational
group theory, Part 2, J. Symbolic Comput., 12 (1991)427–438.

[5] S. A. Linton, Computational linear algebra in algebraic and related problems (Essen, 1992),

Linear Algebra Appl., 192 (1993)235–248.
[6] T. Mora, An introduction to commutative and non-commutative Gröbner Bases, Journal of

Theoretical Computer Science 134 (1994) 131–173.

[7] P. Nordbeck, Canonical Bases for Algebraic Computations, Doctoral Thesis in Mathematical
Sciences, LTH Lund (2001)

[8] V.A. Ufnarovski, A Growth Criterion for Graphs and Algebras Defined by Words, Mathe-

matical Notes 31, 238-241 (1982)
[9] V.A. Ufnarovski, Combinatorial and Asymptotic Methods in Algebra, Algebra-VI, Encyclo-

pedia of Mathematical Sciences, Volume 57, Springer (1995),5-196

Arjeh M. Cohen, Department of Mathematics and Computer Science, Eindhoven Uni-
versity of Technology, POBox 513, 5600 MB Eindhoven, The Netherlands

E-mail address: A.M.Cohen@tue.nl


