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Chapter 1

Introduction and Main Functions

This chapter provides an overview of the background material, and provides documentation for the
main functions and data structures of the MapClass package.

1.1 Background Material

Let G be a finite group, let C1, . . . ,Cr be a collection of conjugacy classes in G. Let E =
E(G,g,(C1, . . . ,Cr)) denote the set of all tuples σ = (σ1, ...,σ2g+r) ∈ G2g+r (for natural numbers g
and r) of elements in G satisfying the relation

g

∏
i=1

[σi,σg+i]
r

∏
i=1

σ2g+i = 1

and such that σ2g+k ∈Ck. If the tuple also satisfies 〈σ1, . . . ,σ2g+r〉= G it is said to be generating.
One may associate the elements of the tuple σ with the standard generators of the fundamental

group of a compact connected surface S (genus g, r punctures). The mapping class group of S is nat-
urally isomorphic to Out(π1(S)) and so gives rise to an action on the fundamental group of S modulo
inner automorphisms. This action can be transferred to an action on the set E (up to conjugation in
G). The mapping class orbits are the orbits of E under this action.

The package can be used to compute the set E(G,g,(C1, . . . ,Cr)) and the corresponding partition
into mapping class orbits for a given group G and a set of conjugacy classes (C1, ...,Cr) (although the
programs expect a tuple of class representatives). For an example application see Section 1.5. We call
the tuple (g;C1, ...,Cr) the signature. The package is an extension of the Braid package for GAP.

1.2 Overview of Main Functions

The following are the principal ways for calculating the mapping class orbits for a given signature and
group. We require our groups to be permutation groups, and the tuple in question to have length at
least two.

1.2.1 AllMCOrbits

♦ AllMCOrbits(group, genus, tuple) (function)

4



MapClass 5

This function calculates the orbits for the given group, genus and tuple. This function is a wrapper
for the function AllMCOrbitsCore (1.2.2), and so can make use of GAP’s OptionsStack. The
options are described in more detail in the documentation for AllMCOrbitsCore (1.2.2). We draw
attention to two useful options: the OutputStyle and SaveOrbit options. The SaveOrbit option
takes values of either false - in which case the orbit is not saved to a file - or it accepts a string that is
the name of a directory in which the routine saves the orbits. See AllMCOrbitsCore (1.2.2) for more
details on the saving process. The OutputStyle option controls the verbosity of the output of the
function. It accepts three possible values:

• "silent" – the routine prints no output except in the case of an Error.

• "single-line" – the routine prints output to a single line. An intermediate output style for
those who want some output but do not want to see all diagnostic output.

• "full" – the routine provides full diagnostic output.

1.2.2 AllMCOrbitsCore

♦ AllMCOrbitsCore(group, genus, tuple, partition, constant) (function)

This function calculates the orbits for the given group, genus and tuple, with the r branch points
partitioned as in partition. It uses the given constant to determine how many of the tuples
it want to account for before exiting. This function also make use of GAP’s OptionsStack if one
desires to alter how the algorithm runs. The following options and their defaults are given below.

Option Name Default Value
MaximumWeight 40
MinimumWeight 20
InitialWeight 20

BumpUp 7
KnockDown 7

InitialNumberOfRandomTuples 20
SaveOrbit false

OutputStyle "full"

When trying to search for orbits it can be the case that the routine struggles to find a small orbit
because of the low probability of randomly choosing a tuple in the orbit. To combat this problem the
routine does not choose tuples entirely randomly but uses a weighted random selection to increase
the probability of selecting tuples appearing in small tuples. To small subgroups of our group we
have an associated weight. When a subgroup is generated by a tuple in our orbit frequently then we
reduce its weight. Subgroups which do not appear often have their weight increased. The options
MaximumWeight, MinimumWeight, InitialWeight,BumpUp, and KnockDown, control this subgroup
weighting. Each option takes positive integer values. They play the following roles in the weighting
process:

• MaximumWeight : The maximum weight that a subgroup can be.

• MinimumWeight : The minimum weight that a subgroup can be.

• InitialWeight : The weight that a new subgroup receives when added to to the list of small
subgroups.
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• BumpUp : The amount we increase the weight of a subgroup by when it does not appear fre-
quently.

• KnockDown : The amount we decrease the weight of a subgroup by when it appears too fre-
quently.

The default options were chosen experimentally and so it may be beneficial to tune these values for a
specific case.

The option InitialNumberOfRandomTuples decides how many tuples the routine collects before
trying to see if they are in some pre-existing orbit.

The option SaveOrbit which is by default false can be set to the name of a directory in which
you want to save orbits. This option then saves the orbits to files in the folder with ” name”. So for ex-
ample if you wish to save your orbits into the file example then you would run AllMCOrbits(group,
genus, tuple: SaveOrbit:="example");. The orbits are then saved in orbits which are named
numerically. Following on from the above example then the first orbit will be saved as ” example/0”.
The OutputStyle option controls the verbosity of the output. It accepts three possible values:

• "silent" - the routine prints no output except in the case of an Error.

• "single-line" - the routine output to a single line. An intermediate output style for those who
want some output but do not want to see all diagnostic output.

• "full" - the routine provides full diagnostic output.

1.2.3 GeneratingMCOrbits

♦ GeneratingMCOrbits(group, genus, tuple) (function)

This calculates the orbits for the given arguments. Unlike the AllMCOrbits (1.2.1) function,
GeneratingMCOrbits calculates only those orbits whose tuples generate the whole of our original
group.

1.2.4 GeneratingMCOrbitsCore

♦ GeneratingMCOrbitsCore(group, genus, tuple, partition, constant) (func-

tion)

This calculates the orbits for the given arguments. Unlike the AllMCOrbits (1.2.1) function,
GeneratingMCOrbitsCore calculates only those orbits whose tuples generate the whole of our orig-
inal group. As with AllMCOrbitsCore (1.2.2), the argument partition must be a partition of the
conjugacy classes represented in list form. We also have access to the full value of the options stack
as in AllMCOrbitsCore (1.2.2).

1.2.5 MappingClassOrbit

♦ MappingClassOrbit(group, genus, principaltuple, partition, tuple)
(function)

Returns: an orbit record for an orbit containing tuple or returns fail
Calculates the orbit of the tuple with respect to the given group, principaltuple and

genus.
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1.2.6 PrepareMinTree

♦ PrepareMinTree(principaltuple, group, ourR, genus) (function)

Returns: a record with two keys MinimizationTree and MinimumSet. If record is the returned
record then record.MinimizationTree is the list encoding the tree used to help minimize tuples.
The list record.MinimumSet is a list of minimal elements which is also used to speed up tuple
minimization.

1.2.7 MinimizeTuple

♦ MinimizeTuple(tuple, minimizationTree, minimumSet,
numberOfGenerators) (function)

Returns: the minimal tuple in the same orbit of tuple.
Take the minimisation data provided by PrepareMinTree (1.2.6) and minimizes the given

tuple.

1.2.8 EasyMinimizeTuple

♦ EasyMinimizeTuple(group, genus, tuple) (function)

Returns: the minimal tuple in the same orbit as tuple.

1.2.9 IsInOrbit

♦ IsInOrbit(orbit, tuple) (function)

Returns: True if the tuple lies in the orbit.

1.2.10 FindTupleInOrbit

♦ FindTupleInOrbit(orbit, tuple) (function)

Returns: the index of tuple in orbit.TupleTable if in the orbit. If the tuple is not in
orbit returns fail.

1.2.11 IsEqualOrbit

♦ IsEqualOrbit(orbit1, orbit2) (function)

Returns: true if the two orbits are equal else returns fail.

1.2.12 SelectTuple

♦ SelectTuple(orbit, index) (function)

Returns: the tuple orbit.TupleTable[index].tuple.

1.2.13 NumberGeneratingTuples

♦ NumberGeneratingTuples(group, partition, tuple, genus) (function)

Returns: the total number of possible generating tuples for the group and tuple.
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1.2.14 TotalNumberTuples

♦ TotalNumberTuples(group, tuple, genus) (function)

Returns: the total number of tuples we have to account for.

1.2.15 CalculateTuplePartition

♦ CalculateTuplePartition(group, tuple) (function)

Returns: A partition of 1, . . . ,r where r is the length of the tuple.
The function returns a partition of 1, . . . ,r such that i and j lie in the same block if and only if the

elements tuple[i] and tuple[j] are member of the same conjugacy class. The program currently
requires that the elements of the tuple be ordered such that if tuple[i] and tuple[j] are in the same
conjugacy class with i≤ j then so istuple[k] for all i≤ k ≤ j.

1.2.16 RestoreOrbitFromFile

♦ RestoreOrbitFromFile(n, name[, path]) (function)

Returns: the n-th orbit record from the project with project "name"
By default the function searches the current working directory for the saved project folder and

searches inside this for the n-th orbit. If no such orbit exists it returns fail. If an optional argument
path is provided then it searches this path for a folder with the name specified (note that path expects
a Directory object). If an orbit exists then it is returned as a record as outlined in the data structure
section.

1.2.17 SaveOrbitToFile

♦ SaveOrbitToFile(orbit, n, name) (function)

Saves the orbit to filename ”n” in the directory ’ name’. The directory must already exist.

1.3 Key Data Structures

Many of the above functions require or return key data structures which we aim to document.

1.3.1 The Orbit Record

Many of the functions return or expect an orbit ”object”. This object is in fact record with the following
values:

• PrincipalFiniteGroup - the finite group

• OurG - genus

• OurR - length of our primary tuple

• OurN - number of points on which our group acts

• NumberOfGenerators - 2 OurG+ OurR

• OurFreeGroup - a free group on NumberOfGenerators letters
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• AbsGens - generators for OurFreeGroup

• OurAlpha - generators of OurFreeGroupcorresponding to the αi type loops in the fundamental
group ( the first g elements of AbsGens)

• OurBeta - elements of OurFreeGroup corresponding to β type loops

• OurGamma - generators of OurFreeGroup corresponding to the loops around branch points

• TupleTable - a table containing all the tuples in the orbit

• HashLength

• Hash

• PrimeCode

• OurAction

• ActionOnOrbit

• MinimizationTree- minimization structure

• MinimumSet- minimizaton structure

1.3.2 The Tuple Table

The tuple table is a list. Each element of the list is a record with the names, tuple and next. If orbit
is an orbit object then orbit.TupleTable[n].tuple returns the tuple at index n of the tuple table.

1.4 A Sample Session

We demonstate how one might use the package.
Example

gap> group:=AlternatingGroup(5);
Alt( [ 1 .. 5 ] )
gap> tuple:=[ (1,2)(3,4), (1,2)(3,4), (1,2)(3,4) ]
[ (1,2)(3,4), (1,2)(3,4), (1,2)(3,4) ]
gap> orbits:=AllMCOrbits(group,1,tuple);;

Total Number of Tuples: 189120

Collecting 20 random tuples... done

Cleaning done; 20 random tuples remaining

Orbit 1:

Length=3072
Generating Tuple =[ (1,2,4,5,3), (1,4,5,2,3), (1,2)(4,5),
(1,4)(2,3), (2,5)(3,4) ]
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Generated subgroup size=60
Centralizer size=1
4800 tuples remaining
Cleaning current orbit...
Cleaning a list of 20 tuples
Random Tuples Remaining: 0
Cleaning done; 0 random tuples remaining

Collecting 20 random tuples... done

Cleaning orbit 1
Cleaning a list of 20 tuples
Random Tuples Remaining: 0

Cleaning done; 0 random tuples remaining

Collecting 40 random tuples... done

Cleaning orbit 1
Cleaning a list of 40 tuples
Random Tuples Remaining: 3

Cleaning done; 3 random tuples remaining

Orbit 2:

Length=32
Generating Tuple =[ (1,4)(2,3), (1,2)(3,4), (1,4)(2,3), (1,2)(3,4),
(1,3)(2,4) ]
Generated subgroup size=4
Centralizer size=4
4320 tuples remaining
Cleaning current orbit...
Cleaning a list of 3 tuples
Random Tuples Remaining: 2
Cleaning done; 2 random tuples remaining

Orbit 3:

Length=72
Generating Tuple =[ (1,5,2), (1,3,2), (1,2)(3,5), (1,3)(2,5),
(1,3)(2,5) ]
Generated subgroup size=12
Centralizer size=1
0 tuples remaining
Cleaning current orbit...
Cleaning a list of 2 tuples
Random Tuples Remaining: 0
Cleaning done; 0 random tuples remaining
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gap> # Check we have as many orbits as it says...
gap> Length(orbits);
3
gap> # Inspect the first orbit..
gap> orb1:=orbits[1];;
gap> # How long is orb1?
gap> Length(orb1.TupleTable);
3072
gap> # Select element 42 ...
gap> SelectTuple(orb1, 42);
[ (1,3,4), (1,5,3,2,4), (1,5)(2,4), (1,2)(3,5), (2,3)(4,5) ]
gap> # Save the orbit to a file...
gap> SaveOrbitToFile(orb1, 1, "test");
gap> #If the folder doesn’t exist we get an error..
gap> SaveOrbitToFile(orb1, 1, "foo");
AppendTo: cannot open ’_foo/1’ for output at
CallFuncList( APPEND_TO, arg );
gap> #
gap> # Now we try find generating orbits
gap> group:=SymmetricGroup(5);
Sym( [ 1 .. 5 ] )
gap> # And we will save them using the ‘SaveOrbit‘ option
gap> GeneratingMCOrbits(group,1,tuple : SaveOrbit:="example");;

Total Number of Tuples: 607680

Collecting 20 generating tuples .. done

Cleaning done; 20 random tuples remaining

Orbit 1:
Length=5064
Generating Tuple =[ (1,3,2,5), (2,4,3), (1,4)(3,5), (1,3)(2,5),
(1,4)(3,5) ]
Generated subgroup size=120
Saving orbit to file _example/0
Centralizer size=1
0 tuples remaining
Cleaning current orbit...
Cleaning a list of 20 tuples
Random Tuples Remaining: 0
Cleaning done; 0 random tuples remaining

gap> generatingorbits:=last;;
gap> # How many generating orbits are there?
gap> Length(generatingorbits);
1
gap> # Is this orbit equal to the other one we found earlier
gap> IsEqualOrbit(orb1, generatingorbits[1]);
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fail
gap> # We can reload the orbits...
gap> orb2:=RestoreOrbitFromFile(0, "example");;
gap> Length(orb2.TupleTable);
5064

1.5 An Application

This section describes an application of the package.
Let X be a compact Riemann surface of genus g and f : X → P1C be a meromorphic function of

degree n. Let B be the set of branch points for f and fix a basepoint b0 ∈ P1C−B. The fundamental
group π1(P1C−B,b0) acts transitively on the fibre f−1(b0) and this corresponds to a representation

f ∗ : π1(P1C−B,b0)→ Sn

The image of f ∗ is called the monodromy group of (X , f ). The fundamental group of the punctured
Riemann sphere is generated by the loops that wind around the points in B. Label the branch points
b1, ...,br and let τi be the image under f ∗ of the loop, γi ∈ π1(P1C−B), that winds once around the
point bi ∈ B. Therefore,

〈τ1, ...,τr〉= G

and
τ1 · · ·τr = 1

Moreover by the Riemann-Hurwitz formula

2(n+g−1) =
r

∑
1

ind(τi)

where the ind(τi) is the minimal number of factors to express τi as a product of transpositions. A set
t1, . . . , tr of elements of Sn satisfying the Riemann-Hurwitz formula, the product-one condition, and
generating some transitive subgroup G of Sn is called a genus g generating system for G. Therefore to
the meromorphic function (X , f ) there is an associated genus g system. In fact the conjugacy classes
of the elements τi are also determined by f – the collection of conjugacy classes is sometimes called
the ramification type of f . On the other hand for every genus g generating system, t = (τ1, . . . ,τn) for
G there is Riemann surface of genus g and a meromorphic function with associated generating system
t – this result is known as Riemann’s Existence Theorem.

The question we hope to use our package to answer is: For a given finite group G how many
meromorphic maps with monodromy group G are there? It can be shown – see [Völ96] for example
– that determining whether two genus g coverings are equivalent corresponds to determining whether
their associated genus g systems are in the same mapping class orbit ( most literature would refer
to mapping class orbits as braid orbits in this case - this is because of the equivalence between the
mapping class group of a punctured disc and the braid groups [Bir75]).

Thus for a finite group G we can answer the above principal question using the following process:

• For a given finite group G the work of Breuer [Bre00] can be used to calculate all possible
ramification types.
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• Pick a tuple, C = (c1, ...,cr), of representative elements of the conjugacy classes which corre-
spond to a chosen ramification type as calculated in the previous step.

• Use the function GeneratingMCOrbits(G, 0, [c1,...,cr]) to calculate the number of
mapping class orbits. Note that the genus argument is 0 because this is the genus of P1C.

For more information on this process and the underlying theory see [MSSV02] and [Völ96].



Appendix A

Installation

To Install the package place the ”MapClass” folder into your GAP system’s ’pkg’ directory. If you
do not have permission to modify the gap package then the package can be included by append-
ing a local directory to GAP’s root directory using the ’-l’ flag. For more information on GAP’s
root directory process try ’?GAP root’ in a GAP session. Or see the online help at http://www.gap-
system.org/Manuals/doc/htm/ref/CHAP009.htm#SECT002 To Load the package simply type ’Load-
Package(”mapclass”);’. If the load has been successful the package banner will be shown.
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