MathGL

for version 2.4.2

A.A. Balakin (http://mathgl.sourceforge.net/)

http://mathgl.sourceforge.net/

This manual is for MathGL (version 2.4.2), a collection of classes and routines for scientific
plotting. Please report any errors in this manual to mathgl.abalakin@gmail.org.

Copyright (©) 2008-2012 Alexey A. Balakin.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

mailto:mathgl.abalakin@gmail.org

Table of Contents

1 Overview.............. 1
1.1 What is MathGL? 1
1.2 MathGL features . ..o e 1
1.3 Imstallation...........ccoiii i 2
1.4 Quick guideo 3
1.5 Changes from v.1.% 4
1.6 Utilities for parsing MGL........ ... i 4
1.7 Thanks. 5

2 MathGL examples............................... 6
2.1 BasiC USAZE. ..o 7

2.1.1 Using MathGL window ..., 7
2.1.2 Drawing to file........oo i 9
2.1.3 Animation.........oouuiiii e 10
2.1.4 Drawing in mMemOTYvvtttttieeaeee et 12
2.1.5 Draw and calculate........... i 13
2.1.6 Using QMathGL....... i, 15
2.1.7 MathGL and PyQt............o i 16
2.1.8 MathGL and MPIL..... i . 17
2.2 Advanced USAGEttt 19
2.2.1 Subplots. ... 19
222 Axisand tickS ... 21
2.2.3 Curvilinear coordinateso oo, 25
2.2.4 Colorbars. 27
2.2.5 Bounding box ... 28
2.26 Ternary axXiS.ceeeeeiiiiii e e 29
2.2.7 Text featuresooueiiini 30
2.2.8 Legend sample..... ..o 33
2.2.9 Cutting sample. ... 34
2.3 Datahandling......... ..o 35
2.3.1 Array creation....... ... 35
2.3.2 Linking array.........cooouiiiiiii i e 37
2.3.3 Change data........cooutiiuiniini i 37
2.4 Data plotting.o e 41
2.0 HInbS. .o 44
2.5.1 “Compound” graphics..........ccouiiiiieiniiiiiiinn... 44
2.5.2 Transparency and lighting 45
2.5.3 Types of transparencyco.eevuiiiiiiineenneann.. 46
2.5.4 AXiS projection 48
255 Adding fog . ..o 50
2.5.6 Lighting sample 51
2.5.7 Using primitives....... ..o 53
2.5.8 STFA sample.o 56

2.5.9 Mapping visualization Y
2.5.10 Data interpolation......... i 58
2.5.11 Making regular data............ il 61
2.5.12 Making histogramo i 62
2.5.13 Nonlinear fitting hints.......... o i 62
2.5.14 PDE solving hints......... ... i 64
2.5.15 Drawing phase plain......... ... o i i 68
2.5.16 Pulse propertiescoouiiiiiiiiiii i 69
2.5.17 Using MGL parser.ccoouiiiiiiiiiiniiiennn.. 70
2.5.18 Using options.o 72
2.5.19 “Templates” e 73
2.5.20 Stereo ImMageot 74
2.5.21 Reduce memory USagecouuuuiieniiiieannieaann. 75
2.5.22 Scanning fileo 75
2.5.23 Mixing bitmap and vector output........................ 76
2.6 FAQ . 76
General concepts...............oiiiiii.. 81
3.1 Coordinate axesoevut it e 81
3.2 Color Styles .t 82
3.3 Line styles. . ..o 82
3.4 Color scheme. ... i 84
3.5 Font styleso 86
3.6 Textual formulas i 87
3.7 Command OPtIONS vuet et e 88
3.8 Interfaces ..o 89
3.8.1 C/Fortran interface................ooiiiiiiiiiiiiiiia.. 90
3.8.2 C++/Python interface......................ooi 90
MathGL core................... 92
4.1 Create and delete objects. ... 92
4.2 Graphics Setupottt 92
4.2.1 TranSPaTeICY vvve ettt ettt 93
4.2.2 Lighting. ... 94
4,23 FOg. 95
4.2.4 Default SIZeS.oovi i 95
4.2.5 CUutbingooin 96
4.2.6 Font settingsccooiiiiiiiii i 97
4.2.7 Palette and colors ... i 98
4.2.8 Masks ... 99
4.29 Error handling........ ... o i i 99
4.2.10 Stop drawingeeiiiii e 101
4.3 AXIS SEttINES . oo\t 102
4.3.1 Ranges (bounding box) i 102
4.3.2 Curved coordinatesc.oviiiiiiiiiniiiinaann.. 103
4.3.3 THCKS . .ttt 105

4.4 Subplots and rotation i 108

ii

4.5 Export pictureo 112
4.5.1 Exporttofile.... ... 113
4.5.2 Frames/Animationo, 117
4.5.3 Bitmap in memory ... 118
4.5.4 Parallelization.......... ... i i 120

4.6 Background 120

4.7 Primitives. 121

4.8 Text printing. 126

4.9 Axisand Colorbar......... ... 128

410 Legend. 130

411 1D plotting .. .coont i 132

4.12 2D plotting oot 145

4.13 3D plotting ...t 152

4.14 Dual plotting ..o 156

4.15 Vector flelds. ... 161

4.16 Other plotting ... 167

4.17 Nonlinear fitting i 172

4.18 Data manipulation 175

Widget classes 178

5.1 mglWnd class 179

5.2 mglDraw class.t 182

5.3 FLLMathGL class.......c.oviiit e 183

5.4 QMathGL class ..o 184

5.5 wxMathGL class ... 189

Data processing 193

6.1 Public variables 193

6.2 Data constructoro 194

6.3 Dataresizing....... ..ot 196

6.4 Datafilling..........o i 198

6.5 File I/O. . 203

6.6 Make another data i 206

6.7 Data changing........ ... o i i 212

6.8 Interpolation........... ... 216

6.9 Data information............. . i 217

6.10 OPerators.o.uuiiii i e e 220

6.11 Global functions i 222

6.12 Evaluate eXpressionoeiiiiiiii i 229

6.13 Special data classes ... 230

MGL scripts. ... 234

7.1 MGL definition.o 234

7.2 Program flow commands i 236

7.3 Special commentaries. ... e 238

74 LaTeX package........cooouiiiii i 239

7.5 mglParse class.ot 242

iii

8 UDAV . 246
8.1 UDAV OVEIVIEW . o oottt e 246
8.2 UDAV dialogs . ..o et 248
8.3 UDAV hints. ... oo 252

9 Otherclasses.................................. 254
9.1 Define new kind of plot (mglBase class)....................... 254
9.2 User defined types (mglDataA class)...........cooviviien... 260
9.3 mglColor Class. ..o 262
9.4 mglPoint class. ... 264

10 Allsamples........................ ... 266
10.1 Functions for initialization.............. o L. 266
10.2 Sample ‘BWave 268
10.3 Sample ‘@lpha’. 269
10.4 Sample ‘@pde’. 270
10.5 Sample ‘@rea’. 272
10.6 Sample ‘aspect’ 273
10.7 Sample ‘@xial’.t e 274
10.8 Sample ‘@xis’....ooi 275
10.9 Sample barh’. ... 276
10.10 Sample ‘bars’. ... 277
10.11 Sample belt ... oo e 278
10.12 Sample ‘bifurcation’o 279
10.13 Sample ‘DOX ...t 280
10.14 Sample Doxplot’ ...t 281
10.15 Sample ‘DoxSttt 282
10.16 Sample ‘candle’oiiiiiii 283
10.17 Sample ‘chart’.t 284
10.18 Sample ‘cloud’. ...ttt e 285
10.19 Sample ‘colorbar’ttt 286
10.20 Sample ‘combined’ 287
10.21 Sample ‘Comes . ..ttt 288
10.22 Sample ‘cont’. ...t 290
10.23 Sample ‘contd 290
10.24 Sample ‘cont_Xyz’t e 291
10.25 Sample ‘contd’.ot 292
10.26 Sample ‘contf’ 293
10.27 Sample ‘contf3’ ...t 294
10.28 Sample ‘contf _Xyzot 295
10.29 Sample ‘Contv’. ... 296
10.30 Sample ‘correl’ 297
10.31 Sample ‘curvcoor’t 298
10.32 Sample ‘Cut’ . ..o 299
10.33 Sample ‘dat_diff’ 300
10.34 Sample ‘dat_extra’. ...ttt 301
10.35 Sample ‘datal’.o 303

iv

10.36
10.37
10.38
10.39
10.40
10.41
10.42
10.43
10.44
10.45
10.46
10.47
10.48
10.49
10.50
10.51
10.52
10.53
10.54
10.55
10.56
10.57
10.58
10.59
10.60
10.61
10.62
10.63
10.64
10.65
10.66
10.67
10.68
10.69
10.70
10.71
10.72
10.73
10.74
10.75
10.76
10.77
10.78
10.79
10.80
10.81
10.82
10.83

Sample ‘datal’. ... 304
Sample ‘Aens’.t e 306
Sample ‘dens3’. 307
Sample ‘dens_XyzZ’t e 308
Sample ‘detect’ 309
Sample ‘Aew’ ... 310
Sample ‘Aiffract’.......coiiiiiii i 311
Sample ‘dilate’t 314
Sample ‘dots’. ... 316
Sample ‘earth’. 317
Sample ‘error’. 318
Sample ‘error2’ 320
Sample ‘@XpOrt’ ... 321
Sample ‘Tall e 322
Sample ‘FexXport’ 323
Sample it 327
Sample ‘flame2d’c.oiiii e 328
Sample ‘T1oW ... 329
Sample ‘T1ow3 330
Sample Fog ... 331
Sample Fonts’ooi 332
Sample ‘grad’........ . .. 333
Sample histt 334
Sample ‘Afs2d oo 335
Sample ‘AFS3A vt 336
Sample ‘Andirect’t 337
Sample ‘Anplot’t e 338
Sample ‘Aris’. 339
Sample ‘Labelt 340
Sample ‘lamerey’ 341
Sample ‘legend’ i 342
Sample ‘Light’. 343
Sample LogLog ..ottt e 344
Sample ‘Map’ 345
Sample ‘Mark’ 346
Sample Mask’ttt 347
Sample ‘mesh’. 349
Sample ‘mirror’ 350
Sample ‘molecule’ ...t 351
Sample ‘0de’t 353
Sample Oh1C e 355
Sample ‘paraml’ 356
Sample ‘param’ e 357
Sample ‘param3’ 359
Sample ‘paramv’ ... 360
Sample ‘parser’ 362
Sample ‘Pde’ 365
Sample ‘pendelta’ottt 366

10.84
10.85
10.86
10.87
10.88
10.89
10.90
10.91
10.92
10.93
10.94
10.95
10.96
10.97
10.98
10.99
10.100
10.101
10.102
10.103
10.104
10.105
10.106
10.107
10.108
10.109
10.110
10.111
10.112
10.113
10.114
10.115
10.116
10.117
10.118
10.119
10.120
10.121
10.122
10.123
10.124
10.125
10.126
10.127
10.128
10.129
10.130
10.131

Sample ‘pipe’. ... 367
Sample PLOt ...t 368
Sample ‘Pmap’. 369
Sample ‘primitives’....... ... i 370
Sample ‘projection’....... 372
Sample ‘projectiond’t 374
Sample ‘Pulse’.o 375
Sample ‘Qo2d 376
Sample ‘QualityO’ttt e 377
Sample ‘qualityl’ 381
Sample ‘quality2’o 384
Sample ‘qualityd’ 387
Sample ‘QUualityd’ottt 391
Sample ‘QUalityb’ot e 394
Sample ‘Quality8’ 397
Sample ‘Tadar’.t 401
Sample ‘refill’ 401
Sample ‘region’t 403
Sample ‘scanfile’. ...t 404
Sample ‘SChemes’oviiii i 405
Sample ‘SeCtion’t 407
Sample ‘several _light’.........c.civiiiiiiiiiinnon.. 408
Sample ‘S01ve’ 409
Sample ‘Stem’.t 411
Sample ‘Step 412
Sample ‘Stereo’t 413
Sample ‘stfa’. 414
Sample ‘Style’ ... 415
Sample ‘Surf’ 418
Sample ‘SUrf3’ ... 419
Sample ‘Surf3a’ot 420
Sample ‘Surf3c’ ... 421
Sample ‘Surf3ca’.o 422
Sample ‘surfa’ 423
Sample ‘Surfc’ 424
Sample ‘Surfca’t 425
Sample ‘table’ 426
Sample “tape’. ... e 427
Sample “Cens’. 428
Sample ‘“ternary’oittii e 429
Sample “Bext’ 431
Sample ‘text2’ 433
Sample ‘textmark’...... ...t 434
Sample “CickS’ .ot 435
Sample “Bile . ..o 437
Sample “tiles ..t 438
Sample “Corus’ ... 439

Sample “Craj’o e 440

vi

10.132 Sample ‘triangulation’............coiiiiiiiiiiiiii... 441
10.133 Sample “triplot’o.ueiitiii 442
10.134 Sample ‘Bube’.t 444
10.135 Sample ‘typel’ ...t e 444
10.136 Sample ‘typel’ 445
10.137 Sample ‘type2’ 446
10.138 Sample ‘Vectt e 447
10.139 Sample ‘Vect3’ ... 448
10.140 Sample 'venn’........ ... 449
Appendix A Symbols and hot-keys............ 451
A.1 Symbols for styles 451
A.2 Hot-keys for mglview ...t 458
A.3 Hot-keys for UDAV e 459
Appendix B File formats....................... 463
B.1 Font files ..o 463
B.2 MGLD format ... 463
B.3 JSON formato 464
B4 TFS format.... ... i 465
Appendix C Plotting time...................... 466

Appendix D GNU Free Documentation License .. 473

vii

1 Overview

MathGL is ...

a library for making high-quality scientific graphics under Linux and Windows;

e a library for the fast data plotting and handling of large data arrays;

e a library for working in window and console modes and for easy embedding into other
programs;

e a library with large and growing set of graphics.

1.1 What is MathGL?

A code for making high-quality scientific graphics under Linux and Windows. A code for the
fast handling and plotting of large data arrays. A code for working in window and console
regimes and for easy including into another program. A code with large and renewal set of
graphics. Exactly such a code I tried to put in MathGL library.

At this version (2.4.2) MathGL has more than 50 general types of graphics for 1d, 2d
and 3d data arrays. It can export graphics to bitmap and vector (EPS or SVG) files. It
has OpenGL interface and can be used from console programs. It has functions for data
handling and script MGL language for simplification of data plotting. It also has several
types of transparency and smoothed lighting, vector fonts and TeX-like symbol parsing,
arbitrary curvilinear coordinate system and many other useful things (see pictures section
at homepage (http://mathgl.sf.net/)). Finally it is platform-independent and free
(under GPL v.2.0 or later license).

1.2 MathGL features
MathGL can plot a wide range of graphics. It includes:

e one-dimensional (Plot, Area, Bars, Step, Stem, Torus, Chart, Error, Tube, Mark, see
Section 4.11 [1D plotting], page 132);

e two-dimensional plots (Mesh, Surf, Dens, Cont, ContF, Boxs, Axial, Fall, Belt, Tile,
see Section 4.12 [2D plotting], page 145);

e three-dimensional plots (Surf3, Dens3, Cont3, ContF3, Cloud-like, see Section 4.13 [3D
plotting], page 152);

e dual data plots: vector fields Vect, flow threads Flow, mapping chart Map, surfaces
and isosurfaces, transparent or colored (i.e. with transparency or color varied) by other
data SurfA, SurfC, Surf3A, Surf3C (see Section 4.14 [Dual plotting], page 156);

e and so on. For details see see Chapter 4 [MathGL core|, page 92.

In fact, I created the functions for drawing of all the types of scientific plots that I know.
The list of plots is growing; if you need some special type of a plot then please email me
e-mail and it will appear in the new version.

I tried to make plots as nice looking as possible: e.g., a surface can be transparent
and highlighted by several (up to 10) light sources. Most of the drawing functions have 2
variants: simple one for the fast plotting of data, complex one for specifying of the exact
position of the plot (including parametric representation). Resulting image can be saved in

http://mathgl.sf.net/
mailto:mathgl.abalakin@gmail.com

Chapter 1: Overview 2

bitmap PNG, JPEG, GIF, TGA, BMP format, or in vector EPS, SVG or TeX format, or
in 3D formats OBJ, OFF, STL, or in PRC format which can be converted into U3D.

All texts are drawn by vector fonts, which allows for high scalability and portability.
Texts may contain commands for: some of the TeX-like symbols, changing index (upper
or lower indexes) and the style of font inside the text string (see Section 3.5 [Font styles],
page 86). Texts of ticks are rotated with axis rotation. It is possible to create a legend of
plot and put text in an arbitrary position on the plot. Arbitrary text encoding (by the help
of function setlocale()) and UTF-16 encoding are supported.

Special class mglData is used for data encapsulation (see Chapter 6 [Data processing],
page 193). In addition to a safe creation and deletion of data arrays it includes functions
for data processing (smoothing, differentiating, integrating, interpolating and so on) and
reading of data files with automatic size determination. Class mglData can handle arrays
with up to three dimensions (arrays which depend on up to 3 independent indexes atijk}).
Using an array with higher number of dimensions is not meaningful, because I do not know
how it can be plotted. Data filling and modification may be done manually or by textual
formulas.

There is fast evaluation of a textual mathematical expression (see Section 3.6 [Textual
formulas|, page 87). It is based on string precompilation to tree-like code at the creation of
class instance. At evaluation stage code performs only fast tree-walk and returns the value
of the expression. In addition to changing data values, textual formulas are also used for
drawing in arbitrary curvilinear coordinates. A set of such curvilinear coordinates is limited
only by user’s imagination rather than a fixed list like: polar, parabolic, spherical, and so
on.

1.3 Installation

MathGL can be installed in 4 different ways.

1. Compile from sources. The cmake build system is useded in the library. To run it,
one should execute commands: cmake . twice, after it make and make install with
root/sudo rights. Sometimes after installation you may need to update the library list
— just execute ldconfig with root/sudo rights.

There are several additional options which are switched off by default. They are:
enable-fltk, enable-glut, enable-qt4, enable-qt5 for ebabling FLTK, GLUT
and/or Qt windows; enable-jpeg, enable-gif, enable-hdf5 and so on for enabling
corresponding file formats; enable-all for enabling all additional features. For using
double as base internal data type use option enable-double. For enabling language
interfaces use enable-python, enable-octave or enable-all-swig for all languages.
You can use WYSIWYG tool (cmake-gui) to view all of them, or type cmake -D
enable-all=on -D enable-all-widgets=on -D enable-all-swig=on . in command
line for enabling all features.
There is known bug for building in MinGW — you need to manually add linker
option -fopenmp (i.e. CMAKE_EXE_LINKER_FLAGS:STRING=’-fopenmp’ and
CMAKE_SHARED_LINKER_FLAGS:STRING="-fopenmp’) if you enable OpenMP support
(i.e. if enable-openmp=0N).

2. Use a precompiled binary. There are binaries for MinGW (platform Win32). For
a precompiled variant one needs only to unpack the archive to the location of the

Chapter 1: Overview 3

compiler (i.e. mathgl/lib in mingw/lib, mathgl/include in mingw/include and so on)
or in arbitrary other folder and setup paths in compiler. By default, precompiled
versions include the support of GSL (www.gsl.org) and PNG. So, one needs to have
these libraries installed on system (it can be found, for example, at http://gnuwin32.
sourceforge.net/packages.html).

3. Install precompiled versions from standard packages (RPM, deb, DevPak and so on).

Note, you can download the latest sources (which can be not stable) from sourceforge.net
SVN by command

svn checkout http://svn.code.sf.net/p/mathgl/code/mathgl-2x mathgl-code

IMPORTANT! MathGL use a set of defines, which were determined at configure

stage and may differ if used with non-default compiler (like using MathGL binaries
compiled by MinGW in VisualStudio). There are MGL_SYS_NAN, MGL_HAVE_TYPEOF,
MGL_HAVE_PTHREAD, MGL_HAVE_ATTRIBUTE, MGL_HAVE_C99_COMPLEX, MGL_HAVE_RVAL.
I specially set them to O for Borland and Microsoft compilers due to compatibility
reasons. Also default setting are good for GNU (gcc, mingw) and clang compilers.
However, for another compiler you may need to manually set this defines to 0 in file
include/mgl2/config.h if you are using precompiled binaries.

1.4 Quick guide

There are 3 steps to prepare the plot in MathGL: (1) prepare data to be plotted, (2) setup
plot, (3) plot data. Let me show this on the example of surface plotting.

First we need the data. MathGL use its own class mglData to handle data arrays (see
Chapter 6 [Data processing], page 193). This class give ability to handle data arrays by
more or less format independent way. So, create it

int main()
{
mglData dat(30,40); // data to for plotting
for(long i=0;i<30;i++) for(long j=0;j<40;j++)
dat.ali+30%j] = 1/(1+(i-15)*(i-15)/225.+(j-20)*(j-20)/400.);

Here I create matrix 30*40 and initialize it by formula. Note, that I use long type for
indexes i, j because data arrays can be really large and long type will automatically provide
proper indexing.

Next step is setup of the plot. The only setup I need is axis rotation and lighting.

mglGraph gr; // class for plot drawing
gr.Rotate(50,60); // rotate axis
gr.Light (true); // enable lighting

Everything is ready. And surface can be plotted.
gr.Surf (dat); // plot surface

Basically plot is done. But I decide to add yellow (‘y’ color, see Section 3.2 [Color styles],
page 82) contour lines on the surface. To do it I can just add:

gr.Cont(dat,"y"); // plot yellow contour lines

http://gnuwin32.sourceforge.net/packages.html
http://gnuwin32.sourceforge.net/packages.html

Chapter 1: Overview 4

This demonstrate one of base MathGL concept (see, Chapter 3 [General concepts],
page 81) — “new drawing never clears things drawn already”. So, you can just conse-
quently call different plotting functions to obtain “combined” plot. For example, if one
need to draw axis then he can just call one more plotting function

gr.AxisQ); // draw axis
Now picture is ready and we can save it in a file.
gr.WriteFrame("sample.png"); // save it
}
To compile your program, you need to specify the linker option -1mgl.

This is enough for a compilation of console program or with external (non-MathGL)
window library. If you want to use FLTK or Qt windows provided by MathGL then you
need to add the option -1mgl-wnd.

Fortran users also should add C++ library by the option -1stdc++. If library was built
with enable-double=0N (this default for v.2.1 and later) then all real numbers must be
real*8. You can make it automatic if use option -fdefault-real-8.

1.5 Changes from v.1.*

There are a lot of changes for v.2. Here I denote only main of them.
e mglGraph class is single plotter class instead of mglGraphZB, mglGraphPS and so on.

e Text style and text color positions are swapped. I.e. text style ‘r:C’ give red centered
text, but not roman dark cyan text as for v.1.*.

e ColumnPlot() indexing is reverted.

e Move most of arguments of plotting functions into the string parameter and/or options.
e “Bright” colors (like {b8}) can be used in color schemes and line styles.

e Intensively use pthread internally for parallelization of drawing and data processing.
e Add tick labels rotation and skipping. Add ticks in time/date format.

e New kinds of plots (Tape(), Label(), Cones(), ContV()). Extend existing plots. New
primitives (Circle(), Ellipse(), Rhomb(), ...). New plot positioning (MultiPlot(), Grid-
Plot())

e Improve MGL scripts. Add ’ask’ command and allow string concatenation from differ-
ent lines.

e Export to LaTeX and to 3D formats (OBJ, OFF, STL).
e Add pipes support in utilities (mglconv, mglview).

1.6 Utilities for parsing MGL

MathGL library provides several tools for parsing MGL scripts. There is tools saving it to
bitmap or vectorial images (mglconv). Tool mglview show MGL script and allow to rotate
and setup the image. Another feature of mglview is loading *.mgld files (see ExportMGLD())
for quick viewing 3d pictures.

Both tools have similar set of arguments. They can be name of script file or options.
You can use ‘-’ as script name for using standard input (i.e. pipes). Options are:

e -1 str set str as argument $1 for script;

Chapter 1: Overview 5

e -9 str set str as argument $9 for script;
e -L loc set locale to loc;
e -s fname set MGL script for setting up the plot;

e -h print help message.

Additionally mglconv have following options:
e -A val add val into the list of animation parameters;

e -C vI:v2[:dv] add values from vl ot v2 with step dv (default is 1) into the list of
animation parameters;

e -0 name set output file name;

e -n disable default output (script should save results by itself);
e -S val set set scaling factor for [setsize], page 112;

e -q val set [quality], page 112, for output (val=0...9).

Also you can create animated GIF file or a set of JPEG files with names ‘frameNNNN. jpg’
(here ‘NNNN’ is frame index). Values of the parameter $0 for making animation can be
specified inside the script by comment ##a val for each value val (one comment for one
value) or by option(s) ‘-A val’. Also you can specify a cycle for animation by comment ##c
v1 v2 dv or by option -C v1:v2:dv. In the case of found/specified animation parameters,
tool will execute script several times — once for each value of $0.

MathGL also provide another simple tool mgl.cgi which parse MGL script from CGI
request and send back produced PNG file. Usually this program should be placed in
/usr/lib/cgi-bin/. But you need to put this program by yourself due to possible se-
curity issues and difference of Apache server settings.

1.7 Thanks

e My special thanks to my wife for the patience during the writing of this library and
for the help in documentation writing and spelling.

e I'm thankful to my coauthors D. Kulagin and M. Vidassov for help in developing
MathGL.

e 'm thankful to Diego Sejas Viscarra for developing mgltex, contribution to fractal
generation and fruitful suggestions.

e ['m thankful to D. Eftaxiopoulos, D. Haley, V. Lipatov and S.M. Plis for making binary
packages for Linux.

e ['m thankful to S. Skobelev, C. Mikhailenko, M. Veysman, A. Prokhorov, A. Korotke-
vich, V. Onuchin, S.M. Plis, R. Kiselev, A. Ivanov, N. Troickiy and V. Lipatov for
fruitful comments.

e ['m thankful to sponsors M. Veysman (IHED RAS (http://jiht.ru/en/about/
structure . php 7 set_filter_structure=Y & structure_UF_DEPARTMENT=241 &
filter=Y&set_filter=Y)) and A. Prokhorov (DATADVANCE (www.datadvance.
net)).

Javascript interface was developed with support of DATADVANCE (www.datadvance.
net) company.

http://jiht.ru/en/about/structure.php?set_filter_structure=Y&structure_UF_DEPARTMENT=241&filter=Y&set_filter=Y
http://jiht.ru/en/about/structure.php?set_filter_structure=Y&structure_UF_DEPARTMENT=241&filter=Y&set_filter=Y
http://jiht.ru/en/about/structure.php?set_filter_structure=Y&structure_UF_DEPARTMENT=241&filter=Y&set_filter=Y
www.datadvance.net
www.datadvance.net
www.datadvance.net
www.datadvance.net

2 MathGL examples

This chapter contain information about basic and advanced MathGL, hints and samples for
all types of graphics. I recommend you read first 2 sections one after another and at least
look on Section 2.5 [Hints|, page 44, section. Also I recommend you to look at Chapter 3
[General concepts], page 81, and Section 2.6 [FAQ], page 76.

Note, that MathGL v.2.* have only 2 end-user interfaces: one for C/Fortran and similar
languages which don’t support classes, another one for C++/Python/Octave and similar
languages which support classes. So, most of samples placed in this chapter can be run as
is (after minor changes due to different syntaxes for different languages). For example, the
C++ code

#include <mgl2/mgl.h>
int main()
{
mglGraph gr;
gr.FPlot ("sin(pi*x)");
gr.WriteFrame("test.png");
3

in Python will be as

from mathgl import *

gr = mglGraph();

gr.FPlot ("sin(pi*x)");
gr.WriteFrame("test.png");

in Octave will be as (you need first execute mathgl; in newer Octave versions)
gr = mglGraphQ);
gr .FPlot ("sin(pi*x)");
gr.WriteFrame("test.png");

in C will be as

#include <mgl2/mgl_cf.h>

int mainQ)

{
HMGL gr = mgl_create_graph(600,400);
mgl_fplot (gr, "sin(pi*x) " , nn s " n) ;
mgl_write_frame(gr,"test.png","");
mgl_delete_graph(gr);

in Fortran will be as

integer gr, mgl_create_graph

gr = mgl_create_graph(600,400) ;

call mgl_fplot(gr,’sin(pi*x)’,’’,”’);
call mgl_write_frame(gr,’test.png’,’’);
call mgl_delete_graph(gr);

and so on.

Chapter 2: MathGL examples

2.1 Basic usage

MathGL library can be used by several manners. Each has positive and negative sides:

e Using of MathGL library features for creating graphical window (requires FLTK, Qt or

GLUT libraries).

Positive side is the possibility to view the plot at once and to modify it (rotate, zoom
or switch on transparency or lighting) by hand or by mouse. Negative sides are: the
need of X-terminal and limitation consisting in working with the only one set of data

at a time.

e Direct writing to file in bitmap or vector format without creation of graphical window.

Positive aspects are: batch processing of similar data set (for example, a set of result-
ing data files for different calculation parameters), running from the console program
(including the cluster calculation), fast and automated drawing, saving pictures for
further analysis (or demonstration). Negative sides are: the usage of the external pro-
gram for picture viewing. Also, the data plotting is non-visual. So, you have to imagine
the picture (view angles, lighting and so on) before the plotting. I recommend to use
graphical window for determining the optimal parameters of plotting on the base of
some typical data set. And later use these parameters for batch processing in console

program.

e Drawing in memory with the following displaying by other graphical program.

In this case the programmer has more freedom in selecting the window libraries (not
only FLTK, Qt or GLUT), in positioning and surroundings control and so on. I rec-

ommend to use such way for “stand alone” programs.
e Using FLTK or Qt widgets provided by MathGL

Here one can use a set of standard widgets which support export to many file formats,

copying to clipboard, handle mouse and so on.

MathGL drawing can be created not only by object oriented languages (like, C++ or
Python), but also by pure C or Fortran-like languages. The usage of last one is mostly
identical to usage of classes (except the different function names). But there are some
differences. C functions must have argument HMGL (for graphics) and/or HMDT (for
data arrays) which specifies the object for drawing or manipulating (changing). Fortran
users may regard these variables as integer. So, firstly the user has to create this object by

function mgl_create_*() and has to delete it after the using by function mgl_delete_*().

Let me consider the aforesaid in more detail.

2.1.1 Using MathGL window

The “interactive” way of drawing in MathGL consists in window creation with help of class
mglQT, mglFLTK or mglGLUT (see Chapter 5 [Widget classes|, page 178) and the following

drawing in this window. There is a corresponding code:
#include <mgl2/qt.h>
int sample(mglGraph *gr)
{
gr->Rotate(60,40) ;
gr->Box () ;
return O;

Chapter 2: MathGL examples 8

int main(int argc,char **argv)

{
mglQT gr(sample,"MathGL examples");
return gr.Run();

}

Here callback function sample is defined. This function does all drawing. Other func-
tion main is entry point function for console program. For compilation, just execute the
command

gcc test.cpp —-lmgl-qtb5 -1mgl
You can use "-lmgl-qt4" instead of "-Imgl-qt5", if Qt4 is installed.

Alternatively you can create yours own class inherited from Section 5.2 [mglDraw class],
page 182, and re-implement the function Draw() in it:

#include <mgl2/qt.h>
class Foo : public mglDraw
{
public:
int Draw(mglGraph *gr);

int Foo::Draw(mglGraph *gr)
{
gr->Rotate(60,40) ;
gr->Box () ;
return O;

int main(int argc,char **argv)

{
Foo foo;
mglQT gr(&foo,"MathGL examples");
return gr.Run();

¥

Or use pure C-functions:

#include <mgl2/mgl_cf.h>

int sample(HMGL gr, void *)

{
mgl_rotate(gr,60,40,0);
mgl_box(gr);

}

int main(int argc,char **argv)

{
HMGL gr;
gr = mgl_create_graph_qt(sample,"MathGL examples",0,0);

Chapter 2: MathGL examples 9

return mgl_qt_run();
/* generally I should call mgl_delete_graph() here,
* but I omit it in main() function. */

¥

The similar code can be written for mglGLUT window (function sample() is the same):

#include <mgl2/glut.h>

int main(int argc,char **argv)

{
mglGLUT gr(sample,"MathGL examples");
return O;

¥

The rotation, shift, zooming, switching on/off transparency and lighting can be done with
help of tool-buttons (for mglQT, mglFLTK) or by hot-keys: ‘a’, ‘d’, ‘w’, ‘s’ for plot rotation,
‘r’ and ‘f’ switching on/off transparency and lighting. Press ‘x’ for exit (or closing the
window).

In this example function sample rotates axes (Rotate(), see Section 4.4 [Subplots and
rotation], page 108) and draws the bounding box (Box()). Drawing is placed in separate
function since it will be used on demand when window canvas needs to be redrawn.

2.1.2 Drawing to file

Another way of using MathGL library is the direct writing of the picture to the file. It is
most usable for plot creation during long calculation or for using of small programs (like
Matlab or Scilab scripts) for visualizing repetitive sets of data. But the speed of drawing is
much higher in comparison with a script language.

The following code produces a bitmap PNG picture:

#include <mgl2/mgl.h>

int main(int ,char *x*)

{
mglGraph gr;
gr.Alpha(true); gr.Light(true);
sample (&gr) ; // The same drawing function.
gr.WritePNG("test.png"); // Don’t forget to save the result!
return O;

For compilation, you need only libmgl library not the one with widgets
gcc test.cpp -1lmgl

This can be important if you create a console program in computer/cluster where X-
server (and widgets) is inaccessible.

The only difference from the previous variant (using windows) is manual switching on
the transparency Alpha and lightning Light, if you need it. The usage of frames (see
Section 2.1.3 [Animation], page 10) is not advisable since the whole image is prepared each
time. If function sample contains frames then only last one will be saved to the file. In
principle, one does not need to separate drawing functions in case of direct file writing in
consequence of the single calling of this function for each picture. However, one may use the

Chapter 2: MathGL examples 10

same drawing procedure to create a plot with changeable parameters, to export in different
file types, to emphasize the drawing code and so on. So, in future I will put the drawing in
the separate function.

The code for export into other formats (for example, into vector EPS file) looks the
same:

#include <mgl2/mgl.h>

int main(int ,char *x*)

{
mglGraph gr;
gr.Light (true);
sample (&gr) ; // The same drawing function.
gr.WriteEPS("test.eps"); // Don’t forget to save the result!
return O;

The difference from the previous one is using other function WriteEPS() for EPS format
instead of function WritePNG(). Also, there is no switching on of the plot transparency
Alpha since EPS format does not support it.

2.1.3 Animation

Widget classes (mglWindow, mglGLUT) support a delayed drawing, when all plotting func-
tions are called once at the beginning of writing to memory lists. Further program displays
the saved lists faster. Resulting redrawing will be faster but it requires sufficient memory.
Several lists (frames) can be displayed one after another (by pressing ¢,’, ‘.”) or run as

cinema. To switch these feature on one needs to modify function sample:

int sample(mglGraph *gr)

{
gr->NewFrame () ; // the first frame
gr->Rotate(60,40);
gr->Box () ;
gr->EndFrame () ; // end of the first frame
gr->NewFrame () ; // the second frame
gr->Box () ;
gr->Axis("xy");
gr->EndFrame () ; // end of the second frame
return gr->GetNumFrame(); // returns the frame number
}

First, the function creates a frame by calling NewFrame () for rotated axes and draws
the bounding box. The function EndFrame () must be called after the frame drawing! The
second frame contains the bounding box and axes Axis("xy") in the initial (unrotated)
coordinates. Function sample returns the number of created frames GetNumFrame ().

Note, that animation can be also done as visualization of running calculations (see
Section 2.1.5 [Draw and calculate], page 13).

Pictures with animation can be saved in file(s) as well. You can: export in animated
GIF, or save each frame in separate file (usually JPEG) and convert these files into the
movie (for example, by help of ImageMagic). Let me show both methods.

Chapter 2: MathGL examples 11

The simplest methods is making animated GIF. There are 3 steps: (1) open GIF file by
StartGIF() function; (2) create the frames by calling NewFrame () before and EndFrame ()
after plotting; (3) close GIF by CloseGIF () function. So the simplest code for “running”
sinusoid will look like this:

#include <mgl2/mgl.h>
int main(int ,char *x*)
{
mglGraph gr;
mglData dat(100);
char str[32];
gr.StartGIF("sample.gif");
for(int i=0;i<40;i++)
{
gr .NewFrame () ; // start frame
gr.Box(); // some plotting
for(int j=0;j<dat.nx;j++)
dat.al[jl=sin(M_PI*j/dat.nx+M_PI*0.05%i);
gr.Plot(dat,"b");
gr .EndFrame () ; // end frame
}
gr.CloseGIFQ);
return O;

The second way is saving each frame in separate file (usually JPEG) and later make the
movie from them. MathGL have special function for saving frames — it is WriteFrame ().
This function save each frame with automatic name ‘frame0001. jpg, frame0002. jpg’ and
so on. Here prefix ‘frame’ is defined by Plotld variable of mglGraph class. So the similar
code will look like this:

#include <mgl2/mgl.h>
int main(int ,char *x*)
{
mglGraph gr;
mglData dat(100);
char str[32];
for(int i=0;i<40;i++)
{
gr .NewFrame () ; // start frame
gr.Box(); // some plotting
for(int j=0;j<dat.nx;j++)
dat.al[jl=sin(M_PI*j/dat.nx+M_PI*0.05%1i);
gr.Plot(dat,"b");

gr .EndFrame () ; // end frame
gr.WriteFrame(); // save frame
}
return O;

Chapter 2: MathGL examples 12

Created files can be converted to movie by help of a lot of programs. For example, you
can use ImageMagic (command ‘convert frame*.jpg movie.mpg’), MPEG library, GIMP
and so on.

Finally, you can use mglconv tool for doing the same with MGL scripts (see Section 1.6
[Utilities|, page 4).

2.1.4 Drawing in memory

The last way of MathGL using is the drawing in memory. Class mglGraph allows one to
create a bitmap picture in memory. Further this picture can be displayed in window by
some window libraries (like wxWidgets, FLTK, Windows GDI and so on). For example,
the code for drawing in wxWidget library looks like:

void MyForm::0OnPaint (wxPaintEvent& event)

{
int w,h,x,y;
GetClientSize (&w,&h) ; // size of the picture
mglGraph gr(w,h);

gr.Alpha(true) ; // draws something using MathGL
gr.Light (true);
sample (&gr,NULL) ;

wxImage img(w,h,gr.GetRGB(),true);

ToolBar->GetSize (&x,&y); // gets a height of the toolbar if any
wxPaintDC dc(this); // and draws it
dc.DrawBitmap(wxBitmap(img),0,y);

The drawing in other libraries is most the same.
For example, FLTK code will look like

void F1_MyWidget::draw()
{
mglGraph gr(w(),h());
gr.Alpha(true); // draws something using MathGL
gr.Light (true);
sample (&gr,NULL) ;
fl_draw_image(gr.GetRGB(), x(), y(), gr.GetWidth(), gr.GetHeight(), 3);

Qt code will look like

void MyWidget::paintEvent (QPaintEvent *)
{
mglGraph gr(w(),h());

gr.Alpha(true); // draws something using MathGL
gr.Light (true); gr.Light (0,mglPoint(1,0,-1));
sample (&gr,NULL) ;

Chapter 2: MathGL examples 13

// Qt don’t support RGB format as is. So, let convert it to BGRN.

long w=gr.GetWidth(), h=gr.GetHeight();

unsigned char *buf = new uchar [4*wx*h];

gr.GetBGRN (buf, 4*wxh)

QPixmap pic = QPixmap::fromImage(QImage(*buf, w, h, QImage::Format_RGB32));

QPainter paint;
paint.begin(this); paint.drawPixmap(0,0,pic); paint.end();
delete []buf;

2.1.5 Draw and calculate

MathGL can be used to draw plots in parallel with some external calculations. The simplest
way for this is the usage of Section 5.2 [mglDraw class|, page 182. At this you should enable
pthread for widgets by setting enable-pthr-widget=0N at configure stage (it is set by
default). First, you need to inherit you class from mglDraw class, define virtual members
Draw() and Calc() which will draw the plot and proceed calculations. You may want to
add the pointer mglWnd *wnd; to window with plot for interacting with them. Finally, you
may add any other data or member functions. The sample class is shown below

class myDraw : public mglDraw

{
mglPoint pnt; // some variable for changeable data
long ij; // another variable to be shown
mglWnd *wnd; // external window for plotting
public:
myDraw (mglWnd *w=0) : mglDraw() { wnd=w; }
void SetWnd(mglWnd *w) { wnd=w; }
int Draw(mglGraph *gr)
{

gr->Line (mglPoint () ,pnt, "Ar2");
char str[16]; snprintf (str,15,"i=)1d",1);
gr->Puts (mglPoint () ,str);

return O;
}
void Calc()
{
for(i=0;;i++) // do calculation
{
long_calculations();// which can be very long
Check(); // check if need pause
pnt.Set(2*mgl_rnd()-1,2*mgl_rnd()-1);
if (wnd) wnd->Update();
}
}

} dr;

Chapter 2: MathGL examples 14

There is only one issue here. Sometimes you may want to pause calculations to view
result carefully, or save state, or change something. So, you need to provide a mechanism
for pausing. Class mglDraw provide function Check () ; which check if toolbutton with pause
is pressed and wait until it will be released. This function should be called in a "safety"
places, where you can pause the calculation (for example, at the end of time step). Also you
may add call exit(0); at the end of Calc(); function for closing window and exit after
finishing calculations. Finally, you need to create a window itself and run calculations.

int main(int argc,char **argv)

{
mglFLTK gr(&dr,"Multi-threading test"); // create window
dr.SetWnd(&gr); // pass window pointer to yours class
dr.Run(Q); // run calculations
gr.Run(); // run event loop for window
return O;

}

Note, that you can reach the similar functionality without using mglDraw class (i.e. even
for pure C code).

mglFLTK *gr=NULL; // pointer to window
void *calc(void *) // function with calculations
{
mglPoint pnt; // some data for plot
for(long i=0;;i++) // do calculation
{
long_calculations(); // which can be very long
pnt.Set (2+mgl_rnd()-1,2*mgl_rnd()-1);
if (gr)
{
gr->C1£f Q) ; // make new drawing

// draw something

gr->Line (mglPoint () ,pnt, "Ar2");

char str[16]; snprintf (str,15,"i=%1d",1i);
gr->Puts (mglPoint () ,str) ;

// don’t forgot to update window
gr->Update () ;

}
}
}
int main(int argc,char **argv)
{

static pthread_t thr;
pthread_create(&thr,0,calc,0); // create separate thread for calculations]]

pthread_detach(thr); // and detach it
gr = new mglFLTK; // now create window

gr->Run() ; // and run event loop
return O;

Chapter 2: MathGL examples 15

This sample is exactly the same as one with mglDraw class, but it don’t have function-
ality for pausing calculations. If you need it then you have to create global mutex (like
pthread_mutex_t *mutex = pthread_mutex_init (&mutex,NULL);), set it to window (like
gr->SetMutex (mutex) ;) and periodically check it at calculations (like pthread_mutex_
lock(&mutex) ; pthread_mutex_unlock(&mutex) ;).

Finally, you can put the event-handling loop in separate instead of yours code by using
RunThr () function instead of Run() one. Unfortunately, such method work well only for
FLTK windows and only if pthread support was enabled. Such limitation come from the
Qt requirement to be run in the primary thread only. The sample code will be:

int main(int argc,char **argv)

{
mglFLTK gr("test");
gr.RunThr () ; // <-- need MathGL version which use pthread for widgets|i
mglPoint pnt; // some data
for(int i=0;i<10;i++) // do calculation
{
long_calculations();// which can be very long
pnt.Set (2*mgl_rnd ()-1,2*mgl_rnd(O-1);
gr.Clf(Q); // make new drawing
gr.Line(mglPoint () ,pnt, "Ar2");
char str[10] = "i=0"; str[3] = ’0’+i;
gr->Puts (mglPoint () ,str);
gr.Update() ; // update window
}
return O; // finish calculations and close the window
}

2.1.6 Using QMathGL

MathGL have several interface widgets for different widget libraries. There are QMathGL
for Qt, F1_MathGL for FLTK. These classes provide control which display MathGL graphics.
Unfortunately there is no uniform interface for widget classes because all libraries have
slightly different set of functions, features and so on. However the usage of MathGL widgets
is rather simple. Let me show it on the example of QMathGL.

First of all you have to define the drawing function or inherit a class from mglDraw class.
After it just create a window and setup QMathGL instance as any other Qt widget:

#include <QApplication>

#include <QMainWindow>

#include <QScrollArea>

#include <mgl2/qgmathgl.h>

int main(int argc,char **argv)

{
QApplication a(argc,argv);
QMainWindow *Wnd = new QMainWindow;
Wnd->resize(810,610); // for fill up the QMGL, menu and toolbars
Wnd->setWindowTitle ("QMathGL sample");
// here I allow to scroll QMathGL -- the case

Chapter 2: MathGL examples 16

// then user want to prepare huge picture
QScrollArea *scroll = new QScrollArea(Wnd);

// Create and setup QMathGL
QMathGL *QMGL = new QMathGL(Wnd) ;

//QMGL->setPopup (popup); // if you want to setup popup menu for QMGL
QMGL->setDraw(sample) ;
// or use QMGL->setDraw(foo); for instance of class Foo:public mglDraw
QMGL->update () ;

// continue other setup (menu, toolbar and so on)
scroll->setWidget (QMGL) ;

Wnd->setCentralWidget (scroll);

Wnd->show () ;

return a.exec();

2.1.7 MathGL and PyQt

Generally SWIG based classes (including the Python one) are the same as C++ classes.
However, there are few tips for using MathGL with PyQt. Below I place a very simple
python code which demonstrate how MathGL can be used with PyQt. This code is mostly
written by Prof. Dr. Heino Falcke. You can just copy it to a file mgl-pyqt-test.py and
execute it from python shell by command execfile ("mgl-pyqt-test.py")

from PyQt4 import QtGui,QtCore
from mathgl import *

import sys

app = QtGui.QApplication(sys.argv)
gpointf=QtCore.QPointF ()

class hfQtPlot(QtGui.QWidget) :

def __init__(self, parent=None):
QtGui.QWidget.__init__(self, parent)
self.img=(QtGui.QImage())

def setgraph(self,gr):
self .buffer=’\t’
self .buffer=self.buffer.expandtabs (4*gr.GetWidth() *gr.GetHeight ())
gr.GetBGRN (self.buffer,len(self.buffer))
self.img=QtGui.QImage (self.buffer, gr.GetWidth(),gr.GetHeight(),QtGui.QImage.Format
self.update()

def paintEvent(self, event):
paint = QtGui.QPainter()
paint.begin(self)
paint.drawImage (qpointf,self.img)
paint.end ()

BackgroundColor=[1.0,1.0,1.0]

Chapter 2: MathGL examples

size=100
gr=mglGraph ()
y=mglData(size)
#y.Modify (" ((0.7*xcos(2*pi*(x+.2)*500)+0.3)*(rnd*0.5+0.5)+362.135+10000.)")
y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")
x=mglData(size)

x.Modify("x"2");

def plotpanel(gr,x,y,n):

gr.
.SetXRange (x)

gr

gr.
.AdjustTicks ()

gr

gr.
.Box ()

gr

gr.
.Label("y","y-Axis",1)

gr

gr.
.AddLegend("Legend: "+str(an),"k")

gr

gr.
.Plot(x,y)

gr

SubPlot(2,2,n)
SetYRange (y)

Axis()
Label("x","x-Axis",1)
ClearLegend ()

Legend ()

gr.Clf (BackgroundColor [0] ,BackgroundColor[1] ,BackgroundColor[2])
gr.SetPlotFactor(1.5)

plotpanel(gr,x,y,0)

y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")
plotpanel(gr,x,y,1)

y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")
plotpanel(gr,x,y,2)

y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")
plotpanel(gr,x,y,3)

gr.WritePNG("test.png","Test Plot")

qw = hfQtPlot ()
qw.show ()
qw.setgraph(gr)
qw.raise_()

2.1.8 MathGL and MPI

For using MathGL in MPI program you just need to: (1) plot its own part of data for each
running node; (2) collect resulting graphical information in a single program (for example,
at node with rank=0); (3) save it. The sample code below demonstrate this for very simple
sample of surface drawing.

First you need to initialize MPI

17

Chapter 2: MathGL examples 18

#include <stdio.h>
#include <mgl2/mpi.h>
#include <mpi.h>

int main(int argc, char *argv[])

{

// initialize MPI

int rank=0, numproc=1;

MPI_Init(&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD,&numproc) ;
MPI_Comm_rank (MPI_COMM_WORLD,&rank) ;

if (rank==0) printf("Use %d processes.\n", numproc);

Next step is data creation. For simplicity, I create data arrays with the same sizes for

all nodes. At this, you have to create mglGraph object too.

// initialize data similarly for all nodes
mglData a(128,256);
mglGraphMPI gr;

Now, data should be filled by numbers. In real case, it should be some kind of calcula-

tions. But I just fill it by formula.

// do the same plot for its own range

char buf [64];

sprintf (buf,"xrange %g %g",2.*rank/numproc-1,2.*(rank+1)/numproc-1);
gr.Fill(a,"sin(2%pi*x)",buf);

It is time to plot the data. Don’t forget to set proper axis range(s) by using parametric

form or by using options (as in the sample).

// plot data in each node

gr.C1f(); // clear image before making the image
gr .Rotate (40,60) ;

gr.Surf(a,"",buf);

Finally, let send graphical information to node with rank=0.

// collect information
if (rank!=0) gr.MPI_Send(0);
else for(int i=1;i<numproc;i++) gr.MPI_Recv(i);

Now, node with rank=0 have whole image. It is time to save the image to a file. Also,

you can add a kind of annotations here — I draw axis and bounding box in the sample.

if (rank==0)

{
gr.Box(); gr.Axis(); // some post processing
gr .WritePNG("test.png"); // save result

}

In my case the program is done, and I finalize MPI. In real program, you can repeat the

loop of data calculation and data plotting as many times as you need.

MPI_Finalize();
return O;

Chapter 2: MathGL examples 19

You can type ‘mpic++ test.cpp -~lmgl-mpi -1lmgl && mpirun -np 8 ./a.out’ for com-
pilation and running the sample program on 8 nodes. Note, that you have to set enable-
mpi=0N at MathGL configure to use this feature.

2.2 Advanced usage

Now I show several non-obvious features of MathGL: several subplots in a single picture,
curvilinear coordinates, text printing and so on. Generally you may miss this section at
first reading.

2.2.1 Subplots

Let me demonstrate possibilities of plot positioning and rotation. MathGL has a set of
functions: [subplot], page 108, [inplot], page 109, [title], page 110, [aspect], page 111, and
[rotate], page 110, and so on (see Section 4.4 [Subplots and rotation|, page 108). The order
of their calling is strictly determined. First, one changes the position of plot in image area
(functions [subplot], page 108, [inplot], page 109, and [multiplot], page 109). Secondly, you
can add the title of plot by [title], page 110, function. After that one may rotate the plot
(function [rotate], page 110). Finally, one may change aspects of axes (function [aspect],
page 111). The following code illustrates the aforesaid it:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0); gr->Box();
gr->Puts (mglPoint(-1,1.1),"Just box",":L");
gr->InPlot(0.2,0.5,0.7,1,false); gr->Box();
gr->Puts (mglPoint(0,1.2),"InPlot example");
gr->SubPlot(2,2,1); gr->Title("Rotate only");
gr->Rotate(50,60); gr->Box();
gr->SubPlot(2,2,2); gr->Title("Rotate and Aspect");
gr->Rotate(50,60); gr->Aspect(1,1,2); gr->Box();
gr->SubPlot(2,2,3); gr->Title("Shear");
gr->Box("c"); gr->Shear(0.2,0.1); gr->Box();
return O;

Here I used function Puts for printing the text in arbitrary position of picture (see
Section 4.8 [Text printing], page 126). Text coordinates and size are connected with axes.
However, text coordinates may be everywhere, including the outside the bounding box. I'll
show its features later in Section 2.2.7 [Text features|, page 30.

Chapter 2: MathGL examples 20

laPlot cxample

Just box - - -] ROtate Only

Rotate and Aspect Shear

More complicated sample show how to use most of positioning functions:

int sample(mglGraph *gr)

{
gr->SubPlot(3,2,0); gr->Title("StickPlot");
gr->StickPlot(3, 0, 20, 30); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");
gr->StickPlot(3, 1, 20, 30); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");
gr->StickPlot(3, 2, 20, 30); gr->Box("b"); gr->Puts(mglPoint(0),"2","b");
gr->SubPlot(3,2,3,""); gr->Title("ColumnPlot");
gr->ColumnPlot (3, 0); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");
gr->ColumnPlot (3, 1); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");
gr->ColumnPlot (3, 2); gr->Box("b"); gr->Puts(mglPoint(0),"2","b");
gr->SubPlot(3,2,4,""); gr->Title("GridPlot");
gr->GridPlot (2, 2, 0); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");
gr->GridPlot (2, 2, 1); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");
gr->GridPlot (2, 2, 2); gr->Box("b"); gr->Puts(mglPoint(0),"2","bd");
gr->GridPlot (2, 2, 3); gr->Box("m"); gr->Puts(mglPoint(0),"3","m");
gr->SubPlot(3,2,5,""); gr->Title("InPlot"); gr->Box();
gr->InPlot(0.4, 1, 0.6, 1, true); gr->Box("r");
gr->MultiPlot(3,2,1, 2, 1,""); gr->Title("MultiPlot and ShearPlot"); gr->Box();]}
gr->ShearPlot(3, 0, 0.2, 0.1); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");|}
gr->ShearPlot(3, 1, 0.2, 0.1); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");l}
gr->ShearPlot(3, 2, 0.2, 0.1); gr->Box("b"); gr->Puts(mglPoint(0),"2","d");}}
return O;

Chapter 2: MathGL examples

| StekFlor MultiPlot and ShearPlot

ColumnPlot GridPlot

2.2.2 Axis and ticks

21

MathGL library can draw not only the bounding box but also the axes, grids, labels and so
on. The ranges of axes and their origin (the point of intersection) are determined by func-
tions SetRange (), SetRanges (), SetOrigin() (see Section 4.3.1 [Ranges (bounding box)],
page 102). Ticks on axis are specified by function SetTicks, SetTicksVal, SetTicksTime

(see Section 4.3.3 [Ticks], page 105). But usually

Function [axis], page 128, draws axes. Its textual string shows in which directions the
axis or axes will be drawn (by default "xyz", function draws axes in all directions). Function
[grid], page 130, draws grid perpendicularly to specified directions. Example of axes and

grid drawing is:

int sample(mglGraph *gr)
{

gr->SubPlot(2,2,0); gr->Title("Axis origin, Grid"); gr->SetOrigin(0,0);

gr->Axis(); gr->Grid(); gr->FPlot("x"3");

gr->SubPlot(2,2,1); gr->Title("2 axis");
gr->SetRanges(-1,1,-1,1); gr->SetOrigin(-1,-1,-1); // first axis
gr->Axis(); gr->Label(’y’,"axis 1",0); gr->FPlot("sin(pi*x)");
gr->SetRanges(0,1,0,1); gr->SetOrigin(1,1,1); // second axis
gr->Axis(); gr->Label(’y’,"axis 2",0); gr->FPlot("cos(pi*x)");

gr->SubPlot(2,2,3); gr->Title("More axis");

gr->SetOrigin (NAN,NAN); gr->SetRange(’x’,-1,1);

gr->Axis(); gr->Label(’x’,"x",0); gr->Label(’y’,"y_1",0);
gr->FPlot ("x~2","k");

gr->SetRanges(-1,1,-1,1); gr->SetOrigin(-1.3,-1); // second axis
gr->Axis("y","r"); gr->Label(’y’,"#r{y_2}",0.2);

gr->FPlot ("x~3","r");

Chapter 2: MathGL examples 22

gr->SubPlot(2,2,2); gr->Title("4 segments, inverted axis");
gr->SetOrigin(0,0);

gr->InPlot(0.5,1,0.5,1); gr->SetRanges(0,10,0,2); gr->Axis();
gr->FPlot ("sqrt(x/2)"); gr->Label (’x’,"W",1); gr->Label(’y’,"U",1);
gr->InPlot(0,0.5,0.5,1); gr->SetRanges(1,0,0,2); gr->Axis("x");
gr->FPlot ("sqrt(x)+x~3"); gr->Label(’x’,"\\tau",-1);
gr->InPlot(0.5,1,0,0.5); gr->SetRanges(0,10,4,0); gr->Axis("y");
gr->FPlot ("x/4"); gr->Label(’y’,"L",-1);

gr->InPlot(0,0.5,0,0.5); gr->SetRanges(1,0,4,0); gr->FPlot("4*x"2");
return O;

Note, that MathGL can draw not only single axis (which is default). But also several
axis on the plot (see right plots). The idea is that the change of settings does not influence
on the already drawn graphics. So, for 2-axes I setup the first axis and draw everything
concerning it. Then I setup the second axis and draw things for the second axis. Generally,
the similar idea allows one to draw rather complicated plot of 4 axis with different ranges
(see bottom left plot).

At this inverted axis can be created by 2 methods. First one is used in this sample — just
specify minimal axis value to be large than maximal one. This method work well for 2D
axis, but can wrongly place labels in 3D case. Second method is more general and work in
3D case too — just use [aspect], page 111, function with negative arguments. For example,
following code will produce exactly the same result for 2D case, but 2nd variant will look
better in 3D.

// variant 1
gr->SetRanges(0,10,4,0); gr->AxisQ);

// variant 2
gr->SetRanges(0,10,0,4); gr->Aspect(l,-1); gr->Axis();

Chapter 2: MathGL examples

Axis origin, Grid

0 02 04 06 08
axis 2

4 segments, inverted axis More axis

1
1

£
Y2
1] 0.5
Vi
002 04 06 08

—0.5

1

P
0.5 1

&
%o[;

23

Another MathGL feature is fine ticks tunning. By default (if it is not changed by
SetTicks function), MathGL try to adjust ticks positioning, so that they looks most human
readable. At this, MathGL try to extract common factor for too large or too small axis
ranges, as well as for too narrow ranges. Last one is non-common notation and can be
disabled by SetTuneTicks function.

Also, one can specify its own ticks with arbitrary labels by help of SetTicksVal function.
Or one can set ticks in time format. In last case MathGL will try to select optimal format
for labels with automatic switching between years, months/days, hours/minutes/seconds or
microseconds. However, you can specify its own time representation using formats described
in http://www.manpagez.com/man/3/strftime/. Most common variants are ‘%X’ for
national representation of time, ‘%x’ for national representation of date, ‘%Y’ for year with
century.

The sample code, demonstrated ticks feature is

int sample(mglGraph *gr)

{

gr->SubPlot(3,3,0); gr->Title("Usual axis"); gr->AxisQ);
gr->SubPlot(3,3,1); gr->Title("Too big/small range");
gr->SetRanges(-1000,1000,0,0.001); gr->AxisQ);
gr->SubPlot(3,3,2); gr->Title("LaTeX-like labels");
gr->Axis("FI");

gr->SubPlot(3,3,3); gr->Title("Too narrow range");
gr->SetRanges(100,100.1,10,10.01); gr->AxisQ;
gr->SubPlot(3,3,4); gr->Title("No tuning, manual ’+°");

// for version<2.3 you need first call gr->SetTuneTicks(0);
gr->Axis("+!");

gr->SubPlot(3,3,5); gr->Title("Template for ticks");
gr->SetTickTempl (’x’,"xxx:%g"); gr->SetTickTempl(’y’,"y:%g");
gr->Axis();

// now switch it off for other plots

http://www.manpagez.com/man/3/strftime/

Chapter 2: MathGL examples 24

gr->SetTickTempl (’x’,""); gr->SetTickTempl(’y’,"");

gr->SubPlot(3,3,6); gr->Title("No tuning, higher precision");

gr->Axis("14");

gr->SubPlot(3,3,7); gr->Title("Manual ticks"); gr->SetRanges(-M_PI,M_PI, 0, 2);]
gr->SetTicks(’x’ ,M_PI,0,0,"\\pi"); gr->AddTick(’x’,0.886,"x"*");

// alternatively you can use following lines

//double val[]l={-M_PI, -M_PI/2, 0, 0.886, M_PI/2, M_PI};

//gr->SetTicksVal(’x’, mglData(6,val), "-\\pi\n-\\pi/2\nO\nx"*\n\\pi/2\n\\pi");]]
gr->Axis(); gr->Grid(); gr->FPlot("2*cos(x"2)"2", "r2");

gr->SubPlot(3,3,8); gr->Title("Time ticks"); gr->SetRange(’x’,0,3e5);
gr->SetTicksTime(’x’,0); gr->Axis();

Usual axis with "' style Too big/small range LaTeX-like labels
3
- L
: i L
a_ i i_
“ i bl
* 1 :
Tf\ 5 0 s 1 ?N -5 13 5 JUN ST -1 —3 o S 1w
_ Too narrow range No tuning, manual '+' Template for ticks
& S
§ A
i@ “‘\i
s Fo!

*,
“
2

Yo *

=
T 100 4100 HIOP 1001 1001 +1000 3

VST IOECIS Iy
15y Wty S i ety 1

*

No tuning, higher precision Manual ticks Time ticks

1 E

03

’q%‘,’a%’a%’ra%

| P S S
S woe won 1oss 10008 1001 —= S x OLDLTY IR0 OLOIAG OIAMAD

The last sample I want to show in this subsection is Log-axis. From MathGL’s point
of view, the log-axis is particular case of general curvilinear coordinates. So, we need first
define new coordinates (see also Section 2.2.3 [Curvilinear coordinates|, page 25) by help of
SetFunc or SetCoor functions. At this one should wary about proper axis range. So the
code looks as following:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0,"<_"); gr->Title("Semi-log axis");
gr->SetRanges(0.01,100,-1,1); gr->SetFunc("lg(x)","");
gr->Axis(); gr->Grid("xy","g"); gr->FPlot("sin(1/x)");
gr->Label(’x’,"x",0); gr->Label(’y’, "y = sin 1/x",0);

gr->SubPlot(2,2,1,"<_"); gr->Title("Log-log axis");
gr->SetRanges(0.01,100,0.1,100); gr->SetFunc("lg(x)","1lg(y)");
gr->Axis(); gr->Grid("!","h="); gr->Grid();

Chapter 2: MathGL examples 25

gr->FPlot ("sqrt(1+x~2)"); gr->Label(’x’,"x",0);
gr->Label(’y’, "y = \\sqrt{1+x~2}",0);

gr->SubPlot(2,2,2,"<_"); gr->Title("Minus-log axis");
gr->SetRanges(-100,-0.01,-100,-0.1); gr->SetFunc("-1g(-x)","-1g(-y)");
gr->Axis(); gr->FPlot("-sqrt(1+x~2)");

gr->Label(’x’,"x",0); gr->Label(’y’, "y = -\\sqrt{1+x~2}",0);

gr->SubPlot(2,2,3,"<_"); gr->Title("Log-ticks");
gr->SetRanges(0.1,100,0,100) ; gr->SetFunc("sqrt(x)","");
gr->Axis(); gr->FPlot("x");

gr->Label(’x’,"x",1); gr->Label(’y’, "y = x",0);

return O;
}
Semi 10 axis Log-log axis
i og . Log-log axis
2 H‘ Ui EAN .
Ead | . =N H S
= | I -
;z ‘ || | { T o~
1 | ;' n_| _iE
N HH"' ¥ -
||J| ||‘ | I's.-“ m sned 1 I HEE Il H
Tz = 1 10 10 T2 10-L 1 10 102
X X
Minus-log axis Log-ticks

_IO—I
100

-4/ 1+x2
-1
|
=iy
& 8
™,
.
™,

-10
¥y
40

¥
20

/
=T i i I 1

- - Lodiii i i Lt i [TEREN i =
_|.|(]2 —~10 -1 —101 —1072 107t 1 10 108
X X

You can see that MathGL automatically switch to log-ticks as we define log-axis formula
(in difference from v.1.*¥). Moreover, it switch to log-ticks for any formula if axis range
will be large enough (see right bottom plot). Another interesting feature is that you not
necessary define usual log-axis (i.e. when coordinates are positive), but you can define
“minus-log” axis when coordinate is negative (see left bottom plot).

2.2.3 Curvilinear coordinates

As T noted in previous subsection, MathGL support curvilinear coordinates. In difference
from other plotting programs and libraries, MathGL uses textual formulas for connection
of the old (data) and new (output) coordinates. This allows one to plot in arbitrary coordi-

nates. The following code plots the line y=0, z=0 in Cartesian, polar, parabolic and spiral
coordinates:

int sample(mglGraph *gr)

Chapter 2: MathGL examples 26

gr->SetOrigin(-1,1,-1);

gr->SubPlot(2,2,0); gr->Title("Cartesian"); gr->Rotate(50,60);
gr_>FPlot(||2*t_1" s ||0.5" s ||Ol| s llr2||) ;
gr—>Axis(); gr->Grid(Q);

gr->SetFunc ("y*sin(pi*x)","y*cos(pi*x)",0);

gr->SubPlot(2,2,1); gr->Title("Cylindrical"); gr->Rotate(50,60);
gr—>FPlot("2*t—1",“0.5","0“,"r2");

gr—>Axis(); gr->Grid(Q);

gr->SetFunc ("2xy*x","yxy - x*x",0);

gr->SubPlot(2,2,2); gr->Title("Parabolic"); gr->Rotate(50,60);
gr—>FPlot("2*t—1","O.5","O“,"r2");

gr—>Axis(); gr->Grid(Q);

gr->SetFunc ("y*sin(pi*x)","y*cos(pi*x)","x+z");
gr->SubPlot(2,2,3); gr->Title("Spiral"); gr->Rotate(50,60);
gr_>FPlot(||2*t_1" s ||O‘5" s ||Ol| s "r2||) ;

gr—>Axis(); gr->Grid(Q);

gr->SetFunc(0,0,0); // set to default Cartesian

return O;

Cartesian Cylindrical

Chapter 2: MathGL examples

2.2.4 Colorbars

MathGL handle [colorbar], page 129, as special kind of axis. So, most of functions for axis
and ticks setup will work for colorbar too. Colorbars can be in log-scale, and generally as
arbitrary function scale; common factor of colorbar labels can be separated; and so on.

But of course, there are differences — colorbars usually located out of bounding box. At

this, colorbars can be at subplot boundaries (by default), or at bounding box (if symbol
‘T’ is specified). Colorbars can handle sharp colors. And they can be located at arbitrary
position too. The sample code, which demonstrate colorbar features is:

int sample(mglGraph *gr)

{

gr->SubPlot(2,2,0); gr->Title("Colorbar out of box"); gr->Box();
gr->Colorbar("<"); gr->Colorbar(">");
gr->Colorbar("_"); gr->Colorbar(""");

gr->SubPlot(2,2,1); gr->Title("Colorbar near box"); gr->Box () ;
gr->Colorbar ("<I"); gr->Colorbar(">I");
gr->Colorbar("_I"); gr->Colorbar(""I");

gr->SubPlot(2,2,2); gr->Title("manual colors");
mglData a,v; mgls_prepare2d(&a,0,&v);
gr->Box(); gr->ContD(v,a);
gr->Colorbar(v,"<"); gr->Colorbar(v,">");
gr->Colorbar(v,"_"); gr->Colorbar(v," ");

gr->SubPlot(2,2,3); gr->Title(" ");

gr->Puts (mglPoint(-0.5,1.55),"Color positions",":C",-2);

gr->Colorbar ("bwr>",0.25,0); gr->Puts(mglPoint(-0.9,1.2),"Default");
gr->Colorbar ("b{w,0.3}r>",0.5,0); gr->Puts(mglPoint(-0.1,1.2),"Manual");

gr->Puts (mglPoint(1,1.55),"log-scale",":C",-2);
gr->SetRange(’c’,0.01,1e3);
gr->Colorbar(">",0.75,0); gr->Puts(mglPoint(0.65,1.2),"Normal scale");

gr_>setFunC(" n s nn s nn s lllg(c) ll) ;
gr->Colorbar (">"); gr->Puts (mglPoint(1.35,1.2),"Log scale");
return O;

Chapter 2: MathGL examples 28

w out om Colorbar near box

-1 —0.5 Q 0.5 1
- , - - ‘ -
L e ol o - o
n] " n
7 Y B 7
0 : q 0 | 0
=1 —0.5 0 0.5 1 =1 =05 a 0.5 1
[
manual _color: Color positions log-scale
LT U N P . 08
-1 -075-05-025 0 025 05 075 1 Default Manual Nm'aal scale Log scale
 pun - - =] =t
ol® I
U QI ”I éI
Qf‘j ws - S- -
o | N M

Qf‘f" -5
- S] e =
» T T . L
a1 . N
A B o s ‘

-1 07505025 0025 05 075 1
HE TEE BN

2.2.5 Bounding box

Box around the plot is rather useful thing because it allows one to: see the plot boundaries,
and better estimate points position since box contain another set of ticks. MathGL provide
special function for drawing such box — [box], page 130, function. By default, it draw black
or white box with ticks (color depend on transparency type, see Section 2.5.3 [Types of
transparency|, page 46). However, you can change the color of box, or add drawing of
rectangles at rear faces of box. Also you can disable ticks drawing, but I don’t know why
anybody will want it. The sample code, which demonstrate [box], page 130, features is:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0); gr->Title("Box (default)"); gr->Rotate(50,60);
gr->Box () ;
gr->SubPlot(2,2,1); gr->Title("colored"); gr->Rotate(50,60) ;
gr->Box("r");
gr->SubPlot(2,2,2); gr->Title("with faces"); gr->Rotate(50,60);
gr->Box ("@");
gr->SubPlot(2,2,3); gr->Title("both"); gr->Rotate(50,60);
gr->Box("@cm") ;
return O;

Chapter 2: MathGL examples 29

Box (default) colored

with faces both

2.2.6 Ternary axis

There are another unusual axis types which are supported by MathGL. These are ternary
and quaternary axis. Ternary axis is special axis of 3 coordinates a, b, ¢ which satisfy
relation a+b+c=1. Correspondingly, quaternary axis is special axis of 4 coordinates a, b, c,
d which satisfy relation a+b+c+d=1.

Generally speaking, only 2 of coordinates (3 for quaternary) are independent. So,
MathGL just introduce some special transformation formulas which treat a as ‘x’, b as
‘y’ (and c as ‘2’ for quaternary). As result, all plotting functions (curves, surfaces, contours
and so on) work as usual, but in new axis. You should use [ternary], page 105, function for
switching to ternary/quaternary coordinates. The sample code is:

int sample(mglGraph *gr)

{
gr->SetRanges(0,1,0,1,0,1);
mglData x(50),y(50),z(50),rx(10),ry(10), a(20,30);
a.Modify ("30*x*xy*(1-x-y) "2% (x+y<1)");
x.Modify ("0.25%(1+cos(2xpixx))");
y.Modify ("0.25*%(1+sin(2*pi*x))");
rx.Modify("rnd"); ry.Modify("(1-v)*rnd",rx);
z.Modify("x");

gr->SubPlot(2,2,0); gr->Title("Ordinary axis 3D");
gr->Rotate(50,60) ; gr->Light (true) ;

gr->Plot(x,y,z,"r2"); gr->Surf(a,"BbcyrR#");

gr->Axis(); gr->Grid(); gr->Box();

gr->Label(’x’,"B",1); gr->Label(’y’,"C",1); gr->Label(’z’,"Z",1);

gr->SubPlot(2,2,1); gr->Title("Ternary axis (x+y+t=1)");
gr->Ternary(1);

Chapter 2: MathGL examples 30

gr->Plot(x,y,"r2"); gr->Plot(rx,ry,"q” "); gr->Cont(a,"BbcyrR");
gr->Line (mglPoint (0.5,0), mglPoint(0,0.75), "g2");

gr->Axis(); gr->Grid("xyz","B;");

gr->Label(’x’,"B"); gr->Label(’y’,"C"); gr->Label(’t’,"A");

gr->SubPlot(2,2,2); gr->Title("Quaternary axis 3D");
gr->Rotate(50,60) ; gr->Light (true) ;
gr->Ternary(2);

gr->Plot(x,y,z,"r2"); gr->Surf(a,"BbcyrR#");
gr->Axis(); gr->Grid(); gr->Box();
gr->Label(’t’,"A",1); gr->Label(’x’,"B",1);
gr->Label(’y’,"C",1); gr->Label(’z’,"D",1);

gr->SubPlot(2,2,3); gr->Title("Ternary axis 3D");
gr->Rotate (50,60) ; gr->Light (true);
gr->Ternary (1) ;

gr->Plot(x,y,z,"r2"); gr->Surf(a,"BbcyrR#");
gr->Axis(); gr->Grid(); gr->Box();
gr->Label(’t’,"A",1); gr->Label(’x’,"B",1);
gr->Label(’y’,"C",1); gr->Label(’z’,"Z",1);
return O;

Ordinary axis 3D Ternary axis (x+y+t=1)

.

e

2.2.7 Text features

MathGL prints text by vector font. There are functions for manual specifying of text
position (like Puts) and for its automatic selection (like Label, Legend and so on). MathGL
prints text always in specified position even if it lies outside the bounding box. The default

Chapter 2: MathGL examples 31

size of font is specified by functions SetFontSize* (see Section 4.2.6 [Font settings], page 97).
However, the actual size of output string depends on subplot size (depends on functions
SubPlot, InPlot). The switching of the font style (italic, bold, wire and so on) can be
done for the whole string (by function parameter) or inside the string. By default MathGL
parses TeX-like commands for symbols and indexes (see Section 3.5 [Font styles], page 86).

Text can be printed as usual one (from left to right), along some direction (rotated text),

or along a curve. Text can be printed on several lines, divided by new line symbol ‘\n’.

Example of MathGL font drawing is:

int sample(mglGraph *gr)

{

gr->SubPlot(2,2,0,"");

gr->Putsw(mglPoint (0,1),L"Text can be in ASCII and in Unicode");
gr->Puts(mglPoint (0,0.6),"It can be \\wire{wire}, \\big{big} or #r{colored}");ll
gr->Puts (mglPoint (0,0.2),"One can change style in string: "

"\\b{bold}, \\if{italic, \\b{both}}");

gr->Puts (mglPoint (0,-0.2),"Easy to \\a{overline} or "

"\\u{underline}");

gr->Puts (mglPoint (0,-0.6),"Easy to change indexes “{up} _{down} @{center}");ll
gr->Puts (mglPoint (0,-1),"It parse TeX: \\int \\alpha \\cdot "

"\\sqrt3{sin(\\pi x)~°2 + \\gamma_{i_k}} dx");

gr->SubPlot(2,2,1,"");
gr->Puts (mglPoint (0,0.5), "\\sqrt{\\frac{\\alpha"{\\gamma~2}+\\overset 1{\\big\\infty}}{\
gr->Puts (mglPoint (0,-0.5),"Text can be printed\non several lines");

gr->SubPlot(2,2,2,"");

mglData y; mgls_prepareld(&y);

gr->Box(); gr->Plot(y.SubData(-1,0));

gr->Text (y,"This is very very long string drawn along a curve",":k");
gr->Text (y,"Another string drawn under a curve","T:r");

gr->SubPlot(2,2,3,"");

gr->Line (mglPoint(-1,-1) ,mglPoint(1,-1),"rA");
gr->Puts (mglPoint (0,-1) ,mglPoint(1,-1),"Horizontal");
gr->Line (mglPoint(-1,-1) ,mglPoint(1,1),"rA");
gr->Puts (mglPoint (0,0) ,mglPoint(1,1),"At angle","@");
gr->Line (mglPoint(-1,-1) ,mglPoint(-1,1),"rA");
gr->Puts (mglPoint (-1,0) ,mglPoint(-1,1),"Vertical");
return O;

Chapter 2: MathGL examples

32

Text can be in ASCII and in Unicode

It can be wire, DIZ or colored ,\/ k1

{/2+b

One can change style in string: bold, italic, both

Easy to overline or underline
Easy to change indexes jg, center

It parse TeX: fod/sin(nx) + v, dx

O
More text position: 5, B Laels Dol onls 20 2

Text can be printed
on several lines
or with radient

5, %ong string
drawn UQO;‘\@Q

(<]

AN

>
4

Vertical

v,pe

L AN
o¢\‘f‘6¢
S \\é_} »

e

ST &

Horizontal

You can change font faces by loading font files by function [loadfont], page 97. Note, that
this is long-run procedure. Font faces can be downloaded from MathGL website (http://
mathgl . sourceforge . net /download . html) or from here (http://sourceforge.net/
project/showfiles.php?group_id=152187&package_id=267177). The sample code is:

int sample(mglGraph *gr)
{
double h=1.1, d=0.25;
gr->LoadFont ("STIX");

gr->LoadFont ("adventor") ;

gr->LoadFont ("bonum") ;

gr->LoadFont ("chorus") ;
gr->LoadFont ("cursor") ;

gr->LoadFont ("heros") ;

gr->LoadFont ("heroscn") ;
gr->LoadFont ("pagella");
gr->LoadFont ("schola");
gr->LoadFont ("termes") ;

return O;

gr->Puts(mglPoint (0,h), "default font (STIX)");
gr->Puts (mglPoint (0,h-d), "adventor font");
gr->Puts (mglPoint (0,h-2%d), "bonum font");
gr->Puts (mglPoint (0,h-3*d), "chorus font");
gr->Puts (mglPoint (0,h-4%*d), "cursor font");
gr->Puts(mglPoint (0,h-5%d), "heros font");
gr->Puts(mglPoint (0,h-6%d), "heroscn font");
gr->Puts(mglPoint (0,h-7*d), "pagella font");
gr->Puts (mglPoint (0,h-8*d), "schola font");
gr->Puts(mglPoint (0,h-9%d), "termes font");

http://mathgl.sourceforge.net/download.html
http://mathgl.sourceforge.net/download.html
http://sourceforge.net/project/showfiles.php?group_id=152187&package_id=267177
http://sourceforge.net/project/showfiles.php?group_id=152187&package_id=267177

Chapter 2: MathGL examples 33

default font (STIX)
adventor font
bonum font
chorus font
cursor font
heros font
heroscn font
pagella font
schola font

termes font

2.2.8 Legend sample

Legend is one of standard ways to show plot annotations. Basically you need to connect
the plot style (line style, marker and color) with some text. In MathGL, you can do it
by 2 methods: manually using [addlegend], page 131, function; or use ‘legend’ option (see
Section 3.7 [Command options|, page 88), which will use last plot style. In both cases,
legend entries will be added into internal accumulator, which later used for legend drawing
itself. [clearlegend], page 131, function allow you to remove all saved legend entries.

There are 2 features. If plot style is empty then text will be printed without indent. If
you want to plot the text with indent but without plot sample then you need to use space
" as plot style. Such style ¢’ will draw a plot sample (line with marker(s)) which is invisible
line (i.e. nothing) and print the text with indent as usual one.

Function [legend], page 131, draw legend on the plot. The position of the legend can be
selected automatic or manually. You can change the size and style of text labels, as well as
setup the plot sample. The sample code demonstrating legend features is:
int sample(mglGraph *gr)

{
gr->AddLegend ("sin(\\pi {x"2})","b");
gr->AddLegend ("sin(\\pi x)","g*");
gr->AddLegend ("sin(\\pi \\sqrt{zx})","rd");
gr->AddLegend ("just text"," ");
gr->AddLegend("no indent for this","");

gr->SubPlot(2,2,0,""); gr->Title("Legend (default)");
gr->Box(); gr->Legend();

gr->Legend (3, "A#") ;
gr->Puts(mglPoint(0.75,0.65),"Absolute position","A");

Chapter 2: MathGL examples

gr->SubPlot(2,2,2,"");

gr->Title("coloring");

gr->Legend (0, "r#"); gr->Legend(1,"Wb#");

gr->SubPlot(2,2,3,"");
gr->Legend(0.5,1);

gr->Title("manual position"); gr->Box();
gr->Puts (mglPoint(0.5,0.55),"at x=0.5, y=1","a");

gr->Box () ;
gr->Legend (2, "ygr#") ;

34

gr->Legend(1,"#-"); gr->Puts(mglPoint(0.75,0.25),"Horizontal legend","a");

return O;
A 2
Legend (default) sin(x?)
Style ' i
: : _ ty sin(mx)
sin{mx?) — sinfxx?) .
sin(zx) iy ——sin(x \/ X)
L —s— f\m(x\/x) B > sin(n\/;:) . t text
 Jst text Just text Jus Al
no indent for i | o indent for this no indent for this
Absolute position
1
coloring manual position
sin(ﬂxz; I ‘ I sin(ax?) I
sinfax) sin(ax)
| —— sin(xy/x) B L —— sin(xy/x) i
just text just text
no indent for this no indent for this
at x=0.5, y=1
sin(ax2) — sin{xx?)
sinfax) sin(nx) i
| —— sincey®) e ey | L Horizontal legend _|
just text just text sin(mx?) ¢ win(xy/x) o indent for this
no indent IUT‘ this) no indent for this !iﬂ(m? Ju.s‘l Lext .

2.2.9 Cutting sample

The last common thing which I want to show in this section is how one can cut off points

from plot. There are 4 mechanism for that.

e You can set one of coordinate to NAN wvalue.

omitted.

All points with NAN values will be

e You can enable cutting at edges by SetCut function. As result all points out of bounding

box will be omitted.

e You can set cutting box by SetCutBox function. All points inside this box will be

omitted.

e You can define cutting formula by SetCut0ff function. All points for which the value

of formula is nonzero will be omitted. Note, that this is the slowest variant.

Below I place the code which demonstrate last 3 possibilities:

int sample(mglGraph *gr)
{

mglData a,c,v(1); mgls_prepare2d(&a); mgls_prepare3d(&c); v.al[0]=0.5;

gr->SubPlot(2,2,0); gr->Title("Cut on (default)");

gr->Rotate(50,60) ;

gr->Light (true) ;

Chapter 2: MathGL examples 35

gr->Box(); gr->Surf(a,"","zrange -1 0.5");

gr->SubPlot(2,2,1); gr->Title("Cut off"); gr->Rotate(50,60) ;
gr->Box(); gr->Surf(a,"","zrange -1 0.5; cut off");

gr->SubPlot(2,2,2); gr->Title("Cut in box"); gr->Rotate(50,60);
gr->SetCutBox(mglPoint (0,-1,-1), mglPoint(1,0,1.1));
gr->Alpha(true); gr->Box(); gr->Surf3(c);

gr->SetCutBox (mglPoint (0), mglPoint(0)); // switch it off

gr->SubPlot(2,2,3); gr->Title("Cut by formula"); gr->Rotate(50,60);
gr—>Cut0ff (" (z>(x+0.5%y-1)"2-1) & (2>(x-0.5%y-1)"2-1)");

gr->Box(); gr->Surf3(c); gr->CutOff(""); // switch it off

return O;

Cut on (default)

2.3 Data handling

Class mglData contains all functions for the data handling in MathGL (see Chapter 6 [Data
processing], page 193). There are several matters why I use class mglData but not a single
array: it does not depend on type of data (mreal or double), sizes of data arrays are kept
with data, memory working is simpler and safer.

2.3.1 Array creation
There are many ways in MathGL how data arrays can be created and filled.
One can put the data in mglData instance by several ways. Let us do it for sinus function:

e one can create external array, fill it and put to mglData variable

Chapter 2: MathGL examples 36

double *a = new double[50];
for(int i=0;i<50;i++) ali] = sin(M_PI*i/49.);

mglData y;
y.Set(a,50);
e another way is to create mglData instance of the desired size and then to work directly
with data in this variable
mglData y(50);
for(int i=0;i<50;i++) y.ali] = sin(M_PI*i/49.);
e next way is to fill the data in mglData instance by textual formula with the help of
Modify () function
mglData y(50);
y.Modify("sin(pix*x)");
e or one may fill the array in some interval and modify it later
mglData y(50);
y.Fill(0,M_PI);
y.Modify("sin(u)");
e finally it can be loaded from file

FILE *fp=fopen("sin.dat","wt"); // create file first
for(int i=0;i<50;i++) fprintf (fp,"%g\n",sin(M_PI*i/49.));
fclose(fp);

mglData y("sin.dat"); // load it

At this you can use textual or HDF files, as well as import values from bitmap image
(PNG is supported right now).
e at this one can read only part of data
FILE *fp-fopen("sin.dat","wt"); // create large file first
for(int i=0;i<70;i++) fprintf (fp,"%g\n",sin(M_PI*i/49.));
fclose(fp);

mglData y;
y.Read("sin.dat",50); // load it

Creation of 2d- and 3d-arrays is mostly the same. But one should keep in mind that
class mglData uses flat data representation. For example, matrix 30*40 is presented as flat
(1d-) array with length 30*40=1200 (nx=30, ny=40). The element with indexes {i,j} is
a[i+nx*j]. So for 2d array we have:

mglData z(30,40);

for(int i=0;i<30;i++) for(int j=0;j<40;j++)

z.al[i+30%j] = sin(M_PI*i/29.)*sin(M_PI*j/39.);
or by using Modify() function
mglData z(30,40);
z.Modify("sin(pi*x)*cos(pixy)");

The only non-obvious thing here is using multidimensional arrays in C/C++, i.e. arrays
defined like mreal dat[40] [30] ;. Since, formally these elements dat[i] can address the

Chapter 2: MathGL examples 37

memory in arbitrary place you should use the proper function to convert such arrays to
mglData object. For C++ this is functions like mglData: :Set (mreal **dat, int N1, int
N2) ;. For C this is functions like mgl_data_set_mreal2(HMDT d, const mreal **dat, int
N1, int N2);. At this, you should keep in mind that nx=N2 and ny=N1 after conversion.

2.3.2 Linking array

Sometimes the data arrays are so large, that one couldn’t’ copy its values to another array
(i.e. into mglData). In this case, he can define its own class derived from mglDataA (see
Section 9.2 [mglDataA class], page 260) or can use Link function.

In last case, MathGL just save the link to an external data array, but not copy it. You
should provide the existence of this data array for whole time during which MathGL can
use it. Another point is that MathGL will automatically create new array if you’ll try to
modify data values by any of mglData functions. So, you should use only function with
const modifier if you want still using link to the original data array.

Creating the link is rather simple — just the same as using Set function

double *a = new double[50];
for(int i=0;i<50;i++) ali]l] = sin(M_PI*i/49.);

mglData y;
y.Link(a,50);

2.3.3 Change data

MathGL has functions for data processing: differentiating, integrating, smoothing and so
on (for more detail, see Chapter 6 [Data processing], page 193). Let us consider some
examples. The simplest ones are integration and differentiation. The direction in which
operation will be performed is specified by textual string, which may contain symbols ‘x’,
‘y’ or ‘z’. For example, the call of Diff ("x") will differentiate data along ‘x’ direction; the
call of Integral("xy") perform the double integration of data along ‘x’ and ‘y’ directions;
the call of Diff2("xyz") will apply 3d Laplace operator to data and so on. Example of
this operations on 2d array a=x*y is presented in code:

int sample(mglGraph *gr)

{
gr->SetRanges(0,1,0,1,0,1);
mglData a(30,40); a.Modify("x*y");
gr->SubPlot(2,2,0); gr->Rotate(60,40);
gr->Surf (a); gr->Box () ;
gr->Puts (mglPoint(0.7,1,1.2),"a(x,y)");
gr->SubPlot(2,2,1); gr->Rotate(60,40);
a.Diff ("x"); gr->Surf(a); gr->Box();
gr->Puts (mglPoint(0.7,1,1.2),"da/dx");
gr->SubPlot(2,2,2); gr->Rotate(60,40);
a.Integral("xy"); gr->Surf(a); gr->Box();
gr->Puts(mglPoint(0.7,1,1.2),"\\int da/dx dxdy");
gr->SubPlot(2,2,3); gr->Rotate(60,40);
a.Diff2("y"); gr->Surf(a); gr->Box();
gr->Puts (mglPoint(0.7,1,1.2),"\\int {d"2}a/dxdy dx");

Chapter 2: MathGL examples 38

return O;

Data smoothing (function [smooth], page 214) is more interesting and important. This
function has single argument which define type of smoothing and its direction. Now 3
methods are supported: ‘3’ — linear averaging by 3 points, ‘6’ — linear averaging by 5
points, and default one — quadratic averaging by 5 points.

MathGL also have some amazing functions which is not so important for data processing
as useful for data plotting. There are functions for finding envelope (useful for plotting
rapidly oscillating data), for data sewing (useful to removing jumps on the phase), for data
resizing (interpolation). Let me demonstrate it:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0,""); gr->Title("Envelop sample");
mglData d1(1000); gr->Fill(d1l,"exp(-8%x"2)*sin(10*pi*x)");
gr->Axis(); gr->Plot(d1, "b");
dl.Envelop(’x’); gr->Plot(dl, "r");

gr->SubPlot(2,2,1,""); gr->Title("Smooth sample");

mglData y0(30),y1,y2,y3;

gr->SetRanges(0,1,0,1);

gr->Fill(y0, "0.4*sin(pi*x) + 0.3*cos(1.5*pi*x) - 0.4*sin(2*pi*x)+0.5xrnd");|}

y1=y0; y1.Smooth("x3");
y2=y0; y2.Smooth("x5");
y3=y0; y3.Smooth("x");

gr->Plot(y0,"{m7}:s", "legend ’none’"); //gr->AddLegend("none","k");

Chapter 2: MathGL examples 39

gr->Plot(yl,"r", "legend ’’3’ style’");
gr->Plot(y2,"g", "legend ’’5’ style’");
gr->Plot(y3,"b", "legend ’default’");
gr->Legend(); gr->Box();

gr->SubPlot(2,2,2); gr->Title("Sew sample");

mglData d2(100, 100); gr->Fill(d2, "mod((y~2-(1-x)"2)/2,0.1)");
gr->Rotate(50, 60); gr->Light(true); gr->Alpha(true);
gr->Box () ; gr->Surf (d2, "b");

d2.Sew("xy", 0.1); gr->Surf(d2, "r");

gr->SubPlot(2,2,3); gr->Title("Resize sample (interpolation)");
mglData x0(10), v0(10), x1, vi;

gr->Fill(x0,"rnd"); gr->Fill(v0,"rnd");

x1 = x0.Resize(100); vl = v0.Resize(100);

gr->Plot (x0,v0,"b+ "); gr->Plot(xl,vl,"r-");

gr->Label (x0,v0,"%n") ;

return O;
}
Envelop sample Smooth sample
ar (| | .‘"‘;‘-.“ 5 siyle
N A LT D 1 [y default
FET T A i ’ il
o — RERRAY A e !
wi- I‘ ‘I ‘ I‘ II ‘I i \7
S ol C 4
S It r B4 k|
s e s

Sew sample Resize sample (interpolation)

Also one can create new data arrays on base of the existing one: extract slice, row or
column of data ([subdatal, page 206), summarize along a direction(s) ([sum], page 210),
find distribution of data elements ([hist], page 210) and so on.

Another interesting feature of MathGL is interpolation and root-finding. There are
several functions for linear and cubic spline interpolation (see Section 6.8 [Interpolation],
page 216). Also there is a function [evaluate], page 208, which do interpolation of data
array for values of each data element of index data. It look as indirect access to the data
elements.

Chapter 2: MathGL examples 40

This function have inverse function [solve], page 208, which find array of indexes at which
data array is equal to given value (i.e. work as root finding). But [solve], page 208, function
have the issue — usually multidimensional data (2d and 3d ones) have an infinite number of
indexes which give some value. This is contour lines for 2d data, or isosurface(s) for 3d data.
So, [solve], page 208, function will return index only in given direction, assuming that other
index(es) are the same as equidistant index(es) of original data. If data have multiple roots
then second (and later) branches can be found by consecutive call(s) of [solve], page 208,
function. Let me demonstrate this on the following sample.

int sample(mglGraph *gr)
{
gr->SetRange(’z’,0,1);
mglData x(20,30), y(20,30), z(20,30), xx,yy,zZ;
gr->Fill(x," (x+2) /3*cos(pi*y)");
gr->Fill(y," (x+2)/3*sin(pi*y)");
gr->Fill(z, "exp(-6*x"2-2*sin(pi*y)"2)");

gr->SubPlot(2,1,0); gr->Title("Cartesian space"); gr->Rotate(30,-40);
gr->Axis("xyzU"); gr->Box(); gr->Label(’x’,"x"); gr->Label(’y’,"y");
gr->SetOrigin(1,1); gr->Grid("xy");

gr->Mesh(x,y,z);

// section along ’x’ direction

mglData u = x.Solve(0.5,°x’);

mglData v(u.nx); v.Fill1(0,1);

xx = x.Evaluate(u,v); yy = y.Evaluate(u,v); zz
gr->Plot (xx,yy,zz, "k20") ;

z.Evaluate(u,v);

// 1st section along ’y’ direction

mglData ul = x.Solve(-0.5,’y’);

mglData vi(ul.nx); v1.Fill(0,1);

xx = x.Evaluate(vl,ul); yy = y.Evaluate(vli,ul); zz
gr->Plot (xx,yy,zz,"b2"") ;

z.Evaluate(vl,ul);

// 2nd section along ’y’ direction

mglData u2 = x.Solve(-0.5,’y’,ul);

xx = x.Evaluate(vl,u2); yy = y.Evaluate(vli,u2); zz
gr->Plot (xx,yy,zz,"r2v") ;

z.Evaluate(vl,u2);

gr->SubPlot(2,1,1); gr->Title("Accompanied space");
gr->SetRanges(0,1,0,1); gr->SetOrigin(0,0);

gr->Axis(); gr->Box(); gr->Label(’x’,"i"); gr->Label(’y’,"j");
gr->Grid(z,"h");

gr->Plot (u,v,"k20"); gr->Line (mglPoint (0.4,0.5) ,mglPoint(0.8,0.5),"kA");

gr->Plot(vi,ul,"b2""); gr->Line(mglPoint(0.5,0.15),mglPoint(0.5,0.3),"bA");l}
gr->Plot(vl,u2,"r2v"); gr->Line(mglPoint(0.5,0.7),mglPoint(0.5,0.85),"rA");]}

Chapter 2: MathGL examples 41

Cartesian space Accompanied space

—— T
m__—‘
- r———
CHEE
I
\c‘:_ ///'5"- .
&
o8
::r_ \‘h___
. ol I :
4 < T —e—
1 / |
=

2.4 Data plotting

Let me now show how to plot the data. Next section will give much more examples for all
plotting functions. Here I just show some basics. MathGL generally has 2 types of plotting
functions. Simple variant requires a single data array for plotting, other data (coordinates)
are considered uniformly distributed in axis range. Second variant requires data arrays for
all coordinates. It allows one to plot rather complex multivalent curves and surfaces (in
case of parametric dependencies). Usually each function have one textual argument for
plot style and another textual argument for options (see Section 3.7 [Command options],
page 88).

Note, that the call of drawing function adds something to picture but does not clear the
previous plots (as it does in Matlab). Another difference from Matlab is that all setup (like
transparency, lightning, axis borders and so on) must be specified before plotting functions.

Let start for plots for 1D data. Term “1D data” means that data depend on single index
(parameter) like curve in parametric form {x(i),y(i),z(i)}, i=1...n. The textual argument
allow you specify styles of line and marks (see Section 3.3 [Line styles|, page 82). If this
parameter is NULL or empty then solid line with color from palette is used (see Section 4.2.7
[Palette and colors], page 98).

Below I shall show the features of 1D plotting on base of [plot], page 132, function. Let
us start from sinus plot:

int sample(mglGraph *gr)

{
mglData y0(50); y0.Modify("sin(pi*(2*x-1))");
gr->SubPlot(2,2,0);
gr->Plot (y0); gr->Box () ;

Chapter 2: MathGL examples 42

Style of line is not specified in [plot], page 132, function. So MathGL uses the solid line
with first color of palette (this is blue). Next subplot shows array y1 with 2 rows:

gr->SubPlot(2,2,1);

mglData y1(50,2);

y1.Modify("sin(pi*2*x-pi)");

y1.Modify("cos(pi*2*x-pi)/2",1);

gr->Plot(y1); gr->Box () ;

As previously I did not specify the style of lines. As a result, MathGL again uses solid
line with next colors in palette (there are green and red). Now let us plot a circle on the
same subplot. The circle is parametric curve x = cos(nt),y = sin(nt). I will set the color
of the circle (dark yellow, ‘Y’) and put marks ‘+” at point position:

mglData x(50); x.Modify("cos(pi*2*x-pi)");
gr->Plot (x,y0,"Y+");

Note that solid line is used because I did not specify the type of line. The same picture
can be achieved by [plot], page 132, and [subdatal, page 206, functions. Let us draw ellipse
by orange dash line:

gr->Plot (yl.SubData(-1,0),yl.SubData(-1,1),"ql");

Drawing in 3D space is mostly the same. Let us draw spiral with default line style. Now
its color is 4-th color from palette (this is cyan):

gr->SubPlot(2,2,2); gr->Rotate(60,40) ;

mglData z(50); z.Modify ("2%x-1");

gr->Plot(x,y0,2); gr->Box () ;

Functions [plot], page 132, and [subdata], page 206, make 3D curve plot but for single
array. Use it to put circle marks on the previous plot:

mglData y2(10,3); y2.Modify("cos(pi*(2*xx-1+y))");

y2.Modify ("2%x-1",2);

gr->Plot (y2.SubData(-1,0),y2.SubData(-1,1),y2.SubData(-1,2),"bo ");

Note that line style is empty ¢ * here. Usage of other 1D plotting functions looks similar:

gr->SubPlot(2,2,3); gr->Rotate(60,40);
gr->Bars(x,y0,z,"r"); gr->Box();
return O;

Surfaces [surf], page 145, and other 2D plots (see Section 4.12 [2D plotting], page 145)
are drown the same simpler as 1D one. The difference is that the string parameter specifies
not the line style but the color scheme of the plot (see Section 3.4 [Color scheme], page 84).
Here T draw attention on 4 most interesting color schemes. There is gray scheme where
color is changed from black to white (string ‘kw’) or from white to black (string ‘wk’).
Another scheme is useful for accentuation of negative (by blue color) and positive (by red
color) regions on plot (string ‘"BbwrR"’). Last one is the popular “jet” scheme (string
‘"BbcyrR"’).

Now I shall show the example of a surface drawing. At first let us switch lightning on

int sample(mglGraph *gr)
{
gr->Light (true); gr->Light (0,mglPoint(0,0,1));

Chapter 2: MathGL examples 43

and draw the surface, considering coordinates x,y to be uniformly distributed in axis
range

mglData a0(50,40);

a0.Modify("0.6*sin(2*pi*x)*sin(3*pi*xy)+0.4*cos(3*xpi* (x*xy))");

gr->SubPlot(2,2,0); gr->Rotate(60,40) ;

gr->Surf (al) ; gr->Box () ;

Color scheme was not specified. So previous color scheme is used. In this case it is
default color scheme (“jet”) for the first plot. Next example is a sphere. The sphere is
parametrically specified surface:

mglData x(50,40),y(50,40),z(50,40);
X.Modify("0.8*sin(2*pi*x)*sin(pi*y)");
y.Modify("0.8*cos (2*pi*x)*sin(pixy)");
z.Modify ("0.8%cos (pi*y)");
gr->SubPlot(2,2,1); gr->Rotate(60,40) ;
gr->Surf (x,y,z,"BbwrR") ;gr->Box () ;

I set color scheme to "BbwrR" that corresponds to red top and blue bottom of the sphere.

Surfaces will be plotted for each of slice of the data if nz>1. Next example draws surfaces
for data arrays with nz=3:

mglData al(50,40,3);

al.Modify("0.6*sin(2*pi*x)*sin(3*pi*y)+0.4*cos(3*xpi*(x*y))");

al.Modify("0.6*cos(2xpi*x)*cos(3*pi*xy)+0.4*xsin(3*pi*(x*y))",1);

al.Modify("0.6*cos(2*pi*x)*cos(3*pi*xy)+0.4*cos(3*pi*(x*y))",2);

gr->SubPlot(2,2,2); gr->Rotate(60,40) ;

gr->Alpha(true);

gr->Surf (al); gr->Box () ;

Note, that it may entail a confusion. However, if one will use density plot then the
picture will look better:

gr->SubPlot(2,2,3); gr->Rotate(60,40) ;
gr->Dens(al); gr->Box () ;
return O;

¥

Drawing of other 2D plots is analogous. The only peculiarity is the usage of flag ‘#’.
By default this flag switches on the drawing of a grid on plot ([grid], page 130, or [mesh],
page 146, for plots in plain or in volume). However, for isosurfaces (including surfaces of
rotation [axial], page 151) this flag switches the face drawing off and figure becomes wired.
The following code gives example of flag ‘#’ using (compare with normal function drawing
as in its description):
int sample(mglGraph *gr)

{
gr->Alpha(true); gr->Light (true); gr->Light (0,mglPoint(0,0,1));
mglData a(30,20);
a.Modify ("0.6*sin(2*pi*x)*sin(3*pikxy) + 0.4*cos(3*pix(x*xy))");

gr->SubPlot(2,2,0); gr->Rotate(40,60);
gr->Surf (a, "BbcyrR#") ; gr->Box () ;

Chapter 2: MathGL examples 44

gr->SubPlot(2,2,1); gr->Rotate(40,60) ;

gr->Dens (a, "BbcyrR#") ; gr->Box () ;
gr->SubPlot(2,2,2); gr->Rotate(40,60);
gr->Cont (a, "BbcyrR#") ; gr->Box () ;
gr->SubPlot(2,2,3); gr->Rotate(40,60) ;
gr->Axial(a,"BbcyrR#") ; gr->Box () ;
return O;

}

2.5 Hints

In this section I've included some small hints and advices for the improving of the quality of
plots and for the demonstration of some non-trivial features of MathGL library. In contrast
to previous examples I showed mostly the idea but not the whole drawing function.

2.5.1 “Compound” graphics

As I noted above, MathGL functions (except the special one, like CIf()) do not erase the
previous plotting but just add the new one. It allows one to draw “compound” plots easily.
For example, popular Matlab command surfc can be emulated in MathGL by 2 calls:

Surf(a);

Cont(a, "_"); // draw contours at bottom

Here a is 2-dimensional data for the plotting, -1 is the value of z-coordinate at which
the contour should be plotted (at the bottom in this example). Analogously, one can draw
density plot instead of contour lines and so on.

Another nice plot is contour lines plotted directly on the surface:

Light (true); // switch on light for the surface
Surf(a, "BbcyrR"); // select ’jet’ colormap for the surface
Cont(a, "y"); // and yellow color for contours

The possible difficulties arise in black&white case, when the color of the surface can be
close to the color of a contour line. In that case I may suggest the following code:

Light(true); // switch on light for the surface
Surf(a, "kw"); // select ’gray’ colormap for the surface

CAxis(-1,0); // first draw for darker surface colors
Cont(a, "w"); // white contours
CAxis(0,1); // now draw for brighter surface colors
Cont(a, "k"); // black contours
CAxis(-1,1); // return color range to original state

The idea is to divide the color range on 2 parts (dark and bright) and to select the
contrasting color for contour lines for each of part.

Similarly, one can plot flow thread over density plot of vector field amplitude (this is
another amusing plot from Matlab) and so on. The list of compound graphics can be
prolonged but I hope that the general idea is clear.

Just for illustration I put here following sample code:

int sample(mglGraph *gr)
{

Chapter 2: MathGL examples 45

mglData a,b,d; mgls_prepare2v(&a,&b); d = a;

for(int i=0;i<a.nx*a.ny;i++) d.ali]l = hypot(a.alil,b.alil);
mglData c; mgls_prepare3d(&c);

mglData v(10); v.Fill(-0.5,1);

gr->SubPlot(2,2,1,""); gr->Title("Flow + Dens");
gr->Flow(a,b,"br"); gr->Dens(d,"BbcyrR"); gr->Box();

gr->SubPlot(2,2,0); gr->Title("Surf + Cont"); gr->Rotate(50,60);
gr->Light (true); gr->Surf(a); gr->Cont(a,"y"); gr->Box();

gr->SubPlot(2,2,2); gr->Title("Mesh + Cont"); gr->Rotate(50,60);
gr->Box(); gr->Mesh(a); gr->Cont(a,"_");

gr->SubPlot(2,2,3); gr->Title("Surf3 + ContF3");gr->Rotate(50,60);
gr->Box(); gr->ContF3(v,c,"z",0); gr->ContF3(v,c,"x"); gr->ContF3(v,c);
gr->SetCutBox (mglPoint (0,-1,-1), mglPoint(1,0,1.1));
gr->ContF3(v,c,"z",c.nz-1); gr->Surf3(-0.5,c);

return O;

Flow + Dens

Mesh + Cont Surf3 + ContF3

2.5.2 Transparency and lighting

Here I want to show how transparency and lighting both and separately change the look of
a surface. So, there is code and picture for that:

int sample(mglGraph *gr)
{
mglData a; mgls_prepare2d(&a);

Chapter 2: MathGL examples 46

gr->SubPlot(2,2,0); gr->Title("default"); gr->Rotate(50,60);
gr->Box(); gr->Surf(a);

gr->SubPlot(2,2,1); gr->Title("light on"); gr->Rotate(50,60);
gr->Box(); gr->Light(true); gr->Surf(a);

gr->SubPlot(2,2,3); gr->Title("alpha on; light on"); gr->Rotate(50,60);
gr->Box(); gr->Alpha(true); gr->Surf(a);

gr->SubPlot(2,2,2); gr->Title("alpha on"); gr->Rotate(50,60);

gr->Box(); gr->Light(false); gr->Surf(a);
return O;

default light on

2.5.3 Types of transparency

MathGL library has advanced features for setting and handling the surface transparency.
The simplest way to add transparency is the using of function [alphal, page 93. As a result,
all further surfaces (and isosurfaces, density plots and so on) become transparent. However,
their look can be additionally improved.

The value of transparency can be different from surface to surface. To do it just use
SetAlphaDef before the drawing of the surface, or use option alpha (see Section 3.7 [Com-
mand options|, page 88). If its value is close to 0 then the surface becomes more and
more transparent. Contrary, if its value is close to 1 then the surface becomes practically
non-transparent.

Also you can change the way how the light goes through overlapped surfaces. The
function SetTranspType defines it. By default the usual transparency is used (‘0’) — surfaces
below is less visible than the upper ones. A “glass-like” transparency (‘1’) has a different

Chapter 2: MathGL examples 47

look — each surface just decreases the background light (the surfaces are commutable in this
case).

A “neon-like” transparency (‘2’) has more interesting look. In this case a surface is the
light source (like a lamp on the dark background) and just adds some intensity to the color.
At this, the library sets automatically the black color for the background and changes the
default line color to white.

As example I shall show several plots for different types of transparency. The code is
the same except the values of SetTranspType function:

int sample(mglGraph *gr)

{
gr->Alpha(true); gr->Light(true);
mglData a; mgls_prepare2d(&a);
gr->SetTranspType(0); gr->Clf();
gr->SubPlot(2,2,0); gr->Rotate(50,60); gr->Surf(a); gr->Box();
gr->SubPlot(2,2,1); gr->Rotate(50,60); gr->Dens(a); gr->Box();
gr->SubPlot(2,2,2); gr->Rotate(50,60); gr->Cont(a); gr->Box();
gr->SubPlot(2,2,3); gr->Rotate(50,60); gr->Axial(a); gr->Box();
return O;

Chapter 2: MathGL examples 48

2.5.4 Axis projection

You can easily make 3D plot and draw its x-,y-,z-projections (like in CAD) by using
[ternary|, page 105, function with arguments: 4 for Cartesian, 5 for Ternary and 6 for
Quaternary coordinates. The sample code is:

int sample(mglGraph *gr)

{
gr->SetRanges(0,1,0,1,0,1);
mglData x(50),y(50),z(50),rx(10),ry(10), a(20,30);
a.Modify ("30*x*xy* (1-x-y) “2* (x+y<1)");

Chapter 2: MathGL examples

x.Modify("0.25%(1+cos(2xpixx))");

y.Modify ("0.25*%(1+sin(2*pi*x))");
rx.Modify("rnd"); ry.Modify("(1-v)*rnd",rx);
z.Modify("x");

gr->Title("Projection sample");

gr->Ternary (4) ;

gr->Rotate(50,60) ; gr->Light (true) ;

gr->Plot(x,y,z,"r2"); gr->Surf (a,"#");

gr->Axis(); gr->Grid(); gr->Box();

gr->Label(’x’,"X",1); gr->Label(’y’,"Y",1); gr->Label(’z’,"Z",1);

Projection sample

0 02 04 06 0

=
g
£
g
g

0 02 04 06 08B 1

49

Chapter 2: MathGL examples 50

Projection sample (ternary)

AN

\

002 4 06 08

D .0 oo

0 035 08 04 02 0 06 08 1

2.5.5 Adding fog

MathGL can add a fog to the image. Its switching on is rather simple — just use [fog],
page 95, function. There is the only feature — fog is applied for whole image. Not to
particular subplot. The sample code is:

int sample(mglGraph *gr)
{
mglData a; mgls_prepare2d(&a);
gr->Title("Fog sample");
gr->Light (true); gr->Rotate(50,60); gr->Fog(l); gr->Box();
gr->Surf(a); gr->Cont(a,"y");
return O;

Chapter 2: MathGL examples 51

‘il

2.5.6 Lighting sample

In contrast to the most of other programs, MathGL supports several (up to 10) light sources.
Moreover, the color each of them can be different: white (this is usual), yellow, red, cyan,
green and so on. The use of several light sources may be interesting for the highlighting of
some peculiarities of the plot or just to make an amusing picture. Note, each light source
can be switched on/off individually. The sample code is:

int sample(mglGraph *gr)

{
mglData a; mgls_prepare2d(&a);
gr->Title("Several light sources");
gr->Rotate(50,60); gr->Light(true);
gr->AddLight (1,mglPoint(0,1,0),’c’);
gr->AddLight (2,mglPoint(1,0,0),’y’);
gr->AddLight (3,mglPoint (0,-1,0),’m’);
gr->Box(); gr->Surf(a,"h");
return O;

Chapter 2: MathGL examples 52

Several light sources

Additionally, you can use local light sources and set to use [diffuse], page 95, reflection
instead of specular one (by default) or both kinds. Note, I use [attachlight], page 95,
command to keep light settings relative to subplot.

int sample(mglGraph *gr)

{
gr->Light (true); gr->AttachLight(true);
gr->SubPlot(2,2,0); gr->Title("Default"); gr->Rotate(50,60);
gr->Line(mglPoint(-1,-0.7,1.7) ,mglPoint(-1,-0.7,0.7) ,"BA"); gr->Box(); gr->Surf(a);]]

gr->SubPlot(2,2,1); gr->Title("Local"); gr->Rotate(50,60) ;
gr->AddLight (0,mglPoint(1,0,1) ,mglPoint(-2,-1,-1));
gr->Line (mglPoint(1,0,1) ,mglPoint(-1,-1,0),"BA0"); gr->Box(); gr->Surf(a);]}

gr->SubPlot(2,2,2); gr->Title("no diffuse"); gr->Rotate(50,60);
gr->SetDiffuse(0);
gr->Line (mglPoint(1,0,1) ,mglPoint(-1,-1,0),"BA0"); gr->Box(); gr->Surf(a);]}

gr->SubPlot(2,2,3); gr->Title("diffusive only"); gr->Rotate(50,60);
gr->SetDiffuse(0.5);

gr->AddLight (0,mglPoint(1,0,1) ,mglPoint(-2,-1,-1),’w’,0);

gr->Line (mglPoint(1,0,1) ,mglPoint(-1,-1,0),"BA0"); gr->Box(); gr->Surf(a);]}

Chapter 2: MathGL examples 53

Default Local

no diffuse diffusive only

2.5.7 Using primitives

MathGL provide a set of functions for drawing primitives (see Section 4.7 [Primitives],
page 121). Primitives are low level object, which used by most of plotting functions. Picture
below demonstrate some of commonly used primitives.

L. 2 C £l Rh b, E]_]_i
e 4urve ,,y o o Arc, Polygon, Symbol

,,_»;';:_f-_—:" - - =

Face[xyz]

Sphere and Drop

Y V .
Vo %o oo i il A

no edges with edges ‘arrow’ with
asp=0.33 asp:(} 67 asp—l asp=1.5 (default) @' style) gradient

Generally, you can create arbitrary new kind of plot using primitives. For example,
MathGL don’t provide any special functions for drawing molecules. However, you can do
it using only one type of primitives [drop], page 123. The sample code is:
int sample(mglGraph *gr)

{

Chapter 2: MathGL examples

gr->Alpha(true); gr->Light(true);

gr->SubPlot(2,2,0,""); gr->Title("Methane, CH_4");
gr->StartGroup ("Methane") ;

gr->Rotate(60,120);

gr->Sphere (mglPoint (0,0,0),0.25,"k");

gr->Drop (mglPoint (0,0,0) ,mglPoint(0,0,1),0.35,"h",1,2);
gr->Sphere (mglPoint(0,0,0.7),0.25,"g");

gr->Drop (mglPoint (0,0,0) ,mglPoint(-0.94,0,-0.33),0.35,"h",1,2);
gr->Sphere (mglPoint (-0.66,0,-0.23),0.25,"g");

gr—>Drop (mglPoint (0,0,0) ,mglPoint(0.47,0.82,-0.33),0.35,"h",1,2);
gr->Sphere (mglPoint (0.33,0.57,-0.23),0.25,"g");

gr->Drop (mglPoint (0,0,0) ,mglPoint(0.47,-0.82,-0.33),0.35,"h",1,2);
gr->Sphere (mglPoint (0.33,-0.57,-0.23),0.25,"g") ;

gr->EndGroup () ;

gr->SubPlot(2,2,1,""); gr->Title("Water, H_{2}0");
gr->StartGroup("Water") ;

gr->Rotate(60,100);

gr->StartGroup("Water_0");

gr->Sphere (mglPoint(0,0,0),0.25,"r");

gr->EndGroup () ;

gr->StartGroup("Water_Bond_1");
gr->Drop(mglPoint (0,0,0) ,mglPoint(0.3,0.5,0),0.3,"m",1,2);
gr->EndGroup () ;

gr->StartGroup("Water_H_1");
gr->Sphere(mglPoint(0.3,0.5,0),0.25,"g");

gr->EndGroup () ;

gr->StartGroup("Water_Bond_2");

gr->Drop (mglPoint (0,0,0) ,mglPoint(0.3,-0.5,0),0.3,"m",1,2);
gr->EndGroup () ;

gr->StartGroup("Water_H_2");
gr->Sphere(mglPoint(0.3,-0.5,0),0.25,"g");

gr->EndGroup () ;

gr->EndGroup () ;

gr->SubPlot(2,2,2,""); gr->Title("Oxygen, 0_2");
gr->StartGroup ("Oxygen") ;

gr->Rotate(60,120);

gr->Drop (mglPoint (0,0.5,0) ,mglPoint(0,-0.3,0),0.3,"m",1,2);
gr—>Sphere(mglPoint(0,0.5,0),0.25,"r");

gr->Drop (mglPoint (0,-0.5,0) ,mglPoint(0,0.3,0),0.3,"m",1,2);
gr->Sphere (mglPoint(0,-0.5,0),0.25,"r");

gr->EndGroup () ;

gr->SubPlot(2,2,3,""); gr->Title("Ammonia, NH_3");
gr->StartGroup ("Ammonia") ;

Chapter 2: MathGL examples 55

gr->Rotate(60,120);

gr->Sphere (mglPoint (0,0,0),0.25,"d");

gr->Drop (mglPoint (0,0,0) ,mglPoint(0.33,0.57,0),0.32,"n",1,2);
gr->Sphere (mglPoint(0.33,0.57,0),0.25,"g");

gr->Drop (mglPoint (0,0,0) ,mglPoint(0.33,-0.57,0),0.32,"n",1,2);
gr->Sphere (mglPoint (0.33,-0.57,0),0.25,"g");

gr->Drop (mglPoint (0,0,0) ,mglPoint(-0.65,0,0),0.32,"n",1,2);
gr->Sphere(mglPoint(-0.65,0,0),0.25,"g");

gr->EndGroup () ;

return O;

Methane, CH, Water, H,O

=

Oxygen, O, Ammonia, NH,

Cegn (4

Moreover, some of special plots can be more easily produced by primitives rather than

by specialized function. For example, Venn diagram can be produced by Error plot:

int sample(mglGraph *gr)

{

double xx[3]1={-0.3,0,0.3}, yy[3]={0.3,-0.3,0.3}, ee[3]1={0.7,0.7,0.73};
mglData x(3,xx), y(3,yy), e(3,ee);

gr->Title("Venn-like diagram"); gr->Alpha(true);

gr->Error(x,y,e,e," lrgb@#o") ;

return O;

You see that you have to specify and fill 3 data arrays. The same picture can be produced

by just 3 calls of [circle], page 123, function:

int sample(mglGraph *gr)

{

gr->Title("Venn-like diagram"); gr->Alpha(true);
gr->Circle(mglPoint(-0.3,0.3),0.7,"rr@");

Chapter 2: MathGL examples 56

gr->Circle(mglPoint (0,-0.3),0.7,"gg@");
gr->Circle(mglPoint(0.3,0.3),0.7,"bb@");
return O;

¥

Of course, the first variant is more suitable if you need to plot a lot of circles. But for
few ones the usage of primitives looks easy.

Venn-like diagram

2.5.8 STFA sample

Short-time Fourier Analysis ([stfa], page 161) is one of informative method for analyzing
long rapidly oscillating 1D data arrays. It is used to determine the sinusoidal frequency and
phase content of local sections of a signal as it changes over time.

MathGL can find and draw STFA result. Just to show this feature I give following
sample. Initial data arrays is 1D arrays with step-like frequency. Exactly this you can see
at bottom on the STFA plot. The sample code is:

int sample(mglGraph *gr)

{
mglData a(2000), b(2000) ;
gr->Fill(a,"cos (50*pi*x)*(x<-.5)+cos (100*pi*x)* (x<0)*(x>-.5)+\
cos (200*pi*x)* (x<.5)* (x>0)+cos (400*pi*x)*(x>.5)");
gr->SubPlot (1, 2, 0,"<_"); gr->Title("Initial signal");
gr->Plot(a);
gr->Axis();
gr->Label (’x’, "\\i t");

gr->SubPlot (1, 2, 1,"<_"); gr->Title("STFA plot");
gr->STFA(a, b, 64);
gr->Axis();

Chapter 2: MathGL examples 57

gr->Label (’x’, "\\i t");
gr->Label(’y’, "\\omega", 0);
return O;

¥

Initial signal

A www\ wa ‘”\"‘ m '(

| ”“ I \ “

\ W “\
STFA plot

W

S S T S H S SR S
=1 =05 0 0.5 1

=1 —05

2.5.9 Mapping visualization

Sometime ago I worked with mapping and have a question about its visualization. Let me
remember you that mapping is some transformation rule for one set of number to another
one. The 1d mapping is just an ordinary function — it takes a number and transforms it to
another one. The 2d mapping (which I used) is a pair of functions which take 2 numbers
and transform them to another 2 ones. Except general plots (like [surfc], page 156, [surfa],
page 158) there is a special plot — Arnold diagram. It shows the area which is the result of
mapping of some initial area (usually square).

I tried to make such plot in [map], page 160. It shows the set of points or set of
faces, which final position is the result of mapping. At this, the color gives information
about their initial position and the height describes Jacobian value of the transformation.
Unfortunately, it looks good only for the simplest mapping but for the real multivalent
quasi-chaotic mapping it produces a confusion. So, use it if you like :).

The sample code for mapping visualization is:

int sample(mglGraph *gr)

{
mglData a(50, 40), b(50, 40);
gr->Puts (mglPoint (0, 0), "\\to", ":C", -1.4);
gr->SetRanges(-1,1,-1,1,-2,2);

gr->SubPlot(2, 1, 0);
gr->Fill(a,"x"); gr->Fill(b,"y");

Chapter 2: MathGL examples 58

gr->Puts(mglPoint (0, 1.1), "\\{x, y\\}", ":C", -2); gr->Box();
gr->Map(a, b, "brgk");

gr->SubPlot(2, 1, 1);

gr->Fill(a," (x"3+y~3)/2"); gr->Fill(b,"(x-y)/2");

gr->Puts (mglPoint (0, 1.1), "\\{\\frac{x"3+y~3}{2}, \\frac{x-y}t{2}\\}", ":C", -2);l}
gr->Box () ;

gr->Map(a, b, "brgk");

return O;

{x, y}

2.5.10 Data interpolation

There are many functions to get interpolated values of a data array. Basically all of them
can be divided by 3 categories:

1. functions which return single value at given point (see Section 6.8 [Interpolation],
page 216, and mglGSpline() in Section 6.11 [Global functions], page 222);

2. functions [subdata], page 206, and [evaluate], page 208, for indirect access to data
elements;

3. functions [refill], page 202, [gspline], page 203, and [datagrid], page 202, which fill
regular (rectangular) data array by interpolated values.

The usage of first category is rather straightforward and don’t need any special com-
ments.

There is difference in indirect access functions. Function [subdatal], page 206, use use
step-like interpolation to handle correctly single nan values in the data array. Contrary,
function [evaluate], page 208, use local spline interpolation, which give smoother output
but spread nan values. So, [subdata], page 206, should be used for specific data elements

Chapter 2: MathGL examples 59

(for example, for given column), and [evaluate], page 208, should be used for distributed
elements (i.e. consider data array as some field). Following sample illustrates this difference:

int sample(mglGraph *gr)

{
gr->SubPlot(1,1,0,""); gr->Title("SubData vs Evaluate");
mglData in(9), arg(99), e, s;
gr->Fill(in,"x"3/1.1"); gr->Fill(arg,"4*x+4");

gr->Plot(in,"ko "); gr->Box () ;

e = in.Evaluate(arg,false); gr->Plot(e,"b.","legend ’Evaluate’");
s = in.SubData(arg); gr->Plot(s,"r.","legend ’SubData’");
gr->Legend(2) ;

SubData vs Evaluate

—— Evaluate
SubData

Example of [datagrid], page 202, usage is done in Section 2.5.11 [Making regular datal,
page 61. Here I want to show the peculiarities of [refill], page 202, and [gspline], page 203,
functions. Both functions require argument(s) which provide coordinates of the data values,
and return rectangular data array which equidistantly distributed in axis range. So, in
opposite to [evaluate], page 208, function, [refill], page 202, and [gspline], page 203, can
interpolate non-equidistantly distributed data. At this both functions [refill], page 202, and
[gspline], page 203, provide continuity of 2nd derivatives along coordinate(s). However,
[refill], page 202, is slower but give better (from human point of view) result than global
spline [gspline], page 203, due to more advanced algorithm. Following sample illustrates
this difference:

int sample(mglGraph *gr)

{
mglData x(10), y(10), r(100);
x.Modify("0.5+rnd"); x.CumSum("x"); x.Norm(-1,1);
y.Modify("sin(pi*v)/1.5",%);

Chapter 2: MathGL examples

gr->SubPlot(2,2,0,"<_"); gr->Title("Refill sample");
gr->Axis(); gr->Box(); gr->Plot(x,y,"o ");
gr->Refill(r,x,y); // or you can use r.Refill(x,y,-1,1);
gr->Plot(r,"r"); gr->FPlot("sin(pi*x)/1.5","B:");
gr->SubPlot(2,2,1,"<_");gr->Title("Global spline");
gr->Axis(); gr->Box(); gr->Plot(x,y,"o ");
r.RefillGS(x,y,-1,1); gr->Plot(r,"r");

gr->FPlot ("sin(pi*x)/1.5","B:");

gr->Alpha(true); gr->Light(true);
mglData z(10,10), xx(10,10), yy(10,10), rr(100,100);
y.Modify("0.5+rnd"); y.CumSum("x"); y.Norm(-1,1);
for(int i=0;i<10;i++) for(int j=0;j<10;j++)

z.al[i+10%j] = sin(M_PI*x.alil*y.a[jl)/1.5;
gr->SubPlot(2,2,2); gr->Title("2d regular"); gr->Rotate(40,60);
gr->Axis(); gr->Box(); gr->Mesh(x,y,z,"k");
gr->Refill(rr,x,y,z); gr->Surf(rr);

gr->Fill(xx," (x+1)/2*cos (y*pi/2-1)");
gr->Fill(yy," (x+1)/2*sin(y*pi/2-1)");
for(int i=0;i<10%10;i++)

z.ali] = sin(M_PI*xx.alil*yy.ali])/1.5;
gr->SubPlot(2,2,3); gr->Title("2d non-regular"); gr->Rotate(40,60);
gr->Axis(); gr->Box(); gr->Plot(xx,yy,z,"ko ");
gr->Refill(rr,xx,yy,z); gr->Surf(rr);

}
_ Refill sgmple _ Global slp]jne
g N g S
T s o s T % "o s
2d regular 2d non-regular
-N“j%\\\\\ .

Chapter 2: MathGL examples 61

2.5.11 Making regular data

Sometimes, one have only unregular data, like as data on triangular grids, or experimental
results and so on. Such kind of data cannot be used as simple as regular data (like matrices).
Only few functions, like [dots]|, page 171, can handle unregular data as is.

However, one can use built in triangulation functions for interpolating unregular data
points to a regular data grids. There are 2 ways. First way, one can use [triangulation],
page 227, function to obtain list of vertexes for triangles. Later this list can be used in
functions like [triplot], page 170, or [tricont], page 170. Second way consist in usage of
[datagrid], page 202, function, which fill regular data grid by interpolated values, assuming
that coordinates of the data grid is equidistantly distributed in axis range. Note, you can
use options (see Section 3.7 [Command options], page 88) to change default axis range as
well as in other plotting functions.

int sample(mglGraph *gr)

{
mglData x(100), y(100), z(100);
gr->Fill(x,"2*rnd-1"); gr->Fill(y,"2*rnd-1"); gr->Fill(z,"v"2-w"2",x,y);
// first way - plot triangular surface for points
mglData d = mglTriangulation(x,y);
gr->Title("Triangulation");
gr->Rotate (40,60) ; gr->Box () ; gr->Light (true);
gr->TriPlot(d,x,y,z); gr->TriPlot(d,x,y,z,"#k");
// second way - make regular data and plot it
mglData g(30,30);
gr->DataGrid(g,x,y,z); gr->Mesh(g,"m");

Triangulation

Chapter 2: MathGL examples

2.5.12 Making histogram

62

Using the [hist], page 210, function(s) for making regular distributions is one of useful fast
methods to process and plot irregular data. Hist can be used to find some momentum of
set of points by specifying weight function. It is possible to create not only 1D distributions
but also 2D and 3D ones. Below I place the simplest sample code which demonstrate [hist],

page 210, usage:

int sample(mglGraph *gr)

{

mglData x(10000), y(10000), z(10000);

gr->Fill(x,"2*rnd-1");

gr->Fill(y,"2*rnd-1"); gr->Fill(z,"exp(-6*(v 2+w"2))",x,y);

mglData xx=gr->Hist(x,z), yy=gr->Hist(y,z);

yy.Norm(0,1);

gr->MultiPlot(3,3,3,2,2,"");
gr->Dots(x,y,z,"wyrRk") ;
gr->MultiPlot(3,3,0,2,1,"");

gr->Box () ;

gr->Box () ;

gr->MultiPlot(3,3,5,1,2,"");

gr->Box () ;

gr->Bars (xx) ;

gr->Barh (yy) ;

gr->SubPlot(3,3,2);

gr->Puts (mglPoint (0.5,0.5),"Hist and\nMultiPlot\nsample","a",-6);

return O;

2.5.13 Nonlinear fitting hints

xx.Norm(0,1);

gr->SetRanges(-1,1,-1,1,0,1);
gr->SetRanges(-1,1,0,1);

gr->SetRanges(0,1,-1,1);

Hist and
MultiPlot
sample

24
2% %
T Al

Fh o R Lt

Nonlinear fitting is rather simple. All that you need is the data to fit, the approximation

formula and the list of coefficients to fit (better with its initial guess values).

Let me

Chapter 2: MathGL examples

63

demonstrate it on the following simple example. First, let us use sin function with some
random noise:

coefficients ‘abc’ and do the fitting for approximation formula ‘a+b*sin(c*x)’

due to algorithm features.

mglData dat(100), in(100); //data to be fitted and ideal data

gr->Fill(dat,"0.4*rnd+0.1+sin(2*pi*x)");
gr->Fill(in,"0.3+sin(2*pi*x)");

and plot it to see that data we will fit

gr->Title("Fitting sample");
gr->SetRange(’y’,-2,2); gr->Box(); gr->Plot(dat, "k. ");
gr->Axis(); gr->Plot(in, "b");

gr->Puts (mglPoint (0, 2.2), "initial: y = 0.3+sin(2\\pi x)", "b");

The next step is the fitting itself. For that let me specify an initial values ini for

mreal ini[3] = {1,1,3};
mglData Ini(3,ini);
mglData res = gr->Fit(dat, "atb*sin(c*x)", "abc", Ini);

Now display it

gr->Plot(res, "r");
gr->Puts (mglPoint(-0.9, -1.3), "fitted:", "r:L");
gr->PutsFit (mglPoint (0, -1.8), "y =", "r");

NOTE! the fitting results may have strong dependence on initial values for coefficients

The problem is that in general case there are several local

"optimums" for coefficients and the program returns only first found one! There are no
guaranties that it will be the best. Try for example to set ini[3] = {0, 0, 0} in the code
above.

The full sample code for nonlinear fitting is:

int sample(mglGraph *gr)

{

mglData dat(100), in(100);
gr->Fill(dat,"0.4*rnd+0.1+sin(2*pi*x)");
gr->Fill(in,"0.3+sin(2*pi*x)");

mreal ini[3] = {1,1,3};

mglData Ini(3,ini);

mglData res = gr->Fit(dat, "atb*sin(c*x)", "abc", Ini);

gr->Title("Fitting sample");

gr->SetRange(’y’,-2,2); gr->Box(); gr->Plot(dat, "k. ");
gr->Axis(); gr->Plot(res, "r"); gr->Plot(in, "b");
gr->Puts(mglPoint(-0.9, -1.3), "fitted:", "r:L");
gr->PutsFit (mglPoint(0, -1.8), "y =", "r");

gr->Puts (mglPoint (0, 2.2), "initial: y = 0.3+sin(2\\pi x)", "b");

return O;

Chapter 2: MathGL examples 64

Fitting sample

initial: y = 0.3+sin(2nx)

fitted:
y = 0.302846+1.00272%sin(6.32856%x)
T N [T I T TR B
-1 -0.5 0 0.5 1

2.5.14 PDE solving hints

Solving of Partial Differential Equations (PDE, including beam tracing) and ray tracing
(or finding particle trajectory) are more or less common task. So, MathGL have several
functions for that. There are [ray|, page 224, for ray tracing, [pde], page 223, for PDE
solving, [qo2d], page 225, for beam tracing in 2D case (see Section 6.11 [Global functions],
page 222). Note, that these functions take “Hamiltonian” or equations as string values.
And I don’t plan now to allow one to use user-defined functions. There are 2 reasons: the
complexity of corresponding interface; and the basic nature of used methods which are good
for samples but may not good for serious scientific calculations.

The ray tracing can be done by [ray], page 224, function. Really ray tracing equation is
Hamiltonian equation for 3D space. So, the function can be also used for finding a particle
trajectory (i.e. solve Hamiltonian ODE) for 1D, 2D or 3D cases. The function have a set of
arguments. First of all, it is Hamiltonian which defined the media (or the equation) you are
planning to use. The Hamiltonian is defined by string which may depend on coordinates
‘', ‘y’, ‘2’, time ‘t’ (for particle dynamics) and momentums ‘p’=p,, ‘qa’=p,, ‘v'=p,. Next,
you have to define the initial conditions for coordinates and momentums at ‘t’=0 and set
the integrations step (default is 0.1) and its duration (default is 10). The Runge-Kutta
method of 4-th order is used for integration.

const char *ham = "p~2+q~2-x-1+i*0.5* (y+x)*(y>-x)";

mglData r = mglRay(ham, mglPoint(-0.7, -1), mglPoint(0, 0.5), 0.02, 2);

This example calculate the reflection from linear layer (media with Hamiltonian
‘p"2+q"2-x-1'=p2 + p> — = — 1). This is parabolic curve. The resulting array have 7
columns which contain data for {x,y,z,p,q,v,t}.

The solution of PDE is a bit more complicated. As previous you have to specify the
equation as pseudo-differential operator H (z, V) which is called sometime as “Hamiltonian”
(for example, in beam tracing). As previously, it is defined by string which may depend
on coordinates ‘x’, ‘y’, ‘2’ (but not time!), momentums ‘p’=(d/dzx)/iko, ‘qa’=(d/dy)/iko and
field amplitude ‘u’=|u|. The evolutionary coordinate is ‘z’ in all cases. So that, the equation

Chapter 2: MathGL examples 65

look like du/dz = ikoH (x,y,p,q, |u|)[u]. Dependence on field amplitude ‘w’=|u| allows one
to solve nonlinear problems too. For example, for nonlinear Shrodinger equation you may
set ham="p~2 + q"2 - u~2". Also you may specify imaginary part for wave absorption, like
ham = "p~2 + i*x*(x>0)" or ham = "p~2 + il*x*(x>0)".

Next step is specifying the initial conditions at ‘z’ equal to minimal z-axis value. The
function need 2 arrays for real and for imaginary part. Note, that coordinates x,y,z are
supposed to be in specified axis range. So, the data arrays should have corresponding
scales. Finally, you may set the integration step and parameter kO=k,. Also keep in mind,
that internally the 2 times large box is used (for suppressing numerical reflection from
boundaries) and the equation should well defined even in this extended range.

Final comment is concerning the possible form of pseudo-differential operator H. At this
moment, simplified form of operator H is supported — all “mixed” terms (like ‘x*p’->x*d/dx)
are excluded. For example, in 2D case this operator is effectively H = f(p, z) + g(z, z, u).
However commutable combinations (like ‘xxq’->x*d/dy) are allowed for 3D case.

So, for example let solve the equation for beam deflected from linear layer and absorbed
later. The operator will have the form ‘"p~2+q~2-x-1+i*0.5*%(z+x)*(z>-x)"’ that corre-
spond to equation 1/iko * du/dz + d*u/dx® + d*u/dy® + x * u + i(x + 2)/2 x w = 0. This
is typical equation for Electron Cyclotron (EC) absorption in magnetized plasmas. For
initial conditions let me select the beam with plane phase front exp(—48 x (x + 0.7)?). The
corresponding code looks like this:

int sample(mglGraph *gr)

{
mglData a,re(128),im(128);
gr->Fill(re,"exp(-48*%(x+0.7)"2)");
a = gr->PDE("p~2+q~2-x-1+i*0.5x(z+x) *(z>-x)", re, im, 0.01, 30);
a.Transpose("yxz");
gr->SubPlot(1,1,0,"<_"); gr->Title("PDE solver");
gr->SetRange(’c’,0,1); gr->Dens(a,"wyrRk");
gr->Axis(); gr->Label(’x’, "\\i x"); gr->Label(C’y’, "\\i z");
gr->FPlot ("-x", "k|");
gr->Puts (mglPoint (0, 0.85), "absorption: (x+z)/2 for x+z>0");
gr->Puts (mglPoint(0,1.1),"Equation: ik_O\\partial_zu + \\Delta u + x\\cdot u + i \\frac{x
return O;

Chapter 2: MathGL examples 66

PDE solver

N —~_ Equation: ikyd,u + Au+xu +i5u=0
. _ absorption: (x+2)/2 for x+z>0

0.5

-1 -0.5 0 0.5 1

The next example is the beam tracing. Beam tracing equation is special kind of PDE

equation written in coordinates accompanied to a ray. Generally this is the same parame-
ters and limitation as for PDE solving but the coordinates are defined by the ray and by
parameter of grid width w in direction transverse the ray. So, you don’t need to specify
the range of coordinates. BUT there is limitation. The accompanied coordinates are well
defined only for smooth enough rays, i.e. then the ray curvature K (which is defined as
1/K? = (|7")?]r']2 = (", 7")%)/]r'|%) is much large then the grid width: K >> w. So, you
may receive incorrect results if this condition will be broken.

You may use following code for obtaining the same solution as in previous example:

int sample(mglGraph *gr)

{

mglData r, xx, yy, a, im(128), re(128);

const char *ham = "p~2+q~2-x-1+i*0.5x(y+x)*(y>-x)";

r = mglRay(ham, mglPoint(-0.7, -1), mglPoint(0, 0.5), 0.02, 2);
gr->SubPlot(1,1,0,"<_"); gr->Title("Beam and ray tracing");
gr->Plot(r.SubData(0), r.SubData(l), "k");

gr->Axis(); gr->Label(’x’, "\\i x"); gr->Label(’y’, "\\i z");

// now start beam tracing

gr->Fill(re,"exp(-48%x~2)");

a = mglQ02d(ham, re, im, r, xx, yy, 1, 30);
gr->SetRange(’c’,0, 1);

gr->Dens (xx, yy, a, "wyrRk");

gr->FPlot ("-x", "k|");

gr->Puts (mglPoint (0, 0.85), "absorption: (x+y)/2 for x+y>0");
gr->Puts (mglPoint (0.7, -0.05), "central ray");

return O;

Chapter 2: MathGL examples 67

Beam and ray tracing

> . absorption: (x+y)/2 for x+y>0

0.5

T T T T T 7 T 71
7/

-1 -0.5 0 0.5 1

Note, the [pde], page 223, is fast enough and suitable for many cases routine. However,
there is situations then media have both together: strong spatial dispersion and spatial
inhomogeneity. In this, case the [pde], page 223, will produce incorrect result and you need
to use advanced PDE solver [apde], page 224. For example, a wave beam, propagated in
plasma, described by Hamiltonian exp(—x? — p?), will have different solution for using of
simplification and advanced PDE solver:

int sample(mglGraph *gr)
{
gr->SetRanges(-1,1,0,2,0,2);
mglData ar(256), ai(256); gr->Fill(ar,"exp(-2%x72)");

mglData resl(gr->APDE("exp(-x"2-p~2)",ar,ai,0.01)); resl.Transpose();

gr->SubPlot(1,2,0,"_"); gr->Title("Advanced PDE solver");
gr->SetRanges(0,2,-1,1); gr->SetRange(’c’,resl);

gr->Dens (resl) ; gr->Axis(); gr->Box () ;

gr->Label (°x’,"\\i z"); gr->Label(’y’,"\\i x");

gr->Puts (mglPoint (-0.5,0.2),"i\\partial_z\\i u = exp(-\\i x"2+\\partial_x"2) [\\i ul","y")

mglData res2(gr->PDE("exp(-x~2-p~2)",ar,ai,0.01));

gr->SubPlot(1,2,1,"_"); gr->Title("Simplified PDE solver");
gr->Dens (res2) ; gr->Axis(); gr->Box () ;
gr—->Label (’x’,"\\i z"); gr->Label(’y’,"\\i x");

gr->Puts (mglPoint(-0.5,0.2),"i\\partial_z\\i u \\approx\\ exp(-\\i x"2)\\i ut+exp(\\partia
return O;

Chapter 2: MathGL examples 68

Advanced PDE solver

0 0.5 1 15 2

2.5.15 Drawing phase plain

Here I want say a few words of plotting phase plains. Phase plain is name for system of
coordinates x, ', i.e. a variable and its time derivative. Plot in phase plain is very useful
for qualitative analysis of an ODE, because such plot is rude (it topologically the same
for a range of ODE parameters). Most often the phase plain {z, 2’} is used (due to its
simplicity), that allows to analyze up to the 2nd order ODE (i.e. " + f(z,2’) = 0).

The simplest way to draw phase plain in MathGL is using [flow], page 164, function(s),
which automatically select several points and draw flow threads. If the ODE have an integral
of motion (like Hamiltonian H (z,x’) = const for dissipation-free case) then you can use
[cont], page 148, function for plotting isolines (contours). In fact. isolines are the same as
flow threads, but without arrows on it. Finally, you can directly solve ODE using [ode],
page 225, function and plot its numerical solution.

Let demonstrate this for ODE equation x” — x + 3 % > = 0. This is nonlinear oscillator
with square nonlinearity. It has integral H = 3* + 2 x 2 — 22 = Const. Also it have 2
typical stationary points: saddle at {x=0, y=0} and center at {x=1/3, y=0}. Motion at
vicinity of center is just simple oscillations, and is stable to small variation of parameters.
In opposite, motion around saddle point is non-stable to small variation of parameters, and
is very slow. So, calculation around saddle points are more difficult, but more important.
Saddle points are responsible for solitons, stochasticity and so on.

So, let draw this phase plain by 3 different methods. First, draw isolines for H =
y? + 2% 2% — 2% = Const — this is simplest for ODE without dissipation. Next, draw flow
threads — this is straightforward way, but the automatic choice of starting points is not
always optimal. Finally, use [ode], page 225, to check the above plots. At this we need to
run [ode], page 225, in both direction of time (in future and in the past) to draw whole
plain. Alternatively, one can put starting points far from (or at the bounding box as done
in [flow], page 164) the plot, but this is a more complicated. The sample code is:

int sample(mglGraph *gr)
{

Chapter 2: MathGL examples 69

gr->SubPlot(2,2,0,"<_"); gr->Title("Cont"); gr->Box();
gr->Axis(); gr->Label(’x’,"x"); gr->Label(’y’,"\\dot{x}");
mglData f(100,100); gr->Fill(f,"y"2+2*x"3-x"2-0.5");
gr->Cont (f);
gr->SubPlot(2,2,1,"<_"); gr->Title("Flow"); gr->Box();
gr->Axis(); gr->Label(’x’,"x"); gr->Label(’y’,"\\dot{x}");
mglData £x(100,100), fy(lOO,lOO);
gr->Fill(fx,"x-3%x"2"); gr->Fill(fy,"y");
gr->Flow(fy,fx,"v","value 7");
gr->SubPlot(2,2,2,"<_"); gr->Title("ODE"); gr->Box();
gr->Axis(); gr->Label(’x’,"x"); gr->Label(’y’,"\\dot{x}");
for(double x=-1;x<1;x+=0.1)
{

mglData in(2), r; in.al[0]=x;

r = mglODE("y;x-3*x"2","xy",in) ;

gr->Plot (r.SubData(0), r.SubData(l));

r = mglODE("-y;-x+3*x"2","xy",in);

gr->Plot (r.SubData(0), r.SubData(l));

0 0.5
T

-0.5

0 0.5

—0.5

2.5.16 Pulse properties

There is common task in optics to determine properties of wave pulses or wave beams.
MathGL provide special function [pulse], page 212, which return the pulse properties (max-
imal value, center of mass, width and so on). Its usage is rather simple. Here I just illustrate
it on the example of Gaussian pulse, where all parameters are obvious.

void sample(mglGraph *gr)

Chapter 2: MathGL examples 70

gr->SubPlot(1,1,0,"<_"); gr->Title("Pulse sample");

// first prepare pulse itself

mglData a(100); gr->Fill(a,"exp(-6*x~2)");

// get pulse parameters

mglData b(a.Pulse(’x’));

// positions and widths are normalized on the number of points. So, set proper axis scale
gr->SetRanges(0, a.nx-1, 0, 1);

gr->Axis(); gr->Plot(a); // draw pulse and axis

// now visualize found pulse properties

double m = b[0]; // maximal amplitude

// approximate position of maximum

gr->Line (mglPoint(b[1],0), mglPoint(b[1],m),"r=");

// width at half-maximum (so called FWHM)

gr->Line (mglPoint (b[1]-b[3]/2,0), mglPoint(b[1]-b[3]/2,m),"m|");

gr->Line (mglPoint (b[1]+b[3]/2,0), mglPoint(b[1]1+b[3]1/2,m),"m|");

gr->Line (mglPoint(0,m/2), mglPoint(a.nx-1,m/2),"h");

// parabolic approximation near maximum

char func[128]; sprintf (func, "%g* (1-((x-%g) /%g) ~2)",b[0],b[1],b[2]);
gr->FPlot (func,"g");

Pulse sample

I AR BN
i Y A B W
) : /] \ !
i Y A
O ! f/f \\\ |
St
< AW
= / ! : \\
) /) L\
=10 ///// : : \\\\\
o el 1 1 I I 1 L1 1 | |I I [T R
0 20 40 60 80

2.5.17 Using MGL parser

Sometimes you may prefer to use MGL scripts in yours code. It is simpler (especially
in comparison with C/Fortran interfaces) and provide faster way to plot the data with
annotations, labels and so on. Class mglParse (see Section 7.5 [mglParse class|, page 242,
parse MGL scripts in C++. It have also the corresponding interface for C/Fortran.

Chapter 2: MathGL examples 71

The key function here is mglParse: :Parse() (or mgl_parse() for C/Fortran) which
execute one command per string. At this the detailed information about the possible errors
or warnings is passed as function value. Or you may execute the whole script as long string
with lines separated by ‘\n’. Functions mglParse: :Execute() and mgl_parse_text ()
perform it. Also you may set the values of parameters ‘$0’...°$9’ for the script by functions
mglParse: :AddParam() or mgl_add_param(), allow/disable picture resizing, check “once”
status and so on. The usage is rather straight-forward.

The only non-obvious thing is data transition between script and yours program. There
are 2 stages: add or find variable; and set data to variable. In C++ you may use functions
mglParse: :AddVar() and mglParse::FindVar() which return pointer to mglData. In
C/Fortran the corresponding functions are mgl_add_var (), mgl_find_var(). This data
pointer is valid until next Parse() or Execute() call. Note, you must not delete or free
the data obtained from these functions!

So, some simple example at the end. Here I define a data array, create variable, put
data into it and plot it. The C++ code looks like this:

int sample(mglGraph *gr)
{
gr->Title("MGL parser sample");
mreal a[100]; // let a_i = sin(4x*pi*x), x=0...1
for(int i=0;i<100;i++)ali]l=sin(4*M_PI*i/99);
mglParse *parser = new mglParse;
mglData *d = parser->AddVar("dat");
d->Set(a,100); // set data to variable
parser->Execute(gr, "plot dat; xrange O 1\nbox\naxis");
// you may break script at any line do something
// and continue after that
parser->Execute(gr, "xlabel ’x’\nylabel ’y’\nbox");
// also you may use cycles or conditions in script
parser->Execute(gr, "for $0 -1 1 0.1\nif $0<0\n"
"line 0 0 -1 $0 ’r’:else:line 0 O -1 $0 ’g’\n"
"endif\nnext") ;
delete parser;
return O;

The code in C/Fortran looks practically the same:
int sample(HMGL gr)

{
mgl_title(gr, "MGL parser sample", "", -2);
double a[100]; // let a_i = sin(4*pix*x), x=0...1
int 1i;

for(i=0;i<100;i++) al[i]l=sin(4*M_PI*i/99);

HMPR parser = mgl_create_parser();

HMDT d = mgl_parser_add_var(parser, "dat");
mgl_data_set_double(d,a,100,1,1); // set data to variable
mgl_parse_text(gr, parser, "plot dat; xrange O 1\nbox\naxis");
// you may break script at any line do something

Chapter 2: MathGL examples

// and continue after that
mgl_parse_text(gr, parser,
// also you may use cycles
mgl_parse_text(gr, parser,
"line 0 0 -1 $0 ’r’:else
"endif\nnext") ;

"xlabel ’x’\nylabel ’y’");
or conditions in script
"for $0 -1 1 0.1\nif $0<O0\n"

:line 0 0 -1 $0 ’g’\n"

72

mgl_write_png(gr, "test.png", ""); // don’t forgot to save picture
return O;

MGL parser sample

—-a -b —c¢

== s

~d —e ~f g ~h i ~j

N AN

[

2.5.18 Using options

Section 3.7 [Command options|, page 88, allow the easy setup of the selected plot by chang-
ing global settings only for this plot. Often, options are used for specifying the range of
automatic variables (coordinates). However, options allows easily change plot transparency,
numbers of line or faces to be drawn, or add legend entries. The sample function for options

usage is:

void template(mglGraph *gr)

{
mglData a(31,41);

gr->Fill(a,"-pi*x*exp(-(y+1)"2-4*x~2)");

gr->SubPlot(2,2,0); gr->Title("Options for coordinates");

gr->Alpha(true) ;
gr->Rotate (40,60) ;

gr->Light (true) ;
gr->Box () ;

gr->Surf(a,"r","yrange 0 1"); gr->Surf(a,"b","yrange 0 -1");
if (mini) return;

gr->SubPlot(2,2,1); gr->Title("Option ’meshnum’");

Chapter 2: MathGL examples 73

gr->Rotate (40,60) ; gr->Box () ;

gr->Mesh(a,"r","yrange 0 1"); gr->Mesh(a,"b","yrange O -1; meshnum 5");
gr->SubPlot(2,2,2); gr->Title("Option ’alpha’");

gr->Rotate(40,60); gr->Box () ;

gr->Surf(a,"r","yrange 0 1; alpha 0.7");

gr->Surf (a,"b","yrange 0 -1; alpha 0.3");

gr->SubPlot(2,2,3,"<_"); gr->Title("Option ’legend’");

gr->FPlot ("x"3","r","legend ’y = x"3°");
gr->FPlot ("cos (pi*x)","b","legend ’y = cos \\pi x’");

gr->Box () ; gr->Axis(); gr->Legend(2,"");

Options for coordinates Option 'meshnum’

S,

Option 'legend’

n y=x .

[y=ecsm
ot | 4 4
=10 i

[/ N

/ b

=k _ - |
wl
=1 I b
/s
- A ; ~,
9 —0.5 0 0.5 1

2.5.19 “Templates”

As I have noted before, the change of settings will influence only for the further plotting
commands. This allows one to create “template” function which will contain settings and
primitive drawing for often used plots. Correspondingly one may call this template-function
for drawing simplification.

For example, let one has a set of points (experimental or numerical) and wants to com-
pare it with theoretical law (for example, with exponent law exp(—z/2),z € [0,20]). The
template-function for this task is:

void template(mglGraph *gr)

{
mglData law(100); // create the law
law.Modify ("exp(-10*x)");
gr->SetRanges (0,20, 0.0001,1);
gr->SetFunc(0,"1g(y)",0);
gr->Plot (law,"r2");

Chapter 2: MathGL examples 74

gr->Puts (mglPoint (10,0.2),"Theoretical law: e"x","r:L");
gr->Label(’x’,"x val."); gr->Label(’y’,"y val.");
gr->Axis(); gr->Grid("xy","g;"); gr->Box();

}

At this, one will only write a few lines for data drawing;:

template(gr) ; // apply settings and default drawing from template
mglData dat("fname.dat"); // load the data

// and draw it (suppose that data file have 2 columns)

gr->Plot (dat.SubData(0),dat.SubData(l),"bx ");

A template-function can also contain settings for font, transparency, lightning, color
scheme and so on.

I understand that this is obvious thing for any professional programmer, but I several
times receive suggestion about “templates” ... So, I decide to point out it here.

2.5.20 Stereo image

One can easily create stereo image in MathGL. Stereo image can be produced by making
two subplots with slightly different rotation angles. The corresponding code looks like this:

int sample(mglGraph *gr)

{
mglData a; mgls_prepare2d(&a);
gr->Light (true);

gr->SubPlot(2,1,0); gr->Rotate(50,60+1);
gr->Box(); gr->Surf(a);

gr->SubPlot(2,1,1); gr->Rotate(50,60-1);
gr—>Box(); gr->Surf(a);
return O;

Chapter 2: MathGL examples 75

2.5.21 Reduce memory usage

By default MathGL save all primitives in memory, rearrange it and only later draw them
on bitmaps. Usually, this speed up drawing, but may require a lot of memory for plots
which contain a lot of faces (like [cloud], page 153, [dew], page 163). You can use [quality],
page 112, function for setting to use direct drawing on bitmap and bypassing keeping any
primitives in memory. This function also allow you to decrease the quality of the resulting
image but increase the speed of the drawing.

The code for lowest memory usage looks like this:

int sample(mglGraph *gr)
{
gr->SetQuality(6); // firstly, set to draw directly on bitmap
for(i=0;1<1000;i++)
gr->Sphere (mglPoint (mgl_rnd () *2-1,mgl_rnd()*2-1),0.05);
return O;

}
2.5.22 Scanning file

MathGL have possibilities to write textual information into file with variable values. In
MGL script you can use [save|, page 205, command for that. However, the usual printf () ;
is simple in C/C++ code. For example, lets create some textual file
FILE xfp=fopen("test.txt","w");
fprintf(fp,"This is test: 0 -> 1 q\n");
fprintf(fp,"This is test: 1 -> -1 gq\n");
fprintf(fp,"This is test: 2 -> 0 gq\n");
fclose(fp);
It contents look like

This is test: 0 -> 1 g

Chapter 2: MathGL examples 76

This is test: 1 -> -1 g
This is test: 2 -> 0 q

Let assume now that you want to read this values (i.e. [[0,1],[1,-1],]2,0]]) from the file.
You can use [scanfile|, page 204, for that. The desired values was written using template
"This is test: %g -> %g q\n". So, just use
mglData a;
a.ScanFile("test.txt","This is test: %g -> %g");

and plot it to for assurance
gr->SetRanges(a.SubData(0), a.SubData(l));
gr->Axis(); gr->Plot (a.SubData(0),a.SubData(l),"o");

Note, I keep only the leading part of template (i.e. "This is test: %g -> %g" instead of
"This is test: %g -> %g q\n"), because there is no important for us information after the
second number in the line.

2.5.23 Mixing bitmap and vector output

Sometimes output plots contain surfaces with a lot of points, and some vector primitives
(like axis, text, curves, etc.). Using vector output formats (like EPS or SVG) will produce
huge files with possible loss of smoothed lighting. Contrary, the bitmap output may cause
the roughness of text and curves. Hopefully, MathGL have a possibility to combine bitmap
output for surfaces and vector one for other primitives in the same EPS file, by using
[rasterize], page 121, command.

The idea is to prepare part of picture with surfaces or other "heavy" plots and produce
the background image from them by help of [rasterize], page 121, command. Next, we draw
everything to be saved in vector form (text, curves, axis and etc.). Note, that you need to
clear primitives (use [clf], page 120, command) after [rasterize], page 121, if you want to
disable d