Class | ActiveSupport::Multibyte::Chars |
In: |
lib/active_support/multibyte/chars.rb
|
Parent: | Object |
Chars enables you to work transparently with UTF-8 encoding in the Ruby String class without having extensive knowledge about the encoding. A Chars object accepts a string upon initialization and proxies String methods in an encoding safe manner. All the normal String methods are also implemented on the proxy.
String methods are proxied through the Chars object, and can be accessed through the mb_chars method. Methods which would normally return a String object now return a Chars object so methods can be chained.
"The Perfect String ".mb_chars.downcase.strip.normalize #=> "the perfect string"
Chars objects are perfectly interchangeable with String objects as long as no explicit class checks are made. If certain methods do explicitly check the class, call to_s before you pass chars objects to them.
bad.explicit_checking_method "T".mb_chars.downcase.to_s
The default Chars implementation assumes that the encoding of the string is UTF-8, if you want to handle different encodings you can write your own multibyte string handler and configure it through ActiveSupport::Multibyte.proxy_class.
class CharsForUTF32 def size @wrapped_string.size / 4 end def self.accepts?(string) string.length % 4 == 0 end end ActiveSupport::Multibyte.proxy_class = CharsForUTF32
HANGUL_SBASE | = | 0xAC00 | Hangul character boundaries and properties | |
HANGUL_LBASE | = | 0x1100 | ||
HANGUL_VBASE | = | 0x1161 | ||
HANGUL_TBASE | = | 0x11A7 | ||
HANGUL_LCOUNT | = | 19 | ||
HANGUL_VCOUNT | = | 21 | ||
HANGUL_TCOUNT | = | 28 | ||
HANGUL_NCOUNT | = | HANGUL_VCOUNT * HANGUL_TCOUNT | ||
HANGUL_SCOUNT | = | 11172 | ||
HANGUL_SLAST | = | HANGUL_SBASE + HANGUL_SCOUNT | ||
HANGUL_JAMO_FIRST | = | 0x1100 | ||
HANGUL_JAMO_LAST | = | 0x11FF | ||
UNICODE_WHITESPACE | = | [ (0x0009..0x000D).to_a, # White_Space # Cc [5] <control-0009>..<control-000D> 0x0020, # White_Space # Zs SPACE 0x0085, # White_Space # Cc <control-0085> 0x00A0, # White_Space # Zs NO-BREAK SPACE 0x1680, # White_Space # Zs OGHAM SPACE MARK 0x180E, # White_Space # Zs MONGOLIAN VOWEL SEPARATOR (0x2000..0x200A).to_a, # White_Space # Zs [11] EN QUAD..HAIR SPACE 0x2028, # White_Space # Zl LINE SEPARATOR 0x2029, # White_Space # Zp PARAGRAPH SEPARATOR 0x202F, # White_Space # Zs NARROW NO-BREAK SPACE 0x205F, # White_Space # Zs MEDIUM MATHEMATICAL SPACE 0x3000, # White_Space # Zs IDEOGRAPHIC SPACE ].flatten.freeze | All the unicode whitespace | |
UNICODE_LEADERS_AND_TRAILERS | = | UNICODE_WHITESPACE + [65279] | BOM (byte order mark) can also be seen as whitespace, it‘s a non-rendering character used to distinguish between little and big endian. This is not an issue in utf-8, so it must be ignored. | |
UNICODE_TRAILERS_PAT | = | /(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+\Z/ | ||
UNICODE_LEADERS_PAT | = | /\A(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+/ | ||
UTF8_PAT | = | ActiveSupport::Multibyte::VALID_CHARACTER['UTF-8'] |
wrapped_string | -> | to_s |
wrapped_string | -> | to_str |
wrapped_string | [R] |
Unpack the string at grapheme boundaries. Returns a list of character lists.
Example:
Chars.g_unpack('क्षि') #=> [[2325, 2381], [2359], [2367]] Chars.g_unpack('Café') #=> [[67], [97], [102], [233]]
Detect whether the codepoint is in a certain character class. Returns true when it‘s in the specified character class and false otherwise. Valid character classes are: :cr, :lf, :l, :v, :lv, :lvt and :t.
Primarily used by the grapheme cluster support.
Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.
Unpack the string at codepoints boundaries. Raises an EncodingError when the encoding of the string isn‘t valid UTF-8.
Example:
Chars.u_unpack('Café') #=> [67, 97, 102, 233]
Returns true if the Chars class can and should act as a proxy for the string string. Returns false otherwise.
Returns -1, 0 or +1 depending on whether the Chars object is to be sorted before, equal or after the object on the right side of the operation. It accepts any object that implements to_s. See String#<=> for more details.
Example:
'é'.mb_chars <=> 'ü'.mb_chars #=> -1
Like String#=~ only it returns the character offset (in codepoints) instead of the byte offset.
Example:
'Café périferôl'.mb_chars =~ /ô/ #=> 12
Like String#[]=, except instead of byte offsets you specify character offsets.
Example:
s = "Müller" s.mb_chars[2] = "e" # Replace character with offset 2 s #=> "Müeler" s = "Müller" s.mb_chars[1, 2] = "ö" # Replace 2 characters at character offset 1 s #=> "Möler"
Converts the first character to uppercase and the remainder to lowercase.
Example:
'über'.mb_chars.capitalize.to_s #=> "Über"
Works just like String#center, only integer specifies characters instead of bytes.
Example:
"¾ cup".mb_chars.center(8).to_s #=> " ¾ cup " "¾ cup".mb_chars.center(8, " ").to_s # Use non-breaking whitespace #=> " ¾ cup "
Performs composition on all the characters.
Example:
'é'.length #=> 3 'é'.mb_chars.compose.to_s.length #=> 2
Performs canonical decomposition on all the characters.
Example:
'é'.length #=> 2 'é'.mb_chars.decompose.to_s.length #=> 3
Convert characters in the string to lowercase.
Example:
'VĚDA A VÝZKUM'.mb_chars.downcase.to_s #=> "věda a výzkum"
Returns the number of grapheme clusters in the string.
Example:
'क्षि'.mb_chars.length #=> 4 'क्षि'.mb_chars.g_length #=> 3
Returns true if contained string contains other. Returns false otherwise.
Example:
'Café'.mb_chars.include?('é') #=> true
Returns the position needle in the string, counting in codepoints. Returns nil if needle isn‘t found.
Example:
'Café périferôl'.mb_chars.index('ô') #=> 12 'Café périferôl'.mb_chars.index(/\w/u) #=> 0
Inserts the passed string at specified codepoint offsets.
Example:
'Café'.mb_chars.insert(4, ' périferôl').to_s #=> "Café périferôl"
Works just like String#ljust, only integer specifies characters instead of bytes.
Example:
"¾ cup".mb_chars.rjust(8).to_s #=> "¾ cup " "¾ cup".mb_chars.rjust(8, " ").to_s # Use non-breaking whitespace #=> "¾ cup "
Returns the KC normalization of the string by default. NFKC is considered the best normalization form for passing strings to databases and validations.
Returns true if obj responds to the given method. Private methods are included in the search only if the optional second parameter evaluates to true.
Returns the position needle in the string, counting in codepoints, searching backward from offset or the end of the string. Returns nil if needle isn‘t found.
Example:
'Café périferôl'.mb_chars.rindex('é') #=> 6 'Café périferôl'.mb_chars.rindex(/\w/u) #=> 13
Works just like String#rjust, only integer specifies characters instead of bytes.
Example:
"¾ cup".mb_chars.rjust(8).to_s #=> " ¾ cup" "¾ cup".mb_chars.rjust(8, " ").to_s # Use non-breaking whitespace #=> " ¾ cup"
Implements Unicode-aware slice with codepoints. Slicing on one point returns the codepoints for that character.
Example:
'こんにちは'.mb_chars.slice(2..3).to_s #=> "にち"
Like String#slice!, except instead of byte offsets you specify character offsets.
Example:
s = 'こんにちは' s.mb_chars.slice!(2..3).to_s #=> "にち" s #=> "こんは"
Works just like String#split, with the exception that the items in the resulting list are Chars instances instead of String. This makes chaining methods easier.
Example:
'Café périferôl'.mb_chars.split(/é/).map { |part| part.upcase.to_s } #=> ["CAF", " P", "RIFERÔL"]
Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.