
USB Gadget API for Linux

David Brownell
dbrownell@users.sourceforge.net

USB Gadget API for Linux
by David Brownell

20 August 2004 Edition
Copyright © 2003-2004 David Brownell

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the

Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction..1
2. Structure of Gadget Drivers..3
3. Kernel Mode Gadget API..7

3.1. Driver Life Cycle ..8
3.2. USB 2.0 Chapter 9 Types and Constants ..9

struct usb_ctrlrequest ...9
usb_endpoint_num...11
usb_endpoint_type ...11
usb_endpoint_dir_in ..12
usb_endpoint_dir_out ..13
usb_endpoint_xfer_bulk ..14
usb_endpoint_xfer_control ..15
usb_endpoint_xfer_int ...16
usb_endpoint_xfer_isoc ...16
usb_endpoint_is_bulk_in ...17
usb_endpoint_is_bulk_out ...18
usb_endpoint_is_int_in ..19
usb_endpoint_is_int_out ..20
usb_endpoint_is_isoc_in..21
usb_endpoint_is_isoc_out..21
usb_endpoint_maxp ...22
usb_speed_string..23

3.3. Core Objects and Methods..24
struct usb_request...24
struct usb_ep ..27
usb_ep_enable..28
usb_ep_disable...29
usb_ep_alloc_request...30
usb_ep_free_request ..31
usb_ep_queue...32
usb_ep_dequeue...34
usb_ep_set_halt..34
usb_ep_clear_halt ..36
usb_ep_set_wedge ...36
usb_ep_fifo_status..37
usb_ep_fifo_flush...38
struct usb_gadget ...39
gadget_is_dualspeed ..41
gadget_is_otg ...42
usb_gadget_frame_number..43

iii

usb_gadget_wakeup...44
usb_gadget_set_selfpowered ...45
usb_gadget_clear_selfpowered ..45
usb_gadget_vbus_connect ...46
usb_gadget_vbus_draw..47
usb_gadget_vbus_disconnect...48
usb_gadget_connect...49
usb_gadget_disconnect ..50
struct usb_gadget_driver ..51
usb_gadget_probe_driver...53
usb_gadget_unregister_driver ..54
struct usb_string ...55
struct usb_gadget_strings...56
usb_free_descriptors ..57

3.4. Optional Utilities...58
usb_gadget_get_string ...58
usb_descriptor_fillbuf ..59
usb_gadget_config_buf ..60
usb_copy_descriptors...62
usb_find_endpoint..63

3.5. Composite Device Framework..64
struct usb_function...64
ep_choose...67
struct usb_configuration...68
struct usb_composite_driver ..70
struct usb_composite_dev..72
usb_add_function...73
usb_function_deactivate...74
usb_function_activate ..75
usb_interface_id...76
usb_add_config ..77
usb_string_id..78
usb_string_ids_tab ...79
usb_string_ids_n ..81
usb_composite_probe ..82
usb_composite_unregister..83
usb_composite_setup_continue ...84

3.6. Composite Device Functions ..85
acm_cdc_notify..85
acm_bind_config..86
ecm_bind_config..87
geth_bind_config..88
obex_bind_config...89

iv

gser_bind_config..90
4. Peripheral Controller Drivers...93
5. Gadget Drivers ...95
6. USB On-The-GO (OTG) ...97

v

vi

Chapter 1. Introduction
This document presents a Linux-USB "Gadget" kernel mode API, for use within
peripherals and other USB devices that embed Linux. It provides an overview of the
API structure, and shows how that fits into a system development project. This is
the first such API released on Linux to address a number of important problems,
including:

• Supports USB 2.0, for high speed devices which can stream data at several dozen
megabytes per second.

• Handles devices with dozens of endpoints just as well as ones with just two
fixed-function ones. Gadget drivers can be written so they’re easy to port to new
hardware.

• Flexible enough to expose more complex USB device capabilities such as
multiple configurations, multiple interfaces, composite devices, and alternate
interface settings.

• USB "On-The-Go" (OTG) support, in conjunction with updates to the
Linux-USB host side.

• Sharing data structures and API models with the Linux-USB host side API. This
helps the OTG support, and looks forward to more-symmetric frameworks
(where the same I/O model is used by both host and device side drivers).

• Minimalist, so it’s easier to support new device controller hardware. I/O
processing doesn’t imply large demands for memory or CPU resources.

Most Linux developers will not be able to use this API, since they have USB "host"
hardware in a PC, workstation, or server. Linux users with embedded systems are
more likely to have USB peripheral hardware. To distinguish drivers running inside
such hardware from the more familiar Linux "USB device drivers", which are host
side proxies for the real USB devices, a different term is used: the drivers inside the
peripherals are "USB gadget drivers". In USB protocol interactions, the device
driver is the master (or "client driver") and the gadget driver is the slave (or
"function driver").

The gadget API resembles the host side Linux-USB API in that both use queues of
request objects to package I/O buffers, and those requests may be submitted or
canceled. They share common definitions for the standard USB Chapter 9
messages, structures, and constants. Also, both APIs bind and unbind drivers to
devices. The APIs differ in detail, since the host side’s current URB framework
exposes a number of implementation details and assumptions that are inappropriate
for a gadget API. While the model for control transfers and configuration
management is necessarily different (one side is a hardware-neutral master, the

1

Chapter 1. Introduction

other is a hardware-aware slave), the endpoint I/0 API used here should also be
usable for an overhead-reduced host side API.

2

Chapter 2. Structure of Gadget
Drivers

A system running inside a USB peripheral normally has at least three layers inside
the kernel to handle USB protocol processing, and may have additional layers in
user space code. The "gadget" API is used by the middle layer to interact with the
lowest level (which directly handles hardware).

In Linux, from the bottom up, these layers are:

USB Controller Driver

This is the lowest software level. It is the only layer that talks to hardware,
through registers, fifos, dma, irqs, and the like. The <linux/usb/gadget.h>
API abstracts the peripheral controller endpoint hardware. That hardware is
exposed through endpoint objects, which accept streams of IN/OUT buffers,
and through callbacks that interact with gadget drivers. Since normal USB
devices only have one upstream port, they only have one of these drivers. The
controller driver can support any number of different gadget drivers, but only
one of them can be used at a time.

Examples of such controller hardware include the PCI-based NetChip 2280
USB 2.0 high speed controller, the SA-11x0 or PXA-25x UDC (found within
many PDAs), and a variety of other products.

Gadget Driver

The lower boundary of this driver implements hardware-neutral USB
functions, using calls to the controller driver. Because such hardware varies
widely in capabilities and restrictions, and is used in embedded environments
where space is at a premium, the gadget driver is often configured at compile
time to work with endpoints supported by one particular controller. Gadget
drivers may be portable to several different controllers, using conditional
compilation. (Recent kernels substantially simplify the work involved in
supporting new hardware, by autoconfiguring endpoints automatically for
many bulk-oriented drivers.) Gadget driver responsibilities include:

• handling setup requests (ep0 protocol responses) possibly including
class-specific functionality

• returning configuration and string descriptors

• (re)setting configurations and interface altsettings, including enabling and
configuring endpoints

3

Chapter 2. Structure of Gadget Drivers

• handling life cycle events, such as managing bindings to hardware, USB
suspend/resume, remote wakeup, and disconnection from the USB host.

• managing IN and OUT transfers on all currently enabled endpoints

Such drivers may be modules of proprietary code, although that approach is
discouraged in the Linux community.

Upper Level

Most gadget drivers have an upper boundary that connects to some Linux
driver or framework in Linux. Through that boundary flows the data which the
gadget driver produces and/or consumes through protocol transfers over USB.
Examples include:

• user mode code, using generic (gadgetfs) or application specific files in
/dev

• networking subsystem (for network gadgets, like the CDC Ethernet Model
gadget driver)

• data capture drivers, perhaps video4Linux or a scanner driver; or test and
measurement hardware.

• input subsystem (for HID gadgets)

• sound subsystem (for audio gadgets)

• file system (for PTP gadgets)

• block i/o subsystem (for usb-storage gadgets)

• ... and more

Additional Layers

Other layers may exist. These could include kernel layers, such as network
protocol stacks, as well as user mode applications building on standard POSIX
system call APIs such as open(), close(), read() and write(). On newer systems,
POSIX Async I/O calls may be an option. Such user mode code will not
necessarily be subject to the GNU General Public License (GPL).

OTG-capable systems will also need to include a standard Linux-USB host side
stack, with usbcore, one or more Host Controller Drivers (HCDs), USB Device
Drivers to support the OTG "Targeted Peripheral List", and so forth. There will also
be an OTG Controller Driver, which is visible to gadget and device driver
developers only indirectly. That helps the host and device side USB controllers
implement the two new OTG protocols (HNP and SRP). Roles switch (host to
peripheral, or vice versa) using HNP during USB suspend processing, and SRP can
be viewed as a more battery-friendly kind of device wakeup protocol.

4

Chapter 2. Structure of Gadget Drivers

Over time, reusable utilities are evolving to help make some gadget driver tasks
simpler. For example, building configuration descriptors from vectors of descriptors
for the configurations interfaces and endpoints is now automated, and many drivers
now use autoconfiguration to choose hardware endpoints and initialize their
descriptors. A potential example of particular interest is code implementing
standard USB-IF protocols for HID, networking, storage, or audio classes. Some
developers are interested in KDB or KGDB hooks, to let target hardware be
remotely debugged. Most such USB protocol code doesn’t need to be
hardware-specific, any more than network protocols like X11, HTTP, or NFS are.
Such gadget-side interface drivers should eventually be combined, to implement
composite devices.

5

Chapter 2. Structure of Gadget Drivers

6

Chapter 3. Kernel Mode Gadget API
Gadget drivers declare themselves through a struct usb_gadget_driver, which is
responsible for most parts of enumeration for a struct usb_gadget. The response to a
set_configuration usually involves enabling one or more of the struct usb_ep objects
exposed by the gadget, and submitting one or more struct usb_request buffers to
transfer data. Understand those four data types, and their operations, and you will
understand how this API works.

Incomplete Data Type Descriptions: This documentation was prepared
using the standard Linux kernel docproc tool, which turns text and in-code
comments into SGML DocBook and then into usable formats such as HTML
or PDF. Other than the "Chapter 9" data types, most of the significant data
types and functions are described here.

However, docproc does not understand all the C constructs that are used, so
some relevant information is likely omitted from what you are reading. One
example of such information is endpoint autoconfiguration. You’ll have to read
the header file, and use example source code (such as that for "Gadget
Zero"), to fully understand the API.

The part of the API implementing some basic driver capabilities is specific to
the version of the Linux kernel that’s in use. The 2.6 kernel includes a driver
model framework that has no analogue on earlier kernels; so those parts of
the gadget API are not fully portable. (They are implemented on 2.4 kernels,
but in a different way.) The driver model state is another part of this API that is
ignored by the kerneldoc tools.

The core API does not expose every possible hardware feature, only the most
widely available ones. There are significant hardware features, such as
device-to-device DMA (without temporary storage in a memory buffer) that would
be added using hardware-specific APIs.

This API allows drivers to use conditional compilation to handle endpoint
capabilities of different hardware, but doesn’t require that. Hardware tends to have
arbitrary restrictions, relating to transfer types, addressing, packet sizes, buffering,
and availability. As a rule, such differences only matter for "endpoint zero" logic
that handles device configuration and management. The API supports limited
run-time detection of capabilities, through naming conventions for endpoints. Many
drivers will be able to at least partially autoconfigure themselves. In particular,
driver init sections will often have endpoint autoconfiguration logic that scans the
hardware’s list of endpoints to find ones matching the driver requirements (relying
on those conventions), to eliminate some of the most common reasons for
conditional compilation.

7

Chapter 3. Kernel Mode Gadget API

Like the Linux-USB host side API, this API exposes the "chunky" nature of USB
messages: I/O requests are in terms of one or more "packets", and packet
boundaries are visible to drivers. Compared to RS-232 serial protocols, USB
resembles synchronous protocols like HDLC (N bytes per frame, multipoint
addressing, host as the primary station and devices as secondary stations) more than
asynchronous ones (tty style: 8 data bits per frame, no parity, one stop bit). So for
example the controller drivers won’t buffer two single byte writes into a single
two-byte USB IN packet, although gadget drivers may do so when they implement
protocols where packet boundaries (and "short packets") are not significant.

3.1. Driver Life Cycle
Gadget drivers make endpoint I/O requests to hardware without needing to know
many details of the hardware, but driver setup/configuration code needs to handle
some differences. Use the API like this:

1. Register a driver for the particular device side usb controller hardware, such as
the net2280 on PCI (USB 2.0), sa11x0 or pxa25x as found in Linux PDAs, and
so on. At this point the device is logically in the USB ch9 initial state
("attached"), drawing no power and not usable (since it does not yet support
enumeration). Any host should not see the device, since it’s not activated the
data line pullup used by the host to detect a device, even if VBUS power is
available.

2. Register a gadget driver that implements some higher level device function.
That will then bind() to a usb_gadget, which activates the data line pullup
sometime after detecting VBUS.

3. The hardware driver can now start enumerating. The steps it handles are to
accept USB power and set_address requests. Other steps are handled by the
gadget driver. If the gadget driver module is unloaded before the host starts to
enumerate, steps before step 7 are skipped.

4. The gadget driver’s setup() call returns usb descriptors, based both on what the
bus interface hardware provides and on the functionality being implemented.
That can involve alternate settings or configurations, unless the hardware
prevents such operation. For OTG devices, each configuration descriptor
includes an OTG descriptor.

5. The gadget driver handles the last step of enumeration, when the USB host
issues a set_configuration call. It enables all endpoints used in that
configuration, with all interfaces in their default settings. That involves using a
list of the hardware’s endpoints, enabling each endpoint according to its
descriptor. It may also involve using usb_gadget_vbus_draw to let more

8

Chapter 3. Kernel Mode Gadget API

power be drawn from VBUS, as allowed by that configuration. For OTG
devices, setting a configuration may also involve reporting HNP capabilities
through a user interface.

6. Do real work and perform data transfers, possibly involving changes to
interface settings or switching to new configurations, until the device is
disconnect()ed from the host. Queue any number of transfer requests to each
endpoint. It may be suspended and resumed several times before being
disconnected. On disconnect, the drivers go back to step 3 (above).

7. When the gadget driver module is being unloaded, the driver unbind() callback
is issued. That lets the controller driver be unloaded.

Drivers will normally be arranged so that just loading the gadget driver module (or
statically linking it into a Linux kernel) allows the peripheral device to be
enumerated, but some drivers will defer enumeration until some higher level
component (like a user mode daemon) enables it. Note that at this lowest level there
are no policies about how ep0 configuration logic is implemented, except that it
should obey USB specifications. Such issues are in the domain of gadget drivers,
including knowing about implementation constraints imposed by some USB
controllers or understanding that composite devices might happen to be built by
integrating reusable components.

Note that the lifecycle above can be slightly different for OTG devices. Other than
providing an additional OTG descriptor in each configuration, only the HNP-related
differences are particularly visible to driver code. They involve reporting
requirements during the SET_CONFIGURATION request, and the option to invoke
HNP during some suspend callbacks. Also, SRP changes the semantics of
usb_gadget_wakeup slightly.

3.2. USB 2.0 Chapter 9 Types and Constants
Gadget drivers rely on common USB structures and constants defined in the
<linux/usb/ch9.h> header file, which is standard in Linux 2.6 kernels. These
are the same types and constants used by host side drivers (and usbcore).

struct usb_ctrlrequest

LINUX

9

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
struct usb_ctrlrequest — SETUP data for a USB device control request

Synopsis
struct usb_ctrlrequest {
__u8 bRequestType;
__u8 bRequest;
__le16 wValue;
__le16 wIndex;
__le16 wLength;

};

Members

bRequestType

matches the USB bmRequestType field

bRequest

matches the USB bRequest field

wValue

matches the USB wValue field (le16 byte order)

wIndex

matches the USB wIndex field (le16 byte order)

wLength

matches the USB wLength field (le16 byte order)

Description
This structure is used to send control requests to a USB device. It matches the
different fields of the USB 2.0 Spec section 9.3, table 9-2. See the USB spec for a
fuller description of the different fields, and what they are used for.

10

Chapter 3. Kernel Mode Gadget API

Note that the driver for any interface can issue control requests. For most devices,
interfaces don’t coordinate with each other, so such requests may be made at any
time.

usb_endpoint_num

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_num — get the endpoint’s number

Synopsis

int usb_endpoint_num (const struct usb_endpoint_descriptor *
epd);

Arguments

epd

endpoint to be checked

Description
Returns epd’s number: 0 to 15.

11

Chapter 3. Kernel Mode Gadget API

usb_endpoint_type

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_type — get the endpoint’s transfer type

Synopsis

int usb_endpoint_type (const struct usb_endpoint_descriptor *
epd);

Arguments

epd

endpoint to be checked

Description
Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT}
according to epd’s transfer type.

usb_endpoint_dir_in

LINUX

12

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_dir_in — check if the endpoint has IN direction

Synopsis

int usb_endpoint_dir_in (const struct usb_endpoint_descriptor

* epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type IN, otherwise it returns false.

usb_endpoint_dir_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_dir_out — check if the endpoint has OUT direction

13

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_endpoint_dir_out (const struct usb_endpoint_descriptor

* epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type OUT, otherwise it returns false.

usb_endpoint_xfer_bulk

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_bulk — check if the endpoint has bulk transfer type

Synopsis

int usb_endpoint_xfer_bulk (const struct
usb_endpoint_descriptor * epd);

14

Chapter 3. Kernel Mode Gadget API

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type bulk, otherwise it returns false.

usb_endpoint_xfer_control

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_control — check if the endpoint has control transfer
type

Synopsis

int usb_endpoint_xfer_control (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

15

Chapter 3. Kernel Mode Gadget API

Description
Returns true if the endpoint is of type control, otherwise it returns false.

usb_endpoint_xfer_int

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_int — check if the endpoint has interrupt transfer type

Synopsis

int usb_endpoint_xfer_int (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type interrupt, otherwise it returns false.

16

Chapter 3. Kernel Mode Gadget API

usb_endpoint_xfer_isoc

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_isoc — check if the endpoint has isochronous transfer
type

Synopsis

int usb_endpoint_xfer_isoc (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type isochronous, otherwise it returns false.

usb_endpoint_is_bulk_in

LINUX

17

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_bulk_in — check if the endpoint is bulk IN

Synopsis

int usb_endpoint_is_bulk_in (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has bulk transfer type and IN direction, otherwise it
returns false.

usb_endpoint_is_bulk_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_bulk_out — check if the endpoint is bulk OUT

18

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_endpoint_is_bulk_out (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has bulk transfer type and OUT direction, otherwise it
returns false.

usb_endpoint_is_int_in

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_int_in — check if the endpoint is interrupt IN

Synopsis

int usb_endpoint_is_int_in (const struct
usb_endpoint_descriptor * epd);

19

Chapter 3. Kernel Mode Gadget API

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has interrupt transfer type and IN direction, otherwise it
returns false.

usb_endpoint_is_int_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_int_out — check if the endpoint is interrupt OUT

Synopsis

int usb_endpoint_is_int_out (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

20

Chapter 3. Kernel Mode Gadget API

Description
Returns true if the endpoint has interrupt transfer type and OUT direction,
otherwise it returns false.

usb_endpoint_is_isoc_in

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_isoc_in — check if the endpoint is isochronous IN

Synopsis

int usb_endpoint_is_isoc_in (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has isochronous transfer type and IN direction,
otherwise it returns false.

21

Chapter 3. Kernel Mode Gadget API

usb_endpoint_is_isoc_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_isoc_out — check if the endpoint is isochronous OUT

Synopsis

int usb_endpoint_is_isoc_out (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has isochronous transfer type and OUT direction,
otherwise it returns false.

usb_endpoint_maxp

LINUX

22

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_maxp — get endpoint’s max packet size

Synopsis

int usb_endpoint_maxp (const struct usb_endpoint_descriptor *
epd);

Arguments

epd

endpoint to be checked

Description
Returns epd’s max packet

usb_speed_string

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_speed_string — Returns human readable-name of the speed.

23

Chapter 3. Kernel Mode Gadget API

Synopsis

const char * usb_speed_string (enum usb_device_speed speed);

Arguments

speed

The speed to return human-readable name for. If it’s not any of the speeds
defined in usb_device_speed enum, string for USB_SPEED_UNKNOWN will
be returned.

3.3. Core Objects and Methods
These are declared in <linux/usb/gadget.h>, and are used by gadget drivers to
interact with USB peripheral controller drivers.

struct usb_request

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_request — describes one i/o request

Synopsis
struct usb_request {
void * buf;
unsigned length;
dma_addr_t dma;
unsigned no_interrupt:1;

24

Chapter 3. Kernel Mode Gadget API

unsigned zero:1;
unsigned short_not_ok:1;
void (* complete) (struct usb_ep *ep,struct usb_request *req);
void * context;
struct list_head list;
int status;
unsigned actual;

};

Members

buf

Buffer used for data. Always provide this; some controllers only use PIO, or
don’t use DMA for some endpoints.

length

Length of that data

dma

DMA address corresponding to ’buf’. If you don’t set this field, and the usb
controller needs one, it is responsible for mapping and unmapping the buffer.

no_interrupt

If true, hints that no completion irq is needed. Helpful sometimes with deep
request queues that are handled directly by DMA controllers.

zero

If true, when writing data, makes the last packet be “short” by adding a zero
length packet as needed;

short_not_ok

When reading data, makes short packets be treated as errors (queue stops
advancing till cleanup).

complete

Function called when request completes, so this request and its buffer may be
re-used. The function will always be called with interrupts disabled, and it
must not sleep. Reads terminate with a short packet, or when the buffer fills,
whichever comes first. When writes terminate, some data bytes will usually
still be in flight (often in a hardware fifo). Errors (for reads or writes) stop the

25

Chapter 3. Kernel Mode Gadget API

queue from advancing until the completion function returns, so that any
transfers invalidated by the error may first be dequeued.

context

For use by the completion callback

list

For use by the gadget driver.

status

Reports completion code, zero or a negative errno. Normally, faults block the
transfer queue from advancing until the completion callback returns. Code
“-ESHUTDOWN” indicates completion caused by device disconnect, or when
the driver disabled the endpoint.

actual

Reports bytes transferred to/from the buffer. For reads (OUT transfers) this
may be less than the requested length. If the short_not_ok flag is set, short
reads are treated as errors even when status otherwise indicates successful
completion. Note that for writes (IN transfers) some data bytes may still reside
in a device-side FIFO when the request is reported as complete.

Description
These are allocated/freed through the endpoint they’re used with. The hardware’s
driver can add extra per-request data to the memory it returns, which often avoids
separate memory allocations (potential failures), later when the request is queued.

Request flags affect request handling, such as whether a zero length packet is
written (the “zero” flag), whether a short read should be treated as an error
(blocking request queue advance, the “short_not_ok” flag), or hinting that an
interrupt is not required (the “no_interrupt” flag, for use with deep request queues).

Bulk endpoints can use any size buffers, and can also be used for interrupt transfers.
interrupt-only endpoints can be much less functional.

NOTE
this is analogous to ’struct urb’ on the host side, except that it’s thinner and
promotes more pre-allocation.

26

Chapter 3. Kernel Mode Gadget API

struct usb_ep

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_ep — device side representation of USB endpoint

Synopsis
struct usb_ep {
void * driver_data;
const char * name;
const struct usb_ep_ops * ops;
struct list_head ep_list;
unsigned maxpacket:16;

};

Members

driver_data

for use by the gadget driver. all other fields are read-only to gadget drivers.

name

identifier for the endpoint, such as “ep-a” or “ep9in-bulk”

ops

Function pointers used to access hardware-specific operations.

ep_list

the gadget’s ep_list holds all of its endpoints

maxpacket

The maximum packet size used on this endpoint. The initial value can
sometimes be reduced (hardware allowing), according to the endpoint
descriptor used to configure the endpoint.

27

Chapter 3. Kernel Mode Gadget API

Description
the bus controller driver lists all the general purpose endpoints in gadget->ep_list.
the control endpoint (gadget->ep0) is not in that list, and is accessed only in
response to a driver setup callback.

usb_ep_enable

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_enable — configure endpoint, making it usable

Synopsis

int usb_ep_enable (struct usb_ep * ep, const struct
usb_endpoint_descriptor * desc);

Arguments

ep

the endpoint being configured. may not be the endpoint named “ep0”. drivers
discover endpoints through the ep_list of a usb_gadget.

desc

descriptor for desired behavior. caller guarantees this pointer remains valid
until the endpoint is disabled; the data byte order is little-endian (usb-standard).

28

Chapter 3. Kernel Mode Gadget API

Description
when configurations are set, or when interface settings change, the driver will
enable or disable the relevant endpoints. while it is enabled, an endpoint may be
used for i/o until the driver receives a disconnect from the host or until the
endpoint is disabled.

the ep0 implementation (which calls this routine) must ensure that the hardware
capabilities of each endpoint match the descriptor provided for it. for example, an
endpoint named “ep2in-bulk” would be usable for interrupt transfers as well as
bulk, but it likely couldn’t be used for iso transfers or for endpoint 14. some
endpoints are fully configurable, with more generic names like “ep-a”. (remember
that for USB, “in” means “towards the USB master”.)

returns zero, or a negative error code.

usb_ep_disable

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_disable — endpoint is no longer usable

Synopsis

int usb_ep_disable (struct usb_ep * ep);

Arguments

ep

the endpoint being unconfigured. may not be the endpoint named “ep0”.

29

Chapter 3. Kernel Mode Gadget API

Description
no other task may be using this endpoint when this is called. any pending and
uncompleted requests will complete with status indicating disconnect
(-ESHUTDOWN) before this call returns. gadget drivers must call
usb_ep_enable again before queueing requests to the endpoint.

returns zero, or a negative error code.

usb_ep_alloc_request

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_alloc_request — allocate a request object to use with this endpoint

Synopsis

struct usb_request * usb_ep_alloc_request (struct usb_ep * ep,
gfp_t gfp_flags);

Arguments

ep

the endpoint to be used with with the request

gfp_flags

GFP_* flags to use

30

Chapter 3. Kernel Mode Gadget API

Description
Request objects must be allocated with this call, since they normally need
controller-specific setup and may even need endpoint-specific resources such as
allocation of DMA descriptors. Requests may be submitted with usb_ep_queue,
and receive a single completion callback. Free requests with
usb_ep_free_request, when they are no longer needed.

Returns the request, or null if one could not be allocated.

usb_ep_free_request

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_free_request — frees a request object

Synopsis

void usb_ep_free_request (struct usb_ep * ep, struct
usb_request * req);

Arguments

ep

the endpoint associated with the request

req

the request being freed

31

Chapter 3. Kernel Mode Gadget API

Description
Reverses the effect of usb_ep_alloc_request. Caller guarantees the request is
not queued, and that it will no longer be requeued (or otherwise used).

usb_ep_queue

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_queue — queues (submits) an I/O request to an endpoint.

Synopsis

int usb_ep_queue (struct usb_ep * ep, struct usb_request *
req, gfp_t gfp_flags);

Arguments

ep

the endpoint associated with the request

req

the request being submitted

gfp_flags

GFP_* flags to use in case the lower level driver couldn’t pre-allocate all
necessary memory with the request.

32

Chapter 3. Kernel Mode Gadget API

Description
This tells the device controller to perform the specified request through that
endpoint (reading or writing a buffer). When the request completes, including being
canceled by usb_ep_dequeue, the request’s completion routine is called to return
the request to the driver. Any endpoint (except control endpoints like ep0) may have
more than one transfer request queued; they complete in FIFO order. Once a gadget
driver submits a request, that request may not be examined or modified until it is
given back to that driver through the completion callback.

Each request is turned into one or more packets. The controller driver never merges
adjacent requests into the same packet. OUT transfers will sometimes use data
that’s already buffered in the hardware. Drivers can rely on the fact that the first
byte of the request’s buffer always corresponds to the first byte of some USB
packet, for both IN and OUT transfers.

Bulk endpoints can queue any amount of data; the transfer is packetized
automatically. The last packet will be short if the request doesn’t fill it out
completely. Zero length packets (ZLPs) should be avoided in portable protocols
since not all usb hardware can successfully handle zero length packets. (ZLPs may
be explicitly written, and may be implicitly written if the request ’zero’ flag is set.)
Bulk endpoints may also be used for interrupt transfers; but the reverse is not true,
and some endpoints won’t support every interrupt transfer. (Such as 768 byte
packets.)

Interrupt-only endpoints are less functional than bulk endpoints, for example by not
supporting queueing or not handling buffers that are larger than the endpoint’s
maxpacket size. They may also treat data toggle differently.

Control endpoints ... after getting a setup callback, the driver queues one response
(even if it would be zero length). That enables the status ack, after transferring data
as specified in the response. Setup functions may return negative error codes to
generate protocol stalls. (Note that some USB device controllers disallow protocol
stall responses in some cases.) When control responses are deferred (the response is
written after the setup callback returns), then usb_ep_set_halt may be used on
ep0 to trigger protocol stalls. Depending on the controller, it may not be possible to
trigger a status-stage protocol stall when the data stage is over, that is, from within
the response’s completion routine.

For periodic endpoints, like interrupt or isochronous ones, the usb host arranges to
poll once per interval, and the gadget driver usually will have queued some data to
transfer at that time.

Returns zero, or a negative error code. Endpoints that are not enabled report errors;
errors will also be reported when the usb peripheral is disconnected.

33

Chapter 3. Kernel Mode Gadget API

usb_ep_dequeue

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_dequeue — dequeues (cancels, unlinks) an I/O request from an
endpoint

Synopsis

int usb_ep_dequeue (struct usb_ep * ep, struct usb_request *
req);

Arguments

ep

the endpoint associated with the request

req

the request being canceled

Description
if the request is still active on the endpoint, it is dequeued and its completion routine
is called (with status -ECONNRESET); else a negative error code is returned.

note that some hardware can’t clear out write fifos (to unlink the request at the head
of the queue) except as part of disconnecting from usb. such restrictions prevent
drivers from supporting configuration changes, even to configuration zero (a
“chapter 9” requirement).

34

Chapter 3. Kernel Mode Gadget API

usb_ep_set_halt

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_set_halt — sets the endpoint halt feature.

Synopsis

int usb_ep_set_halt (struct usb_ep * ep);

Arguments

ep

the non-isochronous endpoint being stalled

Description
Use this to stall an endpoint, perhaps as an error report. Except for control
endpoints, the endpoint stays halted (will not stream any data) until the host clears
this feature; drivers may need to empty the endpoint’s request queue first, to make
sure no inappropriate transfers happen.

Note that while an endpoint CLEAR_FEATURE will be invisible to the gadget
driver, a SET_INTERFACE will not be. To reset endpoints for the current altsetting,
see usb_ep_clear_halt. When switching altsettings, it’s simplest to use
usb_ep_enable or usb_ep_disable for the endpoints.

Returns zero, or a negative error code. On success, this call sets underlying
hardware state that blocks data transfers. Attempts to halt IN endpoints will fail
(returning -EAGAIN) if any transfer requests are still queued, or if the controller
hardware (usually a FIFO) still holds bytes that the host hasn’t collected.

35

Chapter 3. Kernel Mode Gadget API

usb_ep_clear_halt

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_clear_halt — clears endpoint halt, and resets toggle

Synopsis

int usb_ep_clear_halt (struct usb_ep * ep);

Arguments

ep

the bulk or interrupt endpoint being reset

Description
Use this when responding to the standard usb “set interface” request, for endpoints
that aren’t reconfigured, after clearing any other state in the endpoint’s i/o queue.

Returns zero, or a negative error code. On success, this call clears the underlying
hardware state reflecting endpoint halt and data toggle. Note that some hardware
can’t support this request (like pxa2xx_udc), and accordingly can’t correctly
implement interface altsettings.

usb_ep_set_wedge

LINUX

36

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_ep_set_wedge — sets the halt feature and ignores clear requests

Synopsis

int usb_ep_set_wedge (struct usb_ep * ep);

Arguments

ep

the endpoint being wedged

Description
Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
requests. If the gadget driver clears the halt status, it will automatically unwedge the
endpoint.

Returns zero on success, else negative errno.

usb_ep_fifo_status

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_fifo_status — returns number of bytes in fifo, or error

37

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_ep_fifo_status (struct usb_ep * ep);

Arguments

ep

the endpoint whose fifo status is being checked.

Description
FIFO endpoints may have “unclaimed data” in them in certain cases, such as after
aborted transfers. Hosts may not have collected all the IN data written by the gadget
driver (and reported by a request completion). The gadget driver may not have
collected all the data written OUT to it by the host. Drivers that need precise
handling for fault reporting or recovery may need to use this call.

This returns the number of such bytes in the fifo, or a negative errno if the endpoint
doesn’t use a FIFO or doesn’t support such precise handling.

usb_ep_fifo_flush

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ep_fifo_flush — flushes contents of a fifo

38

Chapter 3. Kernel Mode Gadget API

Synopsis

void usb_ep_fifo_flush (struct usb_ep * ep);

Arguments

ep

the endpoint whose fifo is being flushed.

Description
This call may be used to flush the “unclaimed data” that may exist in an endpoint
fifo after abnormal transaction terminations. The call must never be used except
when endpoint is not being used for any protocol translation.

struct usb_gadget

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_gadget — represents a usb slave device

Synopsis
struct usb_gadget {
const struct usb_gadget_ops * ops;
struct usb_ep * ep0;
struct list_head ep_list;
enum usb_device_speed speed;
unsigned is_dualspeed:1;

39

Chapter 3. Kernel Mode Gadget API

unsigned is_otg:1;
unsigned is_a_peripheral:1;
unsigned b_hnp_enable:1;
unsigned a_hnp_support:1;
unsigned a_alt_hnp_support:1;
const char * name;
struct device dev;

};

Members

ops

Function pointers used to access hardware-specific operations.

ep0

Endpoint zero, used when reading or writing responses to driver setup
requests

ep_list

List of other endpoints supported by the device.

speed

Speed of current connection to USB host.

is_dualspeed

True if the controller supports both high and full speed operation. If it does, the
gadget driver must also support both.

is_otg

True if the USB device port uses a Mini-AB jack, so that the gadget driver
must provide a USB OTG descriptor.

is_a_peripheral

False unless is_otg, the “A” end of a USB cable is in the Mini-AB jack, and
HNP has been used to switch roles so that the “A” device currently acts as
A-Peripheral, not A-Host.

b_hnp_enable

OTG device feature flag, indicating that the A-Host enabled HNP support.

40

Chapter 3. Kernel Mode Gadget API

a_hnp_support

OTG device feature flag, indicating that the A-Host supports HNP at this port.

a_alt_hnp_support

OTG device feature flag, indicating that the A-Host only supports HNP on a
different root port.

name

Identifies the controller hardware type. Used in diagnostics and sometimes
configuration.

dev

Driver model state for this abstract device.

Description
Gadgets have a mostly-portable “gadget driver” implementing device functions,
handling all usb configurations and interfaces. Gadget drivers talk to
hardware-specific code indirectly, through ops vectors. That insulates the gadget
driver from hardware details, and packages the hardware endpoints through generic
i/o queues. The “usb_gadget” and “usb_ep” interfaces provide that insulation from
the hardware.

Except for the driver data, all fields in this structure are read-only to the gadget
driver. That driver data is part of the “driver model” infrastructure in 2.6 (and later)
kernels, and for earlier systems is grouped in a similar structure that’s not known to
the rest of the kernel.

Values of the three OTG device feature flags are updated before the setup call
corresponding to USB_REQ_SET_CONFIGURATION, and before driver
suspend calls. They are valid only when is_otg, and when the device is acting as a
B-Peripheral (so is_a_peripheral is false).

gadget_is_dualspeed

LINUX

41

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
gadget_is_dualspeed — return true iff the hardware handles high speed

Synopsis

int gadget_is_dualspeed (struct usb_gadget * g);

Arguments

g

controller that might support both high and full speeds

gadget_is_otg

LINUX

Kernel Hackers ManualSeptember 2014

Name
gadget_is_otg — return true iff the hardware is OTG-ready

Synopsis

int gadget_is_otg (struct usb_gadget * g);

42

Chapter 3. Kernel Mode Gadget API

Arguments

g

controller that might have a Mini-AB connector

Description
This is a runtime test, since kernels with a USB-OTG stack sometimes run on
boards which only have a Mini-B (or Mini-A) connector.

usb_gadget_frame_number

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_frame_number — returns the current frame number

Synopsis

int usb_gadget_frame_number (struct usb_gadget * gadget);

Arguments

gadget

controller that reports the frame number

43

Chapter 3. Kernel Mode Gadget API

Description
Returns the usb frame number, normally eleven bits from a SOF packet, or negative
errno if this device doesn’t support this capability.

usb_gadget_wakeup

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_wakeup — tries to wake up the host connected to this gadget

Synopsis

int usb_gadget_wakeup (struct usb_gadget * gadget);

Arguments

gadget

controller used to wake up the host

Description
Returns zero on success, else negative error code if the hardware doesn’t support
such attempts, or its support has not been enabled by the usb host. Drivers must
return device descriptors that report their ability to support this, or hosts won’t
enable it.

This may also try to use SRP to wake the host and start enumeration, even if OTG
isn’t otherwise in use. OTG devices may also start remote wakeup even when hosts
don’t explicitly enable it.

44

Chapter 3. Kernel Mode Gadget API

usb_gadget_set_selfpowered

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_set_selfpowered — sets the device selfpowered feature.

Synopsis

int usb_gadget_set_selfpowered (struct usb_gadget * gadget);

Arguments

gadget

the device being declared as self-powered

Description
this affects the device status reported by the hardware driver to reflect that it now
has a local power supply.

returns zero on success, else negative errno.

usb_gadget_clear_selfpowered

LINUX

45

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_clear_selfpowered — clear the device selfpowered feature.

Synopsis

int usb_gadget_clear_selfpowered (struct usb_gadget * gadget);

Arguments

gadget

the device being declared as bus-powered

Description
this affects the device status reported by the hardware driver. some hardware may
not support bus-powered operation, in which case this feature’s value can never
change.

returns zero on success, else negative errno.

usb_gadget_vbus_connect

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_vbus_connect — Notify controller that VBUS is powered

46

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_gadget_vbus_connect (struct usb_gadget * gadget);

Arguments

gadget

The device which now has VBUS power.

Context
can sleep

Description
This call is used by a driver for an external transceiver (or GPIO) that detects a
VBUS power session starting. Common responses include resuming the controller,
activating the D+ (or D-) pullup to let the host detect that a USB device is attached,
and starting to draw power (8mA or possibly more, especially after
SET_CONFIGURATION).

Returns zero on success, else negative errno.

usb_gadget_vbus_draw

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_vbus_draw — constrain controller’s VBUS power usage

47

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_gadget_vbus_draw (struct usb_gadget * gadget, unsigned
mA);

Arguments

gadget

The device whose VBUS usage is being described

mA

How much current to draw, in milliAmperes. This should be twice the value
listed in the configuration descriptor bMaxPower field.

Description
This call is used by gadget drivers during SET_CONFIGURATION calls, reporting
how much power the device may consume. For example, this could affect how
quickly batteries are recharged.

Returns zero on success, else negative errno.

usb_gadget_vbus_disconnect

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_vbus_disconnect — notify controller about VBUS session
end

48

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_gadget_vbus_disconnect (struct usb_gadget * gadget);

Arguments

gadget

the device whose VBUS supply is being described

Context
can sleep

Description
This call is used by a driver for an external transceiver (or GPIO) that detects a
VBUS power session ending. Common responses include reversing everything done
in usb_gadget_vbus_connect.

Returns zero on success, else negative errno.

usb_gadget_connect

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_connect — software-controlled connect to USB host

49

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_gadget_connect (struct usb_gadget * gadget);

Arguments

gadget

the peripheral being connected

Description
Enables the D+ (or potentially D-) pullup. The host will start enumerating this
gadget when the pullup is active and a VBUS session is active (the link is powered).
This pullup is always enabled unless usb_gadget_disconnect has been used to
disable it.

Returns zero on success, else negative errno.

usb_gadget_disconnect

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_disconnect — software-controlled disconnect from USB host

Synopsis

int usb_gadget_disconnect (struct usb_gadget * gadget);

50

Chapter 3. Kernel Mode Gadget API

Arguments

gadget

the peripheral being disconnected

Description
Disables the D+ (or potentially D-) pullup, which the host may see as a disconnect
(when a VBUS session is active). Not all systems support software pullup controls.

This routine may be used during the gadget driver bind call to prevent the
peripheral from ever being visible to the USB host, unless later
usb_gadget_connect is called. For example, user mode components may need to
be activated before the system can talk to hosts.

Returns zero on success, else negative errno.

struct usb_gadget_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_gadget_driver — driver for usb ’slave’ devices

Synopsis
struct usb_gadget_driver {
char * function;
enum usb_device_speed speed;
void (* unbind) (struct usb_gadget *);
int (* setup) (struct usb_gadget *,const struct usb_ctrlrequest *);
void (* disconnect) (struct usb_gadget *);
void (* suspend) (struct usb_gadget *);
void (* resume) (struct usb_gadget *);
struct device_driver driver;

};

51

Chapter 3. Kernel Mode Gadget API

Members

function

String describing the gadget’s function

speed

Highest speed the driver handles.

unbind

Invoked when the driver is unbound from a gadget, usually from rmmod (after
a disconnect is reported). Called in a context that permits sleeping.

setup

Invoked for ep0 control requests that aren’t handled by the hardware level
driver. Most calls must be handled by the gadget driver, including descriptor
and configuration management. The 16 bit members of the setup data are in
USB byte order. Called in_interrupt; this may not sleep. Driver queues a
response to ep0, or returns negative to stall.

disconnect

Invoked after all transfers have been stopped, when the host is disconnected.
May be called in_interrupt; this may not sleep. Some devices can’t detect
disconnect, so this might not be called except as part of controller shutdown.

suspend

Invoked on USB suspend. May be called in_interrupt.

resume

Invoked on USB resume. May be called in_interrupt.

driver

Driver model state for this driver.

Description
Devices are disabled till a gadget driver successfully binds, which means the driver
will handle setup requests needed to enumerate (and meet “chapter 9”
requirements) then do some useful work.

If gadget->is_otg is true, the gadget driver must provide an OTG descriptor during
enumeration, or else fail the bind call. In such cases, no USB traffic may flow until

52

Chapter 3. Kernel Mode Gadget API

both bind returns without having called usb_gadget_disconnect, and the USB
host stack has initialized.

Drivers use hardware-specific knowledge to configure the usb hardware. endpoint
addressing is only one of several hardware characteristics that are in descriptors the
ep0 implementation returns from setup calls.

Except for ep0 implementation, most driver code shouldn’t need change to run on
top of different usb controllers. It’ll use endpoints set up by that ep0
implementation.

The usb controller driver handles a few standard usb requests. Those include
set_address, and feature flags for devices, interfaces, and endpoints (the get_status,
set_feature, and clear_feature requests).

Accordingly, the driver’s setup callback must always implement all get_descriptor
requests, returning at least a device descriptor and a configuration descriptor.
Drivers must make sure the endpoint descriptors match any hardware constraints.
Some hardware also constrains other descriptors. (The pxa250 allows only
configurations 1, 2, or 3).

The driver’s setup callback must also implement set_configuration, and should
also implement set_interface, get_configuration, and get_interface. Setting a
configuration (or interface) is where endpoints should be activated or (config 0) shut
down.

(Note that only the default control endpoint is supported. Neither hosts nor devices
generally support control traffic except to ep0.)

Most devices will ignore USB suspend/resume operations, and so will not provide
those callbacks. However, some may need to change modes when the host is not
longer directing those activities. For example, local controls (buttons, dials, etc)
may need to be re-enabled since the (remote) host can’t do that any longer; or an
error state might be cleared, to make the device behave identically whether or not
power is maintained.

usb_gadget_probe_driver

LINUX

53

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_probe_driver — probe a gadget driver

Synopsis

int usb_gadget_probe_driver (struct usb_gadget_driver *
driver, int (*bind) (struct usb_gadget *));

Arguments

driver

the driver being registered

bind

the driver’s bind callback

Context
can sleep

Description
Call this in your gadget driver’s module initialization function, to tell the underlying
usb controller driver about your driver. The bind() function will be called to bind it
to a gadget before this registration call returns. It’s expected that the bind()
function will be in init sections.

54

Chapter 3. Kernel Mode Gadget API

usb_gadget_unregister_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_unregister_driver — unregister a gadget driver

Synopsis

int usb_gadget_unregister_driver (struct usb_gadget_driver *
driver);

Arguments

driver

the driver being unregistered

Context
can sleep

Description
Call this in your gadget driver’s module cleanup function, to tell the underlying usb
controller that your driver is going away. If the controller is connected to a USB
host, it will first disconnect. The driver is also requested to unbind and clean up
any device state, before this procedure finally returns. It’s expected that the unbind
functions will in in exit sections, so may not be linked in some kernels.

55

Chapter 3. Kernel Mode Gadget API

struct usb_string

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_string — wraps a C string and its USB id

Synopsis
struct usb_string {
u8 id;
const char * s;

};

Members

id

the (nonzero) ID for this string

s

the string, in UTF-8 encoding

Description
If you’re using usb_gadget_get_string, use this to wrap a string together with
its ID.

struct usb_gadget_strings

LINUX

56

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
struct usb_gadget_strings — a set of USB strings in a given language

Synopsis
struct usb_gadget_strings {
u16 language;
struct usb_string * strings;

};

Members

language

identifies the strings’ language (0x0409 for en-us)

strings

array of strings with their ids

Description
If you’re using usb_gadget_get_string, use this to wrap all the strings for a
given language.

usb_free_descriptors

LINUX

57

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_free_descriptors — free descriptors returned by
usb_copy_descriptors

Synopsis

void usb_free_descriptors (struct usb_descriptor_header ** v);

Arguments

v

vector of descriptors

3.4. Optional Utilities
The core API is sufficient for writing a USB Gadget Driver, but some optional
utilities are provided to simplify common tasks. These utilities include endpoint
autoconfiguration.

usb_gadget_get_string

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_get_string — fill out a string descriptor

58

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_gadget_get_string (struct usb_gadget_strings * table,
int id, u8 * buf);

Arguments

table

of c strings encoded using UTF-8

id

string id, from low byte of wValue in get string descriptor

buf

at least 256 bytes

Description
Finds the UTF-8 string matching the ID, and converts it into a string descriptor in
utf16-le. Returns length of descriptor (always even) or negative errno

If your driver needs stings in multiple languages, you’ll probably “switch (wIndex)
{ ... }” in your ep0 string descriptor logic, using this routine after choosing which
set of UTF-8 strings to use. Note that US-ASCII is a strict subset of UTF-8; any
string bytes with the eighth bit set will be multibyte UTF-8 characters, not
ISO-8859/1 characters (which are also widely used in C strings).

usb_descriptor_fillbuf

LINUX

59

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_descriptor_fillbuf — fill buffer with descriptors

Synopsis

int usb_descriptor_fillbuf (void * buf, unsigned buflen, const
struct usb_descriptor_header ** src);

Arguments

buf

Buffer to be filled

buflen

Size of buf

src

Array of descriptor pointers, terminated by null pointer.

Description
Copies descriptors into the buffer, returning the length or a negative error code if
they can’t all be copied. Useful when assembling descriptors for an associated set of
interfaces used as part of configuring a composite device; or in other cases where
sets of descriptors need to be marshaled.

usb_gadget_config_buf

LINUX

60

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
usb_gadget_config_buf — builts a complete configuration descriptor

Synopsis

int usb_gadget_config_buf (const struct usb_config_descriptor

* config, void * buf, unsigned length, const struct
usb_descriptor_header ** desc);

Arguments

config

Header for the descriptor, including characteristics such as power requirements
and number of interfaces.

buf

Buffer for the resulting configuration descriptor.

length

Length of buffer. If this is not big enough to hold the entire configuration
descriptor, an error code will be returned.

desc

Null-terminated vector of pointers to the descriptors (interface, endpoint, etc)
defining all functions in this device configuration.

Description
This copies descriptors into the response buffer, building a descriptor for that
configuration. It returns the buffer length or a negative status code. The
config.wTotalLength field is set to match the length of the result, but other
descriptor fields (including power usage and interface count) must be set by the
caller.

61

Chapter 3. Kernel Mode Gadget API

Gadget drivers could use this when constructing a config descriptor in response to
USB_REQ_GET_DESCRIPTOR. They will need to patch the resulting
bDescriptorType value if USB_DT_OTHER_SPEED_CONFIG is needed.

usb_copy_descriptors

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_copy_descriptors — copy a vector of USB descriptors

Synopsis

struct usb_descriptor_header ** usb_copy_descriptors (struct
usb_descriptor_header ** src);

Arguments

src

null-terminated vector to copy

Context
initialization code, which may sleep

Description
This makes a copy of a vector of USB descriptors. Its primary use is to support
usb_function objects which can have multiple copies, each needing different

62

Chapter 3. Kernel Mode Gadget API

descriptors. Functions may have static tables of descriptors, which are used as
templates and customized with identifiers (for interfaces, strings, endpoints, and
more) as needed by a given function instance.

usb_find_endpoint

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_find_endpoint — find a copy of an endpoint descriptor

Synopsis

struct usb_endpoint_descriptor * usb_find_endpoint (struct
usb_descriptor_header ** src, struct usb_descriptor_header **
copy, struct usb_endpoint_descriptor * match);

Arguments

src

original vector of descriptors

copy

copy of src

match

endpoint descriptor found in src

63

Chapter 3. Kernel Mode Gadget API

Description
This returns the copy of the match descriptor made for copy. Its intended use is to
help remembering the endpoint descriptor to use when enabling a given endpoint.

3.5. Composite Device Framework
The core API is sufficient for writing drivers for composite USB devices (with more
than one function in a given configuration), and also multi-configuration devices
(also more than one function, but not necessarily sharing a given configuration).
There is however an optional framework which makes it easier to reuse and
combine functions.

Devices using this framework provide a struct usb_composite_driver, which in turn
provides one or more struct usb_configuration instances. Each such configuration
includes at least one struct usb_function, which packages a user visible role such as
"network link" or "mass storage device". Management functions may also exist,
such as "Device Firmware Upgrade".

struct usb_function

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_function — describes one function of a configuration

Synopsis
struct usb_function {
const char * name;
struct usb_gadget_strings ** strings;
struct usb_descriptor_header ** descriptors;
struct usb_descriptor_header ** hs_descriptors;
struct usb_configuration * config;
int (* bind) (struct usb_configuration *,struct usb_function *);

64

Chapter 3. Kernel Mode Gadget API

void (* unbind) (struct usb_configuration *,struct usb_function *);
int (* set_alt) (struct usb_function *,unsigned interface, unsigned alt);
int (* get_alt) (struct usb_function *,unsigned interface);
void (* disable) (struct usb_function *);
int (* setup) (struct usb_function *,const struct usb_ctrlrequest *);
void (* suspend) (struct usb_function *);
void (* resume) (struct usb_function *);

};

Members

name

For diagnostics, identifies the function.

strings

tables of strings, keyed by identifiers assigned during bind and by language
IDs provided in control requests

descriptors

Table of full (or low) speed descriptors, using interface and string identifiers
assigned during bind(). If this pointer is null, the function will not be available
at full speed (or at low speed).

hs_descriptors

Table of high speed descriptors, using interface and string identifiers assigned
during bind(). If this pointer is null, the function will not be available at high
speed.

config

assigned when usb_add_function() is called; this is the configuration with
which this function is associated.

bind

Before the gadget can register, all of its functions bind to the available
resources including string and interface identifiers used in interface or class
descriptors; endpoints; I/O buffers; and so on.

unbind

Reverses bind; called as a side effect of unregistering the driver which added
this function.

65

Chapter 3. Kernel Mode Gadget API

set_alt

(REQUIRED) Reconfigures altsettings; function drivers may initialize
usb_ep.driver data at this time (when it is used). Note that setting an interface
to its current altsetting resets interface state, and that all interfaces have a
disabled state.

get_alt

Returns the active altsetting. If this is not provided, then only altsetting zero is
supported.

disable

(REQUIRED) Indicates the function should be disabled. Reasons include host
resetting or reconfiguring the gadget, and disconnection.

setup

Used for interface-specific control requests.

suspend

Notifies functions when the host stops sending USB traffic.

resume

Notifies functions when the host restarts USB traffic.

Description
A single USB function uses one or more interfaces, and should in most cases
support operation at both full and high speeds. Each function is associated by
usb_add_function() with a one configuration; that function causes bind() to be
called so resources can be allocated as part of setting up a gadget driver. Those
resources include endpoints, which should be allocated using
usb_ep_autoconfig().

To support dual speed operation, a function driver provides descriptors for both high
and full speed operation. Except in rare cases that don’t involve bulk endpoints,
each speed needs different endpoint descriptors.

Function drivers choose their own strategies for managing instance data. The
simplest strategy just declares it "static’, which means the function can only be
activated once. If the function needs to be exposed in more than one configuration at
a given speed, it needs to support multiple usb_function structures (one for each
configuration).

66

Chapter 3. Kernel Mode Gadget API

A more complex strategy might encapsulate a usb_function structure inside a
driver-specific instance structure to allows multiple activations. An example of
multiple activations might be a CDC ACM function that supports two or more
distinct instances within the same configuration, providing several independent
logical data links to a USB host.

ep_choose

LINUX

Kernel Hackers ManualSeptember 2014

Name
ep_choose — select descriptor endpoint at current device speed

Synopsis

struct usb_endpoint_descriptor * ep_choose (struct usb_gadget

* g, struct usb_endpoint_descriptor * hs, struct
usb_endpoint_descriptor * fs);

Arguments

g

gadget, connected and running at some speed

hs

descriptor to use for high speed operation

fs

descriptor to use for full or low speed operation

67

Chapter 3. Kernel Mode Gadget API

struct usb_configuration

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_configuration — represents one gadget configuration

Synopsis
struct usb_configuration {
const char * label;
struct usb_gadget_strings ** strings;
const struct usb_descriptor_header ** descriptors;
void (* unbind) (struct usb_configuration *);
int (* setup) (struct usb_configuration *,const struct usb_ctrlrequest *);
u8 bConfigurationValue;
u8 iConfiguration;
u8 bmAttributes;
u8 bMaxPower;
struct usb_composite_dev * cdev;

};

Members

label

For diagnostics, describes the configuration.

strings

Tables of strings, keyed by identifiers assigned during bind() and by language
IDs provided in control requests.

descriptors

Table of descriptors preceding all function descriptors. Examples include OTG
and vendor-specific descriptors.

68

Chapter 3. Kernel Mode Gadget API

unbind

Reverses bind; called as a side effect of unregistering the driver which added
this configuration.

setup

Used to delegate control requests that aren’t handled by standard device
infrastructure or directed at a specific interface.

bConfigurationValue

Copied into configuration descriptor.

iConfiguration

Copied into configuration descriptor.

bmAttributes

Copied into configuration descriptor.

bMaxPower

Copied into configuration descriptor.

cdev

assigned by usb_add_config() before calling bind(); this is the device
associated with this configuration.

Description
Configurations are building blocks for gadget drivers structured around function
drivers. Simple USB gadgets require only one function and one configuration, and
handle dual-speed hardware by always providing the same functionality. Slightly
more complex gadgets may have more than one single-function configuration at a
given speed; or have configurations that only work at one speed.

Composite devices are, by definition, ones with configurations which include more
than one function.

The lifecycle of a usb_configuration includes allocation, initialization of the fields
described above, and calling usb_add_config() to set up internal data and bind it
to a specific device. The configuration’s bind() method is then used to initialize all
the functions and then call usb_add_function() for them.

Those functions would normally be independent of each other, but that’s not
mandatory. CDC WMC devices are an example where functions often depend on
other functions, with some functions subsidiary to others. Such interdependency

69

Chapter 3. Kernel Mode Gadget API

may be managed in any way, so long as all of the descriptors complete by the time
the composite driver returns from its bind routine.

struct usb_composite_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_composite_driver — groups configurations into a gadget

Synopsis
struct usb_composite_driver {
const char * name;
const char * iProduct;
const char * iManufacturer;
const struct usb_device_descriptor * dev;
struct usb_gadget_strings ** strings;
unsigned needs_serial:1;
int (* unbind) (struct usb_composite_dev *);
void (* disconnect) (struct usb_composite_dev *);
void (* suspend) (struct usb_composite_dev *);
void (* resume) (struct usb_composite_dev *);

};

Members

name

For diagnostics, identifies the driver.

iProduct

Used as iProduct override if dev->iProduct is not set. If NULL value of name
is taken.

70

Chapter 3. Kernel Mode Gadget API

iManufacturer

Used as iManufacturer override if dev->iManufacturer is not set. If NULL a
default “<system> <release> with <udc>” value will be used.

dev

Template descriptor for the device, including default device identifiers.

strings

tables of strings, keyed by identifiers assigned during bind and language IDs
provided in control requests

needs_serial

set to 1 if the gadget needs userspace to provide a serial number. If one is not
provided, warning will be printed.

unbind

Reverses bind; called as a side effect of unregistering this driver.

disconnect

optional driver disconnect method

suspend

Notifies when the host stops sending USB traffic, after function notifications

resume

Notifies configuration when the host restarts USB traffic, before function
notifications

Description
Devices default to reporting self powered operation. Devices which rely on bus
powered operation should report this in their bind() method.

Before returning from bind, various fields in the template descriptor may be
overridden. These include the idVendor/idProduct/bcdDevice values normally to
bind the appropriate host side driver, and the three strings (iManufacturer, iProduct,
iSerialNumber) normally used to provide user meaningful device identifiers. (The
strings will not be defined unless they are defined in dev and strings.) The correct
ep0 maxpacket size is also reported, as defined by the underlying controller driver.

71

Chapter 3. Kernel Mode Gadget API

struct usb_composite_dev

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_composite_dev — represents one composite usb gadget

Synopsis
struct usb_composite_dev {
struct usb_gadget * gadget;
struct usb_request * req;
unsigned bufsiz;
struct usb_configuration * config;

};

Members

gadget

read-only, abstracts the gadget’s usb peripheral controller

req

used for control responses; buffer is pre-allocated

bufsiz

size of buffer pre-allocated in req

config

the currently active configuration

Description
One of these devices is allocated and initialized before the associated device
driver’s bind is called.

72

Chapter 3. Kernel Mode Gadget API

OPEN ISSUE
it appears that some WUSB devices will need to be built by combining a normal
(wired) gadget with a wireless one. This revision of the gadget framework should
probably try to make sure doing that won’t hurt too much.

One notion for how to handle Wireless USB
devices involves
(a) a second gadget here, discovery mechanism TBD, but likely needing separate
“register/unregister WUSB gadget” calls; (b) updates to usb_gadget to include flags
“is it wireless”, “is it wired”, plus (presumably in a wrapper structure) bandgroup
and PHY info; (c) presumably a wireless_ep wrapping a usb_ep, and reporting
wireless-specific parameters like maxburst and maxsequence; (d) configurations
that are specific to wireless links; (e) function drivers that understand wireless
configs and will support wireless for (additional) function instances; (f) a function
to support association setup (like CBAF), not necessarily requiring a wireless
adapter; (g) composite device setup that can create one or more wireless configs,
including appropriate association setup support; (h) more, TBD.

usb_add_function

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_add_function — add a function to a configuration

Synopsis

int usb_add_function (struct usb_configuration * config,
struct usb_function * function);

73

Chapter 3. Kernel Mode Gadget API

Arguments

config

the configuration

function

the function being added

Context
single threaded during gadget setup

Description
After initialization, each configuration must have one or more functions added to it.
Adding a function involves calling its bind() method to allocate resources such as
interface and string identifiers and endpoints.

This function returns the value of the function’s bind, which is zero for success
else a negative errno value.

usb_function_deactivate

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_function_deactivate — prevent function and gadget enumeration

Synopsis

int usb_function_deactivate (struct usb_function * function);

74

Chapter 3. Kernel Mode Gadget API

Arguments

function

the function that isn’t yet ready to respond

Description
Blocks response of the gadget driver to host enumeration by preventing the data line
pullup from being activated. This is normally called during bind() processing to
change from the initial “ready to respond” state, or when a required resource
becomes available.

For example, drivers that serve as a passthrough to a userspace daemon can block
enumeration unless that daemon (such as an OBEX, MTP, or print server) is ready
to handle host requests.

Not all systems support software control of their USB peripheral data pullups.

Returns zero on success, else negative errno.

usb_function_activate

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_function_activate — allow function and gadget enumeration

Synopsis

int usb_function_activate (struct usb_function * function);

75

Chapter 3. Kernel Mode Gadget API

Arguments

function

function on which usb_function_activate was called

Description
Reverses effect of usb_function_deactivate. If no more functions are delaying
their activation, the gadget driver will respond to host enumeration procedures.

Returns zero on success, else negative errno.

usb_interface_id

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_interface_id — allocate an unused interface ID

Synopsis

int usb_interface_id (struct usb_configuration * config,
struct usb_function * function);

Arguments

config

configuration associated with the interface

76

Chapter 3. Kernel Mode Gadget API

function

function handling the interface

Context
single threaded during gadget setup

Description
usb_interface_id is called from usb_function.bind callbacks to allocate new
interface IDs. The function driver will then store that ID in interface, association,
CDC union, and other descriptors. It will also handle any control requests targeted
at that interface, particularly changing its altsetting via set_alt. There may also be
class-specific or vendor-specific requests to handle.

All interface identifier should be allocated using this routine, to ensure that for
example different functions don’t wrongly assign different meanings to the same
identifier. Note that since interface identifiers are configuration-specific, functions
used in more than one configuration (or more than once in a given configuration)
need multiple versions of the relevant descriptors.

Returns the interface ID which was allocated; or -ENODEV if no more interface
IDs can be allocated.

usb_add_config

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_add_config — add a configuration to a device.

77

Chapter 3. Kernel Mode Gadget API

Synopsis

int usb_add_config (struct usb_composite_dev * cdev, struct
usb_configuration * config, int (*bind) (struct
usb_configuration *));

Arguments

cdev

wraps the USB gadget

config

the configuration, with bConfigurationValue assigned

bind

the configuration’s bind function

Context
single threaded during gadget setup

Description
One of the main tasks of a composite bind() routine is to add each of the
configurations it supports, using this routine.

This function returns the value of the configuration’s bind(), which is zero for
success else a negative errno value. Binding configurations assigns global resources
including string IDs, and per-configuration resources such as interface IDs and
endpoints.

78

Chapter 3. Kernel Mode Gadget API

usb_string_id

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_string_id — allocate an unused string ID

Synopsis

int usb_string_id (struct usb_composite_dev * cdev);

Arguments

cdev

the device whose string descriptor IDs are being allocated

Context
single threaded during gadget setup

Description
usb_string_id() is called from bind callbacks to allocate string IDs. Drivers for
functions, configurations, or gadgets will then store that ID in the appropriate
descriptors and string table.

All string identifier should be allocated using this, usb_string_ids_tab() or
usb_string_ids_n() routine, to ensure that for example different functions don’t
wrongly assign different meanings to the same identifier.

79

Chapter 3. Kernel Mode Gadget API

usb_string_ids_tab

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_string_ids_tab — allocate unused string IDs in batch

Synopsis

int usb_string_ids_tab (struct usb_composite_dev * cdev,
struct usb_string * str);

Arguments

cdev

the device whose string descriptor IDs are being allocated

str

an array of usb_string objects to assign numbers to

Context
single threaded during gadget setup

Description
usb_string_ids() is called from bind callbacks to allocate string IDs. Drivers
for functions, configurations, or gadgets will then copy IDs from the string table to
the appropriate descriptors and string table for other languages.

All string identifier should be allocated using this, usb_string_id() or
usb_string_ids_n() routine, to ensure that for example different functions don’t
wrongly assign different meanings to the same identifier.

80

Chapter 3. Kernel Mode Gadget API

usb_string_ids_n

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_string_ids_n — allocate unused string IDs in batch

Synopsis

int usb_string_ids_n (struct usb_composite_dev * c, unsigned
n);

Arguments

c

the device whose string descriptor IDs are being allocated

n

number of string IDs to allocate

Context
single threaded during gadget setup

Description
Returns the first requested ID. This ID and next n-1 IDs are now valid IDs. At least
provided that n is non-zero because if it is, returns last requested ID which is now
very useful information.

81

Chapter 3. Kernel Mode Gadget API

usb_string_ids_n() is called from bind callbacks to allocate string IDs. Drivers
for functions, configurations, or gadgets will then store that ID in the appropriate
descriptors and string table.

All string identifier should be allocated using this, usb_string_id() or
usb_string_ids_n() routine, to ensure that for example different functions don’t
wrongly assign different meanings to the same identifier.

usb_composite_probe

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_composite_probe — register a composite driver

Synopsis

int usb_composite_probe (struct usb_composite_driver * driver,
int (*bind) (struct usb_composite_dev *cdev));

Arguments

driver

the driver to register

bind

the callback used to allocate resources that are shared across the whole device,
such as string IDs, and add its configurations using usb_add_config(). This
may fail by returning a negative errno value; it should return zero on successful
initialization.

82

Chapter 3. Kernel Mode Gadget API

Context
single threaded during gadget setup

Description
This function is used to register drivers using the composite driver framework. The
return value is zero, or a negative errno value. Those values normally come from the
driver’s bind method, which does all the work of setting up the driver to match the
hardware.

On successful return, the gadget is ready to respond to requests from the host, unless
one of its components invokes usb_gadget_disconnect while it was binding.
That would usually be done in order to wait for some userspace participation.

usb_composite_unregister

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_composite_unregister — unregister a composite driver

Synopsis

void usb_composite_unregister (struct usb_composite_driver *
driver);

Arguments

driver

the driver to unregister

83

Chapter 3. Kernel Mode Gadget API

Description
This function is used to unregister drivers using the composite driver framework.

usb_composite_setup_continue

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_composite_setup_continue — Continue with the control transfer

Synopsis

void usb_composite_setup_continue (struct usb_composite_dev *
cdev);

Arguments

cdev

the composite device who’s control transfer was kept waiting

Description
This function must be called by the USB function driver to continue with the
control transfer’s data/status stage in case it had requested to delay the data/status
stages. A USB function’s setup handler (e.g. set_alt) can request the composite
framework to delay the setup request’s data/status stages by returning
USB_GADGET_DELAYED_STATUS.

84

Chapter 3. Kernel Mode Gadget API

3.6. Composite Device Functions
At this writing, a few of the current gadget drivers have been converted to this
framework. Near-term plans include converting all of them, except for "gadgetfs".

acm_cdc_notify

LINUX

Kernel Hackers ManualSeptember 2014

Name
acm_cdc_notify — issue CDC notification to host

Synopsis

int acm_cdc_notify (struct f_acm * acm, u8 type, u16 value,
void * data, unsigned length);

Arguments

acm

wraps host to be notified

type

notification type

value

Refer to cdc specs, wValue field.

data

data to be sent

85

Chapter 3. Kernel Mode Gadget API

length

size of data

Context
irqs blocked, acm->lock held, acm_notify_req non-null

Description
Returns zero on success or a negative errno.

See section 6.3.5 of the CDC 1.1 specification for information

about the only notification we issue
SerialState change.

acm_bind_config

LINUX

Kernel Hackers ManualSeptember 2014

Name
acm_bind_config — add a CDC ACM function to a configuration

Synopsis

int acm_bind_config (struct usb_configuration * c, u8
port_num);

86

Chapter 3. Kernel Mode Gadget API

Arguments

c

the configuration to support the CDC ACM instance

port_num

/dev/ttyGS* port this interface will use

Context
single threaded during gadget setup

Description
Returns zero on success, else negative errno.

Caller must have called gserial_setup() with enough ports to handle all the ones
it binds. Caller is also responsible for calling gserial_cleanup() before module
unload.

ecm_bind_config

LINUX

Kernel Hackers ManualSeptember 2014

Name
ecm_bind_config — add CDC Ethernet network link to a configuration

Synopsis

int ecm_bind_config (struct usb_configuration * c, u8
ethaddr[ETH_ALEN]);

87

Chapter 3. Kernel Mode Gadget API

Arguments

c

the configuration to support the network link

ethaddr[ETH_ALEN]

a buffer in which the ethernet address of the host side side of the link was
recorded

Context
single threaded during gadget setup

Description
Returns zero on success, else negative errno.

Caller must have called gether_setup(). Caller is also responsible for calling
gether_cleanup() before module unload.

geth_bind_config

LINUX

Kernel Hackers ManualSeptember 2014

Name
geth_bind_config — add CDC Subset network link to a configuration

88

Chapter 3. Kernel Mode Gadget API

Synopsis

int geth_bind_config (struct usb_configuration * c, u8
ethaddr[ETH_ALEN]);

Arguments

c

the configuration to support the network link

ethaddr[ETH_ALEN]

a buffer in which the ethernet address of the host side side of the link was
recorded

Context
single threaded during gadget setup

Description
Returns zero on success, else negative errno.

Caller must have called gether_setup(). Caller is also responsible for calling
gether_cleanup() before module unload.

obex_bind_config

LINUX

89

Chapter 3. Kernel Mode Gadget API

Kernel Hackers ManualSeptember 2014

Name
obex_bind_config — add a CDC OBEX function to a configuration

Synopsis

int obex_bind_config (struct usb_configuration * c, u8
port_num);

Arguments

c

the configuration to support the CDC OBEX instance

port_num

/dev/ttyGS* port this interface will use

Context
single threaded during gadget setup

Description
Returns zero on success, else negative errno.

Caller must have called gserial_setup() with enough ports to handle all the ones
it binds. Caller is also responsible for calling gserial_cleanup() before module
unload.

90

Chapter 3. Kernel Mode Gadget API

gser_bind_config

LINUX

Kernel Hackers ManualSeptember 2014

Name
gser_bind_config — add a generic serial function to a configuration

Synopsis

int gser_bind_config (struct usb_configuration * c, u8
port_num);

Arguments

c

the configuration to support the serial instance

port_num

/dev/ttyGS* port this interface will use

Context
single threaded during gadget setup

Description
Returns zero on success, else negative errno.

Caller must have called gserial_setup() with enough ports to handle all the ones
it binds. Caller is also responsible for calling gserial_cleanup() before module
unload.

91

Chapter 3. Kernel Mode Gadget API

92

Chapter 4. Peripheral Controller
Drivers

The first hardware supporting this API was the NetChip 2280 controller, which
supports USB 2.0 high speed and is based on PCI. This is the net2280 driver
module. The driver supports Linux kernel versions 2.4 and 2.6; contact NetChip
Technologies for development boards and product information.

Other hardware working in the "gadget" framework includes: Intel’s PXA 25x and
IXP42x series processors (pxa2xx_udc), Toshiba TC86c001 "Goku-S"
(goku_udc), Renesas SH7705/7727 (sh_udc), MediaQ 11xx (mq11xx_udc),
Hynix HMS30C7202 (h7202_udc), National 9303/4 (n9604_udc), Texas
Instruments OMAP (omap_udc), Sharp LH7A40x (lh7a40x_udc), and more.
Most of those are full speed controllers.

At this writing, there are people at work on drivers in this framework for several
other USB device controllers, with plans to make many of them be widely available.

A partial USB simulator, the dummy_hcd driver, is available. It can act like a
net2280, a pxa25x, or an sa11x0 in terms of available endpoints and device speeds;
and it simulates control, bulk, and to some extent interrupt transfers. That lets you
develop some parts of a gadget driver on a normal PC, without any special
hardware, and perhaps with the assistance of tools such as GDB running with User
Mode Linux. At least one person has expressed interest in adapting that approach,
hooking it up to a simulator for a microcontroller. Such simulators can help debug
subsystems where the runtime hardware is unfriendly to software development, or is
not yet available.

Support for other controllers is expected to be developed and contributed over time,
as this driver framework evolves.

93

Chapter 4. Peripheral Controller Drivers

94

Chapter 5. Gadget Drivers
In addition to Gadget Zero (used primarily for testing and development with drivers
for usb controller hardware), other gadget drivers exist.

There’s an ethernet gadget driver, which implements one of the most useful
Communications Device Class (CDC) models. One of the standards for cable
modem interoperability even specifies the use of this ethernet model as one of two
mandatory options. Gadgets using this code look to a USB host as if they’re an
Ethernet adapter. It provides access to a network where the gadget’s CPU is one
host, which could easily be bridging, routing, or firewalling access to other
networks. Since some hardware can’t fully implement the CDC Ethernet
requirements, this driver also implements a "good parts only" subset of CDC
Ethernet. (That subset doesn’t advertise itself as CDC Ethernet, to avoid creating
problems.)

Support for Microsoft’s RNDIS protocol has been contributed by Pengutronix and
Auerswald GmbH. This is like CDC Ethernet, but it runs on more slightly USB
hardware (but less than the CDC subset). However, its main claim to fame is being
able to connect directly to recent versions of Windows, using drivers that Microsoft
bundles and supports, making it much simpler to network with Windows.

There is also support for user mode gadget drivers, using gadgetfs. This provides a
User Mode API that presents each endpoint as a single file descriptor. I/O is done
using normal read() and read() calls. Familiar tools like GDB and pthreads can be
used to develop and debug user mode drivers, so that once a robust controller driver
is available many applications for it won’t require new kernel mode software. Linux
2.6 Async I/O (AIO) support is available, so that user mode software can stream data
with only slightly more overhead than a kernel driver.

There’s a USB Mass Storage class driver, which provides a different solution for
interoperability with systems such as MS-Windows and MacOS. That File-backed
Storage driver uses a file or block device as backing store for a drive, like the loop
driver. The USB host uses the BBB, CB, or CBI versions of the mass storage class
specification, using transparent SCSI commands to access the data from the backing
store.

There’s a "serial line" driver, useful for TTY style operation over USB. The latest
version of that driver supports CDC ACM style operation, like a USB modem, and
so on most hardware it can interoperate easily with MS-Windows. One interesting
use of that driver is in boot firmware (like a BIOS), which can sometimes use that
model with very small systems without real serial lines.

Support for other kinds of gadget is expected to be developed and contributed over
time, as this driver framework evolves.

95

Chapter 5. Gadget Drivers

96

Chapter 6. USB On-The-GO (OTG)
USB OTG support on Linux 2.6 was initially developed by Texas Instruments for
OMAP (http://www.omap.com) 16xx and 17xx series processors. Other OTG
systems should work in similar ways, but the hardware level details could be very
different.

Systems need specialized hardware support to implement OTG, notably including a
special Mini-AB jack and associated transciever to support Dual-Role operation:
they can act either as a host, using the standard Linux-USB host side driver stack, or
as a peripheral, using this "gadget" framework. To do that, the system software
relies on small additions to those programming interfaces, and on a new internal
component (here called an "OTG Controller") affecting which driver stack connects
to the OTG port. In each role, the system can re-use the existing pool of
hardware-neutral drivers, layered on top of the controller driver interfaces (usb_bus
or usb_gadget). Such drivers need at most minor changes, and most of the calls
added to support OTG can also benefit non-OTG products.

• Gadget drivers test the is_otg flag, and use it to determine whether or not to
include an OTG descriptor in each of their configurations.

• Gadget drivers may need changes to support the two new OTG protocols,
exposed in new gadget attributes such as b_hnp_enable flag. HNP support should
be reported through a user interface (two LEDs could suffice), and is triggered in
some cases when the host suspends the peripheral. SRP support can be
user-initiated just like remote wakeup, probably by pressing the same button.

• On the host side, USB device drivers need to be taught to trigger HNP at
appropriate moments, using usb_suspend_device(). That also conserves
battery power, which is useful even for non-OTG configurations.

• Also on the host side, a driver must support the OTG "Targeted Peripheral List".
That’s just a whitelist, used to reject peripherals not supported with a given Linux
OTG host. This whitelist is product-specific; each product must modify
otg_whitelist.h to match its interoperability specification.

Non-OTG Linux hosts, like PCs and workstations, normally have some solution
for adding drivers, so that peripherals that aren’t recognized can eventually be
supported. That approach is unreasonable for consumer products that may never
have their firmware upgraded, and where it’s usually unrealistic to expect
traditional PC/workstation/server kinds of support model to work. For example,
it’s often impractical to change device firmware once the product has been
distributed, so driver bugs can’t normally be fixed if they’re found after shipment.

Additional changes are needed below those hardware-neutral usb_bus and
usb_gadget driver interfaces; those aren’t discussed here in any detail. Those affect

97

Chapter 6. USB On-The-GO (OTG)

the hardware-specific code for each USB Host or Peripheral controller, and how the
HCD initializes (since OTG can be active only on a single port). They also involve
what may be called an OTG Controller Driver, managing the OTG transceiver and
the OTG state machine logic as well as much of the root hub behavior for the OTG
port. The OTG controller driver needs to activate and deactivate USB controllers
depending on the relevant device role. Some related changes were needed inside
usbcore, so that it can identify OTG-capable devices and respond appropriately to
HNP or SRP protocols.

98

	USB Gadget API for Linux
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Structure of Gadget Drivers
	Chapter 3. Kernel Mode Gadget API
	3.1. Driver Life Cycle
	3.2. USB 2.0 Chapter 9 Types and Constants
	struct usbctrlrequest
	LINUX
	Name
	Synopsis
	Members
	Description

	usbendpointnum
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointtype
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointdirin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointdirout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxferbulk
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxfercontrol
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxferint
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxferisoc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisbulkin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisbulkout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisintin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisintout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisisocin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisisocout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointmaxp
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbspeedstring
	LINUX
	Name
	Synopsis
	Arguments

	3.3. Core Objects and Methods
	struct usbrequest
	LINUX
	Name
	Synopsis
	Members
	Description
	NOTE

	struct usbep
	LINUX
	Name
	Synopsis
	Members
	Description

	usbepenable
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepdisable
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepallocrequest
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepfreerequest
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepqueue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepdequeue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepsethalt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepclearhalt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepsetwedge
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepfifostatus
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbepfifoflush
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct usbgadget
	LINUX
	Name
	Synopsis
	Members
	Description

	gadgetisdualspeed
	LINUX
	Name
	Synopsis
	Arguments

	gadgetisotg
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetframenumber
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetwakeup
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetsetselfpowered
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetclearselfpowered
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetvbusconnect
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbgadgetvbusdraw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetvbusdisconnect
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbgadgetconnect
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetdisconnect
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct usbgadgetdriver
	LINUX
	Name
	Synopsis
	Members
	Description

	usbgadgetprobedriver
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbgadgetunregisterdriver
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	struct usbstring
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbgadgetstrings
	LINUX
	Name
	Synopsis
	Members
	Description

	usbfreedescriptors
	LINUX
	Name
	Synopsis
	Arguments

	3.4. Optional Utilities
	usbgadgetgetstring
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbdescriptorfillbuf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgadgetconfigbuf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbcopydescriptors
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbfindendpoint
	LINUX
	Name
	Synopsis
	Arguments
	Description

	3.5. Composite Device Framework
	struct usbfunction
	LINUX
	Name
	Synopsis
	Members
	Description

	epchoose
	LINUX
	Name
	Synopsis
	Arguments

	struct usbconfiguration
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbcompositedriver
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbcompositedev
	LINUX
	Name
	Synopsis
	Members
	Description
	OPEN ISSUE
	One notion for how to handle Wireless USB devices involves

	usbaddfunction
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbfunctiondeactivate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfunctionactivate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbinterfaceid
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbaddconfig
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbstringid
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbstringidstab
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbstringidsn
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbcompositeprobe
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbcompositeunregister
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbcompositesetupcontinue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	3.6. Composite Device Functions
	acmcdcnotify
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description
	about the only notification we issue

	acmbindconfig
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	ecmbindconfig
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	gethbindconfig
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	obexbindconfig
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	gserbindconfig
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	Chapter 4. Peripheral Controller Drivers
	Chapter 5. Gadget Drivers
	Chapter 6. USB OnTheGO (OTG)

