
The Linux-USB Host Side API



The Linux-USB Host Side API

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the

Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.



Table of Contents
1. Introduction to USB on Linux ............................................................................1
2. USB Host-Side API Model ..................................................................................3
3. USB-Standard Types ...........................................................................................5

struct usb_ctrlrequest .........................................................................................5
usb_endpoint_num.............................................................................................6
usb_endpoint_type .............................................................................................7
usb_endpoint_dir_in ..........................................................................................8
usb_endpoint_dir_out ........................................................................................8
usb_endpoint_xfer_bulk ....................................................................................9
usb_endpoint_xfer_control ..............................................................................10
usb_endpoint_xfer_int .....................................................................................11
usb_endpoint_xfer_isoc ...................................................................................12
usb_endpoint_is_bulk_in .................................................................................13
usb_endpoint_is_bulk_out ...............................................................................13
usb_endpoint_is_int_in ....................................................................................14
usb_endpoint_is_int_out ..................................................................................15
usb_endpoint_is_isoc_in..................................................................................16
usb_endpoint_is_isoc_out................................................................................17
usb_endpoint_maxp .........................................................................................18
usb_speed_string..............................................................................................18

4. Host-Side Data Types and Macros ...................................................................21
struct usb_host_endpoint .................................................................................21
struct usb_interface ..........................................................................................22
struct usb_interface_cache ...............................................................................25
struct usb_host_config .....................................................................................26
struct usb_device..............................................................................................28
usb_interface_claimed .....................................................................................34
usb_make_path ................................................................................................34
USB_DEVICE .................................................................................................36
USB_DEVICE_VER .......................................................................................37
USB_DEVICE_INTERFACE_PROTOCOL...................................................38
USB_DEVICE_INFO......................................................................................39
USB_INTERFACE_INFO...............................................................................40
USB_DEVICE_AND_INTERFACE_INFO....................................................41
USB_VENDOR_AND_INTERFACE_INFO..................................................42
struct usbdrv_wrap...........................................................................................43
struct usb_driver...............................................................................................44
struct usb_device_driver ..................................................................................46
struct usb_class_driver .....................................................................................48
struct urb ..........................................................................................................49

iii



usb_fill_control_urb.........................................................................................55
usb_fill_bulk_urb .............................................................................................56
usb_fill_int_urb ................................................................................................58
usb_urb_dir_in .................................................................................................59
usb_urb_dir_out ...............................................................................................60
struct usb_sg_request .......................................................................................61

5. USB Core APIs...................................................................................................63
usb_init_urb .....................................................................................................63
usb_alloc_urb...................................................................................................64
usb_free_urb ....................................................................................................65
usb_get_urb......................................................................................................66
usb_anchor_urb................................................................................................67
usb_unanchor_urb............................................................................................68
usb_submit_urb................................................................................................69
usb_unlink_urb ................................................................................................72
usb_kill_urb .....................................................................................................73
usb_poison_urb ................................................................................................74
usb_kill_anchored_urbs ...................................................................................76
usb_poison_anchored_urbs..............................................................................76
usb_unpoison_anchored_urbs..........................................................................77
usb_unlink_anchored_urbs ..............................................................................78
usb_wait_anchor_empty_timeout ....................................................................79
usb_get_from_anchor ......................................................................................80
usb_scuttle_anchored_urbs ..............................................................................81
usb_anchor_empty ...........................................................................................81
usb_control_msg..............................................................................................82
usb_interrupt_msg............................................................................................84
usb_bulk_msg ..................................................................................................85
usb_sg_init .......................................................................................................87
usb_sg_wait......................................................................................................89
usb_sg_cancel ..................................................................................................90
usb_get_descriptor ...........................................................................................91
usb_string.........................................................................................................92
usb_get_status ..................................................................................................94
usb_clear_halt ..................................................................................................95
usb_reset_endpoint ..........................................................................................96
usb_set_interface..............................................................................................97
usb_reset_configuration ...................................................................................99
usb_driver_set_configuration.........................................................................100
usb_register_dev ............................................................................................101
usb_deregister_dev.........................................................................................102
usb_driver_claim_interface............................................................................103
usb_driver_release_interface .........................................................................104

iv



usb_match_id .................................................................................................105
usb_register_device_driver ............................................................................108
usb_deregister_device_driver.........................................................................108
usb_register_driver.........................................................................................109
usb_deregister ................................................................................................111
usb_enable_autosuspend................................................................................112
usb_disable_autosuspend...............................................................................113
usb_autopm_put_interface.............................................................................113
usb_autopm_put_interface_async..................................................................114
usb_autopm_put_interface_no_suspend ........................................................115
usb_autopm_get_interface .............................................................................116
usb_autopm_get_interface_async ..................................................................117
usb_autopm_get_interface_no_resume..........................................................118
usb_find_alt_setting .......................................................................................119
usb_ifnum_to_if.............................................................................................120
usb_altnum_to_altsetting ...............................................................................121
usb_find_interface..........................................................................................122
usb_get_dev ...................................................................................................123
usb_put_dev ...................................................................................................124
usb_get_intf....................................................................................................125
usb_put_intf ...................................................................................................126
usb_lock_device_for_reset.............................................................................127
usb_get_current_frame_number ....................................................................128
usb_alloc_coherent ........................................................................................129
usb_free_coherent ..........................................................................................130
usb_buffer_map .............................................................................................131
usb_buffer_dmasync ......................................................................................132
usb_buffer_unmap .........................................................................................133
usb_buffer_map_sg........................................................................................133
usb_buffer_dmasync_sg.................................................................................135
usb_buffer_unmap_sg....................................................................................136
usb_hub_clear_tt_buffer ................................................................................137
usb_set_device_state......................................................................................138
usb_root_hub_lost_power..............................................................................139
usb_reset_device ............................................................................................140
usb_queue_reset_device.................................................................................141

6. Host Controller APIs .......................................................................................143
usb_calc_bus_time.........................................................................................143
usb_hcd_link_urb_to_ep................................................................................144
usb_hcd_check_unlink_urb ...........................................................................145
usb_hcd_unlink_urb_from_ep .......................................................................146
usb_hcd_giveback_urb...................................................................................147
usb_alloc_streams ..........................................................................................149

v



usb_free_streams............................................................................................150
usb_hcd_resume_root_hub ............................................................................151
usb_bus_start_enum.......................................................................................152
usb_hcd_irq....................................................................................................153
usb_hc_died ...................................................................................................154
usb_create_shared_hcd ..................................................................................154
usb_create_hcd...............................................................................................156
usb_add_hcd ..................................................................................................157
usb_remove_hcd ............................................................................................158
usb_hcd_pci_probe ........................................................................................159
usb_hcd_pci_remove .....................................................................................160
usb_hcd_pci_shutdown..................................................................................161
hcd_buffer_create...........................................................................................161
hcd_buffer_destroy ........................................................................................162

7. The USB Filesystem (usbfs).............................................................................165
7.1. What files are in "usbfs"?........................................................................165
7.2. Mounting and Access Control ................................................................166
7.3. /proc/bus/usb/devices ..............................................................................167
7.4. /proc/bus/usb/BBB/DDD ........................................................................168
7.5. Life Cycle of User Mode Drivers ...........................................................168
7.6. The ioctl() Requests ................................................................................169

7.6.1. Management/Status Requests ......................................................169
7.6.2. Synchronous I/O Support.............................................................172
7.6.3. Asynchronous I/O Support ..........................................................174

vi



Chapter 1. Introduction to USB on
Linux

A Universal Serial Bus (USB) is used to connect a host, such as a PC or workstation,
to a number of peripheral devices. USB uses a tree structure, with the host as the
root (the system’s master), hubs as interior nodes, and peripherals as leaves (and
slaves). Modern PCs support several such trees of USB devices, usually one USB
2.0 tree (480 Mbit/sec each) with a few USB 1.1 trees (12 Mbit/sec each) that are
used when you connect a USB 1.1 device directly to the machine’s "root hub".

That master/slave asymmetry was designed-in for a number of reasons, one being
ease of use. It is not physically possible to assemble (legal) USB cables incorrectly:
all upstream "to the host" connectors are the rectangular type (matching the sockets
on root hubs), and all downstream connectors are the squarish type (or they are built
into the peripheral). Also, the host software doesn’t need to deal with distributed
auto-configuration since the pre-designated master node manages all that. And
finally, at the electrical level, bus protocol overhead is reduced by eliminating
arbitration and moving scheduling into the host software.

USB 1.0 was announced in January 1996 and was revised as USB 1.1 (with
improvements in hub specification and support for interrupt-out transfers) in
September 1998. USB 2.0 was released in April 2000, adding high-speed transfers
and transaction-translating hubs (used for USB 1.1 and 1.0 backward compatibility).

Kernel developers added USB support to Linux early in the 2.2 kernel series,
shortly before 2.3 development forked. Updates from 2.3 were regularly folded
back into 2.2 releases, which improved reliability and brought /sbin/hotplug
support as well more drivers. Such improvements were continued in the 2.5 kernel
series, where they added USB 2.0 support, improved performance, and made the
host controller drivers (HCDs) more consistent. They also simplified the API (to
make bugs less likely) and added internal "kerneldoc" documentation.

Linux can run inside USB devices as well as on the hosts that control the devices.
But USB device drivers running inside those peripherals don’t do the same things as
the ones running inside hosts, so they’ve been given a different name: gadget
drivers. This document does not cover gadget drivers.

1



Chapter 1. Introduction to USB on Linux

2



Chapter 2. USB Host-Side API Model
Host-side drivers for USB devices talk to the "usbcore" APIs. There are two. One is
intended for general-purpose drivers (exposed through driver frameworks), and the
other is for drivers that are part of the core. Such core drivers include the hub driver
(which manages trees of USB devices) and several different kinds of host controller
drivers, which control individual busses.

The device model seen by USB drivers is relatively complex.

• USB supports four kinds of data transfers (control, bulk, interrupt, and
isochronous). Two of them (control and bulk) use bandwidth as it’s available,
while the other two (interrupt and isochronous) are scheduled to provide
guaranteed bandwidth.

• The device description model includes one or more "configurations" per device,
only one of which is active at a time. Devices that are capable of high-speed
operation must also support full-speed configurations, along with a way to ask
about the "other speed" configurations which might be used.

• Configurations have one or more "interfaces", each of which may have "alternate
settings". Interfaces may be standardized by USB "Class" specifications, or may
be specific to a vendor or device.

USB device drivers actually bind to interfaces, not devices. Think of them as
"interface drivers", though you may not see many devices where the distinction is
important. Most USB devices are simple, with only one configuration, one
interface, and one alternate setting.

• Interfaces have one or more "endpoints", each of which supports one type and
direction of data transfer such as "bulk out" or "interrupt in". The entire
configuration may have up to sixteen endpoints in each direction, allocated as
needed among all the interfaces.

• Data transfer on USB is packetized; each endpoint has a maximum packet size.
Drivers must often be aware of conventions such as flagging the end of bulk
transfers using "short" (including zero length) packets.

• The Linux USB API supports synchronous calls for control and bulk messages. It
also supports asynchnous calls for all kinds of data transfer, using request
structures called "URBs" (USB Request Blocks).

Accordingly, the USB Core API exposed to device drivers covers quite a lot of
territory. You’ll probably need to consult the USB 2.0 specification, available online
from www.usb.org at no cost, as well as class or device specifications.

The only host-side drivers that actually touch hardware (reading/writing registers,
handling IRQs, and so on) are the HCDs. In theory, all HCDs provide the same

3



Chapter 2. USB Host-Side API Model

functionality through the same API. In practice, that’s becoming more true on the
2.5 kernels, but there are still differences that crop up especially with fault handling.
Different controllers don’t necessarily report the same aspects of failures, and
recovery from faults (including software-induced ones like unlinking an URB) isn’t
yet fully consistent. Device driver authors should make a point of doing disconnect
testing (while the device is active) with each different host controller driver, to make
sure drivers don’t have bugs of their own as well as to make sure they aren’t relying
on some HCD-specific behavior. (You will need external USB 1.1 and/or USB 2.0
hubs to perform all those tests.)

4



Chapter 3. USB-Standard Types
In <linux/usb/ch9.h> you will find the USB data types defined in chapter 9 of
the USB specification. These data types are used throughout USB, and in APIs
including this host side API, gadget APIs, and usbfs.

struct usb_ctrlrequest

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_ctrlrequest — SETUP data for a USB device control request

Synopsis
struct usb_ctrlrequest {
__u8 bRequestType;
__u8 bRequest;
__le16 wValue;
__le16 wIndex;
__le16 wLength;

};

Members

bRequestType

matches the USB bmRequestType field

bRequest

matches the USB bRequest field

wValue

matches the USB wValue field (le16 byte order)

5



Chapter 3. USB-Standard Types

wIndex

matches the USB wIndex field (le16 byte order)

wLength

matches the USB wLength field (le16 byte order)

Description
This structure is used to send control requests to a USB device. It matches the
different fields of the USB 2.0 Spec section 9.3, table 9-2. See the USB spec for a
fuller description of the different fields, and what they are used for.

Note that the driver for any interface can issue control requests. For most devices,
interfaces don’t coordinate with each other, so such requests may be made at any
time.

usb_endpoint_num

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_num — get the endpoint’s number

Synopsis

int usb_endpoint_num (const struct usb_endpoint_descriptor *
epd);

6



Chapter 3. USB-Standard Types

Arguments

epd

endpoint to be checked

Description
Returns epd’s number: 0 to 15.

usb_endpoint_type

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_type — get the endpoint’s transfer type

Synopsis

int usb_endpoint_type (const struct usb_endpoint_descriptor *
epd);

Arguments

epd

endpoint to be checked

7



Chapter 3. USB-Standard Types

Description
Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT}
according to epd’s transfer type.

usb_endpoint_dir_in

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_dir_in — check if the endpoint has IN direction

Synopsis

int usb_endpoint_dir_in (const struct usb_endpoint_descriptor

* epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type IN, otherwise it returns false.

8



Chapter 3. USB-Standard Types

usb_endpoint_dir_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_dir_out — check if the endpoint has OUT direction

Synopsis

int usb_endpoint_dir_out (const struct usb_endpoint_descriptor

* epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type OUT, otherwise it returns false.

usb_endpoint_xfer_bulk

LINUX

9



Chapter 3. USB-Standard Types

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_bulk — check if the endpoint has bulk transfer type

Synopsis

int usb_endpoint_xfer_bulk (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type bulk, otherwise it returns false.

usb_endpoint_xfer_control

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_control — check if the endpoint has control transfer
type

10



Chapter 3. USB-Standard Types

Synopsis

int usb_endpoint_xfer_control (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type control, otherwise it returns false.

usb_endpoint_xfer_int

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_int — check if the endpoint has interrupt transfer type

Synopsis

int usb_endpoint_xfer_int (const struct
usb_endpoint_descriptor * epd);

11



Chapter 3. USB-Standard Types

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint is of type interrupt, otherwise it returns false.

usb_endpoint_xfer_isoc

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_xfer_isoc — check if the endpoint has isochronous transfer
type

Synopsis

int usb_endpoint_xfer_isoc (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

12



Chapter 3. USB-Standard Types

Description
Returns true if the endpoint is of type isochronous, otherwise it returns false.

usb_endpoint_is_bulk_in

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_bulk_in — check if the endpoint is bulk IN

Synopsis

int usb_endpoint_is_bulk_in (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has bulk transfer type and IN direction, otherwise it
returns false.

13



Chapter 3. USB-Standard Types

usb_endpoint_is_bulk_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_bulk_out — check if the endpoint is bulk OUT

Synopsis

int usb_endpoint_is_bulk_out (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has bulk transfer type and OUT direction, otherwise it
returns false.

usb_endpoint_is_int_in

LINUX

14



Chapter 3. USB-Standard Types

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_int_in — check if the endpoint is interrupt IN

Synopsis

int usb_endpoint_is_int_in (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has interrupt transfer type and IN direction, otherwise it
returns false.

usb_endpoint_is_int_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_int_out — check if the endpoint is interrupt OUT

15



Chapter 3. USB-Standard Types

Synopsis

int usb_endpoint_is_int_out (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has interrupt transfer type and OUT direction,
otherwise it returns false.

usb_endpoint_is_isoc_in

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_isoc_in — check if the endpoint is isochronous IN

Synopsis

int usb_endpoint_is_isoc_in (const struct
usb_endpoint_descriptor * epd);

16



Chapter 3. USB-Standard Types

Arguments

epd

endpoint to be checked

Description
Returns true if the endpoint has isochronous transfer type and IN direction,
otherwise it returns false.

usb_endpoint_is_isoc_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_is_isoc_out — check if the endpoint is isochronous OUT

Synopsis

int usb_endpoint_is_isoc_out (const struct
usb_endpoint_descriptor * epd);

Arguments

epd

endpoint to be checked

17



Chapter 3. USB-Standard Types

Description
Returns true if the endpoint has isochronous transfer type and OUT direction,
otherwise it returns false.

usb_endpoint_maxp

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_endpoint_maxp — get endpoint’s max packet size

Synopsis

int usb_endpoint_maxp (const struct usb_endpoint_descriptor *
epd);

Arguments

epd

endpoint to be checked

Description
Returns epd’s max packet

18



Chapter 3. USB-Standard Types

usb_speed_string

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_speed_string — Returns human readable-name of the speed.

Synopsis

const char * usb_speed_string (enum usb_device_speed speed);

Arguments

speed

The speed to return human-readable name for. If it’s not any of the speeds
defined in usb_device_speed enum, string for USB_SPEED_UNKNOWN will
be returned.

19



Chapter 3. USB-Standard Types

20



Chapter 4. Host-Side Data Types and
Macros

The host side API exposes several layers to drivers, some of which are more
necessary than others. These support lifecycle models for host side drivers and
devices, and support passing buffers through usbcore to some HCD that performs
the I/O for the device driver.

struct usb_host_endpoint

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_host_endpoint — host-side endpoint descriptor and queue

Synopsis
struct usb_host_endpoint {
struct usb_endpoint_descriptor desc;
struct usb_ss_ep_comp_descriptor ss_ep_comp;
struct list_head urb_list;
void * hcpriv;
struct ep_device * ep_dev;
unsigned char * extra;
int extralen;
int enabled;

};

Members

desc

descriptor for this endpoint, wMaxPacketSize in native byteorder

21



Chapter 4. Host-Side Data Types and Macros

ss_ep_comp

SuperSpeed companion descriptor for this endpoint

urb_list

urbs queued to this endpoint; maintained by usbcore

hcpriv

for use by HCD; typically holds hardware dma queue head (QH) with one or
more transfer descriptors (TDs) per urb

ep_dev

ep_device for sysfs info

extra

descriptors following this endpoint in the configuration

extralen

how many bytes of “extra” are valid

enabled

URBs may be submitted to this endpoint

Description
USB requests are always queued to a given endpoint, identified by a descriptor
within an active interface in a given USB configuration.

struct usb_interface

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_interface — what usb device drivers talk to

22



Chapter 4. Host-Side Data Types and Macros

Synopsis
struct usb_interface {
struct usb_host_interface * altsetting;
struct usb_host_interface * cur_altsetting;
unsigned num_altsetting;
struct usb_interface_assoc_descriptor * intf_assoc;
int minor;
enum usb_interface_condition condition;
unsigned sysfs_files_created:1;
unsigned ep_devs_created:1;
unsigned unregistering:1;
unsigned needs_remote_wakeup:1;
unsigned needs_altsetting0:1;
unsigned needs_binding:1;
unsigned reset_running:1;
unsigned resetting_device:1;
struct device dev;
struct device * usb_dev;
atomic_t pm_usage_cnt;
struct work_struct reset_ws;

};

Members

altsetting

array of interface structures, one for each alternate setting that may be selected.
Each one includes a set of endpoint configurations. They will be in no
particular order.

cur_altsetting

the current altsetting.

num_altsetting

number of altsettings defined.

intf_assoc

interface association descriptor

minor

the minor number assigned to this interface, if this interface is bound to a
driver that uses the USB major number. If this interface does not use the USB

23



Chapter 4. Host-Side Data Types and Macros

major, this field should be unused. The driver should set this value in the
probe function of the driver, after it has been assigned a minor number from
the USB core by calling usb_register_dev.

condition

binding state of the interface: not bound, binding (in probe), bound to a driver,
or unbinding (in disconnect)

sysfs_files_created

sysfs attributes exist

ep_devs_created

endpoint child pseudo-devices exist

unregistering

flag set when the interface is being unregistered

needs_remote_wakeup

flag set when the driver requires remote-wakeup capability during autosuspend.

needs_altsetting0

flag set when a set-interface request for altsetting 0 has been deferred.

needs_binding

flag set when the driver should be re-probed or unbound following a reset or
suspend operation it doesn’t support.

reset_running

set to 1 if the interface is currently running a queued reset so that
usb_cancel_queued_reset doesn’t try to remove from the workqueue
when running inside the worker thread. See __usb_queue_reset_device.

resetting_device

USB core reset the device, so use alt setting 0 as current; needs bandwidth
alloc after reset.

dev

driver model’s view of this device

24



Chapter 4. Host-Side Data Types and Macros

usb_dev

if an interface is bound to the USB major, this will point to the sysfs
representation for that device.

pm_usage_cnt

PM usage counter for this interface

reset_ws

Used for scheduling resets from atomic context.

Description
USB device drivers attach to interfaces on a physical device. Each interface
encapsulates a single high level function, such as feeding an audio stream to a
speaker or reporting a change in a volume control. Many USB devices only have
one interface. The protocol used to talk to an interface’s endpoints can be defined in
a usb “class” specification, or by a product’s vendor. The (default) control endpoint
is part of every interface, but is never listed among the interface’s descriptors.

The driver that is bound to the interface can use standard driver model calls such as
dev_get_drvdata on the dev member of this structure.

Each interface may have alternate settings. The initial configuration of a device sets
altsetting 0, but the device driver can change that setting using
usb_set_interface. Alternate settings are often used to control the use of
periodic endpoints, such as by having different endpoints use different amounts of
reserved USB bandwidth. All standards-conformant USB devices that use
isochronous endpoints will use them in non-default settings.

The USB specification says that alternate setting numbers must run from 0 to one
less than the total number of alternate settings. But some devices manage to mess
this up, and the structures aren’t necessarily stored in numerical order anyhow. Use
usb_altnum_to_altsetting to look up an alternate setting in the altsetting
array based on its number.

struct usb_interface_cache

LINUX

25



Chapter 4. Host-Side Data Types and Macros

Kernel Hackers ManualSeptember 2014

Name
struct usb_interface_cache — long-term representation of a device
interface

Synopsis
struct usb_interface_cache {
unsigned num_altsetting;
struct kref ref;
struct usb_host_interface altsetting[0];

};

Members

num_altsetting

number of altsettings defined.

ref

reference counter.

altsetting[0]

variable-length array of interface structures, one for each alternate setting that
may be selected. Each one includes a set of endpoint configurations. They will
be in no particular order.

Description
These structures persist for the lifetime of a usb_device, unlike struct usb_interface
(which persists only as long as its configuration is installed). The altsetting arrays
can be accessed through these structures at any time, permitting comparison of
configurations and providing support for the /proc/bus/usb/devices pseudo-file.

26



Chapter 4. Host-Side Data Types and Macros

struct usb_host_config

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_host_config — representation of a device’s configuration

Synopsis
struct usb_host_config {
struct usb_config_descriptor desc;
char * string;
struct usb_interface_assoc_descriptor * intf_assoc[USB_MAXIADS];
struct usb_interface * interface[USB_MAXINTERFACES];
struct usb_interface_cache * intf_cache[USB_MAXINTERFACES];
unsigned char * extra;
int extralen;

};

Members

desc

the device’s configuration descriptor.

string

pointer to the cached version of the iConfiguration string, if present for this
configuration.

intf_assoc[USB_MAXIADS]

list of any interface association descriptors in this config

interface[USB_MAXINTERFACES]

array of pointers to usb_interface structures, one for each interface in the
configuration. The number of interfaces is stored in desc.bNumInterfaces.
These pointers are valid only while the the configuration is active.

27



Chapter 4. Host-Side Data Types and Macros

intf_cache[USB_MAXINTERFACES]

array of pointers to usb_interface_cache structures, one for each interface in
the configuration. These structures exist for the entire life of the device.

extra

pointer to buffer containing all extra descriptors associated with this
configuration (those preceding the first interface descriptor).

extralen

length of the extra descriptors buffer.

Description
USB devices may have multiple configurations, but only one can be active at any
time. Each encapsulates a different operational environment; for example, a
dual-speed device would have separate configurations for full-speed and high-speed
operation. The number of configurations available is stored in the device descriptor
as bNumConfigurations.

A configuration can contain multiple interfaces. Each corresponds to a different
function of the USB device, and all are available whenever the configuration is
active. The USB standard says that interfaces are supposed to be numbered from 0
to desc.bNumInterfaces-1, but a lot of devices get this wrong. In addition, the
interface array is not guaranteed to be sorted in numerical order. Use
usb_ifnum_to_if to look up an interface entry based on its number.

Device drivers should not attempt to activate configurations. The choice of which
configuration to install is a policy decision based on such considerations as
available power, functionality provided, and the user’s desires (expressed through
userspace tools). However, drivers can call usb_reset_configuration to
reinitialize the current configuration and all its interfaces.

struct usb_device

LINUX

28



Chapter 4. Host-Side Data Types and Macros

Kernel Hackers ManualSeptember 2014

Name
struct usb_device — kernel’s representation of a USB device

Synopsis
struct usb_device {
int devnum;
char devpath[16];
u32 route;
enum usb_device_state state;
enum usb_device_speed speed;
struct usb_tt * tt;
int ttport;
unsigned int toggle[2];
struct usb_device * parent;
struct usb_bus * bus;
struct usb_host_endpoint ep0;
struct device dev;
struct usb_device_descriptor descriptor;
struct usb_host_bos * bos;
struct usb_host_config * config;
struct usb_host_config * actconfig;
struct usb_host_endpoint * ep_in[16];
struct usb_host_endpoint * ep_out[16];
char ** rawdescriptors;
unsigned short bus_mA;
u8 portnum;
u8 level;
unsigned can_submit:1;
unsigned persist_enabled:1;
unsigned have_langid:1;
unsigned authorized:1;
unsigned authenticated:1;
unsigned wusb:1;
unsigned lpm_capable:1;
unsigned usb2_hw_lpm_capable:1;
unsigned usb2_hw_lpm_enabled:1;
int string_langid;
char * product;
char * manufacturer;
char * serial;
struct list_head filelist;

#ifdef CONFIG_USB_DEVICE_CLASS

29



Chapter 4. Host-Side Data Types and Macros

struct device * usb_classdev;
#endif
#ifdef CONFIG_USB_DEVICEFS
struct dentry * usbfs_dentry;

#endif
int maxchild;
struct usb_device * children[USB_MAXCHILDREN];
u32 quirks;
atomic_t urbnum;
unsigned long active_duration;

#ifdef CONFIG_PM
unsigned long connect_time;
unsigned do_remote_wakeup:1;
unsigned reset_resume:1;

#endif
struct wusb_dev * wusb_dev;
int slot_id;

};

Members

devnum

device number; address on a USB bus

devpath[16]

device ID string for use in messages (e.g., /port/...)

route

tree topology hex string for use with xHCI

state

device state: configured, not attached, etc.

speed

device speed: high/full/low (or error)

tt

Transaction Translator info; used with low/full speed dev, highspeed hub

ttport

device port on that tt hub

30



Chapter 4. Host-Side Data Types and Macros

toggle[2]

one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints

parent

our hub, unless we’re the root

bus

bus we’re part of

ep0

endpoint 0 data (default control pipe)

dev

generic device interface

descriptor

USB device descriptor

bos

USB device BOS descriptor set

config

all of the device’s configs

actconfig

the active configuration

ep_in[16]

array of IN endpoints

ep_out[16]

array of OUT endpoints

rawdescriptors

raw descriptors for each config

bus_mA

Current available from the bus

portnum

parent port number (origin 1)

31



Chapter 4. Host-Side Data Types and Macros

level

number of USB hub ancestors

can_submit

URBs may be submitted

persist_enabled

USB_PERSIST enabled for this device

have_langid

whether string_langid is valid

authorized

policy has said we can use it; (user space) policy determines if we authorize
this device to be used or not. By default, wired USB devices are authorized.
WUSB devices are not, until we authorize them from user space. FIXME --
complete doc

authenticated

Crypto authentication passed

wusb

device is Wireless USB

lpm_capable

device supports LPM

usb2_hw_lpm_capable

device can perform USB2 hardware LPM

usb2_hw_lpm_enabled

USB2 hardware LPM enabled

string_langid

language ID for strings

product

iProduct string, if present (static)

manufacturer

iManufacturer string, if present (static)

32



Chapter 4. Host-Side Data Types and Macros

serial

iSerialNumber string, if present (static)

filelist

usbfs files that are open to this device

usb_classdev

USB class device that was created for usbfs device access from userspace

usbfs_dentry

usbfs dentry entry for the device

maxchild

number of ports if hub

children[USB_MAXCHILDREN]

child devices - USB devices that are attached to this hub

quirks

quirks of the whole device

urbnum

number of URBs submitted for the whole device

active_duration

total time device is not suspended

connect_time

time device was first connected

do_remote_wakeup

remote wakeup should be enabled

reset_resume

needs reset instead of resume

wusb_dev

if this is a Wireless USB device, link to the WUSB specific data for the device.

slot_id

Slot ID assigned by xHCI

33



Chapter 4. Host-Side Data Types and Macros

Notes
Usbcore drivers should not set usbdev->state directly. Instead use
usb_set_device_state.

usb_interface_claimed

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_interface_claimed — returns true iff an interface is claimed

Synopsis

int usb_interface_claimed (struct usb_interface * iface);

Arguments

iface

the interface being checked

Description
Returns true (nonzero) iff the interface is claimed, else false (zero). Callers must
own the driver model’s usb bus readlock. So driver probe entries don’t need extra
locking, but other call contexts may need to explicitly claim that lock.

34



Chapter 4. Host-Side Data Types and Macros

usb_make_path

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_make_path — returns stable device path in the usb tree

Synopsis

int usb_make_path (struct usb_device * dev, char * buf,
size_t size);

Arguments

dev

the device whose path is being constructed

buf

where to put the string

size

how big is “buf”?

Description
Returns length of the string (> 0) or negative if size was too small.

This identifier is intended to be “stable”, reflecting physical paths in hardware such
as physical bus addresses for host controllers or ports on USB hubs. That makes it
stay the same until systems are physically reconfigured, by re-cabling a tree of USB
devices or by moving USB host controllers. Adding and removing devices,
including virtual root hubs in host controller driver modules, does not change these

35



Chapter 4. Host-Side Data Types and Macros

path identifiers; neither does rebooting or re-enumerating. These are more useful
identifiers than changeable (“unstable”) ones like bus numbers or device addresses.

With a partial exception for devices connected to USB 2.0 root hubs, these
identifiers are also predictable. So long as the device tree isn’t changed, plugging
any USB device into a given hub port always gives it the same path. Because of the
use of “companion” controllers, devices connected to ports on USB 2.0 root hubs
(EHCI host controllers) will get one path ID if they are high speed, and a different
one if they are full or low speed.

USB_DEVICE

LINUX

Kernel Hackers ManualSeptember 2014

Name
USB_DEVICE — macro used to describe a specific usb device

Synopsis

USB_DEVICE ( vend, prod);

Arguments

vend

the 16 bit USB Vendor ID

prod

the 16 bit USB Product ID

36



Chapter 4. Host-Side Data Types and Macros

Description
This macro is used to create a struct usb_device_id that matches a specific device.

USB_DEVICE_VER

LINUX

Kernel Hackers ManualSeptember 2014

Name
USB_DEVICE_VER — describe a specific usb device with a version range

Synopsis

USB_DEVICE_VER ( vend, prod, lo, hi);

Arguments

vend

the 16 bit USB Vendor ID

prod

the 16 bit USB Product ID

lo

the bcdDevice_lo value

hi

the bcdDevice_hi value

37



Chapter 4. Host-Side Data Types and Macros

Description
This macro is used to create a struct usb_device_id that matches a specific device,
with a version range.

USB_DEVICE_INTERFACE_PROTOCOL

LINUX

Kernel Hackers ManualSeptember 2014

Name
USB_DEVICE_INTERFACE_PROTOCOL — describe a usb device with a specific
interface protocol

Synopsis

USB_DEVICE_INTERFACE_PROTOCOL ( vend, prod, pr);

Arguments

vend

the 16 bit USB Vendor ID

prod

the 16 bit USB Product ID

pr

bInterfaceProtocol value

38



Chapter 4. Host-Side Data Types and Macros

Description
This macro is used to create a struct usb_device_id that matches a specific interface
protocol of devices.

USB_DEVICE_INFO

LINUX

Kernel Hackers ManualSeptember 2014

Name
USB_DEVICE_INFO — macro used to describe a class of usb devices

Synopsis

USB_DEVICE_INFO ( cl, sc, pr);

Arguments

cl

bDeviceClass value

sc

bDeviceSubClass value

pr

bDeviceProtocol value

39



Chapter 4. Host-Side Data Types and Macros

Description
This macro is used to create a struct usb_device_id that matches a specific class of
devices.

USB_INTERFACE_INFO

LINUX

Kernel Hackers ManualSeptember 2014

Name
USB_INTERFACE_INFO — macro used to describe a class of usb interfaces

Synopsis

USB_INTERFACE_INFO ( cl, sc, pr);

Arguments

cl

bInterfaceClass value

sc

bInterfaceSubClass value

pr

bInterfaceProtocol value

40



Chapter 4. Host-Side Data Types and Macros

Description
This macro is used to create a struct usb_device_id that matches a specific class of
interfaces.

USB_DEVICE_AND_INTERFACE_INFO

LINUX

Kernel Hackers ManualSeptember 2014

Name
USB_DEVICE_AND_INTERFACE_INFO — describe a specific usb device with a
class of usb interfaces

Synopsis

USB_DEVICE_AND_INTERFACE_INFO ( vend, prod, cl, sc, pr);

Arguments

vend

the 16 bit USB Vendor ID

prod

the 16 bit USB Product ID

cl

bInterfaceClass value

sc

bInterfaceSubClass value

41



Chapter 4. Host-Side Data Types and Macros

pr

bInterfaceProtocol value

Description
This macro is used to create a struct usb_device_id that matches a specific device
with a specific class of interfaces.

This is especially useful when explicitly matching devices that have vendor specific
bDeviceClass values, but standards-compliant interfaces.

USB_VENDOR_AND_INTERFACE_INFO

LINUX

Kernel Hackers ManualSeptember 2014

Name
USB_VENDOR_AND_INTERFACE_INFO — describe a specific usb vendor with a
class of usb interfaces

Synopsis

USB_VENDOR_AND_INTERFACE_INFO ( vend, cl, sc, pr);

Arguments

vend

the 16 bit USB Vendor ID

cl

bInterfaceClass value

42



Chapter 4. Host-Side Data Types and Macros

sc

bInterfaceSubClass value

pr

bInterfaceProtocol value

Description
This macro is used to create a struct usb_device_id that matches a specific vendor
with a specific class of interfaces.

This is especially useful when explicitly matching devices that have vendor specific
bDeviceClass values, but standards-compliant interfaces.

struct usbdrv_wrap

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usbdrv_wrap — wrapper for driver-model structure

Synopsis
struct usbdrv_wrap {
struct device_driver driver;
int for_devices;

};

Members

driver

The driver-model core driver structure.

43



Chapter 4. Host-Side Data Types and Macros

for_devices

Non-zero for device drivers, 0 for interface drivers.

struct usb_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_driver — identifies USB interface driver to usbcore

Synopsis
struct usb_driver {
const char * name;
int (* probe) (struct usb_interface *intf,const struct usb_device_id *id);
void (* disconnect) (struct usb_interface *intf);
int (* unlocked_ioctl) (struct usb_interface *intf, unsigned int code,void *buf);
int (* suspend) (struct usb_interface *intf, pm_message_t message);
int (* resume) (struct usb_interface *intf);
int (* reset_resume) (struct usb_interface *intf);
int (* pre_reset) (struct usb_interface *intf);
int (* post_reset) (struct usb_interface *intf);
const struct usb_device_id * id_table;
struct usb_dynids dynids;
struct usbdrv_wrap drvwrap;
unsigned int no_dynamic_id:1;
unsigned int supports_autosuspend:1;
unsigned int soft_unbind:1;

};

44



Chapter 4. Host-Side Data Types and Macros

Members

name

The driver name should be unique among USB drivers, and should normally be
the same as the module name.

probe

Called to see if the driver is willing to manage a particular interface on a
device. If it is, probe returns zero and uses usb_set_intfdata to associate
driver-specific data with the interface. It may also use usb_set_interface
to specify the appropriate altsetting. If unwilling to manage the interface,
return -ENODEV, if genuine IO errors occurred, an appropriate negative errno
value.

disconnect

Called when the interface is no longer accessible, usually because its device
has been (or is being) disconnected or the driver module is being unloaded.

unlocked_ioctl

Used for drivers that want to talk to userspace through the “usbfs” filesystem.
This lets devices provide ways to expose information to user space regardless
of where they do (or don’t) show up otherwise in the filesystem.

suspend

Called when the device is going to be suspended by the system.

resume

Called when the device is being resumed by the system.

reset_resume

Called when the suspended device has been reset instead of being resumed.

pre_reset

Called by usb_reset_device when the device is about to be reset. This
routine must not return until the driver has no active URBs for the device, and
no more URBs may be submitted until the post_reset method is called.

post_reset

Called by usb_reset_device after the device has been reset

45



Chapter 4. Host-Side Data Types and Macros

id_table

USB drivers use ID table to support hotplugging. Export this with
MODULE_DEVICE_TABLE(usb,...). This must be set or your driver’s probe
function will never get called.

dynids

used internally to hold the list of dynamically added device ids for this driver.

drvwrap

Driver-model core structure wrapper.

no_dynamic_id

if set to 1, the USB core will not allow dynamic ids to be added to this driver
by preventing the sysfs file from being created.

supports_autosuspend

if set to 0, the USB core will not allow autosuspend for interfaces bound to this
driver.

soft_unbind

if set to 1, the USB core will not kill URBs and disable endpoints before
calling the driver’s disconnect method.

Description
USB interface drivers must provide a name, probe and disconnect methods, and
an id_table. Other driver fields are optional.

The id_table is used in hotplugging. It holds a set of descriptors, and specialized
data may be associated with each entry. That table is used by both user and kernel
mode hotplugging support.

The probe and disconnect methods are called in a context where they can sleep,
but they should avoid abusing the privilege. Most work to connect to a device
should be done when the device is opened, and undone at the last close. The
disconnect code needs to address concurrency issues with respect to open and
close methods, as well as forcing all pending I/O requests to complete (by
unlinking them as necessary, and blocking until the unlinks complete).

46



Chapter 4. Host-Side Data Types and Macros

struct usb_device_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_device_driver — identifies USB device driver to usbcore

Synopsis
struct usb_device_driver {
const char * name;
int (* probe) (struct usb_device *udev);
void (* disconnect) (struct usb_device *udev);
int (* suspend) (struct usb_device *udev, pm_message_t message);
int (* resume) (struct usb_device *udev, pm_message_t message);
struct usbdrv_wrap drvwrap;
unsigned int supports_autosuspend:1;

};

Members

name

The driver name should be unique among USB drivers, and should normally be
the same as the module name.

probe

Called to see if the driver is willing to manage a particular device. If it is, probe
returns zero and uses dev_set_drvdata to associate driver-specific data with
the device. If unwilling to manage the device, return a negative errno value.

disconnect

Called when the device is no longer accessible, usually because it has been (or
is being) disconnected or the driver’s module is being unloaded.

suspend

Called when the device is going to be suspended by the system.

47



Chapter 4. Host-Side Data Types and Macros

resume

Called when the device is being resumed by the system.

drvwrap

Driver-model core structure wrapper.

supports_autosuspend

if set to 0, the USB core will not allow autosuspend for devices bound to this
driver.

Description
USB drivers must provide all the fields listed above except drvwrap.

struct usb_class_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_class_driver — identifies a USB driver that wants to use the
USB major number

Synopsis
struct usb_class_driver {
char * name;
char *(* devnode) (struct device *dev, mode_t *mode);
const struct file_operations * fops;
int minor_base;

};

48



Chapter 4. Host-Side Data Types and Macros

Members

name

the usb class device name for this driver. Will show up in sysfs.

devnode

Callback to provide a naming hint for a possible device node to create.

fops

pointer to the struct file_operations of this driver.

minor_base

the start of the minor range for this driver.

Description
This structure is used for the usb_register_dev and usb_unregister_dev

functions, to consolidate a number of the parameters used for them.

struct urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct urb — USB Request Block

Synopsis
struct urb {
struct list_head urb_list;
struct list_head anchor_list;
struct usb_anchor * anchor;
struct usb_device * dev;

49



Chapter 4. Host-Side Data Types and Macros

struct usb_host_endpoint * ep;
unsigned int pipe;
unsigned int stream_id;
int status;
unsigned int transfer_flags;
void * transfer_buffer;
dma_addr_t transfer_dma;
struct scatterlist * sg;
int num_sgs;
u32 transfer_buffer_length;
u32 actual_length;
unsigned char * setup_packet;
dma_addr_t setup_dma;
int start_frame;
int number_of_packets;
int interval;
int error_count;
void * context;
usb_complete_t complete;
struct usb_iso_packet_descriptor iso_frame_desc[0];

};

Members

urb_list

For use by current owner of the URB.

anchor_list

membership in the list of an anchor

anchor

to anchor URBs to a common mooring

dev

Identifies the USB device to perform the request.

ep

Points to the endpoint’s data structure. Will eventually replace pipe.

pipe

Holds endpoint number, direction, type, and more. Create these values with the
eight macros available; usb_{snd,rcv}TYPEpipe(dev,endpoint), where the

50



Chapter 4. Host-Side Data Types and Macros

TYPE is “ctrl” (control), “bulk”, “int” (interrupt), or “iso” (isochronous). For
example usb_sndbulkpipe or usb_rcvintpipe. Endpoint numbers range
from zero to fifteen. Note that “in” endpoint two is a different endpoint (and
pipe) from “out” endpoint two. The current configuration controls the
existence, type, and maximum packet size of any given endpoint.

stream_id

the endpoint’s stream ID for bulk streams

status

This is read in non-iso completion functions to get the status of the particular
request. ISO requests only use it to tell whether the URB was unlinked;
detailed status for each frame is in the fields of the iso_frame-desc.

transfer_flags

A variety of flags may be used to affect how URB submission, unlinking, or
operation are handled. Different kinds of URB can use different flags.

transfer_buffer

This identifies the buffer to (or from) which the I/O request will be performed
unless URB_NO_TRANSFER_DMA_MAP is set (however, do not leave
garbage in transfer_buffer even then). This buffer must be suitable for DMA;
allocate it with kmalloc or equivalent. For transfers to “in” endpoints,
contents of this buffer will be modified. This buffer is used for the data stage of
control transfers.

transfer_dma

When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, the device
driver is saying that it provided this DMA address, which the host controller
driver should use in preference to the transfer_buffer.

sg

scatter gather buffer list

num_sgs

number of entries in the sg list

transfer_buffer_length

How big is transfer_buffer. The transfer may be broken up into chunks
according to the current maximum packet size for the endpoint, which is a
function of the configuration and is encoded in the pipe. When the length is
zero, neither transfer_buffer nor transfer_dma is used.

51



Chapter 4. Host-Side Data Types and Macros

actual_length

This is read in non-iso completion functions, and it tells how many bytes (out
of transfer_buffer_length) were transferred. It will normally be the same as
requested, unless either an error was reported or a short read was performed.
The URB_SHORT_NOT_OK transfer flag may be used to make such short
reads be reported as errors.

setup_packet

Only used for control transfers, this points to eight bytes of setup data. Control
transfers always start by sending this data to the device. Then transfer_buffer is
read or written, if needed.

setup_dma

DMA pointer for the setup packet. The caller must not use this field;
setup_packet must point to a valid buffer.

start_frame

Returns the initial frame for isochronous transfers.

number_of_packets

Lists the number of ISO transfer buffers.

interval

Specifies the polling interval for interrupt or isochronous transfers. The units
are frames (milliseconds) for full and low speed devices, and microframes (1/8
millisecond) for highspeed and SuperSpeed devices.

error_count

Returns the number of ISO transfers that reported errors.

context

For use in completion functions. This normally points to request-specific driver
context.

complete

Completion handler. This URB is passed as the parameter to the completion
function. The completion function may then do what it likes with the URB,
including resubmitting or freeing it.

52



Chapter 4. Host-Side Data Types and Macros

iso_frame_desc[0]

Used to provide arrays of ISO transfer buffers and to collect the transfer status
for each buffer.

Description
This structure identifies USB transfer requests. URBs must be allocated by calling
usb_alloc_urb and freed with a call to usb_free_urb. Initialization may be
done using various usb_fill_*_urb functions. URBs are submitted using
usb_submit_urb, and pending requests may be canceled using usb_unlink_urb

or usb_kill_urb.

Data Transfer Buffers

Normally drivers provide I/O buffers allocated with kmalloc or otherwise taken
from the general page pool. That is provided by transfer_buffer (control requests
also use setup_packet), and host controller drivers perform a dma mapping (and
unmapping) for each buffer transferred. Those mapping operations can be expensive
on some platforms (perhaps using a dma bounce buffer or talking to an IOMMU),
although they’re cheap on commodity x86 and ppc hardware.

Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer
flag, which tells the host controller driver that no such mapping is needed for the
transfer_buffer since the device driver is DMA-aware. For example, a device driver
might allocate a DMA buffer with usb_alloc_coherent or call
usb_buffer_map. When this transfer flag is provided, host controller drivers will
attempt to use the dma address found in the transfer_dma field rather than
determining a dma address themselves.

Note that transfer_buffer must still be set if the controller does not support DMA (as
indicated by bus.uses_dma) and when talking to root hub. If you have to trasfer
between highmem zone and the device on such controller, create a bounce buffer or
bail out with an error. If transfer_buffer cannot be set (is in highmem) and the
controller is DMA capable, assign NULL to it, so that usbmon knows not to use the
value. The setup_packet must always be set, so it cannot be located in highmem.

Initialization

All URBs submitted must initialize the dev, pipe, transfer_flags (may be zero), and
complete fields. All URBs must also initialize transfer_buffer and

53



Chapter 4. Host-Side Data Types and Macros

transfer_buffer_length. They may provide the URB_SHORT_NOT_OK transfer
flag, indicating that short reads are to be treated as errors; that flag is invalid for
write requests.

Bulk URBs may use the URB_ZERO_PACKET transfer flag, indicating that bulk
OUT transfers should always terminate with a short packet, even if it means adding
an extra zero length packet.

Control URBs must provide a valid pointer in the setup_packet field. Unlike the
transfer_buffer, the setup_packet may not be mapped for DMA beforehand.

Interrupt URBs must provide an interval, saying how often (in milliseconds or, for
highspeed devices, 125 microsecond units) to poll for transfers. After the URB has
been submitted, the interval field reflects how the transfer was actually scheduled.
The polling interval may be more frequent than requested. For example, some
controllers have a maximum interval of 32 milliseconds, while others support
intervals of up to 1024 milliseconds. Isochronous URBs also have transfer intervals.
(Note that for isochronous endpoints, as well as high speed interrupt endpoints, the
encoding of the transfer interval in the endpoint descriptor is logarithmic. Device
drivers must convert that value to linear units themselves.)

Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling the host
controller to schedule the transfer as soon as bandwidth utilization allows, and then
set start_frame to reflect the actual frame selected during submission. Otherwise
drivers must specify the start_frame and handle the case where the transfer can’t
begin then. However, drivers won’t know how bandwidth is currently allocated, and
while they can find the current frame using usb_get_current_frame_number () they
can’t know the range for that frame number. (Ranges for frame counter values are
HC-specific, and can go from 256 to 65536 frames from “now”.)

Isochronous URBs have a different data transfer model, in part because the quality
of service is only “best effort”. Callers provide specially allocated URBs, with
number_of_packets worth of iso_frame_desc structures at the end. Each such
packet is an individual ISO transfer. Isochronous URBs are normally queued,
submitted by drivers to arrange that transfers are at least double buffered, and then
explicitly resubmitted in completion handlers, so that data (such as audio or video)
streams at as constant a rate as the host controller scheduler can support.

Completion Callbacks

The completion callback is made in_interrupt, and one of the first things that a
completion handler should do is check the status field. The status field is provided
for all URBs. It is used to report unlinked URBs, and status for all non-ISO
transfers. It should not be examined before the URB is returned to the completion
handler.

54



Chapter 4. Host-Side Data Types and Macros

The context field is normally used to link URBs back to the relevant driver or
request state.

When the completion callback is invoked for non-isochronous URBs, the
actual_length field tells how many bytes were transferred. This field is updated even
when the URB terminated with an error or was unlinked.

ISO transfer status is reported in the status and actual_length fields of the
iso_frame_desc array, and the number of errors is reported in error_count.
Completion callbacks for ISO transfers will normally (re)submit URBs to ensure a
constant transfer rate.

Note that even fields marked “public” should not be touched by the driver when the
urb is owned by the hcd, that is, since the call to usb_submit_urb till the entry
into the completion routine.

usb_fill_control_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_fill_control_urb — initializes a control urb

Synopsis

void usb_fill_control_urb (struct urb * urb, struct usb_device

* dev, unsigned int pipe, unsigned char * setup_packet, void *
transfer_buffer, int buffer_length, usb_complete_t
complete_fn, void * context);

55



Chapter 4. Host-Side Data Types and Macros

Arguments

urb

pointer to the urb to initialize.

dev

pointer to the struct usb_device for this urb.

pipe

the endpoint pipe

setup_packet

pointer to the setup_packet buffer

transfer_buffer

pointer to the transfer buffer

buffer_length

length of the transfer buffer

complete_fn

pointer to the usb_complete_t function

context

what to set the urb context to.

Description
Initializes a control urb with the proper information needed to submit it to a device.

usb_fill_bulk_urb

LINUX

56



Chapter 4. Host-Side Data Types and Macros

Kernel Hackers ManualSeptember 2014

Name
usb_fill_bulk_urb — macro to help initialize a bulk urb

Synopsis

void usb_fill_bulk_urb (struct urb * urb, struct usb_device *
dev, unsigned int pipe, void * transfer_buffer, int
buffer_length, usb_complete_t complete_fn, void * context);

Arguments

urb

pointer to the urb to initialize.

dev

pointer to the struct usb_device for this urb.

pipe

the endpoint pipe

transfer_buffer

pointer to the transfer buffer

buffer_length

length of the transfer buffer

complete_fn

pointer to the usb_complete_t function

context

what to set the urb context to.

57



Chapter 4. Host-Side Data Types and Macros

Description
Initializes a bulk urb with the proper information needed to submit it to a device.

usb_fill_int_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_fill_int_urb — macro to help initialize a interrupt urb

Synopsis

void usb_fill_int_urb (struct urb * urb, struct usb_device *
dev, unsigned int pipe, void * transfer_buffer, int
buffer_length, usb_complete_t complete_fn, void * context, int
interval);

Arguments

urb

pointer to the urb to initialize.

dev

pointer to the struct usb_device for this urb.

pipe

the endpoint pipe

transfer_buffer

pointer to the transfer buffer

58



Chapter 4. Host-Side Data Types and Macros

buffer_length

length of the transfer buffer

complete_fn

pointer to the usb_complete_t function

context

what to set the urb context to.

interval

what to set the urb interval to, encoded like the endpoint descriptor’s bInterval
value.

Description
Initializes a interrupt urb with the proper information needed to submit it to a
device.

Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
encoding of the endpoint interval, and express polling intervals in microframes
(eight per millisecond) rather than in frames (one per millisecond).

Wireless USB also uses the logarithmic encoding, but specifies it in units of 128us
instead of 125us. For Wireless USB devices, the interval is passed through to the
host controller, rather than being translated into microframe units.

usb_urb_dir_in

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_urb_dir_in — check if an URB describes an IN transfer

59



Chapter 4. Host-Side Data Types and Macros

Synopsis

int usb_urb_dir_in (struct urb * urb);

Arguments

urb

URB to be checked

Description
Returns 1 if urb describes an IN transfer (device-to-host), otherwise 0.

usb_urb_dir_out

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_urb_dir_out — check if an URB describes an OUT transfer

Synopsis

int usb_urb_dir_out (struct urb * urb);

60



Chapter 4. Host-Side Data Types and Macros

Arguments

urb

URB to be checked

Description
Returns 1 if urb describes an OUT transfer (host-to-device), otherwise 0.

struct usb_sg_request

LINUX

Kernel Hackers ManualSeptember 2014

Name
struct usb_sg_request — support for scatter/gather I/O

Synopsis
struct usb_sg_request {
int status;
size_t bytes;

};

Members

status

zero indicates success, else negative errno

bytes

counts bytes transferred.

61



Chapter 4. Host-Side Data Types and Macros

Description
These requests are initialized using usb_sg_init, and then are used as request
handles passed to usb_sg_wait or usb_sg_cancel. Most members of the request
object aren’t for driver access.

The status and bytecount values are valid only after usb_sg_wait returns. If the
status is zero, then the bytecount matches the total from the request.

After an error completion, drivers may need to clear a halt condition on the
endpoint.

62



Chapter 5. USB Core APIs
There are two basic I/O models in the USB API. The most elemental one is
asynchronous: drivers submit requests in the form of an URB, and the URB’s
completion callback handle the next step. All USB transfer types support that
model, although there are special cases for control URBs (which always have setup
and status stages, but may not have a data stage) and isochronous URBs (which
allow large packets and include per-packet fault reports). Built on top of that is
synchronous API support, where a driver calls a routine that allocates one or more
URBs, submits them, and waits until they complete. There are synchronous
wrappers for single-buffer control and bulk transfers (which are awkward to use in
some driver disconnect scenarios), and for scatterlist based streaming i/o (bulk or
interrupt).

USB drivers need to provide buffers that can be used for DMA, although they don’t
necessarily need to provide the DMA mapping themselves. There are APIs to use
used when allocating DMA buffers, which can prevent use of bounce buffers on
some systems. In some cases, drivers may be able to rely on 64bit DMA to
eliminate another kind of bounce buffer.

usb_init_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_init_urb — initializes a urb so that it can be used by a USB driver

Synopsis

void usb_init_urb (struct urb * urb);

63



Chapter 5. USB Core APIs

Arguments

urb

pointer to the urb to initialize

Description
Initializes a urb so that the USB subsystem can use it properly.

If a urb is created with a call to usb_alloc_urb it is not necessary to call this
function. Only use this if you allocate the space for a struct urb on your own. If you
call this function, be careful when freeing the memory for your urb that it is no
longer in use by the USB core.

Only use this function if you _really_ understand what you are doing.

usb_alloc_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_alloc_urb — creates a new urb for a USB driver to use

Synopsis

struct urb * usb_alloc_urb (int iso_packets, gfp_t mem_flags);

64



Chapter 5. USB Core APIs

Arguments

iso_packets

number of iso packets for this urb

mem_flags

the type of memory to allocate, see kmalloc for a list of valid options for this.

Description
Creates an urb for the USB driver to use, initializes a few internal structures,
incrementes the usage counter, and returns a pointer to it.

If no memory is available, NULL is returned.

If the driver want to use this urb for interrupt, control, or bulk endpoints, pass ’0’ as
the number of iso packets.

The driver must call usb_free_urb when it is finished with the urb.

usb_free_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_free_urb — frees the memory used by a urb when all users of it are
finished

Synopsis

void usb_free_urb (struct urb * urb);

65



Chapter 5. USB Core APIs

Arguments

urb

pointer to the urb to free, may be NULL

Description
Must be called when a user of a urb is finished with it. When the last user of the urb
calls this function, the memory of the urb is freed.

Note
The transfer buffer associated with the urb is not freed unless the
URB_FREE_BUFFER transfer flag is set.

usb_get_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_get_urb — increments the reference count of the urb

Synopsis

struct urb * usb_get_urb (struct urb * urb);

66



Chapter 5. USB Core APIs

Arguments

urb

pointer to the urb to modify, may be NULL

Description
This must be called whenever a urb is transferred from a device driver to a host
controller driver. This allows proper reference counting to happen for urbs.

A pointer to the urb with the incremented reference counter is returned.

usb_anchor_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_anchor_urb — anchors an URB while it is processed

Synopsis

void usb_anchor_urb (struct urb * urb, struct usb_anchor *
anchor);

Arguments

urb

pointer to the urb to anchor

67



Chapter 5. USB Core APIs

anchor

pointer to the anchor

Description
This can be called to have access to URBs which are to be executed without
bothering to track them

usb_unanchor_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_unanchor_urb — unanchors an URB

Synopsis

void usb_unanchor_urb (struct urb * urb);

Arguments

urb

pointer to the urb to anchor

Description
Call this to stop the system keeping track of this URB

68



Chapter 5. USB Core APIs

usb_submit_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_submit_urb — issue an asynchronous transfer request for an endpoint

Synopsis

int usb_submit_urb (struct urb * urb, gfp_t mem_flags);

Arguments

urb

pointer to the urb describing the request

mem_flags

the type of memory to allocate, see kmalloc for a list of valid options for this.

Description
This submits a transfer request, and transfers control of the URB describing that
request to the USB subsystem. Request completion will be indicated later,
asynchronously, by calling the completion handler. The three types of completion
are success, error, and unlink (a software-induced fault, also called “request
cancellation”).

URBs may be submitted in interrupt context.

The caller must have correctly initialized the URB before submitting it. Functions
such as usb_fill_bulk_urb and usb_fill_control_urb are available to

69



Chapter 5. USB Core APIs

ensure that most fields are correctly initialized, for the particular kind of transfer,
although they will not initialize any transfer flags.

Successful submissions return 0; otherwise this routine returns a negative error
number. If the submission is successful, the complete callback from the URB will
be called exactly once, when the USB core and Host Controller Driver (HCD) are
finished with the URB. When the completion function is called, control of the URB
is returned to the device driver which issued the request. The completion handler
may then immediately free or reuse that URB.

With few exceptions, USB device drivers should never access URB fields provided
by usbcore or the HCD until its complete is called. The exceptions relate to
periodic transfer scheduling. For both interrupt and isochronous urbs, as part of
successful URB submission urb->interval is modified to reflect the actual transfer
period used (normally some power of two units). And for isochronous urbs,
urb->start_frame is modified to reflect when the URB’s transfers were scheduled to
start. Not all isochronous transfer scheduling policies will work, but most host
controller drivers should easily handle ISO queues going from now until 10-200
msec into the future.

For control endpoints, the synchronous usb_control_msg call is often used (in
non-interrupt context) instead of this call. That is often used through convenience
wrappers, for the requests that are standardized in the USB 2.0 specification. For
bulk endpoints, a synchronous usb_bulk_msg call is available.

Request Queuing

URBs may be submitted to endpoints before previous ones complete, to minimize
the impact of interrupt latencies and system overhead on data throughput. With that
queuing policy, an endpoint’s queue would never be empty. This is required for
continuous isochronous data streams, and may also be required for some kinds of
interrupt transfers. Such queuing also maximizes bandwidth utilization by letting
USB controllers start work on later requests before driver software has finished the
completion processing for earlier (successful) requests.

As of Linux 2.6, all USB endpoint transfer queues support depths greater than one.
This was previously a HCD-specific behavior, except for ISO transfers.
Non-isochronous endpoint queues are inactive during cleanup after faults (transfer
errors or cancellation).

Reserved Bandwidth Transfers

70



Chapter 5. USB Core APIs

Periodic transfers (interrupt or isochronous) are performed repeatedly, using the
interval specified in the urb. Submitting the first urb to the endpoint reserves the
bandwidth necessary to make those transfers. If the USB subsystem can’t allocate
sufficient bandwidth to perform the periodic request, submitting such a periodic
request should fail.

For devices under xHCI, the bandwidth is reserved at configuration time, or when
the alt setting is selected. If there is not enough bus bandwidth, the configuration/alt
setting request will fail. Therefore, submissions to periodic endpoints on devices
under xHCI should never fail due to bandwidth constraints.

Device drivers must explicitly request that repetition, by ensuring that some URB is
always on the endpoint’s queue (except possibly for short periods during completion
callacks). When there is no longer an urb queued, the endpoint’s bandwidth
reservation is canceled. This means drivers can use their completion handlers to
ensure they keep bandwidth they need, by reinitializing and resubmitting the
just-completed urb until the driver longer needs that periodic bandwidth.

Memory Flags

The general rules for how to decide which mem_flags to use are the same as for
kmalloc. There are four different possible values; GFP_KERNEL, GFP_NOFS,
GFP_NOIO and GFP_ATOMIC.

GFP_NOFS is not ever used, as it has not been implemented yet.

GFP_ATOMIC is used when (a) you are inside a completion handler, an interrupt,
bottom half, tasklet or timer, or (b) you are holding a spinlock or rwlock (does not
apply to semaphores), or (c) current->state != TASK_RUNNING, this is the case
only after you’ve changed it.

GFP_NOIO is used in the block io path and error handling of storage devices.

All other situations use GFP_KERNEL.

Some more specific rules for mem_flags can be inferred, such as (1) start_xmit,
timeout, and receive methods of network drivers must use GFP_ATOMIC (they are
called with a spinlock held); (2) queuecommand methods of scsi drivers must use
GFP_ATOMIC (also called with a spinlock held); (3) If you use a kernel thread
with a network driver you must use GFP_NOIO, unless (b) or (c) apply; (4) after
you have done a down you can use GFP_KERNEL, unless (b) or (c) apply or your
are in a storage driver’s block io path; (5) USB probe and disconnect can use
GFP_KERNEL unless (b) or (c) apply; and (6) changing firmware on a running
storage or net device uses GFP_NOIO, unless b) or c) apply

71



Chapter 5. USB Core APIs

usb_unlink_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_unlink_urb — abort/cancel a transfer request for an endpoint

Synopsis

int usb_unlink_urb (struct urb * urb);

Arguments

urb

pointer to urb describing a previously submitted request, may be NULL

Description
This routine cancels an in-progress request. URBs complete only once per
submission, and may be canceled only once per submission. Successful cancellation
means termination of urb will be expedited and the completion handler will be
called with a status code indicating that the request has been canceled (rather than
any other code).

Drivers should not call this routine or related routines, such as usb_kill_urb or
usb_unlink_anchored_urbs, after their disconnect method has returned. The
disconnect function should synchronize with a driver’s I/O routines to insure that all
URB-related activity has completed before it returns.

This request is always asynchronous. Success is indicated by returning
-EINPROGRESS, at which time the URB will probably not yet have been given
back to the device driver. When it is eventually called, the completion function will
see urb->status == -ECONNRESET. Failure is indicated by usb_unlink_urb

returning any other value. Unlinking will fail when urb is not currently “linked”

72



Chapter 5. USB Core APIs

(i.e., it was never submitted, or it was unlinked before, or the hardware is already
finished with it), even if the completion handler has not yet run.

Unlinking and Endpoint Queues

[The behaviors and guarantees described below do not apply to virtual root hubs but
only to endpoint queues for physical USB devices.]

Host Controller Drivers (HCDs) place all the URBs for a particular endpoint in a
queue. Normally the queue advances as the controller hardware processes each
request. But when an URB terminates with an error its queue generally stops (see
below), at least until that URB’s completion routine returns. It is guaranteed that a
stopped queue will not restart until all its unlinked URBs have been fully retired,
with their completion routines run, even if that’s not until some time after the
original completion handler returns. The same behavior and guarantee apply when
an URB terminates because it was unlinked.

Bulk and interrupt endpoint queues are guaranteed to stop whenever an URB
terminates with any sort of error, including -ECONNRESET, -ENOENT, and
-EREMOTEIO. Control endpoint queues behave the same way except that they are
not guaranteed to stop for -EREMOTEIO errors. Queues for isochronous endpoints
are treated differently, because they must advance at fixed rates. Such queues do not
stop when an URB encounters an error or is unlinked. An unlinked isochronous
URB may leave a gap in the stream of packets; it is undefined whether such gaps
can be filled in.

Note that early termination of an URB because a short packet was received will
generate a -EREMOTEIO error if and only if the URB_SHORT_NOT_OK flag is
set. By setting this flag, USB device drivers can build deep queues for large or
complex bulk transfers and clean them up reliably after any sort of aborted transfer
by unlinking all pending URBs at the first fault.

When a control URB terminates with an error other than -EREMOTEIO, it is quite
likely that the status stage of the transfer will not take place.

usb_kill_urb

LINUX

73



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_kill_urb — cancel a transfer request and wait for it to finish

Synopsis

void usb_kill_urb (struct urb * urb);

Arguments

urb

pointer to URB describing a previously submitted request, may be NULL

Description
This routine cancels an in-progress request. It is guaranteed that upon return all
completion handlers will have finished and the URB will be totally idle and
available for reuse. These features make this an ideal way to stop I/O in a
disconnect callback or close function. If the request has not already finished or
been unlinked the completion handler will see urb->status == -ENOENT.

While the routine is running, attempts to resubmit the URB will fail with error
-EPERM. Thus even if the URB’s completion handler always tries to resubmit, it
will not succeed and the URB will become idle.

This routine may not be used in an interrupt context (such as a bottom half or a
completion handler), or when holding a spinlock, or in other situations where the
caller can’t schedule.

This routine should not be called by a driver after its disconnect method has
returned.

74



Chapter 5. USB Core APIs

usb_poison_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_poison_urb — reliably kill a transfer and prevent further use of an URB

Synopsis

void usb_poison_urb (struct urb * urb);

Arguments

urb

pointer to URB describing a previously submitted request, may be NULL

Description
This routine cancels an in-progress request. It is guaranteed that upon return all
completion handlers will have finished and the URB will be totally idle and cannot
be reused. These features make this an ideal way to stop I/O in a disconnect
callback. If the request has not already finished or been unlinked the completion
handler will see urb->status == -ENOENT.

After and while the routine runs, attempts to resubmit the URB will fail with error
-EPERM. Thus even if the URB’s completion handler always tries to resubmit, it
will not succeed and the URB will become idle.

This routine may not be used in an interrupt context (such as a bottom half or a
completion handler), or when holding a spinlock, or in other situations where the
caller can’t schedule.

This routine should not be called by a driver after its disconnect method has
returned.

75



Chapter 5. USB Core APIs

usb_kill_anchored_urbs

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_kill_anchored_urbs — cancel transfer requests en masse

Synopsis

void usb_kill_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor

anchor the requests are bound to

Description
this allows all outstanding URBs to be killed starting from the back of the queue

This routine should not be called by a driver after its disconnect method has
returned.

usb_poison_anchored_urbs

LINUX

76



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_poison_anchored_urbs — cease all traffic from an anchor

Synopsis

void usb_poison_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor

anchor the requests are bound to

Description
this allows all outstanding URBs to be poisoned starting from the back of the queue.
Newly added URBs will also be poisoned

This routine should not be called by a driver after its disconnect method has
returned.

usb_unpoison_anchored_urbs

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_unpoison_anchored_urbs — let an anchor be used successfully again

77



Chapter 5. USB Core APIs

Synopsis

void usb_unpoison_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor

anchor the requests are bound to

Description
Reverses the effect of usb_poison_anchored_urbs the anchor can be used normally
after it returns

usb_unlink_anchored_urbs

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_unlink_anchored_urbs — asynchronously cancel transfer requests en
masse

Synopsis

void usb_unlink_anchored_urbs (struct usb_anchor * anchor);

78



Chapter 5. USB Core APIs

Arguments

anchor

anchor the requests are bound to

Description
this allows all outstanding URBs to be unlinked starting from the back of the queue.
This function is asynchronous. The unlinking is just tiggered. It may happen after
this function has returned.

This routine should not be called by a driver after its disconnect method has
returned.

usb_wait_anchor_empty_timeout

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_wait_anchor_empty_timeout — wait for an anchor to be unused

Synopsis

int usb_wait_anchor_empty_timeout (struct usb_anchor * anchor,
unsigned int timeout);

Arguments

anchor

the anchor you want to become unused

79



Chapter 5. USB Core APIs

timeout

how long you are willing to wait in milliseconds

Description
Call this is you want to be sure all an anchor’s URBs have finished

usb_get_from_anchor

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_get_from_anchor — get an anchor’s oldest urb

Synopsis

struct urb * usb_get_from_anchor (struct usb_anchor * anchor);

Arguments

anchor

the anchor whose urb you want

Description
this will take the oldest urb from an anchor, unanchor and return it

80



Chapter 5. USB Core APIs

usb_scuttle_anchored_urbs

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_scuttle_anchored_urbs — unanchor all an anchor’s urbs

Synopsis

void usb_scuttle_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor

the anchor whose urbs you want to unanchor

Description
use this to get rid of all an anchor’s urbs

usb_anchor_empty

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_anchor_empty — is an anchor empty

81



Chapter 5. USB Core APIs

Synopsis

int usb_anchor_empty (struct usb_anchor * anchor);

Arguments

anchor

the anchor you want to query

Description
returns 1 if the anchor has no urbs associated with it

usb_control_msg

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_control_msg — Builds a control urb, sends it off and waits for completion

Synopsis

int usb_control_msg (struct usb_device * dev, unsigned int
pipe, __u8 request, __u8 requesttype, __u16 value, __u16
index, void * data, __u16 size, int timeout);

82



Chapter 5. USB Core APIs

Arguments

dev

pointer to the usb device to send the message to

pipe

endpoint “pipe” to send the message to

request

USB message request value

requesttype

USB message request type value

value

USB message value

index

USB message index value

data

pointer to the data to send

size

length in bytes of the data to send

timeout

time in msecs to wait for the message to complete before timing out (if 0 the
wait is forever)

Context
!in_interrupt ()

Description
This function sends a simple control message to a specified endpoint and waits for
the message to complete, or timeout.

83



Chapter 5. USB Core APIs

If successful, it returns the number of bytes transferred, otherwise a negative error
number.

Don’t use this function from within an interrupt context, like a bottom half handler.
If you need an asynchronous message, or need to send a message from within
interrupt context, use usb_submit_urb. If a thread in your driver uses this call,
make sure your disconnect method can wait for it to complete. Since you don’t
have a handle on the URB used, you can’t cancel the request.

usb_interrupt_msg

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_interrupt_msg — Builds an interrupt urb, sends it off and waits for
completion

Synopsis

int usb_interrupt_msg (struct usb_device * usb_dev, unsigned
int pipe, void * data, int len, int * actual_length, int
timeout);

Arguments

usb_dev

pointer to the usb device to send the message to

pipe

endpoint “pipe” to send the message to

84



Chapter 5. USB Core APIs

data

pointer to the data to send

len

length in bytes of the data to send

actual_length

pointer to a location to put the actual length transferred in bytes

timeout

time in msecs to wait for the message to complete before timing out (if 0 the
wait is forever)

Context
!in_interrupt ()

Description
This function sends a simple interrupt message to a specified endpoint and waits for
the message to complete, or timeout.

If successful, it returns 0, otherwise a negative error number. The number of actual
bytes transferred will be stored in the actual_length paramater.

Don’t use this function from within an interrupt context, like a bottom half handler.
If you need an asynchronous message, or need to send a message from within
interrupt context, use usb_submit_urb If a thread in your driver uses this call,
make sure your disconnect method can wait for it to complete. Since you don’t
have a handle on the URB used, you can’t cancel the request.

usb_bulk_msg

LINUX

85



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_bulk_msg — Builds a bulk urb, sends it off and waits for completion

Synopsis

int usb_bulk_msg (struct usb_device * usb_dev, unsigned int
pipe, void * data, int len, int * actual_length, int timeout);

Arguments

usb_dev

pointer to the usb device to send the message to

pipe

endpoint “pipe” to send the message to

data

pointer to the data to send

len

length in bytes of the data to send

actual_length

pointer to a location to put the actual length transferred in bytes

timeout

time in msecs to wait for the message to complete before timing out (if 0 the
wait is forever)

Context
!in_interrupt ()

86



Chapter 5. USB Core APIs

Description
This function sends a simple bulk message to a specified endpoint and waits for the
message to complete, or timeout.

If successful, it returns 0, otherwise a negative error number. The number of actual
bytes transferred will be stored in the actual_length paramater.

Don’t use this function from within an interrupt context, like a bottom half handler.
If you need an asynchronous message, or need to send a message from within
interrupt context, use usb_submit_urb If a thread in your driver uses this call,
make sure your disconnect method can wait for it to complete. Since you don’t
have a handle on the URB used, you can’t cancel the request.

Because there is no usb_interrupt_msg and no USBDEVFS_INTERRUPT
ioctl, users are forced to abuse this routine by using it to submit URBs for interrupt
endpoints. We will take the liberty of creating an interrupt URB (with the default
interval) if the target is an interrupt endpoint.

usb_sg_init

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_sg_init — initializes scatterlist-based bulk/interrupt I/O request

Synopsis

int usb_sg_init (struct usb_sg_request * io, struct usb_device

* dev, unsigned pipe, unsigned period, struct scatterlist *
sg, int nents, size_t length, gfp_t mem_flags);

87



Chapter 5. USB Core APIs

Arguments

io

request block being initialized. until usb_sg_wait returns, treat this as a
pointer to an opaque block of memory,

dev

the usb device that will send or receive the data

pipe

endpoint “pipe” used to transfer the data

period

polling rate for interrupt endpoints, in frames or (for high speed endpoints)
microframes; ignored for bulk

sg

scatterlist entries

nents

how many entries in the scatterlist

length

how many bytes to send from the scatterlist, or zero to send every byte
identified in the list.

mem_flags

SLAB_* flags affecting memory allocations in this call

Description
Returns zero for success, else a negative errno value. This initializes a scatter/gather
request, allocating resources such as I/O mappings and urb memory (except maybe
memory used by USB controller drivers).

The request must be issued using usb_sg_wait, which waits for the I/O to
complete (or to be canceled) and then cleans up all resources allocated by
usb_sg_init.

The request may be canceled with usb_sg_cancel, either before or after
usb_sg_wait is called.

88



Chapter 5. USB Core APIs

usb_sg_wait

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_sg_wait — synchronously execute scatter/gather request

Synopsis

void usb_sg_wait (struct usb_sg_request * io);

Arguments

io

request block handle, as initialized with usb_sg_init. some fields become
accessible when this call returns.

Context
!in_interrupt ()

Description
This function blocks until the specified I/O operation completes. It leverages the
grouping of the related I/O requests to get good transfer rates, by queueing the
requests. At higher speeds, such queuing can significantly improve USB throughput.

There are three kinds of completion for this function. (1) success, where io->status
is zero. The number of io->bytes transferred is as requested. (2) error, where

89



Chapter 5. USB Core APIs

io->status is a negative errno value. The number of io->bytes transferred before the
error is usually less than requested, and can be nonzero. (3) cancellation, a type of
error with status -ECONNRESET that is initiated by usb_sg_cancel.

When this function returns, all memory allocated through usb_sg_init or this call
will have been freed. The request block parameter may still be passed to
usb_sg_cancel, or it may be freed. It could also be reinitialized and then reused.

Data Transfer Rates

Bulk transfers are valid for full or high speed endpoints. The best full speed data
rate is 19 packets of 64 bytes each per frame, or 1216 bytes per millisecond. The
best high speed data rate is 13 packets of 512 bytes each per microframe, or 52
KBytes per millisecond.

The reason to use interrupt transfers through this API would most likely be to
reserve high speed bandwidth, where up to 24 KBytes per millisecond could be
transferred. That capability is less useful for low or full speed interrupt endpoints,
which allow at most one packet per millisecond, of at most 8 or 64 bytes
(respectively).

It is not necessary to call this function to reserve bandwidth for devices under an
xHCI host controller, as the bandwidth is reserved when the configuration or
interface alt setting is selected.

usb_sg_cancel

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_sg_cancel — stop scatter/gather i/o issued by usb_sg_wait

Synopsis

void usb_sg_cancel (struct usb_sg_request * io);

90



Chapter 5. USB Core APIs

Arguments

io

request block, initialized with usb_sg_init

Description
This stops a request after it has been started by usb_sg_wait. It can also prevents
one initialized by usb_sg_init from starting, so that call just frees resources
allocated to the request.

usb_get_descriptor

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_get_descriptor — issues a generic GET_DESCRIPTOR request

Synopsis

int usb_get_descriptor (struct usb_device * dev, unsigned char
type, unsigned char index, void * buf, int size);

91



Chapter 5. USB Core APIs

Arguments

dev

the device whose descriptor is being retrieved

type

the descriptor type (USB_DT_*)

index

the number of the descriptor

buf

where to put the descriptor

size

how big is “buf”?

Context
!in_interrupt ()

Description
Gets a USB descriptor. Convenience functions exist to simplify getting some types
of descriptors. Use usb_get_string or usb_string for USB_DT_STRING.
Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
are part of the device structure. In addition to a number of USB-standard
descriptors, some devices also use class-specific or vendor-specific descriptors.

This call is synchronous, and may not be used in an interrupt context.

Returns the number of bytes received on success, or else the status code returned by
the underlying usb_control_msg call.

usb_string

LINUX

92



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_string — returns UTF-8 version of a string descriptor

Synopsis

int usb_string (struct usb_device * dev, int index, char *
buf, size_t size);

Arguments

dev

the device whose string descriptor is being retrieved

index

the number of the descriptor

buf

where to put the string

size

how big is “buf”?

Context
!in_interrupt ()

Description
This converts the UTF-16LE encoded strings returned by devices, from
usb_get_string_descriptor, to null-terminated UTF-8 encoded ones that are
more usable in most kernel contexts. Note that this function chooses strings in the
first language supported by the device.

93



Chapter 5. USB Core APIs

This call is synchronous, and may not be used in an interrupt context.

Returns length of the string (>= 0) or usb_control_msg status (< 0).

usb_get_status

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_get_status — issues a GET_STATUS call

Synopsis

int usb_get_status (struct usb_device * dev, int type, int
target, void * data);

Arguments

dev

the device whose status is being checked

type

USB_RECIP_*; for device, interface, or endpoint

target

zero (for device), else interface or endpoint number

data

pointer to two bytes of bitmap data

94



Chapter 5. USB Core APIs

Context
!in_interrupt ()

Description
Returns device, interface, or endpoint status. Normally only of interest to see if the
device is self powered, or has enabled the remote wakeup facility; or whether a bulk
or interrupt endpoint is halted (“stalled”).

Bits in these status bitmaps are set using the SET_FEATURE request, and cleared
using the CLEAR_FEATURE request. The usb_clear_halt function should be
used to clear halt (“stall”) status.

This call is synchronous, and may not be used in an interrupt context.

Returns the number of bytes received on success, or else the status code returned by
the underlying usb_control_msg call.

usb_clear_halt

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_clear_halt — tells device to clear endpoint halt/stall condition

Synopsis

int usb_clear_halt (struct usb_device * dev, int pipe);

95



Chapter 5. USB Core APIs

Arguments

dev

device whose endpoint is halted

pipe

endpoint “pipe” being cleared

Context
!in_interrupt ()

Description
This is used to clear halt conditions for bulk and interrupt endpoints, as reported by
URB completion status. Endpoints that are halted are sometimes referred to as
being “stalled”. Such endpoints are unable to transmit or receive data until the halt
status is cleared. Any URBs queued for such an endpoint should normally be
unlinked by the driver before clearing the halt condition, as described in sections
5.7.5 and 5.8.5 of the USB 2.0 spec.

Note that control and isochronous endpoints don’t halt, although control endpoints
report “protocol stall” (for unsupported requests) using the same status code used to
report a true stall.

This call is synchronous, and may not be used in an interrupt context.

Returns zero on success, or else the status code returned by the underlying
usb_control_msg call.

usb_reset_endpoint

LINUX

96



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_reset_endpoint — Reset an endpoint’s state.

Synopsis

void usb_reset_endpoint (struct usb_device * dev, unsigned int
epaddr);

Arguments

dev

the device whose endpoint is to be reset

epaddr

the endpoint’s address. Endpoint number for output, endpoint number +
USB_DIR_IN for input

Description
Resets any host-side endpoint state such as the toggle bit, sequence number or
current window.

usb_set_interface

LINUX

97



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_set_interface — Makes a particular alternate setting be current

Synopsis

int usb_set_interface (struct usb_device * dev, int interface,
int alternate);

Arguments

dev

the device whose interface is being updated

interface

the interface being updated

alternate

the setting being chosen.

Context
!in_interrupt ()

Description
This is used to enable data transfers on interfaces that may not be enabled by
default. Not all devices support such configurability. Only the driver bound to an
interface may change its setting.

Within any given configuration, each interface may have several alternative settings.
These are often used to control levels of bandwidth consumption. For example, the
default setting for a high speed interrupt endpoint may not send more than 64 bytes
per microframe, while interrupt transfers of up to 3KBytes per microframe are

98



Chapter 5. USB Core APIs

legal. Also, isochronous endpoints may never be part of an interface’s default
setting. To access such bandwidth, alternate interface settings must be made current.

Note that in the Linux USB subsystem, bandwidth associated with an endpoint in a
given alternate setting is not reserved until an URB is submitted that needs that
bandwidth. Some other operating systems allocate bandwidth early, when a
configuration is chosen.

This call is synchronous, and may not be used in an interrupt context. Also, drivers
must not change altsettings while urbs are scheduled for endpoints in that interface;
all such urbs must first be completed (perhaps forced by unlinking).

Returns zero on success, or else the status code returned by the underlying
usb_control_msg call.

usb_reset_configuration

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_reset_configuration — lightweight device reset

Synopsis

int usb_reset_configuration (struct usb_device * dev);

Arguments

dev

the device whose configuration is being reset

99



Chapter 5. USB Core APIs

Description
This issues a standard SET_CONFIGURATION request to the device using the
current configuration. The effect is to reset most USB-related state in the device,
including interface altsettings (reset to zero), endpoint halts (cleared), and endpoint
state (only for bulk and interrupt endpoints). Other usbcore state is unchanged,
including bindings of usb device drivers to interfaces.

Because this affects multiple interfaces, avoid using this with composite
(multi-interface) devices. Instead, the driver for each interface may use
usb_set_interface on the interfaces it claims. Be careful though; some devices
don’t support the SET_INTERFACE request, and others won’t reset all the interface
state (notably endpoint state). Resetting the whole configuration would affect other
drivers’ interfaces.

The caller must own the device lock.

Returns zero on success, else a negative error code.

usb_driver_set_configuration

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_driver_set_configuration — Provide a way for drivers to change
device configurations

Synopsis

int usb_driver_set_configuration (struct usb_device * udev,
int config);

100



Chapter 5. USB Core APIs

Arguments

udev

the device whose configuration is being updated

config

the configuration being chosen.

Context
In process context, must be able to sleep

Description
Device interface drivers are not allowed to change device configurations. This is
because changing configurations will destroy the interface the driver is bound to and
create new ones; it would be like a floppy-disk driver telling the computer to replace
the floppy-disk drive with a tape drive!

Still, in certain specialized circumstances the need may arise. This routine gets
around the normal restrictions by using a work thread to submit the change-config
request.

Returns 0 if the request was successfully queued, error code otherwise. The caller
has no way to know whether the queued request will eventually succeed.

usb_register_dev

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_register_dev — register a USB device, and ask for a minor number

101



Chapter 5. USB Core APIs

Synopsis

int usb_register_dev (struct usb_interface * intf, struct
usb_class_driver * class_driver);

Arguments

intf

pointer to the usb_interface that is being registered

class_driver

pointer to the usb_class_driver for this device

Description
This should be called by all USB drivers that use the USB major number. If
CONFIG_USB_DYNAMIC_MINORS is enabled, the minor number will be
dynamically allocated out of the list of available ones. If it is not enabled, the minor
number will be based on the next available free minor, starting at the
class_driver->minor_base.

This function also creates a usb class device in the sysfs tree.

usb_deregister_dev must be called when the driver is done with the minor
numbers given out by this function.

Returns -EINVAL if something bad happens with trying to register a device, and 0
on success.

usb_deregister_dev

LINUX

102



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_deregister_dev — deregister a USB device’s dynamic minor.

Synopsis

void usb_deregister_dev (struct usb_interface * intf, struct
usb_class_driver * class_driver);

Arguments

intf

pointer to the usb_interface that is being deregistered

class_driver

pointer to the usb_class_driver for this device

Description
Used in conjunction with usb_register_dev. This function is called when the
USB driver is finished with the minor numbers gotten from a call to
usb_register_dev (usually when the device is disconnected from the system.)

This function also removes the usb class device from the sysfs tree.

This should be called by all drivers that use the USB major number.

usb_driver_claim_interface

LINUX

103



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_driver_claim_interface — bind a driver to an interface

Synopsis

int usb_driver_claim_interface (struct usb_driver * driver,
struct usb_interface * iface, void * priv);

Arguments

driver

the driver to be bound

iface

the interface to which it will be bound; must be in the usb device’s active
configuration

priv

driver data associated with that interface

Description
This is used by usb device drivers that need to claim more than one interface on a
device when probing (audio and acm are current examples). No device driver
should directly modify internal usb_interface or usb_device structure members.

Few drivers should need to use this routine, since the most natural way to bind to an
interface is to return the private data from the driver’s probe method.

Callers must own the device lock, so driver probe entries don’t need extra locking,
but other call contexts may need to explicitly claim that lock.

104



Chapter 5. USB Core APIs

usb_driver_release_interface

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_driver_release_interface — unbind a driver from an interface

Synopsis

void usb_driver_release_interface (struct usb_driver * driver,
struct usb_interface * iface);

Arguments

driver

the driver to be unbound

iface

the interface from which it will be unbound

Description
This can be used by drivers to release an interface without waiting for their
disconnect methods to be called. In typical cases this also causes the driver
disconnect method to be called.

This call is synchronous, and may not be used in an interrupt context. Callers must
own the device lock, so driver disconnect entries don’t need extra locking, but
other call contexts may need to explicitly claim that lock.

105



Chapter 5. USB Core APIs

usb_match_id

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_match_id — find first usb_device_id matching device or interface

Synopsis

const struct usb_device_id * usb_match_id (struct
usb_interface * interface, const struct usb_device_id * id);

Arguments

interface

the interface of interest

id

array of usb_device_id structures, terminated by zero entry

Description
usb_match_id searches an array of usb_device_id’s and returns the first one
matching the device or interface, or null. This is used when binding (or rebinding) a
driver to an interface. Most USB device drivers will use this indirectly, through the
usb core, but some layered driver frameworks use it directly. These device tables are
exported with MODULE_DEVICE_TABLE, through modutils, to support the
driver loading functionality of USB hotplugging.

What Matches

106



Chapter 5. USB Core APIs

The “match_flags” element in a usb_device_id controls which members are used. If
the corresponding bit is set, the value in the device_id must match its corresponding
member in the device or interface descriptor, or else the device_id does not match.

“driver_info” is normally used only by device drivers, but you can create a wildcard
“matches anything” usb_device_id as a driver’s “modules.usbmap” entry if you
provide an id with only a nonzero “driver_info” field. If you do this, the USB device
driver’s probe routine should use additional intelligence to decide whether to bind
to the specified interface.

What Makes Good usb_device_id Tables

The match algorithm is very simple, so that intelligence in driver selection must
come from smart driver id records. Unless you have good reasons to use another
selection policy, provide match elements only in related groups, and order match
specifiers from specific to general. Use the macros provided for that purpose if you
can.

The most specific match specifiers use device descriptor data. These are commonly
used with product-specific matches; the USB_DEVICE macro lets you provide
vendor and product IDs, and you can also match against ranges of product
revisions. These are widely used for devices with application or vendor specific
bDeviceClass values.

Matches based on device class/subclass/protocol specifications are slightly more
general; use the USB_DEVICE_INFO macro, or its siblings. These are used with
single-function devices where bDeviceClass doesn’t specify that each interface has
its own class.

Matches based on interface class/subclass/protocol are the most general; they let
drivers bind to any interface on a multiple-function device. Use the
USB_INTERFACE_INFO macro, or its siblings, to match class-per-interface style
devices (as recorded in bInterfaceClass).

Note that an entry created by USB_INTERFACE_INFO won’t match any interface
if the device class is set to Vendor-Specific. This is deliberate; according to the USB
spec the meanings of the interface class/subclass/protocol for these devices are also
vendor-specific, and hence matching against a standard product class wouldn’t work
anyway. If you really want to use an interface-based match for such a device, create
a match record that also specifies the vendor ID. (Unforunately there isn’t a
standard macro for creating records like this.)

Within those groups, remember that not all combinations are meaningful. For
example, don’t give a product version range without vendor and product IDs; or
specify a protocol without its associated class and subclass.

107



Chapter 5. USB Core APIs

usb_register_device_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_register_device_driver — register a USB device (not interface)
driver

Synopsis

int usb_register_device_driver (struct usb_device_driver *
new_udriver, struct module * owner);

Arguments

new_udriver

USB operations for the device driver

owner

module owner of this driver.

Description
Registers a USB device driver with the USB core. The list of unattached devices
will be rescanned whenever a new driver is added, allowing the new driver to attach
to any recognized devices. Returns a negative error code on failure and 0 on success.

108



Chapter 5. USB Core APIs

usb_deregister_device_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_deregister_device_driver — unregister a USB device (not
interface) driver

Synopsis

void usb_deregister_device_driver (struct usb_device_driver *
udriver);

Arguments

udriver

USB operations of the device driver to unregister

Context
must be able to sleep

Description
Unlinks the specified driver from the internal USB driver list.

109



Chapter 5. USB Core APIs

usb_register_driver

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_register_driver — register a USB interface driver

Synopsis

int usb_register_driver (struct usb_driver * new_driver,
struct module * owner, const char * mod_name);

Arguments

new_driver

USB operations for the interface driver

owner

module owner of this driver.

mod_name

module name string

Description
Registers a USB interface driver with the USB core. The list of unattached
interfaces will be rescanned whenever a new driver is added, allowing the new
driver to attach to any recognized interfaces. Returns a negative error code on
failure and 0 on success.

110



Chapter 5. USB Core APIs

NOTE
if you want your driver to use the USB major number, you must call
usb_register_dev to enable that functionality. This function no longer takes care
of that.

usb_deregister

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_deregister — unregister a USB interface driver

Synopsis

void usb_deregister (struct usb_driver * driver);

Arguments

driver

USB operations of the interface driver to unregister

Context
must be able to sleep

Description
Unlinks the specified driver from the internal USB driver list.

111



Chapter 5. USB Core APIs

NOTE
If you called usb_register_dev, you still need to call usb_deregister_dev to
clean up your driver’s allocated minor numbers, this * call will no longer do it for
you.

usb_enable_autosuspend

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_enable_autosuspend — allow a USB device to be autosuspended

Synopsis

void usb_enable_autosuspend (struct usb_device * udev);

Arguments

udev

the USB device which may be autosuspended

Description
This routine allows udev to be autosuspended. An autosuspend won’t take place
until the autosuspend_delay has elapsed and all the other necessary conditions are
satisfied.

The caller must hold udev’s device lock.

112



Chapter 5. USB Core APIs

usb_disable_autosuspend

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_disable_autosuspend — prevent a USB device from being
autosuspended

Synopsis

void usb_disable_autosuspend (struct usb_device * udev);

Arguments

udev

the USB device which may not be autosuspended

Description
This routine prevents udev from being autosuspended and wakes it up if it is
already autosuspended.

The caller must hold udev’s device lock.

113



Chapter 5. USB Core APIs

usb_autopm_put_interface

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_autopm_put_interface — decrement a USB interface’s PM-usage
counter

Synopsis

void usb_autopm_put_interface (struct usb_interface * intf);

Arguments

intf

the usb_interface whose counter should be decremented

Description
This routine should be called by an interface driver when it is finished using intf

and wants to allow it to autosuspend. A typical example would be a
character-device driver when its device file is closed.

The routine decrements intf’s usage counter. When the counter reaches 0, a
delayed autosuspend request for intf’s device is attempted. The attempt may fail
(see autosuspend_check).

This routine can run only in process context.

114



Chapter 5. USB Core APIs

usb_autopm_put_interface_async

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_autopm_put_interface_async — decrement a USB interface’s
PM-usage counter

Synopsis

void usb_autopm_put_interface_async (struct usb_interface *
intf);

Arguments

intf

the usb_interface whose counter should be decremented

Description
This routine does much the same thing as usb_autopm_put_interface: It
decrements intf’s usage counter and schedules a delayed autosuspend request if
the counter is <= 0. The difference is that it does not perform any synchronization;
callers should hold a private lock and handle all synchronization issues themselves.

Typically a driver would call this routine during an URB’s completion handler, if no
more URBs were pending.

This routine can run in atomic context.

115



Chapter 5. USB Core APIs

usb_autopm_put_interface_no_suspend

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_autopm_put_interface_no_suspend — decrement a USB
interface’s PM-usage counter

Synopsis

void usb_autopm_put_interface_no_suspend (struct usb_interface

* intf);

Arguments

intf

the usb_interface whose counter should be decremented

Description
This routine decrements intf’s usage counter but does not carry out an
autosuspend.

This routine can run in atomic context.

usb_autopm_get_interface

LINUX

116



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_autopm_get_interface — increment a USB interface’s PM-usage
counter

Synopsis

int usb_autopm_get_interface (struct usb_interface * intf);

Arguments

intf

the usb_interface whose counter should be incremented

Description
This routine should be called by an interface driver when it wants to use intf and
needs to guarantee that it is not suspended. In addition, the routine prevents intf
from being autosuspended subsequently. (Note that this will not prevent suspend
events originating in the PM core.) This prevention will persist until
usb_autopm_put_interface is called or intf is unbound. A typical example
would be a character-device driver when its device file is opened.

intf’s usage counter is incremented to prevent subsequent autosuspends. However
if the autoresume fails then the counter is re-decremented.

This routine can run only in process context.

usb_autopm_get_interface_async

LINUX

117



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_autopm_get_interface_async — increment a USB interface’s
PM-usage counter

Synopsis

int usb_autopm_get_interface_async (struct usb_interface *
intf);

Arguments

intf

the usb_interface whose counter should be incremented

Description
This routine does much the same thing as usb_autopm_get_interface: It
increments intf’s usage counter and queues an autoresume request if the device is
suspended. The differences are that it does not perform any synchronization (callers
should hold a private lock and handle all synchronization issues themselves), and it
does not autoresume the device directly (it only queues a request). After a
successful call, the device may not yet be resumed.

This routine can run in atomic context.

usb_autopm_get_interface_no_resume

LINUX

118



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_autopm_get_interface_no_resume — increment a USB interface’s
PM-usage counter

Synopsis

void usb_autopm_get_interface_no_resume (struct usb_interface

* intf);

Arguments

intf

the usb_interface whose counter should be incremented

Description
This routine increments intf’s usage counter but does not carry out an autoresume.

This routine can run in atomic context.

usb_find_alt_setting

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_find_alt_setting — Given a configuration, find the alternate setting
for the given interface.

119



Chapter 5. USB Core APIs

Synopsis

struct usb_host_interface * usb_find_alt_setting (struct
usb_host_config * config, unsigned int iface_num, unsigned int
alt_num);

Arguments

config

the configuration to search (not necessarily the current config).

iface_num

interface number to search in

alt_num

alternate interface setting number to search for.

Description
Search the configuration’s interface cache for the given alt setting.

usb_ifnum_to_if

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_ifnum_to_if — get the interface object with a given interface number

120



Chapter 5. USB Core APIs

Synopsis

struct usb_interface * usb_ifnum_to_if (const struct
usb_device * dev, unsigned ifnum);

Arguments

dev

the device whose current configuration is considered

ifnum

the desired interface

Description
This walks the device descriptor for the currently active configuration and returns a
pointer to the interface with that particular interface number, or null.

Note that configuration descriptors are not required to assign interface numbers
sequentially, so that it would be incorrect to assume that the first interface in that
descriptor corresponds to interface zero. This routine helps device drivers avoid
such mistakes. However, you should make sure that you do the right thing with any
alternate settings available for this interfaces.

Don’t call this function unless you are bound to one of the interfaces on this device
or you have locked the device!

usb_altnum_to_altsetting

LINUX

121



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_altnum_to_altsetting — get the altsetting structure with a given
alternate setting number.

Synopsis

struct usb_host_interface * usb_altnum_to_altsetting (const
struct usb_interface * intf, unsigned int altnum);

Arguments

intf

the interface containing the altsetting in question

altnum

the desired alternate setting number

Description
This searches the altsetting array of the specified interface for an entry with the
correct bAlternateSetting value and returns a pointer to that entry, or null.

Note that altsettings need not be stored sequentially by number, so it would be
incorrect to assume that the first altsetting entry in the array corresponds to
altsetting zero. This routine helps device drivers avoid such mistakes.

Don’t call this function unless you are bound to the intf interface or you have locked
the device!

122



Chapter 5. USB Core APIs

usb_find_interface

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_find_interface — find usb_interface pointer for driver and device

Synopsis

struct usb_interface * usb_find_interface (struct usb_driver *
drv, int minor);

Arguments

drv

the driver whose current configuration is considered

minor

the minor number of the desired device

Description
This walks the bus device list and returns a pointer to the interface with the
matching minor and driver. Note, this only works for devices that share the USB
major number.

usb_get_dev

LINUX

123



Chapter 5. USB Core APIs

Kernel Hackers ManualSeptember 2014

Name
usb_get_dev — increments the reference count of the usb device structure

Synopsis

struct usb_device * usb_get_dev (struct usb_device * dev);

Arguments

dev

the device being referenced

Description
Each live reference to a device should be refcounted.

Drivers for USB interfaces should normally record such references in their probe
methods, when they bind to an interface, and release them by calling
usb_put_dev, in their disconnect methods.

A pointer to the device with the incremented reference counter is returned.

usb_put_dev

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_put_dev — release a use of the usb device structure

124



Chapter 5. USB Core APIs

Synopsis

void usb_put_dev (struct usb_device * dev);

Arguments

dev

device that’s been disconnected

Description
Must be called when a user of a device is finished with it. When the last user of the
device calls this function, the memory of the device is freed.

usb_get_intf

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_get_intf — increments the reference count of the usb interface structure

Synopsis

struct usb_interface * usb_get_intf (struct usb_interface *
intf);

125



Chapter 5. USB Core APIs

Arguments

intf

the interface being referenced

Description
Each live reference to a interface must be refcounted.

Drivers for USB interfaces should normally record such references in their probe
methods, when they bind to an interface, and release them by calling
usb_put_intf, in their disconnect methods.

A pointer to the interface with the incremented reference counter is returned.

usb_put_intf

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_put_intf — release a use of the usb interface structure

Synopsis

void usb_put_intf (struct usb_interface * intf);

Arguments

intf

interface that’s been decremented

126



Chapter 5. USB Core APIs

Description
Must be called when a user of an interface is finished with it. When the last user of
the interface calls this function, the memory of the interface is freed.

usb_lock_device_for_reset

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_lock_device_for_reset — cautiously acquire the lock for a usb
device structure

Synopsis

int usb_lock_device_for_reset (struct usb_device * udev, const
struct usb_interface * iface);

Arguments

udev

device that’s being locked

iface

interface bound to the driver making the request (optional)

Description
Attempts to acquire the device lock, but fails if the device is NOTATTACHED or
SUSPENDED, or if iface is specified and the interface is neither BINDING nor

127



Chapter 5. USB Core APIs

BOUND. Rather than sleeping to wait for the lock, the routine polls repeatedly. This
is to prevent deadlock with disconnect; in some drivers (such as usb-storage) the
disconnect or suspend method will block waiting for a device reset to complete.

Returns a negative error code for failure, otherwise 0.

usb_get_current_frame_number

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_get_current_frame_number — return current bus frame number

Synopsis

int usb_get_current_frame_number (struct usb_device * dev);

Arguments

dev

the device whose bus is being queried

Description
Returns the current frame number for the USB host controller used with the given
USB device. This can be used when scheduling isochronous requests.

Note that different kinds of host controller have different “scheduling horizons”.
While one type might support scheduling only 32 frames into the future, others
could support scheduling up to 1024 frames into the future.

128



Chapter 5. USB Core APIs

usb_alloc_coherent

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_alloc_coherent — allocate dma-consistent buffer for
URB_NO_xxx_DMA_MAP

Synopsis

void * usb_alloc_coherent (struct usb_device * dev, size_t
size, gfp_t mem_flags, dma_addr_t * dma);

Arguments

dev

device the buffer will be used with

size

requested buffer size

mem_flags

affect whether allocation may block

dma

used to return DMA address of buffer

129



Chapter 5. USB Core APIs

Description
Return value is either null (indicating no buffer could be allocated), or the
cpu-space pointer to a buffer that may be used to perform DMA to the specified
device. Such cpu-space buffers are returned along with the DMA address (through
the pointer provided).

These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
to avoid behaviors like using “DMA bounce buffers”, or thrashing IOMMU
hardware during URB completion/resubmit. The implementation varies between
platforms, depending on details of how DMA will work to this device. Using these
buffers also eliminates cacheline sharing problems on architectures where CPU
caches are not DMA-coherent. On systems without bus-snooping caches, these
buffers are uncached.

When the buffer is no longer used, free it with usb_free_coherent.

usb_free_coherent

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_free_coherent — free memory allocated with usb_alloc_coherent

Synopsis

void usb_free_coherent (struct usb_device * dev, size_t size,
void * addr, dma_addr_t dma);

130



Chapter 5. USB Core APIs

Arguments

dev

device the buffer was used with

size

requested buffer size

addr

CPU address of buffer

dma

DMA address of buffer

Description
This reclaims an I/O buffer, letting it be reused. The memory must have been
allocated using usb_alloc_coherent, and the parameters must match those
provided in that allocation request.

usb_buffer_map

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_buffer_map — create DMA mapping(s) for an urb

Synopsis

struct urb * usb_buffer_map (struct urb * urb);

131



Chapter 5. USB Core APIs

Arguments

urb

urb whose transfer_buffer/setup_packet will be mapped

Description
Return value is either null (indicating no buffer could be mapped), or the parameter.
URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the
operation succeeds. If the device is connected to this system through a non-DMA
controller, this operation always succeeds.

This call would normally be used for an urb which is reused, perhaps as the target of
a large periodic transfer, with usb_buffer_dmasync calls to synchronize memory
and dma state.

Reverse the effect of this call with usb_buffer_unmap.

usb_buffer_dmasync

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_buffer_dmasync — synchronize DMA and CPU view of buffer(s)

Synopsis

void usb_buffer_dmasync (struct urb * urb);

132



Chapter 5. USB Core APIs

Arguments

urb

urb whose transfer_buffer/setup_packet will be synchronized

usb_buffer_unmap

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_buffer_unmap — free DMA mapping(s) for an urb

Synopsis

void usb_buffer_unmap (struct urb * urb);

Arguments

urb

urb whose transfer_buffer will be unmapped

Description
Reverses the effect of usb_buffer_map.

133



Chapter 5. USB Core APIs

usb_buffer_map_sg

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_buffer_map_sg — create scatterlist DMA mapping(s) for an endpoint

Synopsis

int usb_buffer_map_sg (const struct usb_device * dev, int
is_in, struct scatterlist * sg, int nents);

Arguments

dev

device to which the scatterlist will be mapped

is_in

mapping transfer direction

sg

the scatterlist to map

nents

the number of entries in the scatterlist

Description
Return value is either < 0 (indicating no buffers could be mapped), or the number of
DMA mapping array entries in the scatterlist.

134



Chapter 5. USB Core APIs

The caller is responsible for placing the resulting DMA addresses from the
scatterlist into URB transfer buffer pointers, and for setting the
URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.

Top I/O rates come from queuing URBs, instead of waiting for each one to
complete before starting the next I/O. This is particularly easy to do with
scatterlists. Just allocate and submit one URB for each DMA mapping entry
returned, stopping on the first error or when all succeed. Better yet, use the
usb_sg_*() calls, which do that (and more) for you.

This call would normally be used when translating scatterlist requests, rather than
usb_buffer_map, since on some hardware (with IOMMUs) it may be able to
coalesce mappings for improved I/O efficiency.

Reverse the effect of this call with usb_buffer_unmap_sg.

usb_buffer_dmasync_sg

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_buffer_dmasync_sg — synchronize DMA and CPU view of scatterlist
buffer(s)

Synopsis

void usb_buffer_dmasync_sg (const struct usb_device * dev, int
is_in, struct scatterlist * sg, int n_hw_ents);

Arguments

dev

device to which the scatterlist will be mapped

135



Chapter 5. USB Core APIs

is_in

mapping transfer direction

sg

the scatterlist to synchronize

n_hw_ents

the positive return value from usb_buffer_map_sg

Description
Use this when you are re-using a scatterlist’s data buffers for another USB request.

usb_buffer_unmap_sg

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_buffer_unmap_sg — free DMA mapping(s) for a scatterlist

Synopsis

void usb_buffer_unmap_sg (const struct usb_device * dev, int
is_in, struct scatterlist * sg, int n_hw_ents);

Arguments

dev

device to which the scatterlist will be mapped

136



Chapter 5. USB Core APIs

is_in

mapping transfer direction

sg

the scatterlist to unmap

n_hw_ents

the positive return value from usb_buffer_map_sg

Description
Reverses the effect of usb_buffer_map_sg.

usb_hub_clear_tt_buffer

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hub_clear_tt_buffer — clear control/bulk TT state in high speed hub

Synopsis

int usb_hub_clear_tt_buffer (struct urb * urb);

Arguments

urb

an URB associated with the failed or incomplete split transaction

137



Chapter 5. USB Core APIs

Description
High speed HCDs use this to tell the hub driver that some split control or bulk
transaction failed in a way that requires clearing internal state of a transaction
translator. This is normally detected (and reported) from interrupt context.

It may not be possible for that hub to handle additional full (or low) speed
transactions until that state is fully cleared out.

usb_set_device_state

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_set_device_state — change a device’s current state (usbcore, hcds)

Synopsis

void usb_set_device_state (struct usb_device * udev, enum
usb_device_state new_state);

Arguments

udev

pointer to device whose state should be changed

new_state

new state value to be stored

138



Chapter 5. USB Core APIs

Description
udev->state is _not_ fully protected by the device lock. Although most transitions
are made only while holding the lock, the state can can change to
USB_STATE_NOTATTACHED at almost any time. This is so that devices can be
marked as disconnected as soon as possible, without having to wait for any
semaphores to be released. As a result, all changes to any device’s state must be
protected by the device_state_lock spinlock.

Once a device has been added to the device tree, all changes to its state should be
made using this routine. The state should _not_ be set directly.

If udev->state is already USB_STATE_NOTATTACHED then no change is made.
Otherwise udev->state is set to new_state, and if new_state is
USB_STATE_NOTATTACHED then all of udev’s descendants’ states are also set to
USB_STATE_NOTATTACHED.

usb_root_hub_lost_power

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_root_hub_lost_power — called by HCD if the root hub lost Vbus
power

Synopsis

void usb_root_hub_lost_power (struct usb_device * rhdev);

139



Chapter 5. USB Core APIs

Arguments

rhdev

struct usb_device for the root hub

Description
The USB host controller driver calls this function when its root hub is resumed and
Vbus power has been interrupted or the controller has been reset. The routine marks
rhdev as having lost power. When the hub driver is resumed it will take notice and
carry out power-session recovery for all the “USB-PERSIST”-enabled child
devices; the others will be disconnected.

usb_reset_device

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_reset_device — warn interface drivers and perform a USB port reset

Synopsis

int usb_reset_device (struct usb_device * udev);

Arguments

udev

device to reset (not in SUSPENDED or NOTATTACHED state)

140



Chapter 5. USB Core APIs

Description
Warns all drivers bound to registered interfaces (using their pre_reset method),
performs the port reset, and then lets the drivers know that the reset is over (using
their post_reset method).

Return value is the same as for usb_reset_and_verify_device.

The caller must own the device lock. For example, it’s safe to use this from a driver
probe routine after downloading new firmware. For calls that might not occur
during probe, drivers should lock the device using
usb_lock_device_for_reset.

If an interface is currently being probed or disconnected, we assume its driver
knows how to handle resets. For all other interfaces, if the driver doesn’t have
pre_reset and post_reset methods then we attempt to unbind it and rebind afterward.

usb_queue_reset_device

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_queue_reset_device — Reset a USB device from an atomic context

Synopsis

void usb_queue_reset_device (struct usb_interface * iface);

Arguments

iface

USB interface belonging to the device to reset

141



Chapter 5. USB Core APIs

Description
This function can be used to reset a USB device from an atomic context, where
usb_reset_device won’t work (as it blocks).

Doing a reset via this method is functionally equivalent to calling
usb_reset_device, except for the fact that it is delayed to a workqueue. This
means that any drivers bound to other interfaces might be unbound, as well as users
from usbfs in user space.

Corner cases

- Scheduling two resets at the same time from two different drivers attached to two
different interfaces of the same device is possible; depending on how the driver
attached to each interface handles ->pre_reset, the second reset might happen or
not.

- If a driver is unbound and it had a pending reset, the reset will be cancelled.

- This function can be called during .probe or .disconnect times. On return from
.disconnect, any pending resets will be cancelled.

There is no no need to lock/unlock the reset_ws as schedule_work does its own.

NOTE
We don’t do any reference count tracking because it is not needed. The lifecycle of
the work_struct is tied to the usb_interface. Before destroying the interface we
cancel the work_struct, so the fact that work_struct is queued and or running means
the interface (and thus, the device) exist and are referenced.

142



Chapter 6. Host Controller APIs
These APIs are only for use by host controller drivers, most of which implement
standard register interfaces such as EHCI, OHCI, or UHCI. UHCI was one of the
first interfaces, designed by Intel and also used by VIA; it doesn’t do much in
hardware. OHCI was designed later, to have the hardware do more work (bigger
transfers, tracking protocol state, and so on). EHCI was designed with USB 2.0; its
design has features that resemble OHCI (hardware does much more work) as well
as UHCI (some parts of ISO support, TD list processing).

There are host controllers other than the "big three", although most PCI based
controllers (and a few non-PCI based ones) use one of those interfaces. Not all host
controllers use DMA; some use PIO, and there is also a simulator.

The same basic APIs are available to drivers for all those controllers. For historical
reasons they are in two layers: struct usb_bus is a rather thin layer that became
available in the 2.2 kernels, while struct usb_hcd is a more featureful layer
(available in later 2.4 kernels and in 2.5) that lets HCDs share common code, to
shrink driver size and significantly reduce hcd-specific behaviors.

usb_calc_bus_time

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_calc_bus_time — approximate periodic transaction time in nanoseconds

Synopsis

long usb_calc_bus_time (int speed, int is_input, int isoc, int
bytecount);

143



Chapter 6. Host Controller APIs

Arguments

speed

from dev->speed; USB_SPEED_{LOW,FULL,HIGH}

is_input

true iff the transaction sends data to the host

isoc

true for isochronous transactions, false for interrupt ones

bytecount

how many bytes in the transaction.

Description
Returns approximate bus time in nanoseconds for a periodic transaction. See USB
2.0 spec section 5.11.3; only periodic transfers need to be scheduled in software,
this function is only used for such scheduling.

usb_hcd_link_urb_to_ep

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_link_urb_to_ep — add an URB to its endpoint queue

Synopsis

int usb_hcd_link_urb_to_ep (struct usb_hcd * hcd, struct urb *
urb);

144



Chapter 6. Host Controller APIs

Arguments

hcd

host controller to which urb was submitted

urb

URB being submitted

Description
Host controller drivers should call this routine in their enqueue method. The
HCD’s private spinlock must be held and interrupts must be disabled. The actions
carried out here are required for URB submission, as well as for endpoint shutdown
and for usb_kill_urb.

Returns 0 for no error, otherwise a negative error code (in which case the enqueue
method must fail). If no error occurs but enqueue fails anyway, it must call
usb_hcd_unlink_urb_from_ep before releasing the private spinlock and
returning.

usb_hcd_check_unlink_urb

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_check_unlink_urb — check whether an URB may be unlinked

145



Chapter 6. Host Controller APIs

Synopsis

int usb_hcd_check_unlink_urb (struct usb_hcd * hcd, struct urb

* urb, int status);

Arguments

hcd

host controller to which urb was submitted

urb

URB being checked for unlinkability

status

error code to store in urb if the unlink succeeds

Description
Host controller drivers should call this routine in their dequeue method. The
HCD’s private spinlock must be held and interrupts must be disabled. The actions
carried out here are required for making sure than an unlink is valid.

Returns 0 for no error, otherwise a negative error code (in which case the dequeue
method must fail). The possible error codes are:

-EIDRM: urb was not submitted or has already completed. The completion
function may not have been called yet.

-EBUSY: urb has already been unlinked.

usb_hcd_unlink_urb_from_ep

LINUX

146



Chapter 6. Host Controller APIs

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_unlink_urb_from_ep — remove an URB from its endpoint queue

Synopsis

void usb_hcd_unlink_urb_from_ep (struct usb_hcd * hcd, struct
urb * urb);

Arguments

hcd

host controller to which urb was submitted

urb

URB being unlinked

Description
Host controller drivers should call this routine before calling
usb_hcd_giveback_urb. The HCD’s private spinlock must be held and interrupts
must be disabled. The actions carried out here are required for URB completion.

usb_hcd_giveback_urb

LINUX

147



Chapter 6. Host Controller APIs

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_giveback_urb — return URB from HCD to device driver

Synopsis

void usb_hcd_giveback_urb (struct usb_hcd * hcd, struct urb *
urb, int status);

Arguments

hcd

host controller returning the URB

urb

urb being returned to the USB device driver.

status

completion status code for the URB.

Context
in_interrupt

Description
This hands the URB from HCD to its USB device driver, using its completion
function. The HCD has freed all per-urb resources (and is done using urb->hcpriv).
It also released all HCD locks; the device driver won’t cause problems if it frees,
modifies, or resubmits this URB.

If urb was unlinked, the value of status will be overridden by urb->unlinked.
Erroneous short transfers are detected in case the HCD hasn’t checked for them.

148



Chapter 6. Host Controller APIs

usb_alloc_streams

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_alloc_streams — allocate bulk endpoint stream IDs.

Synopsis

int usb_alloc_streams (struct usb_interface * interface,
struct usb_host_endpoint ** eps, unsigned int num_eps,
unsigned int num_streams, gfp_t mem_flags);

Arguments

interface

alternate setting that includes all endpoints.

eps

array of endpoints that need streams.

num_eps

number of endpoints in the array.

num_streams

number of streams to allocate.

mem_flags

flags hcd should use to allocate memory.

149



Chapter 6. Host Controller APIs

Description
Sets up a group of bulk endpoints to have num_streams stream IDs available.
Drivers may queue multiple transfers to different stream IDs, which may complete
in a different order than they were queued.

usb_free_streams

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_free_streams — free bulk endpoint stream IDs.

Synopsis

void usb_free_streams (struct usb_interface * interface,
struct usb_host_endpoint ** eps, unsigned int num_eps, gfp_t
mem_flags);

Arguments

interface

alternate setting that includes all endpoints.

eps

array of endpoints to remove streams from.

num_eps

number of endpoints in the array.

150



Chapter 6. Host Controller APIs

mem_flags

flags hcd should use to allocate memory.

Description
Reverts a group of bulk endpoints back to not using stream IDs. Can fail if we are
given bad arguments, or HCD is broken.

usb_hcd_resume_root_hub

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_resume_root_hub — called by HCD to resume its root hub

Synopsis

void usb_hcd_resume_root_hub (struct usb_hcd * hcd);

Arguments

hcd

host controller for this root hub

Description
The USB host controller calls this function when its root hub is suspended (with the
remote wakeup feature enabled) and a remote wakeup request is received. The

151



Chapter 6. Host Controller APIs

routine submits a workqueue request to resume the root hub (that is, manage its
downstream ports again).

usb_bus_start_enum

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_bus_start_enum — start immediate enumeration (for OTG)

Synopsis

int usb_bus_start_enum (struct usb_bus * bus, unsigned
port_num);

Arguments

bus

the bus (must use hcd framework)

port_num

1-based number of port; usually bus->otg_port

Context
in_interrupt

152



Chapter 6. Host Controller APIs

Description
Starts enumeration, with an immediate reset followed later by khubd identifying
and possibly configuring the device. This is needed by OTG controller drivers,
where it helps meet HNP protocol timing requirements for starting a port reset.

usb_hcd_irq

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_irq — hook IRQs to HCD framework (bus glue)

Synopsis

irqreturn_t usb_hcd_irq (int irq, void * __hcd);

Arguments

irq

the IRQ being raised

__hcd

pointer to the HCD whose IRQ is being signaled

Description
If the controller isn’t HALTed, calls the driver’s irq handler. Checks whether the
controller is now dead.

153



Chapter 6. Host Controller APIs

usb_hc_died

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hc_died — report abnormal shutdown of a host controller (bus glue)

Synopsis

void usb_hc_died (struct usb_hcd * hcd);

Arguments

hcd

pointer to the HCD representing the controller

Description
This is called by bus glue to report a USB host controller that died while operations
may still have been pending. It’s called automatically by the PCI glue, so only glue
for non-PCI busses should need to call it.

Only call this function with the primary HCD.

154



Chapter 6. Host Controller APIs

usb_create_shared_hcd

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_create_shared_hcd — create and initialize an HCD structure

Synopsis

struct usb_hcd * usb_create_shared_hcd (const struct hc_driver

* driver, struct device * dev, const char * bus_name, struct
usb_hcd * primary_hcd);

Arguments

driver

HC driver that will use this hcd

dev

device for this HC, stored in hcd->self.controller

bus_name

value to store in hcd->self.bus_name

primary_hcd

a pointer to the usb_hcd structure that is sharing the PCI device. Only allocate
certain resources for the primary HCD

Context
!in_interrupt

155



Chapter 6. Host Controller APIs

Description
Allocate a struct usb_hcd, with extra space at the end for the HC driver’s private
data. Initialize the generic members of the hcd structure.

If memory is unavailable, returns NULL.

usb_create_hcd

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_create_hcd — create and initialize an HCD structure

Synopsis

struct usb_hcd * usb_create_hcd (const struct hc_driver *
driver, struct device * dev, const char * bus_name);

Arguments

driver

HC driver that will use this hcd

dev

device for this HC, stored in hcd->self.controller

bus_name

value to store in hcd->self.bus_name

156



Chapter 6. Host Controller APIs

Context
!in_interrupt

Description
Allocate a struct usb_hcd, with extra space at the end for the HC driver’s private
data. Initialize the generic members of the hcd structure.

If memory is unavailable, returns NULL.

usb_add_hcd

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_add_hcd — finish generic HCD structure initialization and register

Synopsis

int usb_add_hcd (struct usb_hcd * hcd, unsigned int irqnum,
unsigned long irqflags);

Arguments

hcd

the usb_hcd structure to initialize

irqnum

Interrupt line to allocate

157



Chapter 6. Host Controller APIs

irqflags

Interrupt type flags

Finish the remaining parts of generic HCD
initialization
allocate the buffers of consistent memory, register the bus, request the IRQ line, and
call the driver’s reset and start routines.

usb_remove_hcd

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_remove_hcd — shutdown processing for generic HCDs

Synopsis

void usb_remove_hcd (struct usb_hcd * hcd);

Arguments

hcd

the usb_hcd structure to remove

Context
!in_interrupt

158



Chapter 6. Host Controller APIs

Description
Disconnects the root hub, then reverses the effects of usb_add_hcd, invoking the
HCD’s stop method.

usb_hcd_pci_probe

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_pci_probe — initialize PCI-based HCDs

Synopsis

int usb_hcd_pci_probe (struct pci_dev * dev, const struct
pci_device_id * id);

Arguments

dev

USB Host Controller being probed

id

pci hotplug id connecting controller to HCD framework

Context
!in_interrupt

159



Chapter 6. Host Controller APIs

Description
Allocates basic PCI resources for this USB host controller, and then invokes the
start method for the HCD associated with it through the hotplug entry’s
driver_data.

Store this function in the HCD’s struct pci_driver as probe.

usb_hcd_pci_remove

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_pci_remove — shutdown processing for PCI-based HCDs

Synopsis

void usb_hcd_pci_remove (struct pci_dev * dev);

Arguments

dev

USB Host Controller being removed

Context
!in_interrupt

160



Chapter 6. Host Controller APIs

Description
Reverses the effect of usb_hcd_pci_probe, first invoking the HCD’s stop
method. It is always called from a thread context, normally “rmmod”, “apmd”, or
something similar.

Store this function in the HCD’s struct pci_driver as remove.

usb_hcd_pci_shutdown

LINUX

Kernel Hackers ManualSeptember 2014

Name
usb_hcd_pci_shutdown — shutdown host controller

Synopsis

void usb_hcd_pci_shutdown (struct pci_dev * dev);

Arguments

dev

USB Host Controller being shutdown

hcd_buffer_create

LINUX

161



Chapter 6. Host Controller APIs

Kernel Hackers ManualSeptember 2014

Name
hcd_buffer_create — initialize buffer pools

Synopsis

int hcd_buffer_create (struct usb_hcd * hcd);

Arguments

hcd

the bus whose buffer pools are to be initialized

Context
!in_interrupt

Description
Call this as part of initializing a host controller that uses the dma memory
allocators. It initializes some pools of dma-coherent memory that will be shared by
all drivers using that controller, or returns a negative errno value on error.

Call hcd_buffer_destroy to clean up after using those pools.

hcd_buffer_destroy

LINUX

162



Chapter 6. Host Controller APIs

Kernel Hackers ManualSeptember 2014

Name
hcd_buffer_destroy — deallocate buffer pools

Synopsis

void hcd_buffer_destroy (struct usb_hcd * hcd);

Arguments

hcd

the bus whose buffer pools are to be destroyed

Context
!in_interrupt

Description
This frees the buffer pools created by hcd_buffer_create.

163



Chapter 6. Host Controller APIs

164



Chapter 7. The USB Filesystem
(usbfs)

This chapter presents the Linux usbfs. You may prefer to avoid writing new kernel
code for your USB driver; that’s the problem that usbfs set out to solve. User mode
device drivers are usually packaged as applications or libraries, and may use usbfs
through some programming library that wraps it. Such libraries include libusb
(http://libusb.sourceforge.net) for C/C++, and jUSB (http://jUSB.sourceforge.net)
for Java.

Unfinished: This particular documentation is incomplete, especially with
respect to the asynchronous mode. As of kernel 2.5.66 the code and this
(new) documentation need to be cross-reviewed.

Configure usbfs into Linux kernels by enabling the USB filesystem option
(CONFIG_USB_DEVICEFS), and you get basic support for user mode USB device
drivers. Until relatively recently it was often (confusingly) called usbdevfs although
it wasn’t solving what devfs was. Every USB device will appear in usbfs, regardless
of whether or not it has a kernel driver.

7.1. What files are in "usbfs"?
Conventionally mounted at /proc/bus/usb, usbfs features include:

• /proc/bus/usb/devices ... a text file showing each of the USB devices on
known to the kernel, and their configuration descriptors. You can also poll() this
to learn about new devices.

• /proc/bus/usb/BBB/DDD ... magic files exposing the each device’s
configuration descriptors, and supporting a series of ioctls for making device
requests, including I/O to devices. (Purely for access by programs.)

Each bus is given a number (BBB) based on when it was enumerated; within each
bus, each device is given a similar number (DDD). Those BBB/DDD paths are not
"stable" identifiers; expect them to change even if you always leave the devices
plugged in to the same hub port. Don’t even think of saving these in application
configuration files. Stable identifiers are available, for user mode applications that
want to use them. HID and networking devices expose these stable IDs, so that for

165



Chapter 7. The USB Filesystem (usbfs)

example you can be sure that you told the right UPS to power down its second
server. "usbfs" doesn’t (yet) expose those IDs.

7.2. Mounting and Access Control
There are a number of mount options for usbfs, which will be of most interest to
you if you need to override the default access control policy. That policy is that only
root may read or write device files (/proc/bus/BBB/DDD) although anyone may
read the devices or drivers files. I/O requests to the device also need the
CAP_SYS_RAWIO capability,

The significance of that is that by default, all user mode device drivers need
super-user privileges. You can change modes or ownership in a driver setup when
the device hotplugs, or maye just start the driver right then, as a privileged server (or
some activity within one). That’s the most secure approach for multi-user systems,
but for single user systems ("trusted" by that user) it’s more convenient just to grant
everyone all access (using the devmode=0666 option) so the driver can start
whenever it’s needed.

The mount options for usbfs, usable in /etc/fstab or in command line invocations of
mount, are:

busgid=NNNNN

Controls the GID used for the /proc/bus/usb/BBB directories. (Default: 0)

busmode=MMM

Controls the file mode used for the /proc/bus/usb/BBB directories. (Default:
0555)

busuid=NNNNN

Controls the UID used for the /proc/bus/usb/BBB directories. (Default: 0)

devgid=NNNNN

Controls the GID used for the /proc/bus/usb/BBB/DDD files. (Default: 0)

devmode=MMM

Controls the file mode used for the /proc/bus/usb/BBB/DDD files. (Default:
0644)

devuid=NNNNN

Controls the UID used for the /proc/bus/usb/BBB/DDD files. (Default: 0)

166



Chapter 7. The USB Filesystem (usbfs)

listgid=NNNNN

Controls the GID used for the /proc/bus/usb/devices and drivers files. (Default:
0)

listmode=MMM

Controls the file mode used for the /proc/bus/usb/devices and drivers files.
(Default: 0444)

listuid=NNNNN

Controls the UID used for the /proc/bus/usb/devices and drivers files. (Default:
0)

Note that many Linux distributions hard-wire the mount options for usbfs in their
init scripts, such as /etc/rc.d/rc.sysinit, rather than making it easy to set this
per-system policy in /etc/fstab.

7.3. /proc/bus/usb/devices
This file is handy for status viewing tools in user mode, which can scan the text
format and ignore most of it. More detailed device status (including class and
vendor status) is available from device-specific files. For information about the
current format of this file, see the Documentation/usb/proc_usb_info.txt
file in your Linux kernel sources.

This file, in combination with the poll() system call, can also be used to detect when
devices are added or removed:

int fd;
struct pollfd pfd;

fd = open("/proc/bus/usb/devices", O_RDONLY);
pfd = { fd, POLLIN, 0 };
for (;;) {
/* The first time through, this call will return immediately. */
poll(&pfd, 1, -1);

/* To see what’s changed, compare the file’s previous and current
contents or scan the filesystem. (Scanning is more precise.) */

}

167



Chapter 7. The USB Filesystem (usbfs)

Note that this behavior is intended to be used for informational and debug purposes.
It would be more appropriate to use programs such as udev or HAL to initialize a
device or start a user-mode helper program, for instance.

7.4. /proc/bus/usb/BBB/DDD
Use these files in one of these basic ways:

They can be read, producing first the device descriptor (18 bytes) and then the
descriptors for the current configuration. See the USB 2.0 spec for details about
those binary data formats. You’ll need to convert most multibyte values from little
endian format to your native host byte order, although a few of the fields in the
device descriptor (both of the BCD-encoded fields, and the vendor and product IDs)
will be byteswapped for you. Note that configuration descriptors include descriptors
for interfaces, altsettings, endpoints, and maybe additional class descriptors.

Perform USB operations using ioctl() requests to make endpoint I/O requests
(synchronously or asynchronously) or manage the device. These requests need the
CAP_SYS_RAWIO capability, as well as filesystem access permissions. Only one
ioctl request can be made on one of these device files at a time. This means that if
you are synchronously reading an endpoint from one thread, you won’t be able to
write to a different endpoint from another thread until the read completes. This
works for half duplex protocols, but otherwise you’d use asynchronous i/o requests.

7.5. Life Cycle of User Mode Drivers
Such a driver first needs to find a device file for a device it knows how to handle.
Maybe it was told about it because a /sbin/hotplug event handling agent chose
that driver to handle the new device. Or maybe it’s an application that scans all the
/proc/bus/usb device files, and ignores most devices. In either case, it should
read() all the descriptors from the device file, and check them against what it
knows how to handle. It might just reject everything except a particular vendor and
product ID, or need a more complex policy.

Never assume there will only be one such device on the system at a time! If your
code can’t handle more than one device at a time, at least detect when there’s more
than one, and have your users choose which device to use.

Once your user mode driver knows what device to use, it interacts with it in either
of two styles. The simple style is to make only control requests; some devices don’t
need more complex interactions than those. (An example might be software using

168



Chapter 7. The USB Filesystem (usbfs)

vendor-specific control requests for some initialization or configuration tasks, with
a kernel driver for the rest.)

More likely, you need a more complex style driver: one using non-control
endpoints, reading or writing data and claiming exclusive use of an interface. Bulk
transfers are easiest to use, but only their sibling interrupt transfers work with low
speed devices. Both interrupt and isochronous transfers offer service guarantees
because their bandwidth is reserved. Such "periodic" transfers are awkward to use
through usbfs, unless you’re using the asynchronous calls. However, interrupt
transfers can also be used in a synchronous "one shot" style.

Your user-mode driver should never need to worry about cleaning up request state
when the device is disconnected, although it should close its open file descriptors as
soon as it starts seeing the ENODEV errors.

7.6. The ioctl() Requests
To use these ioctls, you need to include the following headers in your userspace
program:

#include <linux/usb.h>
#include <linux/usbdevice_fs.h>
#include <asm/byteorder.h>

The standard USB device model requests, from "Chapter 9" of the USB 2.0
specification, are automatically included from the <linux/usb/ch9.h> header.

Unless noted otherwise, the ioctl requests described here will update the
modification time on the usbfs file to which they are applied (unless they fail). A
return of zero indicates success; otherwise, a standard USB error code is returned.
(These are documented in Documentation/usb/error-codes.txt in your
kernel sources.)

Each of these files multiplexes access to several I/O streams, one per endpoint. Each
device has one control endpoint (endpoint zero) which supports a limited RPC style
RPC access. Devices are configured by khubd (in the kernel) setting a device-wide
configuration that affects things like power consumption and basic functionality.
The endpoints are part of USB interfaces, which may have altsettings affecting
things like which endpoints are available. Many devices only have a single
configuration and interface, so drivers for them will ignore configurations and
altsettings.

169



Chapter 7. The USB Filesystem (usbfs)

7.6.1. Management/Status Requests
A number of usbfs requests don’t deal very directly with device I/O. They mostly
relate to device management and status. These are all synchronous requests.

USBDEVFS_CLAIMINTERFACE

This is used to force usbfs to claim a specific interface, which has not
previously been claimed by usbfs or any other kernel driver. The ioctl
parameter is an integer holding the number of the interface (bInterfaceNumber
from descriptor).

Note that if your driver doesn’t claim an interface before trying to use one of
its endpoints, and no other driver has bound to it, then the interface is
automatically claimed by usbfs.

This claim will be released by a RELEASEINTERFACE ioctl, or by closing
the file descriptor. File modification time is not updated by this request.

USBDEVFS_CONNECTINFO

Says whether the device is lowspeed. The ioctl parameter points to a structure
like this:

struct usbdevfs_connectinfo {
unsigned int devnum;
unsigned char slow;

};

File modification time is not updated by this request.

You can’t tell whether a "not slow" device is connected at high speed (480
MBit/sec) or just full speed (12 MBit/sec). You should know the devnum value
already, it’s the DDD value of the device file name.

USBDEVFS_GETDRIVER

Returns the name of the kernel driver bound to a given interface (a string).
Parameter is a pointer to this structure, which is modified:

struct usbdevfs_getdriver {
unsigned int interface;
char driver[USBDEVFS_MAXDRIVERNAME + 1];

};

File modification time is not updated by this request.

USBDEVFS_IOCTL

Passes a request from userspace through to a kernel driver that has an ioctl
entry in the struct usb_driver it registered.

struct usbdevfs_ioctl {

170



Chapter 7. The USB Filesystem (usbfs)

int ifno;
int ioctl_code;
void *data;

};

/* user mode call looks like this.

* ’request’ becomes the driver->ioctl() ’code’ parameter.

* the size of ’param’ is encoded in ’request’, and that data

* is copied to or from the driver->ioctl() ’buf’ parameter.

*/
static int
usbdev_ioctl (int fd, int ifno, unsigned request, void *param)
{

struct usbdevfs_ioctl wrapper;

wrapper.ifno = ifno;
wrapper.ioctl_code = request;
wrapper.data = param;

return ioctl (fd, USBDEVFS_IOCTL, &wrapper);
}

File modification time is not updated by this request.

This request lets kernel drivers talk to user mode code through filesystem
operations even when they don’t create a character or block special device. It’s
also been used to do things like ask devices what device special file should be
used. Two pre-defined ioctls are used to disconnect and reconnect kernel
drivers, so that user mode code can completely manage binding and
configuration of devices.

USBDEVFS_RELEASEINTERFACE

This is used to release the claim usbfs made on interface, either implicitly or
because of a USBDEVFS_CLAIMINTERFACE call, before the file descriptor
is closed. The ioctl parameter is an integer holding the number of the interface
(bInterfaceNumber from descriptor); File modification time is not updated by
this request.

Warning
No security check is made to ensure that the task
which made the claim is the one which is releasing
it. This means that user mode driver may interfere
other ones.

171



Chapter 7. The USB Filesystem (usbfs)

USBDEVFS_RESETEP

Resets the data toggle value for an endpoint (bulk or interrupt) to DATA0. The
ioctl parameter is an integer endpoint number (1 to 15, as identified in the
endpoint descriptor), with USB_DIR_IN added if the device’s endpoint sends
data to the host.

Warning
Avoid using this request. It should probably be
removed. Using it typically means the device and
driver will lose toggle synchronization. If you really
lost synchronization, you likely need to completely
handshake with the device, using a request like
CLEAR_HALT or SET_INTERFACE.

7.6.2. Synchronous I/O Support
Synchronous requests involve the kernel blocking until the user mode request
completes, either by finishing successfully or by reporting an error. In most cases
this is the simplest way to use usbfs, although as noted above it does prevent
performing I/O to more than one endpoint at a time.

USBDEVFS_BULK

Issues a bulk read or write request to the device. The ioctl parameter is a
pointer to this structure:

struct usbdevfs_bulktransfer {
unsigned int ep;
unsigned int len;
unsigned int timeout; /* in milliseconds */
void *data;

};

The "ep" value identifies a bulk endpoint number (1 to 15, as identified in an
endpoint descriptor), masked with USB_DIR_IN when referring to an endpoint
which sends data to the host from the device. The length of the data buffer is
identified by "len"; Recent kernels support requests up to about 128KBytes.
FIXME say how read length is returned, and how short reads are handled..

USBDEVFS_CLEAR_HALT

Clears endpoint halt (stall) and resets the endpoint toggle. This is only
meaningful for bulk or interrupt endpoints. The ioctl parameter is an integer

172



Chapter 7. The USB Filesystem (usbfs)

endpoint number (1 to 15, as identified in an endpoint descriptor), masked with
USB_DIR_IN when referring to an endpoint which sends data to the host from
the device.

Use this on bulk or interrupt endpoints which have stalled, returning -EPIPE
status to a data transfer request. Do not issue the control request directly, since
that could invalidate the host’s record of the data toggle.

USBDEVFS_CONTROL

Issues a control request to the device. The ioctl parameter points to a structure
like this:

struct usbdevfs_ctrltransfer {
__u8 bRequestType;
__u8 bRequest;
__u16 wValue;
__u16 wIndex;
__u16 wLength;
__u32 timeout; /* in milliseconds */
void *data;

};

The first eight bytes of this structure are the contents of the SETUP packet to
be sent to the device; see the USB 2.0 specification for details. The
bRequestType value is composed by combining a USB_TYPE_* value, a
USB_DIR_* value, and a USB_RECIP_* value (from <linux/usb.h>). If
wLength is nonzero, it describes the length of the data buffer, which is either
written to the device (USB_DIR_OUT) or read from the device
(USB_DIR_IN).

At this writing, you can’t transfer more than 4 KBytes of data to or from a
device; usbfs has a limit, and some host controller drivers have a limit. (That’s
not usually a problem.) Also there’s no way to say it’s not OK to get a short
read back from the device.

USBDEVFS_RESET

Does a USB level device reset. The ioctl parameter is ignored. After the reset,
this rebinds all device interfaces. File modification time is not updated by this
request.

Warning
Avoid using this call until some usbcore bugs get
fixed, since it does not fully synchronize device,
interface, and driver (not just usbfs) state.

173



Chapter 7. The USB Filesystem (usbfs)

USBDEVFS_SETINTERFACE

Sets the alternate setting for an interface. The ioctl parameter is a pointer to a
structure like this:

struct usbdevfs_setinterface {
unsigned int interface;
unsigned int altsetting;

};

File modification time is not updated by this request.

Those struct members are from some interface descriptor applying to the
current configuration. The interface number is the bInterfaceNumber value,
and the altsetting number is the bAlternateSetting value. (This resets each
endpoint in the interface.)

USBDEVFS_SETCONFIGURATION

Issues the usb_set_configuration call for the device. The parameter is an
integer holding the number of a configuration (bConfigurationValue from
descriptor). File modification time is not updated by this request.

Warning
Avoid using this call until some usbcore bugs get
fixed, since it does not fully synchronize device,
interface, and driver (not just usbfs) state.

7.6.3. Asynchronous I/O Support
As mentioned above, there are situations where it may be important to initiate
concurrent operations from user mode code. This is particularly important for
periodic transfers (interrupt and isochronous), but it can be used for other kinds of
USB requests too. In such cases, the asynchronous requests described here are
essential. Rather than submitting one request and having the kernel block until it
completes, the blocking is separate.

These requests are packaged into a structure that resembles the URB used by kernel
device drivers. (No POSIX Async I/O support here, sorry.) It identifies the endpoint
type (USBDEVFS_URB_TYPE_*), endpoint (number, masked with USB_DIR_IN
as appropriate), buffer and length, and a user "context" value serving to uniquely
identify each request. (It’s usually a pointer to per-request data.) Flags can modify
requests (not as many as supported for kernel drivers).

174



Chapter 7. The USB Filesystem (usbfs)

Each request can specify a realtime signal number (between SIGRTMIN and
SIGRTMAX, inclusive) to request a signal be sent when the request completes.

When usbfs returns these urbs, the status value is updated, and the buffer may have
been modified. Except for isochronous transfers, the actual_length is updated to say
how many bytes were transferred; if the USBDEVFS_URB_DISABLE_SPD flag is
set ("short packets are not OK"), if fewer bytes were read than were requested then
you get an error report.

struct usbdevfs_iso_packet_desc {
unsigned int length;
unsigned int actual_length;
unsigned int status;

};

struct usbdevfs_urb {
unsigned char type;
unsigned char endpoint;
int status;
unsigned int flags;
void *buffer;
int buffer_length;
int actual_length;
int start_frame;
int number_of_packets;
int error_count;
unsigned int signr;
void *usercontext;
struct usbdevfs_iso_packet_desc iso_frame_desc[];

};

For these asynchronous requests, the file modification time reflects when the request
was initiated. This contrasts with their use with the synchronous requests, where it
reflects when requests complete.

USBDEVFS_DISCARDURB

TBS File modification time is not updated by this request.

USBDEVFS_DISCSIGNAL

TBS File modification time is not updated by this request.

USBDEVFS_REAPURB

TBS File modification time is not updated by this request.

175



Chapter 7. The USB Filesystem (usbfs)

USBDEVFS_REAPURBNDELAY

TBS File modification time is not updated by this request.

USBDEVFS_SUBMITURB

TBS

176


	The LinuxUSB Host Side API
	Table of Contents
	Chapter 1. Introduction to USB on Linux
	Chapter 2. USB HostSide API Model
	Chapter 3. USBStandard Types
	struct usbctrlrequest
	LINUX
	Name
	Synopsis
	Members
	Description

	usbendpointnum
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointtype
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointdirin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointdirout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxferbulk
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxfercontrol
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxferint
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointxferisoc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisbulkin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisbulkout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisintin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisintout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisisocin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointisisocout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbendpointmaxp
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbspeedstring
	LINUX
	Name
	Synopsis
	Arguments


	Chapter 4. HostSide Data Types and Macros
	struct usbhostendpoint
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbinterface
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbinterfacecache
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbhostconfig
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbdevice
	LINUX
	Name
	Synopsis
	Members
	Notes

	usbinterfaceclaimed
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbmakepath
	LINUX
	Name
	Synopsis
	Arguments
	Description

	USBDEVICE
	LINUX
	Name
	Synopsis
	Arguments
	Description

	USBDEVICEVER
	LINUX
	Name
	Synopsis
	Arguments
	Description

	USBDEVICEINTERFACEPROTOCOL
	LINUX
	Name
	Synopsis
	Arguments
	Description

	USBDEVICEINFO
	LINUX
	Name
	Synopsis
	Arguments
	Description

	USBINTERFACEINFO
	LINUX
	Name
	Synopsis
	Arguments
	Description

	USBDEVICEANDINTERFACEINFO
	LINUX
	Name
	Synopsis
	Arguments
	Description

	USBVENDORANDINTERFACEINFO
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct usbdrvwrap
	LINUX
	Name
	Synopsis
	Members

	struct usbdriver
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbdevicedriver
	LINUX
	Name
	Synopsis
	Members
	Description

	struct usbclassdriver
	LINUX
	Name
	Synopsis
	Members
	Description

	struct urb
	LINUX
	Name
	Synopsis
	Members
	Description
	Data Transfer Buffers
	Initialization
	Completion Callbacks

	usbfillcontrolurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfillbulkurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfillinturb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usburbdirin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usburbdirout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct usbsgrequest
	LINUX
	Name
	Synopsis
	Members
	Description


	Chapter 5. USB Core APIs
	usbiniturb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usballocurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfreeurb
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note

	usbgeturb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbanchorurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbunanchorurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbsubmiturb
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Request Queuing
	Reserved Bandwidth Transfers
	Memory Flags

	usbunlinkurb
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Unlinking and Endpoint Queues

	usbkillurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbpoisonurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbkillanchoredurbs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbpoisonanchoredurbs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbunpoisonanchoredurbs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbunlinkanchoredurbs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbwaitanchoremptytimeout
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgetfromanchor
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbscuttleanchoredurbs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbanchorempty
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbcontrolmsg
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbinterruptmsg
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbbulkmsg
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbsginit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbsgwait
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description
	Data Transfer Rates

	usbsgcancel
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgetdescriptor
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbstring
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbgetstatus
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbclearhalt
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbresetendpoint
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbsetinterface
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbresetconfiguration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbdriversetconfiguration
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbregisterdev
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbderegisterdev
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbdriverclaiminterface
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbdriverreleaseinterface
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbmatchid
	LINUX
	Name
	Synopsis
	Arguments
	Description
	What Matches
	What Makes Good usbdeviceid Tables

	usbregisterdevicedriver
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbderegisterdevicedriver
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbregisterdriver
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	usbderegister
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description
	NOTE

	usbenableautosuspend
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbdisableautosuspend
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbautopmputinterface
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbautopmputinterfaceasync
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbautopmputinterfacenosuspend
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbautopmgetinterface
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbautopmgetinterfaceasync
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbautopmgetinterfacenoresume
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfindaltsetting
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbifnumtoif
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbaltnumtoaltsetting
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfindinterface
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgetdev
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbputdev
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgetintf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbputintf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usblockdeviceforreset
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbgetcurrentframenumber
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usballoccoherent
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfreecoherent
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbbuffermap
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbbufferdmasync
	LINUX
	Name
	Synopsis
	Arguments

	usbbufferunmap
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbbuffermapsg
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbbufferdmasyncsg
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbbufferunmapsg
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbhubclearttbuffer
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbsetdevicestate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbroothublostpower
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbresetdevice
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbqueueresetdevice
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Corner cases
	NOTE


	Chapter 6. Host Controller APIs
	usbcalcbustime
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbhcdlinkurbtoep
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbhcdcheckunlinkurb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbhcdunlinkurbfromep
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbhcdgivebackurb
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usballocstreams
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbfreestreams
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbhcdresumeroothub
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbbusstartenum
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbhcdirq
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbhcdied
	LINUX
	Name
	Synopsis
	Arguments
	Description

	usbcreatesharedhcd
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbcreatehcd
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbaddhcd
	LINUX
	Name
	Synopsis
	Arguments
	Finish the remaining parts of generic HCD initialization

	usbremovehcd
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbhcdpciprobe
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbhcdpciremove
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	usbhcdpcishutdown
	LINUX
	Name
	Synopsis
	Arguments

	hcdbuffercreate
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	hcdbufferdestroy
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description


	Chapter 7. The USB Filesystem (usbfs)
	7.1. What files are in "usbfs"?
	7.2. Mounting and Access Control
	7.3. /proc/bus/usb/devices
	7.4. /proc/bus/usb/BBB/DDD
	7.5. Life Cycle of User Mode Drivers
	7.6. The ioctl() Requests
	7.6.1. Management/Status Requests
	7.6.2. Synchronous I/O Support
	7.6.3. Asynchronous I/O Support



