openSUSE-KIWI Image System
Cookbook

Marcus Schifer

openSUSE-KIWI Image System: Cookbook

by Marcus Schifer
Thomas Schraitle <toms@suse.de>

KIWI Version 4.60

License

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the
license version 1.2 is included in the appendix entitled “GNU Free Documentation License”.

SUSE®, openSUSE®, the openSUSE® logo, Novell®, the Novell® logo, the N® logo, are registered trademarks of Novell, Inc.
in the United States and other countries. Linux® is a registered trademark of Linux Torvalds. All other thrid party trademarks
are the property of their respective owners.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete
accuracy. Neither Novell, Inc., SUSE Linux Products GmbH, the authors, nor the translators shall be held liable for possible errors
or the consequences thereof.

Table of Contents

1. INEPOAUCTION ..eeeeiiiiiiiiiiiceeeee et st s e e st e e 1
2. BaSIC WOTKELOWooiiiiiiiiiiiiiitieeee ettt e e e et e e e e e s s s s saasbaeeeeeeeeessssnnnnsnnns 3
2.]. BOOTL PIOCESS ..cceveruuueiiireitiiineeeeeeettteenieeeseeeeteeaneeesseeeeteranssesssseererennnsssseseserennnnsnsasees 5
2.2, BOOt PArametersceeiieiiiiiuieeierettiieieeeeeeetetenueeseeeeeeeennnneseseeeeeennnsessseeeenennnnnnnns 6
2.3. Common and Distribution Specific COdeccocovvriirirriiiiiiiriieeieiiiteeeeeeeeeeeee 6
3. KIWI Image DESCIIPLIONccoeouiiiiiiiiiiiieiiiiteeeeeiteeeeeeteeeessesreeeesssreeesssssaeeesssnsnaeeens 7
3.1. The config.Xml Fileccccoeeiiiiiiiiieiieieeeeeeeee e e e e ee e e e e e e eees 9
4. Creating Appliances with KIWIcccoiiiiiiiiiiiiiiiiitteeeettee e e s 25
4.1. HISTOTY ceeeeeiiiieieiiiiiiiiiieteeee ettt et e e e e e e rree e e e e e e s s e e nsssrraaeeeeesseesennnnsnnns 25
4.2. The KIWI MOAEIuuuiiiiiiiiiiiieiiiiiiteeeee e eeeeetrrtee e e e e e e s sssssaseaseeeesesssssssssssssseeens 25
5. Maintenance of Operating System ImMagescccoevvuveeeirriireeeiniiieeeeesiireeeeesnreeeens 29
6. System to Image MiZrationcccoeooiiiiiiiiiiiiiiiiiiiee ittt e s e e s 33
6.1. Create a Clean ReposSitory Set FirStccccceevvvvuieeiieeeiiiiiiriiiinieeeeeeeseessieeneeeeeeens 33
6.2. Watch the Overlay and Unpackaged Filesccccocueeerieiiiiiiniiiieericiiieeeneeieeeenn. 34
6.3, ChECKLIST ..eiiiiiiiiiiiieieeeetcee ettt ettt e st e e e s e re e e s s nbe e e s e nneees 34
6.4. Turn my System Into an ImMage...cccccevviiiiiiiiiiiiiiiiiiiiccncceeeeeeeeeee 34
7. INStallation SOUICEcocciiiiiiiiiiiieeeeeeee et e s e e eee e 37
7.1. Adapt the Example’s config.Xmlccceeeeiiiiiiiiriiiiiiiiteeeeeeeeeecnereeeeee e e e e 37
7.2. Create a Local Installation SOUICEcccevuureiiieeeeieeeriiinrieeeeeeeeeeeeeeeeeeeeeeeees 37
8. ISO Image—Live SYSTEIMSccccoevuiiiiiiiiiiiiiiiiieete ettt ssae s aneesans 39
8.1. Building the suse-live-iso EXampleccccoeeviiiiiiiiiiiiiiiiieienieeeeeeeeeeee e 39
8.2. USINg the IMAZE ...cccuveieiieiiieeieiiittee ettt e e s e e e e e srre e e s s eareeeeeesanneees 39
8.3, FIAVOULS ..eeiiiiiiiiiiiiiiiiitecetteet ettt ettt r e e s 39
9. USB Image—Live-StiCk SYStEIMcccocoiiiiiiiiiiiiiiiiiiieeenieeeceeiteeesesreeessssreeeesssanns 41
9.1. Building the suse-live-stick EXampleccccceeeeerriiiriiiiiiieieeeeeeeeeeeieeeeeeeeeee e 41
0.2. USING the IMAZE ...cceeeeiiiiiiiieeeeeeeeeeieeeee e e e e e eeeeerreeeeeeeeeessssassrreeeeeeeessssssnnnnnnes 41
0.3, FIAVOULS eeeeeeeiiiiiiieteeeeeeeeecieetteeee e e e e e e eeieeeeeeeeeeeeeesssnsssraeeeeeeeesssssnnnsssnneaaesessanes 42
10. VMX Image—Virtual DisKsccccciiiiiiiiiiiiiiiiiieiiieeeecteeceeecee et 45
10.1. Building the suse-vm-guest EXampleccccoeeviiieiiiiiiiieiniiiieeeerieeeeeeeeeeeeenns 45
10.2. USING the TMAGE ...cceiirriiiiiiiiiieeeetteeeeettee e ertee et e s s sart e e s s sanreeesssaneeeseas 45
10.3. FIAVOUTS .eeeiieiiiiieieiiiieeeeeiitteesesitteeeeessteeesesaseeesesssaeeesasssaeessssnssseesessnseeessesnnsees 45
11. PXE Image—Thin ClENtSccceevvriiiiiiiiiiiiieiiniiteeeeriteessssireeesesiareeesssareeesssnnnes 49
11.1. Setting Up the Required ServiCescoeeevviuerrreeeeeeeenrrriiiiereeeeeeeeseeeessnnneeeeeees 49
11.2. Building the suse-pxe-client EXamplecccooeeeiiiiireeeieeiininniiiiieeeeeeeeeeeeeeeennes 50
11.3. USING the IMAZEuuvrrerieeeiriieriiiiiiietteeeeeeeesesrierreeeeeeeeeesssssanneeeeeeeessssssssssnsseeees 50
114, FIAVOULS ..uuueeriireeeeeeeeenniiiieeeteeeeeeeessasunsseeeeeeesssssassnsssseaaeeesssssssssssssseeeeesssssssssnnnnes 51
11.5. HAardwWare GTOUPINEceeeeeeeeeeeereeriiuerreeeeeeeessssssssssseeeeeeessssssssssssseeeessssssssssnnnnnes 58
12. OEM Image—Preload SYSteIMScccceeriiiiiiiiiiiiiieeiiiteeeeeeirteeeeerreeeeeenreeeeeesnneeees 61
12.1. Building the suse-oem-preload Exampleccccceeeieiiiiiiiiiiiiieeiiiiieeeeeeeeeeenn. 61
12.2. USING the IMAZE ...ceevieriiiiiiiiiiieieeitiee ettt et e e s e sartee s s s saraeeesssaneeesenns 61
12.3. FLAVOULS «.eeviiiiiiiiiiiieieiteeeee ettt et e st s e e e re e st e e s sne e s nnes 62

iii

openSUSE-KIWI Image System

13. Xen Image—Paravirtual SYStemsc.ccccevreiiiiiiiiiiiiieiiiiiee e 65
13.1. Building the suse-xen-guest EXxamplecccocovviiiiiiiiiieiiiiiiieeinnieeeeeeeeeeeee 65
13.2. USINg the IMAGEcoeieriiiiiiiiitieieettee ettt ettt e s e et e e s e aaeeeeeas 65
13.3. FIAVOULS .eiiiieiiiiieiiiiitteeeeitteeeeettte e e ettt e s e eireeeeseeasaeeeseesraeeesssnnneeesssnsneessesnnses 66

14. EC2 Image—Amazon Elastic Compute Cloudcccccccuveeiimniieeinniiieeeinnieeeeeenee 67
14.1. Building the suse-xen-guest Example for EC2ccccoevviiiiiiieeieeiniinccriinneeeeeenn. 67
14.2. USING the IMAZEuvereeiiieiriiiieiiiiiiiteeeeeeeeeeeeriirreeeeeeeeeeeeesssnsrreeeeeeesesssssssnnsnnees 68

15, KIWI TESESUILEoeveiiiiiiiiiiiiiiieee ettt ettt e s e aree e e s e earte e s sessreeessensaeeesesnneees 71
15.1. TeStSuite PACKAZES ...eeviiiiiiiiiieiiiiiiiieeeeeeeeeeeiieee e e e e e e s s ssiarreeeeeee e e s e s s sssannaaeeas 71
15.2. Creating @ TSt .ccceiiiiiiiiiiiiieteeteieecceteeee ettt e e e e s s e e eaarrsee e e e e e e e sessnnnnns 71

A, KIWI Man PaAges ..ottt sttt s e e e ettt e s s e e e e eemnse s e s eeeenens 73
RIWI ceeeiee et e e e s ean e e e e e ans 74
KIWiiCONTAZ. SR <ottt e e e e e e e s nneee 81
KIWiiimAaZeS.Sh ceeeeiiieiiiieeeeeee et e e e e e e s e e e e s e e e nnaeeeeee s 85
KIWIITKIWITC ettt 88

INAEX .ot s 89

iv

1 Introduction

The openSUSE KIWI Image System provides a complete operating system image solution for
Linux supported hardware platforms as well as for virtualisation systems like Xen, VMWare,
etc. The KIWI architecture was designed as a two level system. The first stage, based on a valid
software package source, creates a so called unpacked image according to the provided image
description. The second stage creates from a required unpacked image an operating system
image. The result of the second stage is called a packed image or short an image.

Figure 1.1. Image Serving Architecture

[_ Package Source

Image Description o

Packed Image 9

Serve it...

® Encapsulated system reachable via chroot
® Encapsulated system reachable via kernel filesystem/extention drivers

Because this document contains conceptual information about an image system, it is important
to understand what an operating system image is all about. A normal installation process
is starting from a given installation source and installs single pieces of software until the
system is complete. During this process manual user intervention may be required. However,
an operating system image represents an already completed installation, encapsulated as a file
and optionally includes the configuration for a specific task. Such an operating system starts
working as soon as the image has been brought to a system storage device no matter if this is
a volatile or non volatile storage. The process of creating an image takes place without user
interaction. This means, all requirements of the encapsulated system has to be fulfilled before
the image is created. All of this information is stored in the image description.

2 Basic Workflow

Table of Contents

b2/ R = To Yo il o o Yot 5
DA - ToTo] Wl 2 1 =1 0 (<] () N 6
2.3. Common and Distribution Specific COdecceiiirreriiiiriiieeeiiieeeccreee e eeeeeeeeeee 6

The creation of an image with KIWI is always divided into two basic steps: the prepare and
the create step. The create step requires the prepare step to be exited successfully. Within this
first prepare step, KIWI builds a new root tree or, in KIWI speak, a new unpacked image. The
building of a new root tree consists of the creation of the directory specified to hold it and the
installation of the selected packages on it. The installation of software packages is driven by
a package manager. KIWI supports the smart package managers. The prepare step executes
the following major stages:

+ Creating Root Directory. To prevent accidental deletion of an existing root tree, KIWI
will stop with an error message if this folder already exists, unless the option - - force-new-
root is used in which case the existing root will be deleted.

« Installing Packages. First the selected package manager (smart by default) is instructed
to use the repositories specified in the image description file. Then the packages specified
in the bootstrap section are installed. These packages are installed externally to the target
root system (i. e. not chroot’ed) and establish the initial environment so the rest of the
process may run chroot’ed. Essential packages in this section are filesystem and glibc-locale.
In practice you only need to specify those two, since the rest of the packages will be pulled
because of the dependency system. To save space in your image you could schedule a set
of packages for deletion after the package installation phase is over by listing them in the
delete section

« Executing User Defined config.sh Script. At the end of the preperation stage the
optional script named config.sh is called. This script should be used to configure the
system which means, for example, the activation of services. For a detailed description what
functions are already available to configure the system, refer to the kiwi::config.sh(1) man

page.

« Managing New Root Tree. At this point you can make changes on your unpacked image
so it fits your purpose better. Bear in mind that changes at this point will be discarded
and not repeated automatically if you rerun the prepare phase unless you include them in
your original config.xml file and/or config.sh script. Please also note that the image
description has been copied into the new root below the directory new-root/image. Any
subsequent create step will read the image description information from the new root tree

and not from the original image description location. According to this if you need to change
the image description data after the prepare call has finished, you need to change it inside
the new root tree as well as in your original description directory to prevent loosing the
change when your root tree will be removed later for some reason.

After the prepare step has finished successfully, a subsequent building of an image file follows
or, in KIWI speak, a new packed image. The building of an image requires a successfully
prepared new root tree in the first place. Using this tree multiple image types can be created.
So to speak it’s possible to create a VMware image and a Xen image from the same prepared
root tree. The create step executes the following major stages:

+ Executing User Defined Script images.sh.
At the beginning of the creation stage the optional script named images. sh is called. This
script has no distinctive use case like config.sh. However, it is most often used to remove
packages which were pulled in by a dependency, but are not really required for later use
of the operating system. For a detailed description what functions are already available to
images.sh, refer to the kiwi::images.sh(1) man page.

+ Creating Requested Image Type.
What image type(s) a KIWI image supports depends on what types has been setup in the
main image description file config.xml. At least one type must be setup. The following
picture shows what image types are currently supported by KIWI:

Figure 2.1. Image Types

Live Image o

Bﬂnﬂg-xml — = Disk ||T|EHE e

TN

/ S OEM Image 9

PXE Image e

Live Image on CD, DVD or USB stick

Full virtual system which can be played in VMWare, Xen, Amazon Cloud, etc. Guest
configuration can be created.

Preload system with install media on CD or USB stick

Network boot image. Kiwi also provides the bootp environment via the package kiwi-
pxeboot

©o® o6

Boot Process

Detailed information including a step by step guidance how to call KIWI and how to make use
of the result image can be found in the image type specific sections later in this document.

2.1. Boot Process

Todays Linux systems are using a special boot image to control the boot process. This boot
image is called initrd. The Linux kernel loads this compressed cpio initial ramdisk into RAM
and calls init or (if present) the program linuxrc. The KIWI image system also takes care for
the creation of this boot image. Each image type has it’s own special boot code and shares
the common parts in a set of module functions. The image descriptions for the boot images
are provided by KIWI and thus the user has in almost all cases no need to take care for the
boot image.

Figure 2.2. Boot Process

Boot Image
(initrd / kernel)

System Image 9

® Descriptions are provided by KIWI, use is recommended but not required
® A description needs to be created or a template can be used

Furthermore, KIWI automatically creates this boot image along with the requested image type.
It does that by calling itself in a prepare and create call. There is no difference in terms of the
description of such a boot image compared to the system image description. The system image
description is the one the user creates and it represents the later operating system, whereas
the boot image only lives temporarly in RAM as long as the system image will be activated.

Boot Parameters

The boot image descriptions are stores in /usr/share/kiwi/image/*boot and can be build
in the same way as the system image. A boot image without a corresponding system image
doesn’t make sense though.

2.2. Boot Parameters

When booting an image created by KIWI using one of the provided boot images there are some
useful kernel parameters mainly meant for debugging purposes. Note the following parameters
are only useful if the KIWI initrd is used. In case of any other initrd code written by yourself or
simply because KIWI replaced itself with the distribution specfic mkinitrd tool the parameters
might not have any effect.

+ kiwidebug=1. If the boot process encounters a fatal error, the system normally reacts
with a reboot after 120 seconds. This so called “exception” can be influenced by the
kiwidebug parameter. If set to 1, the system will stop and provide the user with a shell
prompt instead of a reboot. This shell contains some basic standard commands which could
help to find the cause of the problem.

« kiwistderr=/dev/... While the system boots, KIWI writes messages to tty1 and tty3.
The ttyl messages are highlevel information whereas the tty3 messages represents the
shell debug output and any error messages from the commands called. With the kiwistderr
parameter one can combine both message sets and specify where to write them to. It’s very
common to set /dev/console as possible alternative to the default logging behaviour.

2.3. Common and Distribution Specific
Code

KIWI has been developed to be usable for any Linux distribution. However, each Linux
distribution is different. On one hand, KIWI provides common code

By design of a Linux distribution there are differences between each of them. With KIWI
we provide on one hand the code which is common to all Linux distributions according to
standards and on the other hand there is also code where we have to distinguish between
the distribution type.

In case of such specific tasks which are almost all in the area of booting, KIWI provides a
set of functions which all contains a distribution prefix. As this project uses SUSE Linux as
base distribution all required distribution specific tasks has been implemented for SUSE. Other
distributions could be missing. The existing implementation for SUSE turns out to be adapted
to other distributions very easily though.

A look into the code therefore will show you functions which are prefixed by “suse” as well as
scripts whose names starts with “suse-”. If you see such a prefix, script, or function, you can
be assured that this is something distribution specific. If you plan to use KIWI with another
distribution than SUSE, you need to adapt it. For example, the boot workflow is controlled
by a program called linuxrc which is in KIWI a script represented by suse-linuxrc. Another
example is the function suseStripKernel, which is able to remove everything but a specified
list of kernel drivers from the SUSE kernel.

The prefixed implementation allows us to integrate all the distribution specific tasks into one
project but this of course requires the help and knowledge of the people who are familar with
their preferred Linux distribution.

3 KIWI Image Description

Table of Contents

3.1. The config. XMl Filecooiiiiiiiiiiiiiieieiteeeetcee ettt e st e e s nee e e s e 9

In order to be able to create an image with KIWI a so called image description must be created.
The image description is represented by a directory which has to contain at least one file
named config.xml or alternatively *.kiwi. A good start for such a description can be found
in the examples provided in /usr/share/doc/packages/kiwi/examples.

Figure 3.1. Image Description Directory

config.xml I

optional
images.sh
config.sh
root/
config-yast-firstboot. xml
config-yast—autoyast.xml
config—cdroot.igz
config—cdroaot.sh

config/

The following additional information is optional for the process of building an image, but
most often mandatory for the functionality of the later operating system:

images.sh
Optional configuration script while creating the packed image. This script is called at
the beginning of the image creation process. It is designed to clean-up the image system.
Affected are all the programs and files only needed while the unpacked image exists.

config.sh
Optional configuration script while creating the unpacked image. This script is called at the
end of the installation, but before the package scripts have run. It is designed to configure

the image system, such as the activation or deactivation of certain services (insserv). The
call is not made until after the switch to the image has been made with chroot.

root
Subdirectory that contains special files, directories, and scripts for adapting the image
environment after the installation of all the image packages. The entire directory is copied
into the root of the image tree using cp -a.

config-yast-firstboot.xml
Configuration file for the control of the YaST firstboot service. Similar to the AutoYaST
approach, YaST also provides a boot time service called firstboot. Unfortunately there
is no GUI available to setup the firstboot, but good documentation in /usr/share/doc/
packages/yast2-firstboot. Once you have created such a firstboot file in your image
description directory, KIWI will process the file and setup your image as follows:

1. KIWI enables the firstboot service.
2. While booting the image, YaST is started in firstboot mode.

3. The firstboot service handles the instructions listed in the fileconfig-yast-
firstboot.xml.

4. If the process finished successfully, the environment is cleaned and firstboot will not
be called at next reboot.

config-yast-autoyast.xml
Configuration file which has been created by AutoYaST. To be able to create such an
AutoYaST profile, run:

yast2 autoyast

Once you have saved the information from the AutoYaST UI as config-yast-
autoyast.xml file in your image description directory KIWI will process on the file and
setup your image as follows:

1. While booting the image YaST is started in AutoYaST mode automatically

2. The AutoYaST description is parsed and the instructions are handled by YaST. In other
words the system configuration is performed

3. If the process finished successfully the environment is cleaned and AutoYaST won’t be
called at next reboot.

config-cdroot.tgz
Archive which is used for ISO images only. The data in the archive is uncompressed and
stored in the CD/DVD root directory. This archive can be used, for example, to integrate
a license file or information directly readable from the CD or DVD.

config-cdroot.sh
Along with the config-cdroot.tgz one can provide a script which allows to manipulate
the extracted data.

config/
Optional subdirectory that contains Bash scripts that are called after the installation of
all the image packages, primarily in order to remove the parts of a package that are not
needed for the operating system. The name of the Bash script must resemble the package
name listed in the config.xml.

The config.xml File

3.1. The config.xml File

The mandatory image definition file is divided into different sections which describes
information like the image name and type as well as the packages and patterns the image
should consist of.

The following information explains the basic structure of the XML document. When KIWI is
executed, the XML structure is validated by the KIWI RELAX NG based schema. For details
on attributes and values please refer to the schema documentation file at /usr/share/doc/
packages/kiwi/kiwi.rng.html.

3.1.1. image Element

<image schemaversion="3.5" name="iname"
displayname="text"
inherit="path"
kiwirevision="number"
id="10 digit number">
<l-- ... -->
</image>

The image definition starts with an image tag and requires the schema format at version 2.0.
The attribute name specifies the name of the image which is also used for the filenames created
by KIWI. Because we don’t want spaces in filenames the name attribute must not have any
spaces in its name.

The following optional attributes can be inserted in the image tag:

displayname
allows setup of the boot menu title for isolinux and grub. So you can have suse-SLED-foo
as the image name but something like my cool Image as the boot display name.

inherit
inherits the packages information from another image description

kiwirevision
specifies a KIWI SVN revision number which is known to build a working image from this
description. If the KIWI SVN revision is less than the specified value, the process will exit.
The currently used SVN revision can be queried by calling kiwi - -version.

id
sets an identification number which appears as file /etc/ImagelID within the image.

Inside the image section the following mandatory and optional subelements exists.
The simplest image description must define the elements description, preferences,
repository and packages (at least one of type="bootstrap").

3.1.2. description Element

<description type="system">
<author>an author</author>
<contact>mail</contact>
<specification>short info</specification>
</description>

profiles Element

The mandatory description section contains information about the creator of this image
description. The attribute type could be either of the value system which indicates this is a
system image description or at value boot for boot image descriptions.

3.1.3. profiles Element

<profiles>
<profile name="name" description="text"/>
<l-- ... -->

</profiles>

The optional profiles section lets you maintain one image description while allowing for
variation of the sections packages and drivers that are included. A separate profile element
must be specified for each variation. The profile child element, which has name and
description attributes, specifies an alias name used to mark sections as belonging to a profile,
and a short description explaining what this profile does.

To mark a set of packages/drivers as belonging to a profile, simply annotate them with the
profiles attribute. It is also possible to mark sections as belonging to multiple profiles by
separating the names in the profiles attribute with a comma. If a packages or drivers tag
does not have a profiles attribute, it is assumed to be present for all profiles.

3.1.4. preferences Element

<preferences profiles="name">
<version>1.1.2</version>
<packagemanager>smart</packagemanager>

<type image="name" ...>
<ec2config|lvmvolumes |oemconfig|pxedeploy|size|split|machine>
</type>
</preferences>

The mandatory preferences section contains information about the supported image type(s),
the used package manager, the version of this image, and optional attributes. The image
version must be a three-part version number of the format: Major.Minor.Release. In case of
changes to the image description the following rules should apply:

+ For smaller image modifications that do not add or remove any new packages, only the
release number is incremented. The config.xml file remains unchanged.

« For image changes that involve the addition or removal of packages the minor number is
incremented and the release number is reset.

« For image changes that change the size of the image file the major number is incremented.

By default, KIWI use the smart package manager but it is also possible to use the SUSE package
manager called zypper.

In general the specification of one preferences section is sufficient. However, it’s possible to
specify multiple preferences sections and distinquish between the sections via the profiles
attribute. Data may also be shared between different profiles. Using profiles it is possible to,
for example, configure specific preferences for OEM image generation. Activation of a given
preferences during image generation is triggered by the use of the - -add-profile command
line argument.

For each preferences block at least one type element must be defined. It is possible to specify
multiple type elements in any preferences block. To set a given type description as the

10

preferences Element

default image use the boolean attribute primary and set its value to true. The image type to
be created is determined by the value of the image attribute. The following list describes the
supported types and possible values of the image attribute:

image="cpio"
Use the cpio image type to specify the generation os a boot image (intrd). When generating
a boot image it is possible to specify a specific boot profile and boot kernel using the
optional bootprofile="default" and bootkernel="std" attributes.

A boot image should group the various supported kernels into profiles. If the user chooses
not to use the profiles supplied by KIWI, it is required that one profile named std be
created. This profile will be used if no other bootkernel is specified. Further it is required
to create a profile named default. This profile is used when no bootprofile is specified.

It is recommended that special configurations that omit drivers, use special drivers and/
or special packages be specified as profiles.

The bootprofile and bootkernel attribute are respected within the definition of a system
image. Us the attribute and value type="system" of the description element to specify
the creation of a system image. The values of the bootprofile and bootkernel attributes are
used by KIWI when generating the boot image.

image="iso"
Specify the key-value pair image ="is0" to generate a live system suitable for deployment
on optical media (CD or DVD). Use the boot="isoboot/suse-*" attribute when
generating this image type to select the apropriate boot image for optical media. In
addition the optional flags attribute may be set to the following values with the effects
described below:

clic
Creates a fuse based compressed read-only filesystem which allows write operations
into a cow file.

compressed
Compressed filesystem with squashfs mounted with an aufs based overlay mount to
allow read-write access.

unified
Compressed filesystem with squashfs mounted with an aufs based overlay mount to
allow read-write access.

If the flags attribute is not used the filesystem will not be compressed and no union
filesystem is used. In this case it is recommended to specify a split section as a child
of this type element. The specification of a split block is also recommended when
flags ="compressed" is used.

image="oem"
Use this type to create a virtual disk system suitable in a preload setting. In addition
specify the attributes filesystem, and boot ="oemboot/suse-*"to control the filesystem
used for the virtual and to specify the proper boot image. Using the optional format
attribute and setting, the value to iso or usb will create self installing images suitable for
optical media or a USB stick, respectively. Booting from the media will deploy the OEM
preload image onto the selected storage device of the system. It is also possible to configure
the system to use logical volumes. Use the optional lvm attribute and specify the logical
volume configuration with the lvmvolumes child element. The default volume group name

11

preferences Element

is kiwiVG. Further configuration of the image is performed using the appropriate *config
child block.

image ="pxe"

Creating a network boot image is supported by KIWI with the image ="pxe" type. When
specifying the creation of a netwoork boot image use the filesystemand boot ="netboot/
suse-*" attributes to specify the filesystem of the image and the proper boot image. To
compress the image file set the compressed boolean attribute to true. This setting will
compress the image file and has no influence on the filesystem used within the image. The
compression is often use to support better transfer times when the pxe image is pushed to
the boot server over a network connection. The pxe image layout is controlled by using
the pxedeploy child element.

image="split"

The split image support allows the creation of an image as split files. Using this technique
one can assign different filesystems and different read-write properties to the different
sections of the image. The oem, pxe, usb, and vmx types can be created as a split system
image. Use the boot ="oem|netboot|usb|vmx/suse-*" attribute to select the underlying
type of the split image. The attributes fsreadwrite, fsreadonly are used to controll the
read-write properties of the filesystem specified as the attributes value. Use the appropriate
*config child block to specify the properties of the underlying image. For example when
building a OEM based split image use the oemconfig child section.

image="usb"
Use the usb value to create a USB stick image. Set the filesystem attribute to the desired
supported filesystem for the image and use the boot="usbboot/suse-*" attribute to
select the USB boot image for the system. For a USB image you may also select GRUB or
Syslinux as a bootloader by setting the optional bootloader attribute to grub ot syslinux,
respectively. The USB image may also be created with LVM support. The same rules as
indicated for the OEM image apply.

image="vmx"

Creation of a virtual disk system is enabled with the vmx value of the image attribute. Set
the filesystem of the virtual disk with the filesystem attribute and select the appropriate
boot image by setting boot="vmxboot/suse-*" The optional format attribute is used
to specify one of the virtualization formats supported by QEMU, such as vmdk (also
the VMware format) or qcow2. For the virtual disk image the optional vga attribute
may be used to configure the kernel framebuffer device. Acceptable values can be found
in the Linux kernel documentation for the framebuffer device (see Documentation/fb/
vesafb.txt). KIWI also supports the selection of the booloader for the virtual disk
according to the rules indicated for the USB system. Last but not least the virtual disk
system may also be created with a LVM based layout by using the lvm attribute. The
previously indicated rules apply. Use the machine child element to specify appropriate
configuration of the virtual disk system.

All of the mentioned types can specify the boot attribute which tells KIWI to call itself to build
the requested boot image (initrd). It is possible to tell KIWI to check for an already built boot
image which is a so called prebuilt boot image. To activate searching for an appropriate prebuilt
boot image the type section also provides the attribute checkprebuilt="true|false". If
specified KIWI will search for a prebuilt boot image in a directory named /usr/share/kiwi/
image/*boot/*-prebuilt. Example: If the boot attribute was set to isoboot/suse-10.3 and
checkprebuilt is set to t rue KIWI will search the prebuilt boot image in /usr/share/kiwi/
image/isoboot/suse-10.3-prebuilt. The directory KIWI searches for the prebuilt boot
images can also be specified at the commandline with the - -prebuiltbootimage parameter.

12

preferences Element

Within the preferences section there are the following optional attributes:

rpm-check-signatures
Specifies whether RPM should check the package signature or not

rpm-excludedocs
Specifies whether RPM should skip installing package documentation

rpm-force
Specifies whether RPM should be called with - -force

keytable
Specifies the name of the console keymap to use. The value corresponds to a map file in
/usr/share/kbd/keymaps. The KEYTABLE variable in /etc/sysconfig/keyboard file is
set according to the keyboard mapping.

timezone
Specifies the time zone. Available time zones are located in the /usr/share/zoneinfo
directory. Specify the attribute value relative to /usr/share/zoneinfo. For example,
specify Europe/Berlin for /usr/share/zoneinfo/Europe/Berlin. KIWI uses this value
to configure the timezone in /etc/localtime for the image.

locale
Specifies the name of the UTF-8 locale to use, which defines the contents of the RC_LANG
system environment variable in /etc/sysconfig/language. Please note only UTF-8
locales are supported here which also means that the encoding must not be part of the
locale information. The KIWI schema validates the locale string according to the following
pattern:[a-z]1{2} [A-Z1{2}(,[a-z1{2} [A-Z]1{2})*. This means you have to specifiy
the locale like the following example: en_US or en_US,de_DE

boot-theme
Specifies the name of the gfxboot and bootsplash theme to use

defaultdestination
Used if the - -destdir option is not specified when calling KIWI

defaultroot
Used if the option - - root is not specified when calling KIWI

defaultbaseroot
Used if the option - -base-root is not specified when calling KIWI. It’s possible to prepare
and create an image using a predefined non empty root directory as base information.
This could speedup the build process a lot if the base root path already contains most of
the image data.

kernelcmdline
Specifies additional kernel parameters. The following example disables kernel messages:
kernelcmdline="quiet"

The type element may contain child elements to provide specific configuration information
for the given type. The following lists the supported child elements:

ec2config
The optional ec2config block is used to specify information relevant only to AWS EC2
images. The following information can be provided:

13

preferences Element

<ec2config>
<ec2accountnr> Your AWS account number </ec2accountnr>
<ec2certfile> Path to the AWS cert-*.pem file </ec2certfile>
<ec2privatekeyfile> Path to the AWS pk-*.pem file </ec2privatekeyfile>
</ec2config>

lvmvolumes

Using the optional lvmvolumes section it possible to create a LVM (Logical Volume
Management) based storage layout. By default, the volume group is named kiwiVG. It
is possible to change the name of the group by setting the lvmgroup attribute to the
desired name. Individual volumes within the volume group are specified using the volume
element.

The following example shows the creation of a volume named usr and a volume named
var inside the volume group systemVG.

<lvmvolumes lvmgroup="systemVG">

<volume name="usr" freespace="100M"/>

<volume name="var" size="200M"/>
</lvmvolumes>

With the optional freespace attribute it is possible to add space to the volume. If the
freespace attribute is not set the created volume will be 80 % to 90 % full. Using the
optional size attribute the absolute size of the given volume is specified. The size attribute
takes precedence over the freespace attribute. Should the specified size be too small the
value will be ignored and a volume with approximately 80 % to 90 % fill will be created.

oemconfig

By default, the oemboot process will create or modify a swap, /home and / partition. It is
possible to influence the behavior by the oem-* elements explained below. KIWI uses this
information to create the file /config.oempartition as part of the automatically created
oemboot boot image. The format of the file is a simple key=value format and created by
the KIWIConfig.sh function named baseSetupOEMPartition.

<oemconfig>
<oem-systemsize>2000</oem-systemsize>
<oem-... >

</oemconfig>

<oem-boot-title>text</oem-boot-title>
By default, the string OEM will be used as the boot manager menu entry when KIWI
creates the GRUB configuration during deployment. The oem-boot-title element
allows you to set a custom name for the grub menu entry. This value is represented
by the OEM BOOT TITLE variable in config.oempartition.

<oem-home>true|false</oem-home>
Specify if a partition for the home directory should be created. Creation of a home
partition is the default behavior. This value is represented by the OEM WITHOUTHOME
variable in config.oempartition.

<oem-Kkiwi-initrd>true|false</oem-kiwi-initrd>
If this element is set to true (default value is false) the oemboot boot image (initrd)
will not be replaced by the system (mkinitrd) created initrd. This option is useful when
the system is installed on removable storage such as a USB stick or a portable external
drive. For movable devices it is potentially necessary to detect the storage location
during every boot. This detection process is part of the oemboot boot image. This value
is represented by the OEM _KIWI INITRD variable in config.oempartition.

14

preferences Element

<oem- reboot>true|false</oem- reboot>
Specify if the system is to be rebooted after the oem image has been deployed to the
designated storage device (default value is false). This value is represented by the
O0EM REBOOT variable in config.oempartition.

<oem-recovery>true|false</oem-recovery>

If this element is set to true (default value is false), KIWI will create a recovery
archivefrom the prepared root tree. The archive will appear as /recovery.tar.bz2 in
the image file. During first boot of the image a single recovery partition will be created
and the recovery archive will be moved to the recovery partition. An additional boot
menu entry is created that when selected restores the original root tree on the system.
The user information on the /home partition or in the /home directory is not affected
by the recovery process. This value is represented by the OEM_RECOVERY variable
in config.oempartition.

<oem-recoveryID>partition-id</oem-recoveryID>
Specify the partition type for the recovery partition. The default is to create a Linux
partition (id = 83). This value is represented by the OEM RECOVERY ID variable in
config.oempartition.

<oem- swap>true|false</oem- swap>
Specify if a sawp partition should be created. The creation of a swap partition is
the default behavior. This value is represented by the 0EM WITHOUTSWAP variable in
config.oempartition.

<oem-swapsize>number in MB</oem-swapsize>
Set the size of the swap partition. If a swpa partition is to be created and the size of the
swap partition is not specified with this optional element, KIWI will calculate the size
of the swpar partition and create a swap partition equal to two times the RAM installed
on the system at initial boot time. This value is represented by the OEM SWAPSIZE
variable in config.oempartition.

<oem-systemsize>number in MB</oem-systemsize>
Set the size of the root partition. This value is represented by the variable
OEM SYSTEMSIZE in config.oempartition.

pxedeploy

Information contained in the optional pxedeploy section is only considered if the image
attribute of the type element is set to pxe. In order to use a PXE image it is necessary
to create a network boot infrastructure. Creation of the network boot infrastructure is
simplified by the KIWI provided package kiwi-pxeboot. This package configures the basic
PXE boot enviroment as expected by KIWI pxe images. The kiwi-pxeboot package creates
a directory structure in /srv/tftpboot. Files created by the KIWI create step need to be
copied to the /srv/tftpboot directory structure. For additional details about the PXE
image please refere to the PXE Image chapter later in this document.

In addition to the image files it is necessary that information be provided about the client
setup. This information, such as the image to be used or the partitioning, is contained in a
file with the name config.MAC in the directory /srv/tftpboot/KIWI. The content of this
file is created automatically by KIWI if the pexedeploy section is provided in the image
description. A pxedeploy section is outlined below:

<pxedeploy server="IP" blocksize="4096">
<timeout>seconds</timeout>

15

preferences Element

<kernel>kernel-file</kernel>
<initrd>initrd-file</initrd>
<partitions device="/dev/sda">
<partition type="swap" number="1" size="MB"/>
<partition type="L" number="2" size="MB"
mountpoint="/" target="true"/>
<partition type="fd" number="3"/>

</partitions>
<union ro="dev" rw="dev" type="aufs|clicfs|unionfs"/>
<configuration source="/KIWI/../file" dest="/../file" arch="..."/>
<configuration .../>

</pxedeploy>

The server attribute is used to specify the IP address of the PXE server. The blocksize
attributes specifies the blocksize for the image download. Other protocols are supported
by KIWI but require the kiwiserver and kiwiservertype kernel parameters to be set
when the client boots.

The value of the optional timeout element specifies the grub timeout in seconds to be
used when the KIWI initrd configures and installs the grub boot loader on the client
machine after the first deployment to allow standalone boot.

Passing kernel parameters is possible with the use of the optional kernelcmdline
attribute in the type section. The value of this attribute is a string specifying the settings
to be passed to the kernel by the GRUB bootloader. The KIWI initrd includes these kernel
options when installing grub for standalone boot

The optional kernel and initrd elements are used to specify the file names for the
kernel and initrd on the boot server respectively. When using a special boot method not
supported by the distribution’s standard mkinitrd, it is imperative that the KIWI initrd
remains on the PXE server and also be used for local boot. If the configured image uses
the split type or the pexedeploy section includes any union information the kernel
and initrd elements must be used.

The partitions section is required if the system image is to be installed on a disk
or other permanent storage device. Each partition is specified with one partition child
element. The mandatory type attribute specifies the partition type. The possible values
are the sfdisk supported types, use the following command to obtain a list of supported
values:

sfdisk --list-type

The required number attribute provides the the number of the partition to be created.
The size of the partition may be specified with the optional size attribute. The optional
mountpoint attribute provides the value for the mount point of the partition. The
optional boolean target attribute identifies the partion as the system image target
partition. KIWI always generates the swap partition as the first partition of the netboot
boot image. By default, the second partition is used for the system image. Use the
boolean target attribute to change this behavior. Providing the value image for the
size attribute triggers KIWI into calculating the required size for this partition. The
calculated size is sufficient for the created image.

If the system image is based on a read-only filesystem such as squashfs and should be
mounted in read-write mode use the optional union element. The type attribute is used
to specify one of the supported overlay filesystem (aufs, clicfs, or unionfs). Use the
ro attribute to point to the read only device and the rw attribute to point to the read-
write device.

16

preferences Element

« The optional configuration element is used to integrate a network -client’s
configuration files that are stored on the server. The source attribute specifies the path
on the server for the file to be downloaded. The dest attribute specifies destination of the
downloaded file on the network client starting at the root (/) of the filesystem. Multiple
configuration elements may be specified such that multiple files can be transferred to
the network client. In addition configuration files can be bound to a specific client
architecture by setting the optional arch attribute. To specify multiple architectures use
a comma separated string.

size
Use the size element to specify the image size in Megabytes or Gigabytes. The unit
attribute specifies whether the given value will be interpreted as Megabytes (unit="M")
or Gigabytes (unit ="G"). The optional boolean attribute additive specifies whether or not
the given size should be added to the size of the generated image or not.

In the event of a size specification that is too small for the generated image, KIWI will
expand the size automatically unless the image size exceeds the specified size by 100 MB
or more. In this case KIWI will generate an error and exit.

Should the given size exceed the necessary size for the image KIWI will not alter the image
size as the free space might be required for proper execution of components within the
image.

If the size element is not used KIWI will create an image with containing approxiamtely
30 % free space.

<size unit="M">1000</size>

split
For images of type split or iso the information provided in the optional split section is
is considered if the compressed attribute is is set to true. With the configuration in this
block it is possible to determine which files are writable and whether these files should
be persentently writable or temporarily. Note that for ISO images only temporary write
access is possible.

When processing the provided configuration KIWI distinguishes between directories and
files. For example, providing /etc as the value of the name attribute indicates that the /
etc directory should be writable. However, this does not include any of the files or sub-
directories within /etc. The content of /etc is populated as symbolic links to the read-
only files. The advantage of setting only a directory to read-write access is that any newly
created files will be stored on the disk instead of in tmpfs. Creating read-write access to
a directory and it’s files requires two specifications as showb below.

<split>
<temporary>
<!-- read/write access to -->

<file name="/var"/>
<file name="/var/*"/>

<!-- but not on this file: -->
<except name="/etc/shadow" />
</temporary>
<persistent>
<!-- persistent read/write access to: -->

<file name="/etc"/>

<file name="/etc/*"/>

<!-- but not on this file: -->
<except name="/etc/passwd"/>

17

preferences Element

</persistent>
</split>

Use the except element to specify exceptions to previously configured rules.

machine

The optional machine section serves to specify information about a VM guest machine.
Using the data provided in this section, KIWI will create a guest configuration file required
to run the image on the target machine.

If the target is a VMware virtual machine indicated by the format attribute set to vmdk,
KIWI creates a VMware configuration file. If the target is a Xen virtual machine indicated
by the domain attribute in the machine section KIWI will create a Xen guest config file.

The sample block below shows the general outline of the information that can be specified
to generate the configuration file

<machine arch="arch" memory="MB"
HWversion="number" guest0S="suse|sles"
domain="dom0 |domU" />
<vmnic driver="name" interface="number" mode="mode"/>
<vmdisk controller="ide|scsi" id="number"/>
<vmdvd controller="ide|scsi" id="number"/>
</machine>

arch
The virtualized architecture. Supported values are ix86 or x86 64. The default value
is ix86.

memory
The mandatory memory attribute specifies how much memory in MB should be
allocated for the virtual machine

HWversion
The VMware hardware version number, the default value is 3.

guest0S
The guest OS identifier. For the ix86 architecture the default value is suse and for
the x86_64 architecture suse-64 is the default. At this point only the SUSE and SLES
guestOS types are supported.

domain
The Xen domain setup. This could be either a domO which is the host machine hosting
the guests and therefore doesn’t require a configuration file, or it could be set to domU
which indicates this is a guest and also requires a guest configuration which is created
by KIWL

The following information can be provided to setup the virtual main storage device and
CD/DVD drive connection:

controller
Supported values for the mandatory controller attribute are ide and scsi.

id
The mandatory id attribute specifies the disk id. If only one disk is set the id value
should be set to 0.

18

users Element

device
The device attribute specifies the disk that should appear in the para virtual instance.
Therefore only relevant for Xen

The following information can be provided to setup the virtual network interface:

driver
The mandatory driver attribute specifies the driver to be used for the virtual network
card. The supported values are €100, vlance, and vmxnet. If the vmxnet driver is
specified the vmware tools must be installed in the image.

interface
The mandatory interface attribute specifies the interface number. If only one
interface is set the value should be set to 0.

mode
The network mode used to communicate outside the VM. In many cases the bridged
mode is used.

3.1.5. users Element

<users group="group_name" id="number">
<user home="dir" id="number" name="user" pwd="..."
pwdformat="encrypted|plain" realname="string" shell="path/>
<l-- ... -->

</users>

The optional users element lists the users belonging to the group specified with the group
attribute. At least one user child element must be specified as part of the users element.
Multiple users elements may be specified.

The attributes home, id, name, pwd, realname, and shell specify the created users home
directory, the user name, the user’s password, the user’s real name, and the user’s login shell,
respectively. By default, the value of the password attribute is expected to be an encrypted
string. An encrypted password can be created using kiwi - - createpassword. It is also possible
to specify the password as a non encrypted string by using the pwdformat attribute and setting
it’s value to “plain”. KIWI will then encrypt the password prior to the user being added to
the system.

All specified users and groups will be created if they do not already exist. By default, the
defined users will be part of the group specified with the group attribute of the users element
and the default group called “users”. If it is desired to have the specified users to only be
part of the given group it is necessary to specify the id attribute. It is recommended to use
a group id greater than 100.

3.1.6. drivers Element

<drivers type="type" profiles="name">
<file name="filename"/>
<l-- ... -->

</drivers>

The optional drivers element is only useful for boot images (initrd). As a boot image doesn’t
need to contain the complete kernel one can save a lot of space if only the required drivers
are part of the image. Therefore the drivers section exists. If present only the drivers which

19

repository Element

matches the file names or glob patterns will be included into the boot image. The type
attribute specifies one of the following driver types:

drivers
Each file is specified relative to the /lib/modules/Version/kernel directory.

netdrivers
Each file is specified relative to the /lib/modules/Version/kernel/drivers directory.

scsidrivers
Each file is specified relative to the /lib/modules/Version/kernel/drivers

usbdrivers
Each file is specified relative to the /1ib/modules/Version/kernel/drivers directory.

According to the driver element the specified files are searched in the corresponding
directory. The information about the driver names is provided as environment variable named
like the value of the type attribute and is processed by the function suseStripKernel.
According to this along with a boot image description a script called images.sh must exist
which calls this function in order to allow the driver information to have any effect.

3.1.7. repository Element

<repository type="type" status="replaceable"
alias="name" priority="number">
<source path="URL"/>
</repository>

The mandatory repository element specifies the source URL and type used by the package
manager. The type attribute specifies the repository type which must be supported by the
package manager. At the moment KIWI supports the package managers smart and zypper
whereas smart has support for more repository types compared to zypper. Therefore the
possible values for the type attribute has beend copied from smart. The following table shows
the possible repo types:

Table 3.1. Supported Types for zypper and smart

Type smart Support zypper Support
apt-deb yes no
apt-rpm yes no
deb-dir yes no
mirrors yes no
red-carpet yes yes
rpm-dir yes yes
rpm-md yes yes
slack-site yes no
up2date-mirrors yes no
urpmi yes no
yast2 yes yes

Within the repository section there are the following optional attributes:

20

repository Element

status="replaceable"
This attribute makes only sense for boot image descriptions. It indicates that the repository
is allowed to become replaced by the repositories defined in the system image descriptions.
Because KIWI automatically builds the boot image if required it should create that image
from the same repositories which are used to build the system image to make sure both
fit together. Therefore it is required to allow the repository to become overwritten which
is indicated by the status attribute.

alias="name"
Specifies an alternative name used to identify the source channel. If not set the source

attribute value is used and builds the alias name by replacing each “/” with a “_”. An
alias name should be set if the source argument doesn’t really explain what this repository
contains

priority="number"
Specifies the repository priority assigned to all packages available in this repository. For
smart the following applies: If the exact same package is available in more than one
channel, the repository with the highest priority number is used. The value 0 means “no
priority is set”. For zypper the following applies: If the exact same package is available in
more than one channel, the repository with the lowest priority number is used. The value
99 means “no priority is set”.

The source child element contains the path attribute, which specifies the location (URL) of
the repository. The path specification can be any of the following, and can include the %arch
macro which is expanded to the architecture of the image building host.

this://PATH
A relative path name, which is relative to the image description directory being referenced.

iso://path/to/isofile
A path to a local .iso file which is then loopback mounted and used as a local path based
repository. Alternatively one can do the loop mount himself and point a standard local
path to the mounted directory

When using multiple .iso files from the same product, such SLES all .iso files need to be
located in the same directory, but only the first .iso file needs to be added as a repository
to the configuration. The first .iso file contains sufficient information for the package
management tool to find packages in the other .iso files as long as they are located in the
same directory. Attempting to use a second or third .iso file in a series as a stand alone
repository will result in an error.

http://URL
A http protocol based network location

https://URL
A https protocol based network location

ftp://URL
A ftp protocol based network location

opensuse://PROJECTNAME
A special http based network location which is created from the given openSUSE
buildservice project name. The result is pointing to an rpm-md repository on the openSUSE
buildservice. For example: path ="opensuse://openSUSE:10.3/standard"

21

packages Element

file:///local/path
A local path which should be an absolute path description. The file:// prefix is optional
and could also be omitted.

obs://$dirl/$dir2
A special buildservice path whereas $dirl and $dir2 represents the buildservice project
location. If this type is used as part of a boot attribute KIWI evaluates it to this://
images/$dirl/$dir2 and if used as part of a repository source path attribute it evaluates
to this://repos/$dirl/$dir2

3.1.8. packages Element

<packages type="type" profiles="name" patternType="type"
patternPackageType="type"
<package name="name" arch="arch"/>
<package name="name" replaces="name"/>
<package name="name" bootinclude="true" bootdelete="true"/>
<archive name="name" bootinclude="true"/>

<package .../>
<opensusePattern name="name"/>
<opensusePattern .../>
<opensuseProduct name="name"/>
<opensuseProduct .../>
<ignore name="name"/>
<ignore .../>

</packages>

The mandatory packages element specifies the list of packages (element package) and
patterns (element opensusePattern) to be used with the image. The value of the type
attribute specifies how the packages and patterns listed are handled, supported values are as
follows:

bootstrap
Bootstrap packages, list of packages for the new operating system root tree. The packages
list the required components to support a chroot environment in the new system root tree,
such a glibc.

delete
Delete packages, list of packages to be deleted from the image being created.

When using the delete type only package elements are considered, all other specifications
such as opensusePattern are ignored. The given package names are stored in the $delete
environment variable of the /.profile file created by KIWI. The list of package names
is returned by the baseGetPackagesForDeletion function. This list can then be used to
delete the packages ignoring requirements or dependencies. This can be accomplished in
the config.sh or images.sh script with the following code snippet:

rpm -e --nodeps --noscripts \
$(rpm -q ‘baseGetPackagesForDeletion‘ | grep -v "is not installed")

Note, that the delete value is indiscriminate of the image type being built.

image
Image packages, list of packages to be installed in the image.
iso
Image packages, a list of additional packages to be installed when building an ISO image.

22

packages Element

oem
Image packages, a list of additional packages to be installed when building an OEM image.

pxe
Image packages, a list of additional packages to be installed when building an PXE image.

usb
Image packages, a list of additional packages to be installed when building a USB image.

vmx
Image packages, a list of additional packages to be installed when building a vmx virtual
image of any format.

3.1.8.1. Using Patterns

Using a pattern name enhances the package list with a number of additional packages
belonging to this pattern. Support for patterns is SUSE-specific, and available with openSUSE
10.1 or later. The optional patternType and patternPackageType attributes specify which
pattern references or packages should be used in a given pattern. The values of these attributes
are only evaluated, if the KIWI pattern solver is used. If the new (up to SUSE 11.0) satsolver
pattern solver is used these values are ignored because the satsolver can’t handle that at the
moment. Allowed values for the pattern* attributes are:

only
RequiredIncorporates only patterns and packages that are required by the given pattern

plusSuggested
Incorporates patterns and packages that are required and suggested by the given pattern

plusRecommended
Incorporates patterns and packages that are required and recommended by the given
pattern.

By default, only required patterns and packages are used. The result list of packages is solved
into a clean conflict free list of packages by the package manager. This for example means
that including a suggested package may include required and recommended packages as well
according to the dependencies. If a pattern contains unwanted packages, you can use the
ignore element to specify an ignore list, with the name attribute containing the package name.
Please note that you can’t ignore a package if it is required by a package dependency of
another package in your list. The package manager will automatically pull in the package
even if you have ignored it.

3.1.8.2. Architecture Restrictions

To restrict a package to a specific architecture, use the arch attribute to specify a comma
separated list of allowed architectures. Such a package is only installed if the build systems
architecture (uname -m) matches one of the specified values of the arch attribute.

3.1.8.3. Image Type Specific Packages

If a package is only required for a specific type of image and replaces another package you
can use the replaces attribute to tell KIWI to install the package by replacing another one. For
example you can specify the kernel package in the type="image" section as

<package name="kernel-default" replaces="kernel-xen"/>

23

packages Element

and in the type ="xen" section as

<package name="kernel-xen" replaces="kernel-default"/>

The result is the xen kernel if you request a xen image and the default kernel in any other case.

3.1.8.4. Packages to Become Included Into the Boot Image

The optional attributes bootinclude and bootdelete can be used to mark a package inside the
system image description to become part of the corresponding boot image (initrd). This feature
is most often used to specify bootsplash and/or graphics boot related packages inside the
system image description but they are required to be part of the boot image as the data is used
at boot time of the image. If the bootdelete attribute is specified along with the bootinclude
attribute this means that the selected package will be marked as a “to become deleted” package
and is removed by the contents of the images.sh script of the corresponding boot image
description

3.1.8.5. Data not Available as Packages to Become Included

With the optional archive element it’s possible to include any kind of data into the image. The
archive elements expects the name of a tarball which must exist as part of the system image
description. KIWI then picks up the tarball and installs it into the image. If the bootinclude
attribute is set along with the archive element the data will also become installed into the
boot image.

24

4 Creating Appliances with KIWI

Table of Contents

B N 5 §] (o) oy OO RPN 25
4.2, The KIWI MOElcooouiiiiiiiiiiieeiiteeeee ettt st s e e st s eree s emne e 25

4.1. History

Traditionally, many computing functions were written as software applications running on
top of a general-purpose operating system. The consumer (whether home computer user
or the IT department of a company) bought a computer, installed the operating system or
configured a pre-installed operating system, and then installed one or more applications on
top of the operating system. An e-mail server was just an e-mail application running on top
of Linux, Unix, Microsoft Windows, or some other operating system, on a computer that was
not designed specifically for that application.

4.2. The KIWI Model

With KIWI we started to use a different model. Instead of installing firewall software on top of
a general purpose computer/operating system, the designers/engineers built images that are
designed specifically for the task. These are so called appliances. When building appliances
with KIWI the following proceeding has proven to work reliably. Nevertheless the following
is just a recommendation and can be adapted to special needs and environments.

1. Choose an appropriate image description template from the provided KIWI examples.
Add or adapt repositories, package names or both, according to the distribution you want
to build an image for.

2. Allow the image to create an in-place git repository to allow tracking of non-binary
changes. This is done by adding the following line into your config.sh script:

baseSetupPlainTextGITRepository

3. Prepare the preliminary version of your new appliance by calling kiwi - -prepare... and
refer to Chapter 9, USB Image—Live-Stick System for details.

4. Decide for a testing environment. In my opinion a real hardware based test machine
which allows to boot from USB is a good and fast approach. According to this make sure
you have a usb type in your config.xml

<type filesystem="ext3 boot="usbboot/suse-...">usb</type>

5. Create the preliminary live stick image of your new appliance by calling kiwi - -create...
After successful creation of the image files find an USB stick which is able to store your

25

The KIWI Model

appliance and plug it into a free USB port on your image build machine. Use the kiwi
--bootstick... call to deploy the image on the stick. Refer to Chapter 9, USB Image—
Live-Stick System for details.

Plug in the stick on your test machine and boot it.

After your test system has successfully booted from stick login into your appliance and
start to tweak the system according to your needs. This includes all actions required to
make the appliance work as you wish. Before you start take care for the following:

+ Create an initial package list. This can be done by calling:

rpm -ga | sort > /tmp/deployPackages

+ Check the output of the command git status and include everything which is unknown
to git and surely will not be changed by you and will not become part of the image
description overlay files to the /.gitignore files

After the initial package list exists and the git repository is clean you can start to configure
the system. You never should install additional software just by installing an unmanaged
archive or build and install from source. It’s very hard to find out what binary files had
been installed and it’s also not architecture safe. If there is really no other way for the
software to become part of the image you should address this issue directly in your image
description and the config.sh script but not after the initial deployment has happened.

As soon as your system works as expected your new appliance is ready to enter the final
stage. At this point you have done several changes to the system but they are all tracked
and should now become part of your image description. To include the changes into your
image description the following process should be used:

« Check the differences between the currently installed packages and the initial
deployment list. This can be done by calling:

rpm -qa | sort > /tmp/appliancePackages
diff -u /tmp/deployPackages /tmp/appliancePackages

Add those packages which are labeled with (+) to the <packages type="image">
section of your config.xml file and remove those packages which has been removed
(—) appropriately. If there are packages which has been removed against the will of
the package manager make sure you address the uninstallation of these packages in
your config.sh script. If you have installed packages from repositories which are not
part of your config.xml file you should also add these repositories in order to allow
KIWI to install the packages

+ Check the differences made in the configuration files. This can be easily done by calling:

git diff >/tmp/appliancePatch

The created patch should become part of your image description and you should make
sure the patch is applied when preparing the image. According to this the command:

patch -p0 < appliancePatch
needs to be added as part of your config.sh script.

+ Check for new non binary files added. This can be done by calling:

git status

26

The KIWI Model

All files not under version control so far will be listed by the command above. Check
the contents of this list make sure to add all files which are not created automatically
to become part of your image description. To do this simply clone (copy) these files
with respect to the filesystem structure as overlay files in your image description root/
directory.

9. All your valuable work is now stored in one image description and can be re-used in all
KIWI supported image types.

Congratulation! To make sure the appliance works as expected prepare a new image tree
and create an image from the new tree. If you like you can deactivate the creation of the git
repository which will save you some space on the filesystem. If this appliance is a server I
recommend to leave the repository because it allows you to keep track of changes during the
live time of this appliance.

27

28

5 Maintenance of Operating System
Images

Creating an image often results in an appliance solution for a customer and gives you the
freedom of a working solution at that time. But software develops and you don’t want your
solution to become outdated. Because of this together with an image people always should
think of image-maintenance. The following paragraph just reflects ideas how to maintain
images created by KIWTI:

29

T,

o

Figure 5.1. Image Maintenance Scenarios 7 e ——
~ —
o (¢ Package Source)
- H-_:' e
. S o— D
Image Description S

kiwi ——prepare ...

Amp/my0OSsImage

9 kiwi ——upgrade '
——add-repo ... ——add-repotype

n, A

+/ - (3)

9 kiwi ——prepare ...

Y

kiwi ——create ...

Image Descripti
Software package source changes

Faster, because already prepared, cannot handle image description changes, reuires free
space to store /tmp/my0SImage

Image Description changes

Covers all possible changes, does not require storage for prepared trees, slower, because
KIWI prepare runs again

ubversion, etc. to track changes

0 ©O0e

The picture in Figure 5.1 shows two possible scenarios which requires an image to become
updated. The first reason for updating an image are changes to the software, for example
a new kernel should be used. If this change doesn’t require additional software or changes
in the configuration the update can be done by KIWI itself using its - -upgrade option. In
combination with --upgrade KIWI allows to add an additional repository which may be
needed if the updated software is not part of the original repository. An important thing to
know is that this additional repository is not stored into the original config.xml file of the
image description.

Another reason for updating an image beside software updates are configuration changes or
enhancements, for example an image should have replaced its browser with another better
browser or a new service like apache should be enabled. In principal it’s possible to do all
those changes manually within the physical extend but concerning maintenance this would
be a nightmare. Why, because it will leave the system in an unversioned condition. Nobody
knows what has changed since the very first preparation of this image. So in short:

Dont’t modify physical extends manually!

Changes to the image configuration should be done within the image description. The image
description itself should be part of a versioning system like subversion. All changes can be
tracked down then and maybe more important can be assigned to product tags and branches.
As a consequence an image must be prepared from scratch and the old physical extend could
be removed.

31

32

6 System to Image Migration

Table of Contents

6.1. Create a Clean RepoSitory Set FirStcccceeevvuiiiiieiiiieiiiriieeneeretee e e e 33
6.2. Watch the Overlay and Unpackaged Filesccccoeeviuiieiiniiiiiiiiniiiieeeeieeeeeeeeeeeene 34
6.3, CRECKIIST ..ttt 34
6.4. Turn my System Into an IMage...ccceuuiiiiiiiiiiiiiiiiiiiii ettt 34

KIWI provides an experimental module which allows you to turn your running system into an
image description. This migration allows you to clone your currently running system into an
image. The process has the following limitations at the moment:

+ Works for SUSE systems only (with zypper on board)

« The process works semi automatically which means depending on the complexity of the
system some manual postprocessing might be necessary

When calling KIWI’s migrate mode it will try to find the base version of your operating
system and uses the currently active repositories specified in the zypper database to match
the software which exists in terms of packages and patterns. The result is a list of packages
and patterns which represents your system so far. Of course there are normally some data
which doesn’t belong to any package. These are for example configurations or user data. KIWI
collects all this information and would copy it as overlay files as part of the image description.
The process will skip all remote mounted filesystems and concentrate only on local filesystems.

6.1. Create a Clean Repository Set First

When starting with the migration it is useful to let kiwi know about all the repositories from
which packages has been installed to the system. In a first step call:

kiwi --migrate mySystem

This will create an HTML report where you can check which packages and patterns could
be assigned to the given base repository. In almost all cases there will be information about
packages which couldn’t be assigned. You should go to that list and think of the repository
which contains that packages (Pacman, etc). If something is missing add it either to the zypper
list on your system or use the KIWI options - -add-repo ... --add-repotype.

Continue calling the following command until your list is clean You should continue the
migration if you have a clean list of solved packages without any package skipped except you
know that this package can’t be provided or is not worth to become part of the migration.

33

Watch the Overlay
and Unpackaged Files

kiwi --migrate mySystem --nofiles [--skip package ...]

6.2. Watch the Overlay and Unpackaged
Files

Files which has been modified but belong to a package will be automatically copied into the
overlay directory below /tmp/mySystem/root. You should check that no modified file is a
binary because such a binary would be replaced by a new install of the package anyway. As a
software deloper people tend to compile software from source and copy/install them into their
system. Doing this could cause binary files previosly installed by a package to be reported as
modified. You should remove such files from your overlay tree.

The migration also copy the entire /etc directory into the overlay root directory because it
stores all important configuration files. Beside the important files there are most probably
a bunch of file which doesn’t belong to any package exists only for historical reasons. kiwi
creates a list of files and directories to support you best in sorting out what is required and
what can be ignored. Nevertheless this is the most time consuming part of your migration
review. Simply click on the all unpackaged files link to take a look at the complete list. Those
files you want to have in your image needs to be copied over to the /tmp/mySystem/root
directory

6.3. Checklist

After that you should walk through the following check list

+ Change author and contact in config.xml

+ Set appropriate name for your image in config.xml.

« Add/modify default type (oem) set in config.xml if needed

« Make sure your X11 configuration is appropriate according to the new target. A failsafe
version was created in /tmp/mysys/root/etc/X11/xorg.conf.install -> fbdev based

« Make sure yast2 is installed to be able to reconfigure the system. If yast2 is not installed
these tasks needs to be done else. Otherwise yast’s second stage is started on first boot of
the migrated image

+ If you want to access any remote filesystem it’s a good idea to let AutoYaST add them on
first boot of the system

+ Check your network setup in /etc/sysconfig/network. Is this setup still possible in the
cloned environment? Make sure you check for the MAC address of the card first.

6.4. Turn my System Into an Image...

After the process has finished you should check the size of the image description. The
description itself shouldn’t be that big. The size of a migrated image description mainly
depends on how many overlay files exists in the root/ directory. You should make sure to
maintain only required overlay files. Now let’s try to create a clone image from the description.
By default an OEM image which is a virtual disk which is able to run on real hardware too

34

Turn my System
Into an Image...

is created. On success you will also find a ISO file which is an installable version of the OEM
image. If you burn the ISO on a DVD you can use that DVD to install your cloned image on
another computer.

kiwi -p /tmp/migrated --root /tmp/mySys
kiwi --create /tmp/mySys -d /tmp/myResult

If everything worked well you can test the created OEM image in any full virtual operating
system environment like Qemu or VMware™. Once created the image description can serve
for all image types KIWI supports.

35

36

7 Installation Source

Table of Contents

7.1. Adapt the Example’s config.Xmlccoooviiiiiniiiiiiiiniiiieeeeriieee e siree e e e 37
7.2. Create a Local INStallation SOUICEeuvivveeeerieeneeeieeneeeeeeneeeeeeneeeeteneseersnseseeesnesserennes 37

Before you start to use any of the examples provided in the following chapters your build
system has to have a valid installation source for the distribution you are about to create an
image for. By default, all examples will connect to the network to find the installation source.
It depends on your network bandwidth how fast an image creation process is and in almost
all cases it is better to prepare a local installation source first.

7.1. Adapt the Example’s config.xml

If you can make sure you have a local installation source it’s important to change the path
attribute inside of the repository element of the appropriate example to point to your local
source directory. A typically default repository element looks like the following:

<repository type="yast2">
<!--<source path="/image/CDs/full-11.0-1386"/>-->
<source path="opensuse://openSUSE:11.0/standard/"/>
</repository>

7.2. Create a Local Installation Source

The following procedure describes how to create a local SUSE installation source which is
stored below the path /images/CDs. If you are using the local path as described in this
document you only need to flip the given path information inside of the example config.xml
file.

1. Find your SUSE standard installation CDs or the DVD and make them available to the
build system. Most Linux systems auto-mount a previosly inserted media automatically.
If this is the case you simply can change the directory to the auto mounted path below
/media. If your system doesn’t mount the device automatically you can do this with the
following command:

mount -o loop /dev/drive-device-name /mnt

2. If you do not have a DVD but a CD set, copy the contents of all CDs into one directory.
It’s absolutly important that you first start with the last CD and copy the first CD at last.
In case of CDs you should have a bundly of 4 CDs. Copy them in the order 4 3 2 1.

37

Create a Local
Installation Source

Copy the contents of the CDs/DVD to your hard drive once you have access to the media.
You need at least 4GB free space available. The following is intended to create a SUSE
11.0 installation source:

mkdir -p /image/CDs/full-11.0-1386/
cp -a /mnt/* /image/CDs/full-11.0-i386/

Remember if you have a CD set start with number 4 first and after that unplugg the CD and
insert the next one to repeat the copy command until all CDs are copied into to /image

38

8 ISO Image—Live Systems

Table of Contents

8.1. Building the suse-live-iSO EXampleccccccuueiiiiiiiiiiiiiiiiieeeeeeeeeeeeeciieeeeeeee e e 39
8.2. USING the IMAZE ..cceviiiiiiiiiiiiiieee ettt et e e e e e s s s seeeeeeeeeeesessennnnsnneeees 39
8.3, FLAVOULS ...eeviiiiiiiiiiiiece ettt rr e e ar e e e s aa e e e e nre e e e e 39

A live system image is an operating System on CD or DVD. In principal one can treat the CD/
DVD as the hard disk of the system with the restriction that you can’t write data on it. So as
soon as the media is plugged into the computer, the machine is able to boot from that media.
After some time one can login to the system and work with it like on any other system. All
write actions takes place in RAM space and therefore all changes will be lost as soon as the
computer shuts down.

8.1. Building the suse-live-iso Example

The latest example provided with KIWI is based on openSUSE 11.2 and includes the base and
KDE patterns.

cd /usr/share/doc/packages/kiwi/examples cd suse-11.2
kiwi --prepare ./suse-live-iso --root /tmp/myiso

kiwi --create /tmp/myiso --type iso -d /tmp/myiso-result

8.2. Using the Image

There are two ways to use the generated ISO image:

« Burn the .iso file on a CD or DVD with your preferred burn program. Plug in the CD or
DVD into a test computer and (re)boot the machine. Make sure the computer boot from the
CD drive as first boot device.

« Use a virtualisation system to test the image directly. Testing an iso can be done with any
full virtual system for example:

cd /tmp/myiso-result
gemu -cdrom ./suse-11.2-live-is0.1686-2.5.1.is0 -m 256

8.3. Flavours

KIWI supports different filesystems and boot methods along with the ISO image type. The
provided example by default uses a squashfs compressed root filesystem. By design of this

39

Split mode

filesystem it is not possible to write data on it. To be able to write on the filesystem another
filesystem called aufs is used. aufs is an overlay filesystem which allows to combine two
different filesystems into one. In case of a live system aufs is used to combine the squashfs
compressed read only root tree with a tmpfs RAM filesystem. The result is a full writable root
tree whereas all written data lives in RAM and is therefore not persistent. squashfs and/or
aufs does not exist on all versions of SUSE and therefore the flags attribute in config.xml
exists to be able to have the following alternative solutions:

flags="unified"
Compressed and unified root tree as explained above.

flags ="compressed"
Does filesystem compression with squashfs, but don’t use an overlay filesystem for write
support. A symbolic link list is used instead and thus a split element is required in
config.xml. See the split mode section below for details.

flags="clic"
Creates a FUSE based clicfs image and allows write operations into a cow file. In case
of an ISO the write happens into a ramdisk.

Flags Not Set
If no flags attribute is set no compressed filesystem, no overlay filesystem will be used.
The root tree will be directly part of the ISO filesystem and the paths: /bin, /boot, /lib,
/1ib64, /opt, /sbin, and /usr will be read-only.

8.3.1. Split mode

If no overlay filesystem is in use but the image filesystem is based on a compressed filesystem
KIWTI allows to setup which files and directories should be writable in a so called split section.
In order to allow to login into the system, at least the /var directory should be writable. This
is because the PAM authentification requires to be able to report any login attempt to /var/
log/messages which therefore needs to be writable. The following split section can be used
if the flag compressed is used:

<split>
<temporary>
<file name="/var"/>
<file name="/var/*"/>
<file name="/boot"/>
<file name="/boot/*"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home"/>
<file name="/home/*"/>
</temporary>
</split>

40

9 USB Image—Live-Stick System

Table of Contents

9.1. Building the suse-live-stick EXampleccccccuveieieeiiiiiriiiiiiiiieeeeeeeeeeeieneeeeeeeeeessssnnns 41
9.2. USING the IMAZE ..ccevvivieeiiiiiiiiieieeiereciiirrteeeeeeeeeesessnrrreeeeeeeesssssnnsnseneaeeeesssssssssssssseaees 41
0.3, FLAVOULS ...eeviiiiiiiieeeieiitee ettt et s ettt e e e et e e s e abe e e e e e sae e e e eennsaeeeeeennnaeeeans 42

A live USB stick image is a system on USB stick which allows you to boot and run from this
device without using any other storage device of the computer. It is urgently required that
the BIOS of the system which you plug the stick in supports booting from USB stick. Almost
all new BIOS systems support that. The USB stick serves as OS system disk in this case and
you can read and write data onto it.

9.1. Building the suse-live-stick Example

The next example provided with KIWI is based on openSUSE 11.2 and uses the default plus
x11 pattern. The operating system is stored on a standard ext3 filesystem:

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.2
kiwi --prepare ./suse-live-stick --root /tmp/mystick

There are two possible image types which allows you to drive the stick. Both are added into
the config.xml of this example image description. If you already have access to the stick, use
the first approach. In this case it is preferred over the second one.

+ The first image type named usb creates all required images for booting the OS but requires
you to plug in the stick and let KIWI deploy the data onto this stick.

kiwi --create /tmp/mystick --type usb d /tmp/mystick-result

« The second image type named oem allows you to create a virtual disk which represents a
virtual disk geometry including all partitions and boot information in one file. You simply
can dd this file on the stick.

kiwi --create /tmp/mystick --type oem -d /tmp/mystick-result

9.2. Using the Image

To use the created images deployed them on the USB stick. For the first image type (usb)
you need KIWI itself to be able to deploy the image on the stick. The reason for this is that
the usb image type has created the boot and the system image but there is no disk geometry

41

Flavours

or partition table available. KIWI creates a new partition table on the stick and imports the
created images as follows:

kiwi --bootstick \
/tmp/mystick-result/ \
initrd-usbboot-suse-11.2.1686-2.1.1.splash.gz \
--bootstick-system \
/tmp/mystick-result/ \
suse-11.2-live-stick.i686-1.1.2

In case of the second image type (oem) dump the raw data onto a device. On Linux the most
popular tool to do this is the dd command. The OEM image is represented by the file with the
. raw extension. As said, this is a virtual disk which already includes partition information.
However, this partition information does not match the real USB stick geometry. This means,
the KIWI boot image (oemboot) has to adapt the disk geometry on first boot. To deploy the
image on the stick, run:

dd if=/tmp/mystick-result/ \
suse-11.2-1live-stick.i686-1.1.2.raw
of=/dev/stick-device bs=32k

Testing of the live stick can be done with a test machine (booting from USB) or with a
virtualization system. If you test with a virtualization system, for example gemu, be aware that
the USB stick looks like a normal disk to the system. The KIWI boot process searches for the
USB stick to be able to mount the correct storage device. However, in a virtual environment
the disk doesn’t appear as a USB stick. If your virtualisation solution doesn’t provide a virtual
BIOS which allows booting from USB stick, test the stick on real hardware.

9.3. Flavours

USB sticks weren’t designed to serve as storage devices for operating systems. By design of
these nice little gadgets their storage capacity is limited to only a few gigabytes. Therefore,
KIWTI supports compressed filesystems on USB sticks too:

filesystem="squashfs"
Compresses the image using the squashfs filesystem. The boot process will automatically
use aufs as overlay filesystem to mount the complete tree read-write. For the write part
an additional ext2 partition will be created on the stick. The support for this compression
layer requires squashfs and aufs to be present in the distribution KIWI has used to build
the image

filesystem="clicfs"
Creates a fuse based clicfs image and allows write operations into a cow file.

9.3.1. Split Stick

If there is no overlay filesystem available, it is also possible to define a split section in
config.xml. Use the split support to split the image into a compressed read-only and a read-
write portion. To create a split stick the types needs to be adapted as follows:

« Type setup for split usb type:

<type image="split" fsreadwrite="ext3"
fsreadonly="squashfs" boot="usbboot/suse-11.2"/>

« Type setup for split oem type:

42

LVM Support

<type image="split" fsreadwrite="ext3"
fsreadonly="squashfs" boot="oemboot/suse-11.2"/>

For both types, a split section inside the type section is required which defines the read-write
data. A good starting point is to set /var, /home, and /etc as writable data.

<split>
<persistent>

<!-- allow read/write access to: -->
<file name="/var"/>
<file name="/var/*"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home"/>
<file name="/home/*"/>
</persistent>

</split>

If no split section is added the default split section from /usr/share/kiwi/modules/, the
file KIWISplit.txt is used.

9.3.2. LVM Support

KIWI supports LVM, the Logical Volume Manager. In this mode, the disk partition table
includes one lvm partition and one standard ext2 boot partition. KIWI creates the kiwiVG
volume group and adds logical volumes as they are needed and configured according to the
image type and filesystem. After booting, the user has full control over the volume group and is
free to change, resize, or increase the group and the volumes inside. Support for LVM has been
added for all image types which are disk based. This includes vmx, oem and usb. In order to
use LVM for the usb type just add the - - Llvm option as part of kiwi - -bootstick deployment
or add the attribute lvm="true" as part of the type section in your config.xml file.

The optional lvmvolumes section can be used to set one or more top level directories into a
separate volume. See Chapter 3, KIWI Image Description for a detailed explanation.

43

44

10 VMX Image—YVirtual Disks

Table of Contents

10.1. Building the suse-vm-guest EXamplecccceveeiiiiiiiiiiiierieiieeeneeeeeeseeeeee e 45
10.2. USING the IMAGEceeiiiiiiiiiiiiitieeeeitteeeettee et e s ertte e s e ssrteessesareeeeseeanaeessssnnneas 45
10.3. FIAVOULS .eteiiiiiiiieieiiiiteeeeiiiteeeeeitteeeesatteeseeiatteesesastteesesssatessesnnsaeesesnsneessesnseeesannnne 45

A VMX image is a virtual disk image for use in full virtualisation systems like Qemu or
VMware. The image is a file containing the system represented by the configured packages in
config.xml as well as partition data and bootloader information. The size of this virtual disk
can be specified by using the size element in the config.xml file or by adding the - -bootvm-
disksize command line argument.

10.1. Building the suse-vm-guest
Example

The vm-guest example provided with KIWI is based on recent openSUSE releases, one example
configuration per release. The example uses base pattern and the virtual disk is formated using
the distribution default filesystem.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.2
kiwi --prepare ./suse-vm-guest --root /tmp/myvm

kiwi --create /tmp/myvm --type vmx -d /tmp/myvm-result

10.2. Using the Image

The generated virtual disk image serves as the hard disk of the selected virtualization
system (QEMU, VMware, etc.). The virtual hard disk format differs across virtualization
environments. Some virtualization environments support multiple virtual disk formats. Using
the QEMU virtualization environment test the created image with the following command:

cd /tmp/myvm-result
gemu suse-11.2-vm-guest.i686-1.1.2.raw -m 256

10.3. Flavours

KIWI always generates a file in the . raw format. The .raw file is a disk image with a structure
equivalent to the structure of a physical hard disk. Individual virtualization systems have
specific formats to facilitate improved I/0 performance to the virtual disk, represented by the

45

VMware support

image file, or additional specified virtual hard disk files. KIWI will generate a specific format
when the format attribute of the type element is added.

<type image="vmx"... format="name"/>

The following table lists the supported virtual disk formats:

Table 10.1. Supported Virtual Disk Formats

Name Description

vmdk Disk format for VMware

ovf Open Virtual Format requires VMwares ovftool
qcow?2 QEMU virtual disk format

10.3.1. VMware support

A VMware image is accompanied by a guest configuration file. This file includes information
about the hardware to be represented to the guest image by the VMware virtualization
environment as well as specification of resources such as memory.

Within the config.xml file it is possible to specify the VMware configuration settings. In
addition it is possible to include selected packages in the created image that are specific to
the VM image generation. The following config.xml snippet provides general guidance on
the elements in config.xml.

<packages type="vmx">

<!-- packages you need in VMware only -->
</packages>
<type...... >

<machine memory="512">
<vmdisk controller="ide" id="0"/>
</machine>
</type>

Given the specification above KIWI will create a VMware guest configuration specifying the
availability of 512 MB of RAM and an IDE disk controller interface for the VM guest. For
aditional information about the configuration settings please refer to the machine section.

The guest configuration can be loaded through VMware user interface and may be modified
through the GUIL The configuration file has the . vmx extension as shown in the example below.

/tmp/myvm-result/suse-11.2-vm-quest.i686-1.1.2.vmx

Using the format ="vmdk" attribute of the <type> start tag will create the VMware formated
disk image (.vmdk file) and the required VMware guest configuration (.vmx) file.

In addition it is possible to create an image for the Xen virtualization framework. By adding
the bootprofile and bootkernel attributes to the <type> start tag with values of xen
and xenboot, respectively. Please refer to the Chapter 13, Xen Image—Paravirtual Systems for
additional details.

10.3.2. LVM Support

KIWI also provides support for LVM (Logical Volume Management). In this mode the disk
partition table will include one lvm partition and one standard ext2 boot partition. KIWI

46

LVM Support

creates the kiwiVG volume group and adds logical volumes as they are needed and configured
according to the image type and filesystem. After boot of the system the user has full control
over the volume group and is free to change/resize/increase the group and the volumes inside.
Support for LVM has been added for all image types which are disk based. This includes vmx,
oem and usb. In order to use LVM for the vimx type just add the - - Lvm option as part of the KIWI
create step or add the attribute lvm ="true" as part of the type section in your config.xml file.

kiwi --create /tmp/myvm --type vmx -d /tmp/myvm-result --lvm

With the optional lvmvolumes section you can set one or more top level directories into a
separate volume. See Chapter 3, KIWI Image Description for a detailed explanation.

47

48

11 PXE Image—Thin Clients

Table of Contents

11.1.
11.2.
11.3.
11.4.
11.5.

Setting Up the ReqUired SeIrVICEScccccuueeeeiiieiiiireiiiiiiteeeeeeeeeeereerreeeeeeeeeesessannnee 49
Building the suse-pxe-client EXamplecooeevoiiiiiiieeeiiiniriiieeeeeeeeeeeeeeeeeeeeeeeen 50
USING the IMAZE ..eevieeeiiiiiiieeeee ettt e e et e e e e e e e s arnreeeeeeeesessnnnnnnnneeeens 50
FLAVOUTS ettt et sba e s s sae e e s s snaeeesennne 51
Hardware GIOUDPING ...cccoeeeereeriiiiiieeeieeeeeeeiiiieeteeeeeeeeeeessnrreeeeeeeeesssssnnnssneeeeeessssssnnns 58

A PXE image consists of a boot image and a system image like all other image types too.
But with a PXE image the image files are available seperately and needs to be copied at
specific locations of a network boot server. PXE is a boot protocol implemented in most BIOS
implementations which makes it so interesting. The protocol sends DHCP requests to assign
an IP address and after that it uses tftp to download kernel and boot instructions.

11

.1. Setting Up the Required Services

Before you start to build pxe images with KIWI, setup the boot server. The boot server requires
the services atftp and DHCP to run.

11.

1.1. Atftp Server

In order to setup the atftp server the following steps are required

1. [Install the packages atftp and kiwi-pxeboot.

2. Edit the file /etc/sysconfig/atftpd. Set or modify the following variables:

o ATFTPD OPTIONS="--daemon --no-multicast"

« ATFTPD_DIRECTORY="/srv/tftpboot"

3. Run atftpd by calling the command:

rcatftpd start

11.

1.2. DHCP Server

In contrast to the atftp server setup the following DHCP server setup can only serve as an
example. Depending on your network structure, the IP addresses, ranges and domain settings
needs to be adapted in order to allow the DHCP server to work within your network. If you

49

Building the suse-
pxe-client Example

already have a DHCP server running in your network, make sure that the filename and next-
server information is provided by your server. The following steps describe how to setup a
new DHCP server instance:

1. Install the package dhcp-server.

2. Create the file /etc/dhcpd. conf and include the following statements:

option domain-name "example.org";

option domain-name-servers 192.168.100.2;
option broadcast-address 192.168.100.255;
option routers 192.168.100.2;

option subnet-mask 255.255.255.0;
default-lease-time 600;

max-lease-time 7200;

ddns-update-style none; ddns-updates off;
log-facility local7;

subnet 192.168.100.0 netmask 255.255.255.0 {
filename "pxelinux.0";
next-server 192.168.100.2;

range dynamic-bootp 192.168.100.5 192.168.100.20;
}

3. Edit the file /etc/sysconfig/dhcpd and setup the network interface the server should
listen on:

DHCPD INTERFACE="ethO"

4. Run the dhcp server by calling:

rcdhcpd start

11.2. Building the suse-pxe-client
Example

The example provided with KIWI is based on openSUSE 11.2 and creates an image for a Wyse
VX0 terminal with a 128MB flash card and 512MB of RAM. The image makes use of the
squashfs compressed filesystem and its root tree is deployed as unified (aufs) based system.
cd /usr/share/doc/packages/kiwi/examples

cd suse-11.2

kiwi --prepare ./suse-pxe-client --root /tmp/mypxe

kiwi --create /tmp/mypxe --type pxe -d /tmp/mypxe-result

11.3. Using the Image

In order to make use of the image all related image parts needs to be copied onto the boot
server. According to the example the following steps needs to be performed:

1. Change working directory:

cd /tmp/mypxe-result

2. Copy of the boot and kernel image:

cp initrd-netboot-suse-11.2.i686-2.1.1.splash.gz \

50

Flavours

/srv/tftpboot/boot/initrd
cp initrd-netboot-suse-11.2.i686-2.1.1.kernel \
/srv/tftpboot/boot/linux

3. Copy of the system image and md5 sum:

cp suse-11.2-pxe-client.i686-1.2.8 /srv/tftpboot/image
cp suse-11.2-pxe-client.i686-1.2.8.md5 /srv/tftpboot/image

4. Copy of the image boot configuration. Normally the boot configuration applies to one
client which means it is required to obtain the MAC address of this client. If the boot
configuration should be used globaly, copy the KIWI generated file as config.default:

cp suse-11.2-pxe-client.i686-1.2.8.config \
/srv/tftpboot/KIWI/config.MAC

5. Check the PXE configuration file. The PXE configuration controls which kernel and
initrd are loaded and which kernel parameters are set. When installing the kiwi-pxeboot
package, a default configuration is added. To make sure the configuration is valid
according to this example, insert the following information into the file /srv/tftpboot/
pxelinux.cfg/default:

DEFAULT KIWI-Boot

LABEL KIWI-Boot
kernel boot/linux
append initrd=boot/initrd vga=0x314
IPAPPEND 1

LABEL Local-Boot
localboot 0

6. Connect the client to the network and boot.

11.4. Flavours

All the different PXE boot based deployment methods are controlled by the config.MAC (or
config.default) file. When a new client boots up and there is no client configuration file the
new client is registered by uploading a control file to the TFTP server. The following sections
informs about the control and the configuration file.

11.4.1. The PXE Client Control File

This section describes the netboot client control file:

hwtype.$<$MAC Address$>$

The control file is primarily used to set up new netboot clients. In this case, there is no
configuration file corresponding to the client MAC address available. Using the MAC address
information, the control file is created, which is uploaded to the TFTP servers upload directory
/var/lib/tftpboot/upload.

11.4.2. The PXE Client Configuration File

This section describes the netboot client configuration file:

config.$<$MAC Address$>$

51

The PXE Client
Configuration File

The configuration file contains data about image, configuration, synchronization, or partition
parameters. The configuration file is loaded from the TFTP server directory /var/lib/
tftpboot/KIWI via TFTP for previously installed netboot clients. New netboot clients are
immediately registered and a new configuration file with the corresponding MAC address is
created. The standard case for the deployment of a PXE image is one image file based on a
read-write filesystem which is stored onto a local storage device of the client. Below, find an
example to cover this case.

DISK=/dev/sda
PART=5;S;x,Xx;L;/
IMAGE=/dev/sda2;suse-11.2-pxe-client.i686;1.2.8;192.168.100.2;4096

The following format is used:

IMAGE=device;name;version;srvip;bsize;compressed,...,
CONF=src;dest;srvip;bsize,...,src;dest;srvip;bsize
PART=size;id;Mount,...,size;id;Mount

DISK=device

IMAGE

Specifies which image (name) should be loaded with which version (version) and to which
storage device (device) it should be linked, e. g., /dev/raml or /dev/hda2. The netboot
client partition (device) hda2 defines the root file system / and hdal is used for the swap
partition. The numbering of the hard disk device should not be confused with the RAM
disk device, where /dev/ram0 is used for the initial RAM disk and can not be used as
storage device for the second stage system image. SUSE recommends to use the device /
dev/raml for the RAM disk. If the hard drive is used, a corresponding partitioning must
be performed.

srvip
Specifies the server IP address for the TFTP download. Must always be indicated,
except in PART.

bsize
Specifies the block size for the TFTP download. Must always be indicated, except in
PART. If the block size is too small according to the maximum number of data packages
(32768), linuxrc will automatically calculate a new blocksize for the download.

compressed

Specifies if the image file on the TFTP server is compressed and handles it accordingly.
To specify a compressed image download only the keyword "compressed" needs to be
added. If compressed is not specified the standard download workflow is used. Note:
The download will fail if you specify "compressed" and the image isn’t compressed. It
will also fail if you don’t specify "compressed" but the image is compressed. The name
of the compressed image has to contain the suffix . gz and needs to be compressed with
the gzip tool. Using a compressed image will automatically deactivate the multicast
download option of atftp.

CONF
Specifies a comma-separated list of source:target configuration files. The source (src)
corresponds to the path on the TFTP server and is loaded via TFTP. The download is made
to the file on the netboot client indicated by the target (dest).

PART
Specifies the partitioning data. The comma-separated list must contain the size (size), the
type number (id), and the mount point (Mount). The size is measured in MB by default.

52

The PXE Client
Configuration File

Additionally all size specifications supported by the sfdisk program are allowed as well.
The type number specifies the ID of the partition. Valid ID’s are listed via the sfdisk - -
list-types command. The mount specifies the directory the partition is mounted to.

+ The first element of the list must define the swap partition.
« The second element of the list must define the root partition.

« The swap partition must not contain a mount point. A lowercase letter x must be set
instead.

« If a partition should take all the space left on a disk one can set a lower x letter as size
specification.

DISK
Specifies the hard disk. Used only with PART and defines the device via which the hard
disk can be addressed, e.g., /dev/hda.

RELOAD IMAGE
If set to a non-empty string, this forces the configured image to be loaded from the server
even if the image on the disk is up-to-date. The primary purpose of this setting is to aid
debugging. The option is sensible only for disk based systems.

RELOAD CONFIG
If set to a non-empty string, this forces all config files to be loaded from the server. The
primary purpose of this setting is to aid debugging. The option is sensible only for disk
based systems.

COMBINED IMAGE
If set to an non-empty string, indicates that the both image specified needs to be combined
into one bootable image, whereas the first image defines the read-write part and the second
image defines the read-only part.

KIWI INITRD
Specifies the KIWTI initrd to be used for local boot of the system. The variables value must
be set to the name of the initrd file which is used via PXE network boot. If the standard
tftp setup suggested with the kiwi-pxeboot package is used all initrd files resides in the
boot/ directory below the tftp server path /var/lib/tftpboot. Because the tftp server
do a chroot into the tftp server path you need to specify the initrd file as the following
example shows:

KIWI INITRD=/boot/name-of-initrd-file

UNIONFS CONFIG
For netboot and usbboot images there is the possibility to use unionfs or aufs as
container filesystem in combination with a compressed system image. The recommended
compressed filesystem type for the system image is squashfs. In case of a USB stick system
the usbboot image will automatically setup the unionfs/aufs filesystem. In case of a PXE
network image the netboot image requires a config.MAC setup like the following example
shows:

UNIONFS CONFIG=/dev/sda2,/dev/sda3,aufs

In this example the first device /dev/sda2 represents the read/write filesystem and
the second device /dev/sda3 represents the compressed system image filesystem. The

53

The PXE Client
Configuration File

container filesystem aufs is then used to cover the read/write layer with the read-
only device to one read/write filesystem. If a file on the read-only device is going to
be written the changes inodes are part of the read/write filesystem. Please note the
device specifications in UNIONFS CONFIG must correspond with the IMAGE and PART
information. The following example should explain the interconnections:

IMAGE=/dev/sda3;image/myImage;1.1.1;192.168.1.1;4096
PART=200;S;x,300;L;/,x;L;x
UNIONFS_CONFIG=/dev/sda2,/dev/sda3,aufs
DISK=/dev/sda

As the second element of the PART list must define the root partition it’s absolutely
important that the first device in UNIONFS CONFIG references this device as read/write
device. The second device of UNIONFS CONFIG has to reference the given IMAGE device
name.

KIWI KERNEL OPTIONS

Specifies additional command line options to be passed to the kernel when booting from
disk. For instance, to enable a splash screen, you might use vga=0x317 splash=silent.

KIWI BOOT TIMEOUT

Specifies the number of seconds to wait at the grub boot screen when doing a local boot.
The default is 10.

NBDROOT

Mount the system image root filesystem remotely via NBD (Network Block Device). This
means there is a server which exports the root directory of the system image via a specified
port. The kernel provides the block layer, together with a remote port that uses the nbd-
server program. For more information on how to set up the server, see the nbd-server man
pages. The kernel on the remote client can set up a special network block device named
/dev/nb0 using the nbd-client command. After this device exists, the mount program is
used to mount the root filesystem. To allow the KIWI boot image to use that, the following
information must be provided:

NBDROOT=NBD.Server.IP.address;\
NBD-Port-Number;/dev/NBD-Device;\
NBD-Swap-Port-Number;/dev/NBD-Swap-Device;\
NBD-Write-Port-Number;/dev/NBD-Write-Device

The NBD-Device, NBD-Swap-Port-Number, NBD-Swap-Device, NBD-Write-Port-Number
and NBD-Write-Device variables are optional. If the nbd root device is not set, the default
values (/dev/nb0, port 2000) applies and if the nbd swap device is not set the default
values (/dev/nb1l, port 9210) applies. The swap space over the network using a network
block device is only established if the client has less than 48 MB of RAM. The optional
NBD-Write-Port-Number and NBD-Write-Device specifies a write COW location for the
root filesystem. aufs is used as overlay filesystem in this case.

AOEROOT

Mount the system image root filesystem remotely via AoE (ATA over Ethernet). This means
there is a server which exports a block device representing the the root directory of the
system image via the AoE subsystem. The block device could be a partition of a real or
a virtual disk. In order to use the AoE subsystem I recommend to install the aoetools
and vblade packages from here first: http://download.opensuse.org/repositories/system:/
aoetools. Once installed the following example shows how to export the local /dev/sdbl
partition via AoE:

vbladed 0 1 eth® /dev/sdbl

54

http://download.opensuse.org/repositories/system:/aoetools
http://download.opensuse.org/repositories/system:/aoetools

The PXE Client
Configuration File

Some explanation about this command, each AoE device is identified by a couple Major/
Minor, with major between 0-65535 and minor between 0-255. AoE is based just over
Ethernet on the OSI models so we need to indicate which ethernet card we’ll use. In this
example we export /dev/sdb1l with a major value of 0 and minor of 1 on the ethO interface.
We are ready to use our partition on the network! To be able to use the device KIWI
needs the information which AoE device contains the root filesystem. In our example this
is the device /dev/etherd/e0.1. According to this the AOEROOT variable must be set
as follows:

AOERO0T=/dev/etherd/e0.1

KIWTI is now able to mount and use the specified AoE device as the remote root filesystem.
In case of a compressed read-only image with aufs or clicfs, the AOEROOT variable can
also contain a device for the write actions:

AOEROOT=/dev/etherd/e0.1, /dev/raml

Writing to RAM is the default but you also can set another device like another aoe location
or a local device for writing the data

NFSROOT
Mount the system image root filesystem remotely via NFS (Network File System). This
means there is a server which exports the root filesystem of the network client in such a
way that the client can mount it read/write. In order to do that, the boot image must know
the server IP address and the path name where the root directory exists on this server. The
information must be provided as in the following example:

NFSROOT=NFS.Server.IP.address;/path/to/root/tree

Optionally you can set a UNIONFS CONFIG variable which defines an aufs based overlay
NFS directory or device like:

UNIONFS CONFIG=/tmp/kiwi-11.1-cow,nfs,aufs # write to NFS directory
UNIONFS CONFIG=/dev/raml,nfs,aufs # write to RAM

This way you can keep the original root tree clean from any modifications

KIWI INITRD
Specifies the KIWTI initrd to be used for a local boot of the system. The value must be set
to the name of the initrd file which is used via PXE network boot. If the standard TFTP
setup suggested with the kiwi-pxeboot package is used, all initrd files reside in the /srv/
tftpboot/boot/ directory. Because the TFTP server does a chroot into the TFTP server
path, you must specify the initrd file as follows:

KIWI INITRD=/boot/name-of-initrd-file

KIWI KERNEL
Specifies the kernel to be used for a local boot of the system The same path rules as
described for KIWI INITRD applies for the kernel setup:

KIWI_KERNEL=/boot/name-of-kernel-file

ERROR_INTERRUPT
Specifies a message which is displayed during first deployment. Along with the message a
shell is provided. This functionality should be used to send the user a message if it’s clear
the boot process will fail because the boot environment or something else influences the
pxe boot process in a bad way.

55

User another than tftp
as Download Protocol

11.4.3. User another than tftp as Download
Protocol

By default all downloads controlled by the KIWI linuxrc code are performed by an atftp call
and therefore uses the tftp protocol. With PXE the download protocol is fixed and thus you
can’t change the way how the kernel and the boot image (initrd) is downloaded. As soon as
Linux takes over control the following download protocols http, https and ftp are supported
too. KIWI makes use of the curl program to support the additional protocols.

In order to select one of the additional download protocols the following kernel parameters
needs to be setup:

kiwiserver
Name or IP address of the server who implements the protocol

kiwiservertype
Name of the download protocol which could be one of http, https or ftp

To setup this parameters edit the file /srv/tftpboot/pxelinux.cfg/default on your PXE
boot server and change the append line accordingly. Please note all downloads except for
kernel and initrd are now controlled by the given server and protocol. You need to make sure
that this server provides the same directory and file structure as initially provided by the kiwi-
pxeboot package.

11.4.4. RAM Only Image

If there is no local storage and no remote root mount setup the image can be stored into the
main memory of the client. Please be aware that there should be still enough RAM space
available for the operating system after the image has been deployed into RAM. Below, find
an example:

+ Use a read-write filesystem in config.xml, for example filesystem="ext3"

» Create config.MAC

IMAGE=/dev/raml;suse-11.2-pxe-client.i686;\
1.2.8;192.168.100.2;4096

11.4.5. Union Image

As used in the suse-pxe-client example it is possible to make use of the aufs or unionfs overlay
filesystems to combine two filesystems into one. In case of thin clients there is often the need
for a compressed filesystem due to space limitations. Unfortunately all common compressed
filesystems provides only read-only access. Combining a read-only filesystem with a read-
write filesystem is a solution for this problem. In order to use a compressed root filesystem
make sure your config.xmU’s filesystem attribute contains either squashfs or clicfs. Below,
find an example:

DISK=/dev/sda

PART=5;S;x,62;L;/,x;L;x,

IMAGE=/dev/sda2;suse-11.2-pxe-client.i386;\
1.2.8;192.168.100.2;4096

UNIONFS_ CONFIG=/dev/sda3,/dev/sda2,aufs

KIWI INITRD=/boot/initrd

56

Split Image

11.4.6. Split Image

As an alternative to the UNIONFS CONFIG method it is also possible to create a split image
and combine the two portions with the COMBINED IMAGE method. This allows to use different
filesystems without the need for an overlay filesystem to combine them together. Below find
an example:

« Add a split type in config.xml, for example

<type fsreadonly="squashfs"
image="split" fsreadwrite="ext3" boot="netboot/suse-11.2"/>

« Add a split section inside the type to describe the temporary and persistent parts. For
example:

<split>
<temporary>
<!-- allow RAM read/write access to: -->

<file name="/mnt"/>
<file name="/mnt/*"/>

</temporary>

<persistent>
<!-- allow DISK read/write access to: -->
<file name="/var"/>
<file name="/var/*"/>
<file name="/boot"/>
<file name="/boot/*"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home" />
<file name="/home/*" />

</persistent>

</split>

« Sample config.MAC:

IMAGE=/dev/sda2;suse-11.2-pxe-client.i686;\
1.2.8;192.168.100.2;4096,\
/dev/sda3;suse-11.2-pxe-client-read-write.i686;\
1.2.8;192.168.100.2;4096

PART=200;S;x,500;L;/,x;L;

DISK=/dev/sda

COMBINED IMAGE=yes

KIWI INITRD=/boot/initrd

11.4.7. Root Tree Over NFS

Instead of installing the image onto a local storage device of the client it is also possible to let
the client mount the root tree via an NFS remote mount. Below find an example:

+ Export the KIWI prepared tree via NFS.

« Sample config.MAC:

NFSR00T=192.168.100.7; /tmp/kiwi.nfsroot

11.4.8. Root Tree Over NBD

As an alternative for root over NFS it is also possible to let the client mount the root tree via
a special network block device. Below find an example:

57

Root Tree Over AoE

» Use nbd-server to export the KIWI prepared tree.

« Sample config.MAC
NBDRO0T=192.168.100.7;2000; /dev/nbd0

11.4.9. Root Tree Over AoE

As an alternative for root over NBD it is also possible to let the client mount the root device
via a special ATA over Ethernet network block device. Below find an example:

» Use the vbladed command to bind a block device to an ethernet interface. The block device
can be a disk partition or a loop device (losetup) but not a directory like with NBD.

« Sample config.MAC:
AOERO0T=/dev/etherd/e0.1

This would require the following command to be called first:

vbladed 0 1 ethO® blockdevice

11.5. Hardware Grouping

While the PXE standard takes care of the ability to create hardware groups via hardware or
IP address groups, it does not take into account groups for non-contiguous hardware or IP
addresses. The PXE standard makes the assumption that each hardware group will be clearly
deliniated by a range of IP addresses, or the hardware is from the same vendor. While an
ideal scenario, this may not be the case in an established, slightly dated installation where the
hardware itself has out-lived the vendors that made them.

KIWI has the ability to create groups for non-contiguous configurations where different
hardware types may be involved due to newer equipment being rotated into production
or older hardware failing and replacements are from different vendors. In addition, an
organization might decide to organize their equipment by function, rather then by vendor,
and may not be able to use the same hardware from one end to the other.

11.5.1. The Group Configuration File

To make use of the grouping functionality, some new configuration files will be required.
These configuration files currently have to be manually managed rather then provided,
however future versions of KIWI may provide a means of managing groups more effectively
once this feature stabilizes. The number of configuration files required will depend on the
number of hardware groups that will be created, rather then one configuration file for each
MAC address that will reside on the network.

There will be one configuration file that will always be required if using groups, called:

/srv/tftpboot/KIWI/config.group

This file has a new static element that must exist, and one or more dynamic elements
depending on the number of groups that will be created. For example, the config.group file
defined below lists 3 distinct groups:

KIWI GROUP="testl, test2, test3"

testl KIWI MAC LIST="11:11:11:11:11:11, 00:11:00:11:22:CA"

58

The Group Configuration File

test2 KIWI MAC LIST="00:22:00:44:00:4D, 99:3F:21:A2:F4:32"

test3 KIWI MAC LIST="00:54:33:FA:44:33, 84:3D:45:2F:5F:33"

Note: The above hardware addresses contain random entries, and may not reflect actual
hardware.

As we can see in the above example the file contains 1 static element, KIWI_GROUP, and 3
dynamic elements "testl_KIWI_MAC_LIST, test2 KIWI_MAC_LIST and test3_KIWI_MAC_LIST".
The definitions of these elements are as follows:

+ KIWI_GROUP

This element is the only static definition that needs to exist when using groups. While
there is no implicit limit to the number of groups that can be configured, it should be kept
to a minimum for reasonable management or it could quickly become un-manageable. It
will need to contain one or more group names separted by comma's (,) and spacing (for
readability). In the above example, our group names were:

* testl
e test2
* test3

Valid group names are made up of upper and lower case letters, and can use numeric, and
underscore characters. The same rules used to define bash/sh variable names should apply
here, as these names will have to be used as fully defined bash/sh variables when linking
hardware addresses to an assigned group. The following is an example that contains valid
names:

KIWI GROUP="testl, test my name, LIST HARDWARE, Multple Case Group 1"

+ <GROUP_NAME >_KIWI_MAC_LIST

The name of this element is dynamic and depends entirely on the list of group names that
were previously defined. Each group name that was used in the KIWI_GROUP variable, must
contain a matching dynamic element, and have KIWI_MAC_LIST appended to the name. To
continue with our previous example, to create hardware lists for the groups already defined,
we need 3 dynamic elements called:

» testl KIWI_MAC_LIST
» test2_ KIWI_MAC_LIST
» test3_KIWI_MAC_LIST

These variables will contain a comma delimited list of the hardware addresses for all of the
machines being assigned to the appropriate group, but there are some caveats that need to
be kept in mind. The first caveat is for hardware addresses that contain the HEX characters
A-F. The PXE standard uses capital letters for these characters, and as a result KIWI does
upper case comparisons, so a MAC address that is defined with lower case letters in this
list will never get matched.

The second caveat is that as the list gets longer, it can be harder to maintain and it has
the potential to slow down the booting process. However, testing has been completed with

59

The Hardware Group File

1500 + hosts defined, and there was little delay when transfering the file to a single host.
The file size will have a larger impact when trying to download it to 1500 + hosts, so some
consideration will have to take that into account. The comparison itself still occurred in
under half a second while searching through all 1500+ MAC addresses across 3 defined
groups.

11.5.2. The Hardware Group File

In addition to the config.group file, each defined group will require a
config. <GROUP_NAME > file. This file is exactly like a standard KIWI config. <MAC> file,
but is assigned to a group of hosts rather then a single unit. If we continue with the example
we used in the previous section, we would need the following files:

/srv/tftpboot/KIWI/config.testl
/srv/tftpboot/KIWI/config.test2
/srv/tftpboot/KIWI/config.test3

The contents of these files is the same that would normally reside in a config. <MAC> file,
and all defintions that would be supported for a single host, are supported for a group of hosts.
In addition, if a host is matched to a group, yet the config. < GROUP_NAME > file does not
exist, KIWI will error out.

For example, the following configiuration file, called config.testl would be used for the group
called "test1":

DISK=/dev/sda

PART=5;S;x,x;L;/

IMAGE=/dev/sda2;suse-11.2-pxe-client.i686;1.2.8;192.168.100.2;4096
CONF=CONFIGURATIONS/xorg.conf.testl;/etc/X11/xorg.conf;192.168.100.2;4096,CONFIGURATIONS/syslog.conf;/

As a result of this configuration file, the image would be configured consistantly across all
the hosts assigned to testl. The following file called config.test2, contains a small change that
may be specific to a function:

DISK=/dev/sda

PART=5;S;x,x;L;/

IMAGE=/dev/sda2;suse-11.2-pxe-client.i686;1.2.8;192.168.100.2;4096
CONF=CONFIGURATIONS/xorg.conf.test2;/etc/X11/xorg.conf;192.168.100.2;4096,CONFIGURATIONS/syslog.conf;/

As we can see, while group 1 and 2 share the syslog.conf configuration file, they have different
xorg.conf files defined, therefore two distinct groups with one or more hosts assigned to each
group can now be configured by managing a smaller number of files.

60

12 OEM Image—Preload Systems

Table of Contents

12.1. Building the suse-oem-preload Exampleccccocoviiiiiiiiiiiiiniiiieenenieeeeeeeeee e 61
12.2, USING the IMAGEceeviieiiiieiiiiiiieeieeiiiteeeeeitee e e ettt e s e esteeesssssteessesasseeesssnssaeesessansees 61
12.3. FIAVOUTS .eeeiieuiiieeeeeiiiteeeeiiiteeeeesitteeeessstteesessusteessssssteessssssaeessssssaeessssssseessssssseeesasnnns 62

An OEM image is a virtual disk image representing all partitions and bootloader information
in the same fashion it exists on a physical disk. The image format matches the format of the
VMX image type. All flavors discussed previously for the VMX image type apply to the OEM
image type.

The basic idea behind an oem image is to provide the virtual disk data for OEM vendors to
support easy deployment of the system to physical storage media. The deployment can be
performed from any OS including Windows as long as a tool to dump data onto a disk device
exists and is used. The oem image type may also be used to deploy an image on a USB stick.
A USB stick is simply a removable physical storage device.

12.1. Building the suse-oem-preload
Example

The OEM example provided with kiwi is based on recent openSUSE releases, one example
configuration per release, and includes the default and x11 patterns. The image type is a split
type utilizing the distributions default filesystem format for the read-write partition and the
squashfs filesystem for the read-only partition. Using the additional installiso attribute
creates an installable ISO image. When booting from the ISO image the OEM disk image will
be deployed to the storage media on the booting machine (after confirmation by the user).

The commands provided below use the openSUSE 11.2 based example built for the x86
architecture.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.2
kiwi --prepare ./suse-oem-preload --root /tmp/myoem

kiwi --create /tmp/myoem --type split -d /tmp/myoem-result

12.2. Using the Image

The virtual disk image created by KIWI with the commands shown above can be tested using
virtualization software such as QEMU, VMware, or VirtualBox. The virtual disk is represented

61

Flavours

by the file with the . raw extension, whereas the file with the .iso extension represents the
installation disk for this oem image. The ISO image is bootable (filename.iso) and can be
burned to optical media. It is recommended to test the image on a bare test system. The
following command shows how to use QEMU to test the OEM disk image (filename. raw).

cd /tmp/myoem-result
gemu suse-11.2-oem-preload.i686-1.1.2.raw -m 512

or using the dd command you can dump the image onto a test hard disk or USB stick and
upon reboot select the appropriate device as the boot device in the BIOS:

cd /tmp/myoem-result
dd if=suse-11.2-oem-preload.i686-1.1.2.raw of=/dev/device bs=32k

Note, when testing an oem image using the virtual disk image, i.e. the . raw file, the geometry
of the disk image is not changed and therefore retains the disk geometry of the host system.
This implies that the re-partitioning performed for a physical disk install during the oem boot
workflow will be skipped.

You can test the installation procedure in a virtual environment using the .1iso file. In this
case the re-partitioning code in the boot image will be executed. The following commnads
show this procedure using QEMU.

cd /tmp/myoem-result
gemu-img create /tmp/mydisk 20G
gemu -hda /tmp/mydisk -cdrom suse-11.2-oem-preload.i686-1.1.2.iso -boot d

12.3. Flavours

As indicated above the use of the installiso and installstick attributes for the oem
image supports the creation of an installation image. The installation image can be created
in two formats, one suitable for CD/DVD media and a second suitable for a USB stick. The
self installing image deploys the oem image onto the selected storage device. The installation
process is a simple image dump using the dd command. During this process the target
system remains in terminal mode. The following configuration snippets show the use of the
installiso and installstick attributes to create the ISO or USB installation image format
respectively.

« <type image="name" ... installiso="true"/>

Creates a . iso file which can be burned onto a CD or a DVD. This represents an installation
CD/DVD

« <type image="name" ... installstick="true"/>

Creates a .raw.install file which can be dumped (dd) onto a USB stick. This represents
an installation Stick

12.3.1. Specializing the OEM install process

It is possible to specialize the OEM install process by providing shell scripts with the following
names in the root/kiwi-hooks directory in the configuration tree as overlay files.

« preHWdetect. sh This script is executed prior to the hardware scan on the target machine.

« preImageDump.sh This script is executed immediately prior to the OEM image dump onto
the target storage device.

62

Influencing the
OEM Partitioning

« postImageDump.sh This script is executed directly after the OEM image dump onto the
target storage device once the image checksum has been successfully verified.

12.3.2. Influencing the OEM Partitioning

By default the oemboot process will create/modify a swap, /home and / partition. It is possible
to influence the behavior with the oem-* elements. See Chapter 3, KIWI Image Description for
details.

12.3.3. LVM Support

KIWTI also provides support for LVM (Logical Volume Management). In this mode the disk
partition table will include one lvm partition and one standard ext2 boot partition. KIWI
creates the kiwiVG volume group, unless the lvmgroup attribute has been set, and adds logical
volumes to the group based on the configuration given by the lvmvolumes block for this type.
The filesystem for the volume group is determined by the filesystem attribute of the type
element. After booting the system the user has full control over the volume group and is free to
change (resize/increase) the group and the volumes inside. Support for LVM has been added
for all disk based image types. This includes the vmx, oem and usb image types. In order to
use LVM for the oem type just add the - - Lvm command line option when executing the create
step or add the attribute lvm="true" to of the type element in your config.xml file.

kiwi --create /tmp/myoem --type oem -d /tmp/myoem-result --lvm

With the optional lvmvolumes section you can specify to have one or more top level directories
in a s -deparate volume. See Chapter 3, KIWI Image Description for a detailed explanation.

12.3.4. Partition Based Installation

The default installation method of an OEM is dumping the entire virtual disk on the selected
target disk and repartition the disk to the real geometry. This works but will also wipe
everything which was on the disk before. KIWI also supports the installation into already
existing partitions. This means the user can setup a disk with free partitions for the KIWI OEM
installation process. This way already existing data will not be touched. In order to activate
the partition based install mode the following oem option has to be set in config.xml:

<oem-partition-install>true</oem-partition-install>
Compared to the disk based install the following differences should be mentioned:

+ The bootloader will be setup to boot the installed system. There is no multiboot setup. The
user has to take care for the setup of a multiboot bootloader himself.

« The oem options for system, swap and home doesn’t have any effect if the installation
happens in predefined partitions.

+ There is no support for remote (PXE) OEM installation because kiwi has to loop mount the
disk image in order to access the partitions which can’t be done remotely.

+ The raw disk image is stored uncompressed on the install media. This is because KIWI needs
to loop mount the disk image which it can’t do if the file is only available as compressed
version. This means the install media in this mode will be approximately double the size
of a standard install media.

63

64

13 Xen Image—Paravirtual Systems

Table of Contents

13.1. Building the suse-xen-guest EXamplecccceevevuieeiiriiieeeriniiieeeennieeeeeeeieeeeesesneeees 65
13.2. USING the IMAGEceevieriiiiiiiriiiieeeeeiitteeeeriteesesrirteesesasteeessssteeessssssseeessssssaessssssees 65
13.3. FIAVOULS .eteiieiiiieeiiniiteeeeiiiteeeeeiteeeesssteeesessasteeesssssteesssssseessssssaeessssssseessssssseeesssnnns 66

Xen is a free software virtual machine monitor. It allows several guest operating systems to
be executed on the same computer hardware at the same time.

A Xen system is structured with the Xen hypervisor as the lowest and most privileged layer.
Above this layer are one or more guest operating systems, which the hypervisor schedules
across the physical CPUs. The first guest operating system, called in Xen terminology “domain
0” (dom0), is booted automatically when the hypervisor boots and given special management
privileges and direct access to the physical hardware. The system administrator logs into
domO in order to start any further guest operating systems, called “domain 0” (domU) in Xen
terminology.

A Xen image is a virtual disk like a vimx but with the xen kernel installed. In order to run it a
Xen domO server needs to run. Xen images in KIWI makes use of the PVGrub method supported
by current Xen versions. Xen extracts the kernel and initrd from the virtual disk as well as the
grub configuration and displays the menu which allows emulation of the Grub console

13.1. Building the suse-xen-guest
Example

The latest example provided with KIWI is based on openSUSE 11.3 and includes the base
pattern.

cd /usr/share/doc/packages/kiwi/examples cd suse-11.2
kiwi --prepare ./suse-xen-guest --root /tmp/myxen

kiwi --create /tmp/myxen --type vmx -d /tmp/myxen-result

13.2. Using the Image

In order to run a domain U the Xen tool xm needs to be called in conjunction with the KIWI
genereated domain U configuration file

xm create -c /tmp/myxen-result/ suse-11.2-xen-guest.i686-1.1.2.xenconfig

65

Flavours

13.3. Flavours

With KIWI you can provide the information required to create a guest configuration as part of
the config.xml file. Additionally you can group special packages which you may only need
in this para virtual environment with a profile.

<packages type="image" profiles="xenFlavour">
<package name="kernel-xen" replaces="kernel-ec2"/>
</packages>
<type>
<machine memory="512" domain="domU">
<vmdisk ... device="/dev/xvda"/>
</machine>
</type>

If this information is present KIWI will create a Xen domain U configuration with
512 MB of RAM and expects the disk at /dev/xvda. Additional information to setup
the Xen guest machine properties are explained in the machine section. The KIWI
Xen domain U configuration is stored in the file /tmp/myxen-result/suse-11.2-xen-
guest.i686-1.1.2.xenconfig.

66

14 EC2 Image—Amazon Elastic
Compute Cloud

Table of Contents

14.1. Building the suse-xen-guest Example for EC2cccocoviiiiiiiiiiiiiiiiiieenncieeeeeeeeenn 67
14.2. USING the TMAGEceeiiiiiiiiiiiiiitieieeiteee ettt ettt e e st e e s e ssree e e s e earaeessesnnnees 68

The Amazon Elastic Compute Cloud™ (Amazon EC2) web service provides you with the ability
to execute arbitrary applications in our computing environment. To use Amazon EC2 you
simply:

1. Create an Amazon Machine Image (AMI) containing all your software, including your
operating system and associated configuration settings, applications, libraries, etc. Such
an AMI can be created by the KIWI ec2 image format. In order to do that KIWI makes
use of the tools provided by Amazon. Your build system should have these tools installed.
Due to license issues we are not allowed to distribute the tools which means you need
to download, install and setup them from here:http://aws.amazon.com/documentation/
ec2/

2. Upload this AMI to the Amazon S3 (Amazon Simple Storage Service) service. This gives
us reliable, secure access to your AML.

3. Register your AMI with Amazon EC2. This allows us to verify that your AMI has been
uploaded correctly and to allocate a unique identifier for it.

4. Use this AMI ID and the Amazon EC2 web service APIs to run, monitor, and terminate as
many instances of this AMI as required. Currently, Amazon provides command line tools
and Java libraries but you may also directly access the SOAP-based API.

Please note while instances are running, you are billed for the computing and network
resources that they consume. You should start creating an EC2 with KIWI after you can make
sure your system is prepared for EC2 which means if you call the command ec2-describe-
images -a you will get a valid output.

14.1. Building the suse-xen-guest
Example for EC2

One example provided with KIWI is based on openSUSE 11.3 and includes the base pattern
plus the vim editor.

67

http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/

Using the Image

Before you run KIWI you need to include some of your EC2 account information into the
image description config.xml file. The box below shows the values you need to adapt:

<ec2config> ec2accountnr="12345678911"
ec2privatekeyfile="Path to EC2 private key file"
ec2certfile="Path to EC2 public certificate file"
</ec2config>

After that call KIWI as follows:

cd /usr/share/doc/packages/kiwi/examples

cd suse-11.3

kiwi --prepare ./suse-xen-guest --add-profile \
ec2Flavour --root /tmp/myec2

kiwi --create /tmp/myec2 --add-profile \
ec2Flavour --type vmx -d /tmp/myec2-result

14.2. Using the Image

The generated image needs to be transfered over to Amazon which is done by the ec2-upload-
bundle tool. You can do this by calling:

ec2-upload-bundle -b myImages \
-a AWS Key ID -s AWS secret Key ID -m /tmp/myec2/ \
suse-11.1-xen-guest.i686-1.1.2.ami.manifest.xml

After this is done the image needs to be registered in order to receive a so called AMI id which
starts with “ami-” followed by a random key sequence. To register call:

ec2-register myImages/ suse-11.1-xen-guest.i686-1.1.2.ami.manifest.xml

The result is the AMI id which you need to run an instance from your image. The command
ec2-describe-images allows you to review your registered images. Since you will be running
an instance of a public AMI, you will need to use a public/private keypair to ensure that only
you will have access. One half of this keypair will be embedded into your instance, allowing
you to login securely without a password using the other half of the keypair. Every keypair
you generate requires a name. Be sure to choose a name that is easy to remember, perhaps
one that describes the image’s content. For our example we’ll use the name gsg-keypair.

ec2-add-keypair gsg-keypair

The private key returned needs to be saved in a local file so that you can use it later. Using your
favorite text editor, create a file named id rsa-gsg-keypair and paste everything between
(and including) the ----- BEGIN RSA PRIVATE KEY----- and ----- END RSA PRIVATE
KEY----- lines into it. To review your keypairs call ec2-describe-keypairs.

We are almost done now but to be able to run an instance it’s required to select an appropriate
AKI ID from the Amazon Kernel Image IDs table below. For this host, aki-407d9529 is being
chosen, because we are bundling an AMI representing a virtual disk with PVGrub. If the table
below is outdated just check the current ID list at Amazon directly

Table 14.1. Amazon Kernel Image IDs

AKI Name
aki-407d9529 ec2-public-images/pv-grub-hd0-v1.01-i386.gz.manifest.xml
aki-427d952b ec2-public-images/pv-grub-hd0-V1.01-x86 64.gz.manifest.xml

68

Using the Image

Fire up your new ec2 instance with the following command:
ec2-run-instances ami-... \
--kernel aki-407d9529 \
-k gsg-keypair
To check the state of your instance(s) call the command ec2-describe-instances.

If you see your instance at the status: running you can login into it. If you can’t make sure you
have allowed port 22 to be available

ec2-authorize default -p 22

Congratulations ! You made it and can now use Amazons storage and computing power.

69

70

15 KIWI Testsuite

Table of Contents

15.1. Testsuite PACKAZES ..ceeeouuriiiieiiiiiiiiiitteet ettt ettt s e e s s ssre e e s e mneees 71
15.2. Creating @ TESt ..ccciiiiiiiiiiiiiiiiitiieie ittt et e e e e e s ssrraae e e e e e s e s s s annnns 71

The KIWI test suite is useful to perform basic quality checks on the image root directory. The
test cases are stored in subdirectories below /usr/share/kiwi/tests. To run the testsuite
call KIWI as follows:

kiwi testsuite image-root [test name test name ...]

If not test names are set the default tests rpm and ldd run. The name of a test corresponds
with the name of the directory the test is implemented in.

15.1. Testsuite Packages

If a test requires special software to be installed but this software is not an essential part of
the image itself it can be specified as testsuite packages in the system image config.xml as
follows:

<packages type="testsuite">
<package name="..."/>
</packages>

The testsuite packages are installed when calling KIWI with the testsuite option and are
removed after the tests has finished.

15.2. Creating a Test

The test itself is defined by a XML description test-case.xml and its template definition file
/usr/share/kiwi/modules/KIWISchemaTest.rnc The following example shows the basic
structure of the rpm test:

<test case name="rpm"
summary="check rpm database and verify all rpms"
description="check if rpm db is present, run rpm‘s build-in Verify method"

<requirements>
<req type="directory">/var/lib/rpm</req>
<req type="file">/var/lib/rpm/ db.000</reg>
<req type="file">/var/lib/rpm/Packages</reg>
</requirements>

71

Creating a Test

<test type="binary" place="extern">
<file>rpm.sh</file>
<params>CHROOT</params> </test>
</test case>

There are basically two sections called equirements and test. In requirements you define
what files/directories or packages has to be present in your image to run the test. For example
if you need to check the RPM database, the database has to be present within the image. All
requirements are checked, and if any of them fail the test won’t be executed and an error
message is printed. There are three types of requirements:

file
Existence of a file

directory
Existence of a directory

rpm-package
Existence of a package

The test section defines the test script. It could be a binary, shell script or any other kind of
executable. Scripts are expected to be in the same directory as where the XML definition for
the test resides. There are two types of scripts, extern and intern.

+ External scripts are executed outside of the image and are preferred. Their first parameter
should be CHROOT. This parameter is changed to the real path of the image chroot
directory.

« Internal scripts are executed inside image using the chroot command. Files are copied into
the image and deleted after execution.

A test script always has to return 0 in case of a test to pass, or 1 if any error occur. All messages
printed to standard and error output are stored and printed out of the test has failed.

72

A KIWI Man Pages

Table of Contents

RIWE ettt ettt e e et e e s et e e e sttt e e e e rb e e e e e nb e e e e e e nrnaeeeas 74
KIWIICONEAZ.SH ettt st e s 81
KIWImMAZES. S .eeeeiiiiiiiiiee e st e s e s 85
KIWIITKIWATC ettt sttt e s et e e s e ane e e s s e sasae e e s e ssnaeeesennne 88

The following pages will show you the man page of KIWI and the functions which can be used
within config.sh and index.sh

73

kiwi

kiwi — Creating Operating System Images
Synopsis

kiwi { -1 | --list }

kiwi { -0 | --clone } image-path { -d } destination

kiwi { -b | --build } image-path { -d } destination

Basics

KIWI is a complete imaging solution that is based on an image description. Such a description
is represented by a directory which includes at least one config.xml file and may as well
include other files like scripts or configuration data. The kiwi-templates package provides
example descriptions based on a JeOS system. JeOS means Just enough Operating System. KIWI
provides image templates based on that axiom which means a JeOS is a small, text only based
image including a predefined remote source setup to allow installation of missing software
components at a later point in time.

Detailed description of the kiwi image system exists in the system design document in file:///
usr/share/doc/packages/kiwi/kiwi.pdf. KIWI always operates in two steps. The KIWI - -build
option just combines both steps into one to make it easier to start with KIWI. The first step
is the preparation step and if that step was successful, a creation step follows which is able
to create different image output types. If you have started with an example and want to add
you own changes it might be a good idea to clone of from this example. This can be done
by simply copying the entire image description or you can let KIWI do that for you by using
the kiwi - - clone command.

In the preparation step, you prepare a directory including the contents of your new filesystem
based on one or more software package source(s) The creation step is based on the result of
the preparation step and uses the contents of the new image root tree to create the output
image. If the image type ISO was requested, the output image would be a file with the suffix
.iso representing a live system on CD or DVD. Other than that KIWI is able to create images
for virtual and para-virtual (Xen) environments as well as for USB stick, PXE network clients
and OEM customized Linux systems.

Image Preparation and Creation

kiwi { -p | --prepare } image-path
[-r | --root image- root | --chache directory]

kiwi { -c | --create } image-root
{ -d | --destdir destination} [--type image- type]

Image Upgrade

If the image root tree is stored and not removed, it can be used for upgrading the image
according to the changes made in the repositories used for this image. If a distributor provides

74

an update channel for package updates and an image config.xml includes this update channel
as repository, it is useful to store the image root tree and upgrade the tree according to changes
on the update channel. Given that the root tree exists it's also possible to add or remove
software and recreate the image of the desired type.

kiwi { -u | --upgrade } image-root [--add-packagename] [--add-patternname]

System to Image Migration

The migration module allows you to migrate your currently running system into an image
description. The module will check for files not managed by a package manager and also
inspects your system for package pattern and file consistency according to the currently active
repositories. The system requires the zypper backend in order to work properly.

The migration process creates a cache file so that subsequent calls of the migration runs much
faster. Please have in mind that if your system has changed (files created/deleted, etc.) the
cache file might not be worth to become reused. In this case you should remove the cache
first and start from scratch. The option - -nofiles will prevent the system from searching
for unpackaged and packaged but modified files The option --notemplate will prevent the
creation of the image description files which are needed if you want to use KIWI to create a
clone image from the result of the migration. With the options - -exclude and --skip you
can tell the system to ignore specific directories and/or packages. This makes sense if you
know before that some data is not worth to become migrated or can be restored easily later
inside the cloned image like software repositories.

The migration process will always place it's result into the /tmp/$0ptionValueOf-m directory.
The reason for this is because /tmp is always excluded from the migration operation and
therefore we can safely place new files there without influencing the migration itself. You
should have at least 50 MB free space for the cache file and the image description all the rest
are just hard links.

As one result a HTML based report file is created which contains important information about
the system. You are free to ignore that information but with the risk that the migrated image
does not represent the same system which is running at the moment. The less issues left in the
report the better is the result. In most cases a manual fine tuning is required. This includes
the repository selection and the unmanaged files along with the configuration details of your
currently running operating system. You should understand the module as a helper to migrate
running servers into images. The implementation is still under construction so expect better
migration results in future releases :)

kiwi { -m | --migrate } name [--exclude directory...] [--skip package...] [--nofiles] [--
notemplate]

Image Postprocessing Modes

The KIWI post-processing modes are used for special image deployment tasks, like installing
the image on a USB stick. So to say they are the third step after preparation and creation.
KIWI calls the postprocessing modules automatically according to the specified output image
type and attributes but it's also possible to call them manually.

kiwi --bootstick initrd [--bootstick-system systemImage] [--bootstick-device device]

kiwi --bootvm initrd --bootvm-system systemImage [--bootvm-disksize size]

75

kiwi --booted initrd
kiwi --installed initrd --installcd-system vmx-system-image

kiwi --installstick initrd --installstick-system vmx-system-image

Image format conversion

The KIWI format conversion is useful to perform the creation of another image output format
like vindk for VMware or ovf the open virtual machine format. Along with the conversion KIWI
also creates the virtual machine configuration according to the format if there is a machine
section specified in the XML description

kiwi --convert systemImage [--format vmdk |ovf|qcow2]

Testsuite

The KIWI test suite is useful to perform basic quality checks on the image root directory. The
test cases are stored in subdirectories below /usr/share/kiwi/tests.

kiwi --testsuite image-root [--test name...]

Helper Tools

The helper tools provide optional functions like creating a crypted password string for the
users section of the config.xml file or signing the image description with an md5sum hash
as well as adding splash data to the boot image used by the bootloader and the testsuite mode
which allows testing the integrity of the new root tree.

kiwi --createpassword
kiwi --createhash image-path

kiwi { -i | --info } ImagePath {--select repo-patterns|patterns|types|sources|size|
profiles|packages }

kiwi --setup-splash initrd
The following list describes the helper tools more detailed

[--createpassword]
Create a crypted password hash and prints it on the console. The user can use the string
as value for the pwd attribute in the XML users section

[--createhash image-path]
Sign your image description with a md5sum. The result is written to a file named
.checksum.md and is checked if KIWI creates an image from this description.

[-1] --info image-path --select selection]
List general information about the image description. So far you can get information about
the available patterns in the configured repositories with repo-patterns, a list of used
patterns for this image with patterns, a list of supported image types with types, a list
of source URL's with sources, an estimation about the install size and the size of the

76

packages marked as to be deleted with size, a list of profiles with profiles, and a list
of solved packages to become installed with packages.

[--setup-splash initrd]
Create splash screen from the data inside the initrd and re-create the initrd with the splash
screen attached to the initrd cpio archive. This enables the kernel to load the splash screen
at boot time. If splashy is used only a link to the original initrd will be created

Global Options

[--base-root base-path]
Refers to an already prepared root tree. KIWI will use this tree to skip the first stage of
the prepare step and run the second stage directly.

[--base-root-mode copy|union|recycle]
Specifies the overlay mode for the base root tree. This can be either a copy of the tree,
a union mount or the tree itself. The last mode (recycle) will modify the base root tree
which might make it obsolete as base root for other kiwi calls

[--add-profile profile-name]
Use the specified profile. A profile is a part of the XML image description and therefore
can enhance each section with additional information. For example adding packages.

[--set-repo URL]
Set/Overwrite repo URL for the first listed repo. The change is temporary and will not be
written to the XML file.

[--set-repotype type]
Set/Overwrite repo type for the first listed repo. The supported repo types depends on
the packagemanager. Commonly supported are rpm-md, rpm-dir and yast2. The change
is temporary and will not be written to the XML file.

[--set-repoalias name]
Set/Overwrite alias name for the first listed repo. Alias names are optional free form text.
If not set the source attribute value is used and builds the alias name by replacing each “/”
with a “_”. An alias name should be set if the source argument doesn't really explain what
this repository contains. The change is temporary and will not be written to the XML file.

[--set-repoprio number]
Set/Overwrite priority for the first listed repo. Works with the smart packagemanager
only. The Channel priority assigned to all packages available in this channel (0 if not set). If
the exact same package is available in more than one channel, the highest priority is used.

[--add-repo URL, --add-repotype type --add-repoalias name --add-repoprio number
1
Add the given repository and type for this run of an image prepare or upgrade process.
Multiple --add-repo/--add-repotype options are possible. The change will not be
written to the config.xml file

[--ignore-repos]
Ignore all repositories specified so far, in XML or elsewhere. This option should be
used in conjunction with subsequent calls to - -add-repo to specify repositories at the
commandline that override previous specifications.

77

[--logfile Filename | terminal]
Write to the log file Filename instead of the terminal.

[--gzip-cmd cmd]
Specify an alternate command to run when compressing boot and system images.
Command must accept gzip options.

[--log-port PortNumber]
Set the log server port. By default port 9000 is used. If multiple KIWI processes runs on
one system it's recommended to set the logging port per process.

[--package-manager smart|zypper]
Set the package manager to use for this image. If set it will temporarly overwrite the value
set in the xml description.

[-A| --target-arch 1586|x86 64|armv5tel|ppc]
Set a special target-architecture. This overrides the used architecture for the image-
packages in zypp.conf. When used with smart this option doesn't have any effect.

[--debug]
Prints a stack trace in case of internal errors

[--verbose 1]2|3]
Controls the verbosity level for the instsource module

Image Preparation Options

[-r| --root RootPath]
Set up the physical extend, chroot system below the given root-path path. If no --root
option is given, KIWI will search for the attribute defaultroot in config.xml. If no root
directory is known, a mktmp directory will be created and used as root directory.

[--force-new-root]
Force creation of new root directory. If the directory already exists, it is deleted.

Image Upgrade/Preparation Options

[--cache directory]
When specifying a cache directory KIWI will create a cache each for patterns and packages
and re-use them if possible for subsequent root tree preparations of this and/or other
images

[--add-package package]
Add the given package name to the list of image packages multiple - -add-package options
are possible. The change will not be written to the XML description.

[--add-pattern name]
Add the given pattern name to the list of image packages multiple - -add-pattern options
are possible. The change will not be written to the xml description. Patterns can be handled
by SUSE based repositories only.

[--del-package package]
Removes the given package by adding it the list of packages to become removed. The
change will not be written to the xml description.

78

Image Creation Options

[-d | --destdir DestinationPath]
Specify destination directory to store the image file(s) If not specified, KIWI will try to find
the attribute defaultdestination which can be specified in the preferences section of
the config.xml file. If it exists its value is used as destination directory. If no destination
information can be found, an error occurs.

[-t]| --type Imagetypel
Specify the output image type to use for this image. Each type is described in a type
section of the preferences section. At least one type has to be specified in the config.xml
description. By default, the types specifying the primary attribute will be used. If there is
no primary attribute set, the first type section of the preferences section is the primary
type. The types are only evaluated when KIWI runs the --create step. With the option
- -type one can distinguish between the types stored in config.xml

[-s| --strip]
Strip shared objects and executables only make sense in combination with - -create

[--prebuiltbootimage Directory]
Search in Directory for pre-built boot images.

[--isocheck]
in case of an iso image the checkmedia program generates a md5sum into the ISO header.
If the --isocheck option is specified a new boot menu entry will be generated which
allows to check this media

[--Tvm]
Use the logical volume manager to control the disk. The partition table will include one
Ivm partition and one standard ext2 boot partition. Use of this option makes sense for the
create step only and also only for the image types: vinx, oem, and usb

[--fs-blocksize number]
When calling KIWI in creation mode this option will set the block size in bytes. For ISO
images with the old style ramdisk setup a blocksize of 4096 bytes is required

[--fs-journalsize number]
When calling KIWI in creation mode this option will set the journal size in mega bytes for
ext[23] based filesystems and in blocks if the reiser filesystem is used

[--fs-inodesize number]
When calling KIWI in creation mode this option will set the inode size in bytes. This option
has no effect if the reiser filesystem is used

[--fs-inoderatio number]
Set the bytes/inode ratio. This option has no effect if the reiser filesystem is used

[--fs-max-mount-count number]
When calling kiwi in creation mode this option will set the number of mounts after which
the filesystem will be checked. Set to 0 to disable checks. This option applies only to
ext[234] filesystems.

[--fs-check-interval number]
When calling kiwi in creation mode this option will set the maximal time between two
filesystem checks. Set to O to disable time-dependent checks. This option applies only to
ext[234] filesystems.

79

[--partitioner fdisk|parted]
Select the tool to create partition tables. Supported are fdisk (sfdisk) and parted. By default
fdisk is used

[--check-kernel]
Activates check for matching kernels between boot and system image. The kernel check
also tries to fix the boot image if no matching kernel was found.

For More Information

More information about KIWI, its files can be found at:

http://en.opensuse.org/Portal: KIWI
KIWI wiki

config.xml
The configuration XML file that contains every aspect for the image creation.

file:///usr/share/doc/packages/kiwi/kiwi.pdf
The system design document which describes some details about the building process.

file:///usr/share/doc/packages/kiwi/schema/kiwi.xsd.html
The KIWI RELAX NG XML Schema documentation.

file:///usr/share/doc/packages/kiwi/schema/test.xsd.html
The KIWI RELAX NG XML Schema documentation.

80

http://en.opensuse.org/Portal:KIWI

kiwi::config.sh
KIWTI::config.sh — Configuration File for KIWI image description

Description

The KIWI image description allows to have an optional config.sh script in place. This script
should be designed to take over control of adding the image operating system configuration.
Configuration in that sense means stuff like activating services, creating configuration files,
prepare an environment for a firstboot workflow, etc. What you shouldn't do in config.sh
is breaking your systems integrity by for example removing packages or pieces of software.
Something like that can be done in images.sh. The config. sh script is called after the user
and groups have been set up. If there are SUSE Linux related YaST XML information, these
are validated before config. sh is called too. If you exit config.sh with an exit code ! = 0 kiwi
will exit with an error too.

Example A.1. Template for config.sh

-

Functions...

test -f /.kconfig && . /.kconfig
test -f /.profile & . /.profile

-

Greeting...

echo "Configure image: [$kiwi iname]..."

-

Call configuration code/functions

#
#

Common functions

The .kconfig file allows to make use of a common set of functions. Those which are SUSE
Linux specific starts with the name suse. Those which are common to all linux systems starts
with the name base. The following list describes which functions are available for config. sh

[baseCleanMount]
Umount the system filesystems /proc, /dev/pts, and /sys.

[baseDisableCtrlAltDel]
Disable the Ctrl-Alt-Del key sequence setting in /etc/inittab

[baseGetPackagesForDeletion]
Return the name(s) of packages which will be deleted

[baseGetProfilesUsed]
Return the name(s) of profiles used to build this image

81

[baseSetRunlevel {value}]
Set the default run level

[baseSetupBoot]
Set up the linuxrc as init

[baseSetupBusyBox {-f}]
activates busybox if installed for all links from the busybox/busybox. links file—you can
choose custom apps to be forced into busybox with the - f option as first parameter, for
example:

baseSetupBusyBox -f /bin/zcat /bin/vi

[baseSetupInPlaceGITRepository]
Create an in place git repository of the root directory. This process may take some time
and you may expect problems with binary data handling

[baseSetupInPlaceSVNRepository {path_list}]
Create an in place subversion repository for the specified directories. A standard call could
look like this baseSetupInPlaceSVNRepository /etc, /srv, and /var/log

[baseSetupPlainTextGITRepository]
Create an in place git repository of the root directory containing all plain/text files.

[baseSetupUserPermissions]
Search all home directories of all users listed in /etc/passwd and change the ownership
of all files to belong to the correct user and group.

[baseStripAndKeep {list of info-files to keep}]
helper function for strip* functions read stdin lines of files to check for removing params:
files which should be keep

[baseStripDocs {list of docu names to keep}]
remove all documentation, except one given as parameter

[baseStripInfos {list of info-files to keep}]
remove all info files, except one given as parameter

[baseStripLocales {list of locales}]
remove all locales, except one given as parameter

[baseStripMans {list of manpages to keep}]
remove all manual pages, except one given as parameter example: baseStripMans more less

[baseStripRPM]
remove rpms defined in config.xml under image = delete section

[baseStripTools {list of toolpath} {list of tools}]
helper function for suseStripInitrd function params: toolpath, tools

[baseStripUnusedLibs]
remove libraries which are not directly linked against applications in the bin directories

[baseUpdateSysConfig {filename} {variable} {value}]
update sysconfig variable contents

82

[Debug {message}]
Helper function to print a message if the variable DEBUG is set to 1

[Echo {echo commandline}]
Helper function to print a message to the controling terminal

[Rm {list of files}]
Helper function to delete files and anounce it to log

[Rpm {rpm commandline}]
Helper function to the RPM function and anounce it to log

[suseActivateDefaultServices]
Call all postin scriptlets which among other things activates all required default services
using suselnsertService

[suseActivateServices]
Check all services in /etc/init.d/ and activate them by calling suselnsertService

[suseCloneRunlevel {runlevel}]
Clone the given runlevel to work in the same way as the default runlevel 3.

[suseConfig]
Setup keytable language and timezone if specified in config.xml and call SuSEconfig
afterwards

[suselnsertService {servicename}]
Recursively insert a service. If there is a service required for this service it will be inserted
first. The suse insserv program is used here

[suseRemoveService {servicename}]
Remove a service and its dependant services using the suse insserv program

[suseService {servicename} {on|off}]
Activate/Deactivate a service by using the chkconfig program The function requires the
service name and the value on or off as parameters

[suseServiceDefaultOn]
Activates the following services to be on by default using the chkconfig program:
boot.rootfsck boot.cleanup boot.localfs boot.localnet boot.clock policykitd dbus consolekt
haldaemon network atd syslog cron kbd

[suseSetupProductInformation]
This function will use zypper to search for the installed product and install all product
specific packages. This function only makes sense if zypper is used as packagemanager

[suseStripPackager {-a}]
Remove smart o zypper packages and db files Also remove rpm package and db if -a given

Profile environment variables

The .profile environment file contains a specific set of variables which are listed below. Some
of the functions above makes use of the variables.

[$kiwi_compressed]
The value of the compressed attribute set in the type element in config.xml

83

[$kiwi_delete]
A list of all packages which are part of the packages section with type="delete" in
config.xml

[$kiwi_drivers]
A comma seperated list of the driver entries as listed in the drivers section of the
config.xml. Similar variables exists for the usbdrivers and scsidrivers sections

[$kiwi_iname]
The name of the image as listed in config.xml

[$kiwi_iversion]
The image version string major.minor.release

[$kiwi_keytable]
The contents of the keytable setup as done in config.xml

[$kiwi_language]
The contents of the locale setup as done in config.xml

[$kiwi_profiles]
A list of profiles used to build this image

[$kiwi_size]
The predefined size value for this image. This is not the computed size but only the optional
size value of the preferences section in config.xml

[$kiwi_timezone]
The contents of the timezone setup as done in config.xml

[$kiwi_type]
The basic image type. Can be a simply filesystem image type of ext2, ext3, reiserfs,
squashfs, cpio, or one of the following complex image types: iso, split, usb, vmx, oem,
Xen, or pxe.

84

kiwi::images.sh
KIWTI::images.sh — Configuration File for KIWI image description

Description

The KIWI image description allows to have an optional images . sh script in place. This script
is called at the beginning of the KIWI create step. It is allowed to remove software there to
shrink down the size of the image. Most often images . sh is used for boot images because they
needs to be small. As images.sh is called in the create step you should be aware to design
the script in a way that it can be called multiple times without shooting itself into its knee.
As KIWI allows to create different image types from one previosly prepared tree one needs to
take into account that images.sh can be called more than one time. If you exit images.sh
with an exit code ! = 0 KIWI will exit with an error too.

Example A.2. Template for images.sh

4

Functions...

test -f /.kconfig && . /.kconfig
test -f /.profile && . /.profile

4

Greeting...

echo "Configure image: [$kiwi iname]..."

4

Call configuration code/functions

#
#

Common functions

The .kconfig file allows to make use of a common set of functions. Those which are SUSE
Linux specific starts with the name suse. Those which are common to all linux systems starts
with the name base. The following list describes which functions are available for images. sh.

[baseCleanMount]
Umount the system filesystems /proc, /dev/pts, and /sys.

[baseGetProfilesUsed]
Return the name(s) of profiles used to build this image.

[baseGetPackagesForDeletion]
Return the list of packages setup in the packages type="delete" section of the
config.xml used to build this image.

[baseSetupOEMPartition]
Writes the file /config.oempartition depending on the following config.xml
parameters: oem-reboot, oem-swapsize, oem-systemsize, oem-home,oem-swap,oem-boot-

85

title,oem-recovery, oem-kiwi-initrd. kiwi takes the information from config.xml and
creates the config.oempartition file as part of the automatically created boot image
(initrd). The information must be available as part of the boot image because it controls
the OEM repartition workflow on first boot of an OEM image. Detailed information about
the meaning of each option can be found in the OEM chapter of the KIWI cookbook.

[suseGFXBoot {theme} {loadertyp}]
This function requires the gfxboot and at least one bootsplash-theme-* package to be
installed in order to work correctly. The function creates from this package data a graphics
boot screen for the isolinux and grub boot loaders. Additionally it creates the bootsplash
files for the resolutions 800x600, 1024x768, and 1280x1024

[suseStripKernel]
This function removes all kernel drivers which are not listed in the *drivers sections of
the config.xml file.

[suseStripInitrd]
This function removes a whole bunch of tools binaries and libraries which are not required
in order to boot a suse system with KIWI.

[Rm {list of files}]
Helper function to delete files and anounce it to log.

[Rpm {rpm commandline}]
Helper function to the rpm function and anounce it to log.

[Echo {echo commandline}]
Helper function to print a message to the controling terminal.

[Debug {message}]
Helper function to print a message if the variable DEBUG is set to 1.

Profile environment variables

The .profile environment file contains a specific set of variables which are listed below. Some
of the functions above makes use of the variables.

[$kiwi_iname]
The name of the image as listed in config.xml

[$kiwi_iversion]
The image version string major.minor.release

[$kiwi_keytablee]
The contents of the keytable setup as done in config.xml

[$kiwi_language]
The contents of the locale setup as done in config.xml

[$kiwi_timezone]
The contents of the timezone setup as done in config.xml

[$kiwi_delete]
A list of all packages which are part of the packages section with type="delete" in
config.xml

86

[$kiwi_profiles]
A list of profiles used to build this image

[$kiwi_drivers]
A comma seperated list of the driver entries as listed in the drivers section of the
config.xml. Similar variables exists for the usbdrivers and scsidrivers sections

[$kiwi_size]
The predefined size value for this image. This is not the computed size but only the optional
size value of the preferences section in config.xml

[$kiwi_compressed]
The value of the compressed attribute set in the type element in config.xml

[$kiwi_type]
The basic image type. Can be a simply filesystem image type of ext2, ext3, reiserfs,
squashfs, and cpio or one of the following complex image types: iso split usb vmx oem
Xen pxe

87

kiwi::kiwirc
KIWTI::kiwirc — Resource file for the Kiwi imaging system

Description

The KIWI imaging toolchain supports the use of an optional resource file named .kiwirc
located in the users home directory.

The file is sourced by a Perl process and thus Perl compatible syntax for the supported variable
sttings is required.

Example A.3. Template for .kiwi.rc
$BasePath='/usr/share/kiwi';
$Gzip="bzip2"';

$LogServerPort="'4455";
$System="'/usr/share/kiwi/image’;

Supported Resource Settings

KIWI recognizes the BasePath, Gzip, LogServerPort, LuksCipher, and System settings in the
.kiwirc file.

[BasePath]
Path to the location of the KIWI image system components, such as modules, tests, image
descriptions etc.

The default value is /usr/share/kiwi

[Gzip]
Specify the compression utility to be used for various compression tasks during image
generation.

The default value is gzip -9

[LogServerPort]
Specify a port number for log message queing.

The default value is off

[LuksCipher]
Specify the cipher for the encrypted Luks filesystem.

[System]
Specify the location of the KIWI system image description.

The default value is the value of BasePath concatenated with /image.

88

Index

A

Amazon Elastic Comput Cloud (see EC2
image)
attributes
alias, 21
arch, 18
blocksize, 16
boot, 11, 11, 12,12, 12,12, 12
boot-theme, 13
bootkernel, 11, 46
bootprofile, 11, 46
checkprebuilt, 12, 12
compressed, 12
controller, 18, 18
defaultbaseroot, 13
defaultdestination, 13
defaultroot, 13
description, 10
device, 19
displayname, 9
domain, 18
driver, 19, 19
drivers, 20
filesystem, 11, 12, 12, 42, 42, 63
flags, 11, 11, 40, 40, 40, 40
format, 11, 46
freespace, 14
fsreadonly, 12
fsreadwrite, 12
group, 19
guestOS, 18
home, 19
HWpversion, 18
id, 9, 18, 18, 19, 19
image, 11,11,11,11,11,12,12,12,12,15
inherit, 9
installiso, 61, 62, 62
installstick, 62, 62
interface, 19, 19
kernelcmdline, 13, 16
keytable, 13
kiwirevision, 9
locale, 13
Ivm, 11, 12, 43, 63
lvmgroup, 14
memory, 18, 18
mode, 19
name, 9, 9, 10, 19
netdrivers, 20

number, 16

only, 23

pattern*, 23
patternPackageType, 23
patternType, 23
plusRecommended, 23
plusSuggested, 23
primary, 11

priority, 21

profiles, 10, 10, 10, 10
pwd, 19

realname, 19
rpm-check-signatures, 13
rpm-excludedocs, 13
rpm-force, 13
scsidrivers, 20

server, 16

shell, 19

size, 14, 16

status, 21

target, 16

timezone, 13

type, 9, 10, 11, 20, 20, 20, 22, 23, 84, 85,
86

unit, 17, 17

usbdrivers, 20

B

boot parameters, 6
boot process, 5

C
checklist, 34

D

devices
/dev/console, 6
/dev/etherd/e0.1, 55
/dev/hda, 53
/dev/hda2, 52
/dev/nb0, 54, 54
/dev/nbl, 54
/dev/ram0, 52
/dev/raml, 52, 52
/dev/sda2, 53
/dev/sda3, 53
/dev/sdbl, 54, 55
/dev/xvda, 66

directories
/etc, 17,17, 17, 43
/etc/init.d/, 83
/home, 15, 15, 43

89

/images/CDs, 37
/lib/modules/Version/kernel, 20

/lib/modules/Version/kernel/drivers, 20

/media, 37
/srv/tftpboot/boot/, 55
/tmp, 75
/usr/share/kiwi/modules/, 43
/usr/share/zoneinfo, 13, 13
/var, 40, 43
/var/lib/tftpboot, 53

boot/, 53

config/, 8

new-root/image, 3

root, 8

root/, 27, 34

E

EC2 images, 67

environment variables
delete, 22
RC_LANG, 13

F

file extensions
* kiwi, 7
.8z, 52
.iso, 39, 62, 62, 62, 74
.raw, 42, 45, 62, 62
.raw.install, 62
.vindk, 46
.vinx, 46, 46

filesystems
aufs, 16, 40, 40, 40, 42, 55
clicfs, 16, 40, 55, 56
ext2, 46
squashfs, 39, 40, 42, 42, 50, 56, 61
tmpfs, 17
unionfs, 16

I

images
EC2, 67
ISO, 39
OEM, 61
PXE, 49
USB, 41
VMX, 45
XEN, 65

ISO images, 39

K
KIWI

architecture restrictions, 23
boot parameters, 6

boot process, 5
checklist, 34

common code, 6
config.xml, 9
distribution specific code, 6
EC2 image, 67

history, 25

image description, 7
imge migration, 33
installation source, 37
ISO image, 39

local installation source, 37
LVM support, 43, 46, 63
maintenance, 29

model, 25

OEM image, 61

overlay files, 34, 40
patterns, 23

physical extends, 31
PXE image, 49

RAM only image, 56
release format, 10
requested image types, 4
split image, 57

split mode, 40

split stick, 42

stages, 4

testsuite, 71

union image, 56

USB image, 41

user definied scripts, 4
virtual disk formats, 46
VMware, 46

VMX image, 45
Workflow, 3

XEN image, 65

L

Logical Volume Manager (see LVM support)

LVM support, 43

M
macros
%arch, 21
manpages
kiwi, 74
kiwi::config.sh, 81
kiwi::images.sh, 85
kiwi::kiwirc, 88

90

0
OEM images, 61
overlay files, 34

P
PXE images, 49

S

server
atftp, 49
dhcp, 50
TFTP, 51, 51

services
atftpd, 49
insserv, 8
NFS, 57

T

testsuite, 71

U
USB images, 41

\Y%

virtual disk formats, 46
VMware, 46
VMX images, 45

X
XEN image, 65

91

92

	openSUSE-KIWI Image System
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Basic Workflow
	2.1. Boot Process
	2.2. Boot Parameters
	2.3. Common and Distribution Specific Code

	Chapter 3. KIWI Image Description
	3.1. The config.xml File
	3.1.1. image Element
	3.1.2. description Element
	3.1.3. profiles Element
	3.1.4. preferences Element
	3.1.5. users Element
	3.1.6. drivers Element
	3.1.7. repository Element
	3.1.8. packages Element
	3.1.8.1. Using Patterns
	3.1.8.2. Architecture Restrictions
	3.1.8.3. Image Type Specific Packages
	3.1.8.4. Packages to Become Included Into the Boot Image
	3.1.8.5. Data not Available as Packages to Become Included

	Chapter 4. Creating Appliances with KIWI
	4.1. History
	4.2. The KIWI Model

	Chapter 5. Maintenance of Operating System Images
	Chapter 6. System to Image Migration
	6.1. Create a Clean Repository Set First
	6.2. Watch the Overlay and Unpackaged Files
	6.3. Checklist
	6.4. Turn my System Into an Image…

	Chapter 7. Installation Source
	7.1. Adapt the Example’s config.xml
	7.2. Create a Local Installation Source

	Chapter 8. ISO Image—Live Systems
	8.1. Building the suse-live-iso Example
	8.2. Using the Image
	8.3. Flavours
	8.3.1. Split mode

	Chapter 9. USB Image—Live-Stick System
	9.1. Building the suse-live-stick Example
	9.2. Using the Image
	9.3. Flavours
	9.3.1. Split Stick
	9.3.2. LVM Support

	Chapter 10. VMX Image—Virtual Disks
	10.1. Building the suse-vm-guest Example
	10.2. Using the Image
	10.3. Flavours
	10.3.1. VMware support
	10.3.2. LVM Support

	Chapter 11. PXE Image—Thin Clients
	11.1. Setting Up the Required Services
	11.1.1. Atftp Server
	11.1.2. DHCP Server

	11.2. Building the suse-pxe-client Example
	11.3. Using the Image
	11.4. Flavours
	11.4.1. The PXE Client Control File
	11.4.2. The PXE Client Configuration File
	11.4.3. User another than tftp as Download Protocol
	11.4.4. RAM Only Image
	11.4.5. Union Image
	11.4.6. Split Image
	11.4.7. Root Tree Over NFS
	11.4.8. Root Tree Over NBD
	11.4.9. Root Tree Over AoE

	11.5. Hardware Grouping
	11.5.1. The Group Configuration File
	11.5.2. The Hardware Group File

	Chapter 12. OEM Image—Preload Systems
	12.1. Building the suse-oem-preload Example
	12.2. Using the Image
	12.3. Flavours
	12.3.1. Specializing the OEM install process
	12.3.2. Influencing the OEM Partitioning
	12.3.3. LVM Support
	12.3.4. Partition Based Installation

	Chapter 13. Xen Image—Paravirtual Systems
	13.1. Building the suse-xen-guest Example
	13.2. Using the Image
	13.3. Flavours

	Chapter 14. EC2 Image—Amazon Elastic Compute Cloud
	14.1. Building the suse-xen-guest Example for EC2
	14.2. Using the Image

	Chapter 15. KIWI Testsuite
	15.1. Testsuite Packages
	15.2. Creating a Test

	Appendix A. KIWI Man Pages
	kiwi
	kiwi::config.sh
	kiwi::images.sh
	kiwi::kiwirc

	Index

