Runge-Kutta-Fehlberg embedded Runge-Kutta ODE stepper (GSL) More...
#include <ode_rkf45_gsl.h>
Based on Hairer09 .
Definition at line 66 of file ode_rkf45_gsl.h.
Public Member Functions | |
virtual int | step (double x, double h, size_t n, vec_y_t &y, vec_dydx_t &dydx, vec_y_t &yout, vec_yerr_t &yerr, vec_dydx_t &dydx_out, func_t &derivs) |
Perform an integration step. More... | |
![]() | |
virtual int | get_order () |
Return the order of the ODE stepper. More... | |
Protected Attributes | |
size_t | ndim |
Size of allocated vectors. | |
Storage for the intermediate steps | |
vec_dydx_t | k2 |
vec_dydx_t | k3 |
vec_dydx_t | k4 |
vec_dydx_t | k5 |
vec_dydx_t | k6 |
vec_y_t | ytmp |
Storage for the coefficients | |
double | ah [5] |
double | b3 [2] |
double | b4 [3] |
double | b5 [4] |
double | b6 [5] |
double | c1 |
double | c3 |
double | c4 |
double | c5 |
double | c6 |
double | ec [7] |
![]() | |
int | order |
The order of the ODE stepper. | |
|
inlinevirtual |
Given initial value of the n-dimensional function in y
and the derivative in dydx
(which must be computed beforehand) at the point x
, take a step of size h
giving the result in yout
, the uncertainty in yerr
, and the new derivative in dydx_out
using function derivs
to calculate derivatives. The parameters yout
and y
and the parameters dydx_out
and dydx
may refer to the same object.
If derivs
always returns zero, then this function will also return zero. If not, step()
will return the first non-zero value which was obtained in a call to derivs
. The error handler is never called.
Implements o2scl::ode_step< vec_y_t, vec_dydx_t, vec_yerr_t, func_t >.
Definition at line 152 of file ode_rkf45_gsl.h.
Documentation generated with Doxygen. Provided under the
GNU Free Documentation License (see License Information).