Agda-2.5.2: A dependently typed functional programming language and proof assistant

Safe HaskellSafe
LanguageHaskell2010

Agda.Auto.CaseSplit

Documentation

data HI a #

Constructors

HI FMode a 

drophid :: [HI a] -> [a] #

type CSPat o = HI (CSPatI o) #

type CSCtx o = [HI (MId, MExp o)] #

type Sol o = [(CSCtx o, [CSPat o], Maybe (MExp o))] #

caseSplitSearch :: forall o. IORef Int -> Int -> [ConstRef o] -> Maybe (EqReasoningConsts o) -> Int -> Int -> ConstRef o -> CSCtx o -> MExp o -> [CSPat o] -> IO [Sol o] #

caseSplitSearch' :: forall o. (Int -> CSCtx o -> MExp o -> ([Nat], Nat, [Nat]) -> IO (Maybe (MExp o))) -> Int -> Int -> ConstRef o -> CSCtx o -> MExp o -> [CSPat o] -> IO [Sol o] #

infertypevar :: CSCtx o -> Nat -> MExp o #

replace :: Nat -> Nat -> MExp o -> MExp o -> MExp o #

betareduce :: MExp o -> MArgList o -> MExp o #

eqelr :: Elr o -> Elr o -> Bool #

replacep :: Nat -> Nat -> CSPatI o -> MExp o -> CSPat o -> CSPat o #

rm :: MM a b -> a #

mm :: a -> MM a b #

unifyexp :: MExp o -> MExp o -> Maybe [(Nat, MExp o)] #

lift :: Nat -> MExp o -> MExp o #

removevar :: CSCtx o -> MExp o -> [CSPat o] -> [(Nat, MExp o)] -> (CSCtx o, MExp o, [CSPat o]) #

notequal :: Nat -> Nat -> MExp o -> MExp o -> IO Bool #

findperm :: [MExp o] -> Maybe [Nat] #

freevars :: MExp o -> [Nat] #

applyperm :: [Nat] -> CSCtx o -> MExp o -> [CSPat o] -> (CSCtx o, MExp o, [CSPat o]) #

ren :: [Nat] -> Nat -> Int #

rename :: (Nat -> Nat) -> MExp o -> MExp o #

renamep :: (Nat -> Nat) -> CSPat o -> CSPat o #

seqctx :: CSCtx o -> CSCtx o #

depthofvar :: Nat -> [CSPat o] -> Nat #

localTerminationEnv :: [CSPat o] -> ([Nat], Nat, [Nat]) #

localTerminationSidecond :: ([Nat], Nat, [Nat]) -> ConstRef o -> MExp o -> EE (MyPB o) #

getblks :: MExp o -> IO [Nat] #