The L1 loss is a loss function that measures the mean absolute error (MAE) between each element in the input x and target y.
More...
|
| L1Loss (const bool mean=true) |
| Create the L1Loss object. More...
|
|
template<typename InputType , typename TargetType , typename OutputType > |
void | Backward (const InputType &input, const TargetType &target, OutputType &output) |
| Ordinary feed backward pass of a neural network. More...
|
|
template<typename InputType , typename TargetType > |
InputType::elem_type | Forward (const InputType &input, const TargetType &target) |
| Computes the L1 Loss function. More...
|
|
bool & | Mean () |
| Set the value of reduction type. More...
|
|
bool | Mean () const |
| Get the value of reduction type. More...
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter. More...
|
|
OutputDataType & | OutputParameter () const |
| Get the output parameter. More...
|
|
template<typename Archive > |
void | serialize (Archive &ar, const unsigned int) |
| Serialize the layer. More...
|
|
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::L1Loss< InputDataType, OutputDataType >
The L1 loss is a loss function that measures the mean absolute error (MAE) between each element in the input x and target y.
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 33 of file l1_loss.hpp.