| v

ERLANG

Megaco/H.248

Copyright © 2000-2017 Ericsson AB. All Rights Reserved.
Megaco/H.248 3.17.3
March 2, 2017

Copyright © 2000-2017 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 2, 2017

1.1 Introduction

1 Megaco/H.248 Users Guide

The Megaco application is a framework for building applications on top of the Megaco/H.248 protocol.

1.1 Introduction

Megaco/H.248 is a protocol for control of elements in a physically decomposed multimedia gateway, enabling
separation of call control from media conversion. A Media Gateway Controller (MGC) controls one or more Media
Gateways (MG).
This version of the stack supports version 1, 2 and 3 as defined by:
e version1- RFC 3525 and H.248-1G (v10-v13)
e version 2 - draft-ietf-megaco-h248v2-04 & H.248.1 v2 Corrigendum 1 (03/2004)
e version3:
» prev3a- asdefined by TD-33 (except segments)
e prev3b - TD-33 updated to be backward compatible with v2 (except segments)
e prev3c- Asdefined by ITU H.248.1 (09/2005) (except segments)
e v3- Full version 3 asdefined by ITU H.248.1 (09/2005) (including segments)
The semantics of the protocol hasjointly been defined by two standardization bodies:
e |ETF - which calls the protocol Megaco
e |ITU - which calls the protocol H.248

1.1.1 Scope and Purpose

This manual describes the Megaco application, as a component of the Erlang/Open Telecom Platform development
environment. It is assumed that the reader is familiar with the Erlang Devel opment Environment, which is described
in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisitesis required for understanding the material in the Megaco User's Guide:

e thebasics of the Megaco/H.248 protocol
» thebasics of the Abstract Syntax Notation One (ASN.1)
« familiarity with the Erlang system and Erlang programming

The application requires Erlang/OTP release R10B or later.

1.1.3 About This Manual

In addition to this introductory chapter, the Megaco User's Guide contains the following chapters:

e Chapter 2: "Architecture" describes the architecture and typical usage of the application.

* Chapter 3: "Internal form and itsencodings' describestheinternal form of Megaco/H.248 messagesand itsvarious
encodings.

e Chapter 4: "Transport mechanisms" describes how different mechanisms can be used to transport the Megaco/
H.248 messages.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 1

1.2 Architecture

» Chapter 5: "Debugging" describes tracing and debugging.

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Megaco/H.248 and about the Erlang/OTP
development system:

* version 1, RFC 3525

* oldversion 1, RFC 3015

e Version 2 Corrigendum 1

e version 2, draft-ietf-megaco-h248v2-04

* TD-33(Draft H.248.1 version 3)

+ H.248.1version3

* the ASN.1 application User's Guide

» the Megaco application Reference Manual

e Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Architecture

1.2.1 Network view

Megaco is a (master/slave) protocol for control of gateway functions at the edge of the packet network. Examples
of thisis IP-PSTN trunking gateways and analog line gateways. The main function of Megaco is to allow gateway
decomposition into a call agent (call control) part (known as Media Gateway Controller, MGC) - master, and an
gateway interface part (known as Media Gateway, MG) - dave. The MG has no call control knowledge and only
handle making the connections and simple configurations.

SIP and H.323 are peer-to-peer protocols for call control (valid only for some of the protocols within H.323), or
more generally multi-media session protocols. They both operate at a different level (call control) from Megaco in a
decomposed network, and are therefor not aware of whether or not Megaco is being used underneath.

Figure 2.1: Network architecture

Megaco and peer protocols are complementary in nature and entirely compatible within the same system. At a system
level, Megaco alows for

» overall network cost and performance optimization

» protection of investment by isolation of changes at the call control layer

» freedom to geographically distribute both call function and gateway function

» adaption of legacy equipment

1.2.2 General

This Erlang/OTP application supplies a framework for building applications that needs to utilize the Megaco/H.248
protocol.

We have introduced the term "user" as a generic term for either an MG or an MGC, since most of the functionality
we support, is common for both MG's and MGC's. A (local) user may be configured in various ways and it may
establish any number of connections to its counterpart, the remote user. Once a connection has been established, the
connection is supervised and it may be used for the purpose of sending messages. N.B. according to the standard an
MG is connected to at most one MGC, while an MGC may be connected to any number of MG's.

2 | Ericsson AB. All Rights Reserved.: Megaco/H.248

href
href
href
href
href
href

1.2 Architecture

For the purpose of managing "virtual MG's", one Erlang node may host any number of MG's. In fact it may host amix
of MG'sand MGC's. Y ou may say that an Erlang node may host any number of "users’.

The protocol engine uses callback modules to handle various things:

» encoding callback modules - handles the encoding and decoding of messages. Several modules for handling
different encodings are included, such as ASN.1 BER, pretty well indented text, compact text and some others.
Others may be written by you.

» trangport callback modules - handles sending and receiving of messages. Transport modulesfor TCP/IPand UDP/
IP areincluded and others may be written by you.

e user calback modules - the actual implementation of an MG or MGC. Most of the functions are intended for
handling of a decoded transaction (request, reply, acknowledgement), but there are others that handles connect,
disconnect and errors cases.

Each connection may have its own configuration of callback modules, re-send timers, transaction id ranges etc. and
they may be re-configured on-the-fly.

Inthe API of Megaco, auser may explicitly send action requests, but generation of transaction identifiers, the encoding
and actual transport of the message to the remote user is handled automatically by the protocol engine according to
the actual connection configuration. Megaco messages are hot exposed in the API.

On the receiving side the transport module receives the message and forwards it to the protocol engine, which decodes
it and invokes user callback functions for each transaction. When a user has handled its action requests, it ssimply
returns a list of action replies (or a message error) and the protocol engine uses the encoding module and transport
module to compose and forward the message to the originating user.

The protocol stack does also handle things like automatic sending of acknowledgements, pending transactions, re-
send of messages, supervision of connections etc.

In order to provide asolution for scalableimplementations of MG'sand MGC's, a user may be distributed over several
Erlang nodes. One of the Erlang nodesis connected to the physical network interface, but messages may be sent from
other nodes and the replies are automatically forwarded back to the originating node.

1.2.3 Single node config

Here a system configuration with an MG and MGC residing in one Erlang node each is outlined:

Figure 2.2: Single node config

1.2.4 Distributed config

Inalarger system with auser (in this case an MGC) distributed over several Erlang nodes, it looks alittle bit different.
Here the encoding is performed on the originating Erlang node (1) and the binary isforwarded to the node (2) with the
physical network interface. When the potential messagereply isreceived ontheinterfaceon node(2), it isdecoded there
and then different actions will be taken for each transaction in the message. The transaction reply will be forwarded in
its decoded form to the originating node (1) while the other types of transactions will be handled locally on node (2).

Timers and re-send of messages will be handled on locally on one node, that is node(1), in order to avoid unnecessary
transfer of data between the Erlang nodes.

Figure 2.3: Distributes node config

1.2.5 Message round-trip call flow

The typical round-trip of a message can be viewed as follows. Firstly we view the call flow on the originating side:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 3

1.3 Running the stack

Figure 2.4: Message Call Flow (originating side)

Then we continue with the call flow on the destination side:

Figure 2.5: Message Call Flow (destination side)

1.3 Running the stack
1.3.1 Starting

A user may have anumber of "virtual" connectionsto other users. An MG is connected to at most one MGC, while an
MGC may be connected to any number of MG's. For each connection the user selects atransport service, an encoding
scheme and a user callback module.

An MGC must initiate its transport service in order to listen to MG's trying to connect. How the actual transport is
initiated is outside the scope of this application. However a send handle (typically a socket id or host and port) must
be provided from the transport service in order to enable us to send the message to the correct destination. We do
however not assume anything about this, from our point of view, opague handle. Hopefully it is rather small since it
will passed around the system between processes rather frequently.

A user may either be statically configured in a .config file according to the application concept of Erlang/OTP or
dynamically started with the configuration settings as arguments to megaco:start_user/2. These configuration settings
may be updated later on with megaco:update_conn_info/2.

The function megaco:connect/4 is used to tell the Megaco application about which control processit should supervise,
which MID the remote user has, which callback module it should use to send messages etc. When this "virtual"
connection is established the user may use megaco:call/3 and megaco:cast/3 in order to send messages to the other
side. Then it is up to the MG to send its first Service Change Request message after applying some clever algorithm
in order to fight the problem with startup avalanche (as discussed in the RFC).

The originating user will wait for a reply or a timeout (defined by the request_timer). When it receives the reply
thiswill optionally be acknowledged (regulated by auto_ack), and forwarded to the user. If an interim pending reply
is received, the long_request_timer will be used instead of the usual request_timer, in order to enable avoidance of
spurious re-sends of the request.

On the destination side the transport service waits for messages. Each message isforwarded to the Megaco application
viathe megaco:receive_message/4 callback function. Thetransport service may or may not provide meansfor blocking
and unblocking the reception of the incoming messages.

If a message is received before the "virtual" connection has been established, the connection will be setup
automatically. An MGC may be real open minded and dynamically decide which encoding and transport service to
use depending on how the transport layer contact is performed. For |P transports two ports are standardized, one for
textual encoding and one for binary encoding. If for example an UDP packet was received on the text port it would
be possible to decide encoding and transport on the fly.

After decoding a message various user callback functions are invoked in order to allow the user to act properly. See
the megaco_user module for more info about the callback arguments.

When the user has processed a transaction request in its callback function, the Megaco application assembles a
transaction reply, encodes it using the selected encoding modul e and sends the message back by invoking the callback
function:

e SendMod:send _message(SendHandle, ErlangBinary)

4 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.3 Running the stack

Re-send of messages, handling pending transactions, acknowledgements etc. is handled automatically by the Megaco
application but the user is free to override the default behaviour by the various configuration possibilities. See
megaco:update_user_info/2 and megaco:update_conn_info/2 about the possibilities.

When connections gets broken (that is explicitly by megaco:disconnect/2 or when its controlling process dies) a user
callback functionisinvokedin order to allow the user to re-establish the connection. Theinternal state of kept messages,
re-send timers etc. is not affected by this. A few re-sends will of course fail while the connection is down, but the
automatic re-send algorithm does not bother about this and eventually when the connection is up and running the
messages will be delivered if the timeouts are set to be long enough. The user has the option of explicitly invoking
megaco:cancel/2 to cancel all messages for a connection.

1.3.2 MGC startup call flow

In order to preparethe MGC for the reception of theinitial message, hopefully a Service Change Request, thefollowing
needs to be done:

« Start the Megaco application.

« Start the MGC user. This may either be done explicitly with megaco:start_user/2 or implicitly by providing the
-megaco users configuration parameter.

» Initiate the transport service and provide it with areceive handle obtained from megaco:user_info/2.

When the initial message arrives the transport service forwards it to the protocol engine which automatically sets up
the connection and invokes UserMod:handle_connect/2 before it invokes UserMod:handle_trans_request/3 with the
Service Change Request like this:

Figure 3.1: MGC Startup Call Flow

1.3.3 MG startup call flow

In order to prepare the MG for the sending of the initial message, hopefully a Service Change Request, the following
needs to be done:

« Start the Megaco application.

e Start the MG user. This may either be done explicitly with megaco:start_user/2 or implicitly by providing the -
megaco users configuration parameter.

» Initiate the transport service and provide it with areceive handle obtained from megaco:user_info/2.

e Setup a connection to the MGC with megaco:connect/4 and provide it with a receive handle obtained from
megaco:user_info/2.

If the MG has been provisioned with the MID of the MGC it can be given as the RemoteMid parameter to
megaco:connect/4 and the call flow will ook like this:

Figure 3.2: MG Startup Call Flow

If the MG cannot be provisioned with the MID of the MGC, the MG can use the atom 'preliminary_mid' as the
RemoteMid parameter to megaco:connect/4 and the call flow will look like this:

Figure 3.3: MG Startup Call Flow (no MID)

1.3.4 Configuring the Megaco stack

There are three kinds of configuration:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 5

1.3 Running the stack

* Userinfo - Information related to megaco users. Read/Write.
A User isan entity identified by aMID, e.g. aMGC or aMG.

Thisinformation can be retrieved using megaco: user_info.
* Connectioninfo - Information regarding connections. Read/Write.

This information can be retrieved using megaco: conn_info.
e Systeminfo - System wide information. Read only.

This information can be retrieved using megaco: system info.

1.3.5 Initial configuration

The initial configuration of the Megaco should be defined in the Erlang system configuration file. The following
configured parameters are defined for the Megaco application:

e wusers = [{Md, [user_config()]}].
Each user is represented by a tuple with the Mid of the user and a list of config parameters (each parameter is
intunatuple {Item Val ue}).

» scanner = flex | {Mdule, Function, Argunents, Mdul es}

o fl ex will result in the start of the flex scanner with default options.
» The MFA dternative makes it possible for Megaco to start and supervise a scanner written by the user (see
supervi sor: start _chi | d for an explanation of the parameters).

See a'so Configuration of text encoding module(s) for more info.

1.3.6 Changing the configuration

The configuration can be changed during runtime. This is done with the functions megaco: update user_info and
megaco: update_conn_info

1.3.7 The transaction sender
The transaction sender is a process (one per connection), which handle all transaction sending, if so configured (see
megaco: user_info and megaco: conn_info).

The purpose of the transaction sender is to accumulate transactions for a more efficient message sending. The
transactions that are accumulated are transaction request and transaction ack. For transaction ack's the benefit is
quite large, since the transactions are small and it is possible to have ranges (which means that transaction acks for
transactions 1, 2, 3 and 4 can be sent as arange 1-4 in one transaction ack, instead of four separate transactions).

There are a number of configuration parameter's that control the operation of the transaction sender. In principle, a
message with everything stored (ack's and request's) is sent from the process when:

* Whentrans_ti mer expires.

* Whentrans_ack_naxcount number of ack's has been received.

* Whentrans_req_naxcount number of requests's has been received.

* Whenthesize of al received requests exceedst r ans_r eq_maxsi ze.

e When areply transaction is sent.

* When apending transaction is sent.

When something is to be sent, everything is packed into one message, unless the trigger was a reply transaction and

the added size of the reply and all the requests is greater then t r ans_r eq_naxsi ze, in which case the stored
transactions are sent first in a separate message and the reply in another message.

6 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

When the transaction sender receives a request which is already "in storage" (indicated by the transaction id) it is
assumed to be aresend and everything stored is sent. This could happen if the values of thet r ans_t i ner and the
request _ti mer isnot properly chosen.

1.3.8 Segmentation of transaction replies

In version 3 of the megaco standard the Segmentation package was introduced. Simply, this package defines a
procedure to segment megaco messages (transaction replies) when using a transport that does not automatically do
this (e.g. UDP). See also version3.

Although it would be both pointless and counterproductive to use segmentation on a transport that already does this
(e.g. TCP), the megaco application does not check this. Instead, it is up to the user to configure this properly.
» Receiving segmented messages:
Thisis handled automatically by the megaco application. There is however one thing that need to be configured
by the user, the segment_recv_timer option.

Note that the segments are delivered to the user differently depending on which function is used to issue the
original request. When issuing the request using the megaco: cast function, the segments are delivered to the user
viathe handle_trans reply callback function one at atime, asthey arrive. But this obviously doe not work for the
megaco:call function. In this case, the segments are accumulated and then delivered al at once as the function
returns.
e Sending segmented messages:

Thisis aso handled automatically by the megaco application. First of al, segmentation is only attempted if so
configured, seethe segment_send option. Secondly, megaco relies on the ability of the used codec to encode action
replies, which isthe smallest component the megaco application handles when segmenting. Thirdly, the reply will
be segmented only if the sum of the size of the action replies (plus an arbitrary message header size) are greater
then the specified max message size (seethe max_pdu_size option). Finally, if segmentation is decided, then each
action reply will make up its own (segment) message.

1.4 Internal form and its encodings

This version of the stack is compliant with:

e Megaco/H.248 version 1 (RFC3525) updated according to Implementors Guide version 10-13.

e Megaco/H.248 version 2 as defined by draft-ietf-megaco-h248v2-04 updated according to Implementors Guide
version 10-13.

* Megaco/H.248 version 3 as defined by 1TU H.248.1 (09/2005).

1.4.1 Internal form of messages

We use the same internal form for both the binary and text encoding. Our internal form of Megaco/H.248 messages
is heavily influenced by theinternal format used by ASN.1 encoders/decoders:

e "SEQUENCE OF" isrepresented as alist.

* "CHOICE" isrepresented as atagged tuple with size 2.

e "SEQUENCE" isrepresented as arecord, defined in "megaco/include/megaco_message vi.hrl".

"OPTIONAL" isrepresented as an ordinary field in arecord which defaults to ‘asnl NOVALUE', meaning that
thefield has no value.

e "OCTET STRING" isrepresented as alist of unsigned integers.
« "ENUMERATED" isrepresented as a single atom.

e "BIT STRING" isrepresented asalist of atoms.

* "BOOLEAN" isrepresented as the atom 'true' or ‘false'.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 7

1.4 Internal form and its encodings

* "INTEGER" isrepresented as an integer.

e "IA5String" is represented as a list of integers, where each integer is the ASCII value of the corresponding
character.

* "NULL" isrepresented as the atom 'NULL".

In order to fully understand the internal form you must get hold on a ASN.1 specification for the Megaco/H.248
protocol, and apply the rules above. Please, see the documentation of the ASN.1 compiler in Erlang/OTP for more
details of the semantics in mapping between ASN.1 and the corresponding internal form.

Observe that the "Terminationld' record is not used in the internal form. It has been replaced with a megaco_term_id
record (defined in "megaco/include/megaco.hrl™).

1.4.2 The different encodings

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER) and we have
implemented encoders and decoders for both. We do in fact supply five different encoding/decoding modules.

In the text encoding, implementors have the choice of using a mix of short and long keywords. It is also possible
to add white spaces to improve readability. We use the term compact for text messages with the shortest possible
keywords and no optional white spaces, and the term pretty for a well indented text format using long keywords and
an indentation style like the text examples in the Megaco/H.248 specification).

Here follows an example of atext messageto give afeeling of the difference between the pretty and compact versions
of text messages. First the pretty, well indented version with long keywords:

MEGACO 1 [124.124.124.222]
Transacti on = 9998 {

Context = - {
Servi ceChange = ROOT {
Services {
Met hod = Restart,
Ser vi ceChangeAddr ess = 55555,
Profile = ResGW 1,
Reason = "901 Col d Boot "
}
}
}

Then the compact version without indentation and with short keywords:

/1 [124.124. 124. 222]
T=9998{ C=- { SC=ROOT{ SV{ MT=RS, AD=55555, PF=ResGW 1, RE="901 Col d Boot"}}}}

And the programmers view of the same message. First alist of ActionRequest records are constructed and then it is
sent with one of the send functionsin the API:

Prof = #' Servi ceChangeProfile' {profileName = "resgw', version = 1},
Parm = #' Servi ceChangePar m { servi ceChangeMet hod = restart,
servi ceChangeAddr ess = {portNunber, 55555},
servi ceChangeReason = "901 Col d Boot",
servi ceChangeProfile Prof},
Req = #' Servi ceChangeRequest' {term nationlD = [?nmegaco_root _term nation_id],
servi ceChangeParns = Parnt,

8 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

Actions = [# ActionRequest' {contextld = ?nmegaco_nul | _context _id,
commandRequest s = {servi ceChangeReq, Req}}],
nmegaco: cal | (ConnHandl e, Actions, Config).

And finally a print-out of the entire internal form:

{' MegacoMessage',
asnl_ NOVALUE,
{' Message',
1,
{i p4AAddress, {' | PAAddress', [124,124,124,222], asnl_NOVALUE}},
{transacti ons,
[
{transacti onRequest,
{' Transacti onRequest ',
9998,
[{" Acti onRequest ',

asnl_ NOVALUE,
asnl_ NOVALUE,
[
{' CommandRequest ',
{servi ceChangeReq,
{' Servi ceChangeRequest ',
[
{megaco_term.id, false, ["root"]}],
{' Servi ceChangeParni ,
restart,
{por t Nunber, 55555},
asnl_ NOVALUE,
{' Servi ceChangeProfile', "resgw', version = 1},
"901 MG Col d Boot",
asnl_ NOVALUE,
asnl_ NOVALUE,
asnl_ NOVALUE
}
}
Jic
asnl_ NOVALUE,
asnl_ NOVALUE

The following encoding modules are provided:
* megaco_pretty text encoder - encodes messages into pretty text format, decodes both pretty as well as compact
text.

* megaco_compact_text encoder - encodes messages into compact text format, decodes both pretty as well as
compact text.

e megaco_binary_encoder - encode/decode ASN.1 BER messages. This encoder implementsthe fastest of the BER
encoders/decoders. Recommended binary codec.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 9

1.4 Internal form and its encodings

* megaco_ber_encoder - encode/decode ASN.1 BER messages.

e megaco_per_encoder - encode/decode ASN.1 PER messages. N.B. that thisformat is not included in the Megaco
standard.

* megaco_erl_dist_encoder - encodes messages into Erlangs distribution format. It is rather verbose but encoding
and decoding is blinding fast. N.B. that this format is not included in the Megaco standard.

1.4.3 Configuration of Erlang distribution encoding module

The encoding_config of the megaco_erl_dist_encoder module may be one of these:

 [] - Encodes the messages to the standard distribution format. It is rather verbose but encoding and decoding
isblinding fast.

[negaco_conpressed] - Encodes the messages to the standard distribution format after an internal

transformation. It is less verbose, but the total time of the encoding and decoding will on the other hand be
somewhat slower (see the performance chapter for more info).

« [{megaco_conpressed, Mdul e}] - Worksinthesameway asthemegaco compressed config parameter,
only here the user provide their own compress module. This module must implement the megaco_edist_compress
behaviour.

e« [conpressed] - Encodes the messages to a compressed form of the standard distribution format. It is less
verbose, but the encoding and decoding will on the other hand be slower.

1.4.4 Configuration of text encoding module(s)
When using text encoding(s), there is actually two different configs controlling what software to use:

* [] - Anempty list indicates that the erlang scanner should be used.

e [{flex, port()}] -Usetheflex scanner when decoding (not optimized for SMP). Seeinitial configuration
for more info.

o [{flex, ports()}] - Usetheflex scanner when decoding (optimized for SMP). See initial configuration
for more info.
The Flex scanner is a Megaco scanner written asalinked in driver (in C). There are two ways to get this working:
» Let the Megaco stack start the flex scanner (load the driver).
To make this happen the megaco stack hasto be configured:
e Addthe{scanner, fl ex} (orsimilar) directiveto an Erlang system config file for the megaco app (see
initial configuration chapter for details).
* Retrieve the encoding-config using the system info function (withI t em = t ext _confi g).
* Update the receive handle with the encoding-config (the encodi ng_confi g field).

The benefit of thisis that Megaco handles the starting, holding and the supervision of the driver and port.
e The Megaco client (user) starts the flex scanner (load the driver).

When starting the flex scanner a port to the linked in driver is created. This port has to be owned by a process.
This process must not die. If it does the port will aso terminate. Therefor:

» Create apermanent process. Make sure this processis supervised (so that if it does die, thiswill be noticed).
» Let this process start the flex scanner by calling themegaco_f | ex_scanner: start/ 0, 1 function.

* Retrieve the encoding-config and when initiating the negaco_r ecei ve_handl e, set the field
encodi ng_confi g accordingly.

» Passthenegaco_r ecei ve_handl e to the transport module.

10 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

1.4.5 Configuration of binary encoding module(s)
When using binary encoding, the structure of the termination id's needs to be specified.

e [native] -skipsthetransformation phase, i.e. the decoded message(s) will not be transformed into our internal
form.
e Jinteger()] -A list containing the size (the number of bits) of each level. Example: [3, 8, 5, 8] .

 integer() - Number of one byte (8 bits) levels. N.B. This is currently converted into the previous config.
Example: 3 ([8, 8, 8]).

1.4.6 Handling megaco versions

Since the version 3 implemented, in this version of the Megaco application, is preliminary, it is necessary to have
a way to handle different version 3 implementations. For this reason the encoding config option { ver si on3,
ver si on3() } hasbeenintroduced. Thisoption, if present, has to befirst in the encoding config list. Version 1 and
2 codec'signore this option, if found.

version3() -> prev3a | prev3b | prev3c | v3

e prevda
Preliminary version 3, based on TD-33
e prevdb

Preliminary version 3, based on TD-33, but text encoding updated with the final solution for priority in
cont ext Property (whichisbackward compatible with v2).

e prevdc

Preliminary version 3, based on the final version of the v3-standard, but excluding segments!
e V3

Full version 3. Including segmentation. This is the default version 3 variant (i.e. if aversion 3 messagesisto be
encoded/decoded and no version3 encoding config is found, then v3 is assumed).

There are two ways to handle the different megaco encoding versions. Either using dynamic version detection (only
valid for for incoming messages) or by explicit version setting in the connection info.

For incoming messages:
* Dynamic version detection

Set the protocol version in the megaco_receive_handleto dynami c (thisis the default).

This works for those codecs that support partial decode of the version, currently text, and ber bin
(megaco_bi nary_encoder and megaco_ber _bi n_encoder).

This way the decoder will detect which version is used and then use the proper decoder.

e Explicit version

Explicitly set the actual protocol version in the megaco_receive_handle.

Start with version 1. When the initial service change has been performed and version 2 has been negotiated,
upgrade the megaco_receive_handle of the transport process (control_pid) to version 2. See megaco_tcp and
megaco_udp.

Note that if udp is used, the same transport process could be used for several connections. This could make
upgrading impossible.

For codecs that does not support partial decode of the version, currently negaco_ber encoder,
megaco_per _encoder andnegaco_per _bi n_encoder, dynani c will revert to version 1.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 11

1.5 Transport mechanisms

For outgoing messages:
* Update the connection info protocol_version.

* Overrideprotocol version when sending amessage by adding theitem { pr ot ocol _versi on, integer()}
to the Options. See call or cast.
Note that this does not effect the messagesthat are sent autonomously by the stack. They use the protocol_version
of the connection info.

1.4.7 Encoder callback functions

The encoder callback interface is defined by the megaco_encoder behaviour, see megaco_encoder.

1.5 Transport mechanisms

1.5.1 Callback interface

The callback interface of the transport module contains several functions. Some of which are mandatory while others
are only optional:

* send_nessage - Send amessage. Mandatory
* bl ock - Block the transport. Optional

Thisfunction is usefull for flow control.
e unbl ock - Unblock the transport. Optional

For more detail, see the megaco_transport behaviour definition.

1.5.2 Examples

The Megaco/H.248 application contains implementations for the two protocols specified by the Megaco/H.248
standard; UDP, see megaco_udp, and TCP/TPKT, see megaco_tcp.

1.6 Implementation examples

1.6.1 A simple Media Gateway Controller

In megaco/examples/simple/megaco_simple_mgc.erl there is an example of a simple MGC that listens on both text
and binary standard ports and is prepared to handle a Service Change Request message to arrive either via TCP/IP or
UDP/IP. Messages received on the text port are decoded using a text decoder and messages received on the binary
port are decoded using a binary decoder.

The Service Change Reply is encoded in the same way as the request and sent back to the MG with the same transport
mechanism UDP/IP or TCP/IP.

After thisinitial service change message the connection between the MG and MGC isfully established and supervised.
The MGC, with itsfour listeners, may be started with:

cd negaco/ exanpl es/ si npl e
erl -pa ../../../megaco/ebin -s nmegaco_filter -s negaco
megaco_si npl e_ngc: start ().

or simply 'gmake mgc'.

12 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.7 Megaco mib

The -s megaco _filter option to erl implies, the event tracing mechanism to be enabled and an interactive sequence
chart tool to be started. This may be quite useful in order to visualize how your MGC interacts with the Megaco/
H.248 protocol stack.

The event traces may alternatively be directed to afile for later analyze. By default the event tracing is disabled, but
it may dynamically be enabled without any need for re-compilation of the code.

1.6.2 A simple Media Gateway

In megaco/examples/simple/megaco_simple_mg.erl there is an example of a simple MG that connects to an MGC,
sends a Service Change Request and waits synchronously for areply.

After thisinitial service change message the connection between the MG and MGC isfully established and supervised.

Assuming that the MGC is started on the local host, four different MG's, using text over TCP/IP, binary over TCP/IP,
text over UDP/IP and binary over UDP/IP may be started on the same Erlang node with:

cd negaco/ exanpl es/ si npl e
erl -pa ../../../megaco/ebin -s nmegaco_filter -s negaco
megaco_si npl e_ng: start().

or simply ‘gmake mg'.

If you "only" want to start a single MG which tries to connect an MG on a host named "baidarka", you may use one
of these functions (instead of the megaco_simple_mg:start/0 above):

megaco_sinpl e_ng: start _tcp_text("baidarka", []).
megaco_si npl e_ng: start _tcp_bi nary("bai darka", []).
megaco_si npl e_ng: start _udp_t ext ("bai darka", []).
megaco_si npl e_ng: start _udp_bi nary("bai darka", []).

The -s megaco_filter option to erl implies, the event tracing mechanism to be enabled and an interactive sequence
chart tool to be started. This may be quite useful in order to visualize how your MG interacts with the Megaco/H.248
protocol stack.

The event traces may alternatively be directed to afile for later analyze. By default the event tracing is disabled, but
it may dynamically be enabled without any need for re-compilation of the code.

1.7 Megaco mib

1.7.1 Intro

TheMegaco mibisasof yet not standardized and our implementation is based on dr aft-ietf-megaco-mib-04.txt. Almost
all of the mib cannot easily be implemented by the megaco application. Instead these things should be implemented
by a user (of the megaco application).

So what part of the mib isimplemented? Basically the relevant statistic counters of the MedGwyGatewaySatsEntry.

1.7.2 Statistics counters

Theimplementation of the statistic countersislightweight. |.e. the statistic counters are handled separately by different
entities of the application. For instance our two transport module(s) (see megaco_tcp and megaco_udp) maintain their
own counters and the application engine (see megaco) maintain its own counters.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 13

1.8 Performance comparison

This also means that if a user implement their own transport service then it has to maintain its own statistics.

1.7.3 Distribution

Each megaco application maintainsits own set of counters. So in alarge (distributed) MG/MGC it could be necessary
to collect the statistics from several nodes (each) running the megaco application (only one of them with the transport).

1.8 Performance comparison

1.8.1 Comparison of encoder/decoders

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER) and we have
implemented encoders and decoders for both. We do supply abunch of different encoding/decoding modules and the
user may in fact implement their own (like our erl_dist module). Using a non-standard encoding format hasits obvious
drawbacks, but may be useful in some configurations.

We have made four different measurements of our Erlang/OTP implementation of the Megaco/H.248 protocol stack,
in order to compare our different encoders/decoders. The result of each oneis summarized in the table below.

The result above are the fastest of these configurations for each codec. The figures presented are the average of all
used messages.

For comparison, also included are first, performance figures with megaco (including the measurement software) and
asnl applications hipe-compiled (second figure in the time columns, note that per bin decode had some issues so those
figures are not included), and second, performance figures where the flex driver was built asnon- r eent r ant flex
(third figure in the time columns, only valid for text codecs using the flex-scanner, figures within parenthesis).

Codec and config Sze Encode Decode Total

pretty 336 20/13 75140 95/53
pretty [flex] 336 20/13/20 39/33/38 59/ 46/ 58
compact 181 17/10 62/ 35 79/ 45
compact [flex] 181 17/10/17 37/31/36 54/41/53
per bin 91 60/ 29 64/ - 124/ -
per bin [driver] 91 39/24 42/ 26 81/50
per bin [native] 91 45/21 48/ - 93/ -
perbin 91 25/15 27118 52/ 33
[driver,native]

ber bin 165 32/19 38/21 70/ 40
ber bin [driver] 165 32/19 33/20 65/39
ber bin [native] 165 17/11 25/13 42124
berbin 165 17/11 17/12 34/23
[driver,native]

14 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.8 Performance comparison

erl_dist 875 5/5 10/10 15/15

erl_dist

[megaco_compr 1 405 6/4 714 13/8

erl_dist [compressed)] 345 47/ 47 20/ 20 67/67

erl_dist

[megaco_compressed,compressed] 200 34/33 11/9 45/ 42

Table 8.1: Codec performance

1.8.2 System performance characteristics
Thisis primarily away to show the effects of using the reentrant flex scanner instead of the non-reentrant.

As can be seen from the figures above thereis no real difference between anon-reentrant and an reentrant flex scanner
when it comes to the decode times of an individual message.

Therea differenceisinstead in system characteristics, which is best shown with the mstonel test.

When running SMP erlang on a multi-core machine the "throughput" is significantly higher. The mstonel test is an
extreme test, but it shows what is gained by using the reentrant flex-scanner.

Figure 8.1: MStonel with mstonel.sh -d flex -s 4

1.8.3 Description of encoders/decoders

In Appendix A of the Megaco/H.248 specification (RFC 3525), there are about 30 messagesthat showsarepresentative
call flow. We have also added afew extraversion 1, version 2 and version 3 messages. We have used these messages
as basis for our measurements. Our figures have not been weighted in regard to how frequent the different kinds of
messages that are sent between the media gateway and its controller.

The test compares the following encoder/decoders:

e pretty - pretty printed text. In the text encoding, the protocol stack implementors have the choice of using amix of
short and long keywords. It is also possible to add white spaces to improve readability. The pretty text encoding
utilizes long keywords and an indentation style like the text examplesin the Megaco/H.248 specification.

e compact - the compact text encoding uses the shortest possible keywords and no optional white spaces.
* ber-ASN.1BER.

e per-ASN.1PER. Not standardized asavalid Megaco/H.248 encoding, but included for the matter of completeness
asits encoding is extremely compact.

e erl_dist - Erlang's native distribution format. Not standardized as a valid Megaco/H.248 encoding, but included
asareference dueto itswell known performance characteristics. Erlang is adynamically typed language and any
Erlang data structure may be serialized to the erl_dist format by using built-in functions.

The actual encoded messages have been collected in one directory per encoding type, containing one file per encoded

message.

Here follows an example of atext messageto give afeeling of the difference between the pretty and compact versions

of text messages. First the pretty printed, well indented version with long keywords:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 15

1.8 Performance comparison

MEGACO' 1 [124.124.124. 222]
Transaction = 9998 {
Context = - {
Servi ceChange = ROOT {
Services {
Met hod = Restart,
Ser vi ceChangeAddr ess = 55555,
Profile = ResGWN 1,
Reason = "901 M5 Col d Boot "

}
}
}
}

Then the compact text version without indentation and with short keywords:

/1 [124.124. 124. 222] T=9998{
C=- { SC=ROOT{ SV{ MT=RS, AD=55555, PF=ResGW 1, RE="901 MG Col d Boot"}}}}

1.8.4 Setup

The measurements has been performed on a HP xw4600 Workstation with a Intel (R) Core(TM)2 Quad CPU Q9550
@ 2.83GHz, with 4 GB memory and running Ubuntu 10.04 x86_64, kernel 2.6.32-22-generic. Software versions was
open source OTP R13B04 (megaco-3.14).

1.8.5 Summary

In our measurements we have seen that there are no significant differencesin message sizes between ASN.1 BER and
the compact text format. Some care should be taken when using the pretty text style (whichisused in all the examples
included in the protocol specification and preferred during debugging sessions) since the messages can then be quite
large. If the message sizereally is a seriousissue, our per encoder should be used, as the ASN.1 PER format is much
more compact than all the other alternatives. Its major drawback isthat it is has not been approved as avalid Megaco/
H.248 message encoding.

When it comes to pure encode/decode performance, it turns out that:

» our fastest binary encoder (ber) is about equal to our fastest text encoder (compact).
» our fastest binary decoder (ber) is about 54% (61%) faster than our fastest text decoder (compact).

If the pure encode/decode performance really is a serious issue, our erl_dist encoder could be used, as the encoding/
decoding of the erlang distribution format is much faster than al the other alternatives. I1ts mgjor drawback is that it
is has not been approved as a valid Megaco/H.248 message encoding.

There is no performance advantage of building (and using) a non-reentrant flex scanner over areentrant flex scanner
(if flex supports building such a scanne).

Note:

Please, observe that these performance figures are related to our implementation in Erlang/OTP. Measurements
of other implementations using other tools and techniques may of course result in other figures.

16 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.9 Testing and tools

1.9 Testing and tools
1.9.1 Tracing

We have instrumented our code in order to enable tracing. Running the application with tracing deactivated, causes
a negligible performance overhead (an external call to a function which returns an atom). Activation of tracing does
not require any recompilation of the code, since we rely on Erlang/OTP's built in support for dynamic trace activation.
In our case tracing of callsto agiven external function.

Event traces can be viewed in a generic message sequence chart tool, et , or as standard output (events are written
to stdio).

See enable_trace, disable trace and set_trace for more info.

1.9.2 Measurement and transformation

We have included some simple tool(s) for codec measurement (meas), performance tests (mstonel and mstone?2) and
message transformation.

Thetool(s) are located in the example/meas directory.

Requirement

e Erlang/OTP, version R13B01 or later.

e Version 3.11 or later of this application.

* Version 1.6.10 or later of the asnl application.

« Theflex libraries. Without it, the flex powered codecs cannot be used.

Meas results

The results from the measurement run (meas) is four excel-compatible textfiles:
e decode_time.xls-> Decoding result

* encode_timexls-> Encoding result

e total_timexls-> Total (Decoding+encoding) result

* message sizexls-> Message size

Instruction

Thetool contain four things:

e Thetransformation module

e The measurement (meas) module(s)

e The mstone (mstonel and mstone2) module(s)
e Thebasic messagefile

Message Transformation

The messages used by the different tools are contained in single message package file (see below for moreinfo). The
messages in this file is encoded with just one codec. During measurement initiation, the messages are read and then
transformed to all codec formats used in the measurement.

The message transformation is done by the transformation module. It is used to transform a set of messages encoded
with one codec into the other base codec's.

Measurement(s)

There are two different measurement tools:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 17

1.9 Testing and tools

. meas:

Used to perform codec measurements. That is, to see what kind of performance can be expected by the different
codecs provided by the megaco application.

The measurement is done by iterating over the decode/encode function for approx 2 seconds per message and
counting the number of decodes/encodes.

I's best run by modifying the meas.sh.skel skeleton script provided by the tool.
To run it manually do the following:

% er|l -pa <pat h-negaco-ebin-dir> -pa <pat h-to-nmeas- nodul e-di r>
Erl ang (BEAM emul ator version 5.6 [source]

Eshell V5.7.1 (abort with 2"Q
1> nmegaco_codec_neas: start ().

2> halt().

or to make it even easier, assuming a measure shall be done on all the codecs (as above):

% erl -noshell -pa <path-negaco-ebin-dir> \\
-pa <pat h-to-neas-nodul e-di r> \\
-s nmegaco_codec_neas -s init stop

When run as above (this will take some time), the measurement processis done as follows:

For each codec:
For each nmessage:
Read the nessage fromthe file
Det ect nmessage version
Measur e decode
Measur e encode
Wite results, encode, decode and total, to file

e mstonel and mstone2:
These are two different SMP performance monitoring tool(s).

mstonel creates a process for each codec config supported by the megaco application and let them run for a
specifictime (all at the sametime), encoding and decoding megaco messages. The number of messages processed
in total is the mstonel(1) value.

There are different waysto run the mstonel tool, e.g. with or without the use of drivers, with only flex-empowered
configs.

Isbest run by modifying the mstonel.sh.skel skeleton script provided by the tool.

The mstone2 is similar to the mstonel tool, but in this case, each created process makes only one run through the
messages and then exits. A soon as a process exits, a new process (with the same config and messages) is created
to takes its place. The number of messages processed in total isthe mstone2(1) value.

Both these tools use the message package (time_test.msgs) provided with the tool(s), athough it can run on any
message package as long as it has the same structure.

18 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.9 Testing and tools

Message package file

This is simply an erlang compatible text-file with the following structure: {codec_name(),
messages_list()}.

codec_nane() = pretty | conpact | ber | per | erlang (how t he messages are encoded)
messages_list() = [{message_nane(), nessage()}]

message_nane() = atom()

message() = binary()

The codec name is the name of the codec with which all messagesinthenessage | i st () hasbeen encoded.

This file can be export ed to a file structure by calling the export_messages function. This can be usefull if a
measurement shall be done with an external tool. Exporting the messages creates a directory tree with the following
structure:

<nmessage package>/pretty/ <message-fil es>
conpact /
per/
ber/ <nessage-fil es>
erl ang/

Thefileincludes both version 1, 2 and version 3 messages.

Notes
Binary codecs

There are two basic ways to use the binary encodings: With package related name and termination id transformation
(the 'native’ encoding config) or without. This transformation converts package related names and termination id's to
amore convenient internal form (equivalent with the decoded text message).

The transformation is done _after_the actual decode has been done.

Furthermore, it is possible to make use of alinked in driver that performs some of the decode/encode, decode for ber
and encode for per (the 'driver' encoding config).

Therefor in the tests, binary codecs are tested with four different encoding configs to determine exactly how the
different options effect the performance: with transformation and without driver ([]), without transformation and
without driver ([native]), with transformation and with driver ([driver]) and finally without transformation and with
driver ([driver,native]).

Included test messages

Some of these messages are ripped from the call flow examplesin an old version of the RFC and others are created
to test a specific feature of megaco.

Measurement tool directory name

Be sure not no name the directory containing the measurement binaries starting with 'megaco-', e.g. megaco-meas.
Thiswill confuse the erlang application loader (erlang applications are named, e.g. megaco-1.0.2).

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 19

1.9 Testing and tools

2 Reference Manual

The Megaco application is a framework for building applications on top of the Megaco/H.248 protocol.

20 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

megaco

Erlang module

Interface module for the Megaco application

DATA TYPES

megaco_m d() i p4Address() | ip6Address()
domai nNane() | devi ceNanme()
nt pAddr ess()

#' | PAAddr ess' {}

#' | P6Addr ess' {}

#' Domai nNane' {}

pat hName()

ia5String(l..64)
octetString(2..4)

i p4Addr ess()
i p6Addr ess()
domai nNane()
devi ceNane()
pat hName()

nmt pAddr ess()

action_request() = # ActionRequest' {}
action_reply() = # ActionReply' {}
error_desc() = # ErrorDescriptor'{}
transaction_reply() = # Transacti onRepl y' {}
segnent _no() = integer()

resend_i ndication() = flag | bool ean()

property_parn() = # PropertyParm {}

property_group()
property_groups()

= [property_parn()]
= [property_group()]

sdp() = sdp_c() | sdp_o()
sdp_e() | sdp_p()
sdp_a() |
sdp_t () | sdp_r()

sdp_v() = #megaco_sdp_v{}
sdp_o() = #nmegaco_sdp_of}
sdp_s() = #megaco_sdp_s{}
sdp_i () = #megaco_sdp_i {}
sdp_u() = #nmegaco_sdp_u{}
sdp_e() = #nmegaco_sdp_e{}
sdp_p() = #nmegaco_sdp_p{}
sdp_c() = #megaco_sdp_c{}
sdp_b() = #megaco_sdp_b{}
sdp_k() = #megaco_sdp_k{}
sdp_a() = #megaco_sdp_af{}

| sdp_s() | sdp_i() | sdp_u() |
| sdp_b() | sdp_z() | sdp_k() |

sdp_a_rtpmap() | sdp_a_ptime() |

| sdp_m()

(Protocol version)
(Owner/creator and session identifier)
(Sessi on nane)

(Sessi on information)
(URI of description)
(Emai | address)

(Phone nunber)
(Connection infornation)
(Bandwi dt h i nf ormati on)
(Encryption key)
(Session attribute)

sdp_a_rtpmap() = #megaco_sdp_a_rt pmap{}
sdp_a_ptine() = #megaco_sdp_a_ptime{}
sdp_a_quality() = #megaco_sdp_a_quality{}
sdp_a_fmp() = #negaco_sdp_a_fnt p{}

sdp_z() = #megaco_sdp_z{} (Tine zone adjustnent)

sdp_t () = #megaco_sdp_t{} (Tine the session is active)
sdp_r () = #megaco_sdp_r{} (Repeat tines)

sdp_m() = #megaco_sdp_n{} (Media nane and transport address)

sdp_property_parn() = sdp() | property_parn()
sdp_property_group() = [sdp_property_parn()]
sdp_property_groups() = [sdp_property_group()]

megaco_timer() = infinity | integer() >= 0 | megaco_incr_timer()
megaco_i ncr _timer() = #negaco_incr_tiner{}

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 21

megaco

Therecord megaco_i ncr _t i mer containsthe following fields:

wait for = integer() >= 0
The actual timer time,

factor = integer() >= 0
The factor when calculating the new timer time (wai t _f or).

incr = integer()
The increment value when calculating the new timer time (wai t _f or). Note that this value can be negative
and that a timer restart can therefor lead to awai t _f or value of zero! It is up to the user to be aware of the
consequences of awai t _f or value of zero.

max_retries = infinity | infinity restartable | integer() >= 0
The maximum number of repetitions of the timer.
There is a specia case for this field. Whenthemax_retri es hasthevaluei nfinity restartabl e, it
means that the timer is restartable as long as some external event occurs (e.g. receipt of a pending message for
instance). But the timer will never be restarted "by itself", i.e. when the timer expires (whatever the timeout
time), so does the timer. Whenever the timer is restarted, the timeout time will be calculated in the usual way!

Also, as mentioned above, beware the consequences of setting the valueto i nfi ni ty if incr has been set to
an negative value.

Exports

start() -> ok | {error, Reason}
Types:

Reason = term()
Starts the Megaco application

Users may either explicitly be registered with megaco:start_user/2 and/or be statically configured by setting the
application environment variable 'users to alist of {UserMid, Config} tuples. See the function megaco:start_user/2
for details.

stop() -> ok | {error, Reason}
Types:

Reason = tern()
Stops the Megaco application

start_user(UserMd, Config) -> ok | {error, Reason}
Types:
UserM d = negaco_m d()
Config = [{user_info_item(), user_info_value()}]
Reason = term()
Initial configuration of a user

Requires the megaco application to be started. A user iseither aMedia Gateway (MG) or aMedia Gateway Controller
(MGC). One Erlang node may host many users.

22 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

A user isidentified by its UserMid, which must be alegal Megaco MID.
Configisalist of {I1tem, Value} tuples. See megaco:user_info/2 about which items and values that are valid.

stop_user(UserMd) -> ok | {error, Reason}
Types:

UserM d = negaco_m d()

Reason = term()
Delete the configuration of a user

Requires that the user does not have any active connection.

user_info(UserMd) -> [{Item Value}]
user _info(UserMd, Item) -> Value | exit(Reason)
Types.

Handl e = user _i nfo_handl e()

UserM d = negaco_m d()

Item = user_info_item)

Val ue = user_info_val ue()

Reason = term)

Lookup user information
Thefollowing Item's are valid:
connecti ons
Lists all active connections for this user. Returns alist of megaco_conn_handle records.
recei ve_handl e
Construct amegaco_receive_handle record from user config
trans_id
Current transaction id.
A positive integer or theatom undef i ned_seri al (in case no messages has been sent).
mn_trans_id
First transid.
A positive integer, defaultsto 1.
max_trans_id
Last transid.
A positiveinteger or i nfi ni ty, defaultstoi nfinity.
request _tiner
Wait for reply.
Thetimer is cancelled when areply isreceived.

When a pending message isreceived, thetimer is cancelled and thel ong_r equest _ti ner isstarted instead
(see below). No resends will be performed from this point (since we now know that the other side has received
the request).

When the timer reaches an intermediate expire, the request is resent and the timer is restarted.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 23

megaco

When the timer reaches the final expire, either the function megaco: cal | will return with {error,
ti meout} orthe callback function handl e_t rans_r epl y will becalledwith User Reply = {error,
ti meout} (if megaco: cast wasused).

A Megaco Timer (see explanation above), defaultsto #megaco_i ncr _tinmer{}.
| ong_request _tiner

Wait for reply after having received a pending message.

When the timer reaches an intermediate expire, the timer is restarted.

When a pending message is received, and thel ong_request _ti nmer isnot "onitsfinal leg", the timer will
berestarted, and, if | ong_request _resend = true,therequest will be re-sent.

A Megaco Timer (see explanation above), defaultsto 60 seconds.
| ong_request _resend

This option indicates weather the request should be resent until the reply is received, even though a pending
message has been received.

Normally, after a pending message has been received, the request is not resent (since a pending message is an
indication that the request has been received). But since the reply (to the request) can be lost, this behaviour has
itsvalues.

It is of course pointless to set this value to true unlessthe |l ong_r equest _ti ner (see above) isalso set to
an incremental timer (#megaco_i ncr _tinmer{}).

A bool ean, defaultstof al se.
reply_timer
Wait for an ack.

When arequest is received, some info related to the reply is store internally (e.g. the binary of the reply). This
info will live until either an ack is received or this timer expires. For instance, if the same request is received
again (e.g. arequest with the same transaction id), the (stored) reply will be (re-) sent automatically by megaco.

If the timer is of type #megaco_i ncr _ti mer{}, then for each intermediate timout, the reply will be resent
(thisisvalid until the ack is received or the timer expires).

A Megaco Timer (see explanation above), defaults to 30000.
request _keep_alive_tinmeout
Specifies the timeout time for the request-keep-alive timer.

Thistimer is started when the first reply to an asynchroneous request (issued using the megaco: cast/3 function)
arrives. Aslong asthistimer isrunning, replieswill bedelivered viathehandle_trans_reply/4,5 callback function,
with their "arrival number" (see User Repl y of the handle_trans reply/4,5 callback function).

Replies arriving after the timer has expired, will be delivered using the handle_unexpected_trans/3,4 callback
function.

The timeout time can havethevalues: pl ain | integer() >= 0.
Defaultsto pl ai n.

call _proxy_gc_timeout
Timeout time for the call proxy.

When arequest is sent using the call/3 function, a proxy process is started to handle all replies. When the reply
has been received and delivered to the user, the proxy process continue to exist for aslong as this option specifies.
Any received messages, is passed on to the user viathe handle_unexpected_trans callback function.

24 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

The timeout time isin milliseconds. A value of 0 (zero) means that the proxy process will exit directly after the
reply has been delivered.

An integer >= 0, defaults to 5000 (= 5 seconds).
aut o_ack
Automatic send transaction ack when the transaction reply has been received (seet r ans_ack below).
Thisisused for three-way-handshake.
A bool ean, defaultstof al se.
trans_ack
Shall ack's be accumulated or not.
This property isonly valid if aut o_ack istrue.

If aut o_ack is true, then if trans_ack is f al se, ack's will be sent immediately. If trans_ack is
t r ue, then ack's will instead be sent to the transaction sender process for accumulation and later sending (see
trans_ack_maxcount, trans_req_naxcount, trans_req_naxsi ze, trans_ack_nmaxcount
andtrans_ti ner).

See also transaction sender for more info.
Anbool ean, defaultstof al se.
trans_ack _naxcount

Maximum number of accumulated ack's. At most this many ack's will be accumulated by the transaction sender
(if started and configured to accumulate ack's).

See also transaction sender for moreinfo.
Ani nt eger, defaultsto 10.
trans_req
Shall requests be accumulated or not.
Iftrans_reqisf al se, then request(s) will be sent immediately (in its own message).

If trans_req istrue, then request(s) will instead be sent to the transaction sender process for accumulation
and later sending (see trans_ack_maxcount, trans_req_maxcount, trans_req_maxsize,
trans_ack_maxcount andtrans_ti mer).

See adso transaction sender for moreinfo.
Anbool ean, defaultstof al se.
trans_req_naxcount

Maximum number of accumulated requests. At most this many regquests will be accumulated by the transaction
sender (if started and configured to accumulate requests).

See also transaction sender for moreinfo.
Ani nt eger, defaultsto 10.
trans_req_maxsi ze

Maximum size of the accumulated requests. At most this much requests will be accumulated by the transaction
sender (if started and configured to accumul ate requests).

See also transaction sender for more info.
Ani nt eger, defaults to 2048.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 25

megaco

trans_tiner

Transaction sender timeout time. Has two functions. First, if the value is 0, then transactions will not be
accumulated (e.g. the transaction sender process will not be started). Second, if the value is greater then 0 and
aut o_ack and t rans_ack are both true or if t r ans_r eq is true, then transaction sender will be started
and transactions (which is depending on the values of aut o_ack, trans_ack and t rans_r eq) will be
accumulated, for later sending.

See adso transaction sender for more info.
Ani nt eger, defaultsto O.
pendi ng_ti nmer

Automatically send pending if the timer expires before atransaction reply has been sent. Thistimer isalso called
provisional response timer.

A Megaco Timer (see explanation above), defaults to 30000.
sent _pending_limt

Sent pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingL imit of the megaco root
package). This parameter specifies how many pending messages that can be sent (for agiven received transaction
reguest). When the limit is exceeded, the transaction is aborted (see handle_trans request_abort) and an error
message is sent to the other side.

Note that this has no effect on the actual sending of pending transactions. This is either implicit (e.g. when
receiving are-sent transaction request for arequest which is being processed) or controlled by the pending_timer,
see above.

A positiveinteger ori nfi ni ty, defaultstoi nfinity.
recv_pending_limt

Receive pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingL imit of the megaco
root package). This parameter specifies how many pending messages that can be received (for a sent transaction
request). When the limit is exceeded, the transaction is considered lost, and an error returned to the user (through
the call-back function handle_trans reply).

A positiveinteger or i nfi ni ty, defaultstoi nfinity.
send_nod

Send callback module which exports send_message/2. The function SendMod:send_message(SendHandle,
Binary) isinvoked when the bytes needs to be transmitted to the remote user.

An at om defaultsto megaco_t cp.
encodi ng_nod

Encoding callback module which exports encode message/2 and decode message/2. The
function EncodingMod:encode_message(EncodingConfig, MegacoMessage) is invoked whenever a
'MegacoMessage’ record needs to be trandated into an Erlang binary. The function
EncodingMod:decode_message(EncodingConfig, Binary) is invoked whenever an Erlang binary needs to be
tranglated into a'MegacoM essage' record.

Anat om defaultsto megaco_pretty_ text _encoder.
encodi ng_config

Encoding module config.

Alist,defaultsto[] .

26 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

prot ocol _version
Actual protocol version.
Ani nt eger, defaultis 1.
strict_version
Strict version control, i.e. when amessage is received, verify that the version is that which was negotiated.
Anbool ean, default istrue.
reply_data
Default reply data.
Any term, defaults to the atom undef i ned.
user _nod
Name of the user callback module. See the the reference manual for megaco_user for more info.
user_args
List of extraargumentsto the user callback functions. Seethethereference manual for megaco_user for moreinfo.
t hr eaded

If areceived message contains several transaction requests, this option indicates whether the requests should be
handled sequentially in the same process (f al se), or if each request should be handled by itsown process(t r ue
i.e. aseparate process is spawned for each request).

Anbool ean, defaultstof al se.

resend_i ndication
This option indicates weather the transport module should be told if a message send is aresend or not.
If false, megaco messages are sent using the send_message function.

If true, megaco message re-sends are made using the resend_message function. Theinitial message send is still
done using the send_message function.

The special value flag instead indicates that the function send_message/3 shall be used.
Aresend_indication(),defalltstof al se.

segrment _reply_ind
This option specifiesif the user shall be notified of received segment replies or not.
See handle_segment_reply callback function for more information.
A bool ean, defaultstof al se.

segnment _recv_ti mer

Thistimer is started when the segment indicated by the segnent at i on conpl et e t oken isreceived, but
all segments has not yet been received.

When the timer finally expires, a"megaco segments not received" (459) error message is sent to the other side
and the user is notified with asegnent ti meout User Repl y in either the handle trans reply callback
function or the return value of the call function.

A Megaco Timer (see explanation above), defaultsto 10000.
segment _send
Shall outgoing messages be segmented or not:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 27

megaco

none

Do not segment outgoing reply messages. This is useful when either it is known that messages are never to
large or that the transport protocol can handle such things on its own (e.g. TCP or SCTP).

integer() >0

Outgoing reply messageswill be ssgmented asneeded (seemax_pdu_si ze below). Thisvalue, K, indicate
the outstanding window, i.e. how many segments can be outstanding (not acknowledged) at any given time.

infinity
Outgoing reply messages will be segmented as needed (see max_pdu_si ze below). Segment messages
are sent al at once (i.e. no acknowledgement awaited before sending the next segment).
Defaultsto none.
max_pdu_si ze

Max message size. If the encoded message (PDU) exceeds this size, the message should be segmented, and then
encoded.

A positiveinteger ori nfi ni ty, defaultstoi nfinity.

update_user _info(UserMd, Item Value) -> ok | {error, Reason}
Types.

UserM d = negaco_m d()

Item = user_info_item)

Val ue = user _info_val ue()

Reason = term()

Update information about a user
Requires that the user is started. See megaco:user_info/2 about which items and values that are valid.

conn_i nfo(ConnHandl e) -> [{lItem Val ue}]
conn_i nfo(ConnHandl e, Item) -> Value | exit(Reason)
Types:

ConnHandl e = #megaco_conn_handl| e{}

Item = conn_info_item)

Val ue = conn_i nfo_val ue()

Reason = {no_such_connection, ConnHandle} | term)

Lookup information about an active connection
Requires that the connection is active.
control _pid
The process identifier of the controlling process for a connection.
send_handl e
Opague send handle whose contents isinternal for the send module. May be any term.
local _md
The local mid (of the connection, i.e. the own mid). negaco_mi d() .

28 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

renote md
The remote mid (of the connection). megaco_mi d() .
recei ve_handl e
Construct amegaco_receive _handle record.
trans_id
Next transaction id. A positive integer or the atom undef i ned_seri al (only in case of error).

Note that transaction id's are (currently) maintained on a per user basis so there isno way to be sure that the value
returned will actually be used for a transaction sent on this connection (in case a user has several connections,
whichisnot at all unlikely).

max_trans_id

Last transid.

A positiveinteger ori nfi ni ty, defaultstoi nfinity.
request _tiner

Wait for reply.

Thetimer is cancelled when areply is received.

When a pending message is received, thetimer is cancelled and thel ong_r equest _t i mer isstarted instead
(see below). No resends will be performed from this point (since we now know that the other side has received
the request).

When the timer reaches an intermediate expire, the request is resent and the timer is restarted.

When the timer reaches the fina expire, either the function negaco: cal | will return with {error,
ti meout} orthe callback function handl e_trans_repl y will becaledwith User Reply = {error,
ti meout} (if megaco: cast wasused).

A Megaco Timer (see explanation above), defaults to #megaco_incr_timer{}.
| ong_request _tiner

Wait for reply after having received a pending message.

When the timer reaches an intermediate expire, the timer restarted.

When a pending message is received, and thel ong_r equest _ti mer isnot "onitsfinal leg”, the timer will
berestarted, and, if | ong_r equest _resend = true, therequest will be re-sent.

A Megaco Timer (see explanation above), defaultsto 60 seconds.
request _keep_alive_tinmeout
Specifies the timeout time for the request-keep-alive timer.

Thistimer is started when the first reply to an asynchroneous request (issued using the megaco: cast/3 function)
arrives. Aslong asthistimer isrunning, replieswill bedelivered viathehandle_trans_reply/4,5 callback function,
with their "arrival number" (see User Repl y of the handle_trans reply/4,5 callback function).

Replies arriving after the timer has expired, will be delivered using the handle_unexpected_trans/3,4 callback
function.

The timeout time can havethevalues: pl ain | integer() >= 0.

Defaultsto pl ai n.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 29

megaco

| ong_request _resend

This option indicates weather the request should be resent until the reply is received, even though a pending
message has been received.

Normally, after a pending message has been received, the request is not resent (since a pending message is an
indication that the request has been received). But since the reply (to the request) can be lost, this behaviour has
itsvalues.

It is of course pointless to set this value to true unlessthe |l ong_r equest _ti ner (see above) isaso set to
an incremental timer (#megaco_i ncr _tinmer{}).

A bool ean, defaultstof al se.
reply_timer
Wait for an ack.

When arequest is received, some info related to the reply is store internally (e.g. the binary of the reply). This
info will live until either an ack is received or this timer expires. For instance, if the same request is received
again (e.g. arequest with the same transaction id), the (stored) reply will be (re-) sent automatically by megaco.

If the timer is of type #megaco_i ncr _ti mer {}, then for each intermediate timout, the reply will be resent
(thisisvalid until the ack is received or the timer expires).

A Megaco Timer (see explanation above), defaults to 30000.
call _proxy_gc_timeout
Timeout time for the call proxy.

When arequest is sent using the call/3 function, a proxy process is started to handle all replies. When the reply
has been received and delivered to the user, the proxy process continueto exist for aslong asthis option specifies.
Any received messages, is passed on to the user viathe handle_unexpected_trans callback function.

The timeout time isin milliseconds. A value of 0 (zero) means that the proxy process will exit directly after the
reply has been delivered.

An integer >= 0, defaults to 5000 (= 5 seconds).
aut o_ack
Automatic send transaction ack when the transaction reply has been received (seet r ans_ack below).
Thisis used for three-way-handshake.
A bool ean, defaultstof al se.
trans_ack
Shall ack's be accumulated or not.
This property isonly valid if aut o_ack istrue.

If aut o_ack is true, then if trans_ack is f al se, ack's will be sent immediately. If t rans_ack is
t r ue, then ack's will instead be sent to the transaction sender process for accumulation and later sending (see
trans_ack_nexcount, trans_req_nmxcount, trans_req_naxsi ze, trans_ack_maxcount
andtrans_ti ner).

See also transaction sender for more info.
Anbool ean, defaultstof al se.
trans_ack_naxcount

Maximum number of accumulated ack's. At most this many ack’'s will be accumulated by the transaction sender
(if started and configured to accumulate ack's).

30 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

See also transaction sender for more info.
An integer, defaults to 10.
trans_req
Shall requests be accumulated or not.
Iftrans_reqisfal se, thenrequest(s) will be sent immediately (in its own message).

If t rans_req istrue, then request(s) will instead be sent to the transaction sender process for accumulation
and later sending (see trans_ack _maxcount, trans_req_maxcount, trans_req_nexsize,
trans_ack_maxcount andtrans_ti mer).

See also transaction sender for more info.
Anbool ean, defaultstof al se.
trans_req_naxcount

Maximum number of accumulated requests. At most this many requests will be accumulated by the transaction
sender (if started and configured to accumul ate requests).

See also transaction sender for more info.
Ani nt eger, defaultsto 10.
trans_req_nmaxsi ze

Maximum size of the accumulated requests. At most this much regquests will be accumulated by the transaction
sender (if started and configured to accumul ate requests).

See adso transaction sender for moreinfo.
Ani nt eger, defaultsto 2048.
trans_tiner

Transaction sender timeout time. Has two functions. Firgt, if the value is 0, then transactions will not be
accumulated (e.g. the transaction sender process will not be started). Second, if the value is greater then 0
and aut o_ack and trans_ack istrue or if t rans_r eq is true, then transaction sender will be started
and transactions (which is depending on the values of aut o_ack, trans_ack and t rans_r eq) will be
accumulated, for later sending.

See also transaction sender for more info.
Ani nt eger, defaultsto O.
pendi ng_ti mer
Automatic send transaction pending if the timer expires before a transaction reply has been sent. This timer is
also called provisional response timer.
A Megaco Timer (see explanation above), defaults to 30000.
sent _pending_limnmt

Sent pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingL imit of the megaco root
package). This parameter specifies how many pending messages that can be sent (for agiven received transaction
reguest). When the limit is exceeded, the transaction is aborted (see handle_trans request_abort) and an error
message is sent to the other side.

Note that this has no effect on the actual sending of pending transactions. This is either implicit (e.g. when
receiving are-sent transaction request for arequest which is being processed) or controlled by the pending_timer,
see above.

A positiveinteger or i nfi ni ty, defaultstoi nfinity.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 31

megaco

recv_pending_limt

Receive pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingL imit of the megaco
root package). This parameter specifies how many pending messages that can be received (for a sent transaction
reguest). When the limit is exceeded, the transaction is considered lost, and an error returned to the user (through
the call-back function handle_trans reply).

A positiveinteger or i nfi ni ty, defaultstoi nfinity.
send_nod

Send callback module which exports send_message/2. The function SendMod:send_message(SendHandle,
Binary) isinvoked when the bytes needs to be transmitted to the remote user.

An at om defaultsto megaco_t cp.
encodi ng_nod

Encoding callback module which exports encode message/2 and decode message/2. The
function EncodingMod:encode_message(EncodingConfig, MegacoMessage) is invoked whenever a
'MegacoMessage’ record needs to be trandated into an Erlang binary. The function
EncodingM od:decode_message(EncodingConfig, Binary) is invoked whenever an Erlang binary needs to be
tranglated into a'MegacoM essage' record.

Anat om defaultsto megaco_pretty_text _encoder.
encodi ng_config
Encoding module config.
Alist,defaultsto].
protocol _version
Actual protocol version.
An positive integer, Current default is 1.
strict_version
Strict version control, i.e. when amessage is received, verify that the version is that which was negotiated.
Anbool ean, default istrue.
reply_data
Default reply data.
Any term, defaults to the atom undef i ned.
t hr eaded

If areceived message contains several transaction requests, this option indicates whether the requests should be
handled sequentially inthe same process(f al se), or if each request should be handled by itsown process(t r ue
i.e. aseparate process is spawned for each request).

Anbool ean, defaultstof al se.

resend_i ndi cation
This option indicates weather the transport module should be told if a message send is aresend or not.
If false, megaco messages are sent using the send_message/2 function.

If true, megaco message re-sends are made using the resend_message function. Theinitial message send is still
done using the send_message function.

The special value flag instead indicates that the function send_message/3 shall be used.

32 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

Aresend_indication(), defaultstof al se.
segrment _reply_ind
This option specifiesif the user shall be notified of received segment replies or not.
See handle_segment_reply callback function for more information.
A bool ean, defaultstof al se.
segment _recv_ti mer

Thistimer is started when the segment indicated by thesegnment ati on conpl et e t oken (e.g. thelast of
the segment which makes up the reply) is received, but all segments has not yet been received.

When the timer finally expires, a"megaco segments not received" (459) error message is sent to the other side
and the user is notified with asegnent ti meout User Repl y in either the handle _trans reply callback
function or the return value of the call function.

A Megaco Timer (see explanation above), defaultsto 10000.
segnment _send

Shall outgoing messages be segmented or not:

none

Do not segment outgoing reply messages. Thisis useful when either it is known that messages are never to
large or that the transport protocol can handle such things on its own (e.g. TCP or SCTP).

integer() >0

Outgoing reply messageswill be segmented asneeded (seemax_pdu_si ze below). Thisvalue, K, indicate
the outstanding window, i.e. how many segments can be outstanding (not acknowledged) at any given time.

infinity
Outgoing reply messages will be segmented as needed (see max_pdu_si ze below). Segment messages
are sent all at once (i.e. no acknowledgement awaited before sending the next segment).
Defaultstonone.
max_pdu_si ze

Max message size. If the encoded message (PDU) exceeds this size, the message should be segmented, and then
encoded.

A positiveinteger or i nfi ni ty, defaultstoi nfinity.

updat e_conn_i nf o(ConnHandl e, Item Value) -> ok | {error, Reason}
Types.

ConnHandl e = #negaco_conn_handl e{}

Item = conn_info_item)

Val ue = conn_i nfo_val ue()

Reason = term()

Update information about an active connection
Reguires that the connection is activated. See megaco:conn_info/2 about which items and values that are valid.

systeminfo() -> [{lItem Value}] | exit(Reason)

systeminfo(ltem) -> Value | exit(Reason)
Types:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 33

megaco

Item = system.info_item)
Lookup system information
Thefollowing items are valid:
text _config

Thetext encoding config.
connecti ons

Lists all active connections. Returns alist of megaco_conn_handle records.
users

Lists all active users. Returnsalist of megaco_mid()'s.
n_active_requests

Returns an integer representing the number of requests that has originated from this Erlang node and till are
active (and therefore consumes system resources).

n_active_ replies
Returns an integer representing the number of repliesthat has originated from this Erlang node and still are active
(and therefore consumes system resources).

n_active_connections

Returns an integer r