
 Jason Myers & Rick Copeland

 Essential
 SQLAlchemy
MAPPING PYTHON TO DATABASES

2nd Edition

Jason Myers and Rick Copeland

Boston

Essential SQLAlchemy
SECOND EDITION

978-1-491-91646-9

[LSI]

Essential SQLAlchemy
by Jason Myers and Rick Copeland

Copyright © 2016 Jason Myers and Rick Copeland. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Dawn Schanafelt and Meghan Blanchette
Production Editor: Shiny Kalapurakkel
Copyeditor: Charles Roumeliotis
Proofreader: Jasmine Kwityn

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2008: First Edition
December 2015: Second Edition

Revision History for the Second Edition
2015-11-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491916469 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Essential SQLAlchemy, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491916469

Table of Contents

Preface. vii

Introduction to SQLAlchemy. xiii

Part I. SQLAlchemy Core

1. Schema and Types. 1
Types 1
Metadata 3
Tables 4

Columns 5
Keys and Constraints 6
Indexes 7
Relationships and ForeignKeyConstraints 7

Persisting the Tables 9

2. Working with Data via SQLAlchemy Core. 13
Inserting Data 13
Querying Data 17

ResultProxy 18
Controlling the Columns in the Query 20
Ordering 20
Limiting 21
Built-In SQL Functions and Labels 22
Filtering 24
ClauseElements 25
Operators 26

iii

Boolean Operators 27
Conjunctions 27

Updating Data 28
Deleting Data 29
Joins 31
Aliases 32
Grouping 33
Chaining 34
Raw Queries 35

3. Exceptions and Transactions. 37
Exceptions 37

AttributeError 38
IntegrityError 40
Handling Errors 41

Transactions 43

4. Testing. 51
Testing with a Test Database 51
Using Mocks 58

5. Reflection. 63
Reflecting Individual Tables 63
Reflecting a Whole Database 66
Query Building with Reflected Objects 66

Part II. SQLAlchemy ORM

6. Defining Schema with SQLAlchemy ORM. 71
Defining Tables via ORM Classes 71

Keys, Constraints, and Indexes 73
Relationships 74
Persisting the Schema 75

7. Working with Data via SQLAlchemy ORM. 77
The Session 77
Inserting Data 80
Querying Data 83

Controlling the Columns in the Query 86
Ordering 86
Limiting 87

iv | Table of Contents

Built-In SQL Functions and Labels 88
Filtering 89
Operators 90
Boolean Operators 92
Conjunctions 92

Updating Data 93
Deleting Data 94
Joins 97
Grouping 98
Chaining 99
Raw Queries 101

8. Understanding the Session and Exceptions. 103
The SQLAlchemy Session 105

Session States 105
Exceptions 108

MultipleResultsFound Exception 108
DetachedInstanceError 110

Transactions 112

9. Testing with SQLAlchemy ORM. 121
Testing with a Test Database 121
Using Mocks 130

10. Reflection with SQLAlchemy ORM and Automap. 133
Reflecting a Database with Automap 133
Reflected Relationships 135

Part III. Alembic

11. Getting Started with Alembic. 139
Creating the Migration Environment 139
Configuring the Migration Environment 140

12. Building Migrations. 143
Generating a Base Empty Migration 143
Autogenerating a Migration 145
Building a Migration Manually 149

13. Controlling Alembic. 151
Determining a Database’s Migration Level 151

Table of Contents | v

Downgrading Migrations 152
Marking the Database Migration Level 153
Generating SQL 154

14. Cookbook. 157
Hybrid Attributes 157
Association Proxy 160
Integrating SQLAlchemy with Flask 166
SQLAcodegen 169

15. Where to Go from Here. 175

Index. 177

vi | Table of Contents

Preface

We are surrounded by data everywhere, and your ability to store, update, and report
on that data is critical to every application you build. Whether you are developing for
the Web, the desktop, or other applications, you need fast and secure access to data.
Relational databases are still one of the most common places to put that data.

SQL is a powerful language for querying and manipulating data in a database, but
sometimes it’s tough to integrate it with the rest of your application. You may have
used string manipulation to generate queries to run over an ODBC interface, or used
a DB API as a Python programmer. While those can be effective ways to handle data,
they can make security and database changes very difficult.

This book is about a very powerful and flexible Python library named SQLAlchemy
that bridges the gap between relational databases and traditional programming.
While SQLAlchemy allows you to “drop down” into raw SQL to execute your queries,
it encourages higher-level thinking through a more “Pythonic” and friendly approach
to database queries and updates. It supplies the tools that let you map your applica‐
tion’s classes and objects to database tables once and then to “forget about it,” or to
return to your model again and again to fine-tune performance.

SQLAlchemy is powerful and flexible, but it can also be a little daunting.
SQLAlchemy tutorials expose only a fraction of what’s available in this excellent
library, and though the online documentation is extensive, it is often better as a refer‐
ence than as a way to learn the library initially. This book is meant as a learning tool
and a handy reference for when you’re in “implementation mode” and need an
answer fast.

This book focuses on the 1.0 release of SQLAlchemy; however, much of what we will
cover has been available for many of the previous versions. It certainly works from
0.8 forward with minor tweaking, and most of it from 0.5.

This book has been written in three major parts: SQLAlchemy Core, SQLAlchemy
ORM, and an Alembic section. The first two parts are meant to mirror each other as

vii

closely as possible. We have taken care to perform the same examples in each part so
that you can compare and contrast the two main ways of using SQLAlchemy. The
book is also written so that you can read both the SQLAlchemy Core and ORM parts
or just the one suits your needs at the moment.

Who This Book Is For
This book is intended for those who want to learn more about how to use relational
databases in their Python programs, or have heard about SQLAlchemy and want
more information on it. To get the most out of this book, the reader should have
intermediate Python skills and at least moderate exposure to SQL databases. While
we have worked hard to make the material accessible, if you are just getting started
with Python, we recommend reading Introducing Python by Bill Lubanovic or watch‐
ing the “Introduction to Python” videos by Jessica McKellar as they are both fantastic
resources. If you are new to SQL and databases, check out Learning SQL by Alan
Beaulieu. These will fill in any missing gaps as you work through this book.

How to Use the Examples
Most of the examples in this book are built to be run in a read-eval-print loop
(REPL). You can use the built-in Python REPL by typing python at the command
prompt. The examples also work well in an ipython notebook. There are a few parts
of the book, such as Chapter 4, that will direct you to create and use files instead of a
REPL. The supplied example code is provided in IPython notebooks for most exam‐
ples, and Python files for the chapters that specify to use them. You can learn more
about IPython at its website.

Assumptions This Book Makes
This book assumes basic knowledge about Python syntax and semantics, particularly
versions 2.7 and later. In particular, the reader should be familiar with iteration and
working with objects in Python, as these are used frequently throughout the book.
The second part of the book deals extensively with object-oriented programming and
the SQLAlchemy ORM. The reader should also know basic SQL syntax and relational
theory, as this book assumes familiarity with the SQL concepts of defining schema
and tables along with creating SELECT, INSERT, UPDATE, and DELETE statements.

viii | Preface

http://shop.oreilly.com/product/0636920028659.do
http://shop.oreilly.com/product/110000448.do
http://shop.oreilly.com/product/9780596007270.do
http://ipython.org/

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
link: https://github.com/oreillymedia/essential-sqlalchemy-2e.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this

Preface | ix

https://github.com/oreillymedia/essential-sqlalchemy-2e

book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Essential SQLAlchemy, Second Edi‐
tion, by Jason Myers and Rick Copeland (O’Reilly). Copyright 2016 Jason Myers and
Rick Copeland, 978-1-4919-1646-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

x | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at the following link: http://oreil.ly/1lwEdiw.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many thanks go to Patrick Altman, Eric Floehr, and Alex Grönholm for their critical
prepublication feedback. Without them, this book would have undoubtedly had
many technical issues and been much harder to read.

My appreciation goes out to Mike Bayer, whose recommendation led to this book
being written in the first place. I’m grateful to Meghan Blanchette and Dawn Schana‐
felt for pushing me to complete the book, making me a better writer, and putting up
with me. I also would like to thank Brian Dailey for reading some of the roughest cuts
of the book, providing great feedback, and laughing with me about it.

I want to thank the Nashville development community for supporting me, especially
Cal Evans, Jacques Woodcock, Luke Stokes, and William Golden.

Thanks to my employer, Cisco Systems, for allowing me the time and providing sup‐
port to finish the book. Thanks also to Justin at Mechanical Keyboards for keeping
me supplied with everything I needed to keep my fingers typing.

Preface | xi

http://oreil.ly/1lwEdiw
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Most importantly I want to thank my wife for putting up with me reading aloud to
myself, disappearing to go write, and being my constant source of support and hope. I
love you, Denise.

xii | Preface

Introduction to SQLAlchemy

SQLAlchemy is a library used to interact with a wide variety of databases. It enables
you to create data models and queries in a manner that feels like normal Python
classes and statements. Created by Mike Bayer in 2005, SQLAlchemy is used by many
companies great and small, and is considered by many to be the de facto way of work‐
ing with relational databases in Python.

It can be used to connect to most common databases such as Postgres, MySQL,
SQLite, Oracle, and many others. It also provides a way to add support for other rela‐
tional databases as well. Amazon Redshift, which uses a custom dialect of Post‐
greSQL, is a great example of database support added by the community.

In this chapter, we’ll explore why we need SQLAlchemy, learn about its two major
modes, and get connected to a database.

Why Use SQLAlchemy?
The top reason to use SQLAlchemy is to abstract your code away from the underlying
database and its associated SQL peculiarities. SQLAlchemy leverages powerful com‐
mon statements and types to ensure its SQL statements are crafted efficiently and
properly for each database type and vendor without you having to think about it.
This makes it easy to migrate logic from Oracle to PostgreSQL or from an application
database to a data warehouse. It also helps ensure that database input is sanitized and
properly escaped prior to being submitted to the database. This prevents common
issues like SQL injection attacks.

SQLAlchemy also provides a lot of flexibility by supplying two major modes of usage:
SQL Expression Language (commonly referred to as Core) and ORM. These modes
can be used separately or together depending on your preference and the needs of
your application.

xiii

SQLAlchemy Core and the SQL Expression Language
The SQL Expression Language is a Pythonic way of representing common SQL state‐
ments and expressions, and is only a mild abstraction from the typical SQL language.
It is focused on the actual database schema; however, it is standardized in such a way
that it provides a consistent language across a large number of backend databases.
The SQL Expression Language also acts as the foundation for the SQLAlchemy ORM.

ORM
The SQLAlchemy ORM is similar to many other object relational mappers (ORMs)
you may have encountered in other languages. It is focused around the domain
model of the application and leverages the Unit of Work pattern to maintain object
state. It also provides a high-level abstraction on top of the SQL Expression Language
that enables the user to work in a more idiomatic way. You can mix and match use of
the ORM with the SQL Expression Language to create very powerful applications.
The ORM leverages a declarative system that is similar to the active-record systems
used by many other ORMs such as the one found in Ruby on Rails.

While the ORM is extremely useful, you must keep in mind that there is a difference
between the way classes can be related, and how the underlying database relation‐
ships work. We’ll more fully explore the ways in which this can affect your implemen‐
tation in Chapter 6.

Choosing Between SQLAlchemy Core and ORM
Before you begin building applications with SQLAlchemy, you will need to decide if
you are going to primarly use the ORM or Core. The choice of using SQLAlchemy
Core or ORM as the dominant data access layer for an application often comes down
to a few factors and personal preference.

The two modes use slightly different syntax, but the biggest difference between Core
and ORM is the view of data as schema or business objects. SQLAlchemy Core has a
schema-centric view, which like traditional SQL is focused around tables, keys, and
index structures. SQLAlchemy Core really shines in data warehouse, reporting, analy‐
sis, and other scenarios where being able to tightly control the query or operating on
unmodeled data is useful. The strong database connection pool and result-set opti‐
mizations are perfectly suited to dealing with large amounts of data, even in multiple
databases.

However, if you intend to focus more on a domain-driven design, the ORM will
encapsulate much of the underlying schema and structure in metadata and business
objects. This encapsulation can make it easy to make database interactions feel more
like normal Python code. Most common applications lend themselves to being mod‐
eled in this way. It can also be a highly effective way to inject domain-driven design

xiv | Introduction to SQLAlchemy

into a legacy application or one with raw SQL statements sprinkled throughout.
Microservices also benefit from the abstraction of the underlying database, allowing
the developer to focus on just the process being implemented.

However, because the ORM is built on top of SQLAlchemy Core, you can use its abil‐
ity to work with services like Oracle Data Warehousing and Amazon Redshift in the
same manner that it interoperates with MySQL. This makes it a wonderful compli‐
ment to the ORM when you need to combine business objects and warehoused data.

Here’s a quick checklist to help you decide which option is best for you:

• If you are working with a framework that already has an ORM built in, but want
to add more powerful reporting, use Core.

• If you want to view your data in a more schema-centric view (as used in SQL),
use Core.

• If you have data for which business objects are not needed, use Core.
• If you view your data as business objects, use ORM.
• If you are building a quick prototype, use ORM.
• If you have a combination of needs that really could leverage both business

objects and other data unrelated to the problem domain, use both!

Now that you know how SQLAlchemy is structured and the difference between Core
and ORM, we are ready to install and start using SQLAlchemy to connect to a data‐
base.

Installing SQLAlchemy and Connecting to a Database
SQLAlchemy can be used with Python 2.6, Python 3.3, and Pypy 2.1 or greater. I rec‐
ommend using pip to perform the install with the command pip install

sqlalchemy. It’s worth noting that it can also be installed with easy_install and distu‐
tils; however, pip is the more straightforward method. During the install, SQLAl‐
chemy will attempt to build some C extensions, which are leveraged to make working
with result sets fast and more memory efficient. If you need to disable these exten‐
sions due to the lack of a compiler on the system you are installing on, you can use
--global-option=--without-cextensions. Note that using SQLAlchemy without C
extensions will adversely affect performance, and you should test your code on a sys‐
tem with the C extensions prior to optimizing it.

Introduction to SQLAlchemy | xv

Installing Database Drivers
By default, SQLAlchemy will support SQLite3 with no additional drivers; however, an
additional database driver that uses the standard Python DBAPI (PEP-249) specifica‐
tion is needed to connect to other databases. These DBAPIs provide the basis for the
dialect each database server speaks, and often enable the unique features seen in dif‐
ferent database servers and versions. While there are multiple DBAPIs available for
many of the databases, the following instructions focus on the most common:

PostgreSQL
Psycopg2 provides wide support for PostgreSQL versions and features and can be
installed with pip install psycopg2.

MySQL
PyMySQL is my preferred Python library for connecting to a MySQL database
server. It can be installed with a pip install pymysql. MySQL support in
SQLAlchemy requires MySQL version 4.1 and higher due to the way passwords
worked prior to that version. Also, if a particular statement type is only available
in a certain version of MySQL, SQLAlchemy does not provide a method to use
those statements on versions of MySQL where the statement isn’t available. It’s
important to review the MySQL documentation if a particular component or
function in SQLAlchemy does not seem to work in your environment.

Others
SQLAlchemy can also be used in conjunction with Drizzle, Firebird, Oracle, Syb‐
ase, and Microsoft SQL Server. The community has also supplied external dia‐
lects for many other databases like IBM DB2, Informix, Amazon Redshift,
EXASolution, SAP SQL Anywhere, Monet, and many others. Creating an addi‐
tional dialect is well supported by SQLAlchemy, and Chapter 7 will examine the
process of doing just that.

Now that we have SQLAlchemy and a DBAPI installed, let’s actually build an engine
to connect to a database.

Connecting to a Database
To connect to a database, we need to create a SQLAlchemy engine. The SQLAlchemy
engine creates a common interface to the database to execute SQL statements. It does
this by wrapping a pool of database connections and a dialect in such a way that they
can work together to provide uniform access to the backend database. This enables
our Python code not to worry about the differences between databases or DBAPIs.

xvi | Introduction to SQLAlchemy

http://initd.org/psycopg/

SQLAlchemy provides a function to create an engine for us given a connection string
and optionally some additional keyword arguments. A connection string is a specially
formatted string that provides:

• Database type (Postgres, MySQL, etc.)
• Dialect unless the default for the database type (Psycopg2, PyMySQL, etc.)
• Optional authentication details (username and password)
• Location of the database (file or hostname of the database server)
• Optional database server port
• Optional database name

SQLite database connections strings have us represent a specific file or a storage loca‐
tion. Example P-1 defines a SQLite database file named cookies.db stored in the cur‐
rent directory via a relative path in the second line, an in-memory database on the
third line, and a full path to the file on the fourth (Unix) and fifth (Windows) lines.
On Windows, the connection string would look like engine4; the \\ are required for
proper string escaping unless you use a raw string (r'').

Example P-1. Creating an engine for a SQLite database

from sqlalchemy import create_engine
engine = create_engine('sqlite:///cookies.db')
engine2 = create_engine('sqlite:///:memory:')
engine3 = create_engine('sqlite:////home/cookiemonster/cookies.db')
engine4 = create_engine('sqlite:///c:\\Users\\cookiemonster\\cookies.db')

The create_engine function returns an instance of an engine;
however, it does not actually open a connection until an action is
called that would require a connection, such as a query.

Let’s create an engine for a local PostgreSQL database named mydb. We’ll start by
importing the create_engine function from the base sqlalchemy package. Next,
we’ll use that function to construct an engine instance. In Example P-2, you’ll notice
that I use postgresql+psycopg2 as the engine and dialect components of the connec‐
tion string, even though using only postgres will work. This is because I prefer to be
explicit instead of implicit, as recommended in the Zen of Python.

Introduction to SQLAlchemy | xvii

https://www.python.org/dev/peps/pep-0020/

Example P-2. Creating an engine for a local PostgreSQL database

from sqlalchemy import create_engine
engine = create_engine('postgresql+psycopg2://username:password@localhost:' \
 '5432/mydb')

Now let’s look at a MySQL database on a remote server. You’ll notice, in Example P-3,
that after the connection string we have a keyword parameter, pool_recycle, to
define how often to recycle the connections.

Example P-3. Creating an engine for a remote MySQL database

from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://cookiemonster:chocolatechip'
 '@mysql01.monster.internal/cookies', pool_recycle=3600)

By default, MySQL closes connections idle for more than eight
hours. To work around this issue, use pool_recycle=3600 when
creating an engine, as shown in Example P-3.

Some optional keywords for the create_engine function are:

echo

This will log the actions processed by the engine, such as SQL statements and
their parameters. It defaults to false.

encoding

This defines the string encoding used by SQLAlchemy. It defaults to utf-8, and
most DBAPIs support this encoding by default. This does not define the encod‐
ing type used by the backend database itself.

isolation_level

This instructs SQLAlchemy to use a specific isolation level. For example, Post‐
greSQL with Psycopg2 has READ COMMITTED, READ UNCOMMITTED, REPEATABLE
READ, SERIALIZABLE, and AUTOCOMMIT available with a default of READ COMMITTED.
PyMySQL has the same options with a default of REPEATABLE READ for InnoDB
databases.

Using the isolation_level keyword argument will set the isola‐
tion level for any given DBAPI. This functions the same as doing it
via a key-value pair in the connection string in dialects such as Psy‐
copg2 that support that method.

xviii | Introduction to SQLAlchemy

pool_recycle

This recycles or times out the database connections at regular intervals. This is
important for MySQL due to the connection timeouts we mentioned earlier. It
defaults to -1, which means there is no timeout.

Once we have an engine initialized, we are ready to actually open a connection to the
database. That is done by calling the connect() method on the engine as shown here:

from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://cookiemonster:chocolatechip' \
 '@mysql01.monster.internal/cookies', pool_recycle=3600)
connection = engine.connect()

Now that we have a database connection, we can start using either SQLAlchemy Core
or the ORM. In Part I, we will begin exploring SQLAlchemy Core and learning how
to define and query your database.

Introduction to SQLAlchemy | xix

PART I

SQLAlchemy Core

Now that we can connect to databases, let’s begin looking at how to use SQLAlchemy
Core to provide database services to our applications. SQLAlchemy Core is a
Pythonic way of representing elements of both SQL commands and data structures
called SQL Expression Language. SQLAlchemy Core can be used with either the
Django or SQLAlchemy ORM, or can be used as a standalone solution.

CHAPTER 1

Schema and Types

The first thing we must do is define what data our tables hold, how that data is inter‐
related, and any constraints on that data.

In order to provide access to the underlying database, SQLAlchemy needs a represen‐
tation of the tables that should be present in the database. We can do this in one of
three ways:

• Using user-defined Table objects
• Using declarative classes that represent your tables
• Inferring them from the database

This chapter focuses on the first of these, as that is the approach used with SQLAl‐
chemy Core; we’ll cover the other two options in later chapters after we have a grasp
of the fundamentals. The Table objects contain a list of typed columns and their
attributes, which are associated with a common metadata container. We’ll begin our
exploration of schema definitions by taking a look at the types that are available to
build tables in SQLAlchemy.

Types
There are four categories of types we can use inside of SQLAlchemy:

• Generic
• SQL standard
• Vendor specific
• User defined

1

SQLAlchemy defines a large number of generic types that are abstracted away from
the actual SQL types supported by each backend database. These types are all avail‐
able in the sqlalchemy.types module, and for convenience they are also available in
the sqlalchemy module. So let’s think about how these generic types are useful.

The Boolean generic type typically uses the BOOLEAN SQL type, and on the Python
side deals in true or false; however, it also uses SMALLINT on backend databases that
don’t support a BOOLEAN type. Thanks to SQLAlchemy, this minor detail is hidden
from you, and you can trust that any queries or statements you build will operate
properly against fields of that type regardless of the database type being used. You will
only have to deal with true or false in your Python code. This kind of behavior makes
the generic types very powerful, and useful during database transitions or split back‐
end systems where the data warehouse is one database type and the transactional is
another. The generic types and their associated type representations in both Python
and SQL can be seen in Table 1-1.

Table 1-1. Generic type representations

SQLAlchemy Python SQL

BigInteger int BIGINT

Boolean bool BOOLEAN or SMALLINT

Date datetime.date DATE (SQLite: STRING)

DateTime datetime.datetime DATETIME (SQLite: STRING)

Enum str ENUM or VARCHAR

Float float or Decimal FLOAT or REAL

Integer int INTEGER

Interval datetime.timedelta INTERVAL or DATE from epoch

LargeBinary byte BLOB or BYTEA

Numeric decimal.Decimal NUMERIC or DECIMAL

Unicode unicode UNICODE or VARCHAR

Text str CLOB or TEXT

Time datetime.time DATETIME

2 | Chapter 1: Schema and Types

It is important to learn these generic types, as you will need to use
and define them regularly.

In addition to the generic types listed in Table 1-1, both SQL standard and vendor-
specific types are available and are often used when a generic type will not operate as
needed within the database schema due to its type or the specific type specified in an
existing schema. A few good illustrations of this are the CHAR and NVARCHAR types,
which benefit from using the proper SQL type instead of just the generic type. If we
are working with a database schema that was defined prior to using SQLAlchemy, we
would want to match types exactly. It’s important to keep in mind that SQL standard
type behavior and availability can vary from database to database. The SQL standard
types are available within the sqlalchemy.types module. To help make a distinction
between them and the generic types, the standard types are in all capital letters.

Vendor-specific types are useful in the same ways as SQL standard types; however,
they are only available in specific backend databases. You can determine what is avail‐
able via the chosen dialect’s documentation or SQLALchemy’s website. They are avail‐
able in the sqlalchemy.dialects module and there are submodules for each
database dialect. Again, the types are in all capital letters for distinction from the
generic types. We might want to take advantage of the powerful JSON field from
PostgreSQL, which we can do with the following statement:

from sqlalchemy.dialects.postgresql import JSON

Now we can define JSON fields that we can later use with the many PostgreSQL-
specific JSON functions, such as array_to_json, within our application.

You can also define custom types that cause the data to be stored in a manner of your
choosing. An example of this might be prepending characters onto text stored in a
VARCHAR column when put into the database record, and stripping them off when
retrieving that field from the record. This can be useful when working with legacy
data still used by existing systems that perform this type of prefixing that isn’t useful
or important in your new application.

Now that we’ve seen the four variations of types we can use to construct tables, let’s
take a look at how the database structure is held together by metadata.

Metadata
Metadata is used to tie together the database structure so it can be quickly accessed
inside SQLAlchemy. It’s often useful to think of metadata as a kind of catalog of Table
objects with optional information about the engine and the connection. Those tables
can be accessed via a dictionary, MetaData.tables. Read operations are thread-safe;

Metadata | 3

http://www.sqlalchemy.org/

however, table construction is not completely thread-safe. Metadata needs to be
imported and initialized before objects can be tied to it. Let’s initialize an instance of
the MetaData objects that we can use throughout the rest of the examples in this
chapter to hold our information catalog:

from sqlalchemy import MetaData
metadata = MetaData()

Once we have a way to hold the database structure, we’re ready to start defining
tables.

Tables
Table objects are initialized in SQLAlchemy Core in a supplied MetaData object by
calling the Table constructor with the table name and metadata; any additional argu‐
ments are assumed to be column objects. There are also some additional keyword
arguments that enable features that we will discuss later. Column objects represent
each field in the table. The columns are constructed by calling Column with a name,
type, and then arguments that represent any additional SQL constructs and con‐
straints. For the remainder of this chapter, we are going to build up a set of tables that
we’ll use throughout Part I. In Example 1-1, we create a table that could be used to
store the cookie inventory for our online cookie delivery service.

Example 1-1. Instantiating Table objects and columns

from sqlalchemy import Table, Column, Integer, Numeric, String, ForeignKey

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2))
)

Notice the way we marked this column as the table’s primary key. More on this in
a second.

We’re making an index of cookie names to speed up queries on this column.

This is a column which takes multiple arguments, length and precision, such as
11.2, which would give us numbers up to 11 digits long with two decimal places.

Before we get too far into tables, we need to understand their fundamental building
blocks: columns.

4 | Chapter 1: Schema and Types

Columns
Columns define the fields that exists in our tables, and they provide the primary
means by which we define other constraints through their keyword arguments. Dif‐
ferent types of columns have different primary arguments. For example, String type
columns have length as their primary argument, while numbers with a fractional
component will have precision and length. Most other types have no primary argu‐
ments.

Sometimes you will see examples that just show String columns
without a length, which is the primary argument. This behavior is
not universally supported—for example, MySQL and several other
database backends do not allow for it.

Columns can also have some additional keyword arguments that help shape their
behavior even further. We can mark columns as required and/or force them to be
unique. We can also set default initial values and change values when the record is
updated. A common use case for this is fields that indicate when a record was created
or updated for logging or auditing purposes. Let’s take a look at these keyword argu‐
ments in action in Example 1-2.

Example 1-2. Another Table with more Column options

from datetime import datetime
from sqlalchemy import DateTime

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

Here we are making this column required (nullable=False) and also requiring a
unique value.

The default sets this column to the current time if a date isn’t specified.

Using onupdate here will reset this column to the current time every time any
part of the record is updated.

Tables | 5

You’ll notice that we set default and onupdate to the callable date
time.now instead of the function call itself, datetime.now(). If we
had used the function call itself, it would have set the default to the
time when the table was first instantiated. By using the callable, we
get the time that each individual record is instantiated and updated.

We’ve been using column keyword arguments to define table constructs and con‐
straints; however, it is also possible to declare them outside of a Column object. This is
critical when you are working with an existing database, as you must tell
SQLAlchemy the schema, constructs, and constraints present inside the database. For
example, if you have an existing index in the database that doesn’t match the default
index naming schema that SQLAlchemy uses, then you must manually define this
index. The following two sections show you how to do just that.

All of the commands in “Keys and Constraints” on page 6 and
“Indexes” on page 7 are included as part of the Table constructor
or added to the table via special methods. They will be persisted or
attached to the metadata as standalone statements.

Keys and Constraints
Keys and constraints are used as a way to ensure that our data meets certain require‐
ments prior to being stored in the database. The objects that represent keys and con‐
straints can be found inside the base SQLAlchemy module, and three of the more
common ones can be imported as shown here:

from sqlalchemy import PrimaryKeyConstraint, UniqueConstraint, CheckConstraint

The most common key type is a primary key, which is used as the unique identifier
for each record in a database table and is used used to ensure a proper relationship
between two pieces of related data in different tables. As you saw earlier in
Example 1-1 and Example 1-2, a column can be made a primary key simply by using
the primary_key keyword argument. You can also define composite primary keys by
assigning the setting primary_key to True on multiple columns. The key will then
essentially be treated like a tuple in which the columns marked as a key will be
present in the order they were defined in the table. Primary keys can also be defined
after the columns in the table constructor, as shown in the following snippet. You can
add multiple columns separated by commas to create a composite key. If we wanted
to explicitly define the key as shown in Example 1-2, it would look like this:

PrimaryKeyConstraint('user_id', name='user_pk')

Another common constraint is the unique constraint, which is used to ensure that no
two values are duplicated in a given field. For our online cookie delivery service, for
example, we would want to ensure that each customer had a unique username to log

6 | Chapter 1: Schema and Types

into our systems. We can also assign unique constraints on columns, as shown before
in the username column, or we can define them manually as shown here:

UniqueConstraint('username', name='uix_username')

Not shown in Example 1-2 is the check constraint type. This type of constraint is used
to ensure that the data supplied for a column matches a set of user-defined criteria. In
the following example, we are ensuring that unit_cost is never allowed to be less
than 0.00 because every cookie costs something to make (remember from Economics
101: TINSTAAFC—that is, there is no such thing as a free cookie!):

CheckConstraint('unit_cost >= 0.00', name='unit_cost_positive')

In addition to keys and constraints, we might also want to make lookups on certain
fields more efficient. This is where indexes come in.

Indexes
Indexes are used to accelerate lookups for field values, and in Example 1-1, we cre‐
ated an index on the cookie_name column because we know we will be searching by
that often. When indexes are created as shown in that example, you will have an
index called ix_cookies_cookie_name. We can also define an index using an explicit
construction type. Multiple columns can be designated by separating them by a
comma. You can also add a keyword argument of unique=True to require the index
to be unique as well. When creating indexes explicitly, they are passed to the Table
constructor after the columns. To mimic the index created in Example 1-1, we could
do it explicitly as shown here:

from sqlalchemy import Index
Index('ix_cookies_cookie_name', 'cookie_name')

We can also create functional indexes that vary a bit by the backend database being
used. This lets you create an index for situations where you often need to query based
on some unusual context. For example, what if we want to select by cookie SKU and
name as a joined item, such as SKU0001 Chocolate Chip? We could define an index
like this to optimize that lookup:

Index('ix_test', mytable.c.cookie_sku, mytable.c.cookie_name))

Now it is time to dive into the most important part of relational databases: table rela‐
tionships and how to define them.

Relationships and ForeignKeyConstraints
Now that we have a table with columns with all the right constraints and indexes, let’s
look at how we create relationships between tables. We need a way to track orders,
including line items that represent each cookie and quantity ordered. To help visual‐
ize how these tables should be related, take a look at Figure 1-1.

Tables | 7

Figure 1-1. Relationship visualization

One way to implement a relationship is shown in Example 1-3 in the line_items
table on the order_id column; this will result in a ForeignKeyConstraint to define
the relationship between the two tables. In this case, many line items can be present
for a single order. However, if you dig deeper into the line_items table, you’ll see
that we also have a relationship with the cookies table via the cookie_id ForeignKey.
This is because line_items is actually an association table with some additional data
on it between orders and cookies. Association tables are used to enable many-to-
many relationships between two other tables. A single ForeignKey on a table is typi‐
cally a sign of a one-to-many relationship; however, if there are multiple ForeignKey
relationships on a table, there is a strong possibility that it is an association table.

Example 1-3. More tables with relationships

from sqlalchemy import ForeignKey
orders = Table('orders', metadata,
 Column('order_id', Integer(), primary_key=True),
 Column('user_id', ForeignKey('users.user_id')),
 Column('shipped', Boolean(), default=False)

)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),
 Column('extended_cost', Numeric(12, 2))
)

8 | Chapter 1: Schema and Types

Notice that we used a string instead of an actual reference to the column.

Using strings instead of an actual column allows us to separate the table definitions
across multiple modules and/or not have to worry about the order in which our
tables are loaded. This is because SQLAlchemy will only perform the resolution of
that string to a table name and column the first time it is accessed. If we use hard
references, such as cookies.c.cookie_id, in our ForeignKey definitions it will per‐
form that resolution during module initialization and could fail depending on the
order in which the tables are loaded.

You can also define a ForeignKeyConstraint explicitly, which can be useful if trying
to match an existing database schema so it can be used with SQLAlchemy. This works
in the same way as before when we created keys, constraints, and indexes to match
name schemes and so on. You will need to import the ForeignKeyConstraint from
the sqlalchemy module prior to defining one in your table definition. The following
code shows how to create the ForeignKeyConstraint for the order_id field between
the line_items and orders table:

ForeignKeyConstraint(['order_id'], ['orders.order_id'])

Up until this point, we’ve been defining tables in such a way that SQLAlchemy can
understand them. If your database already exists and has the schema already built,
you are ready to begin writing queries. However, if you need to create the full schema
or add a table, you’ll want to know how to persist these in the database for permanent
storage.

Persisting the Tables
All of our tables and additional schema definitions are associated with an instance of
metadata. Persisting the schema to the database is simply a matter of calling the
create_all() method on our metadata instance with the engine where it should cre‐
ate those tables:

metadata.create_all(engine)

By default, create_all will not attempt to re-create tables that already exist in the
database, and it is safe to run multiple times. It’s wiser to use a database migration
tool like Alembic to handle any changes to existing tables or additional schema than
to try to handcode changes directly in your application code (we’ll explore this more
fully in Chapter 11). Now that we have persisted the tables in the database, let’s take a
look at Example 1-4, which shows the complete code for the tables we’ve been work‐
ing on in this chapter.

Persisting the Tables | 9

Example 1-4. Full in-memory SQLite code sample

from datetime import datetime

from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, create_engine)
metadata = MetaData()

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2))
)

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('customer_number', Integer(), autoincrement=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

orders = Table('orders', metadata,
 Column('order_id', Integer(), primary_key=True),
 Column('user_id', ForeignKey('users.user_id'))
)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),
 Column('extended_cost', Numeric(12, 2))
)

engine = create_engine('sqlite:///:memory:')
metadata.create_all(engine)

In this chapter, we took a look at how metadata is used as a catalog by SQLAlchemy
to store table schemas along with other miscellaneous data. We also can define a table
with multiple columns and constraints. We explored the types of constraints and how
to explicitly construct them outside of a column object to match an existing schema
or naming scheme. Then we covered how to set default values and onupdate values
for auditing. Finally, we now know how to persist or save our schema into the data‐

10 | Chapter 1: Schema and Types

base for reuse. The next step is to learn how to work with data within our schema via
the SQL Expression Language.

Persisting the Tables | 11

CHAPTER 2

Working with Data via SQLAlchemy Core

Now that we have tables in our database, let’s start working with data inside of those
tables. We’ll look at how to insert, retrieve, and delete data, and follow that with
learning how to sort, group, and use relationships in our data. We’ll be using the SQL
Expression Language (SEL) provided by SQLAlchemy Core. We’re going to continue
using the tables we created in Chapter 1 for our examples in this chapter. Let’s start by
learning how to insert data.

Inserting Data
First, we’ll build an insert statement to put my favorite kind of cookie (chocolate
chip) into the cookies table. To do this, we can call the insert() method on the
cookies table, and then use the values() statement with keyword arguments for
each column that we are filling with data. Example 2-1 does just that.

Example 2-1. Single insert as a method

ins = cookies.insert().values(
 cookie_name="chocolate chip",
 cookie_recipe_url="http://some.aweso.me/cookie/recipe.html",
 cookie_sku="CC01",
 quantity="12",
 unit_cost="0.50"
)
print(str(ins))

In Example 2-1, print(str(ins)) shows us the actual SQL statement that will be
executed:

INSERT INTO cookies
 (cookie_name, cookie_recipe_url, cookie_sku, quantity, unit_cost)

13

VALUES
 (:cookie_name, :cookie_recipe_url, :cookie_sku, :quantity, :unit_cost)

Our supplied values have been replaced with :column_name in this SQL statement,
which is how SQLAlchemy represents parameters displayed via the str() function.
Parameters are used to help ensure that our data has been properly escaped, which
mitigates security issues such as SQL injection attacks. It is still possible to view the
parameters by looking at the compiled version of our insert statement, because each
database backend can handle the parameters in a slightly different manner (this is
controlled by the dialect). The compile() method on the ins object returns a SQLCom
piler object that gives us access to the actual parameters that will be sent with the
query via the params attribute:

ins.compile().params

This compiles the statement via our dialect but does not execute it, and we access the
params attribute of that statement.

This results in:

{
 'cookie_name': 'chocolate chip',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/recipe.html',
 'cookie_sku': 'CC01',
 'quantity': '12',
 'unit_cost': '0.50'
}

Now that we have a complete picture of the insert statement and understand what is
going to be inserted into the table, we can use the execute() method on our connec‐
tion to send the statement to the database, which will insert the record into the table
(Example 2-2).

Example 2-2. Executing the insert statement

result = connection.execute(ins)

We can also get the ID of the record we just inserted by accessing the
inserted_primary_key attribute:

result.inserted_primary_key

[1]

Let’s take a quick detour here to discuss what happens when we call the execute()
method. When we are building a SQL Expression Language statement like the insert
statement we’ve been using so far, it is actually creating a tree-like structure that can
be quickly traversed in a descending manner. When we call the execute method, it
uses the statement and any other parameters passed to compile the statement with the

14 | Chapter 2: Working with Data via SQLAlchemy Core

proper database dialect’s compiler. That compiler builds a normal parameterized SQL
statement by walking down that tree. That statement is returned to the execute
method, which sends the SQL statement to the database via the connection on which
the method was called. The database server then executes the statement and returns
the results of the operation.

In addition to having insert as an instance method off a Table object, it is also avail‐
able as a top-level function for those times that you want to build a statement “gener‐
atively” (a step at a time) or when the table may not be initially known. For example,
our company might run two separate divisions, each with its own separate inventory
tables. Using the insert function shown in Example 2-3 would allow us to use one
statement and just swap the tables.

Example 2-3. Insert function

from sqlalchemy import insert
ins = insert(cookies).values(
 cookie_name="chocolate chip",
 cookie_recipe_url="http://some.aweso.me/cookie/recipe.html",
 cookie_sku="CC01",
 quantity="12",
 unit_cost="0.50"
)

Notice the table is now the argument to the insert function.

While insert works equally well as a method of a Table object and
as a more generative standalone function, I prefer the generative
approach because it more closely mirrors the SQL statements peo‐
ple are accustomed to seeing.

The execute method of the connection object can take more than just statements. It
is also possible to provide the values as keyword arguments to the execute method
after our statement. When the statement is compiled, it will add each one of the key‐
word argument keys to the columns list, and it adds each one of their values to the
VALUES part of the SQL statement (Example 2-4).

Example 2-4. Values in execute statement

ins = cookies.insert()
result = connection.execute(
 ins,
 cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02',

Inserting Data | 15

 quantity='1',
 unit_cost='0.75'
)
result.inserted_primary_key

Our insert statement is the first argument to the execute function just like
before.

We add our values as keyword arguments to the execute function.

This results in:

[2]

While this isn’t used often in practice for single inserts, it does provide a good illus‐
tration of how a statement is compiled and assembled prior to being sent to the data‐
base server. We can insert multiple records at once by using a list of dictionaries with
data we are going to submit. Let’s use this knowledge to insert two types of cookies
into the cookies table (Example 2-5).

Example 2-5. Multiple inserts

inventory_list = [
 {
 'cookie_name': 'peanut butter',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/peanut.html',
 'cookie_sku': 'PB01',
 'quantity': '24',
 'unit_cost': '0.25'
 },
 {
 'cookie_name': 'oatmeal raisin',
 'cookie_recipe_url': 'http://some.okay.me/cookie/raisin.html',
 'cookie_sku': 'EWW01',
 'quantity': '100',
 'unit_cost': '1.00'
 }
]
result = connection.execute(ins, inventory_list)

Build our list of cookies.

Use the list as the second parameter to execute.

The dictionaries in the list must have the exact same keys.
SQLAlchemy will compile the statement against the first dictionary
in the list, and the statement will fail if subsequent dictionaries are
different, as the statement was already built with the prior columns.

16 | Chapter 2: Working with Data via SQLAlchemy Core

Now that we have some data in our cookies table, let’s learn how to query the tables
and retrieve that data.

Querying Data
To begin building a query, we start by using the select function, which is analogous
to the standard SQL SELECT statement. Initially, let’s select all the records in our cook
ies table (Example 2-6).

Example 2-6. Simple select function

from sqlalchemy.sql import select
s = select([cookies])
rp = connection.execute(s)
results = rp.fetchall()

Remember we can use str(s) to look at the SQL statement the database will see,
which in this case is SELECT cookies.cookie_id, cookies.cookie_name,

cookies.cookie_recipe_url, cookies.cookie_sku, cookies.quantity,

cookies.unit_cost FROM cookies.

This tells rp, the ResultProxy, to return all the rows.

The results variable now contains a list representing all the records in our cookies
table:

[(1, u'chocolate chip', u'http://some.aweso.me/cookie/recipe.html', u'CC01',
 12, Decimal('0.50')),
 (2, u'dark chocolate chip', u'http://some.aweso.me/cookie/recipe_dark.html',
 u'CC02', 1, Decimal('0.75')),
 (3, u'peanut butter', u'http://some.aweso.me/cookie/peanut.html', u'PB01',
 24, Decimal('0.25')),
 (4, u'oatmeal raisin', u'http://some.okay.me/cookie/raisin.html', u'EWW01',
 100, Decimal('1.00'))]

In the preceding example, I passed a list containing the cookies table. The select
method expects a list of columns to select; however, for convenience, it also accepts
Table objects and selects all the columns on the table. It is also possible to use the
select method on the Table object to do this, as shown in Example 2-7. Again, I pre‐
fer seeing it written more like Example 2-6.

Example 2-7. Simple select method

from sqlalchemy.sql import select
s = cookies.select()
rp = connection.execute(s)
results = rp.fetchall()

Querying Data | 17

Before we go digging any further into queries, we need to know a bit more about
ResultProxy objects.

ResultProxy
A ResultProxy is a wrapper around a DBAPI cursor object, and its main goal is to
make it easier to use and manipulate the results of a statement. For example, it makes
handling query results easier by allowing access using an index, name, or Column
object. Example 2-8 demonstrates all three of these methods. It’s very important to
become comfortable using each of these methods to get to the desired column data.

Example 2-8. Handling rows with a ResultProxy

first_row = results[0]
first_row[1]
first_row.cookie_name
first_row[cookies.c.cookie_name]

Get the first row of the ResultProxy from Example 2-7.

Access column by index.

Access column by name.

Access column by Column object.

These all result in u'chocolate chip' and they each reference the exact same data
element in the first record of our results variable. This flexibility in access is only
part of the power of the ResultProxy. We can also leverage the ResultProxy as an
iterable, and perform an action on each record returned without creating another
variable to hold the results. For example, we might want to print the name of each
cookie in our database (Example 2-9).

Example 2-9. Iterating over a ResultProxy

rp = connection.execute(s)
for record in rp:
 print(record.cookie_name)

We are reusing the same select statement from earlier.

This returns:

chocolate chip
dark chocolate chip

18 | Chapter 2: Working with Data via SQLAlchemy Core

peanut butter
oatmeal raisin

In addition to using the ResultProxy as an iterable or calling the fetchall()
method, many other ways of accessing data via the ResultProxy are available. In fact,
all the result variables in “Inserting Data” on page 13 were actually ResultProxys.
Both the rowcount() and inserted_primary_key() methods we used in that section
are just a couple of the other ways to get information from a ResultProxy. You can
use the following methods as well to fetch results:

first()

Returns the first record if there is one and closes the connection.

fetchone()

Returns one row, and leaves the cursor open for you to make additional fetch
calls.

scalar()

Returns a single value if a query results in a single record with one column.

If you want to see the columns that are available in a result set you can use the keys()
method to get a list of the column names. We’ll be using the first, scalar, fetchone,
and fetchall methods as well as the ResultProxy as an iterable throughout the
remainder of this chapter.

Tips for Good Production Code
When writing production code, you should follow these guidelines:

• Use the first method for getting a single record over both the fetchone and
scalar methods, because it is clearer to our fellow coders.

• Use the iterable version of the ResultProxy over the fetchall and fetchone
methods. It is more memory efficient and we tend to operate on the data one
record at a time.

• Avoid the fetchone method, as it leaves connections open if you are not careful.
• Use the scalar method sparingly, as it raises errors if a query ever returns more

than one row with one column, which often gets missed during testing.

Every time we queried the database in the preceding examples, all the columns were
returned for every record. Often we only need a portion of those columns to perform
our work. If the data in these extra columns is large, it can cause our applications to
slow down and consume far more memory than it should. SQLAlchemy does not add
a bunch of overhead to the queries or ResultProxys; however, accounting for the

Querying Data | 19

data you get back from a query is often the first place to look if a query is consuming
too much memory. Let’s look at how to limit the columns returned in a query.

Controlling the Columns in the Query
To limit the fields that are returned from a query, we need to pass the columns we
want into the select() method constructor as a list. For example, you might want to
run a query, that returns only the name and quantity of cookies, as shown in
Example 2-10.

Example 2-10. Select only cookie_name and quantity

s = select([cookies.c.cookie_name, cookies.c.quantity])
rp = connection.execute(s)
print(rp.keys())
result = rp.first()

Returns the list of columns, which is [u'cookie_name', u'quantity'] in this
example (used only for demonstration, not needed for results).

Notice this only returns the first result.

Result:

(u'chocolate chip', 12),

Now that we can build a simple select statement, let’s look at other things we can do
to alter how the results are returned in a select statement. We’ll start with changing
the order in which the results are returned.

Ordering
If you were to look at all the results from Example 2-10 instead of just the first record,
you would see that the data is not really in any particular order. However, if we want
the list to be returned in a particular order, we can chain an order_by() statement to
our select, as shown in Example 2-11.In this case, we want the results to be ordered
by the quantity of cookies we have on hand.

Example 2-11. Order by quantity ascending

s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(cookies.c.quantity)
rp = connection.execute(s)
for cookie in rp:
 print('{} - {}'.format(cookie.quantity, cookie.cookie_name))

This results in:

20 | Chapter 2: Working with Data via SQLAlchemy Core

1 - dark chocolate chip
12 - chocolate chip
24 - peanut butter
100 - oatmeal raisin

We saved the select statement into the s variable, used that s variable and added the
order_by statement to it, and then reassigned that to the s variable. This is an exam‐
ple of how to compose statements in a generative or step-by-step fashion. This is the
same as combining the select and the order_by statements into one line as shown
here:

s = select([...]).order_by(...)

However, when we have the full list of columns in the select and the order columns in
the order_by statement, it exceeds Python’s 79 character per line limit (which was
established in PEP8). By using the generative type statement, we can remain under
that limit. Throughout the book, we’ll see a few examples where this generative style
can introduce additional benefits, such as conditionally adding things to the state‐
ment. For now, try to break your statements along those 79 character limits, and it
will help make the code more readable.

If you want to sort in reverse or descending order, use the desc() statement. The
desc() function wraps the specific column you want to sort in a descending manner,
as shown in Example 2-12.

Example 2-12. Order by quantity descending

from sqlalchemy import desc
s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(desc(cookies.c.quantity))

Notice we are wrapping the cookies.c.quantity column in the desc() function.

The desc() function can also be used as a method on a Column
object, such as cookies.c.quantity.desc(). However, that can be
a bit more confusing to read in long statements, so I always use
desc() as a function.

It’s also possible to limit the number of results returned if we only need a certain
number of them for our application.

Limiting
In prior examples, we used the first() or fetchone() methods to get just a single
row back. While our ResultProxy gave us the one row we asked for, the actual query
ran over and accessed all the results, not just the single record. If we want to limit the

Querying Data | 21

query, we can use the limit() function to actually issue a limit statement as part of
our query. For example, suppose you only have time to make two batches of cookies,
and you want to know which two cookie types you should make. You can use our
ordered query from earlier and add a limit statement to return the two cookie types
that are most in need of being replenished (Example 2-13).

Example 2-13. Two smallest cookie inventories

s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(cookies.c.quantity)
s = s.limit(2)
rp = connection.execute(s)
print([result.cookie_name for result in rp])

Here we are using the iterable capabilities of the ResultsProxy in a list compre‐
hension.

This results in:

[u'dark chocolate chip', u'chocolate chip']

Now that you know what kind of cookies you need to bake, you’re probably starting
to get curious about how many cookies are now left in your inventory. Many databa‐
ses include SQL functions designed to make certain operations available directly on
the database server, such as SUM; let’s explore how to use these functions next.

Built-In SQL Functions and Labels
SQLAlchemy can also leverage SQL functions found in the backend database. Two
very commonly used database functions are SUM() and COUNT(). To use these func‐
tions, we need to import the sqlalchemy.sql.func module where they are found.
These functions are wrapped around the column(s) on which they are operating.
Thus, to get a total count of cookies, you would use something like Example 2-14.

Example 2-14. Summing our cookies

from sqlalchemy.sql import func
s = select([func.sum(cookies.c.quantity)])
rp = connection.execute(s)
print(rp.scalar())

Notice the use of scalar, which will return only the leftmost column in the first
record.

This results in:

137

22 | Chapter 2: Working with Data via SQLAlchemy Core

I tend to always import the func module, as importing sum directly
can cause problems and confusion with Python’s built-in sum func‐
tion.

Now let’s use the count function to see how many cookie inventory records we have
in our cookies table (Example 2-15).

Example 2-15. Counting our inventory records

s = select([func.count(cookies.c.cookie_name)])
rp = connection.execute(s)
record = rp.first()
print(record.keys())
print(record.count_1)

This will show us the columns in the ResultProxy.

The column name is autogenerated and is commonly <func_name>_<position>.

This results in:

[u'count_1']
4

This column name is annoying and cumbersome. Also, if we have several counts in a
query, we’d have to know the occurrence number in the statement, and incorporate
that into the column name, so the fourth count() function would be count_4. This
simply is not as explicit and clear as we should be in our naming, especially when sur‐
rounded with other Python code. Thankfully, SQLAlchemy provides a way to fix this
via the label() function. Example 2-16 performs the same query as Example 2-15;
however, it uses label to give us a more useful name to access that column.

Example 2-16. Renaming our count column

s = select([func.count(cookies.c.cookie_name).label('inventory_count')])
rp = connection.execute(s)
record = rp.first()
print(record.keys())
print(record.inventory_count)

Notice that we just use the label() function on the column object we want to
change.

This results in:

Querying Data | 23

[u'inventory_count']
4

We’ve seen examples of how to restrict the columns or the number of rows returned
from the database, so now it’s time to learn about queries that filter data based on cri‐
teria we specify.

Filtering
Filtering queries is done by adding where() statements just like in SQL. A typical
where() clause has a column, an operator, and a value or column. It is possible to
chain multiple where() clauses together, and they will act like ANDs in traditional
SQL statements. In Example 2-17, we’ll find a cookie named “chocolate chip”.

Example 2-17. Filtering by cookie name

s = select([cookies]).where(cookies.c.cookie_name == 'chocolate chip')
rp = connection.execute(s)
record = rp.first()
print(record.items())

Here I’m calling the items() method on the row object, which will give me a list
of columns and values.

This results in:

[
 (u'cookie_id', 1),
 (u'cookie_name', u'chocolate chip'),
 (u'cookie_recipe_url', u'http://some.aweso.me/cookie/recipe.html'),
 (u'cookie_sku', u'CC01'),
 (u'quantity', 12),
 (u'unit_cost', Decimal('0.50'))
]

We can also use a where() statement to find all the cookie names that contain the
word “chocolate” (Example 2-18).

Example 2-18. Finding names with chocolate in them

s = select([cookies]).where(cookies.c.cookie_name.like('%chocolate%'))
rp = connection.execute(s)
for record in rp.fetchall():
 print(record.cookie_name)

This results in:

chocolate chip
dark chocolate chip

24 | Chapter 2: Working with Data via SQLAlchemy Core

In the where() statement of Example 2-18, we are using the cookies.c.cookie_name
column inside of a where() statement as a type of ClauseElement to filter our results.
We should take a brief moment and talk more about ClauseElements and the addi‐
tional capabilities they provide.

ClauseElements
ClauseElements are just an entity we use in a clause, and they are typically columns
in a table; however, unlike columns, ClauseElements come with many additional
capabilities. In Example 2-18, we are taking advantage of the like() method that is
available on ClauseElements. There are many other methods available, which are lis‐
ted in Table 2-1. Each of these methods are analogous to a standard SQL statement
construct. You’ll find various examples of these used throughout the book.

Table 2-1. ClauseElement methods

Method Purpose

between(cleft, cright) Find where the column is between cleft and cright

concat(column_two) Concatenate column with column_two

distinct() Find only unique values for the column

in_([list]) Find where the column is in the list

is_(None) Find where the column is None (commonly used for Null checks with None)

contains(string) Find where the column has string in it (case-sensitive)

endswith(string) Find where the column ends with string (case-sensitive)

like(string) Find where the column is like string (case-sensitive)

startswith(string) Find where the column begins with string (case-sensitive)

ilike(string) Find where the column is like string (this is not case-sensitive)

There are also negative versions of these methods, such as notlike
and notin_(). The only exception to the not<method> naming
convention is the isnot() method, which drops the underscore.

Querying Data | 25

If we don’t use one of the methods listed in Table 2-1, then we will have an operator
in our where clauses. Most of the operators work as you might expect; however, we
should discuss operators in a bit more detail, as there are a few differences.

Operators
So far, we have only explored where a column was equal to a value or used one of the
ClauseElement methods such as like(); however, we can also use many other com‐
mon operators to filter data. SQLAlchemy provides overloading for most of the stan‐
dard Python operators. This includes all the standard comparison operators (==, !=,
<, >, <=, >=), which act exactly like you would expect in a Python statement. The ==
operator also gets an additional overload when compared to None, which converts it
to an IS NULL statement. Arithmetic operators (\+, -, *, /, and %) are also supported
with additional capabilities for database-independent string concatenation, as shown
in Example 2-19.

Example 2-19. String concatenation with \+

s = select([cookies.c.cookie_name, 'SKU-' + cookies.c.cookie_sku])
for row in connection.execute(s):
 print(row)

This results in:

(u'chocolate chip', u'SKU-CC01')
(u'dark chocolate chip', u'SKU-CC02')
(u'peanut butter', u'SKU-PB01')
(u'oatmeal raisin', u'SKU-EWW01')

Another common usage of operators is to compute values from multiple columns.
You’ll often do this in applications and reports dealing with financial data or statistics.
Example 2-20 shows a common inventory value calculation.

Example 2-20. Inventory value by cookie

from sqlalchemy import cast
s = select([cookies.c.cookie_name,
 cast((cookies.c.quantity * cookies.c.unit_cost),
 Numeric(12,2)).label('inv_cost')])
for row in connection.execute(s):
 print('{} - {}'.format(row.cookie_name, row.inv_cost))

Cast() is another function that allows us to convert types. In this case, we will be
getting back results such as 6.0000000000, so by casting it, we can make it look
like currency. It is also possible to accomplish the same task in Python with
print('{} - {:.2f}'.format(row.cookie_name, row.inv_cost)).

26 | Chapter 2: Working with Data via SQLAlchemy Core

Notice we are again using the label() function to rename the column. Without
this renaming, the column would be named anon_1, as the operation doesn’t
result in a name.

This results in:

chocolate chip - 6.00
dark chocolate chip - 0.75
peanut butter - 6.00
oatmeal raisin - 100.00

Boolean Operators
SQLAlchemy also allows for the SQL Boolean operators AND, OR, and NOT via the
bitwise logical operators (&, |, and ~). Special care must be taken when using the
AND, OR, and NOT overloads because of the Python operator precedence rules. For
instance, & binds more closely than <, so when you write A < B & C < D, what you
are actually writing is A < (B&C) < D, when you probably intended to get (A < B) &
(C < D). Please use conjunctions instead of these overloads, as they will make your
code more expressive.

Often we want to chain multiple where() clauses together in inclusionary and exclu‐
sionary manners; this should be done via conjunctions.

Conjunctions
While it is possible to chain multiple where() clauses together, it’s often more reada‐
ble and functional to use conjunctions to accomplish the desired effect. The conjunc‐
tions in SQLAlchemy are and_(), or_(), and not_(). So if we wanted to get a list of
cookies with a cost of less than an amount and above a certain quantity we could use
the code shown in Example 2-21.

Example 2-21. Using the and() conjunction

from sqlalchemy import and_, or_, not_
s = select([cookies]).where(
 and_(
 cookies.c.quantity > 23,
 cookies.c.unit_cost < 0.40
)
)
for row in connection.execute(s):
 print(row.cookie_name)

The or_() function works as the opposite of and_() and includes results that match
either one of the supplied clauses. If we wanted to search our inventory for cookie

Querying Data | 27

types that we have between 10 and 50 of in stock or where the name contains chip, we
could use the code shown in Example 2-22.

Example 2-22. Using the or() conjunction

from sqlalchemy import and_, or_, not_
s = select([cookies]).where(
 or_(
 cookies.c.quantity.between(10, 50),
 cookies.c.cookie_name.contains('chip')
)
)
for row in connection.execute(s):
 print(row.cookie_name)

This results in:

chocolate chip
dark chocolate chip
peanut butter

The not_() function works in a similar fashion to other conjunctions, and it simply is
used to select records where a record does not match the supplied clause. Now that
we can comfortably query data, we are ready to move on to updating existing data.

Updating Data
Much like the insert method we used earlier, there is also an update method with syn‐
tax almost identical to inserts, except that it can specify a where clause that indicates
which rows to update. Like insert statements, update statements can be created by
either the update() function or the update() method on the table being updated.
You can update all rows in a table by leaving off the where clause.

For example, suppose you’ve finished baking those chocolate chip cookies that we
needed for our inventory. In Example 2-23, we’ll add them to our existing inventory
with an update query, and then check to see how many we currently have in stock.

Example 2-23. Updating data

from sqlalchemy import update
u = update(cookies).where(cookies.c.cookie_name == "chocolate chip")
u = u.values(quantity=(cookies.c.quantity + 120))
result = connection.execute(u)
print(result.rowcount)
s = select([cookies]).where(cookies.c.cookie_name == "chocolate chip")
result = connection.execute(s).first()
for key in result.keys():
 print('{:>20}: {}'.format(key, result[key]))

28 | Chapter 2: Working with Data via SQLAlchemy Core

Using the generative method of building our statement.

Printing how many rows were updated.

This returns:

1
 cookie_id: 1
 cookie_name: chocolate chip
 cookie_recipe_url: http://some.aweso.me/cookie/recipe.html
 cookie_sku: CC01
 quantity: 132
 unit_cost: 0.50

In addition to updating data, at some point we will want to remove data from our
tables. The following section explains how to do that.

Deleting Data
To create a delete statement, you can use either the delete() function or the
delete() method on the table from which you are deleting data. Unlike insert()
and update(), delete() takes no values parameter, only an optional where clause
(omitting the where clause will delete all rows from the table). See Example 2-24.

Example 2-24. Deleting data

from sqlalchemy import delete
u = delete(cookies).where(cookies.c.cookie_name == "dark chocolate chip")
result = connection.execute(u)
print(result.rowcount)

s = select([cookies]).where(cookies.c.cookie_name == "dark chocolate chip")
result = connection.execute(s).fetchall()
print(len(result))

This returns:

1
0

OK, at this point, let’s load up some data using what we already learned for the users,
orders, and line_items tables. You can copy the code shown here, but you should
also take a moment to play with different ways of inserting the data:

customer_list = [
 {
 'username': 'cookiemon',
 'email_address': 'mon@cookie.com',
 'phone': '111-111-1111',
 'password': 'password'

Deleting Data | 29

 },
 {
 'username': 'cakeeater',
 'email_address': 'cakeeater@cake.com',
 'phone': '222-222-2222',
 'password': 'password'
 },
 {
 'username': 'pieguy',
 'email_address': 'guy@pie.com',
 'phone': '333-333-3333',
 'password': 'password'
 }
]
ins = users.insert()
result = connection.execute(ins, customer_list)

Now that we have customers, we can start to enter their orders and line items into the
system as well:

ins = insert(orders).values(user_id=1, order_id=1)
result = connection.execute(ins)
ins = insert(line_items)
order_items = [
 {
 'order_id': 1,
 'cookie_id': 1,
 'quantity': 2,
 'extended_cost': 1.00
 },
 {
 'order_id': 1,
 'cookie_id': 3,
 'quantity': 12,
 'extended_cost': 3.00
 }
]
result = connection.execute(ins, order_items)
ins = insert(orders).values(user_id=2, order_id=2)
result = connection.execute(ins)
ins = insert(line_items)
order_items = [
 {
 'order_id': 2,
 'cookie_id': 1,
 'quantity': 24,
 'extended_cost': 12.00
 },
 {
 'order_id': 2,
 'cookie_id': 4,
 'quantity': 6,
 'extended_cost': 6.00

30 | Chapter 2: Working with Data via SQLAlchemy Core

 }
]
result = connection.execute(ins, order_items)

In Chapter 1, you learned how to define ForeignKeys and relationships, but we
haven’t used them to perform any queries up to this point. Let’s take a look at rela‐
tionships next.

Joins
Now let’s use the join() and outerjoin() methods to take a look at how to query
related data. For example, to fulfill the order placed by the cookiemon user, we need
to determine how many of each cookie type were ordered. This requires you to use a
total of three joins to get all the way down to the name of the cookies. It’s also worth
noting that depending on how the joins are used in a relationship, you might want to
rearrange the from part of a statement; one way to accomplish that in SQLAlchemy is
via the select_from() clause. With select_from(), we can replace the entire from
clause that SQLAlchemy would generate with one we specify (Example 2-25).

Example 2-25. Using join to select from multiple tables

columns = [orders.c.order_id, users.c.username, users.c.phone,
 cookies.c.cookie_name, line_items.c.quantity,
 line_items.c.extended_cost]
cookiemon_orders = select(columns)
cookiemon_orders = cookiemon_orders.select_from(orders.join(users).join(
 line_items).join(cookies)).where(users.c.username ==
 'cookiemon')
result = connection.execute(cookiemon_orders).fetchall()
for row in result:
 print(row)

Notice we are telling SQLAlchemy to use the relationship joins as the from clause.

This results in:

(u'1', u'cookiemon', u'111-111-1111', u'chocolate chip', 2, Decimal('1.00'))
(u'1', u'cookiemon', u'111-111-1111', u'peanut butter', 12, Decimal('3.00'))

The SQL looks like this:

SELECT orders.order_id, users.username, users.phone, cookies.cookie_name,
line_items.quantity, line_items.extended_cost FROM users JOIN orders ON
users.user_id = orders.user_id JOIN line_items ON orders.order_id =
line_items.order_id JOIN cookies ON cookies.cookie_id = line_items.cookie_id
WHERE users.username = :username_1

It is also useful to get a count of orders by all users, including those who do not have
any present orders. To do this, we have to use the outerjoin() method, and it

Joins | 31

requires a bit more care in the ordering of the join, as the table we use the outer
join() method on will be the one from which all results are returned (Example 2-26).

Example 2-26. Using outerjoin to select from multiple tables

columns = [users.c.username, func.count(orders.c.order_id)]
all_orders = select(columns)
all_orders = all_orders.select_from(users.outerjoin(orders))
all_orders = all_orders.group_by(users.c.username)
result = connection.execute(all_orders).fetchall()
for row in result:
 print(row)

SQLAlchemy knows how to join the users and orders tables because of the for‐
eign key defined in the orders table.

This results in:

(u'cakeeater', 1)
(u'cookiemon', 1)
(u'pieguy', 0)

So far, we have been using and joining different tables in our queries. However, what
if we have a self-referential table like a table of employees and their bosses? To make
this easy to read and understand, SQLAlchemy uses aliases.

Aliases
When using joins, it is often necessary to refer to a table more than once. In SQL, this
is accomplished by using aliases in the query. For instance, suppose we have the fol‐
lowing (partial) schema that tracks the reporting structure within an organization:

employee_table = Table(
 'employee', metadata,
 Column('id', Integer, primary_key=True),
 Column('manager', None, ForeignKey('employee.id')),
 Column('name', String(255)))

Now suppose we want to select all the employees managed by an employee named
Fred. In SQL, we might write the following:

SELECT employee.name
FROM employee, employee AS manager
WHERE employee.manager_id = manager.id
 AND manager.name = 'Fred'

SQLAlchemy also allows the use of aliasing selectables in this type of situation via the
alias() function or method:

32 | Chapter 2: Working with Data via SQLAlchemy Core

>>> manager = employee_table.alias('mgr')
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print(stmt)
SELECT employee.name
FROM employee, employee AS mgr
WHERE employee.manager_id = mgr.id AND mgr.name = ?

SQLAlchemy can also choose the alias name automatically, which is useful for guar‐
anteeing that there are no name collisions:

>>> manager = employee_table.alias()
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print(stmt)
SELECT employee.name
FROM employee, employee AS employee_1
WHERE employee.manager_id = employee_1.id AND employee_1.name = ?

It’s also useful to be able to group data when we are looking to report on data, so let’s
look into that next.

Grouping
When using grouping, you need one or more columns to group on and one or more
columns that it makes sense to aggregate with counts, sums, etc., as you would in
normal SQL. Let’s get an order count by customer (Example 2-27).

Example 2-27. Grouping data

columns = [users.c.username, func.count(orders.c.order_id)]
all_orders = select(columns)
all_orders = all_orders.select_from(users.outerjoin(orders))
all_orders = all_orders.group_by(users.c.username)
result = connection.execute(all_orders).fetchall()
for row in result:
 print(row)

Aggregation via count

Grouping by the nonaggregated included column

This results in:

(u'cakeeater', 1)
(u'cookiemon', 1)
(u'pieguy', 0)

Grouping | 33

We’ve shown the generative building of statements throughout the previous exam‐
ples, but I want to focus on it specifically for a moment.

Chaining
We’ve used chaining several times throughout this chapter, and just didn’t acknowl‐
edge it directly. Where query chaining is particularly useful is when you are applying
logic when building up a query. So if we wanted to have a function that got a list of
orders for us it might look like Example 2-28.

Example 2-28. Chaining

def get_orders_by_customer(cust_name):
 columns = [orders.c.order_id, users.c.username, users.c.phone,
 cookies.c.cookie_name, line_items.c.quantity,
 line_items.c.extended_cost]
 cust_orders = select(columns)
 cust_orders = cust_orders.select_from(
 users.join(orders).join(line_items).join(cookies))
 cust_orders = cust_orders.where(users.c.username == cust_name)
 result = connection.execute(cust_orders).fetchall()
 return result

get_orders_by_customer('cakeeater')

This results in:

[(u'2', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'2', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

However, what if we wanted to get only the orders that have shipped or haven’t
shipped yet? We’d have to write additional functions to support those additional
desired filter options, or we can use conditionals to build up query chains. Another
option we might want is whether or not to include details. This ability to chain quer‐
ies and clauses together enables quite powerful reporting and complex query building
(Example 2-29).

Example 2-29. Conditional chaining

def get_orders_by_customer(cust_name, shipped=None, details=False):
 columns = [orders.c.order_id, users.c.username, users.c.phone]
 joins = users.join(orders)
 if details:
 columns.extend([cookies.c.cookie_name, line_items.c.quantity,
 line_items.c.extended_cost])
 joins = joins.join(line_items).join(cookies)
 cust_orders = select(columns)
 cust_orders = cust_orders.select_from(joins)

34 | Chapter 2: Working with Data via SQLAlchemy Core

 cust_orders = cust_orders.where(users.c.username == cust_name)
 if shipped is not None:
 cust_orders = cust_orders.where(orders.c.shipped == shipped)
 result = connection.execute(cust_orders).fetchall()
 return result

get_orders_by_customer('cakeeater')

get_orders_by_customer('cakeeater', details=True)

get_orders_by_customer('cakeeater', shipped=True)

get_orders_by_customer('cakeeater', shipped=False)

get_orders_by_customer('cakeeater', shipped=False, details=True)

Gets all orders.

Gets all orders with details.

Gets only orders that have shipped.

Gets orders that haven’t shipped yet.

Gets orders that haven’t shipped yet with details.

This results in:

[(u'2', u'cakeeater', u'222-222-2222')]

[(u'2', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'2', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

[]

[(u'2', u'cakeeater', u'222-222-2222')]

[(u'2', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'2', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

So far in this chapter, we’ve used the SQL Expression Language for all the examples;
however, you might be wondering if you can execute standard SQL statements as
well. Let’s take a look.

Raw Queries
It is also possible to execute raw SQL statements or use raw SQL in part of a
SQLAlchemy Core query. It still returns a ResultProxy, and you can continue to
interact with it just as you would a query built using the SQL Expression syntax of

Raw Queries | 35

SQLAlchemy Core. I encourage you to only use raw queries and text when you must,
as it can lead to unforeseen results and security vulnerabilities. First, we’ll want to
execute a simple select statement (Example 2-30).

Example 2-30. Full raw queries

result = connection.execute("select * from orders").fetchall()
print(result)

This results in:

[(1, 1, 0), (2, 2, 0)]

While I rarely use a full raw SQL statement, I will often use small text snippets to help
make a query clearer. Example 2-31 is of a raw SQL where clause using the text()
function.

Example 2-31. Partial text query

from sqlalchemy import text
stmt = select([users]).where(text("username='cookiemon'"))
print(connection.execute(stmt).fetchall())

This results in:

[(1, None, u'cookiemon', u'mon@cookie.com', u'111-111-1111', u'password',
 datetime.datetime(2015, 3, 30, 13, 48, 25, 536450),
 datetime.datetime(2015, 3, 30, 13, 48, 25, 536457))
]

Now you should have an understanding of how to use the SQL Expression Language
to work with data in SQLAlchemy. We explored how to create, read, update, and
delete operations. This is a good point to stop and explore a bit on your own. Try to
create more cookies, orders, and line items, and use query chains to group them by
order and user. Now that you’ve explored a bit more and hopefully broken some‐
thing, let’s investigate how to react to exceptions raised in SQLAlchemy, and how to
use transactions to group statements that must succeed or fail as a group.

36 | Chapter 2: Working with Data via SQLAlchemy Core

CHAPTER 3

Exceptions and Transactions

In the previous chapter, we did a lot of work with data in single statements, and we
avoided doing anything that could result in an error. In this chapter, we will pur‐
posely perform some actions incorrectly so that we can see the types of errors that
occur and how we should respond to them. We’ll conclude the chapter by learning
how to group statements that need to succeed together into transactions so that we
can ensure that either the group executes properly or is cleaned up correctly. Let’s
start by blowing things up!

Exceptions
There are numerous exceptions that can occur in SQLAlchemy, but we’ll focus on the
most common ones: AttributeErrors and IntegrityErrors. By learning how to
handle these common exceptions, you’ll be better prepared to deal with the ones that
occur less frequently.

To follow along with this chapter, make sure you start a new Python shell and load
the tables that we built in Chapter 1 into your shell. Example 3-1 contains those tables
and the connection again for reference.

Example 3-1. Setting up our shell environment

from datetime import datetime

from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, Boolean, create_engine,
 CheckConstraint)
metadata = MetaData()

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),

37

 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2)),
 CheckConstraint('quantity > 0', name='quantity_positive')
)

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

orders = Table('orders', metadata,
 Column('order_id', Integer()),
 Column('user_id', ForeignKey('users.user_id')),
 Column('shipped', Boolean(), default=False)
)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),
 Column('extended_cost', Numeric(12, 2))
)

engine = create_engine('sqlite:///:memory:')
metadata.create_all(engine)
connection = engine.connect()

The first error we are going to learn about is the AttributeError; this is the most
commonly encountered error I see in code I’m debugging.

AttributeError
We will start with an AttributeError that occurs when you attempt to access an
attribute that doesn’t exist. This often occurs when you are attempting to access a col‐
umn on a ResultProxy that isn’t present. AttributeErrors occur when you try to
access an attribute of an object that isn’t present on that object. You’ve probably run
into this in normal Python code. I’m singling it out because this is a common error in
SQLAlchemy and it’s very easy to miss the reason why it is occuring. To demonstrate
this error, let’s insert a record into our users table and run a query against it. Then

38 | Chapter 3: Exceptions and Transactions

we’ll try to access a column on that table that we didn’t select in the query
(Example 3-2).

Example 3-2. Causing an AttributeError

from sqlalchemy import select, insert
ins = insert(users).values(
 username="cookiemon",
 email_address="mon@cookie.com",
 phone="111-111-1111",
 password="password"
)
result = connection.execute(ins)

s = select([users.c.username])
results = connection.execute(s)
for result in results:
 print(result.username)
 print(result.password)

Inserting a test record.

Password doesn’t exist, as we only queried the username column.

The code in Example 3-2 causes Python to throw an AttributeError and stops the
execution of our program. Let’s look at the error output, and learn how to interpret
what happened (Example 3-3).

Example 3-3. Error output from Example 3-2

cookiemon

AttributeError Traceback (most recent call last)
<ipython-input-37-c4520631a10a> in <module>()
 3 for result in results:
 4 print(result.username)
----> 5 print(result.password)

AttributeError: Could not locate column in row for column 'password'

This shows us the type of error and that a traceback is present.

This is the actual line where the error occurred.

This is the interesting part we need to focus on.

In Example 3-3, we have the typical format for an AttributeError in Python. It starts
with a line that indicates the type of error. Next, there is a traceback showing us

Exceptions | 39

where the error occurred. Because we tried to access the column in our code, it shows
us the actual line that failed. The final block of lines is where the important details
can be found. It again specifies the type of error, and right after it shows you why this
occurred. In this case, it is because our row from the ResultProxy does not have a
password column. We only queried for the username. While this is a common
Python error that we can cause through a bug in our use of SQLAlchemy objects,
there are also SQLAlchemy-specific errors that reference bugs we cause with SQLAl‐
chemy statements themselves. Let’s look at one example: the IntegrityError.

IntegrityError
Another common SQLAlchemy error is the IntegrityError, which occurs when we
try to do something that would violate the constraints configured on a Column or
Table. This type of error is commonly encountered in cases where you require some‐
thing to be unique—for example, if you attempt to create two users with the same
username, an IntegrityError will be thrown because usernames in our users table
must be unique. Example 3-4 shows some code that will cause such an error.

Example 3-4. Causing an IntegrityError

s = select([users.c.username])
connection.execute(s).fetchall()

[(u'cookiemon',)]

ins = insert(users).values(
 username="cookiemon",
 email_address="damon@cookie.com",
 phone="111-111-1111",
 password="password"
)
result = connection.execute(ins)

View the current records in the users table.

Attempt to insert the second record, which will result in the error.

The code in Example 3-4 causes SQLAlchemy to create an IntegrityError. Let’s look
at the error output, and learn how to interpret what happened (Example 3-5).

Example 3-5. IntegrityError output

IntegrityError Traceback (most recent call last)
<ipython-input-7-6ecafb68a8ab> in <module>()
 5 password="password"
 6)

40 | Chapter 3: Exceptions and Transactions

----> 7 result = connection.execute(ins)

...

IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed:
users.username [SQL: u'INSERT INTO users (username, email_address, phone,
password, created_on, updated_on) VALUES (?, ?, ?, ?, ?, ?)'] [parameters:
('cookiemon', 'damon@cookie.com', '111-111-1111', 'password',
'2015-04-26 10:52:24.275082', '2015-04-26 10:52:24.275099')]

This is the line that triggered the error.

There is a long traceback here that I omitted.

This is the interesting part we need to focus on.

Example 3-5 shows the typical format for an IntegrityError output in SQLAlchemy.
It starts with the line that indicates the type of error. Next, it includes the traceback
details. However, this is normally only our execute statement and internal SQLAl‐
chemy code. Typically, the traceback can be ignored for the IntegrityError type.
The final block of lines is where the important details are found. It again specifies the
type of error, and tells you what caused it. In this case, it shows:

UNIQUE constraint failed: users.username

This points us to the fact that there is a unique constraint on the username column in
the users table that we tried to violate. It then provides us with the details of the SQL
statement and its compiled parameters similar to what we looked at in Chapter 2. The
new data we tried to insert into the table was not inserted due to the error. This error
also stops our program from executing.

While there are many other kinds of errors, the two we covered are the most com‐
mon. The output for all the errors in SQLAlchemy will follow the same format as the
two we just looked at. The SQLAlchemy documentation contains information on the
other types of errors.

Because we don’t want our programs to crash whenever they encounter an error, we
need to learn how to handle errors properly.

Handling Errors
To prevent an error from crashing or stopping our program, errors need to be han‐
dled cleanly. We can do this just as we would for any Python error, with a try/except
block. For example, we can use a try/except block to catch the error and print an
error message, then carry on with the rest of our program; Example 3-6 shows the
details.

Exceptions | 41

Example 3-6. Catching an exception

from sqlalchemy.exc import IntegrityError
ins = insert(users).values(
 username="cookiemon",
 email_address="damon@cookie.com",
 phone="111-111-1111",
 password="password"
)
try:
 result = connection.execute(ins)
except IntegrityError as error:
 print(error.orig.message, error.params)

All the SQLAlchemy exceptions are available in the sqlalchemy.exc module.

We catch the IntegrityError exception as error so we can access the properties
of the exception.

In Example 3-6, we are running the same statement as Example 3-4, but wrapping the
statement execution in a try/except block that catches an IntegrityError and
prints a message with the error message and statement parameters. While this exam‐
ple demonstrated how to print an error message, we can write any Python code we
like in the exception clause. This can be useful for returning an error message to
application users to inform them that the operation failed. By handling the error with
a try/except block, our application continues to execute and run.

While Example 3-6 shows an IntegrityError, this method of handling errors will
work for any type of error generated by SQLAlchemy. For more information on other
SQLAlchemy exceptions, see the SQLAlchemy documentation at http://docs.sqlal
chemy.org/en/latest/core/exceptions.html.

Remember it is best practice to wrap as little code as possible in a
try/except block and only catch specific errors. This prevents
catching unexpected errors that really should have a different
behavior than the catch for the specific error you’re watching for.

While we were able to handle the exceptions from a single statement using traditional
Python tools, that method alone won’t work if we have multiple database statements
that are dependent on one another to be completely successful. In such cases, we need
to wrap those statements in a database transaction, and SQLAlchemy provides a
simple-to-use wrapper for that purpose built into the connection object: transactions.

42 | Chapter 3: Exceptions and Transactions

http://docs.sqlalchemy.org/en/latest/core/exceptions.html
http://docs.sqlalchemy.org/en/latest/core/exceptions.html

Transactions
Rather than learning the deep database theory behind transactions, just think of
transactions as a way to ensure that multiple database statements succeed or fail as a
group. When we start a transaction, we record the current state of our database; then
we can execute multiple SQL statements. If all the SQL statements in the transaction
succeed, the database continues on normally and we discard the prior database state.
Figure 3-1 shows the normal transaction workflow.

Figure 3-1. Successful transaction flow

However, if one or more of those statements fail, we can catch that error and use the
prior state to roll back back any statements that succeeded. Figure 3-2 shows a trans‐
action workflow in error.

Transactions | 43

Figure 3-2. Failed transaction flow

There is already a good example of when we might want to do this in our existing
database. After a customer has ordered cookies from us, we need to ship those cook‐
ies to the customer and remove them from our inventory. However, what if we do not
have enough of the right cookies to fulfill an order? We will need to detect that and
not ship that order. We can solve this with transactions.

We’ll need a fresh Python shell with the tables from Chapter 2; however, we need to
add a CheckConstraint to the quantity column to ensure it cannot go below 0,
because we can’t have negative cookies in inventory. Next, re-create the cookiemon
user as well as the chocolate chip and dark chocolate chip cookie records. Set the
quantity of chocolate chip cookies to 12 and the dark chocolate chip cookies to 1.
Example 3-7 shows the full code for setting up the tables with the CheckConstraint,
adding the cookiemon user, and adding the cookies.

Example 3-7. Setting up the transactions environment

from datetime import datetime

from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, Boolean, create_engine,
 CheckConstraint)
metadata = MetaData()

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),

44 | Chapter 3: Exceptions and Transactions

 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2)),
 CheckConstraint('quantity >= 0', name='quantity_positive')
)

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

orders = Table('orders', metadata,
 Column('order_id', Integer()),
 Column('user_id', ForeignKey('users.user_id')),
 Column('shipped', Boolean(), default=False)
)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),
 Column('extended_cost', Numeric(12, 2))
)

engine = create_engine('sqlite:///:memory:')
metadata.create_all(engine)
connection = engine.connect()
from sqlalchemy import select, insert, update
ins = insert(users).values(
 username="cookiemon",
 email_address="mon@cookie.com",
 phone="111-111-1111",
 password="password"
)
result = connection.execute(ins)
ins = cookies.insert()
inventory_list = [
 {
 'cookie_name': 'chocolate chip',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/recipe.html',
 'cookie_sku': 'CC01',
 'quantity': '12',
 'unit_cost': '0.50'
 },
 {
 'cookie_name': 'dark chocolate chip',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/recipe_dark.html',

Transactions | 45

 'cookie_sku': 'CC02',
 'quantity': '1',
 'unit_cost': '0.75'
 }
]
result = connection.execute(ins, inventory_list)

We’re now going to define two orders for the cookiemon user. The first order will be
for nine chocolate chip cookies, and the second order will be for four chocolate chip
cookies and one dark chocolate chip cookie. We’ll do this using the insert statements
discussed in the previous chapter. Example 3-8 shows the details.

Example 3-8. Adding the orders

ins = insert(orders).values(user_id=1, order_id='1')
result = connection.execute(ins)
ins = insert(line_items)
order_items = [
 {
 'order_id': 1,
 'cookie_id': 1,
 'quantity': 9,
 'extended_cost': 4.50
 }
]
result = connection.execute(ins, order_items)

ins = insert(orders).values(user_id=1, order_id='2')
result = connection.execute(ins)
ins = insert(line_items)
order_items = [
 {
 'order_id': 2,
 'cookie_id': 1,
 'quantity': 4,
 'extended_cost': 1.50
 },
 {
 'order_id': 2,
 'cookie_id': 2,
 'quantity': 1,
 'extended_cost': 4.50
 }
]
result = connection.execute(ins, order_items)

Adding the first order.

Adding the second order.

46 | Chapter 3: Exceptions and Transactions

That will give us all the order data we need to explore how transactions work; now we
need to define a function called ship_it. Our ship_it function will accept an
order_id, remove the cookies from inventory, and mark the order as shipped.
Example 3-9 shows how this works.

Example 3-9. Defining the ship_it function

def ship_it(order_id):

 s = select([line_items.c.cookie_id, line_items.c.quantity])
 s = s.where(line_items.c.order_id == order_id)
 cookies_to_ship = connection.execute(s)
 for cookie in cookies_to_ship:
 u = update(cookies).where(cookies.c.cookie_id==cookie.cookie_id)
 u = u.values(quantity = cookies.c.quantity - cookie.quantity)
 result = connection.execute(u)
 u = update(orders).where(orders.c.order_id == order_id)
 u = u.values(shipped=True)
 result = connection.execute(u)
 print("Shipped order ID: {}".format(order_id))

For each cookie type we find in the order, we remove the quantity ordered for it
from the cookies table quantity so we know how many cookies we have left.

We update the order to mark it as shipped.

The ship_it function will perform all the actions required when we ship an order.
Let’s run it on our first order and then query the cookies table to make sure it
reduced the cookie count correctly. Example 3-10 shows how to do that.

Example 3-10. Running ship_it on the first order

ship_it(1)
s = select([cookies.c.cookie_name, cookies.c.quantity])
connection.execute(s).fetchall()

Run ship_it on the first order_id.

Look at our cookie inventory.

Running the code in Example 3-10 results in:

[(u'chocolate chip', 3), (u'dark chocolate chip', 1)]

Excellent! It worked. We can see that we don’t have enough cookies in our inventory
to fulfill the second order; however, in our fast-paced warehouse, these orders might
be processed at the same time. Now try shipping our second order with the ship_it
function, and watch what happens (as shown in Example 3-11).

Transactions | 47

Example 3-11. Running ship_it on the second order

ship_it(2)

That command gives us this result:

IntegrityError Traceback (most recent call last)
<ipython-input-9-47771be6653b> in <module>()
----> 1 ship_it(2)

<ipython-input-6-301c0ed7c4a1> in ship_it(order_id)
 7 u = update(cookies).where(cookies.c.cookie_id ==
 cookie.cookie_id)
 8 u = u.values(quantity = cookies.c.quantity-cookie.quantity)
----> 9 result = connection.execute(u)
 10 u = update(orders).where(orders.c.order_id == order_id)
 11 u = u.values(shipped=True)

...

IntegrityError: (sqlite3.IntegrityError) CHECK constraint failed:
quantity_positive
[SQL: u'UPDATE cookies SET quantity=(cookies.quantity - ?) WHERE
cookies.cookie_id = ?'] [parameters: (4, 1)]

We got an IntegrityError because we didn’t have enough chocolate chip cookies to
ship the order. However, let’s see what happened to our cookies table using the last
two lines of Example 3-10:

[(u'chocolate chip', 3), (u'dark chocolate chip', 0)]

It didn’t remove the chocolate chip cookies because of the IntegrityError, but it did
remove the dark chocolate chip cookies. This isn’t good! We only want to ship whole
orders to our customers. Using what you learned about try/except in “Handling
Errors” on page 41 earlier, you could devise a complicated except method that would
revert the partial shipment. However, transactions provide us a better way to handle
just this type of event.

Transactions are initiated by calling the begin() method on the connection object.
The result of this call is a transaction object that we can use to control the result of all
our statements. If all our statements are successful, we commit the transaction by
calling the commit() method on the transaction object. If not, we call the rollback()
method on that same object. Let’s rewrite the ship_it function to use a transaction to
safely execute our statements; Example 3-12 shows what to do.

Example 3-12. Transactional ship_it

from sqlalchemy.exc import IntegrityError
def ship_it(order_id):
 s = select([line_items.c.cookie_id, line_items.c.quantity])

48 | Chapter 3: Exceptions and Transactions

 s = s.where(line_items.c.order_id == order_id)
 transaction = connection.begin()
 cookies_to_ship = connection.execute(s).fetchall()

 try:
 for cookie in cookies_to_ship:
 u = update(cookies).where(cookies.c.cookie_id == cookie.cookie_id)
 u = u.values(quantity = cookies.c.quantity-cookie.quantity)
 result = connection.execute(u)
 u = update(orders).where(orders.c.order_id == order_id)
 u = u.values(shipped=True)
 result = connection.execute(u)
 print("Shipped order ID: {}".format(order_id))
 transaction.commit()
 except IntegrityError as error:
 transaction.rollback()
 print(error)

Importing the IntegrityError so we can handle its exception.

Starting the transaction.

Fetching all the results just to make it easier to follow what is happening.

Commiting the transaction if no errors occur.

Rolling back the transaction if an error occurs.

Now let’s reset the dark chocolate chip cookies quantity back to 1:

u = update(cookies).where(cookies.c.cookie_name == "dark chocolate chip")
u = u.values(quantity = 1)
result = connection.execute(u)

We need to rerun our transaction-based ship_it on the second order. The program
doesn’t get stopped by the error, and prints us the error message without the trace‐
back. Let’s check the inventory like we did in Example 3-10 to make sure that it didn’t
mess up our inventory with a partial shipment:

[(u'chocolate chip', 3), (u'dark chocolate chip', 1)]

Great! Our transactional function didn’t mess up our inventory or crash our applica‐
tion. We also didn’t have to do a lot of coding to manually roll back the statements
that did succeed. As you can see, transactions can be really useful in situations like
this, and can save you a lot of manual coding.

Transactions | 49

In this chapter, we saw how to handle exceptions in both single statements and
groups of statements. By using a normal try/except block on a single statement, we
can prevent our application from crashing in case a database statement error occurs.
We also looked at how transactions can help us avoid inconsistent databases, and
application crashes in groups of statements. In the next chapter, we’ll learn how to
test our code to ensure it behaves the way we expect.

50 | Chapter 3: Exceptions and Transactions

CHAPTER 4

Testing

Most testing inside of applications consists of both unit and functional tests; however,
with SQLAlchemy, it can be a lot of work to correctly mock out a query statement or
a model for unit testing. That work often does not truly lead to much gain over test‐
ing against a database during the functional test. This leads people to make wrapper
functions for their queries that they can easily mock out during unit tests, or to just
test against a database in both their unit and function tests. I personally like to use
small wrapper functions when possible or—if that doesn’t make sense for some rea‐
son or I’m in legacy code—mock it out.

This chapter covers how to perform functional tests against a database, and how to
mock out SQLAlchemy queries and connections.

Testing with a Test Database
For our example application, we are going to have an app.py file that contains our
application logic, and a db.py file that contains our database tables and connections.
These files can be found in the CH05/ folder of the example code.

How an application is structured is an implementation detail that can have quite an
effect on how you need to do your testing. In db.py, you can see that our database is
set up via the DataAccessLayer class. We’re using this data access class to enable us to
initialize a database schema, and connect it to an engine whenever we like. You’ll see
this pattern commonly used in web frameworks when coupled with SQLAlchemy.
The DataAccessLayer class is initialized without an engine and a connection in the
dal variable. Example 4-1 shows a snippet of our db.py file.

51

Example 4-1. DataAccessLayer class

from datetime import datetime
from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, Boolean, create_engine)

class DataAccessLayer:
 connection = None
 engine = None
 conn_string = None
 metadata = MetaData()
 cookies = Table('cookies',
 metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2))
)

 def db_init(self, conn_string):
 self.engine = create_engine(conn_string or self.conn_string)
 self.metadata.create_all(self.engine)
 self.connection = self.engine.connect()

dal = DataAccessLayer()

In the complete file, we create all the tables that we have been using since Chap‐
ter 1, not just cookies.

This provides a way to initialize a connection with a specific connection string
like a factory.

This provides an instance of the DataAccessLayer class that can be imported
throughout our application.

We are going to write tests for the get_orders_by_customer function we built in
Chapter 2, which is found the app.py file, shown in Example 4-2.

Example 4-2. app.py to test

from db import dal
from sqlalchemy.sql import select

52 | Chapter 4: Testing

def get_orders_by_customer(cust_name, shipped=None, details=False):
 columns = [dal.orders.c.order_id, dal.users.c.username, dal.users.c.phone]
 joins = dal.users.join(dal.orders)

 if details:
 columns.extend([dal.cookies.c.cookie_name,
 dal.line_items.c.quantity,
 dal.line_items.c.extended_cost])
 joins = joins.join(dal.line_items).join(dal.cookies)

 cust_orders = select(columns)
 cust_orders = cust_orders.select_from(joins).where(
 dal.users.c.username == cust_name)

 if shipped is not None:
 cust_orders = cust_orders.where(dal.orders.c.shipped == shipped)

 return dal.connection.execute(cust_orders).fetchall()

This is our DataAccessLayer instance from the db.py file.

Because our tables are inside of the dal object, we access them from there.

Let’s look at all the ways the get_orders_by_customer function can be used. We’re
going to assume for this exercise that we have already validated that the inputs to the
function are of the correct type. However, in your testing, it would be very wise to
make sure you test with data that will work correctly and data that could cause errors.
Here’s a list of the variables our function can accept and their possible values:

• cust_name can be blank, a string containing the name of a valid customer, or a
string that does not contain the name of a valid customer.

• shipped can be None, True, or False.
• details can be True or False.

If we want to test all of the possible combinations, we will need 12 (that 3 * 3 * 2) tests
to fully test this function.

It is important not to test things that are just part of the basic func‐
tionality of SQLAlchemy, as SQLAlchemy already comes with a
large collection of well-written tests. For example, we wouldn’t
want to test a simple insert, select, delete, or update statement, as
those are tested within the SQLAlchemy project itself. Instead, look
to test things that your code manipulates that could affect how the
SQLAlchemy statement is run or the results returned by it.

Testing with a Test Database | 53

For this testing example, we’re going to use the built-in unittest module. Don’t
worry if you’re not familiar with this module; we’ll explain the key points. First, we
need to set up the test class, and initialize the dal’s connection, which is shown in
Example 4-3 by creating a new file named test_app.py.

Example 4-3. Setting up the tests

import unittest

class TestApp(unittest.TestCase):

 @classmethod
 def setUpClass(cls):
 dal.db_init('sqlite:///:memory:')

unittest requires test classes inherited from unittest.TestCase.

The setUpClass method is run once for the entire test class.

This line initializes a connection to an in-memory database for testing.

Now we need to load some data to use during our tests. I’m not going to include the
full code here, as it is the same inserts we worked with in Chapter 2, modified to use
the DataAccessLayer; it is available in the db.py example file. With our data loaded,
we are ready to write some tests. We’re going to add these tests as functions within the
TestApp class, as shown in Example 4-4.

Example 4-4. The first six tests for blank usernames

 def test_orders_by_customer_blank(self):
 results = get_orders_by_customer('')
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_shipped(self):
 results = get_orders_by_customer('', True)
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_notshipped(self):
 results = get_orders_by_customer('', False)
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_details(self):
 results = get_orders_by_customer('', details=True)
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_shipped_details(self):
 results = get_orders_by_customer('', True, True)
 self.assertEqual(results, [])

54 | Chapter 4: Testing

 def test_orders_by_customer_blank_notshipped_details(self):
 results = get_orders_by_customer('', False, True)
 self.assertEqual(results, [])

unittest expects each test to begin with the letters test.

unittest uses assertEqual to verify that the result matches what you expect.
Because a user is not found, you should get an empty list back.

Now save the test file as test_app.py, and run the unit tests with the following com‐
mand:

python -m unittest test_app
......

Ran 6 tests in 0.018s

You might get a warning about SQLite and decimal types; just
ignore this as it’s normal for our examples. It occurs because SQLite
doesn’t have a true decimal type, and SQLAlchemy wants you to
know that there could be some oddities due to the conversion from
SQLite’s float type. It is always wise to investigate these messages,
because in production code they will normally point you to the
proper way you should be doing something. We are purposely trig‐
gering this warning here so that you will see what it looks like.

Now we need to load up some data, and make sure our tests still work. Again, we’re
going to reuse the work we did in Chapter 2, and insert the same users, orders, and
line items. However, this time we are going to wrap the data inserts in a function
called db_prep. This will allow us to insert this data prior to a test with a simple func‐
tion call. For simplicity’s sake, I have put this function inside the db.py file (see
Example 4-5); however, in real-world situations, it will often be located in a test fix‐
tures or utilities file.

Example 4-5. Inserting some test data

def prep_db():
 ins = dal.cookies.insert()
 dal.connection.execute(ins, cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02',
 quantity='1',
 unit_cost='0.75')
 inventory_list = [
 {
 'cookie_name': 'peanut butter',

Testing with a Test Database | 55

 'cookie_recipe_url': 'http://some.aweso.me/cookie/peanut.html',
 'cookie_sku': 'PB01',
 'quantity': '24',
 'unit_cost': '0.25'
 },
 {
 'cookie_name': 'oatmeal raisin',
 'cookie_recipe_url': 'http://some.okay.me/cookie/raisin.html',
 'cookie_sku': 'EWW01',
 'quantity': '100',
 'unit_cost': '1.00'
 }
]
 dal.connection.execute(ins, inventory_list)

 customer_list = [
 {
 'username': "cookiemon",
 'email_address': "mon@cookie.com",
 'phone': "111-111-1111",
 'password': "password"
 },
 {
 'username': "cakeeater",
 'email_address': "cakeeater@cake.com",
 'phone': "222-222-2222",
 'password': "password"
 },
 {
 'username': "pieguy",
 'email_address': "guy@pie.com",
 'phone': "333-333-3333",
 'password': "password"
 }
]
 ins = dal.users.insert()
 dal.connection.execute(ins, customer_list)
 ins = insert(dal.orders).values(user_id=1, order_id='wlk001')
 dal.connection.execute(ins)
 ins = insert(dal.line_items)
 order_items = [
 {
 'order_id': 'wlk001',
 'cookie_id': 1,
 'quantity': 2,
 'extended_cost': 1.00
 },
 {
 'order_id': 'wlk001',
 'cookie_id': 3,
 'quantity': 12,
 'extended_cost': 3.00

56 | Chapter 4: Testing

 }
]
 dal.connection.execute(ins, order_items)
 ins = insert(dal.orders).values(user_id=2, order_id='ol001')
 dal.connection.execute(ins)
 ins = insert(dal.line_items)
 order_items = [
 {
 'order_id': 'ol001',
 'cookie_id': 1,
 'quantity': 24,
 'extended_cost': 12.00
 },
 {
 'order_id': 'ol001',
 'cookie_id': 4,
 'quantity': 6,
 'extended_cost': 6.00
 }
]
 dal.connection.execute(ins, order_items)

Now that we have a prep_db function, we can use that in our test_app.py setUpClass
method to load data into the database prior to running our tests. So now our setUp
Class method looks like this:

@classmethod
def setUpClass(cls):
 dal.db_init('sqlite:///:memory:')
 prep_db()

We can use this test data to ensure that our function does the right thing when given
a valid username. These tests go inside of our TestApp class as new functions, as
Example 4-6 shows.

Example 4-6. Tests for a valid user

 def test_orders_by_customer(self):
 expected_results = [(u'wlk001', u'cookiemon', u'111-111-1111')]
 results = get_orders_by_customer('cookiemon')
 self.assertEqual(results, expected_results)

 def test_orders_by_customer_shipped_only(self):
 results = get_orders_by_customer('cookiemon', True)
 self.assertEqual(results, [])

 def test_orders_by_customer_unshipped_only(self):
 expected_results = [(u'wlk001', u'cookiemon', u'111-111-1111')]
 results = get_orders_by_customer('cookiemon', False)
 self.assertEqual(results, expected_results)

Testing with a Test Database | 57

 def test_orders_by_customer_with_details(self):
 expected_results = [
 (u'wlk001', u'cookiemon', u'111-111-1111', u'dark chocolate chip',
 2, Decimal('1.00')),
 (u'wlk001', u'cookiemon', u'111-111-1111', u'oatmeal raisin',
 12, Decimal('3.00'))
]
 results = get_orders_by_customer('cookiemon', details=True)
 self.assertEqual(results, expected_results)

 def test_orders_by_customer_shipped_only_with_details(self):
 results = get_orders_by_customer('cookiemon', True, True)
 self.assertEqual(results, [])

 def test_orders_by_customer_unshipped_only_details(self):
 expected_results = [
 (u'wlk001', u'cookiemon', u'111-111-1111', u'dark chocolate chip',
 2, Decimal('1.00')),
 (u'wlk001', u'cookiemon', u'111-111-1111', u'oatmeal raisin',
 12, Decimal('3.00'))
]
 results = get_orders_by_customer('cookiemon', False, True)
 self.assertEqual(results, expected_results)

Using the tests in Example 4-6 as guidance, can you complete the tests for what hap‐
pens for a different user, such as cakeeater? How about the tests for a username that
doesn’t exist in the system yet? Or if we get an integer instead of a string for the user‐
name, what will be the result? Compare your tests to those in the supplied example
code when you are done to see if your tests are similar to the ones used in this book.

We’ve learned how we can use SQLAlchemy in functional tests to determine whether
a function behaves as expected on a given data set. We have also looked at how to set
up a unittest file and how to prepare the database for use in our tests. Next, we are
ready to look at testing without hitting the database.

Using Mocks
This technique can be a powerful tool when you have a test environment where creat‐
ing a test database doesn’t make sense or simply isn’t feasible. If you have a large
amount of logic that operates on the result of the query, it can be useful to mock out
the SQLAlchemy code to return the values you want so you can test only the sur‐
rounding logic. Normally when I am going to mock out some part of the query, I still
create the in-memory database, but I don’t load any data into it, and I mock out the
database connection itself. This allows me to control what is returned by the execute
and fetch methods. We are going to explore how to do that in this section.

To learn how to use mocks in our tests, we are going to make a single test for a valid
user. This time we will use the powerful Python mock library to control what is

58 | Chapter 4: Testing

returned by the connection. Mock is part of the unittest module in Python 3. How‐
ever, if you are using Python 2, you will need to install the mock library using pip to
get the latest mock features. To do that, run this command:

pip install mock

Now that we have mock installed, we can use it in our tests. Mock has a patch func‐
tion that will let us replace a given object in a Python file with a MagicMock that we
can control from our test. A MagicMock is a special type of Python object that tracks
how it is used and allows us to define how it behaves based on how it is being used.

First, we need to import the mock library. In Python 2, we need to do the following:

import mock

In Python 3, we need to do the following:

from unittest import mock

With mock imported, we are going to use the patch method as a decorator to replace
the connection part of the dal object. A decorator is a function that wraps another
function, and alters the wrapped function’s behavior. Because the dal object is impor‐
ted by name into the app.py file, we will need to patch it inside the app module. This
will get passed into the test function as an argument. Now that we have a mock
object, we can set a return value for the execute method, which in this case should be
nothing but a chained fetchall method whose return value is the data we want to
test with. Example 4-7 shows the code needed to use the mock in place of the dal
object.

Example 4-7. Mocked connection test

import unittest
from decimal import Decimal

import mock

from db import dal, prep_db
from app import get_orders_by_customer

class TestApp(unittest.TestCase):
 cookie_orders = [(u'wlk001', u'cookiemon', u'111-111-1111')]
 cookie_details = [
 (u'wlk001', u'cookiemon', u'111-111-1111',
 u'dark chocolate chip', 2, Decimal('1.00')),
 (u'wlk001', u'cookiemon', u'111-111-1111',
 u'oatmeal raisin', 12, Decimal('3.00'))
]

 @mock.patch('app.dal.connection')

Using Mocks | 59

 def test_orders_by_customer(self, mock_conn):
 mock_conn.execute.return_value.fetchall.return_value = self.cookie_orders
 results = get_orders_by_customer('cookiemon')
 self.assertEqual(results, self.cookie_orders)

Patching dal.connection in the app module with a mock.

That mock is passed into the test function as mock_conn.

We set the return value of the execute method to the chained returned value of
the fetchall method, which we set to self.cookie_order.

Now we call the test function where the dal.connection will be mocked and
return the value we set in the prior step.

You can see that a complicated query or ResultProxy like the one in Example 4-7
might get tedious quickly when trying to mock out the full query or connection.
Don’t shy away from the work though; it can be very useful for finding obscure bugs.

If you did want to mock out the query, you would follow the same pattern of using
the mock.patch decorator and mocking out the select object in the app module.
Let’s try that with one of the empty test queries. We have to mock out all the chained
query element return values, which in this query are the select, select_from, and
where clauses. Example 4-8 demonstrates how to do this.

Example 4-8. Mocking out the query as well

@mock.patch('app.select')
@mock.patch('app.dal.connection')
def test_orders_by_customer_blank(self, mock_conn, mock_select):
 mock_select.return_value.select_from.return_value.\
 where.return_value = ''
 mock_conn.execute.return_value.fetchall.return_value = []
 results = get_orders_by_customer('')
 self.assertEqual(results, [])

Mocking out the select method, as it starts the query chain.

The decorators are passed into the function in order. As we progress up the deco‐
rators stack from the function, the arguments get added to the left.

We have to mock the return value for all parts of the chained query.

We still need to mock the connection or the app module SQLAlchemy code
would try to make the query.

60 | Chapter 4: Testing

As an exercise, you should work on building the remainder of the tests that we built
with the in-memory database with the mocked test types. I would encourage you to
mock both the query and the connection to get familiar with the mocking process.

You should now feel comfortable with how to test a function that contains
SQLAlchemy functions within it. You should also understand how to prepopulate
data into the test database for use in your test. Finally, you should understand how to
mock both the query and connection objects. While this chapter used a simple exam‐
ple, we will dive further into testing in Chapter 14, which looks at Flask, Pyramid, and
pytest.

Up next, we are going to look at how to handle an existing database with
SQLAlchemy without the need to re-create all the schema in Python via reflection.

Using Mocks | 61

CHAPTER 5

Reflection

Reflection is a technique that allows us to populate a SQLAlchemy object from an
existing database. You can reflect tables, views, indexes, and foreign keys. This chap‐
ter will explore how to use reflection on an example database.

For testing, I recommend using Chinook database. You can learn more about it at
http://chinookdatabase.codeplex.com/. We’ll be using the SQLite version, which is
available in the CH06/ folder of this book’s sample code. That folder also contains an
image of the database schema so you can visualize the schema that we’ll be working
with throughout this chapter. We’ll begin by reflecting a single table.

Reflecting Individual Tables
For our first reflection, we are going to generate the Artist table. We’ll need a meta-
data object to hold the reflected table schema information, and an engine attached to
the Chinook database. Example 5-1 demonstrates how to set up both of these things;
the process should be very familiar to you now.

Example 5-1. Setting up our initial objects

from sqlalchemy import MetaData, create_engine
metadata = MetaData()
engine = create_engine('sqlite:///Chinook_Sqlite.sqlite')

This connection string assumes you are in the same directory as the example
database.

With the metadata and engine set up, we have everything we need to reflect a table.
We are going to create a table object using code similar to the table creation code in
Chapter 1; however, instead of defining the columns by hand, we are going to use the

63

http://chinookdatabase.codeplex.com/

autoload and autoload_with keyword arguments. This will reflect the schema infor‐
mation into the metadata object and store a reference to the table in the artist vari‐
able. Example 5-2 demonstrates how to perform the reflection.

Example 5-2. Reflecting the Artist table

from sqlalchemy import Table
artist = Table('Artist', metadata, autoload=True, autoload_with=engine)

That last line really is all we need to reflect the Artist table! We can use this table just
as we did in Chapter 2 with our manually defined tables. Example 5-3 shows how to
perform a simple query with the table to see what kind of data is in it.

Example 5-3. Using the Artist table

artist.columns.keys()
from sqlalchemy import select
s = select([artist]).limit(10)
engine.execute(s).fetchall()

Listing the columns.

Selecting the first 10 records.

This results in:

['ArtistId', 'Name']

[(1, u'AC/DC'),
 (2, u'Accept'),
 (3, u'Aerosmith'),
 (4, u'Alanis Morissette'),
 (5, u'Alice In Chains'),
 (6, u'Ant\xf4nio Carlos Jobim'),
 (7, u'Apocalyptica'),
 (8, u'Audioslave'),
 (9, u'BackBeat'),
 (10, u'Billy Cobham')]

Looking at the database schema, we can see that there is an Album table that is related
to the Artist table. Let’s reflect it the same way as we did for the Artist table:

album = Table('Album', metadata, autoload=True, autoload_with=engine)

Now let’s check the Album table’s metadata to see what got reflected. Example 5-4
shows how to do that.

64 | Chapter 5: Reflection

Example 5-4. Viewing the metadata

metadata.tables['album']

Table('album',
 MetaData(bind=None),
 Column('AlbumId', INTEGER(), table=<album>, primary_key=True, nullable=False),
 Column('Title', NVARCHAR(length=160), table=<album>, nullable=False),
 Column('ArtistId', INTEGER(), table=<album>, nullable=False),
 schema=None)
)

Interestingly, the foreign key to the Artist table does not appear to have been reflec‐
ted. Let’s check the foreign_keys attribute of the Album table to make sure that it is
not present:

album.foreign_keys

set()

So it really didn’t get reflected. This occurred because the two tables weren’t reflected
at the same time, and the target of the foreign key was not present during the reflec‐
tion. In an effort to not leave you in a semi-broken state, SQLAlchemy discarded the
one-sided relationship. We can use what we learned in Chapter 1 to add the missing
ForeignKey, and restore the relationship:

from sqlalchemy import ForeignKeyConstraint
album.append_constraint(
 ForeignKeyConstraint(['ArtistId'], ['artist.ArtistId'])
)

Now if we rerun Example 5-4, we can see the ArtistId column is a ForeignKey:

Table('album',
 MetaData(bind=None),
 Column('AlbumId', INTEGER(), table=<album>, primary_key=True,
 nullable=False),
 Column('Title', NVARCHAR(length=160), table=<album>, nullable=False),
 Column('ArtistId', INTEGER(), ForeignKey('artist.ArtistId'), table=<album>,
 nullable=False),
 schema=None)

Now let’s see if we can use the relationship to join the tables properly. We can run the
following code to test the relationship:

str(artist.join(album))

'artist JOIN album ON artist."ArtistId" = album."ArtistId"'

Excellent! Now we can perform queries that use this relationship. It works just like
the queries discussed in “Joins” on page 31.

Reflecting Individual Tables | 65

It would be quite a bit of work to repeat the reflection process for each individual
table in our database. Fortunately, SQLAlchemy lets you reflect an entire database at
once.

Reflecting a Whole Database
In order to reflect a whole database, we can use the reflect method on the metadata
object. The reflect method will scan everything available on the engine supplied,
and reflect everything it can. Let’s use our existing metadata and engine objects to
reflect the entire Chinook database:

metadata.reflect(bind=engine)

This statement doesn’t return anything if it succeeds; however, we can run the follow‐
ing code to retrieve a list of table names to see what was reflected into our metadata:

metadata.tables.keys()

dict_keys(['InvoiceLine', 'Employee', 'Invoice', 'album', 'Genre',
 'PlaylistTrack', 'Album', 'Customer', 'MediaType', 'Artist',
 'Track', 'artist', 'Playlist'])

The tables we manually reflected are listed twice but with different case letters. This is
due to that fact that SQLAlchemy reflects the tables as they are named, and in the
Chinook database they are uppercase. Due to SQLite’s handling of case sensitivity,
both the lower- and uppercase names point to the same tables in the database.

Be careful, as case sensitivity can trip you up on other databases,
such as Oracle.

Now that we have our database reflected, we are ready to discuss using reflected
tables in queries.

Query Building with Reflected Objects
As you saw in Example 5-3, querying tables that we reflected and stored in a variable
works just like it did in Chapter 2. However, for the rest of the tables that were reflec‐
ted when we reflected the entire database, we’ll need a way to refer to them in our
query. We can do that by assigning them to a variable from the tables attribute of the
metadata, as shown in Example 5-5.

66 | Chapter 5: Reflection

Example 5-5. Using a reflected table in query

playlist = metadata.tables['Playlist']

from sqlalchemy import select
s = select([playlist]).limit(10)
engine.execute(s).fetchall()

Establish a variable to be a reference to the table.

Use that variable in the query.

Running the code in Example 5-5 gives us this result:

engine.execute(s).fetchall()
[(1, 'Music'),
 (2, 'Movies'),
 (3, 'TV Shows'),
 (4, 'Audiobooks'),
 (5, '90’s Music'),
 (6, 'Audiobooks'),
 (7, 'Movies'),
 (8, 'Music'),
 (9, 'Music Videos'),
 (10, 'TV Shows')]

By assigning the reflected tables we want to use into a variable, they can be used in
the same way as previous chapters.

Reflection is a very useful tool; however, as of version 1.0 of SQLAlchemy, we cannot
reflect CheckConstraints, comments, or triggers. You also can’t reflect client-side
defaults or an association between a sequence and a column. However, it is possible
to add them manually using the methods described in Chapter 1.

You now understand how to reflect individual tables and repair issues like missing
relationships in those tables. Additionally, you learned how to reflect an entire data‐
base, and use individual tables in queries from the reflected tables.

This chapter wraps up the essential parts of SQLAlchemy Core and the SQL Expres‐
sion Language. Hopefully, you’ve gotten a sense for how powerful these parts of
SQLAlchemy are. They are often overlooked due to the SQLAlchemy ORM, but using
them can add even more capabilities to your applications. Let’s move on to learning
about the SQLAlchemy ORM.

Query Building with Reflected Objects | 67

PART II

SQLAlchemy ORM

The SQLAlchemy ORM is what most people think of when you mention
SQLAlchemy. It provides a very effective way to bind database schema and opera‐
tions to the same data objects used in your application. It offers a way to rapidly build
applications and get them into customers’ hands. Using the ORM is so simple that
most people don’t consider the possible side effects of their code. It is still important
to think about how the database will be used by your code. However, the wonderful
thing about the ORM is that you can think about that when the need arises and not
for every query. Let’s get started using the ORM.

CHAPTER 6

Defining Schema with SQLAlchemy ORM

You define schema slightly different when using the SQLAlchemy ORM because it is
focused around user-defined data objects instead of the schema of the underlying
database. In SQLAlchemy Core, we created a metadata container and then declared a
Table object associated with that metadata. In SQLAlchemy ORM, we are going to
define a class that inherits from a special base class called the declarative_base. The
declarative_base combines a metadata container and a mapper that maps our class
to a database table. It also maps instances of the class to records in that table if they
have been saved. Let’s dig into defining tables in this manner.

Defining Tables via ORM Classes
A proper class for use with the ORM must do four things:

• Inherit from the declarative_base object.
• Contain __tablename__, which is the table name to be used in the database.
• Contain one or more attributes that are Column objects.
• Ensure one or more attributes make up a primary key.

We need to examine the last two attribute-related requirements a bit closer. First,
defining columns in an ORM class is very similar to defining columns in a Table
object, which we discussed in Chapter 2; however, there is one very important differ‐
ence. When defining columns in an ORM class, we don’t have to supply the column
name as the first argument to the Column constructor. Instead, the column name will
be set to the name of the class attribute to which it is assigned. Everything else we
covered in “Types” on page 1 and “Columns” on page 5 applies here too, and works as
expected. Second, the requirement for a primary key might seem odd at first; how‐

71

ever, the ORM has to have a way to uniquely identify and associate an instance of the
class with a specific record in the underlying database table. Let’s look at our cookies
table defined as an ORM class (Example 6-1).

Example 6-1. Cookies table defined as an ORM class

from sqlalchemy import Table, Column, Integer, Numeric, String
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer(), primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

Create an instance of the declarative_base.

Inherit from the Base.

Define the table name.

Define an attribute and set it to be a primary key.

This will result in the same table as shown in Example 2-1, and that can be verified by
looking at Cookie._table_ property:

>>> Cookie.__table__
Table('cookies', MetaData(bind=None),
 Column('cookie_id', Integer(), table=<cookies>, primary_key=True,
 nullable=False),
 Column('cookie_name', String(length=50), table=<cookies>),
 Column('cookie_recipe_url', String(length=255), table=<cookies>),
 Column('cookie_sku', String(length=15), table=<cookies>),
 Column('quantity', Integer(), table=<cookies>),
 Column('unit_cost', Numeric(precision=12, scale=2),
 table=<cookies>), schema=None)

Let’s look at another example. This time I want to re-create our users table from
Example 2-2. Example 6-2 demonstrates how additional keywords work the same in
both the ORM and Core schemas.

72 | Chapter 6: Defining Schema with SQLAlchemy ORM

Example 6-2. Another table with more column options

from datetime import datetime
from sqlalchemy import DateTime

class User(Base):
 __tablename__ = 'users'

 user_id = Column(Integer(), primary_key=True)
 username = Column(String(15), nullable=False, unique=True)
 email_address = Column(String(255), nullable=False)
 phone = Column(String(20), nullable=False)
 password = Column(String(25), nullable=False)
 created_on = Column(DateTime(), default=datetime.now)
 updated_on = Column(DateTime(), default=datetime.now, onupdate=datetime.now)

Here we are making this column required (nullable=False) and requiring the
values to be unique.

The default sets this column to the current time if a date isn’t specified.

Using onupdate here will reset this column to the current time every time any
part of the record is updated.

Keys, Constraints, and Indexes
In “Keys and Constraints” on page 6, we discussed that it is possible to define keys
and constraints in the table constructor in addition to being able to do it in the col‐
umns themselves, as shown earlier. However, when using the ORM, we are building
classes and not using the table constructor. In the ORM, these can be added by using
the __table_args__ attribute on our class. __table_args__ expects to get a tuple of
additional table arguments, as shown here:

class SomeDataClass(Base):
 __tablename__ = 'somedatatable'
 __table_args__ = (ForeignKeyConstraint(['id'], ['other_table.id']),
 CheckConstraint(unit_cost >= 0.00',
 name='unit_cost_positive'))

The syntax is the same as when we use them in a Table() constructor. This also
applies to what you learned in “Indexes” on page 7.

In this section, we covered how to define a couple of tables and their schemas with
the ORM. Another important part of defining data models is establishing relation‐
ships between multiple tables and objects.

Defining Tables via ORM Classes | 73

Relationships
Related tables and objects are another place where there are differences between
SQLAlchemy Core and ORM. The ORM uses a similar ForeignKey column to con‐
strain and link the objects; however, it also uses a relationship directive to provide a
property that can be used to access the related object. This does add some extra data‐
base usage and overhead when using the ORM; however, the pluses of having this
capability far outweigh the drawbacks. I’d love to give you a rough estimate of the
additional overhead, but it varies based on your data models and how you use them.
In most cases, it’s not even worth considering. Example 6-3 shows how to define a
relationship using the relationship and backref methods.

Example 6-3. Table with a relationship

from sqlalchemy import ForeignKey, Boolean
from sqlalchemy.orm import relationship, backref

class Order(Base):
 __tablename__ = 'orders'

 order_id = Column(Integer(), primary_key=True)
 user_id = Column(Integer(), ForeignKey('users.user_id'))
 shipped = Column(Boolean(), default=False)

 user = relationship("User", backref=backref('orders', order_by=order_id))

Notice how we import the relationship and backref methods from sqlal
chemy.orm.

We are defining a ForeignKey just as we did with SQLAlchemy Core.

This establishes a one-to-many relationship.

Looking at the user relationship defined in the Order class, it establishes a one-to-
many relationship with the User class. We can get the User related to this Order by
accessing the user property. This relationship also establishes an orders property on
the User class via the backref keyword argument, which is ordered by the order_id.
The relationship directive needs a target class for the relationship, and can option‐
ally include a back reference to be added to target class. SQLAlchemy knows to use
the ForeignKey we defined that matches the class we defined in the relationship. In
the preceding example, the ForeignKey(users.user_id), which has the users table’s
user_id column, maps to the User class via the __tablename__ attribute of users
and forms the relationship.

74 | Chapter 6: Defining Schema with SQLAlchemy ORM

It is also possible to establish a one-to-one relationship: in Example 6-4, the LineItem
class has a one-to-one relationship with the Cookie class. The uselist=False key‐
word argument defines it as a one-to-one relationship. We also use a simpler back ref‐
erence, as we do not care to control the order.

Example 6-4. More tables with relationships

class LineItem(Base):
 __tablename__ = 'line_items'

 line_item_id = Column(Integer(), primary_key=True)
 order_id = Column(Integer(), ForeignKey('orders.order_id'))
 cookie_id = Column(Integer(), ForeignKey('cookies.cookie_id'))
 quantity = Column(Integer())
 extended_cost = Column(Numeric(12, 2))

 order = relationship("Order", backref=backref('line_items',
 order_by=line_item_id))

 cookie = relationship("Cookie", uselist=False)

This establishes a one-to-one relationship.

These two examples are good places to start with relationships; however, relationships
are an extremely powerful part of the ORM. We’ve barely scrathed the surface on
what can be done with relationships, and we will explore them more in the Cookbook
in Chapter 14. With our classes all defined and our relationships established, we are
ready to create our tables in the database.

Persisting the Schema
To create our database tables, we are going to use the create_all method on the
metadata within our Base instance. It requires an instance of an engine, just as it did
in SQLAlchemy Core:

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')

Base.metadata.create_all(engine)

Before we discuss how to work with our classes and tables via the ORM, we need to
learn about how sessions are used by the ORM. That’s what the next chapter is all
about.

Persisting the Schema | 75

CHAPTER 7

Working with Data via SQLAlchemy ORM

Now that we have defined classes that represent the tables in our database and persis‐
ted them, let’s start working with data via those classes. In this chapter, we’ll look at
how to insert, retrieve, update, and delete data. Then we’ll learn how to sort and
group that data and take a look at how relationships work. We’ll begin by learning
about the SQLAlchemy session, one of the most important parts of the SQLAlchemy
ORM.

The Session
The session is the way SQLAlchemy ORM interacts with the database. It wraps a data‐
base connection via an engine, and provides an identity map for objects that you load
via the session or associate with the session. The identity map is a cache-like data
structure that contains a unique list of objects determined by the object’s table and
primary key. A session also wraps a transaction, and that transaction will be open
until the session is committed or rolled back, very similar to the process described in
“Transactions” on page 43.

To create a new session, SQLAlchemy provides the sessionmaker class to ensure that
sessions can be created with the same parameters throughout an application. It does
this by creating a Session class that has been configured according to the arguments
passed to the sessionmaker factory. The sessionmaker factory should be used just
once in your application global scope, and treated like a configuration setting. Let’s
create a new session associated with an in-memory SQLite database:

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///:memory:')

77

Session = sessionmaker(bind=engine)

session = Session()

Imports the sessionmaker class.

Defines a Session class with the bind configuration supplied by sessionmaker.

Creates a session for our use from our generated Session class.

Now we have a session that we can use to interact with the database. While session
has everything it needs to connect to the database, it won’t connect until we give it
some instructions that require it to do so. We’re going to continue to use the classes
we created in Chapter 6 for our examples in the chapter. We’re going to add some
__repr__ methods to make it easy to see and re-create object instances; however,
these methods are not required:

from datetime import datetime

from sqlalchemy import (Table, Column, Integer, Numeric, String, DateTime,
 ForeignKey)
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship, backref

Base = declarative_base()

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer(), primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

 def __repr__(self):
 return "Cookie(cookie_name='{self.cookie_name}', " \
 "cookie_recipe_url='{self.cookie_recipe_url}', " \
 "cookie_sku='{self.cookie_sku}', " \
 "quantity={self.quantity}, " \
 "unit_cost={self.unit_cost})".format(self=self)

class User(Base):
 __tablename__ = 'users'

 user_id = Column(Integer(), primary_key=True)

78 | Chapter 7: Working with Data via SQLAlchemy ORM

 username = Column(String(15), nullable=False, unique=True)
 email_address = Column(String(255), nullable=False)
 phone = Column(String(20), nullable=False)
 password = Column(String(25), nullable=False)
 created_on = Column(DateTime(), default=datetime.now)
 updated_on = Column(DateTime(), default=datetime.now,
 onupdate=datetime.now)

 def __repr__(self):
 return "User(username='{self.username}', " \
 "email_address='{self.email_address}', " \
 "phone='{self.phone}', " \
 "password='{self.password}')".format(self=self)

class Order(Base):
 __tablename__ = 'orders'
 order_id = Column(Integer(), primary_key=True)
 user_id = Column(Integer(), ForeignKey('users.user_id'))

 user = relationship("User", backref=backref('orders', order_by=order_id))

 def __repr__(self):
 return "Order(user_id={self.user_id}, " \
 "shipped={self.shipped})".format(self=self)

class LineItems(Base):
 __tablename__ = 'line_items'
 line_item_id = Column(Integer(), primary_key=True)
 order_id = Column(Integer(), ForeignKey('orders.order_id'))
 cookie_id = Column(Integer(), ForeignKey('cookies.cookie_id'))
 quantity = Column(Integer())
 extended_cost = Column(Numeric(12, 2))
 order = relationship("Order", backref=backref('line_items',
 order_by=line_item_id))
 cookie = relationship("Cookie", uselist=False, order_by=id)

 def __repr__(self):
 return "LineItems(order_id={self.order_id}, " \
 "cookie_id={self.cookie_id}, " \
 "quantity={self.quantity}, " \
 "extended_cost={self.extended_cost})".format(
 self=self)

Base.metadata.create_all(engine)

A __repr__ method defines how the object should be represented. It typically is
the constructor call required to re-create the instance. This will show up later in
our print output.

The Session | 79

Creates the tables in the database defined by the engine.

With our classes re-created, we are ready to begin learning how to work with data in
our database, and we are going to start with inserting data.

Inserting Data
To create a new cookie record in our database, we initialize a new instance of the
Cookie class that has the desired data in it. We then add that new instance of the
Cookie object to the session and commit the session. This is even easier to do because
inheriting from the declarative_base provides a default constructor we can use
(Example 7-1).

Example 7-1. Inserting a single object

cc_cookie = Cookie(cookie_name='chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe.html',
 cookie_sku='CC01',
 quantity=12,
 unit_cost=0.50)
session.add(cc_cookie)
session.commit()

Creating an instance of the Cookie class.

Adding the instance to the session.

Committing the session.

When commit() is called on the session, the cookie is actually inserted into the data‐
base. It also updates cc_cookie with the primary key of the record in the database.
We can see that by doing the following:

print(cc_cookie.cookie_id)

1

Let’s take a moment to discuss what happens to the database when we run the code in
Example 7-1. When we create the instance of the Cookie class and then add it to the
session, nothing is sent to the database. It’s not until we call commit() on the session
that anything is sent to the database. When commit() is called, the following happens:

INFO:sqlalchemy.engine.base.Engine:BEGIN (implicit)

INFO:sqlalchemy.engine.base.Engine:INSERT INTO cookies (cookie_name,
cookie_recipe_url, cookie_sku, quantity, unit_cost) VALUES (?, ?, ?, ?, ?)

80 | Chapter 7: Working with Data via SQLAlchemy ORM

INFO:sqlalchemy.engine.base.Engine:('chocolate chip',
'http://some.aweso.me/cookie/recipe.html', 'CC01', 12, 0.5)

INFO:sqlalchemy.engine.base.Engine:COMMIT

Start a transaction.

Insert the record into the database.

The values for the insert.

Commit the transaction.

If you want to see the details of what is happening here, you can
add echo=True to your create_engine statement as a keyword
argument after the connection string. Make sure to only do this for
testing, and don’t use echo=True in production!

First, a fresh transaction is started, and the record is inserted into the database. Next,
the engine sends the values of our insert statement. Finally, the transaction is com‐
mitted to the database, and the transaction is closed. This method of processing is
often called the Unit of Work pattern.

Next, let’s look at a couple of ways to insert multiple records. If you are going to do
additional work with the objects after inserting them, you’ll want to use the method
shown in Example 7-2. We simple create multiple instances, then add them both to
the session prior to committing the session.

Example 7-2. Multiple inserts

dcc = Cookie(cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02',
 quantity=1,
 unit_cost=0.75)
mol = Cookie(cookie_name='molasses',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_molasses.html',
 cookie_sku='MOL01',
 quantity=1,
 unit_cost=0.80)
session.add(dcc)
session.add(mol)
session.flush()
print(dcc.cookie_id)
print(mol.cookie_id)

Inserting Data | 81

Adds the dark chocolate chip cookie.

Adds the molasses cookie.

Flushes the session.

Notice that we used the flush() method on the session instead of commit() in
Example 7-2. A flush is like a commit; however, it doesn’t perform a database commit
and end the transaction. Because of this, the dcc and mol instances are still connected
to the session, and can be used to perform additional database tasks without trigger‐
ing additional database queries. We also issue the session.flush() statement one
time, even though we added multiple records into the database. This actually results
in two insert statements being sent to the database inside a single transaction.
Example 7-2 will result in the following:

2
3

The second method of inserting multiple records into the database is great when you
want to insert data into the table and you don’t need to perform additional work on
that data. Unlike the method we used in Example 7-2, the method in Example 7-3
does not associate the records with the session.

Example 7-3. Bulk inserting multiple records

c1 = Cookie(cookie_name='peanut butter',
 cookie_recipe_url='http://some.aweso.me/cookie/peanut.html',
 cookie_sku='PB01',
 quantity=24,
 unit_cost=0.25)
c2 = Cookie(cookie_name='oatmeal raisin',
 cookie_recipe_url='http://some.okay.me/cookie/raisin.html',
 cookie_sku='EWW01',
 quantity=100,
 unit_cost=1.00)
session.bulk_save_objects([c1,c2])
session.commit()
print(c1.cookie_id)

Adds the cookies to a list and uses the bulk_save_objects method.

Example 7-3 will not result in anything being printed to the screen because the c1
object isn’t associated with the session, and can’t refresh its cookie_id for printing. If
we look at what was sent to the database, we can see only a single insert statement was
in the transaction:

INFO:sqlalchemy.engine.base.Engine:INSERT INTO cookies (cookie_name,
cookie_recipe_url, cookie_sku, quantity, unit_cost) VALUES (?, ?, ?, ?, ?)

82 | Chapter 7: Working with Data via SQLAlchemy ORM

INFO:sqlalchemy.engine.base.Engine:(
('peanut butter', 'http://some.aweso.me/cookie/peanut.html', 'PB01', 24, 0.25),
('oatmeal raisin', 'http://some.okay.me/cookie/raisin.html', 'EWW01', 100, 1.0))
INFO:sqlalchemy.engine.base.Engine:COMMIT

A single insert

The method demonstrated in Example 7-3 is substantially faster than performing
multiple individual adds and inserts as we did in Example 7-2. This speed does come
at the expense of some features we get in the normal add and commit, such as:

• Relationship settings and actions are not respected or triggered.
• The objects are not connected to the session.
• Fetching primary keys is not done by default.
• No events will be triggered.

In addition to bulk_save_objects, there are additional methods to create and update
objects via a dictionary, and you can learn more about bulk operations and their per‐
formance in the SQLAlchemy documentation.

If you are inserting multiple records and don’t need access to rela‐
tionships or the inserted primary key, use bulk_save_objects or
its related methods. This is especially true if you are ingesting data
from an external data source such as a CSV or a large JSON docu‐
ment with nested arrays.

Now that we have some data in our cookies table, let’s learn how to query the tables
and retrieve that data.

Querying Data
To begin building a query, we start by using the query() method on the session
instance. Initially, let’s select all the records in our cookies table by passing the
Cookie class to the query() method, as shown in Example 7-4.

Example 7-4. Get all the cookies

cookies = session.query(Cookie).all()
print(cookies)

Returns a list of Cookie instances that represent all the records in the cookies
table.

Querying Data | 83

http://docs.sqlalchemy.org/en/latest/orm/persistence_techniques.html#bulk-operations

Example 7-4 will output the following:

[
 Cookie(cookie_name='chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe.html',
 cookie_sku='CC01', quantity=12, unit_cost=0.50),
 Cookie(cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02', quantity=1, unit_cost=0.75),
 Cookie(cookie_name='molasses',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_molasses.html',
 cookie_sku='MOL01', quantity=1, unit_cost=0.80),
 Cookie(cookie_name='peanut butter',
 cookie_recipe_url='http://some.aweso.me/cookie/peanut.html',
 cookie_sku='PB01', quantity=24, unit_cost=0.25),
 Cookie(cookie_name='oatmeal raisin',
 cookie_recipe_url='http://some.okay.me/cookie/raisin.html',
 cookie_sku='EWW01', quantity=100, unit_cost=1.00)
]

Because the returned value is a list of objects, we can use those objects as we would
normally. These objects are connected to the session, which means we can change
them or delete them and persist that change to the database as shown later in this
chapter.

In addition to being able to get back a list of objects all at once, we can use the query
as an iterable, as shown in Example 7-5.

Example 7-5. Using the query as an iterable

for cookie in session.query(Cookie):
 print(cookie)

We don’t append an all() when using an iterable.

Using the iterable approach allows us to interact with each record object individually,
release it, and get the next object.

Example 7-5 would display the following output:

Cookie(cookie_name='chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe.html',
 cookie_sku='CC01', quantity=12, unit_cost=0.50),
Cookie(cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02', quantity=1, unit_cost=0.75),
Cookie(cookie_name='molasses',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_molasses.html',
 cookie_sku='MOL01', quantity=1, unit_cost=0.80),
Cookie(cookie_name='peanut butter',
 cookie_recipe_url='http://some.aweso.me/cookie/peanut.html',

84 | Chapter 7: Working with Data via SQLAlchemy ORM

 cookie_sku='PB01', quantity=24, unit_cost=0.25),
Cookie(cookie_name='oatmeal raisin',
 cookie_recipe_url='http://some.okay.me/cookie/raisin.html',
 cookie_sku='EWW01', quantity=100, unit_cost=1.00)

In addition to using the query as an iterable or calling the all() method, there are
many other ways of accessing the data. You can use the following methods to fetch
results:

first()

Returns the first record object if there is one.

one()

Queries all the rows, and raises an exception if anything other than a single result
is returned.

scalar()

Returns the first element of the first result, None if there is no result, or an error if
there is more than one result.

Tips for Good Production Code
When writing production code, you should follow these guidelines:

• Use the iterable version of the query over the all() method. It is more memory
efficient than handling a full list of objects and we tend to operate on the data
one record at a time anyway.

• To get a single record, use the first() method (rather than one() or scalar())
because it is clearer to our fellow coders. The only exception to this is when you
must ensure that there is one and only one result from a query; in that case, use
one().

• Use the scalar() method sparingly, as it raises errors if a query ever returns
more than one row with one column. In a query that selects entire records, it will
return the entire record object, which can be confusing and cause errors.

Every time we queried the database in the preceding examples, all the columns were
returned for every record. Often we only need a portion of those columns to perform
our work. If the data in these extra columns is large, it can cause our applications to
slow down and consume far more memory than it should. SQLAlchemy does not add
a bunch of overhead to the queries or objects; however, accounting for the data you
get back from a query is often the first place to look if a query is consuming too much
memory. Let’s look at how to limit the columns returned in a query.

Querying Data | 85

Controlling the Columns in the Query
To limit the fields that are returned from a query, we need to pass in the columns we
want in the query() method constructor separated by columns. For example, you
might want to run a query that returns only the name and quantity of cookies, as
shown in Example 7-6.

Example 7-6. Select only cookie_name and quantity

print(session.query(Cookie.cookie_name, Cookie.quantity).first())

Selects the cookie_name and quantity from the cookies table and returns the
first result.

When we run Example 7-6, it outputs the following:

(u'chocolate chip', 12),

The output from a query where we supply the column names is a tuple of those col‐
umn values.

Now that we can build a simple select statement, let’s look at other things we can do
to alter how the results are returned in a query. We’ll start with changing the order in
which the results are returned.

Ordering
If you were to look at all the results from Example 7-6 instead of just the first record,
you would see that the data is not really in any particular order. However, if we want
the list to be returned in a particular order, we can chain an order_by() statement to
our select, as shown in Example 7-7. In this case, we want the results to be ordered by
the quantity of cookies we have on hand.

Example 7-7. Order by quantity ascending

for cookie in session.query(Cookie).order_by(Cookie.quantity):
 print('{:3} - {}'.format(cookie.quantity, cookie.cookie_name))

Example 7-7 will print the following output:

 1 - dark chocolate chip
 1 - molasses
 12 - chocolate chip
 24 - peanut butter
100 - oatmeal raisin

86 | Chapter 7: Working with Data via SQLAlchemy ORM

If you want to sort in reverse or descending order, use the desc() statement. The
desc() function wraps the specific column you want to sort in a descending manner,
as shown in Example 7-8.

Example 7-8. Order by quantity descending

from sqlalchemy import desc
for cookie in session.query(Cookie).order_by(desc(Cookie.quantity)):
 print('{:3} - {}'.format(cookie.quantity, cookie.cookie_name))

We wrap the column we want to sort descending in the desc() function.

The desc() function can also be used as a method on a column
object, such as Cookie.quantity.desc(). However, that can be a
bit more confusing to read in long statements, and so I always use
desc() as a function.

It’s also possible to limit the number of results returned if we only need a certain
number of them for our application. The following section explains how.

Limiting
In prior examples, we used the first() method to get just a single row back. While
our query() gave us the one row we asked for, the actual query ran over and accessed
all the results, not just the single record. If we want to limit the query, we can use
array slice notation to actually issue a limit statement as part of our query. For exam‐
ple, suppose you only have time to bake two batches of cookies, and you want to
know which two cookie types you should make. You can use our ordered query from
earlier and add a limit statement to return the two cookie types that are most in need
of being replenished. Example 7-9 shows how this can be done.

Example 7-9. Two fewest cookie inventories

query = session.query(Cookie).order_by(Cookie.quantity)[:2]
print([result.cookie_name for result in query])

This runs the query and slices the returned list. This can be very ineffecient with
a large result set.

The output from Example 7-9 looks like this:

[u'dark chocolate chip', u'molasses']

In addition to using the array slice notation, it is also possible to use the limit()
statement.

Querying Data | 87

Example 7-10. Two fewest cookie inventories with limit

query = session.query(Cookie).order_by(Cookie.quantity).limit(2)
print([result.cookie_name for result in query])

Now that you know what kind of cookies you need to bake, you’re probably starting
to get curious about how many cookies are now left in your inventory. Many databa‐
ses include SQL functions designed to make certain operations available directly on
the database server such as SUM; let’s explore how to use these functions.

Built-In SQL Functions and Labels
SQLAlchemy can also leverage SQL functions found in the backend database. Two
very commonly used database functions are SUM() and COUNT(). To use these func‐
tions, we need to import the sqlalchemy.func module generator that makes them
available. These functions are wrapped around the column(s) on which they are oper‐
ating. Thus, to get a total count of cookies, you would use something like
Example 7-11.

Example 7-11. Summing our cookies

from sqlalchemy import func
inv_count = session.query(func.sum(Cookie.quantity)).scalar()
print(inv_count)

Notice the use of scalar, which will return only the leftmost column in the first
record.

I tend to always import the func module generator, as importing
sum directly can cause problems and confusion with Python’s built-
in sum function

When we run Example 7-11, it results in:

138

Now let’s use the count function to see how many cookie inventory records we have
in our cookies table (Example 7-12).

Example 7-12. Counting our inventory records

rec_count = session.query(func.count(Cookie.cookie_name)).first()
print(rec_count)

88 | Chapter 7: Working with Data via SQLAlchemy ORM

Unlike Example 7-11 where we used scalar and got a single value, Example 7-12
results in a tuple for us to use, as we used the first method instead of scalar:

(5,)

Using functions such as count() and sum() will end up returning tuples or results
with column names like count_1. These types of returns are often not what we want.
Also, if we have several counts in a query we’d have to know the occurrence number
in the statement, and incorporate that into the column name, so the fourth count()
function would be count_4. This simply is not as explicit and clear as we should be in
our naming, especially when surrounded with other Python code.

Thankfully, SQLAlchemy provides a way to fix this via the label() function.
Example 7-13 performs the same query as Example 7-12; however, it uses label() to
give us a more useful name to access that column.

Example 7-13. Renaming our count column

rec_count = session.query(func.count(Cookie.cookie_name) \
 .label('inventory_count')).first()
print(rec_count.keys())
print(rec_count.inventory_count)

I used the label() function on the column object I want to change.

Example 7-13 results in:

[u'inventory_count']
5

We’ve seen examples of how to restrict the columns or the number of rows returned
from the database, so now it’s time to learn about queries that filter data based on cri‐
teria we specify.

Filtering
Filtering queries is done by appending filter() statements to our query. A typical
filter() clause has a column, an operator, and a value or column. It is possible to
chain multiple filters() clauses together or comma separate multiple
ClauseElement expressions in a single filter, and they will act like ANDs in tradi‐
tional SQL statements. In Example 7-14, we’ll find a cookie named “chocolate chip.”

Example 7-14. Filtering by cookie name with filter

record = session.query(Cookie).filter(Cookie.cookie_name == 'chocolate chip').first()
print(record)

Querying Data | 89

Example 7-14 prints out the chocolate chip cookie record:

Cookie(cookie_name='chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe.html',
 cookie_sku='CC01', quantity=12, unit_cost=0.50)

There is also a filter_by() method that works similarly to the filter() method
except instead of explicity providing the class as part of the filter expression it uses
attribute keyword expressions from the primary entity of the query or the last entity
that was joined to the statement. It also uses a keyword assignment instead of a
Boolean. Example 7-15 performs the exact same query as Example 7-14.

Example 7-15. Filtering by cookie name with filter_by

record = session.query(Cookie).filter_by(cookie_name='chocolate chip').first()
print(record)

We can also use a where statement to find all the cookie names that contain the word
“chocolate,” as shown in Example 7-16.

Example 7-16. Finding names with “chocolate” in them

query = session.query(Cookie).filter(Cookie.cookie_name.like('%chocolate%'))
for record in query:
 print(record.cookie_name)

The code in Example 7-16 will return:

chocolate chip
dark chocolate chip

In Example 7-16, we are using the Cookie.cookie_name column inside of a filter
statement as a type of ClauseElement to filter our results, and we are taking advan‐
tage of the like() method that is available on ClauseElements. There are many other
methods available, which are listed in Table 2-1.

If we don’t use one of the ClauseElement methods, then we will have an operator in
our filter clauses. Most of the operators work as you might expect, but as the follow‐
ing section explains, there are a few differences.

Operators
So far, we have only explored situations where a column was equal to a value or used
one of the ClauseElement methods such as like(); however, we can also use many
other common operators to filter data. SQLAlchemy provides overloading for most
of the standard Python operators. This includes all the standard comparison opera‐
tors (==, !=, <, >, <=, >=), which act exactly like you would expect in a Python state‐
ment. The == operator also gets an additional overload when compared to None,

90 | Chapter 7: Working with Data via SQLAlchemy ORM

which converts it to an IS NULL statement. Arithmetic operators (\+, -, *, /, and %)
are also supported with additional capabilities for database-independent string con‐
catenation, as shown in Example 7-17.

Example 7-17. String concatenation with +

results = session.query(Cookie.cookie_name, 'SKU-' + Cookie.cookie_sku).all()
for row in results:
 print(row)

Example 7-17 results in:

('chocolate chip', 'SKU-CC01')
('dark chocolate chip', 'SKU-CC02')
('molasses', 'SKU-MOL01')
('peanut butter', 'SKU-PB01')
('oatmeal raisin', 'SKU-EWW01')

Another common usage of operators is to compute values from multiple columns.
You’ll often do this in applications and reports dealing with data or statistics.
Example 7-18 shows a common inventory value calculation.

Example 7-18. Inventory value by cookie

from sqlalchemy import cast
query = session.query(Cookie.cookie_name,
 cast((Cookie.quantity * Cookie.unit_cost),
 Numeric(12,2)).label('inv_cost'))
for result in query:
 print('{} - {}'.format(result.cookie_name, result.inv_cost))

cast is a function that allows us to convert types. In this case, we will be getting
back results such as 6.0000000000, so by casting it, we can make it look like cur‐
rency. It is also possible to accomplish the same task in Python with print('{} -
{:.2f}'.format(row.cookie_name, row.inv_cost)).

We are using the label() function to rename the column. Without this renam‐
ing, the column would not be listed in the keys of the result object, as the opera‐
tion doesn’t have a name.

Example 7-18 results in:

chocolate chip - 6.00
dark chocolate chip - 0.75
molasses - 0.80
peanut butter - 6.00
oatmeal raisin - 100.00

Querying Data | 91

If we need to combine where statements, we can use a couple of different methods.
One of those methods is known as Boolean operators.

Boolean Operators
SQLAlchemy also allows for the SQL Boolean operators AND, OR, and NOT via the
bitwise logical operators (&, |, and ~). Special care must be taken when using the
AND, OR, and NOT overloads because of the Python operator precedence rules. For
instance, & binds more closely than <, so when you write A < B & C < D, what you
are actually writing is A < (B&C) < D, when you probably intended to get (A < B) &
(C < D).

Often we want to chain multiple where clauses together in inclusive and exclusionary
manners; this should be done via conjunctions.

Conjunctions
While it is possible to chain multiple filter() clauses together, it’s often more reada‐
ble and functional to use conjunctions to accomplish the desired effect. I also prefer
to use conjunctions instead of Boolean operators, as conjunctions will make your
code more expressive. The conjunctions in SQLAlchemy are and_(), or_(), and
not_(). They have underscores to separate them from the built-in keywords. So if we
wanted to get a list of cookies with a cost of less than an amount and above a certain
quantity we could use the code shown in Example 7-19.

Example 7-19. Using filter with multiple ClauseElement expressions to perform an AND

query = session.query(Cookie).filter(
 Cookie.quantity > 23,
 Cookie.unit_cost < 0.40
)
for result in query:
 print(result.cookie_name)

The or_() function works as the opposite of and_() and includes results that match
either one of the supplied clauses. If we wanted to search our inventory for cookie
types that we have between 10 and 50 of in stock or where the name contains chip, we
could use the code shown in Example 7-20.

Example 7-20. Using the or() conjunction

from sqlalchemy import and_, or_, not_
query = session.query(Cookie).filter(
 or_(
 Cookie.quantity.between(10, 50),
 Cookie.cookie_name.contains('chip')

92 | Chapter 7: Working with Data via SQLAlchemy ORM

)
)
for result in query:
 print(result.cookie_name)

Example 7-20 results in:

chocolate chip
dark chocolate chip
peanut butter

The not_() function works in a similar fashion to other conjunctions, and it is used
to select records where a record does not match the supplied clause.

Now that we can comfortably query data, we are ready to move on to updating exist‐
ing data.

Updating Data
Much like the insert method we used earlier, there is also an update method with syn‐
tax almost identical to inserts, except that they can specify a where clause that indi‐
cates which rows to update. Like insert statements, update statements can be created
by using either the update() function or the update() method on the table being
updated. You can update all rows in a table by leaving off the where clause.

For example, suppose you’ve finished baking those chocolate chip cookies that we
needed for our inventory. In Example 7-21, we’ll add them to our existing inventory
with an update query, and then check to see how many we have currently have in
stock.

Example 7-21. Updating data via object

query = session.query(Cookie)
cc_cookie = query.filter(Cookie.cookie_name == "chocolate chip").first()
cc_cookie.quantity = cc_cookie.quantity + 120
session.commit()
print(cc_cookie.quantity)

Lines 1 and 2 are using the generative method to build our statement.

We’re querying to get the object here; however, if you already have it, you can
directly edit it without querying it again.

Example 7-21 returns:

132

It is also possible to update data in place without having the object originally
(Example 7-22).

Updating Data | 93

Example 7-22. Updating data in place

query = session.query(Cookie)
query = query.filter(Cookie.cookie_name == "chocolate chip")
query.update({Cookie.quantity: Cookie.quantity - 20})

cc_cookie = query.first()
print(cc_cookie.quantity)

The update() method causes the record to be updated outside of the session, and
returns the number of rows updated.

We are reusing query here because it has the same selection criteria we need.

Example 7-22 returns:

112

In addition to updating data, at some point we will want to remove data from our
tables. The following section explains how to do that.

Deleting Data
To create a delete statement, you can use either the delete() function or the
delete() method on the table from which you are deleting data. Unlike insert()
and update(), delete() takes no values parameter, only an optional where clause
(omitting the where clause will delete all rows from the table). See Example 7-23.

Example 7-23. Deleting data

query = session.query(Cookie)
query = query.filter(Cookie.cookie_name == "dark chocolate chip")
dcc_cookie = query.one()
session.delete(dcc_cookie)
session.commit()
dcc_cookie = query.first()
print(dcc_cookie)

Example 7-23 returns:

None

It is also possible to delete data in place without having the object (Example 7-24).

Example 7-24. Deleting data

query = session.query(Cookie)
query = query.filter(Cookie.cookie_name == "molasses")
query.delete()

94 | Chapter 7: Working with Data via SQLAlchemy ORM

mol_cookie = query.first()
print(mol_cookie)

Example 7-24 returns:

None

OK, at this point, let’s load up some data using what we already learned for the users,
orders, and line_items tables. You can copy the code shown here, but you should
also take a moment to play with different ways of inserting the data:

cookiemon = User(username='cookiemon',
 email_address='mon@cookie.com',
 phone='111-111-1111',
 password='password')
cakeeater = User(username='cakeeater',
 email_address='cakeeater@cake.com',
 phone='222-222-2222',
 password='password')
pieperson = User(username='pieperson',
 email_address='person@pie.com',
 phone='333-333-3333',
 password='password')
session.add(cookiemon)
session.add(cakeeater)
session.add(pieperson)
session.commit()

Now that we have customers, we can start to enter their orders and line items into the
system as well. We’re going to take advantage of the relationship between these two
objects when inserting them into the table. If we have an object that we want to asso‐
ciate to another one, we can do that by assigning it to the relationship property just
like we would any other property. Let’s see this in action a few times in Example 7-25.

Example 7-25. Adding related objects

o1 = Order()
o1.user = cookiemon
session.add(o1)

cc = session.query(Cookie).filter(Cookie.cookie_name ==
 "chocolate chip").one()
line1 = LineItem(cookie=cc, quantity=2, extended_cost=1.00)

pb = session.query(Cookie).filter(Cookie.cookie_name ==
 "peanut butter").one()
line2 = LineItem(quantity=12, extended_cost=3.00)
line2.cookie = pb
line2.order = o1

o1.line_items.append(line1)

Deleting Data | 95

o1.line_items.append(line2)

session.commit()

Sets cookiemon as the user who placed the order.

Builds a line item for the order, and associates it with the cookie.

Builds a line item a piece at a time.

Adds the line item to the order via the relationship.

In Example 7-25, we create an empty Order instance, and set its user property to the
cookiemon instance. Next, we add it to the session. Then we query for the chocolate
chip cookie and create a LineItem, and set the cookie to be the chocolate chip one we
just queried for. We repeat that process for the second line item on the order; how‐
ever, we build it up piecemeal. Finally, we add the line items to the order and commit
it.

Before we move on, let’s add one more order for another user:

o2 = Order()
o2.user = cakeeater

cc = session.query(Cookie).filter(Cookie.cookie_name ==
 "chocolate chip").one()
line1 = LineItem(cookie=cc, quantity=24, extended_cost=12.00)

oat = session.query(Cookie).filter(Cookie.cookie_name ==
 "oatmeal raisin").one()
line2 = LineItem(cookie=oat, quantity=6, extended_cost=6.00)

o2.line_items.append(line1)
o2.line_items.append(line2)

session.add(o2)
session.commit()

I moved this line down with the other adds, and SQLAlchemy determined the
proper order in which to create them to ensure it was successful.

In Chapter 6, you learned how to define ForeignKeys and relationships, but we
haven’t used them to perform any queries up to this point. Let’s take a look at rela‐
tionships.

96 | Chapter 7: Working with Data via SQLAlchemy ORM

Joins
Now let’s use the join() and outerjoin() methods to take a look at how to query
related data. For example, to fulfill the order placed by the cookiemon user, we need
to determine how many of each cookie type were ordered. This requires you to use a
total of three joins to get all the way down to the name of the cookies. The ORM
makes this query much easier than it normally would be with raw SQL
(Example 7-26).

Example 7-26. Using join to select from multiple tables

query = session.query(Order.order_id, User.username, User.phone,
 Cookie.cookie_name, LineItem.quantity,
 LineItem.extended_cost)
query = query.join(User).join(LineItem).join(Cookie)
results = query.filter(User.username == 'cookiemon').all()
print(results)

Tells SQLAlchemy to join the related objects.

Example 7-26 will output the following:

[
 (u'1', u'cookiemon', u'111-111-1111', u'chocolate chip', 2, Decimal('1.00'))
 (u'1', u'cookiemon', u'111-111-1111', u'peanut butter', 12, Decimal('3.00'))
]

It is also useful to get a count of orders by all users, including those who do not have
any present orders. To do this, we have to use the outerjoin() method, and it
requires a bit more care in the ordering of the join, as the table we use the outer
join() method on will be the one from which all results are returned (Example 7-27).

Example 7-27. Using outerjoin to select from multiple tables

query = session.query(User.username, func.count(Order.order_id))
query = query.outerjoin(Order).group_by(User.username)
for row in query:
 print(row)

Example 7-27 results in:

(u'cakeeater', 1)
(u'cookiemon', 1)
(u'pieperson', 0)

So far, we have been using and joining different tables in our queries. However, what
if we have a self-referential table like a table of managers and their reports? The ORM

Joins | 97

allows us to establish a relationship that points to the same table; however, we need to
specify an option called remote_side to make the relationship a many to one:

class Employee(Base):
 __tablename__ = 'employees'

 id = Column(Integer(), primary_key=True)
 manager_id = Column(Integer(), ForeignKey('employees.id'))
 name = Column(String(255), nullable=False)

 manager = relationship("Employee", backref=backref('reports'),
 remote_side=[id])

Base.metadata.create_all(engine)

Establishes a relationship back to the same table, specifies the remote_side, and
makes the relationship a many to one.

Let’s add an employee and another employee that reports to her:

marsha = Employee(name='Marsha')
fred = Employee(name='Fred')

marsha.reports.append(fred)

session.add(marsha)
session.commit()

Now if we want to print the employees that report to Marsha, we would do so by
accessing the reports property as follows:

for report in marsha.reports:
 print(report.name)

It’s also useful to be able to group data when we are looking to report on data, so let’s
look into that next.

Grouping
When using grouping, you need one or more columns to group on and one or more
columns that it makes sense to aggregate with counts, sums, etc., as you would in
normal SQL. Let’s get an order count by customer (Example 7-28).

Example 7-28. Grouping data

query = session.query(User.username, func.count(Order.order_id))
query = query.outerjoin(Order).group_by(User.username)
for row in query:
 print(row)

98 | Chapter 7: Working with Data via SQLAlchemy ORM

Aggregation via count

Grouping by the nonaggregated included column

Example 7-28 results in:

(u'cakeeater', 1)
(u'cookiemon', 1)
(u'pieguy', 0)

We’ve shown the generative building of statements throughout the previous exam‐
ples, but I want to focus on it specifically for a moment.

Chaining
We’ve used chaining several times throughout this chapter, and just didn’t acknowl‐
edge it directly. Where query chaining is particularly useful is when you are applying
logic when building up a query. So if we wanted to have a function that got a list of
orders for us it might look like Example 7-29.

Example 7-29. Chaining

def get_orders_by_customer(cust_name):
 query = session.query(Order.order_id, User.username, User.phone,
 Cookie.cookie_name, LineItem.quantity,
 LineItem.extended_cost)
 query = query.join(User).join(LineItem).join(Cookie)
 results = query.filter(User.username == cust_name).all()
 return results

get_orders_by_customer('cakeeater')

Example 7-29 results in:

[(u'2', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'2', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

However, what if we wanted to get only the orders that have shipped or haven’t
shipped yet? We’d have to write additional functions to support those additional filter
options, or we can use conditionals to build up query chains. Another option we
might want is whether or not to include details. This ability to chain queries and clau‐
ses together enables quite powerful reporting and complex query building
(Example 7-30).

Example 7-30. Conditional chaining

def get_orders_by_customer(cust_name, shipped=None, details=False):
 query = session.query(Order.order_id, User.username, User.phone)

Chaining | 99

 query = query.join(User)
 if details:
 query = query.add_columns(Cookie.cookie_name, LineItem.quantity,
 LineItem.extended_cost)
 query = query.join(LineItem).join(Cookie)
 if shipped is not None:
 query = query.where(Order.shipped == shipped)
 results = query.filter(User.username == cust_name).all()
 return results

get_orders_by_customer('cakeeater')

get_orders_by_customer('cakeeater', details=True)

get_orders_by_customer('cakeeater', shipped=True)

get_orders_by_customer('cakeeater', shipped=False)

get_orders_by_customer('cakeeater', shipped=False, details=True)

Gets all orders.

Gets all orders with details.

Gets only orders that have shipped.

Gets orders that haven’t shipped yet.

Gets orders that haven’t shipped yet with details.

Example 7-30 results in:

[(u'2', u'cakeeater', u'222-222-2222')]

[(u'2', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'2', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

[]

[(u'2', u'cakeeater', u'222-222-2222')]

[(u'2', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'2', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

So far in this chapter, we’ve used the ORM for all the examples; however, it is also
possible to use literal SQL at times as well. Let’s take a look.

100 | Chapter 7: Working with Data via SQLAlchemy ORM

Raw Queries
While I rarely use a full raw SQL statement, I will often use small text snippets to help
make a query clearer. Example 7-31 shows a raw SQL where clause using the text()
function.

Example 7-31. Partial text query

from sqlalchemy import text
query = session.query(User).filter(text("username='cookiemon'"))
print(query.all())

Example 7-31 results in:

[User(username='cookiemon', email_address='mon@cookie.com',
 phone='111-111-1111', password='password')]

Now you should have an understanding of how to use the ORM to work with data in
SQLAlchemy. We explored how to create, read, update, and delete operations. This is
a good point to stop and explore a bit on your own. Try to create more cookies,
orders, and line items, and use query chains to group them by order and user.

Now that you’ve explored a bit more and hopefully broken something, let’s investigate
how to react to exceptions raised in SQLAlchemy, and how to use transactions to
group statements that must succeed or fail as a group.

Raw Queries | 101

CHAPTER 8

Understanding the Session and Exceptions

In the previous chapter, we did a lot of work with the session, and we avoided doing
anything that could result in an exception. In this chapter, we will learn a bit more
about how our objects and the SQLAlchemy session interact. We’ll conclude this
chapter by purposely performing some actions incorrectly so that we can see the
types of exceptions that occur and how we should respond to them. Let’s start by
learning more about the session. First, we’ll set up an in-memory SQLite database
using the tables from Chapter 6:

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///:memory:')

Session = sessionmaker(bind=engine)

session = Session()

from datetime import datetime

from sqlalchemy import (Table, Column, Integer, Numeric, String, DateTime,
 ForeignKey, Boolean)
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship, backref

Base = declarative_base()

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer, primary_key=True)
 cookie_name = Column(String(50), index=True)

103

 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

 def __init__(self, name, recipe_url=None, sku=None, quantity=0,
 unit_cost=0.00):
 self.cookie_name = name
 self.cookie_recipe_url = recipe_url
 self.cookie_sku = sku
 self.quantity = quantity
 self.unit_cost = unit_cost

 def __repr__(self):
 return "Cookie(cookie_name='{self.cookie_name}', " \
 "cookie_recipe_url='{self.cookie_recipe_url}', " \
 "cookie_sku='{self.cookie_sku}', " \
 "quantity={self.quantity}, " \
 "unit_cost={self.unit_cost})".format(self=self)

class User(Base):
 __tablename__ = 'users'

 user_id = Column(Integer(), primary_key=True)
 username = Column(String(15), nullable=False, unique=True)
 email_address = Column(String(255), nullable=False)
 phone = Column(String(20), nullable=False)
 password = Column(String(25), nullable=False)
 created_on = Column(DateTime(), default=datetime.now)
 updated_on = Column(DateTime(), default=datetime.now, onupdate=datetime.now)

 def __init__(self, username, email_address, phone, password):
 self.username = username
 self.email_address = email_address
 self.phone = phone
 self.password = password

 def __repr__(self):
 return "User(username='{self.username}', " \
 "email_address='{self.email_address}', " \
 "phone='{self.phone}', " \
 "password='{self.password}')".format(self=self)

class Order(Base):
 __tablename__ = 'orders'
 order_id = Column(Integer(), primary_key=True)
 user_id = Column(Integer(), ForeignKey('users.user_id'))
 shipped = Column(Boolean(), default=False)

 user = relationship("User", backref=backref('orders', order_by=order_id))

104 | Chapter 8: Understanding the Session and Exceptions

 def __repr__(self):
 return "Order(user_id={self.user_id}, " \
 "shipped={self.shipped})".format(self=self)

class LineItem(Base):
 __tablename__ = 'line_items'
 line_item_id = Column(Integer(), primary_key=True)
 order_id = Column(Integer(), ForeignKey('orders.order_id'))
 cookie_id = Column(Integer(), ForeignKey('cookies.cookie_id'))
 quantity = Column(Integer())
 extended_cost = Column(Numeric(12, 2))

 order = relationship("Order", backref=backref('line_items',
 order_by=line_item_id))
 cookie = relationship("Cookie", uselist=False)

 def __repr__(self):
 return "LineItems(order_id={self.order_id}, " \
 "cookie_id={self.cookie_id}, " \
 "quantity={self.quantity}, " \
 "extended_cost={self.extended_cost})".format(
 self=self)

Base.metadata.create_all(engine)

Now that we have our initial database and objects defined, we’re ready to learn more
about how the session works with objects.

The SQLAlchemy Session
We covered a bit about the SQLAlchemy session in Chapter 7; however, here I want
to focus on how our data objects and the session interact.

When we use a query to get an object, we get back an object that is connected to a
session. That object could move through several states in relationship to the session.

Session States
Understanding the session states can be useful for troubleshooting exceptions and
handling unexpected behaviors. There are four possible states for data object instan‐
ces:

Transient
The instance is not in session, and is not in the database.

Pending
The instance has been added to the session with add(), but hasn’t been flushed or
committed.

The SQLAlchemy Session | 105

Persistent
The object in session has a corresponding record in the database.

Detached
The instance is no longer connected to the session, but has a record in the data‐
base.

We can watch an instance move through these states as we work with it. We’ll start by
creating an instance of a cookie:

cc_cookie = Cookie('chocolate chip',
 'http://some.aweso.me/cookie/recipe.html',
 'CC01', 12, 0.50)

To see the instance state, we can use the powerful inspect() method provided by
SQLAlchemy. When we use inspect() on an instance, we gain access to several use‐
ful pieces of information. Let’s get an inspection of our cc_cookie instance:

from sqlalchemy import inspect
insp = inspect(cc_cookie)

In this case, we are interested in the transient, pending, persistent, and detached
properties that indicate the current state. Let’s loop through those properties as
shown in Example 8-1.

Example 8-1. Getting the session state of an instance

for state in ['transient', 'pending', 'persistent', 'detached']:
 print('{:>10}: {}'.format(state, getattr(insp, state)))

Example 8-1 results in a list of states and a Boolean indicating whether that is the cur‐
rent state:

 transient: True
 pending: False
persistent: False
 detached: False

As you can see in the output, the current state of our cookie instance is transient,
which is the state newly created objects are in prior to being flushed or commited to
the database. If we add cc_cookie to the current session and rerun Example 8-1, we
will get the following output:

transient: False
 pending: True
persistent: False
 detached: False

106 | Chapter 8: Understanding the Session and Exceptions

Now that our cookie instance has been added to the current session, we can see it has
been moved to pending. If we commit the session and rerun Example 8-1 yet again,
we can see the state is updated to persistent:

 transient: False
 pending: False
persistent: True
 detached: False

Finally, to get cc_cookie into the detached state, we want to call the expunge()
method on the session. You might do this if you are moving data from one session to
another. One case in which you might want to move data from one session to another
is when you are archiving or consolidating data from your primary database to your
data warehouse:

session.expunge(cc_cookie)

If we rerun Example 8-1 one last time after expunging cc_cookie, we’ll see that it is
now in a detached state:

 transient: False
 pending: False
persistent: False
 detached: True

If you are using the inspect() method in normal code, you’ll probably want to use
insp.transient, insp.pending, insp.persistent, and insp.detached. We used get
attr to access them so we could loop through the states instead of hardcoding each
state individually.

Now that we’ve seen how an object moves through the session states, let’s look at how
we can use the inspector to see the history of an instance prior to committing it. First,
we’ll add our object back to the session and change the cookie_name attribute:

session.add(cc_cookie)
cc_cookie.cookie_name = 'Change chocolate chip'

Now let’s use the inspector’s modified property to see if it has changed:

insp.modified

This will return True, and we can use the inspector’s attrs collection to find what has
changed. Example 8-2 demonstrates one way we can accomplish this.

Example 8-2. Printing the changed attribute history

for attr, attr_state in insp.attrs.items():
 if attr_state.history.has_changes():
 print('{}: {}'.format(attr, attr_state.value))
 print('History: {}\n'.format(attr_state.history))

The SQLAlchemy Session | 107

Checks the attribute state to see if the session can find any changes

Prints the history object of the changed attribute

When we run Example 8-2, we will get back:

cookie_name: Change chocolate chip
History: History(added=['Change chocolate chip'], unchanged=(), deleted=())

The output from Example 8-2 shows us that the cookie_name changed. When we
look at the history record for that attribute, it shows us what was added or changed
on that attribute. This gives us a good view of how objects interact with the session.
Now, let’s investigate how to handle exceptions that arise while using SQLAlchemy
ORM.

Exceptions
There are numerous exceptions that can occur in SQLAlchemy, but we’ll focus on two
in particular: MultipleResultsFound and DetachedInstanceError. These exceptions
are fairly common, and they also are part of a group of similar exceptions. By learn‐
ing how to handle these exceptions, you’ll be better prepared to deal with other
exceptions you might encounter.

MultipleResultsFound Exception
This exception occurs when we use the .one() query method, but get more than one
result back. Before we can demonstrate this exception, we need to create another
cookie and save it to the database:

dcc = Cookie('dark chocolate chip',
 'http://some.aweso.me/cookie/recipe_dark.html',
 'CC02', 1, 0.75)
session.add(dcc)
session.commit()

Now that we have more than one cookie in the database, let’s trigger the Multi
pleResultsFound exception (Example 8-3).

Example 8-3. Causing a MultipleResultsFound exception

results = session.query(Cookie).one()

Example 8-3 results in an exception because there are two cookies in our data source
that match the query. The exception stops the execution of our program. Example 8-4
shows what this exception looks like.

108 | Chapter 8: Understanding the Session and Exceptions

Example 8-4. Exception output from Example 8-3

MultipleResultsFound Traceback (most recent call last)
<ipython-input-20-d88068ecde4b> in <module>()
----> 1 results = session.query(Cookie).one()

...b/python2.7/site-packages/sqlalchemy/orm/query.pyc in one(self)
 2480 else:
 2481 raise orm_exc.MultipleResultsFound(
-> 2482 "Multiple rows were found for one()")
 2483
 2484 def scalar(self):

MultipleResultsFound: Multiple rows were found for one()

This shows us the type of exception and that a traceback is present.

This is the actual line where the exception occurred.

This is the interesting part we need to focus on.

In Example 8-4, we have the typical format for a MultipleResultsFound exception
from SQLAlchemy. It starts with a line that indicates the type of exception. Next,
there is a traceback showing us where the exception occurred. The final block of lines
is where the important details can be found: they specify the type of exception and
explain why it occurred. In this case, it is because our query returned two rows and
we told it to return one and only one.

Another exception related to this is the NoResultFound exception,
which would occur if we used the .one() method and the query
returned no results.

If we wanted to handle this exception so that our program doesn’t stop executing and
prints out a more helpful exception message, we can use the Python try/except
block, as shown in Example 8-5.

Example 8-5. Handling a MultipleResultsFound exception

from sqlalchemy.orm.exc import MultipleResultsFound
try:
 results = session.query(Cookie).one()
except MultipleResultsFound as error:
 print('We found too many cookies... is that even possible?')

Exceptions | 109

All of the SQLAlchemy ORM exceptions are available in the sqlal

chemy.orm.exc module.

Catching the MultipleResultsFound exception as error.

Executing Example 8-5 will result in “We found too many cookies… is that even pos‐
sible?” being printed and our application will keep on running normally. (I don’t
think is it possible to find too many cookies.) Now you know what the Multi
pleResultsFound exception is telling you, and you know at least one method for
dealing with it in a way that allows your program to continue executing.

DetachedInstanceError
This exception occurs when we attempt to access an attribute on an instance that
needs to be loaded from the database, but the instance we are using is not currently
attached to the database. Before we can explore this exception, we need to set up the
records we are going to operate on. Example 8-6 shows how to do that.

Example 8-6. Creating a user and an order for that user

cookiemon = User('cookiemon', 'mon@cookie.com', '111-111-1111', 'password')
session.add(cookiemon)
o1 = Order()
o1.user = cookiemon
session.add(o1)

cc = session.query(Cookie).filter(Cookie.cookie_name ==
 "Change chocolate chip").one()
line1 = LineItem(order=o1, cookie=cc, quantity=2, extended_cost=1.00)

session.add(line1)
session.commit()

Now that we’ve created a user with an order and some line items, we have what we
need to cause this exception. Example 8-7 will trigger the exception for us.

Example 8-7. Causing a DetachedInstanceError

order = session.query(Order).first()
session.expunge(order)
order.line_items

In Example 8-7, we are querying to get an instance of an order. Once we have our
instance, we detach it from the session with expunge. Then we attempt to load the
line_items attribute. Because line_items is a relationship, by default it doesn’t load
all that data until you ask for it. In our case, we detached the instance from the ses‐

110 | Chapter 8: Understanding the Session and Exceptions

sion and the relationship doesn’t have a session to execute a query to load the
line_items attribute, and it raises the DetachedInstanceError:

DetachedInstanceError Traceback (most recent call last)
<ipython-input-35-233bbca5c715> in <module>()
 1 order = session.query(Order).first()
 2 session.expunge(order)
----> 3 order.line_items

site-packages/sqlalchemy/orm/attributes.pyc in __get__(self, instance, owner)
 235 return dict_[self.key]
 236 else:
--> 237 return self.impl.get(instance_state(instance), dict_)
 238
 239

site-packages/sqlalchemy/orm/attributes.pyc in get(self, state, dict_, passive)
 576 value = callable_(state, passive)
 577 elif self.callable_:
--> 578 value = self.callable_(state, passive)
 579 else:
 580 value = ATTR_EMPTY

site-packages/sqlalchemy/orm/strategies.pyc in _load_for_state(self, state,
passive)
 499 "Parent instance %s is not bound to a Session; "
 500 "lazy load operation of attribute '%s' cannot proceed" %
--> 501 (orm_util.state_str(state), self.key)
 502)
 503

DetachedInstanceError: Parent instance <Order at 0x10dc31350> is not bound to
a Session; lazy load operation of attribute 'line_items' cannot proceed

This is the actual line where the error occurred.

This is the interesting part we need to focus on.

We read this exception output just like we did in Example 8-5; the interesting part of
the message indicates that we tried to load the line_items attribute on an Order
instance, and it couldn’t do that because that instance wasn’t bound to a session.

While this is a forced example of the DetachedInstanceError, it acts very similarly to
other exceptions such as ObjectDeletedError, StaleDataError, and Concur

rentModificationError. All of these are related to information differing between the
instance, the session, and the database. The same method used in Example 8-6 with
the try/except block will also work for this exception and allow the code to continue
running. You could check for a detacted instance, and in the except block add it back

Exceptions | 111

to the session; however, the DetachedInstanceError is normally an indicator of an
exception occuring prior to this point in the code.

To get more details on additional exceptions that can occur with
the ORM, check out the SQLAlchemy documentation at http://
docs.sqlalchemy.org/en/latest/orm/exceptions.html.

All the exceptions mentioned so far, such as MultipleResultsFound and
DetachedInstanceError, are related to a single statement failing. If we have multiple
statements, such as multiple adds or deletes that fail during a commit or a flush, we
need to handle those differently. Specifically, we handle them by manually controlling
the transaction. The following section covers transactions in detail, and teaches you
how to use them to help handle exceptions and recover a session.

Transactions
Transactions are a group of statements that we need to succeed or fail as a group.
When we first create a session, it is not connected to the database. When we under‐
take our first action with the session such as a query, it starts a connection and a
transaction. This means that by default, we don’t need to manually create transac‐
tions. However, if we need to handle any exceptions where part of the transaction
succeeds and another part fails or where the result of a transaction creates an excep‐
tion, then we must know how to control the transaction manually.

There is already a good example of when we might want to do this in our existing
database. After a customer has ordered cookies from us, we need to ship those cook‐
ies to the customer and remove them from our inventory. However, what if we do not
have enough of the right cookies to fulfill an order? We will need to detect that and
not ship that order. We can solve this with transactions.

We’ll need a fresh Python shell with the tables from Chapter 6; however, we need to
add a CheckConstraint to the quantity column to ensure it cannot go below 0,
because we can’t have negative cookies in inventory. Next, we need to re-create the
cookiemon user as well as the chocolate chip and dark chocolate chip cookie records
and set the quantity of chocolate chip cookies to 12 and the dark chocolate chip cook‐
ies to 1. Example 8-8 shows how to perform all those steps.

Example 8-8. Setting up the transactions environment

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///:memory:')

112 | Chapter 8: Understanding the Session and Exceptions

http://docs.sqlalchemy.org/en/latest/orm/exceptions.html
http://docs.sqlalchemy.org/en/latest/orm/exceptions.html

Session = sessionmaker(bind=engine)

session = Session()

from datetime import datetime

from sqlalchemy import (Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, Boolean, CheckConstraint)
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship, backref

Base = declarative_base()

class Cookie(Base):
 __tablename__ = 'cookies'
 __table_args__ = (CheckConstraint('quantity >= 0', name='quantity_positive'),)

 cookie_id = Column(Integer, primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

 def __init__(self, name, recipe_url=None, sku=None, quantity=0, unit_cost=0.00):
 self.cookie_name = name
 self.cookie_recipe_url = recipe_url
 self.cookie_sku = sku
 self.quantity = quantity
 self.unit_cost = unit_cost

 def __repr__(self):
 return "Cookie(cookie_name='{self.cookie_name}', " \
 "cookie_recipe_url='{self.cookie_recipe_url}', " \
 "cookie_sku='{self.cookie_sku}', " \
 "quantity={self.quantity}, " \
 "unit_cost={self.unit_cost})".format(self=self)

class User(Base):
 __tablename__ = 'users'

 user_id = Column(Integer(), primary_key=True)
 username = Column(String(15), nullable=False, unique=True)
 email_address = Column(String(255), nullable=False)
 phone = Column(String(20), nullable=False)
 password = Column(String(25), nullable=False)
 created_on = Column(DateTime(), default=datetime.now)
 updated_on = Column(DateTime(), default=datetime.now, onupdate=datetime.now)

Transactions | 113

 def __init__(self, username, email_address, phone, password):
 self.username = username
 self.email_address = email_address
 self.phone = phone
 self.password = password

 def __repr__(self):
 return "User(username='{self.username}', " \
 "email_address='{self.email_address}', " \
 "phone='{self.phone}', " \
 "password='{self.password}')".format(self=self)

class Order(Base):
 __tablename__ = 'orders'
 order_id = Column(Integer(), primary_key=True)
 user_id = Column(Integer(), ForeignKey('users.user_id'))
 shipped = Column(Boolean(), default=False)

 user = relationship("User", backref=backref('orders', order_by=order_id))

 def __repr__(self):
 return "Order(user_id={self.user_id}, " \
 "shipped={self.shipped})".format(self=self)

class LineItem(Base):
 __tablename__ = 'line_items'
 line_item_id = Column(Integer(), primary_key=True)
 order_id = Column(Integer(), ForeignKey('orders.order_id'))
 cookie_id = Column(Integer(), ForeignKey('cookies.cookie_id'))
 quantity = Column(Integer())
 extended_cost = Column(Numeric(12, 2))

 order = relationship("Order", backref=backref('line_items',
 order_by=line_item_id))
 cookie = relationship("Cookie", uselist=False)

 def __repr__(self):
 return "LineItem(order_id={self.order_id}, " \
 "cookie_id={self.cookie_id}, " \
 "quantity={self.quantity}, " \
 "extended_cost={self.extended_cost})".format(
 self=self)

Base.metadata.create_all(engine)

cookiemon = User('cookiemon', 'mon@cookie.com', '111-111-1111', 'password')
cc = Cookie('chocolate chip', 'http://some.aweso.me/cookie/recipe.html',
 'CC01', 12, 0.50)

114 | Chapter 8: Understanding the Session and Exceptions

dcc = Cookie('dark chocolate chip',
 'http://some.aweso.me/cookie/recipe_dark.html',
 'CC02', 1, 0.75)

session.add(cookiemon)
session.add(cc)
session.add(dcc)

Adds the positive quantity CheckConstraint.

Adds the cookiemon user.

Adds the chocolate chip cookie.

Adds the dark chocolate chip cookie.

We’re now going to define two orders for the cookiemon user. The first order will be
for two chocolate chip cookies and nine chocolate chip cookies, and the second order
will be for nine dark chocolate chip cookies. Example 8-9 shows the details.

Example 8-9. Adding the orders

o1 = Order()
o1.user = cookiemon
session.add(o1)

line1 = LineItem(order=o1, cookie=cc, quantity=9, extended_cost=4.50)

session.add(line1)
session.commit()
o2 = Order()
o2.user = cookiemon
session.add(o2)

line1 = LineItem(order=o2, cookie=cc, quantity=2, extended_cost=1.50)
line2 = LineItem(order=o2, cookie=dcc, quantity=9, extended_cost=6.75)

session.add(line1)
session.add(line2)
session.commit()

Adding the first order.

Adding the second order.

Transactions | 115

That will give us all the order data we need to explore how transactions work. Now
we need to define a function called ship_it. Our ship_it function will accept an
order_id, remove the cookies from inventory, and mark the order as shipped.
Example 8-10 shows how this works.

Example 8-10. Defining the ship_it function

def ship_it(order_id):
 order = session.query(Order).get(order_id)
 for li in order.line_items:
 li.cookie.quantity = li.cookie.quantity - li.quantity
 session.add(li.cookie)
 order.shipped = True
 session.add(order)
 session.commit()
 print("shipped order ID: {}".format(order_id))

For each line item we find on the order, this removes the quantity on that line
item from the cookie quantity so we know how many cookies we have left.

We update the order to mark it as shipped.

The ship_it function will perform all the actions required when we ship an order.
Let’s run it on our first order and then query the cookies table to make sure it
reduced the cookie count correctly. Example 8-11 shows how to do that.

Example 8-11. Running ship_it on the first order

ship_it(1)
print(session.query(Cookie.cookie_name, Cookie.quantity).all())

Runs ship_it on the first order_id.

Prints our cookie inventory.

Running the code in Example 8-11 results in:

shipped order ID: 1
[(u'chocolate chip', 3), (u'dark chocolate chip', 1)]

Excellent! It worked. We can see that we don’t have enough cookies in our inventory
to fulfill the second order; however, in our fast-paced warehouse, these orders might
be processed at the same time. Now try shipping our second order with the ship_it
function by running the following line of code:

ship_it(2)

That command gives us this result:

116 | Chapter 8: Understanding the Session and Exceptions

IntegrityError Traceback (most recent call last)
<ipython-input-7-8a7f7805a7f6> in <module>()
 ---> 1 ship_it(2)
<ipython-input-5-c442ae46326c> in ship_it(order_id)
 6 order.shipped = True
 7 session.add(order)
 ---> 8 session.commit()
 9 print("shipped order ID: {}".format(order_id))
...

IntegrityError: (sqlite3.IntegrityError) CHECK constraint failed:
quantity_positive [SQL: u'UPDATE cookies SET quantity=? WHERE
cookies.cookie_id = ?'] [parameters: (-8, 2)]

We got an IntegrityError because we didn’t have enough dark chocolate chip cook‐
ies to ship the order. This actually breaks our current session. If we attempt to issue
any more statements via the session such as a query to get the list of cookies, we’ll get
the output shown in Example 8-12.

Example 8-12. Query on an errored session

print(session.query(Cookie.cookie_name, Cookie.quantity).all())

InvalidRequestError Traceback (most recent call last)
<ipython-input-8-90b93364fb2d> in <module>()
 ---> 1 print(session.query(Cookie.cookie_name, Cookie.quantity).all())

...

InvalidRequestError: This Session's transaction has been rolled back due to a
previous exception during flush. To begin a new transaction with this Session,
first issue Session.rollback(). Original exception was: (sqlite3.IntegrityError)
CHECK constraint failed: quantity_positive [SQL: u'UPDATE cookies SET
quantity=? WHERE cookies.cookie_id = ?'] [parameters: ((1, 1), (-8, 2))]

Trimming out all the traceback details, an InvalidRequestError exception is raised
due to the previous IntegrityError. To recover from this session state, we need to
manually roll back the transaction. The message shown in Example 8-12 can be a bit
confusing because it says “This Session’s transaction has been rolled back,” but it does
point you toward performing the roll back manually. The rollback() method on the
session will restore our session to a working station. Whenever we encounter an
exception, we want to issue a rollback():

session.rollback()
print(session.query(Cookie.cookie_name, Cookie.quantity).all())

This code will output normally with the data we expect:

[(u'chocolate chip', 3), (u'dark chocolate chip', 1)]

Transactions | 117

With our session working normally, now we can use a try/except block to ensure
that if the IntegrityError exception occurs a message is printed and transaction is
rolled back so our application will continue to function normally, as shown in
Example 8-13.

Example 8-13. Transactional ship_it

from sqlalchemy.exc import IntegrityError
def ship_it(order_id):
 order = session.query(Order).get(order_id)
 for li in order.line_items:
 li.cookie.quantity = li.cookie.quantity - li.quantity
 session.add(li.cookie)
 order.shipped = True
 session.add(order)
 try:
 session.commit()
 print("shipped order ID: {}".format(order_id))
 except IntegrityError as error:
 print('ERROR: {!s}'.format(error.orig))
 session.rollback()

Importing the IntegrityError so we can handle its exception.

Committing the transaction if no exceptions occur.

Rolling back the transaction if an exception occurs.

Let’s rerun our transaction-based ship_it on the second order as shown here:

ship_it(2)

ERROR: CHECK constraint failed: quantity_positive

The program doesn’t get stopped by the exception, and prints us the exception mes‐
sage without the traceback. Let’s check the inventory like we did in Example 8-12 to
make sure that it didn’t mess up our inventory with a partial shipment:

[(u'chocolate chip', 3), (u'dark chocolate chip', 1)]

Excellent! Our transactional function didn’t mess up our inventory or crash our
application. We also didn’t have to do a lot of coding to manually roll back the state‐
ments that did succeed. As you can see, transactions can be really useful in situations
like this, and can save you a lot of manual coding.

In this chapter, we saw how to handle exceptions in both single statements and
groups of statements. By using a normal try/except block on a single statements, we
can prevent our application from crashing in case a database statement error occurs.
We also looked at the session transaction to avoid inconsistent databases, and appli‐

118 | Chapter 8: Understanding the Session and Exceptions

cation crashes in groups of statements. In the next chapter, we’ll learn how to test our
code to ensure it behaves the way we expect.

Transactions | 119

CHAPTER 9

Testing with SQLAlchemy ORM

Most testing inside of applications consists of both unit and functional tests; however,
with SQLAlchemy, it can be a lot of work to correctly mock out a query statement or
a model for unit testing. That work often does not truly lead to much gain over test‐
ing against a database during the functional test. This leads people to make wrapper
functions for their queries that they can easily mock out during unit tests, or to just
test against a database in both their unit and function tests. I personally like to use
small wrapper functions when possible or—if that doesn’t make sense for some rea‐
son or I’m in legacy code—mock it out.

This chapter covers how to perform functional tests against a database, and how to
mock out SQLAlchemy queries and connections.

Testing with a Test Database
For our example application, we are going to have an app.py file that contains our
application logic, and a db.py file that contains our data models and session. These
files can be found in the CH10/ folder of this book’s example code.

How an application is structured is an implementation detail that can have quite an
effect on how you need to do your testing. In db.py, you can see that our database is
set up via the DataAccessLayer class. We’re using this data access class to enable us to
initialize a database engine and session whenever we like. You’ll see this pattern com‐
monly used in web frameworks when coupled with SQLAlchemy. The
DataAccessLayer class is initialized without an engine and a session in the dal vari‐
able.

121

While we will be testing with a SQLite database in our examples, it
is highly recommended that you test against the same database
engine you use in your production environment. If you use a dif‐
ferent database in testing, some of your constraints and statements
that may work with SQLite might not work with, say, PostgreSQL.

Example 9-1 shows a snippet of our db.py file that contains the DataAccessLayer.

Example 9-1. DataAccessLayer class

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class DataAccessLayer:

 def __init__(self):
 self.engine = None
 self.conn_string = 'some conn string'

 def connect(self):
 self.engine = create_engine(self.conn_string)
 Base.metadata.create_all(self.engine)
 self.Session = sessionmaker(bind=self.engine)

dal = DataAccessLayer()

__init__ provides a way to initialize a connection with a specific connection
string like a factory.

The connect method creates all the tables in our Base class, and uses
sessionmaker to create a easy way to make sessions for use in our application.

The connect method provides an instance of the DataAccessLayer class that can
be imported throughout our application.

In addition to our DataAccessLayer, we also have all our data models defined in the
db.py file. These models are the same models we used in Chapter 8, all gathered
together for us to use in our application. Here are all the models in the db.py file:

from datetime import datetime

from sqlalchemy import (Column, Integer, Numeric, String, DateTime, ForeignKey,
 Boolean, create_engine)
from sqlalchemy.orm import relationship, backref, sessionmaker

122 | Chapter 9: Testing with SQLAlchemy ORM

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer, primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

 def __repr__(self):
 return "Cookie(cookie_name='{self.cookie_name}', " \
 "cookie_recipe_url='{self.cookie_recipe_url}', " \
 "cookie_sku='{self.cookie_sku}', " \
 "quantity={self.quantity}, " \
 "unit_cost={self.unit_cost})".format(self=self)

class User(Base):
 __tablename__ = 'users'

 user_id = Column(Integer(), primary_key=True)
 username = Column(String(15), nullable=False, unique=True)
 email_address = Column(String(255), nullable=False)
 phone = Column(String(20), nullable=False)
 password = Column(String(25), nullable=False)
 created_on = Column(DateTime(), default=datetime.now)
 updated_on = Column(DateTime(), default=datetime.now, onupdate=datetime.now)

 def __repr__(self):
 return "User(username='{self.username}', " \
 "email_address='{self.email_address}', " \
 "phone='{self.phone}', " \
 "password='{self.password}')".format(self=self)

class Order(Base):
 __tablename__ = 'orders'
 order_id = Column(Integer(), primary_key=True)
 user_id = Column(Integer(), ForeignKey('users.user_id'))
 shipped = Column(Boolean(), default=False)

 user = relationship("User", backref=backref('orders', order_by=order_id))

 def __repr__(self):
 return "Order(user_id={self.user_id}, " \
 "shipped={self.shipped})".format(self=self)

class LineItem(Base):
 __tablename__ = 'line_items'

Testing with a Test Database | 123

 line_item_id = Column(Integer(), primary_key=True)
 order_id = Column(Integer(), ForeignKey('orders.order_id'))
 cookie_id = Column(Integer(), ForeignKey('cookies.cookie_id'))
 quantity = Column(Integer())
 extended_cost = Column(Numeric(12, 2))

 order = relationship("Order", backref=backref('line_items',
 order_by=line_item_id))
 cookie = relationship("Cookie", uselist=False)

 def __repr__(self):
 return "LineItem(order_id={self.order_id}, " \
 "cookie_id={self.cookie_id}, " \
 "quantity={self.quantity}, " \
 "extended_cost={self.extended_cost})".format(
 self=self)

With our data models and access class in place, we are ready to look at the code we
are going to test. We are going to write tests for the get_orders_by_customer func‐
tion we built in Chapter 7, which is found the app.py file, shown in Example 9-2.

Example 9-2. app.py to test

from db import dal, Cookie, LineItem, Order, User, DataAccessLayer

def get_orders_by_customer(cust_name, shipped=None, details=False):
 query = dal.session.query(Order.order_id, User.username, User.phone)
 query = query.join(User)
 if details:
 query = query.add_columns(Cookie.cookie_name, LineItem.quantity,
 LineItem.extended_cost)
 query = query.join(LineItem).join(Cookie)
 if shipped is not None:
 query = query.filter(Order.shipped == shipped)
 results = query.filter(User.username == cust_name).all()
 return results

This is our DataAccessLayer instance from the db.py file, and the data models we
are using in our application code.

Because our session is an attribute of the dal object, we need to access it from
there.

Let’s look at all the ways the get_orders_by_customer function can be used. We’re
going to assume for this exercise that we have already validated that the inputs to the
function are of the correct type. However, it would be very wise to make sure you test
with data that will work correctly and data that could cause errors. Here’s a list of the
variables our function can accept and their possible values:

124 | Chapter 9: Testing with SQLAlchemy ORM

• cust_name can be blank, a string containing the name of a valid customer, or a
string that does not contain the name of a valid customer.

• shipped can be None, True, or False.
• details can be True or False.

If we want to test all of the possible combinations, we will need 12 (that’s 3 * 3 * 2)
tests to fully test this function.

It is important not to test things that are just part of the basic func‐
tionality of SQLAlchemy, as SQLAlchemy already comes with a
large collection of well-written tests. For example, we wouldn’t
want to test a simple insert, select, delete, or update statement, as
those are tested within the SQLAlchemy project itself. Instead, look
to test things that your code manipulates that could affect how the
SQLAlchemy statement is run or the results returned by it.

For this testing example, we’re going to use the built-in unittest module. Don’t
worry if you’re not familiar with this module; I’ll explain the key points. First, we
need to set up the test class and initialize the dal’s connection by creating a new file
named test_app.py, as shown in Example 9-3.

Example 9-3. Setting up the tests

import unittest

from db import dal

class TestApp(unittest.TestCase):

 @classmethod
 def setUpClass(cls):
 dal.conn_string = 'sqlite:///:memory:'
 dal.connect()

unittest requires test classes inherited from unittest.TestCase.

The setUpClass method is run once prior to all the tests.

Sets the connection string to our in-memory database for testing.

With our database connected, we are ready to write some tests. We’re going to add
these tests as functions within the TestApp class as shown in Example 9-4.

Testing with a Test Database | 125

Example 9-4. The first six tests for blank usernames

 def test_orders_by_customer_blank(self):
 results = get_orders_by_customer('')
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_shipped(self):
 results = get_orders_by_customer('', True)
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_notshipped(self):
 results = get_orders_by_customer('', False)
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_details(self):
 results = get_orders_by_customer('', details=True)
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_shipped_details(self):
 results = get_orders_by_customer('', True, True)
 self.assertEqual(results, [])

 def test_orders_by_customer_blank_notshipped_details(self):
 results = get_orders_by_customer('', False, True)
 self.assertEqual(results, [])

unittest expects each test to begin with the letters test.

unittest uses the assertEqual method to verify that the result matches what
you expect. Because a user is not found, you should get an empty list back.

Now save the test file as test_app.py, and run the unit tests with the following com‐
mand:

python -m unittest test_app
......

Ran 6 tests in 0.018s

You might get a warning about SQLite and decimal types when
running the unit tests; just ignore this as it’s normal for our exam‐
ples. It occurs because SQLite doesn’t have a true decimal type, and
SQLAlchemy wants you to know that there could be some oddities
due to the conversion from SQLite’s float type. It is always wise to
investigate these messages, because in production code they will
normally point you to the proper way you should be doing some‐
thing. We are purposely triggering this warning here so that you
can see what it looks like.

126 | Chapter 9: Testing with SQLAlchemy ORM

Now we need to load up some data, and make sure our tests still work. We’re going to
reuse the work we did in Chapter 7, and insert the same users, orders, and line items.
However, this time we are going to wrap the data inserts in a function called db_prep.
This will allow us to insert this data prior to a test with a simple function call. For
simplicity’s sake, I have put this function inside the db.py file (see Example 9-5); how‐
ever, in real-world situations, it will often be located in a test fixtures or utilities file
instead.

Example 9-5. Inserting some test data

def prep_db(session):
 c1 = Cookie(cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/dark_cc.html',
 cookie_sku='CC02',
 quantity=1,
 unit_cost=0.75)
 c2 = Cookie(cookie_name='peanut butter',
 cookie_recipe_url='http://some.aweso.me/cookie/peanut.html',
 cookie_sku='PB01',
 quantity=24,
 unit_cost=0.25)
 c3 = Cookie(cookie_name='oatmeal raisin',
 cookie_recipe_url='http://some.okay.me/cookie/raisin.html',
 cookie_sku='EWW01',
 quantity=100,
 unit_cost=1.00)
 session.bulk_save_objects([c1, c2, c3])
 session.commit()

 cookiemon = User(username='cookiemon',
 email_address='mon@cookie.com',
 phone='111-111-1111',
 password='password')
 cakeeater = User(username='cakeeater',
 email_address='cakeeater@cake.com',
 phone='222-222-2222',
 password='password')
 pieperson = User(username='pieperson',
 email_address='person@pie.com',
 phone='333-333-3333',
 password='password')
 session.add(cookiemon)
 session.add(cakeeater)
 session.add(pieperson)
 session.commit()

 o1 = Order()
 o1.user = cookiemon
 session.add(o1)

Testing with a Test Database | 127

 line1 = LineItem(cookie=c1, quantity=2, extended_cost=1.00)

 line2 = LineItem(cookie=c3, quantity=12, extended_cost=3.00)

 o1.line_items.append(line1)
 o1.line_items.append(line2)
 session.commit()

 o2 = Order()
 o2.user = cakeeater

 line1 = LineItem(cookie=c1, quantity=24, extended_cost=12.00)
 line2 = LineItem(cookie=c3, quantity=6, extended_cost=6.00)

 o2.line_items.append(line1)
 o2.line_items.append(line2)

 session.add(o2)
 session.commit()

Now that we have a prep_db function, we can use it in our test_app.py setUpClass
method to load data into the database prior to running our tests. So now our setUp
Class method looks like this:

@classmethod
def setUpClass(cls):
 dal.conn_string = 'sqlite:///:memory:'
 dal.connect()
 dal.session = dal.Session()
 prep_db(dal.session)
 dal.session.close()

We also need to create a new session before each test, and roll back any changes made
during that session after each test. We can do that by adding a setUp method that is
automatically run prior to each individual test, and a tearDown method that is aut‐
matically run after each test, as follows:

def setUp(self):
 dal.session = dal.Session()

def tearDown(self):
 dal.session.rollback()
 dal.session.close()

Establishes a new session before each test.

Rolls back any changes during the test and cleans up the session after each test.

We’re also going to add our expected results as properties of the TestApp class as
shown here:

128 | Chapter 9: Testing with SQLAlchemy ORM

 cookie_orders = [(1, u'cookiemon', u'111-111-1111')]
 cookie_details = [
 (1, u'cookiemon', u'111-111-1111',
 u'dark chocolate chip', 2, Decimal('1.00')),
 (1, u'cookiemon', u'111-111-1111',
 u'oatmeal raisin', 12, Decimal('3.00'))]

We can use the test data to ensure that our function does the right thing when given a
valid username. These tests go inside of our TestApp class as new functions, as
Example 9-6 shows.

Example 9-6. Tests for a valid user

 def test_orders_by_customer(self):
 results = get_orders_by_customer('cookiemon')
 self.assertEqual(results, self.cookie_orders)

 def test_orders_by_customer_shipped_only(self):
 results = get_orders_by_customer('cookiemon', True)
 self.assertEqual(results, [])

 def test_orders_by_customer_unshipped_only(self):
 results = get_orders_by_customer('cookiemon', False)
 self.assertEqual(results, self.cookie_orders)

 def test_orders_by_customer_with_details(self):
 results = get_orders_by_customer('cookiemon', details=True)
 self.assertEqual(results, self.cookie_details)

 def test_orders_by_customer_shipped_only_with_details(self):
 results = get_orders_by_customer('cookiemon', True, True)
 self.assertEqual(results, [])

 def test_orders_by_customer_unshipped_only_details(self):
 results = get_orders_by_customer('cookiemon', False, True)
 self.assertEqual(results, self.cookie_details)

Using the tests in Example 9-6 as guidance, can you complete the tests for what hap‐
pens for a different user, such as cakeeater? How about the tests for a username that
doesn’t exist in the system yet? Or if we get an integer instead of a string for the user‐
name, what will be the result? When you are done, compare your tests to those in the
supplied example code for this chapter to see if your tests are similar to the ones used
in this book.

We’ve now learned how we can use SQLAlchemy in functional tests to determine
whether a function behaves as expected on a given data set. We have also looked at
how to set up a unittest file and how to prepare the database for use in our tests.
Next, we are ready to look at testing without hitting the database.

Testing with a Test Database | 129

Using Mocks
This technique can be a powerful tool when you have a test environment where creat‐
ing a test database doesn’t make sense or simply isn’t feasible. If you have a large
amount of logic that operates on the result of the query, it can be useful to mock out
the SQLAlchemy code to return the values you want so you can test only the sur‐
rounding logic. Normally when I am going to mock out some part of the query, I still
create the in-memory database, but I don’t load any data into it, and I mock out the
database connection itself. This allows me to control what is returned by the execute
and fetch methods. We are going to explore how to do that in this section.

To learn how to use mocks in our tests, we are going to make a single test for a valid
user. We will use the powerful Python mock library to control what is returned by the
connection. Mock is part of the unittest module in Python 3. However, if you are
using Python 2, you will need to install the mock library using pip to get the latest
mock features. To do that, run this command:

pip install mock

Now that we have mock installed, we can use it in our tests. Mock has a patch func‐
tion that will let us replace a given object in a Python file with a MagicMock that we
can control from our test. A MagicMock is a special type of Python object that tracks
how it is used and allows us to define how it behaves based on how it is being used.

First, we need to import the mock library. In Python 2, we need to do the following:

import mock

In Python 3, we need to do the following:

from unittest import mock

With mock imported, we are going to use the patch method as a decorator to replace
the session part of the dal object. A decorator is a function that wraps another func‐
tion, and alters the wrapped function’s behavior. Because the dal object is imported
by name into the app.py file, we will need to patch it inside the app module. This will
get passed into the test function as an argument. Now that we have a mock object, we
can set a return value for the execute method, which in this case should be nothing
but a chained fetchall method whose return value is the data we want to test with.
Example 9-7 shows the code needed to use the mock in place of the dal object.

Example 9-7. Mocked connection test

import unittest
from decimal import Decimal

import mock

130 | Chapter 9: Testing with SQLAlchemy ORM

from app import get_orders_by_customer

class TestApp(unittest.TestCase):
 cookie_orders = [(1, u'cookiemon', u'111-111-1111')]
 cookie_details = [
 (1, u'cookiemon', u'111-111-1111',
 u'dark chocolate chip', 2, Decimal('1.00')),
 (1, u'cookiemon', u'111-111-1111',
 u'oatmeal raisin', 12, Decimal('3.00'))]

 @mock.patch('app.dal.session')
 def test_orders_by_customer(self, mock_dal):
 mock_dal.query.return_value.join.return_value.filter.return_value. \
 all.return_value = self.cookie_orders
 results = get_orders_by_customer('cookiemon')
 self.assertEqual(results, self.cookie_orders)

Patching dal.session in the app module with a mock.

That mock is passed into the test function as mock_dal.

We set the return value of the execute method to the chained return value of the
all method which we set to self.cookie_order.

Now we call the test function where the dal.connection will be mocked and
return the value we set in the prior step.

You can see that a complicated query like the one in Example 9-7 might get tedious
quickly when trying to mock out the full query or connection. Don’t shy away from
the work though; it can be very useful for finding obscure bugs

As an exercise, you should work on building the remainder of the tests that we built
with the in-memory database with the mocked test types. I would encourage you to
mock both the query and the connection to get familiar with the mocking process.

You should now feel comfortable with testing a function that contains SQLAlchemy
ORM functions and models within it. You should also understand how to prepopu‐
late data into the test database for use in your test. Finally, you should understand
how to mock both the query and connection objects. While this chapter used a sim‐
ple example, we will dive further into testing in Chapter 14, which looks at Flask and
Pyramid.

Up next, we are going to look at how to handle an existing database with SQLAl‐
chemy without the need to re-create all the schema in Python via reflection with
Automap.

Using Mocks | 131

CHAPTER 10

Reflection with SQLAlchemy ORM
and Automap

As you learned in Chapter 5, reflection lets you populate a SQLAlchemy object from
an existing database; reflection works on tables, views, indexes, and foreign keys. But
what if you want to reflect a database schema into ORM-style classes? Fortunately, the
handy SQLAlchemy extension automap lets you do just that.

Reflection via automap is a very useful tool; however, as of version 1.0 of SQLAl‐
chemy we cannot reflect CheckConstraints, comments, or triggers. You also can’t
reflect client-side defaults or an association between a sequence and a column. How‐
ever, it is possible to add them manually using the methods we learned in Chapter 6.

Just like in Chapter 5, we are going to use the Chinook database for testing. We’ll be
using the SQLite version, which is available in the CH11/ folder of this book’s sample
code. That folder also contains an image of the database schema so you can visualize
the schema we’ll be working with throughout this chapter.

Reflecting a Database with Automap
In order to reflect a database, instead of using the declarative_base we’ve been
using with the ORM so far, we’re going to use the automap_base. Let’s start by creat‐
ing a Base object to work with, as shown in Example 10-1

Example 10-1. Creating a Base object with automap_base

from sqlalchemy.ext.automap import automap_base

Base = automap_base()

133

Imports the automap_base from the automap extension.

Initializes a Base object.

Next, we need an engine connected to the database that we want to reflect.
Example 10-2 demonstrates how to connect to the Chinook database.

Example 10-2. Initializaing an engine for the Chinook database

from sqlalchemy import create_engine

engine = create_engine('sqlite:///Chinook_Sqlite.sqlite')

This connection string assumes you are in the same directory as the example
database.

With the Base and engine setup, we have everything we need to reflect the database.
Using the prepare method on the Base object we created in Example 10-1 will scan
everything available on the engine we just created, and reflect everything it can.
Here’s how you reflect the database using the automap Base object:

Base.prepare(engine, reflect=True)

That one line of code is all you need to reflect the entire database! This reflection has
created ORM objects for each table that is accessible under the class property of the
automap Base. To print a list of those objects, simply run this line of code:

Base.classes.keys()

Here’s the output you get when you do that:

['Album',
 'Customer',
 'Playlist',
 'Artist',
 'Track',
 'Employee',
 'MediaType',
 'InvoiceLine',
 'Invoice',
 'Genre']

Now let’s create some objects to reference the Artist and Album tables:

Artist = Base.classes.Artist
Album = Base.classes.Album

The first line of code creates a reference to the Artist ORM object we reflected, and
the second line creates a reference to the Album ORM object we reflected. We can use
the Artist object just as we did in Chapter 7 with our manually defined ORM

134 | Chapter 10: Reflection with SQLAlchemy ORM and Automap

objects. Example 10-3 demonstrates how to perform a simple query with the object to
get the first 10 records in the table.

Example 10-3. Using the Artist table

from sqlalchemy.orm import Session

session = Session(engine)
for artist in session.query(Artist).limit(10):
 print(artist.ArtistId, artist.Name)

Example 10-3 will output the following:

(1, u'AC/DC')
(2, u'Accept')
(3, u'Aerosmith')
(4, u'Alanis Morissette')
(5, u'Alice In Chains')
(6, u'Ant\xf4nio Carlos Jobim')
(7, u'Apocalyptica')
(8, u'Audioslave')
(9, u'BackBeat')
(10, u'Billy Cobham')

Now that we know how to reflect a database and map it to objects, let’s look at how
relationships are reflected via automap.

Reflected Relationships
Automap can automatically reflect and establish many-to-one, one-to-many, and
many-to-many relationships. Let’s look at how the relationship between our Album
and Artist tables was established. When automap creates a relationship, it creates a
<related_object>_collection property on the object, as shown on the Artist
object in Example 10-4.

Example 10-4. Using the relationship between Artist and Album to print related data

artist = session.query(Artist).first()
for album in artist.album_collection:
 print('{} - {}'.format(artist.Name, album.Title))

This will output:

AC/DC - For Those About To Rock We Salute You
AC/DC - Let There Be Rock

You can also configure automap and override certain aspects of its behavior to tailor
the classes it creates to precise specifications; however, that is well beyond the scope
of this book. You can learn much more about this in the SQLAlchemy documenation.

Reflected Relationships | 135

http://docs.sqlalchemy.org/en/latest/orm/extensions/automap.html#specifying-classes-explcitly

This chapter wraps up the essential parts of SQLAlchemy ORM. Hopefully, you’ve
gotten a sense for how powerful this part of SQLAlchemy is. This book has given you
a solid introduction to ORM, but there’s plenty more to learn; for more information,
check out the documentation.

In the next section, we’re going to learn how to use Alembic to manage database
migrations so that we can change our database schema without having to destroy and
re-create the database.

136 | Chapter 10: Reflection with SQLAlchemy ORM and Automap

http://docs.sqlalchemy.org/en/latest/orm/index.html

PART III

Alembic

Alembic is a tool for handling database changes that leverages SQLAlchemy to per‐
form the migrations. Since SQLAlchemy will only create missing tables when we use
the metadata’s create_all method, it doesn’t update the database tables to match any
changes we might make to the columns. Nor would it delete tables that we removed
from the code. Alembic provides a way to do things like adding/deleting tables,
changing column names, and adding new constraints. Because Alembic uses
SQLAlchemy to perform the migrations, they can be used on a wide array of backend
databases.

CHAPTER 11

Getting Started with Alembic

Alembic provides a way for us to programmically create and perform migrations to
handle changes to the database that we’ll need to make as our application evolves. For
example, we might add columns to our tables or remove attributes from our models.
We might also add entirely new models, or split an existing model into multiple mod‐
els. Alembic provides a way for us to preform these types of changes by leveraging the
power of SQLAlchemy.

To get started, we need to install Alembic, which we can do with the following:

pip install alembic

Once we have Alembic installed, we need to create the migration environment.

Creating the Migration Environment
To create the migration environment, we are going to create a folder labeled CH12,
and change into that directory. Next, run the alembic init alembic command to
create our migration environment in the alembic/ directory. People commonly create
the migration environment in a migrations/ directory, which you can do with alembic
init migrations. You can choose whatever directory name you like, but I encourage
you to name it something distinctive that won’t be used as a module name in your
code anywhere. This initialization process creates the migration environment and
also creates an alembic.ini file with the configuration options. If we look at our direc‐
tory now, we’ll see the following structure:

139

.
├── alembic
│ ├── README
│ ├── env.py
│ ├── script.py.mako
│ └── versions
└── alembic.ini

Inside our newly created migration environment, we’ll find env.py and the
script.py.mako template file along with a versions/ directory. The versions/ directory
will hold our migration scripts. The env.py file is used by Alembic to define and
instantiate a SQLAlchemy engine, connect to that engine, and start a transaction, and
calls the migration engine properly when you run an Alembic command. The
script.py.mako template is used when creating a migration, and it defines the basic
structure of a migration.

With the environment created, it’s time to configure it to work with our application.

Configuring the Migration Environment
The settings in the alembic.ini and env.py files need to be tweaked so that Alembic can
work with our database and application. Let’s start with the alembic.ini file where we
need to change the sqlalchemy.url option to match our database connection string.
We want to set it to connect to a SQLite file named alembictest.db in the current
directory; to do that, edit the sqlalchemy.url line to look like the following:

sqlalchemy.url = sqlite:///alembictest.db

In all our Alembic examples, we will be creating all our code in an app/db.py file using
the declarative style of the ORM. First, create an app/ directory and an empty
__init__.py in it to make app a module.

Then we’ll add the following code into app/db.py to set up SQLAlchemy to use the
same database that Alembic is configured to use in the alembic.ini file and define a
declarative base:

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///alembictest.db')

Base = declarative_base()

Now we need to change the env.py file to point to our metadata, which is an attribute
of the Base instance we created in app/db.py. It uses the metadata to compare what it
finds in the database to the models defined in SQLAlchemy. We’ll start by adding the
current directory to the path that Python uses for locating modules so that it can see
our app module:

140 | Chapter 11: Getting Started with Alembic

import os
import sys

sys.path.append(os.getcwd())

Adds the current working directory (CH12) to the sys.path that Python uses
when searching for modules

Finally, we’ll change the target metadata line in env.py to match our metadata object
in the app/db.py file:

from app.db import Base
target_metadata = Base.metadata

Import our instance of Base.

Instruct Alembic to use the Base.metadata as its target.

With this completed, we have our Alembic environment set up properly to use the
application’s database and metadata, and we have built a skeleton of an application
where we will define our data models in Chapter 12.

In this chapter, we learned how to create a migration environment and configure it to
share the same database and metadata as our application. In the next chapter, we will
begin building migrations both by hand and using the autogeneration capabilities.

Configuring the Migration Environment | 141

CHAPTER 12

Building Migrations

In Chapter 11, we initialized and configured the Alembic migration environment to
prepare for adding data classes to our application and to create migrations to add
them to our database. We’re going to explore how to use autogenerate for adding
tables, and how to handcraft migrations to accomplish things that autogenerate can‐
not do. It’s always a good idea to start with an empty migration, so let’s begin there as
it gives us a clean starting point for our migrations.

Generating a Base Empty Migration
To create the base empty migration, make sure you are in the CH12/ folder of the
example code for this book. We’ll create an empty migration using this command:

alembic revision -m "Empty Init"
 Generating ch12/alembic/versions/8a8a9d067_empty_init.py ... done

Run the alembic revision command and add the message (-m) "Empty Init"
to the migration

This will create a migration file in the alembic/versions/ subfolder. The filenames will
always begin with a hash that represents the revision ID and then whatever message
you supply. Let’s look inside this file:

"""Empty Init

Revision ID: 8a8a9d067
Revises:
Create Date: 2015-09-13 20:10:05.486995

"""

revision identifiers, used by Alembic.

143

revision = '8a8a9d067'
down_revision = None
branch_labels = None
depends_on = None

from alembic import op
import sqlalchemy as sa

def upgrade():
 pass

def downgrade():
 pass

The migration message we specified

The Alembic revision ID

The previous revision used to determine how to downgrade

The branch associated with this migration

Any migrations that this one depends on

The file starts with a header that contains the message we supplied (if any), the revi‐
sion ID, and the date and time at which it was created. Following that is the identifiers
section, which explains what migration this is and any details about what it down‐
grades to or depends on, or any branch associated with this migration. Typically, if
you are making data class changes in a branch of your code, you’ll also want to
branch your Alembic migrations as well.

Next, there is an upgrade method that would contain any Python code required to
perform the changes to the database when applying this migration. Finally, there is a
downgrade method that contains the code required to undo this migration and
restore the database to the prior migration step.

Because we don’t have any data classes and have made no changes, both our upgrade
and downgrade methods are empty. So running this migration will have no effect, but
it will provide a great foundation for our migration chain. To run all the migrations
from whatever the current database state is to the highest Alembic migration, we exe‐
cute the following command:

alembic upgrade head
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade -> 8a8a9d067, Empty Init

144 | Chapter 12: Building Migrations

Upgrades the database to the head (newest) revision.

In the preceding output, it will list every revision it went through to get to the newest
revision. In our case, we only have one, the Empty Init migration, which it ran last.

With our base in place, we can begin to add our user data class to our application.
Once we add the data class, we can build an autogenerated migration and use it to
create the associated table in the database.

Autogenerating a Migration
Now let’s add our user data class to app/db.py. It’s going to be the same Cookie class
we’ve been using in the ORM section. We’re going to add to the imports from
sqlalchemy, including the Column and column types that are used in the Cookie class,
and then add the Cookie class itself, as shown in Example 12-1.

Example 12-1. Updated app/db.py

from sqlalchemy import create_engine, Column, Integer, Numeric, String

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///alembictest.db')

Base = declarative_base()

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer, primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

With our class added, we are ready to create a migration to add this table to our data‐
base. This is a very straightforward migration, and we can take advantage of Alem‐
bic’s ability to autogenerate the migration (Example 12-2).

Example 12-2. Autogenerating the migration

alembic revision --autogenerate -m "Added Cookie model"
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.autogenerate.compare] Detected added table 'cookies'

Autogenerating a Migration | 145

INFO [alembic.autogenerate.compare] Detected added index 'ix_cookies_cookie_name'
 on '['cookie_name']'
 Generating ch12/alembic/versions/34044511331_added_cookie_model.py ... done

Autogenerates a migration with the message “Added Cookie model.”

So when we run the autogeneration command, Alembic inspects the metadata of our
SQLAlchemy Base and then compares that to the current database state. In
Example 12-2, it detected that we added a table named cookies (based on the
__tablename__) and an index on the cookie_name field of that table. It marks the dif‐
ferences as changes, and adds logic to create them in the migration file. Let’s investi‐
gate the migration file it created in Example 12-3.

Example 12-3. The cookies migration file

"""Added Cookie model

Revision ID: 34044511331
Revises: 8a8a9d067
Create Date: 2015-09-14 20:37:25.924031

"""

revision identifiers, used by Alembic.
revision = '34044511331'
down_revision = '8a8a9d067'
branch_labels = None
depends_on = None

from alembic import op
import sqlalchemy as sa

def upgrade():
 ### commands auto generated by Alembic - please adjust! ###
 op.create_table('cookies',
 sa.Column('cookie_id', sa.Integer(), nullable=False),
 sa.Column('cookie_name', sa.String(length=50), nullable=True),
 sa.Column('cookie_recipe_url', sa.String(length=255), nullable=True),
 sa.Column('cookie_sku', sa.String(length=55), nullable=True),
 sa.Column('quantity', sa.Integer(), nullable=True),
 sa.Column('unit_cost', sa.Numeric(precision=12, scale=2), nullable=True),
 sa.PrimaryKeyConstraint('cookie_id')
)
 op.create_index(op.f('ix_cookies_cookie_name'), 'cookies', ['cookie_name'],
 unique=False)
 ### end Alembic commands ###

def downgrade():

146 | Chapter 12: Building Migrations

 ### commands auto generated by Alembic - please adjust! ###
 op.drop_index(op.f('ix_cookies_cookie_name'), table_name='cookies')
 op.drop_table('cookies')
 ### end Alembic commands ###

Uses Alembic’s create_table method to add our cookies table.

Adds the primary key on the cookie_id column.

Uses Alembic’s create_index method to add an index on the cookie_name col‐
umn.

Drops the cookie_name index with Alembic’s drop_index method.

Drops the cookies table.

In the upgrade method of Example 12-3, the syntax of the create_table method is
the same as the Table constructor we used with SQLAlchemy Core in Chapter 1: it’s
the table name followed by all the table’s columns, and any constraints. The
create_index method is the same as the Index constructor from Chapter 1 as well.

Finally, the downgrade method of Example 12-3 uses Alembic’s drop_index and
drop_table methods in the proper order to ensure that both the index and the table
are removed.

Let’s run this migration using the same command we did for running the empty
migration:

alembic upgrade head
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade 8a8a9d067 -> 34044511331,
Added Cookie model

After running this migration, we can take a peek in the database to make sure the
changes happened:

sqlite3 alembictest.db
SQLite version 3.8.5 2014-08-15 22:37:57
Enter ".help" for usage hints.
sqlite> .tables
alembic_version cookies
sqlite> .schema cookies
CREATE TABLE cookies (
 cookie_id INTEGER NOT NULL,
 cookie_name VARCHAR(50),
 cookie_recipe_url VARCHAR(255),
 cookie_sku VARCHAR(55),
 quantity INTEGER,

Autogenerating a Migration | 147

 unit_cost NUMERIC(12, 2),
 PRIMARY KEY (cookie_id)
);
CREATE INDEX ix_cookies_cookie_name ON cookies (cookie_name);

Accessing the database via the sqlite3 command.

Listing the tables in the database.

Printing the schema for the cookies table.

Excellent! Our migration created our table and our index perfectly. However, there
are some limitations to what Alembic autogenerate can do. Table 12-1 shows a list of
common schema changes that autogenerate can detect, and after that Table 12-2
shows some schema changes that autogenerate cannot detect or detects improperly.

Table 12-1. Schema changes that autogenerate can detect

Schema element Changes

Table Additions and removals

Column Additions, removals, change of nullable status on columns

Index Basic changes in indexes and explicitly named unique constraints, support for autogenerate of indexes
and unique constraints

Keys Basic renames

Table 12-2. Schema changes that autogenerate cannot detect

Schema element Actions

Tables Name changes

Column Name changes

Constraints Constraints without an explicit name

Types Types like ENUM that aren’t directly supported on a database backend

In addition to the actions that autogenerate can and cannot support, there are some
optionally supported capabilities that require special configuration or custom code to
implement. Some examples of these are changes to a column type or changes in a
server default. If you want to know more about autogeneration’s capabilities and limi‐
tations, you can read more at the Alembic autogenerate documentation.

148 | Chapter 12: Building Migrations

https://alembic.readthedocs.org/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect

Building a Migration Manually
Alembic can’t detect a table name change, so let’s learn how to do that without auto‐
generation and change the cookies table to be the new_cookies table. We need to
start by changing the __tablename__ in our Cookie class in app/db.py. We’ll change it
to look like the following:

class Cookie(Base):
 __tablename__ = 'new_cookies'

Now we need to create a new migration that we can edit with the message “Renaming
cookies to new_cookies”:

alembic revision -m "Renaming cookies to new_cookies"
 Generating ch12/alembic/versions/2e6a6cc63e9_renaming_cookies_to_new_cookies.py
... done

With our migration created, let’s edit the migration file and add the rename operation
to the upgrade and downgrade methods as shown here:

def upgrade():
 op.rename_table('cookies', 'new_cookies')

def downgrade():
 op.rename_table('new_cookies', 'cookies')

Now, we’re ready to run our migration with the alembic upgrade command:

alembic upgrade head
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade 34044511331 -> 2e6a6cc63e9,
 Renaming cookies to new_cookies

This will rename our table in the database to new_cookies. Let’s confirm that has hap‐
pened with the sqlite3 command:

± sqlite3 alembictest.db
SQLite version 3.8.5 2014-08-15 22:37:57
Enter ".help" for usage hints.
sqlite> .tables
alembic_version new_cookies

As we expected, there is no longer a cookies table, as it has been replaced by
new_cookies. In addition to rename_table, Alembic has many operations that you
can use to help with your database changes, as shown in Table 12-3.

Building a Migration Manually | 149

Table 12-3. Alembic operations

Operation Used for

add_column Adds a new column

alter_column Changes a column type, server default, or name

create_check_constraint Adds a new CheckConstraint

create_foreign_key Adds a new ForeignKey

create_index Adds a new Index

create_primary_key Adds a new PrimaryKey

create_table Adds a new table

create_unique_constraint Adds a new UniqueConstraint

drop_column Removes a column

drop_constraint Removes a constraint

drop_index Drops an index

drop_table Drops a table

execute Run a raw SQL statement

rename_table Renames a table

While Alembic supports all the operations in Table 12-3, they are
not supported on every backend database. For example,
alter_column does not work on SQLite databases because SQLite
doesn’t support altering a column in any way. SQLite also doesn’t
support dropping a column.

In this chapter, we’ve seen how to autogenerate and handcraft migrations to make
changes to our database in a repeatable manner. We also learned how to apply migra‐
tions with the alembic upgrade command. Remember, in addition to Alembic oper‐
ations, we can use any valid Python code in the migration to help us accomplish our
goals. In the next chapter, we’ll explore how to perform downgrades and further con‐
trol Alembic.

150 | Chapter 12: Building Migrations

CHAPTER 13

Controlling Alembic

In the previous chapter, we learned how to create and apply migrations, and in this
chapter we’re going to discuss how to further control Alembic. We’ll explore how to
learn the current migration level of the database, how to downgrade from a migra‐
tion, and how to mark the database at a certain migration level.

Determining a Database’s Migration Level
Before performing migrations, you should double-check to make sure what migra‐
tions have been applied to the database. You can determine what the last migration
applied to the database is by using the alembic current command. It will return the
revision ID of the current migration, and tell you whether it is the latest migration
(also known as the head). Let’s run the alembic current command in the CH12/
folder of the sample code for this book:

alembic current
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
2e6a6cc63e9 (head)

The last migration applied to the database

While this output shows that we are on migration 2e6a6cc63e9, it also tells us we are
on the head or latest migration. This was the migration that changed the cookies
table to new_cookies. We can confirm that with the alembic history command,
which will show us a list of our migrations. Example 13-1 shows what the Alembic
history looks like.

151

Example 13-1. Our migration history

alembic history
34044511331 -> 2e6a6cc63e9 (head), Renaming cookies to new_cookies
8a8a9d067 -> 34044511331, Added Cookie model
<base> -> 8a8a9d067, Empty Init

The output from Example 13-1 shows us every step from our initial empty migration
to our current migration that named the cookies table. I think we can all agree,
new_cookies was a terrible name for a table, especially when we change cookies again
and have new_new_cookies. To fix that and revert to the previous name, let’s learn
how to downgrade a migration.

Downgrading Migrations
To downgrade migrations, we need to choose the revision ID for the migration that
we want to go back to. For example, if you wanted to return all the way back to the
initial empty migration, you would choose revision ID 8a8a9d067. We mostly want to
undo the table rename, so for Example 13-2, let’s revert to revision ID 34044511331
using the alembic downgrade command.

Example 13-2. Downgrading the rename cookies migration

alembic downgrade 34044511331
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running downgrade 2e6a6cc63e9 -> 34044511331,
 Renaming cookies to new_cookies

Downgrade line

As we can see from the downgrade line in the output of Example 13-2, it has reverted
the rename. We can check the tables with the same SQLite .tables command we
used in Chapter 12. We can see the output of that command here:

sqlite3 alembictest.db
SQLite version 3.8.5 2014-08-15 22:37:57
Enter ".help" for usage hints.
sqlite> .tables
alembic_version cookies

Our table is back to being named cookies.

We can see the table has been returned to it’s original name of cookies. Now let’s use
alembic current to see what migration level the database is at:

± alembic current
INFO [alembic.runtime.migration] Context impl SQLiteImpl.

152 | Chapter 13: Controlling Alembic

INFO [alembic.runtime.migration] Will assume non-transactional DDL.
34044511331

The revision ID for the add cookies model migration

We can see that we’re back to the migration we specified in the downgrade command.
We also need to update our application code to use the cookies table name as well,
just as we did in Chapter 12, if we want to restore the application to a working state.
You can also see that we are not at the latest migration, as head is not on that last line.
This creates an interesting issue that we need to handle. If we no longer want to use
the rename cookies to new_cookies migration again, we can just delete it from our
alembic/versions/ directory. If you leave it behind it will get run the next time alembic
upgrade head is run, and this can cause disastrous results. We’re going to leave it in
place so that we can explore how to mark the database as being at a certain migration
level.

Marking the Database Migration Level
When we want to do something like skip a migration or restore a database, it is possi‐
ble that the database believes we are at a different migration than where we really are.
We will want to explicitly mark the database as being a specific migration level to cor‐
rect the issue. In Example 13-3, we are going to mark the database as being at revision
ID 2e6a6cc63e9 with the alembic stamp command.

Example 13-3. Marking the database migration level

alembic stamp 2e6a6cc63e9
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running stamp_revision 34044511331
 -> 2e6a6cc63e9

We can see from Example 13-3 that it stamped revision 34044511331 as the current
database migration level. However, if we look at the database tables, we’ll still see the
cookies table is present. Stamping the database migration level does not actually run
the migrations, it merely updates the Alembic table to reflect the migration level we
supplied in the command. This effectively skips applying the 34044511331 migration.

If you skip a migration like this, it will only apply to the current
database. If you point your Alembic migration environment to a
different database by changing the sqlalchemy.url, and that new
database is below the skipped migration’s level or is blank, running
alembic upgrade head will apply this migration.

Marking the Database Migration Level | 153

Generating SQL
If you would like to change your production database’s schema with SQL, Alembic
supports that as well. This is common in environments with tighter change manage‐
ment controls, or for those who have massively distributed environments and need to
run many different database servers. The process is the same as performing an
“online” Alembic upgrade like we did in Chapter 12. We can specify both the starting
and ending versions of the SQL generated. If you don’t supply a starting migration,
Alembic will build the SQL scripts for upgrading from an empty database.
Example 13-4 shows how to generate the SQL for our rename migration.

Example 13-4. Generating rename migration SQL

alembic upgrade 34044511331:2e6a6cc63e9 --sql
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Generating static SQL
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade 34044511331 -> 2e6a6cc63e9,
 Renaming cookies to new_cookies
-- Running upgrade 34044511331 -> 2e6a6cc63e9

ALTER TABLE cookies RENAME TO new_cookies;

UPDATE alembic_version SET version_num='2e6a6cc63e9'
WHERE alembic_version.version_num = '34044511331';

Upgrading from 34044511331 to 2e6a6cc63e9.

The output from Example 13-4 shows the two SQL statements required to rename
the cookies table, and update the Alembic migration level to the new level designated
by revision ID 2e6a6cc63e9. We can write this to a file by simple redirecting the stan‐
dard output to the filename of our choice, as shown here:

alembic upgrade 34044511331:2e6a6cc63e9 --sql > migration.sql
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Generating static SQL
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade 34044511331 -> 2e6a6cc63e9,
 Renaming cookies to new_cookies

After the command executes, we can cat the migration.sql file to see our SQL state‐
ments like so:

cat migration.sql
-- Running upgrade 34044511331 -> 2e6a6cc63e9

ALTER TABLE cookies RENAME TO new_cookies;

154 | Chapter 13: Controlling Alembic

UPDATE alembic_version SET version_num='2e6a6cc63e9'
WHERE alembic_version.version_num = '34044511331';

With our SQL statements prepared, we can now take this file and run it via whatever
tool we like on our database servers.

If you develop on one database backend (such as SQLite) and
deploy to a different database (such as PostgreSQL), make sure to
change the sqlalchemy.url configuration setting that we set in
Chapter 11 to use the connection string for a PostgreSQL database.
If not, you could get SQL output that is not correct for your pro‐
duction database! To avoid issues such as this, I always develop on
the database I use in production.

This wraps ups the basics of using Alembic. In this chapter, we learned how to see the
current migration level, downgrade a migration, and create SQL scripts that we can
apply without using Alembic directly on our production databases. If you want to
learn more about Alembic, such as how to handle code branches, you can get addi‐
tional details in the documentation.

The next chapter covers a collection of common things people need to do with
SQLAlchemy, including how to use it with the Flask web framework.

Generating SQL | 155

https://alembic.readthedocs.org/en/latest/index.html

CHAPTER 14

Cookbook

This chapter is different than previous ones in that each section focuses on a different
aspect of using SQLAlchemy. The coverage here isn’t as detailed as in previous chap‐
ters; consider this a quick rundown of useful tools. At the end of each section, there’s
information about where you can learn more if you’re interested. These sections are
not meant to be full tutorials, but rather short recipes on how to accomplish a partic‐
ular task. The first part of this chapter focuses on a few advanced usages of SQLAl‐
chemy, the second part on using SQLAlchemy with web frameworks like Flask, and
the final section on additional libraries that can be used with SQLAlchemy.

Hybrid Attributes
Hybrid attributes are those that exhibit one behavior when accessed as a class
method, and another behavior when accessed on an instance. Another way to think
of this is that the attribute will generate valid SQL when it is used in a SQLAlchemy
statement, and when accessed on an instance the hybrid attribute will execute the
Python code directly against the instance. I find it easiest to understand this when
looking at code. We’re going to use our Cookie declarative class to illustrate this in
Example 14-1.

Example 14-1. Our Cookie user data model

from datetime import datetime

from sqlalchemy import Column, Integer, Numeric, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.hybrid import hybrid_property, hybrid_method
from sqlalchemy.orm import sessionmaker

157

engine = create_engine('sqlite:///:memory:')

Base = declarative_base()

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer, primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

 @hybrid_property
 def inventory_value(self):
 return self.unit_cost * self.quantity

 @hybrid_method
 def bake_more(self, min_quantity):
 return self.quantity < min_quantity

 def __repr__(self):
 return "Cookie(cookie_name='{self.cookie_name}', " \
 "cookie_recipe_url='{self.cookie_recipe_url}', " \
 "cookie_sku='{self.cookie_sku}', " \
 "quantity={self.quantity}, " \
 "unit_cost={self.unit_cost})".format(self=self)

Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)

Creates a hybrid property.

Creates a hybrid method because we need an additional input to perform the
comparison.

In Example 14-1, inventory_value is a hybrid property that performs a calculation
with two attributes of our Cookie data class, and bake_more is a hybrid method that
takes an additional input to determine if we should bake more cookies. (Should this
ever return false? There’s always room for more cookies!) With our data class defined,
we can begin to examine what hybrid really means. Let’s look at how the
inventory_value works when used in a query (Example 14-2).

Example 14-2. Hybrid property: Class

print(Cookie.inventory_value < 10.00)

158 | Chapter 14: Cookbook

Example 14-2 will output the following:

cookies.unit_cost * cookies.quantity < :param_1

In the output from Example 14-2, we can see that the hybrid property was expanded
into a valid SQL clause. This means that we can filter, order by, group by, and use
database functions on these properties. Let’s do the same thing with the bake_more
hybrid method:

print(Cookie.bake_more(12))

This will output:

cookies.quantity < :quantity_1

Again, it builds a valid SQL clause out of the Python code in our hybrid method. In
order to see what happens when we access it as an instance method, we’ll need to add
some data to database, which we’ll do in Example 14-3.

Example 14-3. Adding some records to the database

session = Session()
cc_cookie = Cookie(cookie_name='chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe.html',
 cookie_sku='CC01',
 quantity=12,
 unit_cost=0.50)
dcc = Cookie(cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02',
 quantity=1,
 unit_cost=0.75)
mol = Cookie(cookie_name='molasses',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_molasses.html',
 cookie_sku='MOL01',
 quantity=1,
 unit_cost=0.80)
session.add(cc_cookie)
session.add(dcc)
session.add(mol)
session.flush()

With this data added, we’re ready to look at what happens when we use our hybrid
property and method on an instance. We can access the inventory_value property of
the dcc instance as shown here:

dcc.inventory_value
0.75

You can see that when used on an instance, inventory_value executes the Python
code specified in the property. This is exactly the magic of a hybrid property or

Hybrid Attributes | 159

method. We can also run the bake_more hybrid method on the instance, as shown
here:

dcc.bake_more(12)
True

Again, because of the hybrid method’s behavior when accessed on an instance,
bake_more executes the Python code as expected. Now that we understand how the
hybrid properties and methods work, let’s use them in some queries. We’ll start by
using inventory_value in Example 14-4.

Example 14-4. Using a hybrid property in a query

from sqlalchemy import desc

for cookie in session.query(Cookie).order_by(desc(Cookie.inventory_value)):
 print('{:>20} - {:.2f}'.format(cookie.cookie_name, cookie.inventory_value))

When we run Example 14-4, we get the following output:

 chocolate chip - 6.00
 molasses - 0.80
dark chocolate chip - 0.75

This behaves just as we would expect any ORM class attribute to work. In
Example 14-5, we will use the bake_more method to decide what cookies we need to
bake.

Example 14-5. Using a hybrid method in a query

for cookie in session.query(Cookie).filter(Cookie.bake_more(12)):
 print('{:>20} - {}'.format(cookie.cookie_name, cookie.quantity))

Example 14-5 outputs:

dark chocolate chip - 1
 molasses - 1

Again, this behaves just like we hoped it would. While this is an amazing set of
behaviors from our code, hybrid attributes can do so much more, and you can read
about it in the SQLAlchemy documentation on hybrid attributes.

Association Proxy
An association proxy is a pointer across a relationship to a specific attribute; it can be
used to make it easier to access an attribute across a relationship in code. For exam‐
ple, this would come in handy if we wanted a list of ingredient names that are used to
make our cookies. Let’s walk through how that works with a typical relationship. The

160 | Chapter 14: Cookbook

http://docs.sqlalchemy.org/en/latest/orm/extensions/hybrid.html

relationship between cookies and ingredients will be a many-to-many relationship.
Example 14-6 sets up our data models and their relationships.

Example 14-6. Setting up our models and relationships

from datetime import datetime
from sqlalchemy import (Column, Integer, Numeric, String, Table,
 ForeignKey, create_engine)
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///:memory:')

Base = declarative_base()
Session = sessionmaker(bind=engine)

cookieingredients_table = Table('cookieingredients', Base.metadata,
 Column('cookie_id', Integer, ForeignKey("cookies.cookie_id"),
 primary_key=True),
 Column('ingredient_id', Integer, ForeignKey("ingredients.ingredient_id"),
 primary_key=True)
)

class Ingredient(Base):
 __tablename__ = 'ingredients'

 ingredient_id = Column(Integer, primary_key=True)
 name = Column(String(255), index=True)

 def __repr__(self):
 return "Ingredient(name='{self.name}')".format(self=self)

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer, primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

 ingredients = relationship("Ingredient",
 secondary=cookieingredients_table)

 def __repr__(self):

Association Proxy | 161

 return "Cookie(cookie_name='{self.cookie_name}', " \
 "cookie_recipe_url='{self.cookie_recipe_url}', " \
 "cookie_sku='{self.cookie_sku}', " \
 "quantity={self.quantity}, " \
 "unit_cost={self.unit_cost})".format(self=self)

Base.metadata.create_all(engine)

Creating the through table used for our many-to-many relationship.

Creating the relationship to ingredients via the through table.

Because this is a many-to-many relationship, we need a through table to map the
multiple relationships. We use the cookieingredients_table to do that. Next, we
need to add a cookie and some ingredients, as shown here:

session = Session()
cc_cookie = Cookie(cookie_name='chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe.html',
 cookie_sku='CC01',
 quantity=12,
 unit_cost=0.50)

flour = Ingredient(name='Flour')
sugar = Ingredient(name='Sugar')
egg = Ingredient(name='Egg')
cc = Ingredient(name='Chocolate Chips')
cc_cookie.ingredients.extend([flour, sugar, egg, cc])
session.add(cc_cookie)
session.flush()

Creating the cookie.

Creating the ingredients.

Adding the ingredients to the relationship with the cookie.

So to add the ingredients to the cookie, we have to create them and then add them to
the relationship on cookies, ingredients. Now, if we want to list the names of all the
ingredients, which was our original goal, we have to iterate through all the ingredi‐
ents and get the name attribute. We can accomplish this as follows:

[ingredient.name for ingredient in cc_cookie.ingredients]

This will return:

['Flour', 'Sugar', 'Egg', 'Chocolate Chips']

This can be cumbersome if all we really want from ingredients is the name attribute.
Using a traditional relationship also requires us to manually create each ingredient

162 | Chapter 14: Cookbook

and add it to the cookie. It becomes more work if we need to determine if the ingredi‐
ent already exists. This is where the association proxy can be useful in simplifying this
type of usage.

To establish an association proxy that we can use for attribute access and ingredient
creation, we need to do three things:

• Import the association proxy.
• Add an __init__ method to the targeted object that makes it easy to create new

instances with just the required values.
• Create an association proxy that targets the table name and column name you

want to proxy.

We’re going to start a fresh Python shell, and set up our classes again. However, this
time we are going to add an association proxy to give us easier access to the ingredi‐
ent names in Example 14-7.

Example 14-7. Association proxy setup

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///:memory:')

Session = sessionmaker(bind=engine)

from datetime import datetime

from sqlalchemy import Column, Integer, Numeric, String, Table, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.associationproxy import association_proxy

Base = declarative_base()

cookieingredients_table = Table('cookieingredients', Base.metadata,
 Column('cookie_id', Integer, ForeignKey("cookies.cookie_id"),
 primary_key=True),
 Column('ingredient_id', Integer, ForeignKey("ingredients.ingredient_id"),
 primary_key=True)
)

class Ingredient(Base):
 __tablename__ = 'ingredients'

Association Proxy | 163

 ingredient_id = Column(Integer, primary_key=True)
 name = Column(String(255), index=True)

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return "Ingredient(name='{self.name}')".format(self=self)

class Cookie(Base):
 __tablename__ = 'cookies'

 cookie_id = Column(Integer, primary_key=True)
 cookie_name = Column(String(50), index=True)
 cookie_recipe_url = Column(String(255))
 cookie_sku = Column(String(55))
 quantity = Column(Integer())
 unit_cost = Column(Numeric(12, 2))

 ingredients = relationship("Ingredient",
 secondary=cookieingredients_table)

 ingredient_names = association_proxy('ingredients', 'name')

 def __repr__(self):
 return "Cookie(cookie_name='{self.cookie_name}', " \
 "cookie_recipe_url='{self.cookie_recipe_url}', " \
 "cookie_sku='{self.cookie_sku}', " \
 "quantity={self.quantity}, " \
 "unit_cost={self.unit_cost})".format(self=self)

Base.metadata.create_all(engine)

Importing the association proxy.

Defining an __init__ method that only requires a name.

Establishing an association proxy to the ingredients’ name attribute that we can
reference as ingredient_names.

With these three things done, we can now use our classes as we did previously:

session = Session()
cc_cookie = Cookie(cookie_name='chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe.html',
 cookie_sku='CC01',
 quantity=12,

164 | Chapter 14: Cookbook

 unit_cost=0.50)
dcc = Cookie(cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02',
 quantity=1,
 unit_cost=0.75)
flour = Ingredient(name='Flour')
sugar = Ingredient(name='Sugar')
egg = Ingredient(name='Egg')
cc = Ingredient(name='Chocolate Chips')
cc_cookie.ingredients.extend([flour, sugar, egg, cc])
session.add(cc_cookie)
session.add(dcc)
session.flush()

So the relationship still works like we expect; however, to get the ingredient names we
can use the association proxy to avoid the list comprehension we used before. Here is
an example of using ingrendient_names:

cc_cookie.ingredient_names

This will output:

['Flour', 'Sugar', 'Egg', 'Chocolate Chips']

This is much easier than looping though all the ingredients to create the list of ingre‐
dient names. However, we forgot to add one key ingredient, “Oil”. We can add this
new ingredient using the association proxy as shown here:

cc_cookie.ingredient_names.append('Oil')
session.flush()

When we do this, the association proxy creates a new ingredient using the Ingredi
ent.__init__ method for us automatically. It’s important to note that if we already
had an ingredient named Oil, the association proxy would still attempt to create it for
us. That could lead to duplicate records or cause an exception if the addition violates
a constraint.

To work around this, we can query for existing ingredients prior to using the associa‐
tion proxy. Example 14-8 shows how we can accomplish that.

Example 14-8. Filtering ingredients

dcc_ingredient_list = ['Flour', 'Sugar', 'Egg', 'Dark Chocolate Chips',
 'Oil']
existing_ingredients = session.query(Ingredient).filter(
 Ingredient.name.in_(dcc_ingredient_list)).all()
missing = set(dcc_ingredient_list) - set([x.name for x in
 existing_ingredients])

Defining the list of ingredients for our dark chocolate chip cookies.

Association Proxy | 165

Querying to find the ingredients that already exist in our database.

Finding the missing packages by using the difference of the two sets of ingredi‐
ents.

After finding the ingredients we already had, we then compared it with our required
ingredient list to determine what was missing, which is “Dark Chocolate Chips.” Now
we can add all the existing ingredients via the relationship, and then the new ingredi‐
ents via the association proxy as shown in Example 14-9.

Example 14-9. Adding ingredients to dark chocolate chip cookie

dcc.ingredients.extend(existing_ingredients)
dcc.ingredient_names.extend(missing)

Adding the existing ingredients via the relationship.

Adding the new ingredients via the association proxy.

Now we can print a list of the ingredient names, as shown here:

dcc.ingredient_names

And we will get the following output:

['Egg', 'Flour', 'Oil', 'Sugar', 'Dark Chocolate Chips']

This enabled us to quickly handle existing and new ingredients when we added them
to our cookie, and the resulting output was just what we desired. Association proxies
have lots of other uses, too; you can learn more in the association proxy documenta‐
tion.

Integrating SQLAlchemy with Flask
It’s common to see SQLAlchemy used with a Flask web application. The creator of
Flask has also created a Flask-SQLalchemy package to make this integration easy.
Using Flask-SQLalchemy will provide preconfigured scoped sessions that are tied to
the page life cycle of your Flask application. You can install Flask-SQLalchemy with
pip as shown here:

pip install flask-sqlalchemy

When using Flask-SQLalchemy, I highly recommend you use the app factory pattern,
which is not what is shown in the quick start section of the Flask-SQLalchemy docu‐
mentation. The app factory pattern uses a function that assembles an application with
all the appropriate add-ons and configuration. This is typically placed in your appli‐

166 | Chapter 14: Cookbook

http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html
http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html

cation’s app/__init__.py file. Example 14-10 contains an example of how to structure
your create_app method.

Example 14-10. App factory function

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

from config import config

db = SQLAlchemy()

def create_app(config_name):
 app = Flask(__name__)
 app.config.from_object(config[config_name])

 db.init_app(app)
 return app

Creates an unconfigured Flask-SQLalchemy instance.

Defines the create_app app factory.

Initializes the instance with the app context.

The app factory needs a configuration that defines the Flask settings and the
SQLAlchemy connection string. In Example 14-11, we define a configuration file,
config.py, in the root of the application.

Example 14-11. Flask app configuration

import os

basedir = os.path.abspath(os.path.dirname(__file__))

class Config:
 SECRET_KEY = 'development key'
 ADMINS = frozenset(['jason@jasonamyers.com',])

class DevelopmentConfig(Config):
 DEBUG = True
 SQLALCHEMY_DATABASE_URI = "sqlite:////tmp/dev.db"

class ProductionConfig(Config):

Integrating SQLAlchemy with Flask | 167

 SECRET_KEY = 'Prod key'
 SQLALCHEMY_DATABASE_URI = "sqlite:////tmp/prod.db"

config = {
 'development': DevelopmentConfig,
 'production': ProductionConfig,
 'default': DevelopmentConfig
}

Defines the base Flask config.

Defines the configuration used when developing.

Defines the configuration used when in production.

Creates a dictionary that is used to map from a simple name to the configuration
class.

With the app factory and configuration ready, we have a functioning Flask applica‐
tion. We’re now ready to define our data classes. We’ll define our Cookie model in
apps/models.py, as demonstrated in Example 14-12.

Example 14-12. Defining the Cookie model

from app import db

class Cookie(db.Model):
 __tablename__ = 'cookies'

 cookie_id = db.Column(db.Integer(), primary_key=True)
 cookie_name = db.Column(db.String(50), index=True)
 cookie_recipe_url = db.Column(db.String(255))
 quantity = db.Column(db.Integer())

In Example 14-12, we used the db instance we created in app/__init__.py to access
most parts of the SQLAlchemy library. Now we can use our cookie models in queries
just like we did in the ORM section of the book. The only change is that our sessions
are nested in the db.session object.

One other thing that Flask-SQLalchemy adds that is not found in normal
SQLAlchemy code is the addition of a query method to every ORM data class. I
highly encourage you to not use this syntax, because it can be confusing when mixed
and matched with other SQLAlchemy queries. This style of query looks like the fol‐
lowing:

Cookie.query.all()

168 | Chapter 14: Cookbook

This should give you a taste of how to integrate SQLAlchemy with Flask; you can
learn more in the Flask-SQLalchemy documentation. Miguel Grinberg also wrote a
fantastic book on building out a whole application titled Flask Web Development.

SQLAcodegen
We learned about reflection with SQLAlchemy Core in Chapter 5 and automap for
use with the ORM in Chapter 10. While both of those solutions are great, they require
you to perform the reflection every time the application is restarted, or in the case of
dynamic modules, every time the module is reloaded. SQLAcodegen uses reflection
to build a collection of ORM data classes that you can use in your application code
base to avoid reflecting the database multiple times. SQLAcodegen has the ability to
detect many-to-one, one-to-one, and many-to-many relationships. It can be installed
via pip:

pip install sqlacodegen

To run SQLAcodegen, we need to specify a database connection string for it to con‐
nect to. We’ll use a copy of the Chinook database that we have worked with previ‐
ously (available in the CH15/ folder of the example code from this book). While
inside the CH15/ folder, Run the SQLAcodegen command with the appropriate con‐
nection string, as shown in Example 14-13.

Example 14-13. Running SQLAcodegen on the Chinook database

sqlacodegen sqlite:///Chinook_Sqlite.sqlite

coding: utf-8
from sqlalchemy import (Table, Column, Integer, Numeric, Unicode, DateTime,
 ForeignKey)
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
metadata = Base.metadata

class Album(Base):
 __tablename__ = 'Album'

 AlbumId = Column(Integer, primary_key=True, unique=True)
 Title = Column(Unicode(160), nullable=False)
 ArtistId = Column(ForeignKey(u'Artist.ArtistId'), nullable=False, index=True)

 Artist = relationship(u'Artist')

SQLAcodegen | 169

http://pythonhosted.org/Flask-SQLAlchemy/index.html
http://shop.oreilly.com/product/0636920031116.do

class Artist(Base):
 __tablename__ = 'Artist'

 ArtistId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(120))

class Customer(Base):
 __tablename__ = 'Customer'

 CustomerId = Column(Integer, primary_key=True, unique=True)
 FirstName = Column(Unicode(40), nullable=False)
 LastName = Column(Unicode(20), nullable=False)
 Company = Column(Unicode(80))
 Address = Column(Unicode(70))
 City = Column(Unicode(40))
 State = Column(Unicode(40))
 Country = Column(Unicode(40))
 PostalCode = Column(Unicode(10))
 Phone = Column(Unicode(24))
 Fax = Column(Unicode(24))
 Email = Column(Unicode(60), nullable=False)
 SupportRepId = Column(ForeignKey(u'Employee.EmployeeId'), index=True)

 Employee = relationship(u'Employee')

class Employee(Base):
 __tablename__ = 'Employee'

 EmployeeId = Column(Integer, primary_key=True, unique=True)
 LastName = Column(Unicode(20), nullable=False)
 FirstName = Column(Unicode(20), nullable=False)
 Title = Column(Unicode(30))
 ReportsTo = Column(ForeignKey(u'Employee.EmployeeId'), index=True)
 BirthDate = Column(DateTime)
 HireDate = Column(DateTime)
 Address = Column(Unicode(70))
 City = Column(Unicode(40))
 State = Column(Unicode(40))
 Country = Column(Unicode(40))
 PostalCode = Column(Unicode(10))
 Phone = Column(Unicode(24))
 Fax = Column(Unicode(24))
 Email = Column(Unicode(60))

 parent = relationship(u'Employee', remote_side=[EmployeeId])

class Genre(Base):
 __tablename__ = 'Genre'

 GenreId = Column(Integer, primary_key=True, unique=True)

170 | Chapter 14: Cookbook

 Name = Column(Unicode(120))

class Invoice(Base):
 __tablename__ = 'Invoice'

 InvoiceId = Column(Integer, primary_key=True, unique=True)
 CustomerId = Column(ForeignKey(u'Customer.CustomerId'), nullable=False,
 index=True)
 InvoiceDate = Column(DateTime, nullable=False)
 BillingAddress = Column(Unicode(70))
 BillingCity = Column(Unicode(40))
 BillingState = Column(Unicode(40))
 BillingCountry = Column(Unicode(40))
 BillingPostalCode = Column(Unicode(10))
 Total = Column(Numeric(10, 2), nullable=False)

 Customer = relationship(u'Customer')

class InvoiceLine(Base):
 __tablename__ = 'InvoiceLine'

 InvoiceLineId = Column(Integer, primary_key=True, unique=True)
 InvoiceId = Column(ForeignKey(u'Invoice.InvoiceId'), nullable=False, index=True)
 TrackId = Column(ForeignKey(u'Track.TrackId'), nullable=False, index=True)
 UnitPrice = Column(Numeric(10, 2), nullable=False)
 Quantity = Column(Integer, nullable=False)

 Invoice = relationship(u'Invoice')
 Track = relationship(u'Track')

class MediaType(Base):
 __tablename__ = 'MediaType'

 MediaTypeId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(120))

class Playlist(Base):
 __tablename__ = 'Playlist'

 PlaylistId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(120))

 Track = relationship(u'Track', secondary='PlaylistTrack')

t_PlaylistTrack = Table(
 'PlaylistTrack', metadata,
 Column('PlaylistId', ForeignKey(u'Playlist.PlaylistId'), primary_key=True,

SQLAcodegen | 171

 nullable=False),
 Column('TrackId', ForeignKey(u'Track.TrackId'), primary_key=True, nullable=False,
 index=True),
 Index('IPK_PlaylistTrack', 'PlaylistId', 'TrackId', unique=True)
)

class Track(Base):
 __tablename__ = 'Track'

 TrackId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(200), nullable=False)
 AlbumId = Column(ForeignKey(u'Album.AlbumId'), index=True)
 MediaTypeId = Column(ForeignKey(u'MediaType.MediaTypeId'), nullable=False,
 index=True)
 GenreId = Column(ForeignKey(u'Genre.GenreId'), index=True)
 Composer = Column(Unicode(220))
 Milliseconds = Column(Integer, nullable=False)
 Bytes = Column(Integer)
 UnitPrice = Column(Numeric(10, 2), nullable=False)

 Album = relationship(u'Album')
 Genre = relationship(u'Genre')
 MediaType = relationship(u'MediaType')

Runs SQLAcodegen against the local Chinook SQLite database

As you can see in Example 14-13, when we run the command, it builds up a complete
file that contains all the ORM data classes of the database along with the proper
imports. This file is ready for use in our application. You might need to tweak the set‐
tings for the Base object if it was established elsewhere. It is also possible to only gen‐
erate the code for a few tables by using the --tables argument. In Example 14-14, we
are going to specify the Artist and Track tables.

Example 14-14. Running SQLAcodegen on the Artist and Track tables

sqlacodegen sqlite:///Chinook_Sqlite.sqlite --tables Artist,Track

coding: utf-8
from sqlalchemy import Column, ForeignKey, Integer, Numeric, Unicode
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
metadata = Base.metadata

class Album(Base):
 __tablename__ = 'Album'

172 | Chapter 14: Cookbook

 AlbumId = Column(Integer, primary_key=True, unique=True)
 Title = Column(Unicode(160), nullable=False)
 ArtistId = Column(ForeignKey(u'Artist.ArtistId'), nullable=False, index=True)

 Artist = relationship(u'Artist')

class Artist(Base):
 __tablename__ = 'Artist'

 ArtistId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(120))

class Genre(Base):
 __tablename__ = 'Genre'

 GenreId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(120))

class MediaType(Base):
 __tablename__ = 'MediaType'

 MediaTypeId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(120))

class Track(Base):
 __tablename__ = 'Track'

 TrackId = Column(Integer, primary_key=True, unique=True)
 Name = Column(Unicode(200), nullable=False)
 AlbumId = Column(ForeignKey(u'Album.AlbumId'), index=True)
 MediaTypeId = Column(ForeignKey(u'MediaType.MediaTypeId'), nullable=False,
 index=True)
 GenreId = Column(ForeignKey(u'Genre.GenreId'), index=True)
 Composer = Column(Unicode(220))
 Milliseconds = Column(Integer, nullable=False)
 Bytes = Column(Integer)
 UnitPrice = Column(Numeric(10, 2), nullable=False)

 Album = relationship(u'Album')
 Genre = relationship(u'Genre')
 MediaType = relationship(u'MediaType')

Runs SQLAcodegen against the local Chinook SQLite database, but only for the
Artist and Track tables.

SQLAcodegen | 173

When we specified the Artist and Track tables in Example 14-14, SQLAcodegen
built classes for those tables, and all the tables that had a relationship with those
tables. SQLAcodegen does this to ensure that the code it builds is ready to be used. If
you want to save the generated classes directly to a file, you can do so with standard
redirection, as shown here:

sqlacodegen sqlite:///Chinook_Sqlite.sqlite --tables Artist,Track > db.py

If you want more information on what you can do with SQLAcodegen, you can find
it by running sqlacodegen --help to see the additional options. There is not any
official documentation at the time of this writing.

That concludes the cookbook section of the book. I hope you enjoyed these few sam‐
ples of how to do more with SQLAlchemy.

174 | Chapter 14: Cookbook

CHAPTER 15

Where to Go from Here

I hope you’ve enjoyed learning how to use SQLAlchemy Core and ORM along with
the Alembic database migration tool. Remember that there is also extensive docu‐
mentation on the SQLAlchemy website, along with a collection of presentations from
various conferences where you can learn about specific topics in more detail. There
are also several additional talks on SQLAlchemy on the PyVideo website, including a
few by yours truly.

Where to go next greatly depends on what you are trying to accomplish with SQLAl‐
chemy:

• If you want to know more about Flask and SQLAlchemy, make sure to read Flask
Web Development by Miguel Grinberg.

• If you are interested in learning more about testing or how to use pytest, Alex
Grönholm has several excellent blog posts on effective testing strategies: Part 1
and Part 2.

• If you want to know more about SQLAlchemy plug-ins and extensions, check out
Awesome SQLAlchemy by Hong Minhee. This resource has a great list of
SQLAlchemy-related technologies.

• If you are interested in learning more about the internals of SQLAlchemy, this
has been covered by Mike Bayer in The Architecture of Open Source Applications.

Hopefully the information you’ve learned in this book will give you a solid founda‐
tion upon which to improve your skills. I wish you well in your future endeavors!

175

http://docs.sqlalchemy.org/en/latest/
http://www.sqlalchemy.org/library.html#talks
http://pyvideo.org/search?models=videos.video&q=sqlalchemy
http://pyvideo.org/speaker/1088/jason-myers
http://shop.oreilly.com/product/0636920031116.do
http://shop.oreilly.com/product/0636920031116.do
http://alextechrants.blogspot.fi/2013/08/unit-testing-sqlalchemy-apps.html
http://alextechrants.blogspot.fi/2014/01/unit-testing-sqlalchemy-apps-part-2.html
https://github.com/dahlia/awesome-sqlalchemy
http://www.aosabook.org/en/sqlalchemy.html

Index

A
add() method (Session), 80
add_column() method (Alembic), 149
Alembic, 139-141

documentation for, 148, 155
empty migration, creating, 143-145
installing, 139
migration environment, configuring,

140-141
migration environment, creating, 139-140
migration level, determining, 151-152
migration level, setting, 153
migration, autogenerating, 145-148
migration, building manually, 149-150
migration, downgrading, 152-153
operations performed by, list of, 149
SQL, generating, 154-155

alembic current command, 151
alembic downgrade command, 152
alembic history command, 151
alembic init alembic command, 139
alembic revision command, 143
alembic stamp command, 153
alembic.ini file, 139, 140
alias() function, 32
alias() method (Table), 32
aliases for tables, 32-33
all() method (Session), 83-93
alter_column() method (Alembic), 149
and_() function, 27-28, 92
app factory pattern, 166
The Architecture of Open Source Applications

(Bayer), 175
arithmetic operators, in queries, 26, 91

array slice notation, 87
association proxies, 160-166
association_proxy() method, 164
AttributeError exception, 38-40
attributes

hybrid, 157-160
non-existent, error for, 38-40
pointer to, across relationships, 160-166

attrs collection (inspector), 107
autoload argument (Table), 63
autoload_with argument (Table), 63
automap_base objects, 133-136

B
backref() method, 74
Base objects, 133-136
Bayer, Mike (developer, SQLAlchemy), xiii
Beaulieu, Alan (Learning SQL), viii
begin() method (connection), 48-50
between() method (ClauseElement), 25
BIGINT type, 2
BigInteger type, 2
bitwise logical operators, in queries, 27
BLOB type, 2
bool type, 2
Boolean operators, in queries, 27, 92
Boolean type, 2
BOOLEAN type, 2
bulk_save_objects() method (Session), 82
business objects, xiv
byte type, 2
BYTEA type, 2

177

C
cast() function, 91
chaining queries, 34-35, 99-100
CheckConstraint, 7
Chinook database, 63
ClauseElement objects, 25, 90
CLOB type, 2
code examples

Chinook database, 63
downloading, ix
in IPython notebooks, viii
permission to use, ix

Column objects, 18
columns

controlling for a query, 20, 86
default value for, 73
grouping, 33, 98
labeling, in query results, 23, 89
required, 73
resetting on update, 73
in Table objects, 5-6

commit() method (Session), 80-81
commit() method (transaction), 48-50
comparison operators, in queries, 26, 90
compile() method, 14
concat() method (ClauseElement), 25
conditional chaining, 34, 99
conjunctions, in queries, 27-28, 92
connect() method (engine), xix
connection string, xvii-xviii
connection timeouts, xix
constraints

in ORM classes, 73
in Table objects, 6-7, 7-9

contact information for this book, xi
contains() method (ClauseElement), 25
conventions used in this book, ix
Core (see SQLAlchemy Core)
count() function, 23
create_all() method (MetaData), 9-10, 75
create_check_constraint() method (Alembic),

149
create_engine() function, xvii-xix
create_foreign_key() method (Alembic), 149
create_index() method (Alembic), 147, 149
create_primary_key() method (Alembic), 149
create_table() method (Alembic), 147, 149
create_unique_constraint() method (Alembic),

149

custom types, 3

D
data warehouse, xiv
DataAccessLayer class, 51-53
databases

connecting to, xvi-xix
deleting data, 29, 94
drivers required for, xvi
inserting data, 13-17, 29-31, 80-83, 95-96
migrations (see Alembic)
querying data, 17-28, 31-36, 83-85, 97-101
reflecting (see reflection)
supported, xiii, xvi
tables in (see tables)
updating data, 28, 93

Date type, 2
DATE type, 2
DateTime type, 2
DATETIME type, 2
datetime.date type, 2
datetime.datetime type, 2
datetime.time type, 2
datetime.timedelta type, 2
db.py file, 140
Decimal type, 2
DECIMAL type, 2
decimal.Decimal type, 2
declarative classes (see ORM classes)
declarative_base objects, 71-72
decorators, 59
delete() function, 29, 94
delete() method (Table), 29, 94
deleting data

SQLAlchemy Core, 29
SQLAlchemy ORM, 94

desc() function, 21, 87
detached session state, 106
DetachedInstanceError exception, 110-112
distinct() method (ClauseElement), 25
domain-driven design, xiv
downgrade() method (Alembic), 144, 147, 149
drop_column() method (Alembic), 149
drop_constraint() method (Alembic), 149
drop_index() method (Alembic), 147, 149
drop_table() method (Alembic), 147, 149

E
echo argument (create_engine), xviii

178 | Index

encoding argument (create_engine), xviii
endswith() method (ClauseElement), 25
engine, creating, xvi-xix
Enum type, 2
ENUM type, 2
env.py file, 140, 140
error handling

AttributeError exception, 38-40
DetachedInstanceError exception, 110-112
IntegrityError exception, 40-41, 117
InvalidRequestError exception, 117
MultipleResultsFound exception, 108-110
SQLAlchemy Core, 37-42
try/except block, 41-42, 109, 111

execute() method (Alembic), 149
execute() method (connection), 14, 15
expunge() method (Session), 107

F
fetchall() method (ResultProxy), 17
fetchone() method (ResultProxy), 19
filter() function, 89
filtering query results, 24-28, 89-90
filter_by() function, 90
first() method (ResultProxy), 19
first() method (Session), 85
Flask, 166-169, 175
Flask Web Development (Grinberg), 175
Flask-SQLalchemy package, 166
Float type, 2
float type, 2
FLOAT type, 2
flush() method (Session), 82
fonts used in this book, ix
foreign keys

defining, 8-9, 74
reflecting, 65

ForeignKeyConstraint, 8-9
functional testing, 51-53, 121-125

G
generative statement building, 15, 15, 21
generic types, 2-3
Grinberg, Miguel (Flask Web Development),

175
grouping in queries, 33, 98
group_by() method (Table), 33, 98

H
hybrid attributes, 157-160

I
icons used in this book, ix
ilike() method (ClauseElement), 25
indexes

in Table objects, 7
__init__() method, 163
__init__.py file, 140, 166
insert() function, 15, 30
insert() method (Table), 13-15, 29
inserted_primary_key() method (Result‐

Proxy), 14
inserting data

SQLAlchemy Core, 13-17, 29-31
SQLAlchemy ORM, 80-83, 95-96

inspect() method, 106
Int type, 2
int type, 2
Integer type, 2
INTEGER type, 2
IntegrityError exception, 40-41, 117
Interval type, 2
INTERVAL type, 2
Introducting Python (Lubanovic), viii
Introduction to Python (videos, McKellar), viii
InvalidRequestError exception, 117
in_() method (ClauseElement), 25
IPython, viii
isolation level, setting, xviii
isolation_level argument (create_engine), xviii
is_() method (ClauseElement), 25

J
join() method (Table), 31, 97
joins in queries, 31-32, 97-98

K
keys (see foreign keys; primary keys)
keys() method (ResultProxy), 19

L
label() function, 23, 89
LargeBinary type, 2
Learning SQL (Beaulieu), viii
like() method (ClauseElement), 25, 90
limit() function, 21, 87

Index | 179

limiting query results, 21, 87
logging database actions, xviii
Lubanovic, Bill (Introducing Python), viii

M
McKellar, Jessica (Introduction to Python, vid‐

eos), viii
MetaData objects, 3
MetaData.tables dictionary, 3
microservices, xv
migrations (see Alembic)
mock library, 58, 130
mocks, for testing, 58-61, 130-131
modified property (inspector), 107
MultipleResultsFound exception, 108-110
MySQL

connecting to, xviii
connection timeouts, xix
drivers for, xvi
versions supported, xvi

N
not_() function, 28, 93
not…() methods (ClauseElement), 25
Numeric type, 2
NUMERIC type, 2

O
one() method (Session), 85, 108
operators, in queries, 26-27, 90-92
ordering query results, 20-21, 86
order_by() function, 20-21, 86
ORM (see SQLAlchemy ORM)
ORM classes

constraints in, 73
defining tables using, 71-73
deleting data, 94
inserting data, 80-83, 95-96
keys in, 73
persisting, 75
querying data, 83-84, 97-101
relationships between, 74-75, 95-96, 135
updating data, 93

or_() function, 27-28, 92
outerjoin() method (Table), 31, 97

P
patch() method (mock), 59

pending session state, 105
persistent session state, 106
persisting

ORM classes, 75
Table objects, 9-10

pip install command, xv, 139
pool_recycle argument (create_engine), xix
PostgreSQL

connecting to, xvii
drivers for, xvi

primary keys
defining, 6, 73
determining, for inserted record, 14

PrimaryKeyConstraint, 6
Psycopg2 driver, xvi
PyMySQL driver, xvi
pytest, resources for, 175
Python

REPL for, viii
resources for, viii
versions supported, xv

Python DBAPI (PEP-249), xvi
PyVideo website, 175

Q
query() method (Session), 83-93
querying data

reflected objects, 66-67
SQLAlchemy Core, 17-28, 31-36
SQLAlchemy ORM, 83-93, 97-101

querying reflected objects, 135

R
raw queries, 35, 101
read, eval, print loop (REPL), viii
REAL type, 2
reflect() method (Metadata), 66
reflection

Automap, 133-136
SQLAcodegen, 169-174
SQLAlchemy Core, 63-66
SQLAlchemy ORM, 133

relationship() method, 74, 97
remote_side option, 97
rename_table() method (Alembic), 149, 149
REPL (read, eval, print loop), viii
__repr__() method, 78-80
resources, viii, xi, 175

(see also website resources)

180 | Index

Flask Web Development (Grinberg), 175
Introducing Python (Lubanovic), viii
Introduction to Python (videos, McKellar),

viii
IPython, viii
Learning SQL (Beaulieu), viii

ResultProxy objects, 18-20
rollback() method (Session), 117-118
rollback() method (transaction), 48-50

S
scalar() function, 88
scalar() method (ResultProxy), 19
scalar() method (Session), 85
schema, xiv, 71
script.py.mako file, 140
select() function, 17, 20
select() method (Table), 17
select_from() method (Table), 31
Session class, 77-80
sessionmaker class, 77-80
sessions, 77-80

states of, 105-108
as transactions, 77, 80-82, 112-118

SMALLINT type, 2
SQL

generating for migration, 154-155
raw queries using, 35, 101
resources for, viii

SQL Expression Language, xiv
(see also SQLAlchemy Core)

SQL functions, using in queries, 22, 88-89
SQLAcodegen, 169-174
sqlacodegen command, 169, 174
SQLAlchemy, xiii-xv

C extensions for, disabling, xv
documentation for, 175
engine, creating, xvi-xix
installing, xv-xvi
plug-ins and extensions, 175

SQLAlchemy Core
compared to ORM, xiv-xv
deleting data, 29
error handling, 37-42
inserting data, 13-17, 29-31
querying data, 17-28, 31-36
tables represented in (see Table objects)
testing, 51-61
transactions, 43-50

updating data, 28
using in combination with ORM, xv

SQLAlchemy ORM, xiv
compared to Core, xiv-xv
deleting data, 94
error handling, 108-112
inserting data, 80-83, 95-96
querying data, 83-93, 97-101
reflection, 133
sessions, 77-80, 105-108
tables represented in (see ORM classes)
testing, 121-131
transactions, 77, 80-82, 112-118
updating data, 93
using in combination with Core, xv

sqlalchemy.dialects module, 3
sqlalchemy.func module, 88
sqlalchemy.sql.func module, 22
sqlalchemy.types module, 3
SQLCompiler object, 14
SQLite

connecting to, xvii
version supported, xvi

standard SQL types, 3
startswith() method (ClauseElement), 25
str type, 2, 2
STRING type, 2
strings, concatenating, 26, 91
sum() function, 22, 88

T
__table__ attribute, 72
Table objects, 1, 4-9

constraints in, 6-7, 7-9
constructing, 4
deleting data, 29
indexes in, 7
inserting data, 13-17, 29-31
keys in, 6
persisting, 9-10
querying data, 17-28, 31-36
relationships between, 7-9
updating data, 28

__tablename__ attribute, 71-72
tables

columns in, 5-6
declarative classes representing (see ORM

classes)
reflecting all in a database, 66

Index | 181

reflecting individually, 63-66
representations of, 1
user-defined (see Table objects)

__table_args__ attribute, 73
testing

SQLAlchemy Core, 51-61
SQLAlchemy ORM, 121-131

Text type, 2
TEXT type, 2, 2
text() function, 101
Time type, 2
transaction objects, 48-50
transactions

SQLAlchemy Core, 43-50
SQLAlchemy ORM, 77, 80-82, 112-118

transient session state, 105
try/except block, 41-42, 109, 111
types, 1-3

custom types, 3
generic, 2-3
standard SQL types, 3
vendor-specific types, 3

typographical conventions used in this book, ix

U
Unicode type, 2
unicode type, 2
UNICODE type, 2
UniqueConstraint, 6
Unit of Work pattern, 81
unit testing, 54-58, 125-129
unittest module, 54-58, 125-129
update() function, 28, 93
update() method (Table), 28, 93
updating data

SQLAlchemy Core, 28
SQLAlchemy ORM, 93

upgrade() method (Alembic), 144, 147, 149

V
values() function, 13
VARCHAR type, 2
vendor-specific types, 3
versions directory, 140

W
website resources, xi, 175

(see also resources)
Alembic documentation, 148, 155
The Architecture of Open Source Applica‐

tions (Bayer), 175
association proxies, 166
bulk operations, 83
Chinook database, 63
code examples, ix
hybrid attributes, 160
IPython, viii
plug-ins and extensions, 175
Psycopg2 driver, xvi
pytest, 175
PyVideo, 175
reflected relationships, 135
SQLAcodegen, 174
SQLAlchemy documentation, 175
Zen of Python, xvii

where() function, 24-28

Z
Zen of Python (website), xvii

182 | Index

About the Authors
Jason Myers works at Cisco as a Software Engineer working on OpenStack. Prior to
switching to development a few years ago, he spent several years as a systems archi‐
tect, building data centers and cloud architectures for several of the largest tech com‐
panies, hospitals, stadiums, and telecom providers. He’s a passionate developer who
regularly speaks at local and national events about technology. He’s also the chair of
the PyTennessee conference. He loves solving health-related problems, and has a side
project, Sucratrend, devoted to helping diabetics manage their condition and
improve their quality of life. He has used SQLAlchemy in web, data warehouse, and
analytics applications.

Rick Copeland is the co-founder and CEO of Synapp.io, an Atlanta-based company
that provides a SaaS solution for the email compliance and deliverability space. He is
also an experienced Python developer with a focus on both relational and NoSQL
databases, and has been honored as a MongoDB Master by MongoDB Inc. for his
contributions to the community. He is a frequent speaker at various user groups and
conferences, and an active member of the Atlanta startup community.

Colophon
The animal on the cover of Essential SQLAlchemy is a largescale flying fish (Cypselu‐
rus oligolepis). Flying fish is the more common name for members of the Exocoetidae
family, which comprises roughly 40 species that inhabit the warm tropical and sub‐
tropical waters of the Atlantic, Pacific, and Indian oceans. Flying fish range from 7 to
12 inches in length and are characterized by their unusually large, winglike pectoral
fins. Some species also have enlarged pelvic fins and are thus known as four-winged
flying fish.

As their name suggests, flying fish have the unique ability to leap from the water and
glide through the air for distances of up to a quarter of a mile. Their torpedo-like
bodies help them gather the speed necessary to propel themselves from the ocean
(about 37 miles per hour), and their distinctive pectoral fins and forked tailfins keep
them airborne. Biologists believe this remarkable trait may have evolved as a way for
flying fish to escape their many predators, which include tuna, mackerel, swordfish,
marlin, and other larger fish. However, flying fish sometimes have a more difficult
time evading their human predators. Attracted by a luring light that fishermen attach
to their canoes at night, the fish leap in and are unable to vault themselves back out.

Dried flying fish are a dietary staple for the Tao people of Orchid Island, located off
the coast of Taiwan, and flying fish roe is common in Japanese cuisine. They are also
a coveted delicacy in Barbados, known as “Land of the Flying Fish” before shipping
pollution and overfishing depleted their numbers. The flying fish retains a prominent

cultural status there, however; it’s the main ingredient in the national dish (cou-cou
and flying fish) and it is featured on coins, artwork, and even in the Barbados Tour‐
ism Authority’s logo.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Dover’s Animals. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	How to Use the Examples
	Assumptions This Book Makes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Introduction to SQLAlchemy
	Why Use SQLAlchemy?
	SQLAlchemy Core and the SQL Expression Language
	ORM

	Choosing Between SQLAlchemy Core and ORM
	Installing SQLAlchemy and Connecting to a Database
	Installing Database Drivers
	Connecting to a Database

	Part I. SQLAlchemy Core
	Chapter 1. Schema and Types
	Types
	Metadata
	Tables
	Columns
	Keys and Constraints
	Indexes
	Relationships and ForeignKeyConstraints

	Persisting the Tables

	Chapter 2. Working with Data via SQLAlchemy Core
	Inserting Data
	Querying Data
	ResultProxy
	Controlling the Columns in the Query
	Ordering
	Limiting
	Built-In SQL Functions and Labels
	Filtering
	ClauseElements
	Operators
	Boolean Operators
	Conjunctions

	Updating Data
	Deleting Data
	Joins
	Aliases
	Grouping
	Chaining
	Raw Queries

	Chapter 3. Exceptions and Transactions
	Exceptions
	AttributeError
	IntegrityError
	Handling Errors

	Transactions

	Chapter 4. Testing
	Testing with a Test Database
	Using Mocks

	Chapter 5. Reflection
	Reflecting Individual Tables
	Reflecting a Whole Database
	Query Building with Reflected Objects

	Part II. SQLAlchemy ORM
	Chapter 6. Defining Schema with SQLAlchemy ORM
	Defining Tables via ORM Classes
	Keys, Constraints, and Indexes

	Relationships
	Persisting the Schema

	Chapter 7. Working with Data via SQLAlchemy ORM
	The Session
	Inserting Data
	Querying Data
	Controlling the Columns in the Query
	Ordering
	Limiting
	Built-In SQL Functions and Labels
	Filtering
	Operators
	Boolean Operators
	Conjunctions

	Updating Data
	Deleting Data
	Joins
	Grouping
	Chaining
	Raw Queries

	Chapter 8. Understanding the Session and Exceptions
	The SQLAlchemy Session
	Session States

	Exceptions
	MultipleResultsFound Exception
	DetachedInstanceError

	Transactions

	Chapter 9. Testing with SQLAlchemy ORM
	Testing with a Test Database
	Using Mocks

	Chapter 10. Reflection with SQLAlchemy ORM and Automap
	Reflecting a Database with Automap
	Reflected Relationships

	Part III. Alembic
	Chapter 11. Getting Started with Alembic
	Creating the Migration Environment
	Configuring the Migration Environment

	Chapter 12. Building Migrations
	Generating a Base Empty Migration
	Autogenerating a Migration
	Building a Migration Manually

	Chapter 13. Controlling Alembic
	Determining a Database’s Migration Level
	Downgrading Migrations
	Marking the Database Migration Level
	Generating SQL

	Chapter 14. Cookbook
	Hybrid Attributes
	Association Proxy
	Integrating SQLAlchemy with Flask
	SQLAcodegen

	Chapter 15. Where to Go from Here
	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

