
Silicon Graphics, Inc.

November 2006

XFS Slides 06 - Allocators

XFS Overview & Internals
06 - Allocators

November 2006 Page 2| |XFS Slides 06 - Allocators

Allocation Policy

• The default allocation behaviour of XFS for new files is to place them in the
same allocation group as their parent directory.

• Since files and their parent directories are often accessed in close succession,
this minimises costly disk seeks.

• The allocator will also attempt to place newly created directories in different
allocation groups.

• Combined, these policies help group directories of files together on disk, even if
they're being written to concurrently.

• Allocation policies in XFS can change due to
– 32 bit inode numbers are used on large file systems
– Some mount options

November 2006 Page 3| |XFS Slides 06 - Allocators

Allocation Policy - Directories

• New directories are placed in different AGs where possible

• Watch the inode numbers as directory inodes are created:

> mkdir a b
> ls -li

total 0
131 drwxr-xr-x 2 sjv users 6 2006-10-20 12:12 a

33554624 drwxr-xr-x 2 sjv users 6 2006-10-20 12:12 b

November 2006 Page 4| |XFS Slides 06 - Allocators

Allocation Policy - Files

• Files are created in the same AG as their parent directory where possible, which
is also evident in their inode numbers:

> touch a/1 b/1 a/2 b/2
> ls -1id * */*

131 a
132 a/1
133 a/2

33554624 b
33554625 b/1

33554626 b/2

November 2006 Page 5| |XFS Slides 06 - Allocators

Inode Numbers

• Every inode on disk has a unique inode number associated with it.

• It is a requirement that inode numbers be persistent across unmounts and
reboots, so once an inode is written to disk its inode number is fixed.

• For performance reasons it must be possible to quickly find an inode on disk
using its inode number.

• XFS uses the physical location of the inode on disk to encode the inode
number, which makes finding the inode on disk using the inode number a trivial
task.

November 2006 Page 6| |XFS Slides 06 - Allocators

Inode Number Format

• An inode's location consists of three distinct parts
– an allocation group number
– a file system block number within its AG
– an inode number inside that file system block

• The number of bits required to store each of these values varies with the
filesystem geometry

• Larger filesystems can easily require more than 32 bits, which can limit inode
allocation to a region at the start of the volume

November 2006 Page 7| |XFS Slides 06 - Allocators

Inode Number Size

• File systems aren't free to use inode numbers of arbitrary size.

• Operating system interfaces and legacy software products often mandate the
use of 32 bit inode numbers even on systems that support 64 bit inode
numbers.

• This can be a problem on large file systems, since 32 bit inode numbers only
provide enough bits to encode inode locations in the first 1TB of a volume when
256 byte inodes are used, up to 8TB in the case of 2kB inodes.

• For best performance, a file system needs to keep a file's data blocks close to
its inode to minimise seeks when performing I/O. XFS's ability to do this suffers
on large volumes when 32 bit inode numbers are used.

November 2006 Page 8| |XFS Slides 06 - Allocators

32bit and 64bit Inodes

• By default, XFS will use 32 bit inode numbers.

• If the system supports it, the -o inode64 option to mount to allow 64 bit inode
numbers.

• Once an inode has been written somewhere on the disk that requires a 64 bit
inode number, the file system can no longer be used with 32 bit inode numbers

– The inode64 mount option should not be removed once used

• (IRIX can move inodes to 32 bit numbers with xfs_reno, this tool has not been
ported to Linux, yet)

November 2006 Page 9| |XFS Slides 06 - Allocators

32bit and 64bit Inodes

• Inode numbers are stored in big endian format on disk, and host endian format
in-core.

• Applications that pass 64 bit inode numbers using 32 bit variables will truncate
the 32 most-significant bits.

• Since XFS stores the AG number an inode belongs to in the most significant
bits, a result of this truncation can be an inode number that points to an inode in
a lower AG by mistake.

• Using that inode number will result in either a lookup on the incorrect inode, or
the referencing of an area on disk that doesn't contain inodes at all.

November 2006 Page 10| |XFS Slides 06 - Allocators

32 bit Inodes on >1TB Filesystems

• When 32 bit inode numbers are used on a volume larger than 1TB in size,
several changes occur.

• A 100TB volume using 256 byte inodes mounted in the default inode32 mode
has just one percent of its space available for allocating inodes.

• XFS will reserve the first 1TB of disk space exclusively for inodes to ensure that
the imbalance is no worse than this due to file data allocations.

• It is no longer possible for file data to reside in the same AG as the parent
directory's inode.

• XFS will instead "rotor" through the upper AGs as it allocates space for files,
putting each file in a new AG to evenly spread the I/O load.

November 2006 Page 11| |XFS Slides 06 - Allocators

Rotor Step

• The performance of some workloads will suffer from the distribution each file in
a different AG, so the "rotor step" sysctl was added adjust this behavior

• For example, to keep at least a second of ingested 24fps video files in the same
AG before moving to the next AG:

sysctl fs.xfs.rotorstep
fs.xfs.rotorstep = 1
sudo sysctl –w fs.xfs.rotorstep=24
fs.xfs.rotorstep = 24

• Note that the rotorstep value is a global one, so setting it will affect the
behaviour of all mounted file systems over 1TB in size that use 32 bit inode
numbers.

November 2006 Page 12| |XFS Slides 06 - Allocators

Realtime Allocator

• Certain classes of applications require deterministic latencies on file allocation
operations

– The performance of the standard XFS allocator varies depending on the internal
data structures used to manage the filesystem content

• The realtime allocator uses a bitmap algorithm that gives consistent allocation
latencies regardless of the filesystem's contents.

• By using the realtime allocator in conjunction with an external log volume, it's
possible to remove most of the unpredictability in disk response times that's
caused by metadata overheads.

November 2006 Page 13| |XFS Slides 06 - Allocators

Realtime Allocator Limitations

• In practice, the realtime allocator is not widely used.

• It effectively uses a single large allocation group with a single set of data
structures losing the parallelism of XFS’s allocation groups

– The locks associated with this central data structure result in the serialisation of
concurrent operations to a realtime device

• The realtime allocator is incapable of maintaining a spatial separation on disk for
concurrent operations

– It tries to start new files at random points in the bitmap to reduce this problem but
this has a negative impact on some workloads

November 2006 Page 14| |XFS Slides 06 - Allocators

Traditional allocator impact on some workloads

• A certain class of applications will write many large files to a directory in
sequence.

• A film scanner ingesting video may write each video frame to a separate file. To
playback the video frames in realtime its important that these files are
contiguous on disk for optimal read-ahead performance by the hardware RAID.

• At 24 frames per second, each frame is needed every 40ms, so it is important to
keep the disks busy and reading into cache the next frame to be displayed

November 2006 Page 15| |XFS Slides 06 - Allocators

Traditional
Stream
Allocation
• Initially each directory is

allocated to a separate AG

• Each stream writes to that
AG until it is full

• Additional allocations now
go in the next consecutive
AG that has enough free
space

• Multiple streams will start
writing to the same AG,
interleaving their files and
negating any read-ahead

November 2006 Page 16| |XFS Slides 06 - Allocators

RAID performance with interleaved streams

System Performance Statistics
All Ports Port 1 Port 2 Port 3 Port 4

Read MB/s: 183.9 45.8 46.8 46.3 45.0
Write MB/s: 0.0 0.0 0.0 0.0 0.0
Total MB/s: 183.9 45.8 46.8 46.3 45.0

Read IO/s: 520 133 129 129 129
Write IO/s: 0 0 0 0 0
Total IO/s: 522 134 131 128 129

Read Hits: 1.3% 1.6% 2.2% 0.6% 0.6%
Prefetch Hits: 0.8% 1.1% 1.1% 0.6% 0.6%
Prefetches: 46.3% 46.3% 46.0% 46.1% 46.8%
Writebacks: 0.0% 0.0% 0.0% 0.0% 0.0%
Rebuild MB/s: 0.0 0.0 0.0 0.0 0.0
Verify MB/s: 0.0 0.0 0.0 0.0 0.0

Total Reads Writes Pieces Reads Writes
Disk IO/s: 518 518 0 1: 4910 0
Disk MB/s: 544.6 544.6 0.0 2: 29890 0
Disk Pieces: 65710 65710 0 3: 340 0
BDB Pieces: 0 4: 0 0

5: 0 0
Cache Writeback Data: 0.0% 6: 0 0
Rebuild/Verify Data: 0.0% 0.0% 7: 0 0
Cache Data locked: 0.0% 8: 0 0

With only 1.3% read
cache hits, RAID is
reading 545MB/s to
return 184MB/s to
the client (200%

backend overhead)

November 2006 Page 17| |XFS Slides 06 - Allocators

Filestreams Allocator

• A new allocation algorithm was added to XFS that associates a parent directory
with an AG until a preset inactivity timeout elapses.

– Not in SLES10, planned for SLES10SP1

• A stream that moves to a new AG will cause that AG to be locked, so other
streams looking for a new AG will not use the same AG

• The new algorithm is called the Filestreams allocator and it is enabled in one of
two ways:

– the filesystem is mounted with the -o filestreams option, or
– the filestreams chattr flag is applied to a directory to indicate that all allocations

beneath that point in the directory hierarchy should use the filestreams allocator

• Filestreams will have a negative impact on workloads that continue to grow files
in the same directory, causing more fragmentation than the default allocator

November 2006 Page 18| |XFS Slides 06 - Allocators

RAID performance with filestreams

System Performance Statistics
All Ports Port 1 Port 2 Port 3 Port 4

Read MB/s: 299.1 74.0 74.7 75.1 75.2
Write MB/s: 0.0 0.0 0.0 0.0 0.0
Total MB/s: 299.1 74.0 74.7 75.1 75.2

Read IO/s: 840 209 210 211 210
Write IO/s: 0 0 0 0 0
Total IO/s: 836 209 210 208 209

Read Hits: 99.5% 98.3% 99.6% 100.0% 100.0%
Prefetch Hits: 98.8% 97.6% 98.9% 99.6% 99.0%
Prefetches: 42.0% 41.5% 42.0% 42.9% 41.7%
Writebacks: 0.0% 0.0% 0.0% 0.0% 0.0%
Rebuild MB/s: 0.0 0.0 0.0 0.0 0.0
Verify MB/s: 0.0 0.0 0.0 0.0 0.0

Total Reads Writes Pieces Reads Writes
Disk IO/s: 614 614 0 1: 39068 0
Disk MB/s: 345.5 345.5 0.0 2: 111 0
Disk Pieces: 39290 39290 0 3: 0 0
BDB Pieces: 0 4: 0 0

5: 0 0
Cache Writeback Data: 0.0% 6: 0 0
Rebuild/Verify Data: 0.0% 0.0% 7: 0 0
Cache Data locked: 0.0% 8: 0 0

Almost all data now
found in RAID

cache, only 15%
backend disk I/O

overhead

November 2006 Page 19| |XFS Slides 06 - Allocators

Fragmentation

• Despite the use of extents and the various allocation schemes, XFS files and
filesystems may still become fragmented over time

• xfs_db can display the level of fragmentation in the filesystem
– xfs_db -r /dev/sda3

• frag -f file fragmentation percentage
• frag -d directory fragmentation percentage
• freesp freespace

November 2006 Page 20| |XFS Slides 06 - Allocators

Fragmentation Example

> xfs_db –r device
xfs_db: freesp

from to extents blocks pct
1 1 94807 94807 1.36
2 3 63041 145012 2.08
4 7 30374 152890 2.19
8 15 19437 207742 2.98
16 31 15173 331559 4.76
32 63 14099 636086 9.13
64 127 16804 1497220 21.48

128 255 8390 1470464 21.10
256 511 3003 1033383 14.83
512 1023 810 551813 7.92

1024 2047 258 370811 5.32
2048 4095 101 282202 4.05
4096 8191 27 145550 2.09

xfs_db: frag -d
actual 45966, ideal 12398, fragmentation factor 73.03%
xfs_db: frag -f
actual 2104856, ideal 2100484, fragmentation factor 0.21%

November 2006 Page 21| |XFS Slides 06 - Allocators

xfs_fsr

• Simple defragmentation tool that
– Searched for files that are fragmented
– Creates a tempory inode
– Asks the filesystem to create new extents for the temporary inode
– If the new extents are less fragmented it copies the data in original file to the new

extents
– The temporary inode is then renamed to replace the original file

• Fsr makes no consideration for the used and free space within its allocation
group and does not rearrange files to create larger contiguous free space

• So fsr may fragment free space over a period of time

November 2006 Page 22| |XFS Slides 06 - Allocators

	XFS Overview & Internals�06 - Allocators
	Allocation Policy
	Allocation Policy - Directories
	Allocation Policy - Files
	Inode Numbers
	Inode Number Format
	Inode Number Size
	32bit and 64bit Inodes
	32bit and 64bit Inodes
	32 bit Inodes on >1TB Filesystems
	Rotor Step
	Realtime Allocator
	Realtime Allocator Limitations
	Traditional allocator impact on some workloads
	Traditional Stream Allocation
	RAID performance with interleaved streams
	Filestreams Allocator
	RAID performance with filestreams
	Fragmentation
	Fragmentation Example
	xfs_fsr

