
XFS® for Linux® Administration

007-4273-003

CONTRIBUTORS
Written by Steven Levine

Production by Karen Jacobson

COPYRIGHT
© 2003-2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX and XFS are registered trademarks of Silicon Graphics, Inc., in the United States and/or other countries
worldwide.

Linux is a registered trademark of Linus Torvalds, used with permission by Silicon Graphics, Inc.

007-4273-003 iii

What’s New in This Guide

New Features Documented

For the SGI ProPack v 2.4 for Linux release, small clarifications and technical corrections
have been made throughout this document.

007-4273-003 v

Record of Revision

001 January 2003
First printing, incorporating information for the SGI ProPack v 2.1 for Linux
release

002 May 2003
Incorporates information for the SGI ProPack v 2.2 for Linux release

003 January 2004
Incorporates information for the SGI ProPack v 2.4 for Linux release

007-4273-003 vii

Contents

Figures . xi

Examples . xiii

About This Guide. xv
What This Guide Contains . xv
Conventions Used in This Guide xvi
Additional Resources . xvi
Reader Comments . xvii

1. The XFS Filesystem . 1

2. Planning an XFS Filesystem . 3
Choosing the Filesystem Block Size 3
Choosing the Filesystem Directory Block Size 4
Choosing the Log Type and Size. 4
Choosing Allocation Groups and Stripe Units 6
Disk Repartitioning . 7

3. Creating Filesystems . 9
Making an XFS Filesystem . 9
Growing an XFS Filesystem . 11

4. Filesystem Maintenance . 13
Filesystem Reorganization . 13
Filesystem Corruption . 13
Checking XFS Filesystem Consistency With xfs_check and xfs_repair 14

Checking Filesystem Consistency 14
Repairing Inconsistent Filesystems 16

viii 007-4273-003

Repairing XFS Filesystem Problems 17
Common Error Messages . 17
Error Messages When Files Are in lost+found 18
What to Do If xfs_repair Cannot Repair a Filesystem 19
Mounting A Filesystem Without Log Recovery 20

5. Quotas . 21
Using Disk Quotas on XFS Filesystems 22

Turning on Disk Quotas for Users on XFS Filesystems 22
Turning on Disk Quotas for Groups on XFS Filesystems 22
Setting Disk Quota Limits for Users on XFS Filesystems 23
Setting Disk Quota Limits for Groups on XFS Filesystems 24
Displaying Disk Quota Information on XFS Filesystems 24
Administering Disk Quotas on XFS Filesystems 26
Monitoring Disk Space Usage with Disk Quota Accounting 27
Checking Disk Space Usage on XFS Filesystems With quota 28

6. Backup and Recovery Procedures 29
Features of xfsdump and xfsrestore 29
Media Layout for xfsdump . 30

Possible xfsdump Layouts 31
Saving Data with xfsdump . 36

Specifying Local Media with xfsdump 37
Specifying a Remote Tape Drive with xfsdump 38
Backing Up to a File with xfsdump 39
Reusing Tapes with xfsdump 40
Erasing Used Tapes . 41
About Incremental and Resumed Dumps 41
Performing an Incremental xfsdump 42
Performing a Resumed xfsdump 42

Examining xfsdump Archives 44

007-4273-003 ix

About xfsrestore . 47
Performing Simple Restores with xfsrestore 49
Restoring Individual Files with xfsrestore 51
Performing Network Restores with xfsrestore 52
Performing Interactive Restores with xfsrestore 52
Performing Cumulative Restores with xfsrestore 54

Interrupting xfsrestore . 58
About the housekeeping and orphanage Directories 59

Using xfsdump and xfsrestore to Copy Filesystems 60

A. XFS Linux and IRIX XFS . 61

Index . 63

007-4273-003 xi

Figures

Figure 6-1 Single Dump on Single Media Object 31
Figure 6-2 Single Dump on Multiple Media Objects 32
Figure 6-3 Multiple Dumps on Single Media Object 34
Figure 6-4 Multiple Dumps on Multiple Media Objects 35

007-4273-003 xiii

Examples

Example 3-1 mkfs Command for an XFS Filesystem Using Defaults 10
Example 3-2 mkfs Command for an XFS Filesystem Specifying Block and Log Size of

Internal Log 10
Example 3-3 Growing an XFS filesystem 12

007-4273-003 xv

About This Guide

XFS for Linux Administration is a guide to the administration of the XFS filesystem on the
LInux operating system.This manual supports SGI ProPack v 2.4 for Linux.

What This Guide Contains

This guide is organized into chapters that give procedures for performing filesystem
administration tasks. These chapters are:

• Chapter 1, “The XFS Filesystem,” which provides an overview of the features of the
XFS filesystem

• Chapter 2, “Planning an XFS Filesystem,” which provides information on the
choices you can make when creating an XFS filesystem

• Chapter 3, “Creating Filesystems,” which provides information on creating an XFS
filesystem on an empty disk partition or logical volume

• Chapter 4, “Filesystem Maintenance,” which provides information on procedures
you use for XFS filesystem maintenance

• Chapter 5, “Quotas,” which provides information on using disk quotas with XFS
filesystems

• Chapter 6, “Backup and Recovery Procedures,” which provides information on
using the xfsdump and xfsrestore utilities to back up and recover data on XFS
filesystems

• Appendix A, which provides information on the differences between XFS Linux
and IRIX XFS

xvi 007-4273-003

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

command This fixed-space font denotes literal items (such as commands, files,
routines, pathnames, signals, messages, programming language
structures, and e-mail addresses) and items that appear on the screen.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user inters in
interactive sessions. Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

When a procedure could result in the loss of files if not performed correctly or should be
performed only by knowledgeable users, the procedure is preceded by a Caution. For
example:

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

Additional Resources

For more information about XFS for Linux, see these sources:

• XFS man pages

• SGI ProPack for Linux Start Here

007-4273-003 xvii

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and part number of the document
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California, 94043-1351

We value your comments and will respond to them promptly.

007-4273-003 1

Chapter 1

1. The XFS Filesystem

The XFS filesystem provides the following major features;

• Full 64-bit file capabilities (files larger than 2 GB)

• Rapid and reliable recovery after system crashes because of journaling technology

• Efficient support of large, sparse files (files with “holes”)

• Integrated, full-function volume manager support

• Extremely high I/O performance that scales well on multiprocessing systems

• User-specified filesystem block sizes ranging from 512 bytes up to a maximum of
the filesystem page size

At least 64 MB of memory is recommended for systems with XFS filesystems.

The maximum size of an XFS filesystem under SGI ProPack for Linux is 264 bytes. The
maximum size of an XFS file under SGI ProPack for Linux is 263-1 bytes.

XFS uses database journaling technology to provide high reliability and rapid recovery.
Recovery after a system crash is completed within a few seconds, without the use of a
filesystem checker such as the fsck command. Recovery time is independent of
filesystem size.

XFS is designed to be a very high performance filesystem. XFS as a filesystem is capable
of delivering near-raw I/O performance. While traditional filesystems suffer from
reduced performance as they grow in size, with XFS there is no performance penalty.

You can create filesystems with block sizes ranging from 512 bytes to a maximum of the
filesystem page size. The filesystem page size is a kernel compile option and may be set
to 4K, 8K, or 16K.

Filesystem extents, which provide for contiguous data within a file, are created
automatically for normal files and may be configured at file creation time using the
fcntl() system call. Extents are multiples of a filesystem block.

2 007-4273-003

Inodes are created as needed by XFS filesystems. You can specify the size of inodes with
the -i size= option to the filesystem creation command, mkfs. You can also specify the
maximum percentage of the space in a filesystem that can be occupied by inodes with the
-i maxpct= option of the mkfs command.

XFS implements fully journaled extended attributes. An extended attribute is a
name/value pair associated with a file. Attributes can be attached to all types of inodes:
regular files, directories, symbolic links, device nodes, and so forth. Attribute values can
contain up to 64KB of arbitrary binary data. XFS implements two attribute namespaces:
a user namespace available to all users, protected by the normal file permissions; and a
system namespace, accessible only to privileged users. The system namespace can be
used for protected filesystem meta-data such as access control lists (ACLs) and
hierarchical storage manager (HSM) file migration status. For more information see the,
attr(1) reference page.

To dump XFS filesystems, the command xfsdump must be used instead of dump.
Restoring from these dumps is done usingxfsrestore. For more information about the
relationships between xfsdump, xfsrestore on XFS filesystems, see Chapter 6,
“Backup and Recovery Procedures.”

007-4273-003 3

Chapter 2

2. Planning an XFS Filesystem

The following subsections discuss preparation for and choices you can make when
creating an XFS filesystem.

Choosing the Filesystem Block Size

XFS allows you to choose the logical block size for each filesystem by using the -b
size= option of the mkfs command. (Physical disk blocks remain 512 bytes.)

For XFS filesystems on disk partitions and logical volumes and for the data subvolume
of filesystems on logical volumes, the block size guidelines are as follows:

• The minimum block size is 512 bytes. Small block sizes increase allocation overhead
which decreases filesystem performance, but in general, the recommended block
size for filesystems under 100 MB and for filesystems with many small files is 512
bytes. The filesystem block size must be a power of two.

• The default block size is 4096 bytes (4K). This is the recommended block size for
filesystems over 100 MB.

• The maximum block size is the page size of the kernel, which is 4K on x86 systems
and is configurable on IA-64 systems. Because large block sizes can waste space, in
general block sizes should not be larger than 4096 bytes (4K).

• For news servers, it is recommended that you use a filesystem block size of 512
bytes and a directory block size of 4096 bytes.

Block sizes are specified in bytes in decimal (default), octal (prefixed by 0), or
hexadecimal (prefixed by 0x or 0X). If the number has the suffix “k,” it is multiplied by
1024.

4 007-4273-003

Choosing the Filesystem Directory Block Size

An XFS file system allows you to select a logical block size for the filesystem directory
that is greater than the logical block size of the filesystem by using the -n option of the
mkfs command. This allows you to choose a filesystem block size to match the
distribution of data file sizes without adversely affecting directory operation
performance. Using this option could improve performance for a filesystem with many
small files, such as a news or mail filesystem. In this case, the filesystem logical block size
could be small (512, 1K, or 2K bytes) and the logical block size for the filesystem directory
could be large (4K or 8K bytes); this can improve the performance of directory lookups
because the tree storing the index information has larger blocks and less depth.

You should consider setting a logical block size for a filesystem directory that is greater
than the logical block size for the filesystem if you are supporting an application that
reads directories (with the readdir(3C) or getdents(2) system calls) many times in
relation to how much it creates and removes files. Using a small filesystem block size
saves on disk space and on I/O throughput for the small files.

In a Linux XFS file system, the data needed to perform a readdir operation is
segregated from the index information. Directory data blocks can be “read-ahead” in a
readdir. Performing read-ahead improves the readdir performance dramatically.
Because the data needed for a readdir operation and index information are separate in
a directory block, the offset in a directory is limited to 32 bits.

Choosing the Log Type and Size

Each XFS filesystem has a log that contains filesystem journaling records. This log
requires dedicated disk space. This disk space doesn’t show up in listings from the df
command, nor can you access it with a filename.

The location of the disk space depends on the type of log you choose. The two types of
logs are:

External When you specify that log records are maintained in a dedicated log
device, the log is called an external log. You use the -l option of the mkfs
command to specify this device.

Choosing the Log Type and Size

007-4273-003 5

Internal When an XFS filesystem is created on a disk partition or logical volume
that does not have a log subvolume, log records are put into a dedicated
portion of the disk partition (or data subvolume) that contains user files.
This type of log is called an internal log.

The guidelines for choosing the log type are as follows:

• If you want the data and log records to be on different partitions, use an external
log.

• If you want the data and the log subvolume of a logical volume to be on different
partitions or to use different subvolume configurations, use an external log.

• If you want the log subvolume of a logical volume to be striped independently from
the data subvolume, you must use an external log.

• If you are making the XFS filesystem on a logical volume that has a log subvolume,
you must specify this log subvolume as the log device with the -l option of the
mkfs command in order.

The amount of disk space that should be allocated for the log is a function of how the
filesystem is used. The amount of disk space required for log records is proportional to
the transaction rate and the size of transactions on the filesystem, not the size of the
filesystem. Larger block sizes result in larger transactions. Transactions from directory
updates (for example, the mkdir and rmdir commands and the create() and
unlink() system calls) cause more log data to be generated.

You can choose the amount of disk space to dedicate to the log (called the log size). The
minimum log size for a filesystem is enforced by the size of the largest transaction, which
depends on the filesystem and directory block sizes. The maximum log size is 64k blocks
or 128 MB, whichever is smaller (this will depend on the block size).

For internal logs, the size of the log is specified with the -l size= option when you
create the filesystem with the mkfs command.The default log size grows with the size of
the filesystem up to the maximum log size, 128 megabytes, on a 1 terabyte filesystem. The
log size is specified in bytes as described in “Choosing the Filesystem Block Size” on
page 3, or as a multiple of the filesystem block size by using the suffix “b.”

For a filesystem which is contained in a striped logical volume, the default internal log
size is rounded up to a multiple of the stripe unit size. In this case, the user-specified size
value must be a multiple of the stripe unit size.

6 007-4273-003

For external logs, the default size of the log is the same as the size of the log device. You
can specify the size of the log with the -l size= option of the mkfs command, but
any additional space in the log device cannot be used. You may find that you need to
repartition a disk to create a properly sized log subvolume.

For filesystems with a very high transaction activity, a large log size is recommended.
You should avoid making your log too large, however, since a large log can increase
filesystem mount time after a crash.

Choosing Allocation Groups and Stripe Units

The data section of an XFS filesystem is divided into allocation groups. You can select the
number of allocation groups when you create an XFS filesystem or, alternatively, you can
select the size of an allocation group. The larger the number of allocation groups, the
more parallelism can be achieved when allocating blocks and inodes. You should avoid
selecting a very large number of allocation groups or an allocation group size that will
yield a very large number of allocation groups; a large number of allocation groups
causes an unreasonable amount of CPU time to be used when the filesystem is close to
full.

The minimum allocation group size is 16MB; the maximum size is just under 4 GB.

The default number of allocation groups is 8, unless the filesystem is smaller than 128 MB
or larger than 8 GB. When the filesystem is smaller than 128 MB, the default number of
allocation groups is less than 8, since the minimum allocation group size is 16MB. In this
case, the data section, by default, will be divided into as many allocation groups as
possible that are at least 16MB. When the filesystem is larger than 8GB, but smaller than
64GB, the default number of allocation groups is greater than 8, with each allocation
group approximately 1 GB in size. When the filesystem is larger than 64GB, the default
number of allocation groups is still greater than 8, but the allocation group size is 4GB.

XFS allows you to select the stripe unit for a RAID device or stripe volume. This ensures
that data allocations, inode allocations, and the internal log will be aligned along stripe
units when the end of file is extended and the file size is larger than 512KB. You specify
stripe units in 512-byte block units or in bytes. See the mkfs.xfs(1M) man page for
information on specifying stripe units.

When you specify a stripe unit, you also specify a stripe width. You specify a stripe width
in 512-byte block units or in bytes. The stripe width must be a multiple of the stripe unit.

Disk Repartitioning

007-4273-003 7

The stripe width will be the preferred I/O size returned in the stat() system call. See
the mkfs_xfs(1M) man page for information on specifying stripe width.

When used in conjunction with the -b (block size) option of the mkfs command, you can
use the -d su= and -d sw= options to specify the stripe unit and stripe width in
filesystem blocks.

For a RAID device, the default stripe unit is 0, indicating that the feature is disabled. It is
prudent of the sysadmin to configure the stripe unit and width sizes of RAID devices.
This should be done to avoid unexpected performance anomalies caused by the
filesystem doing non-optimal I/O operations to the RAID unit. For example, if a block
write is not aligned on a RAID stripe unit boundary and is not a full stripe unit, the RAID
will be forced to do a read/modify/write cycle to write the data. This can have a
significant performance impact. By setting the stripe unit size properly, XFS will avoid
unaligned accesses.

For a striped volume, the stripe unit that was specified when the volume was created is
provided by default.

Disk Repartitioning

Many system administrators may find that they want or need to repartition disks when
they switch to XFS filesystems and/or logical volumes. Some of the reasons to consider
repartitioning are:

• If the system disk has separate partitions for root and usr, var, and home
filesystems, the root filesystem may be running out of space. Repartitioning is a way
to increase the space in root (at the expense of the size of usr, var, or home) or to
solve the problem by combining root and usr, var, or home into a single partition.

• If you plan to use logical volumes, you may want to put the XFS log into a small
subvolume. This requires disk repartitioning to create a small partition for the log
subvolume.

• If you plan to use logical volumes, you may want to repartition to create disk
partitions of equal size that can be striped or plexed.

007-4273-003 9

Chapter 3

3. Creating Filesystems

This chapter explains how to create an XFS filesystem on an empty disk partition or
logical volume. It also provides an overview on growing existing XFS filesystems.

The examples in this section use the XSCSI device naming convention. For information
on XSCSI device naming, see SGI ProPack for Linux Start Here.

Caution: When you create a filesystem, all files already on the disk partition or logical
volume are destroyed.

Making an XFS Filesystem

Use the following procedure to make an XFS filesystem.

1. Review Chapter 2 to verify that you are ready to begin this procedure.

2. Identify the device name of the partition or logical volume where you plan to create
the filesystem. This is the value of partition in the examples below.

For example, if you plan to use partition 1 of a SCSI disk with target 3 connected to
port 1 of a SCSI controller in slot 2 of PCI bus 2, the partition is
/dev/xscsi/pci02.02.0-1/target3/lun0/part1.

3. If the disk partition is already mounted, unmount it:

umount partition

Any data that is on the disk partition is destroyed.

4. If you are making a filesystem on a disk partition or on a logical volume that does
not have a log subvolume and want to use the default values for block size and log
size, use this mkfs command to create the new XFS filesystem:

mkfs partition

10 007-4273-003

Example 3-1 shows the command line to create an XFS filesystem using the defaults
and system output.

Example 3-1 mkfs Command for an XFS Filesystem Using Defaults

mkfs.xfs /dev/xscsi/pci02.02.0-1/target3/lun0/part1
meta-data=/dev/xscsi/pci02.02.0-1/target3/lun0/part1 isize=256 agcount=18,
agsize=1048576 blks
data = bsize=4096 blocks=17921788, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0
naming =version 2 bsize=4096
log =internal log bsize=4096 blocks=2187, version=1

= sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

5. If you are making a filesystem on a disk partition or on a logical volume that does
not have a log subvolume and want to specify the block size and log size, use this
mkfs command to create the new XFS filesystem:

mkfs -b size=blocksize -l size=logsize partition

blocksize is the filesystem block size (see “Choosing the Filesystem Block Size” on
page 3) and logsize is the size of the area dedicated to log records (see “Choosing the
Log Type and Size” on page 4). The default values are 4 KB blocks and a 1000-block
log.

Example 3-2 shows the command line used to create an XFS filesystem and the
system output. The filesystem has a 10 MB internal log and a block size of 1 KB and
is on the partition /dev/dsk/dks0d4s7.

Example 3-2 mkfs Command for an XFS Filesystem Specifying Block and Log Size of Internal
Log

mkfs.xfs -b size=1k -l size=10m /dev/xscsi/pci02.02.0-1/target3/lun0/part1
meta-data=/dev/xscsi/pci02.02.0-1/target3/lun0/part1 isize=256 agcount=18,
agsize=4194304 blks
data = bsize=1024 blocks=71687152, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0
naming =version 2 bsize=4096
log =internal log bsize=1024 blocks=10240, version=1

= sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

Growing an XFS Filesystem

007-4273-003 11

6. If you are making a filesystem on a logical volume that has a log subvolume (for an
external log), use this mkfs command to make the new XFS filesystem:

mkfs -b size=blocksize volume

blocksize is the block size for filesystem (see “Choosing the Filesystem Block Size” on
page 3),and volume is the device name for the volume.

7. If you are making a filesystem with a directory block size that is larger than the
filesystem block size, use this mkfs command to create the new XFS filesystem:

mkfs -b size=blocksize -n size=dirblocksize partition

blocksize is the filesystem block size (see “Choosing the Filesystem Block Size” on
page 3) and dirblocksize is the directory block size (see “Choosing the Filesystem
Directory Block Size” on page 4).

8. To use the filesystem, you must mount it. For example:

mkdir mountdir
mount partition mountdir

9. To configure the system so that the new filesystem is automatically mounted when
the system is booted, add this line to the file /etc/fstab:

partition mountdir xfs defaults 0 0

Growing an XFS Filesystem

You grow an existing XFS filesystem by increasing the available disk space and growing
the existing filesystem with the xfs_growfs(1M) command.The filesystem must be
mounted to be grown The existing contents of the filesystem are undisturbed, and the
added space becomes available for additional file storage.

Growing an XFS filesystem is supported on XVM volumes. You must first grow the XVM
volume before growing the XFS filesystem. For information on XVM volumes, see the
XVM Volume Manager Administrator’s Guide.

The following example grows a filesystem mounted at /mnt:

12 007-4273-003

Example 3-3 Growing an XFS filesystem

xfs_growfs /mnt
meta-data=/mnt isize=256 agcount=30, agsize=262144 blks
data = bsize=4096 blocks=7680000, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0
naming =version 2 bsize=4096
log =internal bsize=4096 blocks=1200 version=1

= sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0
data blocks changed from 7680000 to 17921788

007-4273-003 13

Chapter 4

4. Filesystem Maintenance

The chapter provides information on the following topics:

• “Filesystem Reorganization” on page 13

• “Filesystem Corruption” on page 13

• “Checking XFS Filesystem Consistency With xfs_check and xfs_repair” on page 14

• “Repairing XFS Filesystem Problems” on page 17

Filesystem Reorganization

Filesystems can become fragmented over time. When a filesystem is fragmented, blocks
of free space are small and files have many extents. The xfs_fsr command reorganizes
filesystems so that the layout of the extents is improved. This improves overall
performance. See the xfs_fsr reference page for information on the xfs_fsr
command.

Filesystem Corruption

Most often, a filesystem is corrupted because the system experienced a panic. This can be
caused by system software failure, hardware failure, or human error (for example,
pulling the plug). Another possible source of filesystem corruption is overlapping
partitions.

There is no foolproof way to predict hardware failure. The best way to avoid hardware
failures is to conscientiously follow recommended diagnostic and maintenance
procedures.

Human error is probably the greatest single cause of filesystem corruption. To avoid
problems, follow these rules closely:

14 007-4273-003

• Always shut down the system properly. Do not simply turn off power to the system.
Use a standard system shutdown tool, such as the shutdown command.

• Never remove a filesystem physically (pull out a hard disk) without first turning off
power.

• Never physically write-protect a mounted filesystem, unless it is mounted
read-only.

• Do not mount filesystems on dual-hosted disks on two systems simultaneously.

The best way to insure against data loss is to make regular, careful backups.

In some cases, XFS filesystem corruption, even on the root file system, can be repaired
with the command xfs_repair. For more information about xfs_repair see
“Checking XFS Filesystem Consistency With xfs_check and xfs_repair” on page 14

Checking XFS Filesystem Consistency With xfs_check and xfs_repair

XFS filesystem consistency checking can be done using the xfs_check command and
the dry-run mode of the xfs_repair command. The xfs_repair command is
sometimes able to repair filesystem inconsistencies.

Note: If you suspect problems with the root file system, you should use a root disk or an
alternate root disk to run xfs_repair.

Checking Filesystem Consistency

The filesystem consistency checking commands for XFS filesystems are xfs_check and
xfs_repair -n. Unlike fsck, neither xfs_check nor xfs_repair are invoked
automatically on system startup. They should be used only if you suspect a filesystem
consistency problem.

Before running xfs_check or xfs_repair -n, the filesystem to be checked must be
unmounted cleanly using normal system administration procedures (the umount
command or system shutdown), not as a result of a crash or system reset. If the filesystem
has not been unmounted cleanly, mount it and unmount it cleanly before running
xfs_check or xfs_repair -n.

Checking XFS Filesystem Consistency With xfs_check and xfs_repair

007-4273-003 15

xfs_repair -n checks XFS filesystem consistency. xfs_repair -n performs a more
complete check than xfs_check. The command line for xfs_repair -n is:

xfs_repair -n device

device is the device file for a disk partition or logical volume that contains an XFS
filesystem, for example:

xfs_repair -n /dev/xscsi/pci02.02.0-1/target3/lun0/part1

The following example shows output with no consistency problems found:

Phase 1 - find and verify superblock...
Phase 2 - using internal log

- scan filesystem freespace and inode maps...
- found root inode chunk

Phase 3 - for each AG...
- scan (but don't clear) agi unlinked lists...
- process known inodes and perform inode discovery...
- agno = 0
- agno = 1
...
- process newly discovered inodes...

Phase 4 - check for duplicate blocks...
- setting up duplicate extent list...
- check for inodes claiming duplicate blocks...
- agno = 0
- agno = 1
...

No modify flag set, skipping phase 5
Phase 6 - check inode connectivity...

- traversing filesystem starting at / ...
- traversal finished ...
- traversing all unattached subtrees ...
- traversals finished ...
- moving disconnected inodes to lost+found ...

Phase 7 - verify link counts...
No modify flag set, skipping filesystem flush and exiting.

xfs_check also checks XFS filesystem consistency. It can be used on filesystems with
Extended Attributes (see the attr(1) reference page). (xfs_repair performs only
limited checking of Extended Attributes.) The command line for xfs_check is:

xfs_check device

16 007-4273-003

If no consistency problems were found, xfs_check returns without displaying any
messages.

Repairing Inconsistent Filesystems

xfs_repair (without the -n option) checks XFS filesystem consistency and, if problems
are detected, corrects them if possible. The filesystem to be checked and repaired must
have been unmounted cleanly using normal system administration procedures (the
umount command or system shutdown), not as a result of a crash or system reset. If the
filesystem has not been unmounted cleanly, mount it and unmount it cleanly before
running xfs_repair.

The command line for xfs_repair when you want it to repair any inconsistencies it
finds is:

xfs_repair device

device is the device file for a disk partition or logical volume that contains an XFS
filesystem. It must not be mounted.

The following is an example of the output you see from running xfs_repair on a clean
filesystem:

xfs_repair /dev/xscsi/pci02.02.0-1/target3/lun0/part1
Phase 1 - find and verify superblock...
Phase 2 - using internal log

- zero log...
- scan filesystem freespace and inode maps...
- found root inode chunk

Phase 3 - for each AG...
- scan and clear agi unlinked lists...
- process known inodes and perform inode discovery...
- agno = 0
- agno = 1
...
- process newly discovered inodes...

Phase 4 - check for duplicate blocks...
- setting up duplicate extent list...
- clear lost+found (if it exists) ...
- check for inodes claiming duplicate blocks...
- agno = 0
- agno = 1
...

Repairing XFS Filesystem Problems

007-4273-003 17

Phase 5 - rebuild AG headers and trees...
- reset superblock...

Phase 6 - check inode connectivity...
- resetting contents of realtime bitmap and summary inodes
- ensuring existence of lost+found directory
- traversing filesystem starting at / ...
- traversal finished ...
- traversing all unattached subtrees ...
- traversals finished ...
- moving disconnected inodes to lost+found ...

Phase 7 - verify and correct link counts...
done

For information about using xfs_repair on an inconsistent filesystem, see “Repairing
XFS Filesystem Problems” on page 17.

Repairing XFS Filesystem Problems

The xfs_repair command checks XFS filesystem consistency and sometimes repairs
problems that are found. This section describes the messages that you may see from
xfs_repair and what to do if xfs_repair is not able to repair a filesystem.

Common Error Messages

Some common error messages from xfs_repair and the repairs that it performs are the
following:

disconnected inode 242002, moving to lost+found

xfs_repair found an inode that is in use, but is not connected to the
filesystem. The inode is moved to the filesystem’s lost+found
directory. Its name is its inode number, in this example 242002. If the
disconnected inode is a directory, the directory’s subtree is preserved—
all its child inodes are automatically moved with it, so the entire
directory subtree moves to lost+found.

imap claims in-use inode 2444941 is free, correcting imap

The inode allocation map in the filesystem behaves as if inode 2444941
is free, but the inode itself looks like it is still in use. xfs_repair
corrects the inode map to say that the inode is in use.

18 007-4273-003

entry references free inode 2444940 in shortform directory 2444922 junking

entry “fb” in directory inode 2444922

A directory entry points to an inode that xfs_repair has determined
is actually free. xfs_repair junks the directory entry. The term
shortform means a small directory. In larger directories, the entry deletion
is usually a two-pass process. In this case, the second part of the message
reads something like marking bad entry, marking entry to be

deleted, or will clear entry.

resetting inode 241996 nlinks from 5 to 3

xfs_repair detected a mismatch between the number of directory
entries pointing to the inode (links) and the number of links recorded in
the inode. It corrected the number (from 5 to 3 in this case).

cleared inode 2444926

There was something wrong with the inode that was not correctable, so
xfs_repair turned it into a zero-length free inode. This usually
happens because the inode claims blocks that are used by something else
or the inode itself is badly corrupted. Typically, the cleared inode

message is preceded by one or more messages indicating why the inode
needs to be cleared.

Error Messages When Files Are in lost+found

If xfs_repair has put files and directories in a filesystem’s lost+found directory and
you do not remove them, the next time you run xfs_repair it temporarily disconnects
the inodes for those files and directories. They are reconnected before xfs_repair
terminates. As a result of the disconnected inodes in lost+found, you see output like
this:

Phase 1 - find and verify superblock...
Phase 2 - zero log...

- scan filesystem freespace and inode maps...
- found root inode chunk

Phase 3 - for each AG...
- scan and clear agi unlinked lists...
- process known inodes and perform inode discovery...
- agno = 0
- agno = 1
...
- process newly discovered inodes...

Phase 4 - check for duplicate blocks...

Repairing XFS Filesystem Problems

007-4273-003 19

- setting up duplicate extent list...
- clear lost+found (if it exists) ...
- clearing existing “lost+found” inode
- deleting existing “lost+found” entry
- check for inodes claiming duplicate blocks...
- agno = 0

imap claims in-use inode 242000 is free, correcting imap
- agno = 1
- agno = 2
...

Phase 5 - rebuild AG headers and trees...
- reset superblock counters...

Phase 6 - check inode connectivity...
- ensuring existence of lost+found directory
- traversing filesystem starting at / ...
- traversal finished ...
- traversing all unattached subtrees ...
- traversals finished ...
- moving disconnected inodes to lost+found ...

disconnected inode 242000, moving to lost+found
Phase 7 - verify and correct link counts...
done

In this example, inode 242000 was an inode that was moved to lost+found during a
previous xfs_repair run. This run of xfs_repair found that the filesystem is
consistent. If the lost+found directory had been empty, in phase 4 only the messages
about clearing and deleting the lost+found directory would have appeared. The
left-justified imap claims and disconnected inodemessages appear (one pair of
messages per inode) if there are inodes in the lost+found directory.

What to Do If xfs_repair Cannot Repair a Filesystem

If xfs_repair fails to repair the filesystem successfully, try giving the same
xfs_repair command twice more; xfs_repair may be able to make more repairs on
successive runs. If xfs_repair fails to fix the consistency problems in three tries, your
next step depends upon where it failed:

• If xfs_repair failed in phase 1, you must restore lost files from backups.

• If xfs_repair failed in phase 2 or later, you may be able to restore files from the
disk by backing up and restoring the files on the filesystem.

20 007-4273-003

If xfs_repair failed in phase 2 or later, follow these steps:

1. Mount the filesystem using mount –r (read-only).

2. Make a filesystem backup with xfsdump.

3. Use mkfs to a make new filesystem on the same disk partition or logical volume.

4. Restore the files from the backup with xfsrestore.

See Chapter 6 for information about xfsdump and xfsrestore.

Mounting A Filesystem Without Log Recovery

If a filesystem is damaged to the extent that you are unable to mount the filesystem
successfully in the standard fashion, you may be able to recover some of its data by
mounting the filesystem with the -o norecover option of the mount command. This
option mounts the filesystem without running log recovery. You must mount the
filesystem as read-only when you use this option.

007-4273-003 21

Chapter 5

5. Quotas

If your system is constantly short of disk space and you cannot increase the amount of
available space, you may be forced to implement disk quotas. Quotas allow you to limit
the amount of space a user can occupy and the number of files (inodes) each user can
own. The XFS filesystem supports disk quotas to automate this process. You can use this
system to implement specific disk usage quotas for each user on your system. You can
implement hard or soft limits; hard limits are enforced by the system, soft limits merely
remind the user to trim disk usage. Disk usage limits are not enforced for root.

With soft limits, whenever a user logs in with a usage greater than the assigned soft limit,
that user is warned (by the login command). When the user exceeds the soft limit, the
timer is enabled. Any time the quota drops below the soft limits, the timer is disabled. If
the timer is enabled longer than a time period set by the system administrator, the
particular limit that has been exceeded is treated as if the hard limit has been reached,
and no more disk space is allocated to the user. The only way to reset this condition is to
reduce usage below the quota. Only root may set the time limits, and this is done on a
per-filesystem basis.

Several options are available on XFS filesystems. You can impose limits on some users
and not others, some filesystems and not others, and on total disk usage per user, or total
number of files. In addition, on XFS filesystems there is no limit to the number of
accounts and there is little performance penalty for large numbers of users.

On XFS filesystems, you can also impose limits according to group IDs as well as user
IDs. For information on using disk quotas for user and group IDs, see “Using Disk
Quotas on XFS Filesystems” on page 22.

Disk quotas on XFS filesystems can be used to do disk usage accounting. Disk usage
accounting monitors disk usage, but does not enforce disk usage limits. See “Monitoring
Disk Space Usage with Disk Quota Accounting” on page 27 for more information.

Disk quotas are described in more detail in the quotas(4) reference page. Procedures
for imposing and monitoring disk quotas are described in “Using Disk Quotas on XFS
Filesystems” on page 22.

22 007-4273-003

Using Disk Quotas on XFS Filesystems

This section describes basic commands for administering disk quotas on XFS filesystems.
Additional commands are described on the quota(1), edquota(1M), and
repquota(1M) reference pages.

You can set disk quotas for individual users and you can set disk quotas for groups
according to group ID.

For XFS filesystems, you must first turn on disk quotas on a filesystem, then set quotas
on that filesystem for users and projects or groups.

Turning on Disk Quotas for Users on XFS Filesystems

You can turn on quotas for users in these ways:

• To turn on disk quotas automatically for users on a non-root filesystem, include the
option quota in the /etc/fstab entry, for example:

/dev/foo / xfs rw,quota 0 0

• To turn on disk quotas manually for users on a non-root filesystem, mount the
filesystem with this command:

mount -o quota fsname rootdir

fsname is the device name of the filesystem. rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas for users on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=quota option to the append
line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=quota

Turning on Disk Quotas for Groups on XFS Filesystems

You can turn on quotas for groups in these ways:

• To turn on disk quotas automatically for groups on a non-root filesystem, include
the option gquota in the /etc/fstab entry, for example:

Using Disk Quotas on XFS Filesystems

007-4273-003 23

/dev/foo / xfs rw,gquota 0 0

• To turn on disk quotas manually for groups on a non-root filesystem, mount the
filesystem with this command:

mount -o gquota fsname rootdir

fsname is the device name of the filesystem. rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas manually for groups on the root filesystem, give these
commands:

• To turn on disk quotas for groups on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=gquota option to the append
line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=gquota

Setting Disk Quota Limits for Users on XFS Filesystems

After turning on disk quotas on a filesystem, you can set limits for users on that
filesystem using the commands below. You can preview the results of each of these
commands by adding a -n option, which is the dry-run option.

• To specify limits for users interactively, give this command:

edquota name ...

name is a user name or numeric user ID. The screen clears, and you are placed in the
editor specified by the EDITOR environment variable (vi if $EDITOR is not set) to
edit the disk quotas for the filesystem mounted at rootdir for the first user listed on
the command line. You see:

fs rootdir kbytes (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

The first pair of soft and hard numbers are the soft and hard limits for disk usage in
kilobytes in the filesystem at rootdir. The second pair of soft and hard numbers are
the soft and hard limits for the number of files that user can own in the filesystem.

Edit the zeros to set the limits to sizes you choose. A limit of zero is not enforced.
After you set the limits, save the file and quit the editor. If you specified more than
one user on the command line, another instance of the editor appears with the line
above. Edit this line to enter the limits for the second user. Continue until lines have
been edited for all users.

24 007-4273-003

• To specify that users are to have the same limits as another user (proto_name),enter
this command:

edquota -p proto_name name ...\

• To specify limits for a user non-interactively, enter this command:

edquota -f rootdir -l \
uid=userid,bsoft=kvalue,bhard=kvalue,isoft=value,ihard=value

userid is a user name or numeric user ID. Each kvalue is a soft or hard limit for disk
usage in kilobytes.Each value is a soft or hard limit for the number of files the user
can own.

• To use the file (quotafile) created by command repquota -e as input to the
edquota command, enter this command:

edquota -i quotafile

Setting Disk Quota Limits for Groups on XFS Filesystems

After turning on disk quotas on a filesystem, you can set limits for groups on that
filesystem. You set limits for groups just as you do for users, by using the edquota
command as described in “Setting Disk Quota Limits for Users on XFS Filesystems” on
page 23.

To use the edquota command to set limits for a project, you include the -g option on the
command line. When you use the -g option with edquota, any name specified on the
command line is considered a group name. For example, to specify limits for groups
interactively, give this command:

edquota -g name ...

name is a group name or numeric group ID. For information on additional options of the
edquota command, see the edquota(1M) man page.

Use of disk quota limits for groups and use of disk quota limits for projects are mutually
exclusive.

Displaying Disk Quota Information on XFS Filesystems

Some commands that display information about disk quotas are as follows:

• To display a report that shows whether disk quotas are on or off for each filesystem,
give this command as superuser:

Using Disk Quotas on XFS Filesystems

007-4273-003 25

repquota -sa
/dev/root (/):

Status

user quota accounting : on
user quota limit enforcement: on
proj quota accounting : off
proj quota limit enforcement: off
group quota accounting : off
group quota limit enforcement: off

Quota Storage
user quota inum 103156, blocks 8, extents 7
proj quota inum 103157, blocks 5, extents 4

Default Limits
blocks time limit: 1.0 week
files time limit: 1.0 week

Cache
dquots currently cached in memory: 14

The sections of the output are as follows:

Status Lists the status of disk space accounting (on or off) and enforcement
of disk quotas (on or off) for this filesystem.

Quota Storage Blocks and extents are the number of filesystem blocks and extents
used to store disk quota information. The inum value is the inode
number at which quota information is stored and is for internal use
only.

Default Limits The blocks and files time limits are the default lengths of time for
this filesystem that users have to reduce their disk space usage or
number of files below their soft limits. These time limits can be set
on a per-user basis by the command edquota -t.

Cache This section is for internal use only

• To get information about your disk quotas, enter this command:

quota -v
Disk quotas for margo (uid 1606):
Filesystem usage quota limit timeleft files quota limit timeleft
/ 138360 0 0 14971 0 0
/e 4156360 41200 0 1.6 days 222264 0 0

26 007-4273-003

The columns in this output are:

Filesystem Lists each of the filesystems that have quotas turned on.

usage Lists the user’s disk usage on each filesystem.

quota The user’s soft limit for disk usage or files on each filesystem.

limit The user’s hard limit for disk usage or files on each filesystem.

timeleft For filesystems where the user’s soft limit for disk usage or files is
exceeded, gives the number of days until the user is prohibited from
using additional disk space or creating more files.

files The number of files owned by the user on each filesystem.

• To get information about your group disk quotas, enter this command:

quota -g -v
Disk quotas for staff (gid 50):
Filesystem usage quota limit timeleft files quota limit timeleft
/part1 4 0 0 2 0 0

Administering Disk Quotas on XFS Filesystems

If the filesystem being dumped contains quotas, xfsdump will use repquota(1M) to
store the quotas in the following files in the root of the filesystem to be dumped:

xfsdump_quotas
user quotas

xfsdump_quotas_group
group quotas

These files will then be included in the dump. These files will appear only for those
quotas which are enabled on the filesystem being dumped. Upon restoration,
edquota(1M) can be used to reactivate the quotas for the filesystem. Note, however, that
the xfsdump_quotas file will probably require modification to change the filesystem or
UIDs if the filesystem has been restored to a different partition or system.

To create a file that lists the current quota limits of all the filesystems for users, enter this
command as superuser:

repquota -a -e quotafile

Using Disk Quotas on XFS Filesystems

007-4273-003 27

To create a file that lists the current quota limits of all the filesystems for groups, enter
this command as superuser:

repquota -g -a -e quotafile

Monitoring Disk Space Usage with Disk Quota Accounting

The disk quotas system can be used to monitor disk space usage without enforcing disk
usage limits. Disk quota accounting can be enabled by user or by group.

On XFS filesystems, use these commands to turn on disk usage accounting without
enforcement, stop disk usage accounting, and report disk space usage:

• To turn on disk usage accounting automatically on a filesystem for user quotas,
include the option qnoenforce in the /etc/fstab entry, for example:

/dev/foo / xfs rw,qnoenforce 0 0

To turn on disk usage accounting automatically on a filesystem for group quotas,
include the option gqnoenforce in the /etc/fstab entry, for example:

/dev/foo / xfs rw,gqnoenforce 0 0

• To turn on disk usage accounting manually for user quotas on a non-root filesystem,
when mounting the filesystem, use this mount command:

mount -o qnoenforce fsname rootdir

fsname is the device name of the filesystem. rootdir is the directory where the
filesystem is mounted.

To turn on disk usage accounting manually on a non-root filesystem for group
quotas when mounting the filesystem, use this mount command:

mount -o gqnoenforce fsname rootdir

• To turn on disk usage accounting manually on the root filesystem for user quotas,
execute the following commands. The quotaon command turns on disk accounting
with enforcement, and the quotaoff -o command turns off the enforcement.

quotaon -v /
quotaoff -v -o enforce /
reboot

To turn on disk usage accounting manually on the root filesystem for group quotas,
give these commands:

28 007-4273-003

quotaon -v -o gquota /
quotaoff -v -o gqenforce /
reboot

• To stop disk usage accounting on a filesystem for user quotas, give this command:

quotaoff fsname

To stop disk usage accounting on a filesystem for group quotas, give this
command:# quotaoff -o gquota fsname

• To get information about disk usage, use the commands described in “Checking
Disk Space Usage on XFS Filesystems With quota” on page 28.

Checking Disk Space Usage on XFS Filesystems With quota

The quota command reports the amount of disk usage per user, per group, or per project
on a filesystem, as well as additional information about the disk quotas. On XFS
filesystems, you must turn on quotas to use this feature, even if you are not going to
enforce quota limits. For instructions on monitoring disk space usage without enforcing
disk usage limits see “Monitoring Disk Space Usage with Disk Quota Accounting” on
page 27.

For information on the output of the quota command, see “Displaying Disk Quota
Information on XFS Filesystems” on page 24.

007-4273-003 29

Chapter 6

6. Backup and Recovery Procedures

This chapter describes how the xfsdump and xfsrestore utilities work and how to use
them to back up and recover data on XFS filesystems. The xfsdump(1M) and
xfsrestore(1M) reference pages provide online information on these utilities.

Features of xfsdump and xfsrestore

The xfsdump and xfsrestore utilities fully support XFS filesystems. With xfsdump
and xfsrestore, you can back up and restore data using local or remote drives. You
can back up filesystems, directories, and/or individual files, and then restore filesystems,
directories, and files independently of how they were backed up. xfsdump also allows
you to back up “live” (mounted, in-use) filesystems.

With xfsdump and xfsrestore, you can recover from intentional or accidental
interruptions—this means you can interrupt a dump or restore at any time, and then
resume it whenever desired. xfsdump and xfsrestore support incremental dumps,
and multiple dumps can be placed on a single media object. The utilities can
automatically divide a dump among multiple drives, and can restore a dump from
multiple drives. This allows you to perform faster dumps and restores.

xfsdump and xfsrestore support the following:

• XFS features including 64-bit inode numbers, file lengths, and holes

• multiple media types,

• regular, directory, symbolic link, block and character special, FIFO, and socket file
types

xfsdump and xfsrestore retain hard links. xfsdump does not affect the state of the
filesystem being dumped (for example, access times are retained). xfsrestore detects
and bypasses media errors and recovers rapidly after encountering them. xfsdump does
not cross mount points, local or remote.

30 007-4273-003

xfsdump optionally prompts for additional media when the end of the current media is
reached. Operator estimates of media capacity are not required and xfsdump also
supports automated backups. xfsdump maintains an extensive online inventory of all
dumps performed. Inventory contents can be viewed through various filters to quickly
locate specific dump information. xfsrestore supports interactive operation, allowing
selection of individual files or directories for recovery. It also permits selection from
among backups performed at different times when multiple dumps are available. Dump
contents may also be viewed noninteractively.

Note: If you are using disk quotas on XFS filesystems, refer to Chapter 5 for more
information.

Media Layout for xfsdump

The following section introduces some terminology and then describes the way
xfsdump formats data on the storage media for use by xfsrestore.

While xfsdump and xfsrestore are often used with tape media, the utilities actually
support multiple kinds of media, so in the following discussions, the term media object is
used to refer to the media in a generic fashion. The term dump refers to the result of a
single use of the xfsdump command to output data files to the selected media object(s).
An instance of the use of xfsdump is referred to as a dump session.

The dump session sends a single dump stream to the media object(s). The dump stream
may contain as little as a single file or as much as an entire filesystem. The dump stream
is composed of dump objects, which are:

• one or more data segments

• an optional dump inventory

• a stream terminator

The data segment(s) contains the actual data, the dump inventory contains a list of the
dump objects in the dump, and the stream terminator marks the end of the dump stream.
When a dump stream is composed of multiple dump objects, each object is contained in
a media file. Some output devices, for example standard output, do not support the
concept of media files—the dump stream is only the data.

Media Layout for xfsdump

007-4273-003 31

Possible xfsdump Layouts

The simplest dump, for example the dump of a small amount of data to a single tape,
produces a data segment and a stream terminator as the only dump objects. If the
optional inventory object is added, you have a dump like that illustrated in Figure 6-1.
(In the data layout diagrams in this section, the optional inventory object is always
included.)

Figure 6-1 Single Dump on Single Media Object

You can also dump data streams that are larger than a single media object. The data
stream can be broken between any two media files including data segment boundaries.
(The inventory is never broken into segments.) In addition, if you specify multiple drives,
the dump is automatically broken into multiple streams. The xfsdump utility prompts
for a new media object when the end of the current media object is reached.

Data

Inventory

Terminator

Media files

32 007-4273-003

Figure 6-2 illustrates the data layout of a single dump session that requires two media
objects on each of two devices.

Figure 6-2 Single Dump on Multiple Media Objects

Data segment

Inventory

Terminator

Data segment

Data segment

Data segment

Media object 1

Media object 2

Media Layout for xfsdump

007-4273-003 33

The xfsdump utility also accommodates multiple dumps on a single media object. When
dumping to tape, for example, the tape is automatically advanced past the existing dump
session(s) and the existing stream terminator is erased. The new dump data is then
written, followed by the new stream terminator1.

Figure 6-3 illustrates the layout of media files for two dumps on a single media object.

Figure 6-4 illustrates a case in which multiple dumps use multiple media objects. If
media files already exist on the additional media object(s), the xfsdump utility finds the
existing stream terminator, erases it, and begins writing the new dump data stream.

1 For drives that do not permit termination to operate in this way, other means are used to achieve the
same effective result.

34 007-4273-003

Figure 6-3 Multiple Dumps on Single Media Object

Inventory

Terminator

Inventory

Data segment

Data segment

Data segment

Data segment

First dum
p

S
econd dum

p

Former

terminator

location

Media Layout for xfsdump

007-4273-003 35

Figure 6-4 Multiple Dumps on Multiple Media Objects

Inventory

Data segment

Data segment

Data segment

Inventory

Terminator

Data segment

Data segment

Data segment

First dum
p

M
edia object 1

M
edia object 2

S
econd dum

p

Former

terminator

location

36 007-4273-003

Saving Data with xfsdump

This section discusses how to use the xfsdump command to back up data to local and
remote devices. You can get a summary of xfsdump syntax with the –h option:

xfsdump -h
xfsdump: version X.X
xfsdump: usage: xfsdump [-b <blocksize> (with minimal rmt option)]

[-c <media change alert program>]
[-f <destination> ...]
[-h (help)]
[-l <level>]
[-m <force usage of minimal rmt>]
[-o <overwrite tape >]
[-p <seconds between progress reports>]
[-s <subtree> ...]
[-v <verbosity {silent, verbose, trace}>]
[-A (don't dump extended file attributes)]
[-B <base dump session id>]
[-E (pre-erase media)]
[-F (don't prompt)]
[-I (display dump inventory)]
[-J (inhibit inventory update)]
[-L <session label>]
[-M <media label> ...]
[-O <options file>]
[-R (resume)]
[-T (don't timeout dialogs)]
[-Y <I/O buffer ring length>]
[- (stdout)]
[<source (mntpnt|device)>]

You must be the superuser to use xfsdump. Refer to the xfsdump(1M) reference page for
details.

Saving Data with xfsdump

007-4273-003 37

Specifying Local Media with xfsdump

You can use xfsdump to back up data to various media. For example, you can dump data
to a tape or hard disk. The drive containing the media object may be connected to the
local system or accessible over the network.

Following is an example of a level 0 dump to a local tape drive. Note that dump level
does not need to be specified for a level 0 dump. (Refer to ““About Incremental and
Resumed Dumps” on page 41 for a discussion of dump levels.)

xfsdump -f /dev/tape -L testers_11_21_94 -M test_1 /disk2
xfsdump: version 2.0 - type ^C for status and control
xfsdump: level 0 dump of cumulus:/disk2
xfsdump: dump date: Wed Oct 25 16:19:13 1995
xfsdump: session id: d2a6123b-b21d-1001-8938-08006906dc5c
xfsdump: session label: “testers_11_21_94”
xfsdump: ino map phase 1: skipping (no subtrees specified)
xfsdump: ino map phase 2: constructing initial dump list
xfsdump: ino map phase 3: skipping (no pruning necessary)
xfsdump: ino map phase 4: skipping (size estimated in phase 2)
xfsdump: ino map phase 5: skipping (only one dump stream)
xfsdump: ino map construction complete
xfsdump: preparing drive
xfsdump: creating dump session media file 0 (media 0, file 0)
xfsdump: dumping ino map
xfsdump: dumping directories
xfsdump: dumping non-directory files
xfsdump: ending media file
xfsdump: media file size 16777216 bytes
xfsdump: dumping session inventory
xfsdump: beginning inventory media file
xfsdump: media file 1 (media 0, file 1)
xfsdump: ending inventory media file
xfsdump: inventory media file size 4194304 bytes
xfsdump: writing stream terminator
xfsdump: beginning media stream terminator
xfsdump: media file 2 (media 0, file 2)
xfsdump: ending media stream terminator
xfsdump: media stream terminator size 2097152 bytes
xfsdump: I/O metrics: 3 by 2MB ring; 14/22 (64%) records streamed; 145889B/s
xfsdump: dump complete: 141 seconds elapsed

38 007-4273-003

In this case, a session label (–L option) and a media label (–M option) are supplied, and
the entire filesystem is dumped. Since no verbosity option is supplied, the default of
verbose is used, resulting in the detailed screen output. The dump inventory is updated
with the record of this backup because the -J option is not specified.

Following is an example of a backup of a subdirectory of a filesystem. In this example,
the verbosity is set to silent, and the dump inventory is not updated (–J option):

xfsdump -f /dev/tape -v silent -J -s people/fred /usr

Note that the subdirectory backed up (/usr/people/fred) was specified relative to
the filesystem, so the specification did not include the name of the filesystem (in this case,
/usr). Since /usr may be a very large filesystem and the -v silent option was used,
this could take a long time during which there would be no screen output.

Specifying a Remote Tape Drive with xfsdump

To back up data to a remote tape drive, use the standard remote system syntax,
specifying the system (by hostname if supported by a name server or IP address if not)
followed by a colon (:), then the pathname of the special file.

Note: For remote backups, use the variable block size tape device if the device supports
variable block size operation; otherwise, use the fixed block size device (see intro(7)).

The following example shows a subtree backup to a remote tape device:

xfsdump -f magnolia:/dev/tape -L mag_10-95 -s engr /disk2
xfsdump: version 2.0 - type ^C for status and control
xfsdump: level 0 dump of cumulus:/disk2
xfsdump: dump date: Wed Oct 25 16:27:39 1995
xfsdump: session id: d2a6124b-b21d-1001-8938-08006906dc5c
xfsdump: session label: “mag_10-95”
xfsdump: ino map phase 1: parsing subtree selections
xfsdump: ino map phase 2: constructing initial dump list
xfsdump: ino map phase 3: pruning unneeded subtrees
xfsdump: ino map phase 4: estimating dump size
xfsdump: ino map phase 5: skipping (only one dump stream)
xfsdump: ino map construction complete
xfsdump: preparing drive
xfsdump: positioned at media file 0: dump 0, stream 0
xfsdump: positioned at media file 1: dump 0, stream 0
xfsdump: positioned at media file 2: dump 0, stream 0

Saving Data with xfsdump

007-4273-003 39

xfsdump: stream terminator found
xfsdump: creating dump session media file 0 (media 0, file 2)
xfsdump: dumping ino map
xfsdump: dumping directories
xfsdump: dumping non-directory files
xfsdump: ending media file
xfsdump: media file size 6291456 bytes
xfsdump: dumping session inventory
xfsdump: beginning inventory media file
xfsdump: media file 1 (media 0, file 3)
xfsdump: ending inventory media file
xfsdump: inventory media file size 4194304 bytes
xfsdump: writing stream terminator
xfsdump: beginning media stream terminator
xfsdump: media file 2 (media 0, file 4)
xfsdump: ending media stream terminator
xfsdump: media stream terminator size 2097152 bytes
xfsdump: I/O metrics: 3 by 2MB ring; 12/22 (55%) records streamed; 99864B/s
xfsdump: dump complete: 149 seconds elapsed

In this case, /disk2/engr is backed up to the variable block size tape device on the
remote system magnolia. Existing dumps on the tape mounted on magnolia were
skipped before recording the new data.

Note: The superuser account on the local system must be able to rsh to the remote
system without a password. For more information, see hosts.equiv(4).

Backing Up to a File with xfsdump

You can back up data to a file instead of a device. In the following example, a file
(Makefile) and a directory (Source) are backed up to a dump file (monday_backup)
in /usr/tmp on the local system:

xfsdump -f /usr/tmp/monday_backup -v silent -J -s \
people/fred/Makefile -s people/fred/Source /usr

You may also dump to a file on a remote system, but note that the file must be in the
remote system’s /dev directory. For example, the following command backs up the
/usr/people/fred subdirectory on the local system to the regular file
/dev/fred_mon_12-2 on the remote system theduke:

xfsdump -f theduke:/dev/fred_mon_12-2 -s people/fred /usr

40 007-4273-003

Alternatively, you could dump to any remote file if that file is on an NFS-mounted
filesystem. In any case, permission settings on the remote system must allow you to write
to the file.

Refer to the section “Using xfsdump and xfsrestore to Copy Filesystems” on page 60 for
information on using the standard input and standard output capabilities of xfsdump
and xfsrestore to pipe data between filesystems or across the network.

Reusing Tapes with xfsdump

When you use a new tape as the media object of a dump session, xfsdump begins writing
dump data at the beginning of the tape without prompting. If the tape already has dump
data on it, xfsdump begins writing data after the last dump stream, again without
prompting.

If, however, the tape contains data that is not from a dump session, xfsdump prompts
you before continuing:

xfsdump -f /dev/tape /test
xfsdump: version X.X - type ^C for status and control
xfsdump: dump date: Fri Dec 2 11:25:19 1994
xfsdump: level 0 dump
xfsdump: session id: d23cc072-b21d-1001-8f97-080069068eeb
xfsdump: preparing tape drive
xfsdump: this tape contains data that is not part of an XFS dump
xfsdump: do you want to overwrite this tape?
type y to overwrite, n to change tapes or abort (y/n):

You must answer y if you want to continue with the dump session, or n to quit. If you
answer y, the dump session resumes and the tape is overwritten. If you do not respond
to the prompt, the session eventually times out. Note that this means that an automatic
backup, for example one initiated by a crontab entry, will not succeed unless you
specified the -F option with the xfsdump command, which forces it to overwrite the
tape rather than prompt for approval.

Saving Data with xfsdump

007-4273-003 41

Erasing Used Tapes

Erase preexisting data on tapes with the mt erase command. Make sure the tape is not
write-protected.

For example, to prepare a used tape in the local default tape drive, enter:

mt -f /dev/tape erase

Caution: This erases all data on the tape, including any dump sessions

The tape can now be used by xfsdump without prompting for approval.

About Incremental and Resumed Dumps

Incremental dumps are a way of backing up less data at a time but still preserving current
versions of all your backed-up files, directories, and so on. Incremental backups are
organized numerically by levels from 0 through 9. A level 0 dump always backs up the
complete filesystem. A dump level of any other number backs up all files that have
changed since a dump with a lower dump level number.

For example, if you perform a level 2 backup on a filesystem one day and your next
dump is a level 3 backup, only those files that have changed since the level 2 backup are
dumped with the level 3 backup. In this case, the level 2 backup is called the base dump
for the level 3 backup. The base dump is the most recent backup of that filesystem with
a lower dump level number.

Resumed dumps work in much the same way. When a dump is resumed after it has been
interrupted, the remaining files that had been scheduled to be backed up during the
interrupted dump session are backed up, and any files that changed during the
interruption are also backed up. Note that you must restore an interrupted dump as if it
is an incremental dump (see“Performing Cumulative Restores with xfsrestore” on
page 54).

42 007-4273-003

Performing an Incremental xfsdump

In the following example, a level 0 dump is the first backup written to a new tape:

xfsdump -f /dev/tape -l 0 -M Jun_94 -L week_1 -v silent /usr

A week later, a level 1 dump of the filesystem is performed on the same tape:

xfsdump -f /dev/tape -l 1 -L week_2 /usr

The tape is forwarded past the existing dump data and the new data from the level 1
dump is written after it. (Note that it is not necessary to specify the media label for each
successive dump on a media object.)

A week later, a level 2 dump is taken and so on, for the four weeks of a month in this
example, the fourth week being a level 3 dump (up to nine dump levels are supported):

xfsdump -f /dev/tape -l 2 -L week_3 /usr

Refer to “Performing Cumulative Restores with xfsrestore” on page 54 for information
on the proper procedure for restoring incremental dumps.

Performing a Resumed xfsdump

You can interrupt a dump session and resume it later. To interrupt a dump session, type
the interrupt character (typically <CTRL-C>). You receive a list of options which allow
you to interrupt the session, change verbosity level, or resume the session.

Saving Data with xfsdump

007-4273-003 43

In the following example, xfsdump is interrupted after dumping approximately 37% of
a filesystem:

xfsdump -f /dev/tape -M march95 -L week_1 -v silent /disk2

========================= status and control dialog ==========================

status at 16:49:16: 378/910 files dumped, 37.8% complete, 32 seconds elapsed

please select one of the following operations
1: interrupt this session
2: change verbosity
3: display metrics
4: other controls
5: continue (default) (timeout in 60 sec)
-> 1

please confirm
1: interrupt this session
2: continue (default) (timeout in 60 sec)
-> 1
interrupt request accepted

--------------------------------- end dialog ---------------------------------

xfsdump: initiating session interrupt
xfsdump: dump interrupted prior to ino 1053172 offset 0

You can later continue the dump by including the –R option and a different session label:

xfsdump -f /dev/tape -R -L week_1.contd -v silent /disk2p

Any files that were not backed up before the interruption, and any file changes that were
made during the interruption, are backed up after the dump is resumed.

Note: Use of the –R option requires that the dump was made with a dump inventory
taken, that is, the –J option was not used with xfsdump.

44 007-4273-003

Examining xfsdump Archives

This section describes how to use the xfsdump command to view an xfsdump inventory.

The xfsdump inventory is maintained in the directory /var/xfsdump created by
xfsdump. You can view the dump inventory at any time with the xfsdump –I
command. With no other arguments, xfsdump –I displays the entire dump inventory.
(The xfsdump -I command does not require root privileges.)

The following output presents a section of a dump inventory.

xfsdump -I | more
file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb
session 0:

mount point: magnolia.abc.xyz.com:/test
device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2
time: Mon Nov 28 11:44:04 1994
session label: ""
session id: d23cbf44-b21d-1001-8f97-080069068eeb
level: 0
resumed: NO
subtree: NO
streams: 1
stream 0:

pathname: /dev/tape
start: ino 4121 offset 0
end: ino 0 offset 0
interrupted: YES
media files: 2
media file 0:

mfile index: 0
---more---

Notice that the dump inventory records are presented sequentially and are indented to
illustrate the hierarchical order of the dump information.

Examining xfsdump Archives

007-4273-003 45

You can view a subset of the dump inventory by specifying the level of depth (1, 2, or 3)
that you want to view. For example, specifying depth=2 filters out a lot of the specific
dump information as you can see by comparing the previous output with this:

xfsdump -I depth=2
file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb
session 0:

mount point: magnolia.abc.xyz.com:/test
device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2
time: Mon Nov 28 11:44:04 1994
session label: ""
session id: d23cbf44-b21d-1001-8f97-080069068eeb
level: 0
resumed: NO
subtree: NO
streams: 1

session 1:
mount point: magnolia.abc.xyz.com:/test
device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2
.
.
.

You can also view a filesystem-specific inventory by specifying the filesystem mount
point with the mnt option. The following output shows an example of a dump inventory
display in which the depth is set to 1, and only a single filesystem is displayed:

xfsdump -I depth=1,mnt=magnolia.abc.xyz.com:/test
filesystem 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

46 007-4273-003

Note that you can also look at a list of contents on the dump media itself by using the –t
option with xfsrestore. (The xfsrestore utility is discussed in detail in the
following section.) For example, to list the contents of the dump tape currently in the
local tape drive, type:

xfsrestore -f /dev/tape -t -v silent | more
xfsrestore: dump session found
xfsrestore: session label: "week_1"
xfsrestore: session id: d23cbcb4-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbcb5-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): y
selected
one
A/five
people/fred/TOC
people/fred/ch3.doc
people/fred/ch3TOC.doc
people/fred/questions
A/four
people/fred/script_0
people/fred/script_1
people/fred/script_2
people/fred/script_3
people/fred/sub1/TOC
people/fred/sub1/ch3.doc
people/fred/sub1/ch3TOC.doc
people/fred/sub1/questions
people/fred/sub1/script_0
people/fred/sub1/script_1
people/fred/sub1/script_2
people/fred/sub1/script_3
people/fred/sub1/xdump1.doc
people/fred/sub1/xdump1.doc.backup
people/fred/sub1/xfsdump.doc
people/fred/sub1/xfsdump.doc.auto
people/fred/sub1/sub2/TOC
---more---

About xfsrestore

007-4273-003 47

About xfsrestore

This section discusses the xfsrestore command, which you must use to view and
extract data from the dump data created by xfsdump. You can get a summary of
xfsrestore syntax with the –h option:

xfsrestore -h
xfsrestore: version X.X
xfsrestore: usage: xfsrestore [-a <alt. workspace dir> ...]

[-e (don’t overwrite existing files)]
[-f <source> ...]
[-h (help)]
[-i (interactive)]
[-n <file> (restore only if newer than)]
[-o (restore owner/group even if not root)]
[-p <seconds between progress reports>]
[-r (cumulative restore)]
[-s <subtree> ...]
[-t (contents only)]
[-v <verbosity {silent, verbose, trace}>]
[-A (don’t restore extended file attributes)]
[-C (check tape record checksums)]
[-D (restore DMAPI event settings)]
[-E (don’t overwrite if changed)]
[-F (don’t prompt)]
[-I (display dump inventory)]
[-J (inhibit inventory update)]
[-L <session label>]
[-N (timestamp messages)]
[-O <options file>]
[-P (pin down I/O buffers)]
[-Q (force interrupted session completion)]
[-R (resume)]
[-S <session id>]
[-T (don’t timeout dialogs)]
[-U (unload media when change needed)]
[-V (show subsystem in messages)]
[-W (show verbosity in messages)]
[-X <excluded subtree> ...]
[-Y <I/O buffer ring length>]
[-Z (miniroot restrictions)]
[- (stdin)]
[<destination>]

48 007-4273-003

Use xfsrestore to restore data backed up with xfsdump. You can restore files,
subdirectories, and filesystems—regardless of the way they were backed up. For
example, if you back up an entire filesystem in a single dump, you can select individual
files and subdirectories from within that filesystem to restore.

You can use xfsrestore interactively or noninteractively. With interactive mode, you
can peruse the filesystem or files backed up, selecting those you want to restore. In
noninteractive operation, a single command line can restore selected files and
subdirectories, or an entire filesystem. You can restore data to its original filesystem
location or any other location in an XFS filesystem.

By using successive invocations of xfsrestore, you can restore incremental dumps on
a base dump. This restores data in the same sequence it was dumped.

About xfsrestore

007-4273-003 49

Performing Simple Restores with xfsrestore

A simple restore is a non-cumulative restore (for information on restoring incremental
dumps, refer to “Performing Cumulative Restores with xfsrestore” on page 54[). An
example of a simple, noninteractive use of xfsrestore is:

xfsrestore -f /dev/tape /disk2
xfsrestore: version 2.0 - type ^C for status and control
xfsrestore: searching media for dump
xfsrestore: preparing drive
xfsrestore: examining media file 0

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus
mount point: /disk2
volume: /dev/rdsk/dks0d2s0
session time: Wed Oct 25 16:59:00 1995
level: 0
session label: “tape1”
media label: “media1”
file system id: d2a602fc-b21d-1001-8938-08006906dc5c
session id: d2a61284-b21d-1001-8938-08006906dc5c
media id: d2a61285-b21d-1001-8938-08006906dc5c

restore this dump?
1: skip
2: restore (default)
-> 2
this dump selected for restoral

--------------------------------- end dialog ---------------------------------

xfsrestore: using online session inventory
xfsrestore: searching media for directory dump
xfsrestore: reading directories
xfsrestore: directory post-processing
xfsrestore: restoring non-directory files
xfsrestore: I/O metrics: 3 by 2MB ring; 9/13 (69%) records streamed; 204600B/s
xfsrestore: restore complete: 104 seconds elapsed

50 007-4273-003

In this case, xfsrestore went to the first dump on the tape and asked if this was the
dump to restore. If you had entered 1 for “skip,” xfsrestorewould have proceeded to
the next dump on the tape (if there was one) and asked if this was the dump you wanted
to restore.

You can request a specific dump if you used xfsdump with a session label. For example:

xfsrestore -f /dev/tape -L Wed_11_23 /usr
xfsrestore: version X.X - type ^C for status and control
xfsrestore: preparing tape drive
xfsrestore: dump session found
xfsrestore: advancing tape to next media file
xfsrestore: dump session found
xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/usr created Wed Nov
23 11:17:54 1994
xfsrestore: beginning media file
xfsrestore: reading ino map
xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy
xfsrestore: restoring non-directory files
xfsrestore: ending media file
xfsrestore: restoring directory attributes
xfsrestore: restore complete: 200 seconds elapsed

About xfsrestore

007-4273-003 51

In this way you recover a dump with a single command line and do not have to answer
y or n to the prompt(s) asking you if the dump session found is the correct one. To be
even more exact, use the -S option and specify the unique session ID of the particular
dump session:

xfsrestore -f /dev/tape -S \
d23cbf47-b21d-1001-8f97-080069068eeb /usr2/tmp
xfsrestore: version X.X - type ^C for status and control
xfsrestore: preparing tape drive
xfsrestore: dump session found
xfsrestore: advancing tape to next media file
xfsrestore: advancing tape to next media file
xfsrestore: dump session found
xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/test resumed Mon Nov
28 11:50:41 1994
xfsrestore: beginning media file
xfsrestore: media file 0 (media 0, file 2)
xfsrestore: reading ino map
xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy
xfsrestore: restoring non-directory files
xfsrestore: ending media file
xfsrestore: restoring directory attributes
xfsrestore: restore complete: 229 seconds elapsed

You can find the session ID by viewing the dump inventory (see “Examining xfsdump
Archives” on page 44). Session labels might be duplicated, but session IDs never are.

Restoring Individual Files with xfsrestore

On the xfsrestore command line, you can specify an individual file or subdirectory to
restore. In this example, the file people/fred/notes is restored and placed in the
/usr/tmp directory (that is, the file is restored in /usr/tmp/people/fred/notes):

xfsrestore -f /dev/tape -L week_1 -s people/fred/notes /usr/tmp

You can also restore a file “in place” that is, restore it directly to where it came from in the
original backup. Note, however, that if you do not use a -e, -E, or -n option, you
overwrite any existing file(s) of the same name.

52 007-4273-003

In the following example, the subdirectory people/fred is restored in the destination
/usr— this overwrites any files and subdirectories in /usr/people/fred with the
data on the dump tape:

xfsrestore -f /dev/tape -L week_1 -s people/fred /usr

Performing Network Restores with xfsrestore

You can use standard network references to specify devices and files on the network. For
example, to use the tape drive on a network host named magnolia as the source for a
restore, you can use the command:

xfsrestore -f magnolia:/dev/tape -L 120694u2 /usr2
xfsrestore: version X.X - type ^C for status and control
xfsrestore: preparing tape drive
xfsrestore: dump session found
xfsrestore: advancing tape to next media file
xfsrestore: dump session found
xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/usr2 created Tue Dec
6 10:55:17 1994
xfsrestore: beginning media file
xfsrestore: media file 0 (media 0, file 1)
xfsrestore: reading ino map
xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy
xfsrestore: restoring non-directory files
xfsrestore: ending media file
xfsrestore: restoring directory attributes
xfsrestore: restore complete: 203 seconds elapsed

In this case, the dump data is extracted from the tape on magnolia, and the destination
is the directory /usr2 on the local system. Refer to the section “Using xfsdump and
xfsrestore to Copy Filesystems” on page 60“for an example of using the standard input
option of xfsrestore.

Performing Interactive Restores with xfsrestore

Use the –i option of xfsrestore to perform interactive file restoration. With
interactive restoration, you can use the commands ls, pwd, and cd to peruse the
filesystem, and the add and delete commands to create a list of files and subdirectories
you want to restore. Then you can enter the extract command to restore the files, or

About xfsrestore

007-4273-003 53

quit to exit the interactive restore session without restoring files. (The use of
“wildcards” is not allowed with these commands.)

Note: Interactive restore is not allowed when the xfsrestore source is standard input
(STDIN).

The following screen output shows an example of a simple interactive restoration.

xfsrestore -f /dev/tape -i -v silent .
xfsrestore: dump session found
xfsrestore: no session label
xfsrestore: session id: d23cbeda-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbedb-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): y
selected

--- interactive subtree selection dialog ---

the following commands are available:
pwd
ls [{ <name>, ".." }]
cd [{ <name>, ".." }]
add [<name>]
delete [<name>]
extract
quit
help

-> ls
4122 people/
4130 two
4126 A/
4121 one

-> add two
-> cd people
-> ls

4124 fred/
-> add fred
-> ls

* 4124 fred/
-> extract

---------------- end dialog ----------------

54 007-4273-003

In the interactive restore session above, the subdirectory people/fred and the file two
were restored relative to the current working directory (“.”). Note that an asterisk (*) in
your ls output indicates your selections.

Performing Cumulative Restores with xfsrestore

Cumulative restores sequentially restore incremental dumps to re-create filesystems and
are also used to restore interrupted dumps. To perform a cumulative restore of a
filesystem, begin with the media object that contains the base level dump and recover it
first, then recover the incremental dump with the next higher dump level number, then
the next, and so on. Use the –r option to inform xfsrestore that you are performing a
cumulative recovery.

In the following example, the level 0 base dump and succeeding higher level dumps are
on /dev/tape. First the level 0 dump is restored, then each higher level dump in
succession:

About xfsrestore

007-4273-003 55

/usr/tmp/xfsrestore -f /dev/tape -r -v silent .

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus
mount point: /disk2
volume: /dev/rdsk/dks0d2s0
session time: Wed Oct 25 14:37:47 1995
level: 0
session label: “week_1”
media label: “Jun_94”
file system id: d2a602fc-b21d-1001-8938-08006906dc5c
session id: d2a60b26-b21d-1001-8938-08006906dc5c
media id: d2a60b27-b21d-1001-8938-08006906dc5c

restore this dump?
1: skip
2: restore (default)
-> Enter
this dump selected for restoral

--------------------------------- end dialog ---------------------------------

#

Next, enter the same command again. The program goes to the next dump and again you
select the default:

xfsrestore -f /dev/tape -r -v silent .

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus
mount point: /disk2
volume: /dev/rdsk/dks0d2s0
session time: Wed Oct 25 14:40:54 1995
level: 1
session label: “week_2”
media label: “Jun_94”
file system id: d2a602fc-b21d-1001-8938-08006906dc5c
session id: d2a60b2b-b21d-1001-8938-08006906dc5c

56 007-4273-003

media id: d2a60b27-b21d-1001-8938-08006906dc5c

restore this dump?
1: skip
2: restore (default)
-> Enter
this dump selected for restoral

--------------------------------- end dialog ---------------------------------
#

You then repeat this process until you have recovered the entire sequence of incremental
dumps. The full and latest copy of the filesystem will then have been restored. In this
case, it is restored relative to “.”, that is, in the directory you are in when the sequence of
xfsrestore commands is issued.

Restore an interrupted dump just as if it were an incremental dump. Use the -r option
to inform xfsrestore that you are performing an incremental restore, and answer y
and n appropriately to select the proper “increments” to restore (see “Performing
Cumulative Restores with xfsrestore” on page 54).

Note that if you try to restore an interrupted dump as if it were a non-interrupted,
non-incremental dump, the portion of the dump that occurred before the interruption is
restored, but not the remainder of the dump. You can determine if a dump is an
interrupted dump by looking in the online inventory.

Here is an example of a dump inventory showing an interrupted dump session (the
crucial fields are in bold type):

xfsdump -I depth=3,mobjlabel=AugTape,mnt=indy4.xyz.com:/usr
file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb
session 0:

mount point: indy4.xyz.com.com:/usr
device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2
time: Tue Dec 6 15:01:26 1994
session label: "180894usr"
session id: d23cc0c3-b21d-1001-8f97-080069068eeb
level: 0
resumed: NO
subtree: NO
streams: 1
stream 0:

pathname: /dev/tape

About xfsrestore

007-4273-003 57

start: ino 4121 offset 0
end: ino 0 offset 0
interrupted: YES
media files: 2

session 1:
mount point: indy4.xyz.com.com:/usr
device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2
time: Tue Dec 6 15:48:37 1994
session label: "Resumed180894usr"
session id: d23cc0cc-b21d-1001-8f97-080069068eeb
level: 0
resumed: YES
subtree: NO
streams: 1
stream 0:

pathname: /dev/tape
start: ino 4121 offset 0
end: ino 0 offset 0
interrupted: NO
media files: 2

.

.

.

From this it can be determined that session 0 was interrupted and then resumed and
completed in session 1.

To restore the interrupted dump session in the example above, use the following
sequence of commands:

xfsrestore -f /dev/tape -r -L 180894usr .
xfsrestore -f /dev/tape -r -L Resumed180894usr .

This restores the entire /usr backup relative to the current directory. (You should
remove the housekeeping directory from the destination directory when you are
finished.)

58 007-4273-003

Interrupting xfsrestore

In a manner similar to xfsdump interruptions, you can interrupt an xfsrestore
session. This allows you to interrupt a restore session and then resume it later. To
interrupt a restore session, type the interrupt character (typically <CTRL-C>). You receive
a list of options, which include interrupting the session or continuing.

xfsrestore -f /dev/tape -v silent /disk2

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus
mount point: /disk2
volume: /dev/rdsk/dks0d2s0
session time: Wed Oct 25 17:20:16 1995
level: 0
session label: “week1”
media label: “newtape”
file system id: d2a602fc-b21d-1001-8938-08006906dc5c
session id: d2a6129e-b21d-1001-8938-08006906dc5c
media id: d2a6129f-b21d-1001-8938-08006906dc5c

restore this dump?
1: skip
2: restore (default)
-> 2
this dump selected for restoral

--------------------------------- end dialog ---------------------------------

About xfsrestore

007-4273-003 59

========================= status and control dialog ==========================

status at 17:23:52: 131/910 files restored, 14.4% complete, 42 seconds elapsed

please select one of the following operations
1: interrupt this session
2: change verbosity
3: display metrics
4: other controls
5: continue (default) (timeout in 60 sec)
-> 1

please confirm
1: interrupt this session
2: continue (default) (timeout in 60 sec)
-> 1
interrupt request accepted

--------------------------------- end dialog ---------------------------------

xfsrestore: initiating session interrupt

Resume the xfsrestore session with the –R option:

xfsrestore -f /dev/tape -R -v silent /disk2

Data recovery continues from the point of the interruption.

About the housekeeping and orphanage Directories

The xfsrestore utility can create two subdirectories in the destination called
housekeeping and orphanage.

The housekeeping directory is a temporary directory used during cumulative recovery
to pass information from one invocation of xfsrestore to the next. It must not be
removed during the process of performing the cumulative recovery but should be
removed after the cumulative recovery is completed.

60 007-4273-003

The orphanage directory is created if a file or subdirectory is restored that is not
referenced in the filesystem structure of the dump. For example, if you dump a very
active filesystem, it is possible for new files to be in the non-directory portion of the
dump, yet none of the directories dumped reference that file. A warning message is
displayed, and the file is placed in the orphanage directory, named with its original
inode number and generation count (for example, 123479.14.).

Using xfsdump and xfsrestore to Copy Filesystems

You can use xfsdump and xfsrestore to pipe data across filesystems or across the
network with a single command line. By piping xfsdump standard output to
xfsrestore standard input you create an exact copy of a filesystem.

For example, to make a copy of /usr/people/fred in the /usr2 directory, enter:

xfsdump -J -s people/fred - /usr | xfsrestore - /usr2

To copy /usr/people/fred to the network host magnolia’s /usr/tmp directory:

xfsdump -J -s people/fred - /usr | rsh magnolia \
xfsrestore - /usr/tmp

This creates the directory /usr/tmp/people/fred on magnolia.

Note: The superuser account on the local system must be able to rsh to the remote system
without a password. For more information, see hosts.equiv(4).

007-4273-003 61

Appendix A

A. XFS Linux and IRIX XFS

The XFS filesystem under Linux differs from the XFS filesystem under IRIX in the
following ways:

• The interface with the kernel (system calls) for Access Control Lists (ACLs) and
Extended Attributes (EAs) is different in XFS/Linux compared with IRIX. However,
the user level libraries for both ACLs and EAs are exactly the same in Linux and
IRIX. Thus ACL or EA application code can be exactly the same.

• The unwritten extent feature is not yet operational in XFS Linux and should be
turned off when the mkfs command is executed (which is the default setting). If
necessary, you can turn this feature off using the following argument to the mkfs
command:

-d unwritten=0

• Linux xfsdump/xfsrestore does not support:

– multiple tape devices using multiple -f options

– IRIX dump option -z (prune large files)

– DMAPI related options of -a and -D

Linux xfsdump/xfsrestore does, however, have the added capabilities of
unrestricted use of the -b option for blocksize specification and remote
dumping/restoring between Linux and IRIX hosts.

• Linux XFS filesystems do note support project quotas.

• Under IRIX, external logs are specified using a volume manager, xlv or XVM.
Under Linux, external logs can be specified with extensions to the -l option of
mkfs.

• The xlv volume manager is not available with Linux XFS. Volume support in Linux
XFS is through standard Linux volume managers lvm and md and through SGI’s
XVM logical volume manager.

• The quotactl(2) system call interface differs between IRIX and Linux, and the
Linux quota tools differ in a number of ways to their IRIX counterparts

62 007-4273-003

• Linux XFS does not support real-time subvolumes or Guaranteed-Rate I/O (GRIO).

• The mkfs command in Linux XFS uses the Version 2 directory format by default.
Use of Version 1 is not currently supported.

• Linux XFS supports mounting by label and mounting by uuid.

007-4273-003 63

Index

A

Access Control Lists (ACLs), 61
allocation groups, 6
attributes, filesystem, 2

B

backup and restore
commands, 2
using xfsdump and xfsrestore, 29-60

block size, 1, 3
default, 3
filesystem directory, 4
maximum, 3
minimum, 3
news servers, 3
range of sizes, 1

C

conventions, typographical, xvi

D

disk partitioning, 7
disk quotas, 21-28

group, 22, 24
hard limits, 21

project, 61
soft limits, 21
turning on for users, 22
user, 23

dump stream, 30
dump, incremental, 41-43
dump, resumed, 41-43

E

edquota command, 23, 24
erasing tape data, 41
extended attributes, 2
extents, XFS filesystem, 1
external filesystem log, 4

F

fcntl system call, 1
filesystem

allocation groups, 6
corruption, 13
creation, 9
extents, 1
log size, 5
mounting, 11
reorganization, 13
stripe units, 6

filesystem log

64 007-4273-003

Index

external, 4
internal, 5
size, 4
type, 4

font conventions, xvi
fstab file, 11, 22, 23, 27

G

gqnoenforce
fstab file, 27
option to mount command, 27

gquota
command, 23
fstab file, 23

growing XFS filesystems, 11
Guaranteed Rate I/O (GRIO), 62

H

hard limits, quotas, 21
hardware requirements, 3
housekeeping subdirectory, 59

I

incremental dumps, 41-43
inodes, 1, 2, 17, 18
internal filesystem log, 5
IRIX operating system, 61

J

journaling, 1

L

log
recovery, 20
size, 4, 5
type, 4

lost+found directory, 17, 18

M

media layout, xfsdump utility, 30
mkfs command, 9, 10, 11
mounting a filesystem, 11
mt erase command, 41

O

orphanage subdirectory, 59

P

panic, system, 13
partitioning, 7
prerequisite hardware, 3
project quotas, 61

Q

qnoenforce
fstab file, 27
option to mount command, 27

quota
command, 25, 28
fstab file, 22

quotaactl system call, 61

007-4273-003 65

Index

quotaoff command, 27
quotaon command, 27
quotas

See disk quotas

R

readdr operation, 4
real-time subvolumes, 62
repquota command, 25, 26
resumed dumps, 41-43

S

soft limits, quotas, 21
stripe units, 6
system panic, 13

T

tape data, erasing, 41

U

unwritten extents, 61
uuid, mounting, 62

X

XFS filesystem
attributes, 2
block size, 1, 3
creation, 9
description, 1, 3
extents, 1

features, 1, 3
growing, 11
IRIX, 61
log size, 4
log type, 4

xfs_check command, 14
xfs_fsr command, 13
xfs_repair command, 14-20

error messages, 17
xfsdump utility, 2, 29-60

archives, 44
copying filesystems, 60
file backup, 39
filesystem copy, 60
inventory, 44
local media, 37
media layout, 30
remote tape drive, 38
syntax, 36
tape reuse, 40

xfsdump_quotas file, 26
xfsdump_quotas_group file, 26
xfsrestore utility, 2, 29-60

cumulative restore, 54
files, 51
housekeeping subdirectory, 59
interactive restore, 52
interruption, 58
network restore, 52
orphanage subdirectory, 59
simple restore, 49

xlv volume manager, 61
XVM volume manager, 61

	Record of Revision
	Figures
	Examples
	About This Guide
	What This Guide Contains
	Conventions Used in This Guide
	Additional Resources
	Reader Comments

	The XFS Filesystem
	Planning an XFS Filesystem
	Choosing the Filesystem Block Size
	Choosing the Filesystem Directory Block Size
	Choosing the Log Type and Size
	Choosing Allocation Groups and Stripe Units
	Disk Repartitioning

	Creating Filesystems
	Making an XFS Filesystem
	Growing an XFS Filesystem

	Filesystem Maintenance
	Filesystem Reorganization
	Filesystem Corruption
	Checking XFS Filesystem Consistency With xfs_check and xfs_repair
	Checking Filesystem Consistency
	Repairing Inconsistent Filesystems

	Repairing XFS Filesystem Problems
	Common Error Messages
	Error Messages When Files Are in lost+found
	What to Do If xfs_repair Cannot Repair a Filesystem
	Mounting A Filesystem Without Log Recovery

	Quotas
	Using Disk Quotas on XFS Filesystems
	Turning on Disk Quotas for Users on XFS Filesystems
	Turning on Disk Quotas for Groups on XFS Filesystems
	Setting Disk Quota Limits for Users on XFS Filesystems
	Setting Disk Quota Limits for Groups on XFS Filesystems
	Displaying Disk Quota Information on XFS Filesystems
	Administering Disk Quotas on XFS Filesystems
	Monitoring Disk Space Usage with Disk Quota Accounting
	Checking Disk Space Usage on XFS Filesystems With quota

	Backup and Recovery Procedures
	Features of xfsdump and xfsrestore
	Media Layout for xfsdump
	Possible xfsdump Layouts

	Saving Data with xfsdump
	Specifying Local Media with xfsdump
	Specifying a Remote Tape Drive with xfsdump
	Backing Up to a File with xfsdump
	Reusing Tapes with xfsdump
	Erasing Used Tapes
	About Incremental and Resumed Dumps
	Performing an Incremental xfsdump
	Performing a Resumed xfsdump

	Examining xfsdump Archives
	About xfsrestore
	Performing Simple Restores with xfsrestore
	Restoring Individual Files with xfsrestore
	Performing Network Restores with xfsrestore
	Performing Interactive Restores with xfsrestore
	Performing Cumulative Restores with xfsrestore
	Interrupting xfsrestore
	About the housekeeping and orphanage Directories

	Using xfsdump and xfsrestore to Copy Filesystems

	XFS Linux and IRIX XFS
	Index

