

XFS

Filesystem
Structure

2nd Edition
Revision 2

[This document is incomplete and currently undergoing revision]

Copyright © 2006, Silicon Graphics, Inc.

XFS Filesystem Structure sgi®

 2

Table of Contents

Introduction 4

Common XFS Types 5

Allocation Groups 6
Superblocks 7
AG Free Space Management 13

AG Free Space Block 13
AG Free Space B+trees 14
AG Free List 16

AG Inode Management 18
Inode Numbers 18
Inode Information 18
Inode B+trees 19

Real-time Devices 22

On-disk Inode 23
Inode Core 24
Unlinked Pointer 28
Data Fork 29

Regular Files (S_IFREG) 29
Directories (S_IFDIR) 29
Symbolic Links (S_IFLNK) 29
Other File Types 29

Attribute Fork 30
Extended Attribute Versions 30

Data Extents 31
Extent List 32
B+tree Extent List 34

Directories 38
Shortform Directories 39
Block Directories 42
Leaf Directories 47
Node Directories 53
B+tree Directories 58

Symbolic Links 61
Shortform Symbolic Links 61
Extent Symbolic Links 62

Extended Attributes 63
Shortform Attributes 64
Leaf Attributes 68
Node Attributes 72
B+tree Attributes 75

Internal Inodes 76
Quota Inodes 76
Real-time Inodes 79

XFS Filesystem Structure sgi®

 3

Journaling Log 81

XFS Filesystem Structure sgi®

 4

Introduction

A Brief History of XFS
The original XFS design was circulated within SGI in October 1993 as "xFS: the extension of EFS".

The main ideas were:

• "x" for to-be-determined (but the name stuck)

• Large filesystems: one terabyte, 240, on 32-bit systems; unlimited on 64-bit systems

• Large files: one terabyte, 240, on 32-bit systems; 263 on 64-bit systems

• Large number of inodes

• Large directories

• Large I/O

• Parallel access to inodes

• Balanced tree (B+tree) algorithms for searching large lists

• Asynchronous metadata transaction logging for quick recover

• Delayed allocation to improve data contiguity

• ACL's - Access Control Lists (see chacl(1), acl(4), acl_get_file(3c), acl_set_file(3c))

XFS was first released in IRIX 5.3.

The port to Linux began in 1999 against 2.3.40. It was accepted into the mainline in the 2.5 kernel in
2002, then into the 2.4 kernel in 2004.

Purpose of this Document
This document describes the on-disk layout of an XFS filesystem, not the code used to implement the
filesystem driver. The exception is that the structures used in the XFS kernel code are used in this
document to describe the on-disk structures.

This document also shows how to manually inspect a filesystem by showing examples using the
xfs_db user-space tool supplied with the xfs-progs package.

All on-disk values are in big-endian format except the journaling log which is in native endian format.

XFS Filesystem Structure sgi®

 5

Common XFS Types

This section documents the commonly used basic XFS types used in the various XFS structures. All
types use the form xfs_TYPE_t. Some of the concepts for the descriptions of the basic types may not
mean much but are covered in more detail in the associated uses. The online version of this document
has links to help located the information. All structures are packed and not word padded.

All the following basic XFS types can be found in xfs_types.h. NULL values are always -1 on disk (ie.
all bits for the value set to one).

xfs_ino_t

Unsigned 64 bit absolute inode number.

xfs_off_t

Signed 64 bit file offset.

xfs_daddr_t

Signed 64 bit device address.

xfs_agnumber_t

Unsigned 32 bit Allocation Group (AG) number.

xfs_agblock_t

Unsigned 32 bit AG relative block number.

xfs_extlen_t

Unsigned 32 bit extent length in blocks.

xfs_extnum_t

Signed 32 bit number of extents in a file.

xfs_dablk_t

Unsigned 32 bit block number for directories and extended attributes.

xfs_dahash_t

Unsigned 32 bit hash of a directory file name or extended attribute name.

xfs_dfsbno_t

Unsigned 64 bit filesystem block number combining AG number and block offset into the AG.

xfs_drfsbno_t

Unsigned 64 bit raw filesystem block number.

xfs_drtbno_t

Unsigned 64 bit extent number in the real-time sub-volume.

xfs_dfiloff_t

Unsigned 64 bit block offset into a file.

xfs_dfilblks_t

Unsigned 64 bit block count for a file.

XFS Filesystem Structure sgi®

 6

Allocation Groups

XFS filesystems are divided into a number of equally sized chunks called Allocation Groups. Each AG
can almost be thought of as an individual filesystem that maintains it's own space usage. Each AG can
be up to one terabyte in size (512 bytes * 231), regardless of the underlying device's sector size.

Each AG has the following characteristics:

• A super block describing overall filesystem info

• Free space management

• Inode allocation and tracking

Having multiple AGs allows XFS to handle most operations in parallel without degrading performance
as the number of concurrent accessing increases.

The only global information maintained by the first AG (primary) is free space across the filesystem
and total inode counts. If the XFS_SB_VERSION2_LAZYSBCOUNTBIT flag is set in the superblock,
these are only updated on-disk when the filesystem is cleanly unmounted (umount or shutdown).

Immediately after a mkfs.xfs, the primary AG has the following disk layout and the subsequent AGs do
not have any inodes allocated:

Each of these structures are expanded upon in the following sections.

Superblock (one sector) xfs_sb_t

AG free block info (one sector) xfs_agf_t

AG inode B+tree info (one sector) xfs_agi_t

AG internal free list (one sector) xfs_agfl_t

 Root of free space B+tree (1 block) xfs_btree_sblock_t
 B+tree key is block number

 Root of free space B+tree (1 block) xfs_btree_sblock_t
 B+tree key is block count

 Root of inode B+tree (1 block) xfs_inobt_block_t
 (1 block)

 Free list (4 blocks)

 Inodes (64 inodes) xfs_dinode_t

Remaining space for metadata and data

XFS Filesystem Structure sgi®

 7

Superblocks

Each AG starts with a superblock. The first one is the primary superblock that stores aggregate AG
information. Secondary superblocks are only used by xfs_repair when the primary superblock has
been corrupted.

The superblock is defined by the following structure. The unused fields and the remainder of the
superblock sector is zeroed. The description of each field follows:

typedef struct xfs_sb
{
 __uint32_t sb_magicnum;
 __uint32_t sb_blocksize;
 xfs_drfsbno_t sb_dblocks;
 xfs_drfsbno_t sb_rblocks;
 xfs_drtbno_t sb_rextents;
 uuid_t sb_uuid;
 xfs_dfsbno_t sb_logstart;
 xfs_ino_t sb_rootino;
 xfs_ino_t sb_rbmino;
 xfs_ino_t sb_rsumino;
 xfs_agblock_t sb_rextsize;
 xfs_agblock_t sb_agblocks;
 xfs_agnumber_t sb_agcount;
 xfs_extlen_t sb_rbmblocks;
 xfs_extlen_t sb_logblocks;
 __uint16_t sb_versionnum;
 __uint16_t sb_sectsize;
 __uint16_t sb_inodesize;
 __uint16_t sb_inopblock;
 char sb_fname[12];
 __uint8_t sb_blocklog;
 __uint8_t sb_sectlog;
 __uint8_t sb_inodelog;
 __uint8_t sb_inopblog;
 __uint8_t sb_agblklog;
 __uint8_t sb_rextslog;
 __uint8_t sb_inprogress;
 __uint8_t sb_imax_pct;
 __uint64_t sb_icount;
 __uint64_t sb_ifree;
 __uint64_t sb_fdblocks;
 __uint64_t sb_frextents;
 xfs_ino_t sb_uquotino;
 xfs_ino_t sb_gquotino;
 __uint16_t sb_qflags;
 __uint8_t sb_flags;
 __uint8_t sb_shared_vn;
 xfs_extlen_t sb_inoalignmt;
 __uint32_t sb_unit;
 __uint32_t sb_width;
 __uint8_t sb_dirblklog;
 __uint8_t sb_logsectlog;
 __uint16_t sb_logsectsize;
 __uint32_t sb_logsunit;
 __uint32_t sb_features2;
} xfs_sb_t;

sb_magicnum u32

Identifies the filesystem. It's value is XFS_SB_MAGIC = 0x58465342 "XFSB".

XFS Filesystem Structure sgi®

 8

sb_blocksize u32

The size of a basic unit of space allocation in bytes. Typically, this is 4096 (4KB) but can range
from one sector to 65536 bytes. A block is usually made up of several sectors (the size
specified by sb_sectsize), and is most commonly eight (512 x 8 = 4096). The maximum size
of sb_blocksize is the system's page size.

sb_dblocks u64

Total number of blocks available for data and metadata on the filesystem.

sb_rblocks u64

Number blocks in the real-time disk device. Refer to Real-time Devices for more information.

sb_rextents u64

Number of extents on the real-time device.

sb_uuid

UUID (Universally Unique ID) for the filesystem. Filesystems can be mounted by the UUID
instead of device name.

sb_logstart u64

First block number for the journaling log if the log is internal (ie. not on a separate disk device).
For an external log device, this will be zero (the log will also start on the first block on the log
device).

sb_rootino xfs_ino_t

Root inode number for the filesystem. Typically, this is 128 when using a 4KB block size.

sb_rbmino xfs_ino_t

Bitmap inode for real-time extents.

sb_rsumino xfs_ino_t

Summary inode for real-time bitmap.

sb_rextsize u32

Realtime extent size in blocks.

sb_agblocks u32

Size of each AG in blocks. For the actual size of the last AG, refer to the AG Freespace Block's
agf_length value.

sb_agcount u32

Number of AGs in the filesystem.

sb_rbmblocks u32

Number of real-time bitmap blocks.

sb_logblocks u32

Number of blocks for the journaling log. This applies to both internal and external logs.

sb_versionnum u16

Filesystem version number. This is a bitmask specifying the features enabled when creating the
filesystem. Any disk checking tools or drivers that do not recognize any set bits must not

XFS Filesystem Structure sgi®

 9

operate upon the filesystem. Most of the flags indicate features introduced over time. The value
must be 4 plus the following flags as defined by mkfs options:

Flag Description

XFS_SB_VERSION_ATTRBIT Set if any inode have extended attributes.

XFS_SB_VERSION_NLINKBIT Set if any inodes use 32-bit di_nlink values.

XFS_SB_VERSION_QUOTABIT Set if quotas are enabled on the filesystem. This also
brings in the various quota fields in the superblock.

XFS_SB_VERSION_ALIGNBIT Set if sb_inoalignmt is used.

XFS_SB_VERSION_DALIGNBIT Set if sb_unit and sb_width are used.

XFS_SB_VERSION_SHAREDBIT Set if sb_shared_vn is used.

XFS_SB_VERSION_LOGV2BIT Set if version 2 journaling logs are used.

XFS_SB_VERSION_SECTORBIT Set if sb_sectsize is not 512.

XFS_SB_VERSION_EXTFLGBIT Unwritten extents are used. This is always set today.

XFS_SB_VERSION_DIRV2BIT Version 2 directories are used. This is always set
today.

XFS_SB_VERSION_MOREBITSBIT Set if the sb_features2 field in the superblock
contains more flags.

sb_sectsize u16

Specifies the underlying disk sector size in bytes. Majority of the time, this is 512 bytes. This
determines the minimum I/O alignment including Direct I/O.

sb_inodesize u16

Size of the inode in bytes. The default is 256 (2 inodes per standard sector) but can be made as
large as 2048 bytes when creating the filesystem. An inode cannot be larger than a block.

sb_inopblock u16

Number of inodes per block. This is equivalent to sb_blocksize / sb_inodesize.

sb_fname[12] char

Name for the filesystem. This value can be used in the mount command. It ideally should use
plain ASCII (32-127), but extended ASCII maybe used (ie. it's "just a bunch of bytes").

sb_blocklog u8

log2 value of sb_blocksize. In other terms, sb_blocksize = 2sb_blocklog.

sb_sectlog u8

log2 value of sb_sectsize.

sb_inodelog u8

log2 value of sb_inodesize.

sb_inopblog u8

log2 value of sb_inopblock.

XFS Filesystem Structure sgi®

 10

sb_agblklog u8

log2 value of sb_agblocks (rounded up). This value is used to generate inode numbers and
absolute block numbers defined in extent maps.

sb_rextslog u8

log2 value of sb_rextents.

sb_inprogress u8

Flag specifying that the filesystem is being created.

sb_imax_pct u8

Maximum percentage of filesystem space that can be used for inodes. The default value is
25%.

sb_icount u64

Global count for number inodes allocated on the filesystem. This is only maintained in the first
superblock.

sb_ifree u64

Global count of free inodes on the filesystem. This is only maintained in the first superblock.

sb_fdblocks u64

Global count of free data blocks on the filesystem. This is only maintained in the first
superblock.

sb_frextents u64

Global count of free real-time extents on the filesystem. This is only maintained in the first
superblock.

sb_uquotino xfs_ino_t

Inode for user quotas. This and the following two quota fields only apply if
XFS_SB_VERSION_QUOTABIT flag is set in sb_versionnum. Refer to Quota Inodes for more
information.

sb_gquotino xfs_ino_t

Inode for group or project quotas. Group and Project quotas cannot be used at the same time.

sb_qflags u16

Quota flags. It can be a combination of the following flags:

Flag Description

XFS_UQUOTA_ACCT User quota accounting is enabled.

XFS_UQUOTA_ENFD User quotas are enforced.

XFS_UQUOTA_CHKD User quotas have been checked and updated on disk.

XFS_PQUOTA_ACCT Project quota accounting is enabled.

XFS_OQUOTA_ENFD Other (group/project) quotas are enforced.

XFS_OQUOTA_CHKD Other (group/project) quotas have been checked.

XFS_GQUOTA_ACCT Group quota accounting is enabled.

XFS Filesystem Structure sgi®

 11

sb_flags u8

Miscellaneous flags.

sb_shared_vn u8

Reserved and must be zero ("vn" stands for version number).

sb_inoalignmt u32

Inode chunk alignment in fsblocks.

sb_unit u32

Underlying stripe or raid unit in blocks.

sb_width u32

Underlying stripe or raid width in blocks.

sb_dirblklog u8

log2 value multiplier that determines the granularity of directory block allocations in fsblocks.

sb_logsectlog u8

log2 value of the log device's sector size. This is only used if the journaling log is on a separate
disk device (i.e. not internal).

sb_logsectsize u16

The log's sector size in bytes if the filesystem uses an external log device.

sb_logsunit u32

The log device's stripe or raid unit size. This only applies to version 2 logs
(XFS_SB_VERSION_LOGV2BIT is set in sb_versionnum).

sb_features2 u32

Additional version flags if XFS_SB_VERSION_MOREBITSBIT is set in sb_versionnum. The
currently defined additional features include:

• XFS_SB_VERSION2_LAZYSBCOUNTBIT (0x02): Lazy global counters. Making a
filesystem with this bit set can improve performance. The global free space and inode
counts are only updated in the primary superblock when the filesystem is cleanly
unmounted.

• XFS_SB_VERSION2_ATTR2BIT (0x08): Extended attributes version 2. Making a
filesystem with this optimises the inode layout of extended attributes.

• XFS_SB_VERSION2_PARENTBIT (0x10): Parent pointers. All inodes must have an
extended attribute that points back to its parent inode. The primary purpose for this
information is in backup systems.

XFS Filesystem Structure sgi®

 12

xfs_db Example:

A filesystem is made on a single SATA disk with the following command:

mkfs.xfs -i attr=2 -n size=16384 -f /dev/sda7
meta-data=/dev/sda7 isize=256 agcount=16, agsize=3923122 blks
 = sectsz=512 attr=2
data = bsize=4096 blocks=62769952, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=16384
log =internal log bsize=4096 blocks=30649, version=1
 = sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

And in xfs_db, inspecting the superblock:

xfs_db> sb
xfs_db> p
magicnum = 0x58465342
blocksize = 4096
dblocks = 62769952
rblocks = 0
rextents = 0
uuid = 32b24036-6931-45b4-b68c-cd5e7d9a1ca5
logstart = 33554436
rootino = 128
rbmino = 129
rsumino = 130
rextsize = 16
agblocks = 3923122
agcount = 16
rbmblocks = 0
logblocks = 30649
versionnum = 0xb084
sectsize = 512
inodesize = 256
inopblock = 16
fname = "\000\000\000\000\000\000\000\000\000\000\000\000"
blocklog = 12
sectlog = 9
inodelog = 8
inopblog = 4
agblklog = 22
rextslog = 0
inprogress = 0
imax_pct = 25
icount = 64
ifree = 61
fdblocks = 62739235
frextents = 0
uquotino = 0
gquotino = 0
qflags = 0
flags = 0
shared_vn = 0
inoalignmt = 2
unit = 0
width = 0
dirblklog = 2
logsectlog = 0
logsectsize = 0
logsunit = 0
features2 = 8

XFS Filesystem Structure sgi®

 13

AG Free Space Management

The XFS filesystem tracks free space in an allocation group using two B+trees. One B+tree tracks
space by block number, the second by the size of the free space block. This scheme allows XFS to
quickly find free space near a given block or of a given size.

All block numbers, indexes and counts are AG relative.

AG Free Space Block
The second sector in an AG contains the information about the two free space B+trees and associated
free space information for the AG. The "AG Free Space Block", also knows as the AGF, uses the
following structure:

typedef struct xfs_agf {
 __be32 agf_magicnum;
 __be32 agf_versionnum;
 __be32 agf_seqno;
 __be32 agf_length;
 __be32 agf_roots[XFS_BTNUM_AGF];
 __be32 agf_spare0;
 __be32 agf_levels[XFS_BTNUM_AGF];
 __be32 agf_spare1;
 __be32 agf_flfirst;
 __be32 agf_fllast;
 __be32 agf_flcount;
 __be32 agf_freeblks;
 __be32 agf_longest;
 __be32 agf_btreeblks;
} xfs_agf_t;

The rest of the bytes in the sector are zeroed. XFS_BTNUM_AGF is set to 2, index 0 for the count
B+tree and index 1 for the size B+tree.

agf_magicnum

Specifies the magic number for the AGF sector: "XAGF" (0x58414746).

agf_versionnum

Set to XFS_AGF_VERSION which is currently 1.

agf_seqno

Specifies the AG number for the sector.

agf_length

Specifies the size of the AG in filesystem blocks. For all AGs except the last, this must be equal
to the superblock's sb_agblocks value. For the last AG, this could be less than the
sb_agblocks value. It is this value that should be used to determine the size of the AG.

agf_roots

Specifies the block number for the root of the two free space B+trees.

agf_levels

Specifies the level or depth of the two free space B+trees. For a fresh AG, this will be one, and
the "roots" will point to a single leaf of level 0.

XFS Filesystem Structure sgi®

 14

agf_flfirst

Specifies the index of the first "free list" block. Free lists are covered in more detail later on.

agf_fllast

Specifies the index of the last "free list" block.

agf_flcount

Specifies the number of blocks in the "free list".

agf_freeblks

Specifies the current number of free blocks in the AG.

agf_longest

Specifies the number of blocks of longest contiguous free space in the AG.

agf_btreeblks

Specifies the number of blocks used for the free space B+trees. This is only used if the
XFS_SB_VERSION2_LAZYSBCOUNTBIT bit is set in sb_features2.

AG Free Space B+trees
The two Free Space B+trees store a sorted array of block offset and block counts in the leaves of the
B+tree. The first B+tree is sorted by the offset, the second by the count or size.

The trees use the following header:

typedef struct xfs_btree_sblock {
 __be32 bb_magic;
 __be16 bb_level;
 __be16 bb_numrecs;
 __be32 bb_leftsib;
 __be32 bb_rightsib;
} xfs_btree_sblock_t;

Leaves contain a sorted array of offset/count pairs which are also used for node keys:

typedef struct xfs_alloc_rec {
 __be32 ar_startblock;
 __be32 ar_blockcount;
} xfs_alloc_rec_t, xfs_alloc_key_t;

Node pointers are an AG relative block pointer:

typedef __be32 xfs_alloc_ptr_t;

• As the free space tracking is AG relative, all the block numbers are only 32-bits.

• The bb_magic value depends on the B+tree: "ABTB" (0x41425442) for the block offset
B+tree, "ABTC" (0x41425443) for the block count B+tree.

• The xfs_btree_sblock_t header is used for intermediate B+tree node as well as the
leaves.

• For a typical 4KB filesystem block size, the offset for the xfs_alloc_ptr_t array would be
0xab0 (2736 decimal).

• There are a series of macros in xfs_btree.h for deriving the offsets, counts, maximums, etc
for the B+trees used in XFS.

XFS Filesystem Structure sgi®

 15

The following diagram shows a single level B+tree which consists of one leaf:

With the intermediate nodes, the associated leaf pointers are stored in a separate array about two
thirds into the block. The following diagram illustrates a 2-level B+tree for a free space B+tree:

agf xfs_agf_t
 agf_roots[2]
 agf_levels[2] = 1

[0] xfs_btree_sblock_t

 bb_magic = XFS_ABTB_MAGIC
 bb_level = 0 (leaf)
 bb_numrecs = size of recs array
 bb_leftsib/bb_rightsib = NULL

recs[bb_numrecs] xfs_alloc_rec_t

startblock / blockcount

startblock / blockcount

...

[1] xfs_btree_sblock_t

 bb_magic = XFS_ABTC_MAGIC
 bb_level = 0 (leaf)
 bb_numrecs = size of recs array
 bb_leftsib/bb_rightsib = NULL

recs[bb_numrecs] xfs_alloc_rec_t

startblock / blockcount

startblock / blockcount

...

startblock

blockcount

agf xfs_agf_t
 agf_roots[2]
 agf_levels[2] = 2

[0] xfs_btree_sblock_t

 bb_magic
 bb_level = 1 (node)
 bb_numrecs = size of recs array
 bb_leftsib/bb_rightsib = NULL

keys[bb_numrecs] xfs_alloc_key_t

startblock / blockcount

startblock / blockcount

...

ptrs[bb_numrecs] xfs_alloc_ptr_t

AG block number

AG block number

...

 xfs_btree_sblock_t

 bb_magic
 bb_level = 0 (leaf)
 bb_numrecs = size of recs array
 bb_leftsib = NULL
 bb_rightsib

recs[bb_numrecs] xfs_alloc_rec_t

startblock / blockcount

startblock / blockcount

...

 xfs_btree_sblock_t
 ...
 bb_leftsib
 bb_rightsib
 ...

 xfs_btree_sblock_t
 ...
 bb_leftsib
 bb_rightsib = NULL
 ...

XFS Filesystem Structure sgi®

 16

AG Free List
The AG Free List is located in the 4th sector of each AG and is known as the AGFL. It is an array of
AG relative block pointers for reserved space for growing the free space B+trees. This space cannot
be used for general user data including inodes, data, directories and extended attributes.

With a freshly made filesystem, 4 blocks are reserved immediately after the free space B+tree root
blocks (blocks 4 to 7). As they are used up as the free space fragments, additional blocks will be
reserved from the AG and added to the free list array.

As the free list array is located within a single sector, a typical device will have space for 128 elements
in the array (512 bytes per sector, 4 bytes per AG relative block pointer). The actual size can be
determined by using the XFS_AGFL_SIZE macro.

Active elements in the array are specified by the AGF's agf_flfirst, agf_fllast and
agf_flcount values. The array is managed as a circular list.

The presence of these reserved block guarantees that the free space B+trees can be updated if any
blocks are freed by extent changes in a full AG.

xfs_db Examples:

These examples are derived from an AG that has been deliberately fragmented.

The AGF:

xfs_db> agf <ag#>
xfs_db> p
magicnum = 0x58414746
versionnum = 1
seqno = 0
length = 3923122
bnoroot = 7
cntroot = 83343
bnolevel = 2
cntlevel = 2
flfirst = 22
fllast = 27
flcount = 6
freeblks = 3654234
longest = 3384327
btreeblks = 0

agf xfs_agf_t
 agf_flfirst
 agf_fllast
 agf_flcount

 xfs_agfl_t

block number

block number

block number

block number

block number

...

XFS Filesystem Structure sgi®

 17

In the AGFL, the active elements are from 22 to 27 inclusive which are obtained from the flfirst
and fllast values from the agf in the previous example:

xfs_db> agfl 0
xfs_db> p
bno[0-127] = 0:4 1:5 2:6 3:7 4:83342 5:83343 6:83344 7:83345 8:83346 9:83347

10:4 11:5 12:80205 13:80780 14:81496 15:81766 16:83346 17:4 18:5
19:80205 20:82449 21:81496 22:81766 23:82455 24:80780 25:5
26:80205 27:83344

The free space B+tree sorted by block offset, the root block is from the AGF's bnoroot value:

xfs_db> fsblock 7
xfs_db> type bnobt
xfs_db> p
magic = 0x41425442
level = 1
numrecs = 4
leftsib = null
rightsib = null
keys[1-4] = [startblock,blockcount]
 1:[12,16] 2:[184586,3] 3:[225579,1] 4:[511629,1]
ptrs[1-4] = 1:2 2:83347 3:6 4:4

Blocks 2, 83347, 6 and 4 contain the leaves for the free space B+tree by starting block. Block 2 would
contain offsets 16 up to but not including 184586 while block 4 would have all offsets from 511629 to
the end of the AG.

The free space B+tree sorted by block count, the root block is from the AGF's cntroot value:

xfs_db> fsblock 83343
xfs_db> type cntbt
xfs_db> p
magic = 0x41425443
level = 1
numrecs = 4
leftsib = null
rightsib = null
keys[1-4] = [blockcount,startblock]
 1:[1,81496] 2:[1,511729] 3:[3,191875] 4:[6,184595]
ptrs[1-4] = 1:3 2:83345 3:83342 4:83346

The leaf in block 3, in this example, would only contain single block counts. The offsets are sorted in
ascending order if the block count is the same.

Inspecting the leaf in block 83346, we can see the largest block at the end:

xfs_db> fsblock 83346
xfs_db> type cntbt
xfs_db> p
magic = 0x41425443
level = 0
numrecs = 344
leftsib = 83342
rightsib = null
recs[1-344] = [startblock,blockcount]
 1:[184595,6] 2:[187573,6] 3:[187776,6]
 ...
 342:[513712,755] 343:[230317,258229] 344:[538795,3384327]

The longest block count must be the same as the AGF's longest value.

XFS Filesystem Structure sgi®

 18

AG Inode Management

Inode Numbers
Inode numbers in XFS come in two forms: AG relative and absolute.

AG relative inode numbers always fit within 32 bits. The number of bits actually used is determined by
the sum of the superblock's sb_inoplog and sb_agblklog values. Relative inode numbers are
found within the AG's inode structures.

Absolute inode numbers include the AG number in the high bits, above the bits used for the AG
relative inode number. Absolute inode numbers are found in directory entries.

Inode Information
Each AG manages its own inodes. The third sector in the AG contains information about the AG's
inodes and is known as the AGI.

The AGI uses the following structure:

typedef struct xfs_agi {
 __be32 agi_magicnum;
 __be32 agi_versionnum;
 __be32 agi_seqno
 __be32 agi_length;
 __be32 agi_count;
 __be32 agi_root;
 __be32 agi_level;
 __be32 agi_freecount;
 __be32 agi_newino;
 __be32 agi_dirino;
 __be32 agi_unlinked[64];
} xfs_agi_t;

agi_magicnum

Specifies the magic number for the AGI sector: "XAGI" (0x58414749).

agi_versionnum

Set to XFS_AGI_VERSION which is currently 1.

agi_seqno

Specifies the AG number for the sector.

agi_length

Specifies the size of the AG in filesystem blocks.

#bits = sb_agblklog # bits =
sb_inoplog

#bits = sb_agblklog

bits =

sb_inoplog
AG number

Relative Inode number format

Absolute Inode number format

MSB LSB

XFS Filesystem Structure sgi®

 19

agi_count

Specifies the number of inodes allocated for the AG.

agi_root

Specifies the block number in the AG containing the root of the inode B+tree.

agi_level

Specifies the number of levels in the inode B+tree.

agi_freecount

Specifies the number of free inodes in the AG.

agi_newino

Specifies AG relative inode number most recently allocated.

agi_dirino

Deprecated and not used, it's always set to NULL (-1).

agi_unlinked[64]

Hash table of unlinked (deleted) inodes that are still being referenced. Refer to Inode Unlinked
Pointer for more information.

Inode B+trees
Inodes are allocated in chunks of 64, and a B+tree is used to track these chunks of inodes as they are
allocated and freed. The block containing root of the B+tree is defined by the AGI's agi_root value.

The B+tree header for the nodes and leaves use the xfs_btree_sblock structure which is the
same as the header used in the AGF B+trees:

typedef struct xfs_btree_sblock xfs_inobt_block_t;

Leaves contain an array of the following structure:

typedef struct xfs_inobt_rec {
 __be32 ir_startino;
 __be32 ir_freecount;
 __be64 ir_free;
} xfs_inobt_rec_t;

Nodes contain key/pointer pairs using the following types:

typedef struct xfs_inobt_key {
 __be32 ir_startino;
} xfs_inobt_key_t;

typedef __be32 xfs_inobt_ptr_t;

For the leaf entries, ir_startino specifies the starting inode number for the chunk, ir_freecount
specifies the number of free entries in the chuck, and the ir_free is a 64 element bit array specifying
which entries are free in the chunk.

XFS Filesystem Structure sgi®

 20

The following diagram illustrates a single level inode B+tree:

And a 2-level inode B+tree:

agi xfs_agi_t
 agi_root
 agi_level = 2

[0] xfs_inobt_block_t

 bb_magic
 bb_level = 1 (node)
 bb_numrecs = size of recs array
 bb_leftsib/bb_rightsib = NULL

keys[bb_numrecs] xfs_inobt_key_t

startino

startino

...

ptrs[bb_numrecs] xfs_inobt_ptr_t

AG block number

AG block number

...

 xfs_inobt_block_t

 bb_magic
 bb_level = 0 (leaf)
 bb_numrecs = size of recs array
 bb_leftsib = NULL
 bb_rightsib

recs[bb_numrecs] xfs_inobt_rec_t

startino / fcnt / fmask

startino / fcnt / fmask

...

 xfs_inobt_block_t
 ...
 bb_leftsib
 bb_rightsib
 ...

 xfs_inobt_block_t
 ...
 bb_leftsib
 bb_rightsib = NULL
 ...

agi xfs_agi_t
 agi_root
 agi_level = 1

 xfs_inobt_block_t

 bb_magic = XFS_IBT_MAGIC
 bb_level = 0 (leaf)
 bb_numrecs = size of recs array
 bb_leftsib/bb_rightsib = NULL

recs[bb_numrecs] xfs_inobt_rec_t

startino / freecnt / fmask

startino / freecnt / fmask

...

chunk of 64 inodes

chunk of 64 inodes

chunk of 64 inodes

XFS Filesystem Structure sgi®

 21

xfs_db Examples:

TODO:

XFS Filesystem Structure sgi®

 22

Real-time Devices

XFS supports writing file data to a different volume to the normal XFS volume. This allows a more
deterministic I/O performance characteristics compared to a normal XFS filesystem. This has been
labelled "real-time".

Even though file data and metadata can go to different volumes, in a lot of cases, given the same
hardware, real-time filesystems are not as fast as a single XFS filesystem. This is due to real-time
filesystem I/O going through a single path with a single freespace allocation structure rather than the
parallel AGs used for a normal XFS filesystem.

So, in practise, real-time filesystems are rarely used.

Free space for real-time filesystems are managed using a traditional bitmap which is stored in a
special inode's data. To speed up free space searches, a bucket based array is used to track
contiguous chunks of free space in the real-time free space bitmap. This is called the real-time
summary and is stored in other special inode. Refer to Real-Time Inodes for more details on these
inodes.

To create a filesystem with a real-time device, you need to use the following mkfs.xfs options:

mkfs.xfs [opts] -r rtdev=</dev/rtpart>[,extsize=num] </dev/part>

The default for extsize is 64KB and has to be a power of 2 multiple of the filesystem's block size. This
is the minimum allocation unit for the real-time device.

For example, to create a filesystem on /dev/sda1 with a real-time device on /dev/sdb1 and a
256KB real-time block (extent) size, use the following command:

mkfs.xfs -r rtdev=/dev/sdb1,extsize=256m /dev/sda1

To mount the filesystem, the real-time device must be specifies as a mount option (using the previous
example):

mount /dev/sda1 -o rtdev=/dev/sdb1

By default, all files created will put the data on the normal XFS filesystem. For a file's data to be put on
the real-time device, the inode's attributes must be changed to real-time before any data is written.
This can be accomplished by two methods:

1. Changing the file's attribute itself

2. Marking the parent directory as inherited real-time so any files created after the parent's
attributes are set automatically inherit the real-time attribute.

The xfs_io command must be used to change an inode's real-time attribute. To set a file's real-time
bit, use the following command:

% xfs_io -c "chattr +r" <filename>

To set a directory's real-time inheritance bit, use the following command:

% xfs_io -c "chattr +t" <directory>

XFS Filesystem Structure sgi®

 23

On-disk Inode

All files, directories and links are stored on disk with inodes and descend from the root inode with it's
number defined in the superblock. The previous section on AG Inode Management describes the
allocation and management of inodes on disk. This section describes the contents of inodes
themselves.

An inode is divided into 3 parts:

• The core contains what the inode represents, stat data and information describing the data

and attribute forks.

• The di_u "data fork" contains normal data related to the inode. It's contents depends on the
file type specified by di_core.di_mode (eg. regular file, directory, link, etc) and how much
information is contained in the file which determined by di_core.di_format. The following
union to represent this data is declared as follows:

union {
 xfs_bmdr_block_t di_bmbt;
 xfs_bmbt_rec_t di_bmx[1];
 xfs_dir2_sf_t di_dir2sf;
 char di_c[1];
 xfs_dev_t di_dev;
 uuid_t di_muuid;
 char di_symlink[1];
} di_u;

• The di_a "attribute fork" contains extended attributes. Its layout is determined by the
di_core.di_aformat value. Its representation is declared as follows:

union {
 xfs_bmdr_block_t di_abmbt;
 xfs_bmbt_rec_t di_abmx[1];
 xfs_attr_shortform_t di_attrsf;
} di_a;

Note: The above two unions are rarely used in the XFS code, but the structures within the union are
directly cast depending on the di_mode/di_format and di_aformat values. They are referenced
in this document to make it easier to explain the various structures in use within the inode.

The remaining space in the inode after di_next_unlinked where the two forks are located is called
the inode's "literal area". This starts at offset 100 (0x64) in the inode.

The space for each of the two forks in the literal area is determined by the inode size, and
di_core.di_forkoff. The data fork is located between the start of the literal area and di_forkoff.
The attribute fork is located between di_forkoff and the end of the inode.

 xfs_dinode_t

 di_next_unlinked (4 bytes)

di_core (96 bytes) xfs_dinode_core_t

di_u data fork

di_a extended attribute fork

XFS Filesystem Structure sgi®

 24

Inode Core

The inode's core is 96 bytes in size and contains information about the file itself including most stat
data information about data and attribute forks after the core within the inode. It uses the following
structure:

typedef struct xfs_dinode_core {
 __uint16_t di_magic;
 __uint16_t di_mode;
 __int8_t di_version;
 __int8_t di_format;
 __uint16_t di_onlink;
 __uint32_t di_uid;
 __uint32_t di_gid;
 __uint32_t di_nlink;
 __uint16_t di_projid;
 __uint8_t di_pad[8];
 __uint16_t di_flushiter;
 xfs_timestamp_t di_atime;
 xfs_timestamp_t di_mtime;
 xfs_timestamp_t di_ctime;
 xfs_fsize_t di_size;
 xfs_drfsbno_t di_nblocks;
 xfs_extlen_t di_extsize;
 xfs_extnum_t di_nextents;
 xfs_aextnum_t di_anextents;
 __uint8_t di_forkoff;
 __int8_t di_aformat;
 __uint32_t di_dmevmask;
 __uint16_t di_dmstate;
 __uint16_t di_flags;
 __uint32_t di_gen;
} xfs_dinode_core_t;

di_magic

The inode signature where these two bytes are 0x494e, or "IN" in ASCII.

di_mode

Specifies the mode access bits and type of file using the standard S_Ixxx values defined in
stat.h.

di_version

Specifies the inode version which currently can only be 1 or 2. The inode version specifies the
usage of the di_onlink, di_nlink and di_projid values in the inode core. Initially, inodes
are created as v1 but can be converted on the fly to v2 when required.

di_format

Specifies the format of the data fork in conjunction with the di_mode type. This can be one of
several values. For directories and links, it can be "local" where all metadata associated with the
file is within the inode, "extents" where the inode contains an array of extents to other filesystem
blocks which contain the associated metadata or data or "btree" where the inode contains a
B+tree root node which points to filesystem blocks containing the metadata or data. Migration
between the formats depends on the amount of metadata associated with the inode. "dev" is
used for character and block devices while "uuid" is currently not used.

typedef enum xfs_dinode_fmt {
 XFS_DINODE_FMT_DEV,
 XFS_DINODE_FMT_LOCAL,
 XFS_DINODE_FMT_EXTENTS,
 XFS_DINODE_FMT_BTREE,

XFS Filesystem Structure sgi®

 25

 XFS_DINODE_FMT_UUID
} xfs_dinode_fmt_t;

di_onlink

In v1 inodes, this specifies the number of links to the inode from directories. When the number
exceeds 65535, the inode is converted to v2 and the link count is stored in di_nlink.

di_uid

Specifies the owner's UID of the inode.

di_gid

Specifies the owner's GID of the inode.

di_nlink

Specifies the number of links to the inode from directories. This is maintained for both inode
versions for current versions of XFS. Old versions of XFS did not support v2 inodes, and
therefore this value was never updated and was classed as reserved space (part of di_pad).

di_projid

Specifies the owner's project ID in v2 inodes. An inode is converted to v2 if the project ID is set.
This value must be zero for v1 inodes.

di_pad[8]

Reserved, must be zero.

di_flushiter

Incremented on flush.

di_atime

Specifies the last access time of the files using UNIX time conventions the following structure.
This value maybe undefined if the filesystem is mounted with the "noatime" option.

typedef struct xfs_timestamp {
 __int32_t t_sec;
 __int32_t t_nsec;
} xfs_timestamp_t;

di_mtime

Specifies the last time the file was modified.

di_ctime

Specifies when the inode's status was last changed.

di_size

Specifies the EOF of the inode in bytes. This can be larger or smaller than the extent space
(therefore actual disk space) used for the inode. For regular files, this is the filesize in bytes,
directories, the space taken by directory entries and for links, the length of the symlink.

di_nblocks

Specifies the number of filesystem blocks used to store the inode's data including relevant
metadata like B+trees. This does not include blocks used for extended attributes.

XFS Filesystem Structure sgi®

 26

di_extsize

Specifies the extent size for filesystems with real-time devices and an extent size hint for
standard filesystems. For normal filesystems, and with directories, the
XFS_DIFLAG_EXTSZINHERIT flag must be set in di_flags if this field is used. Inodes
created in these directories will inherit the di_extsize value and have
XFS_DIFLAG_EXTSIZE set in their di_flags. When a file is written to beyond allocated
space, XFS will attempt to allocate additional disk space based on this value.

di_nextents

Specifies the number of data extents associated with this inode.

di_anextents

Specifies the number of extended attribute extents associated with this inode.

di_forkoff

Specifies the offset into the inode's literal area where the extended attribute fork starts. This is
an 8-bit value that is multiplied by 8 to determine the actual offset in bytes (ie. attribute data is
64-bit aligned). This also limits the maximum size of the inode to 2048 bytes. This value is
initially zero until an extended attribute is created. When in attribute is added, the nature of
di_forkoff depends on the XFS_SB_VERSION2_ATTR2BIT flag in the superblock. Refer to
the Extended Attribute Versions section for more details.

di_aformat

Specifies the format of the attribute fork. This uses the same values as di_format, but
restricted to "local", "extents" and "btree" formats for extended attribute data.

di_dmevmask

DMAPI event mask.

di_dmstate

DMAPI state.

di_flags

Specifies flags associated with the inode. This can be a combination of the following values:

Flag Description

XFS_DIFLAG_REALTIME The inode's data is located on the real-time device.

XFS_DIFLAG_PREALLOC The inode's extents have been preallocated.

XFS_DIFLAG_NEWRTBM Specifies the sb_rbmino uses the new real-time
bitmap format

XFS_DIFLAG_IMMUTABLE Specifies the inode cannot be modified.

XFS_DIFLAG_APPEND The inode is in append only mode.

XFS_DIFLAG_SYNC The inode is written synchronously.

XFS_DIFLAG_NOATIME The inode's di_atime is not updated.

XFS_DIFLAG_NODUMP Specifies the inode is to be ignored by xfsdump.

XFS_DIFLAG_RTINHERIT For directory inodes, new inodes inherit the
XFS_DIFLAG_REALTIME bit.

XFS Filesystem Structure sgi®

 27

XFS_DIFLAG_PROJINHERIT For directory inodes, new inodes inherit the
di_projid value.

XFS_DIFLAG_NOSYMLINKS For directory inodes, symlinks cannot be created.

XFS_DIFLAG_EXTSIZE Specifies the extent size for real-time files or a and
extent size hint for regular files.

XFS_DIFLAG_EXTSZINHERIT For directory inodes, new inodes inherit the
di_extsize value.

XFS_DIFLAG_NODEFRAG Specifies the inode is to be ignored when
defragmenting the filesystem.

di_gen

A generation number used for inode identification. This is used by tools that do inode scanning
such as backup tools and xfsdump. An inode's generation number can change by unlinking and
creating a new file that reuses the inode.

XFS Filesystem Structure sgi®

 28

Unlinked Pointer

The di_next_unlinked value in the inode is used to track inodes that have been unlinked (deleted)
but which are still referenced. When an inode is unlinked and there is still an outstanding reference,
the inode is added to one of the AGI's agi_unlinked hash buckets. The AGI unlinked bucket points
to an inode and the di_next_unlinked value points to the next inode in the chain. The last inode in
the chain has di_next_unlinked set to NULL (-1).

Once the last reference is released, the inode is removed from the unlinked hash chain, and
di_next_unlinked is set to NULL. In the case of a system crash, XFS recovery will complete the
unlink process for any inodes found in these lists.

The only time the unlinked fields can be seen to be used on disk is either on an active filesystem or a
crashed system. A cleanly unmounted or recovered filesystem will not have any inodes in these unlink
hash chains.

 xfs_dinode_t

 di_next_unlinked

di_core (96 bytes) xfs_dinode_core_t

di_u data fork

di_a extended attribute fork

 xfs_dinode_t

 di_next_unlinked = NULL (0xffffffff)

di_core (96 bytes) xfs_dinode_core_t

di_u data fork

di_a extended attribute fork

agi xfs_agi_t
 ...
 agi_unlinked[64]

XFS Filesystem Structure sgi®

 29

Data Fork

The structure of the inode's data fork based is on the inode's type and di_format. It always starts at
offset 100 (0x64) in the inode's space which is the start of the inode's "literal area". The size of the
data fork is determined by the type and format. The maximum size is determined by the inode size
and di_forkoff. In code, use the XFS_DFORK_PTR macro specifying XFS_DATA_FORK for the
"which" parameter. Alternatively, the XFS_DFORK_DPTR macro can be used.

Each of the following sub-sections summarises the contents of the data fork based on the inode type.

Regular Files (S_IFREG)
The data fork specifies the file's data extents. The extents specify where the file's actual data is
located within the filesystem. Extents can have 2 formats which is defined by the di_format value:

• XFS_DINODE_FMT_EXTENTS: The extent data is fully contained within the inode which
contains an array of extents to the filesystem blocks for the file's data. To access the extents,
cast the return value from XFS_DFORK_DPTR to xfs_bmbt_rec_t*.

• XFS_DINODE_FMT_BTREE: The extent data is contained in the leaves of a B+tree. The inode
contains the root node of the tree and is accessed by casting the return value from
XFS_DFORK_DPTR to xfs_bmdr_block_t*.

Details for each of these data extent formats are covered in the Data Extents section later on.

Directories (S_IFDIR)
The data fork contains the directory's entries and associated data. The format of the entries is also
determined by the di_format value and can be one of 3 formats:

• XFS_DINODE_FMT_LOCAL: The directory entries are fully contained within the inode. This is
accessed by casting the value from XFS_DFORK_DPTR to xfs_dir2_sf_t*.

• XFS_DINODE_FMT_EXTENTS: The actual directory entries are located in another filesystem
block, the inode contains an array of extents to these filesystem blocks (xfs_bmbt_rec_t*).

• XFS_DINODE_FMT_BTREE: The directory entries are contained in the leaves of a B+tree. The
inode contains the root node (xfs_bmdr_block_t*).

Details for each of these directory formats are covered in the Directories section later on.

Symbolic Links (S_IFLNK)
The data fork contains the contents of the symbolic link. The format of the link is determined by the
di_format value and can be one of 2 formats:

• XFS_DINODE_FMT_LOCAL: The symbolic link is fully contained within the inode. This is
accessed by casting the return value from XFS_DFORK_DPTR to char*.

• XFS_DINODE_FMT_EXTENTS: The actual symlink is located in another filesystem block, the
inode contains the extents to these filesystem blocks (xfs_bmbt_rec_t*).

Details for symbolic links is covered in the Symbolic Links section later on.

Other File Types
For character and block devices (S_IFCHR and S_IFBLK), cast the value from XFS_DFORK_DPTR to
xfs_dev_t*.

XFS Filesystem Structure sgi®

 30

Attribute Fork

The attribute fork in the inode always contains the location of the extended attributes associated with
the inode.

The location of the attribute fork in the inode's literal area (offset 100 to the end of the inode) is
specified by the di_forkoff value in the inode's core. If this value is zero, the inode does not
contain any extended attributes. Non-zero, the byte offset into the literal area = di_forkoff * 8,
which also determines the 2048 byte maximum size for an inode. Attributes must be allocated on a 64-
bit boundary on the disk. To access the extended attributes in code, use the XFS_DFORK_PTR macro
specifying XFS_ATTR_FORK for the "which" parameter. Alternatively, the XFS_DFORK_APTR macro
can be used.

Which structure in the attribute fork is used depends on the di_aformat value in the inode. It can be
one of the following values:

• XFS_DINODE_FMT_LOCAL: The extended attributes are contained entirely within the inode.
This is accessed by casting the value from XFS_DFORK_APTR to xfs_attr_shortform_t*.

• XFS_DINODE_FMT_EXTENTS: The attributes are located in another filesystem block, the
inode contains an array of pointers to these filesystem blocks. They are accessed by casting
the value from XFS_DFORK_APTR to xfs_bmbt_rec_t*.

• XFS_DINODE_FMT_BTREE: The extents for the attributes are contained in the leaves of a
B+tree. The inode contains the root node of the tree and is accessed by casting the value
from XFS_DFORK_APTR to xfs_bmdr_block_t*.

Detailed information on the layouts of extended attributes are covered in the Extended Attributes
section later on in this document.

Extended Attribute Versions
Extended attributes come in two versions: "attr1" or "attr2". The attribute version is specified by the
XFS_SB_VERSION2_ATTR2BIT flag in the sb_features2 field in the superblock. It determines how
the inode's extra space is split between di_u and di_a forks which also determines how the
di_forkoff value is maintained in the inode's core.

With "attr1" attributes, the di_forkoff is set to somewhere in the middle of the space between the
core and end of the inode and never changes (which has the effect of artificially limiting the space for
data information). As the data fork grows, when it gets to di_forkoff, it will move the data to the
level format level (ie. local > extent > btree). If very little space is used for either attributes or data,
then a good portion of the available inode space is wasted with this version.

"Attr2" was introduced to maximum the utilisation of the inode's literal area. The di_forkoff starts at
the end of the inode and works its way to the data fork as attributes are added. Attr2 is highly
recommended if extended attributes are used.

The following diagram compares the two versions:

di_core

di_core

di_u di_a

di_u di_a

"attr1" growth:

"attr2" growth:

Fixed di_forkoff

Moving di_forkoff

XFS Filesystem Structure sgi®

 31

Data Extents

XFS allocates space for a file using extents: starting location and length. XFS extents also specify the
file's logical starting offset for a file. This allows a files extent map to automatically support sparse files
(i.e. "holes" in the file). A flag is also used to specify if the extent has been preallocated and not yet
been written to (unwritten extent).

A file can have more than one extent if one chunk of contiguous disk space is not available for the file.
As a file grows, the XFS space allocator will attempt to keep space contiguous and merge extents. If
more than one file is being allocated space in the same AG at the same time, multiple extents for the
files will occur as the extents get interleaved. The effect of this can vary depending on the extent
allocator used in the XFS driver.

An extent is 128 bits in size and uses the following packed layout:

The extent is represented by the xfs_bmbt_rec_t structure which uses a big endian format on-disk.
In-core management of extents use the xfs_bmbt_irec_t structure which is the unpacked version
of xfs_bmbt_rec_t:

typedef struct xfs_bmbt_irec {
 xfs_fileoff_t br_startoff;
 xfs_fsblock_t br_startblock;
 xfs_filblks_t br_blockcount;
 xfs_exntst_t br_state;
} xfs_bmbt_irec_t;

The extent br_state field uses the following enum declaration:

typedef enum {
 XFS_EXT_NORM,
 XFS_EXT_UNWRITTEN,
 XFS_EXT_INVALID
} xfs_exntst_t;

Some other points about extents:

• The xfs_bmbt_rec_32_t and xfs_bmbt_rec_64_t structures are effectively the same as
xfs_bmbt_rec_t, just different representations of the same 128 bits in on-disk big endian
format.

• When a file is created and written to, XFS will endeavour to keep the extents within the same
AG as the inode. It may use a different AG if the AG is busy or there is no space left in it.

• If a file is zero bytes long, it will have no extents, di_nblocks and di_nexents will be zero.
Any file with data will have at least one extent, and each extent can use from 1 to over 2
million blocks (221) on the filesystem. For a default 4KB block size filesystem, a single extent
can be up to 8GB in length.

The following two subsections cover the two methods of storing extent information for a file. The first is
the fastest and simplest where the inode completely contains an extent array to the file's data. The
second is slower and more complex B+tree which can handle thousands to millions of extents
efficiently.

f
l
a
g

bits 72 to 126 (54)
logical file block offset

bits 21 to 72 (52)
absolute block number

bit 0-20 (21)
blocks

MSB LSB

XFS Filesystem Structure sgi®

 32

Extent List

Local extents are where the entire extent array is stored within the inode's data fork itself. This is the
most optimal in terms of speed and resource consumption. The trade-off is the file can only have a few
extents before the inode runs out of space.

The "data fork" of the inode contains an array of extents, the size of the array determined by the
inode's di_nextents value.

The number of extents that can fit in the inode depends on the inode size and di_forkoff. For a
default 256 byte inode with no extended attributes, a file can up to 19 extents with this format. Beyond
this, extents have to use the B+tree format.

xfs_db Example:

An 8MB file with one extent:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0100644
core.version = 1
core.format = 2 (extents)
...
core.size = 8294400
core.nblocks = 2025
core.extsize = 0
core.nextents = 1
core.naextents = 0
core.forkoff = 0
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag]

0:[0,25356,2025,0]

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_EXTENTS (2)
 di_nblocks = > 0
 di nextents = > 0

di_u.di_bmx[di_core.di_nextents] xfs_bmbt_rec_32_t

offset / block / #blocks

offset / block / #blocks

...

di_a.di_attrsf xfs_attr_shortform_t

First part of the
file's data

Second part of the
file's data

...

XFS Filesystem Structure sgi®

 33

A 24MB file with three extents:

xfs_db> inode <inode#>
xfs_db> p
...
core.format = 2 (extents)
...
core.size = 24883200
core.nblocks = 6075
core.nextents = 3
...
u.bmx[0-2] = [startoff,startblock,blockcount,extentflag]

0:[0,27381,2025,0]
1:[2025,31431,2025,0]
2:[4050,35481,2025,0]

Raw disk version of the inode with the third extent highlighted (di_u always starts at offset 0x64):

xfs_db> type text
xfs_db> p
00: 49 4e 81 a4 01 02 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 01
20: 44 b6 88 dd 2f 8a ed d0 44 b6 88 f7 10 8c 5b d0 D.......D.......
30: 44 b6 88 f7 10 8c 5b d0 00 00 00 00 01 7b b0 00 D...............
40: 00 00 00 00 00 00 17 bb 00 00 00 00 00 00 00 03
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 0d
70: 5e a0 07 e9 00 00 00 00 00 0f d2 00 00 00 00 0f
80: 58 e0 07 e9 00 00 00 00 00 1f a4 00 00 00 00 11 X...............
90: 53 20 07 e9 00 00 00 00 00 00 00 00 00 00 00 00 S...............
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

We can expand the highlighted section into the following bit array from MSB to LSB with the file offset
and the block count highlighted:

127-96: 0000 0000 0000 0000 0000 0000 0000 0000
 95-64: 0000 0000 0001 1111 1010 0100 0000 0000
 63-32: 0000 0000 0000 0000 0000 0000 0000 1111
 31-0 : 0101 1000 1110 0000 0000 0111 1110 1001

Grouping by highlights we get:
 file offset = 0x0fd2 (4050)
 start block = 0x7ac7 (31431)
 block count = 0x07e9 (2025)

A 4MB file with two extents and a hole in the middle, the first extent containing 64KB of data, the
second about 4MB in containing 32KB (write 64KB, lseek ~4MB, write 32KB operations):

xfs_db> inode <inode#>
xfs_db> p
...
core.format = 2 (extents)
...
core.size = 4063232
core.nblocks = 24
core.nextents = 2
...
u.bmx[0-1] = [startoff,startblock,blockcount,extentflag]

0:[0,37506,16,0]
1:[984,37522,8,0]

XFS Filesystem Structure sgi®

 34

B+tree Extent List

Beyond the simple extent array, to efficiently manage large extent maps, XFS uses B+trees. The root
node of the B+tree is stored in the inode's data fork. All block pointers for extent B+trees are 64-bit
absolute block numbers.

For a single level B+tree, the root node points to the B+tree's leaves. Each leaf occupies one
filesystem block and contains a header and an array of extents sorted by the file's offset. Each leaf
has left and right (or backward and forward) block pointers to adjacent leaves. For a standard 4KB
filesystem block, a leaf can contain up to 254 extents before a B+tree rebalance is triggered.

For a multi-level B+tree, the root node points to other B+tree nodes which eventually point to the
extent leaves. B+tree keys are based on the file's offset. The nodes at each level in the B+tree point to
the adjacent nodes.

The base B+tree node is used for extents, directories and extended attributes. The structures used for
inode's B+tree root are:

typedef struct xfs_bmdr_block {
 __be16 bb_level;
 __be16 bb_numrecs;
} xfs_bmdr_block_t;

typedef struct xfs_bmbt_key {
 xfs_dfiloff_t br_startoff;
} xfs_bmbt_key_t, xfs_bmdr_key_t;

typedef xfs_dfsbno_t xfs_bmbt_ptr_t, xfs_bmdr_ptr_t;

• On disk, the B+tree node starts with the xfs_bmbr_block_t header followed by an array of
xfs_bmbt_key_t values and then an array of xfs_bmbt_ptr_t values. The size of both
arrays is specified by the header's bb_numrecs value.

• The root node in the inode can only contain up to 19 key/pointer pairs for a standard 256 byte
inode before a new level of nodes is added between the root and the leaves. This will be less
if di_forkoff is not zero (i.e. attributes are in use on the inode).

The subsequent nodes and leaves of the B+tree use the xfs_bmbt_block_t declaration:

typedef struct xfs_btree_lblock xfs_bmbt_block_t;

typedef struct xfs_btree_lblock {
 __be32 bb_magic;
 __be16 bb_level;
 __be16 bb_numrecs;
 __be64 bb_leftsib;
 __be64 bb_rightsib;
} xfs_btree_lblock_t;

• For intermediate nodes, the data following xfs_bmbt_block_t is the same as the root node:
array of xfs_bmbt_key_t value followed by an array of xfs_bmbt_ptr_t values that starts
halfway through the block (offset 0x808 for a 4096 byte filesystem block).

• For leaves, an array of xfs_bmbt_rec_t extents follow the xfs_bmbt_block_t header.

• Nodes and leaves use the same value for bb_magic:

#define XFS_BMAP_MAGIC 0x424d4150 /* 'BMAP' */

• The bb_level value determines if the node is an intermediate node or a leaf. Leaves have a
bb_level of zero, nodes are one or greater.

• Intermediate nodes, like leaves, can contain up to 254 pointers to leaf blocks for a standard
4KB filesystem block size as both the keys and pointers are 64 bits in size.

XFS Filesystem Structure sgi®

 35

The following diagram illustrates a single level extent B+tree:

File data (each block discontiguous on-disk extent of the file)

...

inode xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_BTREE (3)
 di_nblocks = >0
 di nextents = >0

di_u

di_bmbt xfs_bmdr_block_t
 bb_level = 1
 bb numrecs = number of leaves

bb_keys[bb_numrecs] xfs_bmbt_key_t

file offset

file offset

...

di_a.di_attrsf xfs_attr_shortform_t

bb_ptrs[bb_numrecs] xfs_bmbt_ptr_t

filesystem block number

filesystem block number

...

leaf xfs_bmbt_block_t
 bb_magic = XFS_BMAP_MAGIC: "BMAP"
 bb_level = 0
 bb_numrecs = number of extents
 bb_leftsib = 0
 bb_rightsib

extents[bb_numrecs] xfs_bmbt_rec_t

offset / block / #blocks

offset / block / #blocks

...

leaf xfs_bmbt_block_t
 bb_magic = 0x424d4150: "BMAP"
 bb_level = 0
 bb_numrecs = number of extents
 bb_leftsib
 bb_rightsib: right most = 0

extents[bb_numrecs] xfs_bmbt_rec_t

offset / block / #blocks

offset / block / #blocks

...

XFS Filesystem Structure sgi®

 36

The following diagram illustrates a two level extent B+tree:

inode xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_BTREE (3)

 di_u.di_bmbt xfs_bmdr_block_t
 bb_level = 2
 bb_numrecs = number of nodes

bb_keys[bb_numrecs] xfs_bmbt_key_t

file offset

...

bb_ptrs[bb_numrecs] xfs_bmbt_ptr_t

filesystem block number

...

node xfs_bmbt_block_t
 bb_magic = XFS_BMAP_MAGIC: "BMAP"
 bb_level = 1
 bb_numrecs = number of leaves
 bb_leftsib = 0
 bb_rightsib

node xfs_bmbt_block_t
 bb_magic = 0x424d4150: "BMAP"
 bb_level = 1
 bb_numrecs = number of leaves
 bb_leftsib
 bb_rightsib: right most = 0

File data (each block discontiguous on-disk extent of the file)

bb_keys[bb_numrecs] xfs_bmbt_key_t

file offset

...

bb_ptrs[bb_numrecs] xfs_bmbt_ptr_t

filesystem block number

...

bb_keys[bb_numrecs] xfs_bmbt_key_t

file offset

...

bb_ptrs[bb_numrecs] xfs_bmbt_ptr_t

filesystem block number

...

leaf xfs_bmbt_block_t
 bb_level = 0
 bb_numrec = number of extents

extents[] xfs_bmbt_rec_t

offset / block / #blocks

...

leaf xfs_bmbt_block_t
 bb_level = 0
 bb_numrec = number of extents

extents[] xfs_bmbt_rec_t

offset / block / #blocks

...

XFS Filesystem Structure sgi®

 37

xfs_db Example:

TODO:

XFS Filesystem Structure sgi®

 38

Directories

• Only v2 directories covered here. v1 directories are obsolete.

• The size of a "directory block" is defined by the superblock's sb_dirblklog value. The size
in bytes = sb_blocksize * 2sb_dirblklog. For example, if sb_blocksize = 4096,
sb_dirblklog = 2, the directory block size is 16384 bytes. Directory blocks are always
allocated in multiples based on sb_dirblklog. Directory blocks cannot be more that 65536
bytes in size.

Note: the term "block" in this section will refer to directory blocks, not filesystem blocks unless
otherwise specified.

• All directory entries contain the following "data":

o Entry's name (counted string consisting of a single byte namelen followed by name
consisting of an array of 8-bit chars without a NULL terminator).

o Entry's absolute inode number, which are always 64 bits (8 bytes) in size except a
special case for shortform directories.

o An offset or tag used for iterative readdir calls.

• All non-shortform directories also contain two additional structures: "leaves" and "freespace
indexes".

o Leaves contain the sorted hashed name value (xfs_da_hashname() in
xfs_da_btree.c) and associated "address" which points to the effective offset into the
directory's data structures. Leaves are used to optimise lookup operations.

o Freespace indexes contain free space/empty entry tracking for quickly finding an
appropriately sized location for new entries. They maintain the largest free space for
each "data" block.

• A few common types are used for the directory structures:

typedef __uint16_t xfs_dir2_data_off_t;
typedef __uint32_t xfs_dir2_dataptr_t;

XFS Filesystem Structure sgi®

 39

Shortform Directories

• Directory entries are stored within the inode.

• Only data stored is the name, inode # and offset, no "leaf" or "freespace index" information is
required as an inode can only store a few entries.

• "." is not stored (as it's in the inode itself), and ".." is a dedicated parent field in the header.

• The number of directories that can be stored in an inode depends on the inode size, the
number of entries, the length of the entry names and extended attribute data.

• Once the number of entries exceed the space available in the inode, the format is converted to
a "Block Directory".

• Shortform directory data is packed as tightly as possible on the disk with the remaining space
zeroed:

typedef struct xfs_dir2_sf {
 xfs_dir2_sf_hdr_t hdr;
 xfs_dir2_sf_entry_t list[1];
} xfs_dir2_sf_t;

typedef struct xfs_dir2_sf_hdr {
 __uint8_t count;
 __uint8_t i8count;
 xfs_dir2_inou_t parent;
} xfs_dir2_sf_hdr_t;

typedef struct xfs_dir2_sf_entry {
 __uint8_t namelen;
 xfs_dir2_sf_off_t offset;
 __uint8_t name[1];
 xfs_dir2_inou_t inumber;
} xfs_dir2_sf_entry_t;

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_LOCAL (1)
 di_nblocks = 0
 di nextents = 0

di_u.di_dir2sf xfs_dir2_sf_t

hdr xfs_dir2_sf_hdr_t
 count = number in list[]
 parent = parent inode number

list[] xfs_dir2_sf_entry_t

namelen/offset/name/inumber

namelen/offset/name/inumber

di_a.di_attrsf xfs_attr_shortform_t

XFS Filesystem Structure sgi®

 40

• Inode numbers are stored using 4 or 8 bytes depending on whether all the inode numbers for
the directory fit in 4 bytes (32 bits) or not. If all inode numbers fit in 4 bytes, the header's
count value specifies the number of entries in the directory and i8count will be zero. If any
inode number exceeds 4 bytes, all inode numbers will be 8 bytes in size and the header's
i8count value specifies the number of entries and count will be zero. The following union
covers the shortform inode number structure:

typedef struct { __uint8_t i[8]; } xfs_dir2_ino8_t;
typedef struct { __uint8_t i[4]; } xfs_dir2_ino4_t;

typedef union {
 xfs_dir2_ino8_t i8;
 xfs_dir2_ino4_t i4;
} xfs_dir2_inou_t;

xfs_db Example:

A directory is created with 4 files, all inode numbers fitting within 4 bytes:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 1 (local)
core.nlinkv1 = 2
...
core.size = 94
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
u.sfdir2.hdr.count = 4
u.sfdir2.hdr.i8count = 0
u.sfdir2.hdr.parent.i4 = 128 /* parent = root inode */
u.sfdir2.list[0].namelen = 15
u.sfdir2.list[0].offset = 0x30
u.sfdir2.list[0].name = "frame000000.tst"
u.sfdir2.list[0].inumber.i4 = 25165953
u.sfdir2.list[1].namelen = 15
u.sfdir2.list[1].offset = 0x50
u.sfdir2.list[1].name = "frame000001.tst"
u.sfdir2.list[1].inumber.i4 = 25165954
u.sfdir2.list[2].namelen = 15
u.sfdir2.list[2].offset = 0x70
u.sfdir2.list[2].name = "frame000002.tst"
u.sfdir2.list[2].inumber.i4 = 25165955
u.sfdir2.list[3].namelen = 15
u.sfdir2.list[3].offset = 0x90
u.sfdir2.list[3].name = "frame000003.tst"
u.sfdir2.list[3].inumber.i4 = 25165956

The raw data on disk with the first entry highlighted. The six byte header precedes the first entry:

xfs_db> type text
xfs_db> p
00: 49 4e 41 ed 01 01 00 02 00 00 00 00 00 00 00 00 INA.............
10: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 02
20: 44 ad 3a 83 1d a9 4a d0 44 ad 3a ab 0b c7 a7 d0 D.....J.D.......
30: 44 ad 3a ab 0b c7 a7 d0 00 00 00 00 00 00 00 5e D...............
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 04 00 00 00 00 80 0f 00 30 66 72 61 0fra
70: 6d 65 30 30 30 30 30 30 2e 74 73 74 01 80 00 81 me000000.tst....
80: 0f 00 50 66 72 61 6d 65 30 30 30 30 30 31 2e 74 ..Pframe000001.t

XFS Filesystem Structure sgi®

 41

90: 73 74 01 80 00 82 0f 00 70 66 72 61 6d 65 30 30 st......pframe00
a0: 30 30 30 32 2e 74 73 74 01 80 00 83 0f 00 90 66 0002.tst.......f
b0: 72 61 6d 65 30 30 30 30 30 33 2e 74 73 74 01 80 rame000003.tst..
c0: 00 84 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...

Next, an entry is deleted (frame000001.tst), and any entries after the deleted entry are moved or
compacted to "cover" the hole:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 1 (local)
core.nlinkv1 = 2
...
core.size = 72
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
u.sfdir2.hdr.count = 3
u.sfdir2.hdr.i8count = 0
u.sfdir2.hdr.parent.i4 = 128
u.sfdir2.list[0].namelen = 15
u.sfdir2.list[0].offset = 0x30
u.sfdir2.list[0].name = "frame000000.tst"
u.sfdir2.list[0].inumber.i4 = 25165953
u.sfdir2.list[1].namelen = 15
u.sfdir2.list[1].offset = 0x70
u.sfdir2.list[1].name = "frame000002.tst"
u.sfdir2.list[1].inumber.i4 = 25165955
u.sfdir2.list[2].namelen = 15
u.sfdir2.list[2].offset = 0x90
u.sfdir2.list[2].name = "frame000003.tst"
u.sfdir2.list[2].inumber.i4 = 25165956

Raw disk data, the space beyond the shortform entries is invalid and could be non-zero:

xfs_db> type text
xfs_db> p
00: 49 4e 41 ed 01 01 00 02 00 00 00 00 00 00 00 00 INA.............
10: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 03
20: 44 b2 45 a2 09 fd e4 50 44 b2 45 a3 12 ee b5 d0 D.E....PD.E.....
30: 44 b2 45 a3 12 ee b5 d0 00 00 00 00 00 00 00 48 D.E............H
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 03 00 00 00 00 80 0f 00 30 66 72 61 0fra
70: 6d 65 30 30 30 30 30 30 2e 74 73 74 01 80 00 81 me000000.tst....
80: 0f 00 70 66 72 61 6d 65 30 30 30 30 30 32 2e 74 ..pframe000002.t
90: 73 74 01 80 00 83 0f 00 90 66 72 61 6d 65 30 30 st.......frame00
a0: 30 30 30 33 2e 74 73 74 01 80 00 84 0f 00 90 66 0003.tst.......f
b0: 72 61 6d 65 30 30 30 30 30 33 2e 74 73 74 01 80 rame000003.tst..
c0: 00 84 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...

TODO: 8-byte inode number example

XFS Filesystem Structure sgi®

 42

Block Directories

When the shortform directory space exceeds the space in an inode, the directory data is moved into a
new single directory block outside the inode. The inode's format is changed from "local" to "extent".
Following is a list of points about block directories.

• All directory data is stored within the one directory block, including "." and ".." entries which
are mandatory.

• The block also contains "leaf" and "freespace index " information.

• The location of the block is defined by the inode's in-core extent list: the di_u.u_bmx[0]
value. The file offset in the extent must always be zero and the length = (directory block size
/ filesystem block size). The block number points to the filesystem block containing the
directory data.

• Block directory data is stored in the following structures:

#define XFS_DIR2_DATA_FD_COUNT 3

typedef struct xfs_dir2_block {
 xfs_dir2_data_hdr_t hdr;
 xfs_dir2_data_union_t u[1];
 xfs_dir2_leaf_entry_t leaf[1];
 xfs_dir2_block_tail_t tail;
} xfs_dir2_block_t;

typedef struct xfs_dir2_data_hdr {
 __uint32_t magic;
 xfs_dir2_data_free_t bestfree[XFS_DIR2_DATA_FD_COUNT];
} xfs_dir2_data_hdr_t;

typedef struct xfs_dir2_data_free {
 xfs_dir2_data_off_t offset;
 xfs_dir2_data_off_t length;
} xfs_dir2_data_free_t;

typedef union {
 xfs_dir2_data_entry_t entry;
 xfs_dir2_data_unused_t unused;
} xfs_dir2_data_union_t;

typedef struct xfs_dir2_data_entry {
 xfs_ino_t inumber;
 __uint8_t namelen;
 __uint8_t name[1];
 xfs_dir2_data_off_t tag;
} xfs_dir2_data_entry_t;

typedef struct xfs_dir2_data_unused {
 __uint16_t freetag; /* 0xffff */
 xfs_dir2_data_off_t length;
 xfs_dir2_data_off_t tag;
} xfs_dir2_data_unused_t;

typedef struct xfs_dir2_leaf_entry {
 xfs_dahash_t hashval;
 xfs_dir2_dataptr_t address;
} xfs_dir2_leaf_entry_t;

typedef struct xfs_dir2_block_tail {
 __uint32_t count;
 __uint32_t stale;
} xfs_dir2_block_tail_t;

XFS Filesystem Structure sgi®

 43

• The tag in the xfs_dir2_data_entry_t structure stores its offset from the start of the

block.

• Start of a free space region is marked with the xfs_dir2_data_unused_t structure where
the freetag is 0xffff. The freetag and length overwrites the inumber for an entry.
The tag is located at length - sizeof(tag) from the start of the unused entry on-disk.

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_EXTENTS (2)
 di_nblocks = dirblksz / fsblksz
 di nextents = 1

di_u.di_bmx[0] xfs_bmbt_rec_32_t

offset = 0 / block / #blocks

di_a.di_attrsf xfs_attr_shortform_t

fsblock xfs_dir2_block_t

hdr xfs_dir2_data_hdr_t
 magic = XFS_DIR2_BLOCK_MAGIC (0x58443242: "XD2B")

bestfree[] xfs_dir2_data_free_t

offset / length

offset / length

offset / length

u[] xfs_dir2_data_union_t

or

...

...

entry xfs_dir2_data_entry_t

inumber / namelen / name / tag

leaf[] xfs_dir2_leaf_entry_t

hashval / address

hashval / address

...

tail xfs_dir2_block_tail_t
 count = total number of leaf[] entries
 stale = number of free leaf[] entries

unused xfs_dir2_data_unused_t

freetag / length / … / tag

XFS Filesystem Structure sgi®

 44

• The bestfree array in the header points to as many as three of the largest spaces of free
space within the block for storing new entries sorted by largest to third largest. If there are less
than 3 empty regions, the remaining bestfree elements are zeroed. The offset specifies
the offset from the start of the block in bytes, and the length specifies the size of the free
space in bytes. The location each points to must contain the above
xfs_dir2_data_unused_t structure. As a block cannot exceed 64KB in size, each is a 16-
bit value. bestfree is used to optimise the time required to locate space to create an entry. It
saves scanning through the block to find a location suitable for every entry created.

• The tail structure specifies the number of elements in the leaf array and the number of
stale entries in the array. The tail is always located at the end of the block. The leaf data
immediately precedes the tail structure.

• The leaf array, which grows from the end of the block just before the tail structure,
contains an array of hash/address pairs for quickly looking up a name by a hash value. Hash
values are covered by the introduction to directories. The address on-disk is the offset into
the block divided by 8 (XFS_DIR2_DATA_ALIGN). Hash/address pairs are stored on disk to
optimise lookup speed for large directories. If they were not stored, the hashes have to be
calculated for all entries each time a lookup occurs in a directory.

xfs_db Example:

A directory is created with 8 entries, directory block size = filesystem block size:

xfs_db> sb 0
xfs_db> p
magicnum = 0x58465342
blocksize = 4096
...
dirblklog = 0
...
xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 2 (extents)
core.nlinkv1 = 2
...
core.size = 4096
core.nblocks = 1
core.extsize = 0
core.nextents = 1
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,2097164,1,0]

Go to the "startblock" and show the raw disk data:

xfs_db> dblock 0
xfs_db> type text
xfs_db> p
000: 58 44 32 42 01 30 0e 78 00 00 00 00 00 00 00 00 XD2B.0.x........
010: 00 00 00 00 02 00 00 80 01 2e 00 00 00 00 00 10
020: 00 00 00 00 00 00 00 80 02 2e 2e 00 00 00 00 20
030: 00 00 00 00 02 00 00 81 0f 66 72 61 6d 65 30 30 frame00
040: 30 30 30 30 2e 74 73 74 80 8e 59 00 00 00 00 30 0000.tst..Y....0
050: 00 00 00 00 02 00 00 82 0f 66 72 61 6d 65 30 30 frame00
060: 30 30 30 31 2e 74 73 74 d0 ca 5c 00 00 00 00 50 0001.tst.......P
070: 00 00 00 00 02 00 00 83 0f 66 72 61 6d 65 30 30 frame00
080: 30 30 30 32 2e 74 73 74 00 00 00 00 00 00 00 70 0002.tst.......p
090: 00 00 00 00 02 00 00 84 0f 66 72 61 6d 65 30 30 frame00
0a0: 30 30 30 33 2e 74 73 74 00 00 00 00 00 00 00 90 0003.tst........
0b0: 00 00 00 00 02 00 00 85 0f 66 72 61 6d 65 30 30 frame00

XFS Filesystem Structure sgi®

 45

0c0: 30 30 30 34 2e 74 73 74 00 00 00 00 00 00 00 b0 0004.tst........
0d0: 00 00 00 00 02 00 00 86 0f 66 72 61 6d 65 30 30 frame00
0e0: 30 30 30 35 2e 74 73 74 00 00 00 00 00 00 00 d0 0005.tst........
0f0: 00 00 00 00 02 00 00 87 0f 66 72 61 6d 65 30 30 frame00
100: 30 30 30 36 2e 74 73 74 00 00 00 00 00 00 00 f0 0006.tst........
110: 00 00 00 00 02 00 00 88 0f 66 72 61 6d 65 30 30 frame00
120: 30 30 30 37 2e 74 73 74 00 00 00 00 00 00 01 10 0007.tst........
130: ff ff 0e 78 00 00 00 00 00 00 00 00 00 00 00 00 ...x............

The "leaf" and "tail" structures are stored at the end of the block, so as the directory grows, the middle
is filled in:

fa0: 00 00 00 00 00 00 01 30 00 00 00 2e 00 00 00 02 0........
fb0: 00 00 17 2e 00 00 00 04 83 a0 40 b4 00 00 00 0e
fc0: 93 a0 40 b4 00 00 00 12 a3 a0 40 b4 00 00 00 06
fd0: b3 a0 40 b4 00 00 00 0a c3 a0 40 b4 00 00 00 1e
fe0: d3 a0 40 b4 00 00 00 22 e3 a0 40 b4 00 00 00 16
ff0: f3 a0 40 b4 00 00 00 1a 00 00 00 0a 00 00 00 00

In a readable format:

xfs_db> type dir2
xfs_db> p
bhdr.magic = 0x58443242
bhdr.bestfree[0].offset = 0x130
bhdr.bestfree[0].length = 0xe78
bhdr.bestfree[1].offset = 0
bhdr.bestfree[1].length = 0
bhdr.bestfree[2].offset = 0
bhdr.bestfree[2].length = 0
bu[0].inumber = 33554560
bu[0].namelen = 1
bu[0].name = "."
bu[0].tag = 0x10
bu[1].inumber = 128
bu[1].namelen = 2
bu[1].name = ".."
bu[1].tag = 0x20
bu[2].inumber = 33554561
bu[2].namelen = 15
bu[2].name = "frame000000.tst"
bu[2].tag = 0x30
bu[3].inumber = 33554562
bu[3].namelen = 15
bu[3].name = "frame000001.tst"
bu[3].tag = 0x50
...
bu[8].inumber = 33554567
bu[8].namelen = 15
bu[8].name = "frame000006.tst"
bu[8].tag = 0xf0
bu[9].inumber = 33554568
bu[9].namelen = 15
bu[9].name = "frame000007.tst"
bu[9].tag = 0x110
bu[10].freetag = 0xffff
bu[10].length = 0xe78
bu[10].tag = 0x130
bleaf[0].hashval = 0x2e
bleaf[0].address = 0x2
bleaf[1].hashval = 0x172e
bleaf[1].address = 0x4
bleaf[2].hashval = 0x83a040b4
bleaf[2].address = 0xe
...

XFS Filesystem Structure sgi®

 46

bleaf[8].hashval = 0xe3a040b4
bleaf[8].address = 0x16
bleaf[9].hashval = 0xf3a040b4
bleaf[9].address = 0x1a
btail.count = 10
btail.stale = 0

Note that with block directories, all xfs_db fields are preceded with "b".

For a simple lookup example, the hash of frame000000.tst is 0xb3a040b4. Looking up that value, we
get an address of 0x6. Multiply that by 8, it becomes offset 0x30 and the inode at that point is
33554561.

When we remove an entry from the middle (frame000004.tst), we can see how the freespace details
are adjusted:

bhdr.magic = 0x58443242
bhdr.bestfree[0].offset = 0x130
bhdr.bestfree[0].length = 0xe78
bhdr.bestfree[1].offset = 0xb0
bhdr.bestfree[1].length = 0x20
bhdr.bestfree[2].offset = 0
bhdr.bestfree[2].length = 0
...
bu[5].inumber = 33554564
bu[5].namelen = 15
bu[5].name = "frame000003.tst"
bu[5].tag = 0x90
bu[6].freetag = 0xffff
bu[6].length = 0x20
bu[6].tag = 0xb0
bu[7].inumber = 33554566
bu[7].namelen = 15
bu[7].name = "frame000005.tst"
bu[7].tag = 0xd0
...
bleaf[7].hashval = 0xd3a040b4
bleaf[7].address = 0x22
bleaf[8].hashval = 0xe3a040b4
bleaf[8].address = 0
bleaf[9].hashval = 0xf3a040b4
bleaf[9].address = 0x1a
btail.count = 10
btail.stale = 1

A new "bestfree" value is added for the entry, the start of the entry is marked as unused with 0xffff
(which overwrites the inode number for an actual entry), and the length of the space. The tag remains
intact at the offset+length - sizeof(tag). The address for the hash is also cleared. The
affected areas are highlighted below:

090: 00 00 00 00 02 00 00 84 0f 66 72 61 6d 65 30 30 frame00
0a0: 30 30 30 33 2e 74 73 74 00 00 00 00 00 00 00 90 0003.tst........
0b0: ff ff 00 20 02 00 00 85 0f 66 72 61 6d 65 30 30 frame00
0c0: 30 30 30 34 2e 74 73 74 00 00 00 00 00 00 00 b0 0004.tst........
0d0: 00 00 00 00 02 00 00 86 0f 66 72 61 6d 65 30 30 frame00
0e0: 30 30 30 35 2e 74 73 74 00 00 00 00 00 00 00 d0 0005.tst........
...
fb0: 00 00 17 2e 00 00 00 04 83 a0 40 b4 00 00 00 0e
fc0: 93 a0 40 b4 00 00 00 12 a3 a0 40 b4 00 00 00 06
fd0: b3 a0 40 b4 00 00 00 0a c3 a0 40 b4 00 00 00 1e
fe0: d3 a0 40 b4 00 00 00 22 e3 a0 40 b4 00 00 00 00
ff0: f3 a0 40 b4 00 00 00 1a 00 00 00 0a 00 00 00 01

XFS Filesystem Structure sgi®

 47

Leaf Directories

Once a Block Directory has filled the block, the directory data is changed into a new format. It still uses
extents and the same basic structures, but the "data" and "leaf" are split up into their own extents. The
"leaf" information only occupies one extent. As "leaf" information is more compact than "data"
information, more than one "data" extent is common.

• Block to Leaf conversions retain the existing block for the data entries and allocate a new
block for the leaf and freespace index information.

• As with all directories, data blocks must start at logical offset zero.

• The "leaf" block has a special offset defined by XFS_DIR2_LEAF_OFFSET. Currently, this is
32GB and in the extent view, a block offset of 32GB/sb_blocksize. On a 4KB block filesystem,
this is 0x800000 (8388608 decimal).

• The "data" extents have a new header (no "leaf" data):

typedef struct xfs_dir2_data {
 xfs_dir2_data_hdr_t hdr;
 xfs_dir2_data_union_t u[1];
} xfs_dir2_data_t;

• The "leaf" extent uses the following structures:

typedef struct xfs_dir2_leaf {
 xfs_dir2_leaf_hdr_t hdr;
 xfs_dir2_leaf_entry_t ents[1];

 xfs_dir2_data_off_t bests[1];
 xfs_dir2_leaf_tail_t tail;
} xfs_dir2_leaf_t;

typedef struct xfs_dir2_leaf_hdr {
 xfs_da_blkinfo_t info;
 __uint16_t count;
 __uint16_t stale;
} xfs_dir2_leaf_hdr_t;

typedef struct xfs_dir2_leaf_tail {
 __uint32_t bestcount;
} xfs_dir2_leaf_tail_t;

• The leaves use the xfs_da_blkinfo_t filesystem block header. This header is used for
directory and extended attribute leaves and B+tree nodes:

typedef struct xfs_da_blkinfo {
 __be32 forw;
 __be32 back;
 __be16 magic;
 __be16 pad;
} xfs_da_blkinfo_t;

• The size of the ents array is specified by hdr.count.

• The size of the bests array is specified by the tail.bestcount which is also the number of
"data" blocks for the directory. The bests array maintains each data block's
bestfree[0].length value.

XFS Filesystem Structure sgi®

 48

block[] xfs_dir2_data_t

hdr xfs_dir2_data_hdr_t
 magic = XFS_DIR2_DATA_MAGIC (0x58443244: "XD2D")

bestfree[] xfs_dir2_data_free_t

offset/length

offset/length

offset/length

u[] xfs_dir2_data_union_t

entry xfs_dir2_data_entry_t

inumber/namelen/name/tag

inumber/namelen/name/tag

...

block[XFS_DIR2_LEAF_OFFSET/<blocksize>] xfs_dir2_leaf_t

ents[] xfs_dir2_leaf_entry_t

hashval/address

hashval/address

...

tail xfs_dir2_leaf_tail_t
 bestcount = number of "bests" preceeding

hdr xfs_dir2_leaf_hdr_t
 info = 0 / 0 / magic = 0xd2f1 (XFS_DIR2_LEAF1_MAGIC)
 count = number of ents
 stale = number of stale/zeroed ents

bests[tail.bestcount]
 array of bestfree[0].length for each "data" extent

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_EXTENTS (2)
 di_nblocks = > 1

di nextents = > 1

di_u.di_bmx[] xfs_bmbt_rec_32_t

offset = 0 / block / #blocks

...

offset = XFS_DIR2_LEAF_OFFSET / block / #blocks

di_a.di_attrsf xfs_attr_shortform_t

XFS Filesystem Structure sgi®

 49

xfs_db Example:

For this example, a directory was created with 256 entries (frame000000.tst to frame000255.tst) and
then deleted some files (frame00005*, frame00018* and frame000240.tst) to show free list
characteristics.

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 2 (extents)
core.nlinkv1 = 2
...
core.size = 12288
core.nblocks = 4
core.extsize = 0
core.nextents = 3
...
u.bmx[0-2] = [startoff,startblock,blockcount,extentflag]

0:[0,4718604,1,0]
1:[1,4718610,2,0]
2:[8388608,4718605,1,0]

As can be seen in this example, three blocks are used for "data" in two extents, and the "leaf" extent
has a logical offset of 8388608 blocks (32GB).

Examining the first block:

xfs_db> dblock 0
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x670
dhdr.bestfree[0].length = 0x140
dhdr.bestfree[1].offset = 0xff0
dhdr.bestfree[1].length = 0x10
dhdr.bestfree[2].offset = 0
dhdr.bestfree[2].length = 0
du[0].inumber = 75497600
du[0].namelen = 1
du[0].name = "."
du[0].tag = 0x10
du[1].inumber = 128
du[1].namelen = 2
du[1].name = ".."
du[1].tag = 0x20
du[2].inumber = 75497601
du[2].namelen = 15
du[2].name = "frame000000.tst"
du[2].tag = 0x30
du[3].inumber = 75497602
du[3].namelen = 15
du[3].name = "frame000001.tst"
du[3].tag = 0x50
...
du[51].inumber = 75497650
du[51].namelen = 15
du[51].name = "frame000049.tst"
du[51].tag = 0x650
du[52].freetag = 0xffff
du[52].length = 0x140
du[52].tag = 0x670
du[53].inumber = 75497661
du[53].namelen = 15
du[53].name = "frame000060.tst"

XFS Filesystem Structure sgi®

 50

du[53].tag = 0x7b0
...
du[118].inumber = 75497758
du[118].namelen = 15
du[118].name = "frame000125.tst"
du[118].tag = 0xfd0
du[119].freetag = 0xffff
du[119].length = 0x10
du[119].tag = 0xff0

Note that the xfs_db field output is preceded by a "d" for "data".

The next "data" block:

xfs_db> dblock 1
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x6d0
dhdr.bestfree[0].length = 0x140
dhdr.bestfree[1].offset = 0xe50
dhdr.bestfree[1].length = 0x20
dhdr.bestfree[2].offset = 0xff0
dhdr.bestfree[2].length = 0x10
du[0].inumber = 75497759
du[0].namelen = 15
du[0].name = "frame000126.tst"
du[0].tag = 0x10
...
du[53].inumber = 75497844
du[53].namelen = 15
du[53].name = "frame000179.tst"
du[53].tag = 0x6b0
du[54].freetag = 0xffff
du[54].length = 0x140
du[54].tag = 0x6d0
du[55].inumber = 75497855
du[55].namelen = 15
du[55].name = "frame000190.tst"
du[55].tag = 0x810
...
du[104].inumber = 75497904
du[104].namelen = 15
du[104].name = "frame000239.tst"
du[104].tag = 0xe30
du[105].freetag = 0xffff
du[105].length = 0x20
du[105].tag = 0xe50
du[106].inumber = 75497906
du[106].namelen = 15
du[106].name = "frame000241.tst"
du[106].tag = 0xe70
...
du[117].inumber = 75497917
du[117].namelen = 15
du[117].name = "frame000252.tst"
du[117].tag = 0xfd0
du[118].freetag = 0xffff
du[118].length = 0x10
du[118].tag = 0xff0

And the last data block:

xfs_db> dblock 2
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x70
dhdr.bestfree[0].length = 0xf90

XFS Filesystem Structure sgi®

 51

dhdr.bestfree[1].offset = 0
dhdr.bestfree[1].length = 0
dhdr.bestfree[2].offset = 0
dhdr.bestfree[2].length = 0
du[0].inumber = 75497918
du[0].namelen = 15
du[0].name = "frame000253.tst"
du[0].tag = 0x10
du[1].inumber = 75497919
du[1].namelen = 15
du[1].name = "frame000254.tst"
du[1].tag = 0x30
du[2].inumber = 75497920
du[2].namelen = 15
du[2].name = "frame000255.tst"
du[2].tag = 0x50
du[3].freetag = 0xffff
du[3].length = 0xf90
du[3].tag = 0x70

Examining the "leaf" block (with the fields preceded by an "l" for "leaf"):

The directory before deleting some entries:

xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 0
lhdr.info.back = 0
lhdr.info.magic = 0xd2f1
lhdr.count = 258
lhdr.stale = 0
lbests[0-2] = 0:0x10 1:0x10 2:0xf90
lents[0].hashval = 0x2e
lents[0].address = 0x2
lents[1].hashval = 0x172e
lents[1].address = 0x4
lents[2].hashval = 0x23a04084
lents[2].address = 0x116
...
lents[257].hashval = 0xf3a048bc
lents[257].address = 0x366
ltail.bestcount = 3

Note how the lbests array correspond with the bestfree[0].length values in the "data" blocks:

xfs_db> dblock 0
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0xff0
dhdr.bestfree[0].length = 0x10
...
xfs_db> dblock 1
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0xff0
dhdr.bestfree[0].length = 0x10
...
xfs_db> dblock 2
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x70
dhdr.bestfree[0].length = 0xf90

XFS Filesystem Structure sgi®

 52

Now after the entries have been deleted:

xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 0
lhdr.info.back = 0
lhdr.info.magic = 0xd2f1
lhdr.count = 258
lhdr.stale = 21
lbests[0-2] = 0:0x140 1:0x140 2:0xf90
lents[0].hashval = 0x2e
lents[0].address = 0x2
lents[1].hashval = 0x172e
lents[1].address = 0x4
lents[2].hashval = 0x23a04084
lents[2].address = 0x116
...

As can be seen, the lbests values have been update to contain each hdr.bestfree[0].length
values. The leaf's hdr.stale value has also been updated to specify the number of stale entries in
the array. The stale entries have an address of zero.

TODO: Need an example for where new entries get inserted with several large free spaces.

XFS Filesystem Structure sgi®

 53

Node Directories

When the "leaf" information fills a block, the extents undergo another separation. All "freeindex"
information moves into its own extent. Like Leaf Directories, the "leaf" block maintained the best free
space information for each "data" block. This is not possible with more than one leaf.

• The "data" blocks stay the same as leaf directories.

• The "leaf" blocks eventually change into a B+tree with the generic B+tree header pointing to
directory "leaves" as described in Leaf Directories. The top-level blocks are called "nodes". It
can exist in a state where there is still a single leaf block before it's split. Interpretation of the
node vs. leaf blocks has to be performed by inspecting the magic value in the header. The
combined leaf/freeindex blocks has a magic value of XFS_DIR2_LEAF1_MAGIC (0xd2f1),
a node directory's leaf/leaves have a magic value of XFS_DIR2_LEAFN_MAGIC (0xd2ff)
and intermediate nodes have a magic value of XFS_DA_NODE_MAGIC (0xfebe).

• The new "freeindex" block(s) only contains the bests for each data block.

• The freeindex block uses the following structures:

typedef struct xfs_dir2_free_hdr {
 __uint32_t magic;
 __int32_t firstdb;
 __int32_t nvalid;
 __int32_t nused;
} xfs_dir2_free_hdr_t;

typedef struct xfs_dir2_free {
 xfs_dir2_free_hdr_t hdr;
 xfs_dir2_data_off_t bests[1];
} xfs_dir2_free_t;

• The location of the leaf blocks can be in any order, the only way to determine the appropriate
is by the node block hash/before values. Given a hash to lookup, you read the node's btree
array and first hashval in the array that exceeds the given hash and it can then be found in
the block pointed to by the before value.

typedef struct xfs_da_intnode {
 struct xfs_da_node_hdr {
 xfs_da_blkinfo_t info;
 __uint16_t count;
 __uint16_t level;
 } hdr;
 struct xfs_da_node_entry {
 xfs_dahash_t hashval;
 xfs_dablk_t before;
 } btree[1];
} xfs_da_intnode_t;

• The freeindex's bests array starts from the end of the block and grows to the start of the
block.

• When an data block becomes unused (ie. all entries in it have been deleted), the block is
freed, the data extents contain a hole, and the freeindex's hdr.nused value is decremented
and the associated bests[] entry is set to 0xffff.

• As the first data block always contains "." and "..", it's invalid for the directory to have a hole at
the start.

• The freeindex's hdr.nvalid should always be the same as the number of allocated data
directory blocks containing name/inode data and will always be less than or equal to
hdr.nused. hdr.nused should be the same as the index of the last data directory block plus
one (i.e. when the last data block is freed, nused and nvalid are decremented).

XFS Filesystem Structure sgi®

 54

block[1]

block[…]

block[XFS_DIR2_FREE_OFFSET/<sb_blocksize>] xfs_dir2_free_t

block[] xfs_dir2_leaf_t

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_EXTENTS (2)
 di_nblocks = > 4
 di nextents = > 4

di_u.di_bmx[] xfs_bmbt_rec_32_t

offset = 0 / block / #blocks

...

offset = XFS_DIR2_LEAF_OFFSET / block / #blocks

offset = XFS_DIR2_LEAF_OFFSET+1 / block / #blocks

...

offset = XFS_DIR2_FREE_OFFSET / block / #blocks

di_a.di_attrsf xfs_attr_shortform_t

block[0]

xfs_dir2_data_t

ents[] xfs_dir2_leaf_entry_t

hashval/address

hashval/address

...

hdr xfs_dir2_free_hdr_t
 magic = XFS_DIR2_FREE_MAGIC (0x58443246: "XD2F")
 firstdb = 0
 nvalid = number of element in bests array
 nused = number of valid elements in bests array

hdr xfs_dir2_leaf_hdr_t
 info.forw
 info.back = 0
 info.magic = 0xd2ff (XFS_DIR2_LEAFN_MAGIC)
 count = number of ents
 stale = number of stale/zeroed ents

bests[hdr.nvalid]
 array of bestfree[0].length for each "data" block

block[]
 hdr.info.forw
 hdr.info.back

block[]
 hdr.info.forw = 0
 hdr.info.back

block xfs_da_intnode_t

btree[] xfs_da_node_entry

hashval/before

hashval/before

...

hdr xfs_da_node_hdr

 count = size of btree array
 level = 1

info
 forw = 0 / back = 0
 magic = 0xfebe
 (XFS DA NODE MAGIC)

"freeindex" block

"node" block

"leaf" blocks

"data" blocks

XFS Filesystem Structure sgi®

 55

xfs_db Example:

With the node directory examples, we are using a filesystems with 4KB block size, and a 16KB
directory size. The directory has over 2000 entries:

xfs_db> sb 0
xfs_db> p
magicnum = 0x58465342
blocksize = 4096
...
dirblklog = 2
...

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 2 (extents)
...
core.size = 81920
core.nblocks = 36
core.extsize = 0
core.nextents = 8
...
u.bmx[0-7] = [startoff,startblock,blockcount,extentflag] 0:[0,7368,4,0]
1:[4,7408,4,0] 2:[8,7444,4,0] 3:[12,7480,4,0] 4:[16,7520,4,0]
5:[8388608,7396,4,0] 6:[8388612,7524,8,0] 7:[16777216,7516,4,0]

As can already be observed, all extents are allocated is multiples of 4 blocks.

Blocks 0 to 19 (16+4-1) are used for the data. Looking at blocks 16-19, it can seen that it's the same
as the single-leaf format, except the length values are a lot larger to accommodate the increased
directory block size:

xfs_db> dblock 16
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0xb0
dhdr.bestfree[0].length = 0x3f50
dhdr.bestfree[1].offset = 0
dhdr.bestfree[1].length = 0
dhdr.bestfree[2].offset = 0
dhdr.bestfree[2].length = 0
du[0].inumber = 120224
du[0].namelen = 15
du[0].name = "frame002043.tst"
du[0].tag = 0x10
du[1].inumber = 120225
du[1].namelen = 15
du[1].name = "frame002044.tst"
du[1].tag = 0x30
du[2].inumber = 120226
du[2].namelen = 15
du[2].name = "frame002045.tst"
du[2].tag = 0x50
du[3].inumber = 120227
du[3].namelen = 15
du[3].name = "frame002046.tst"
du[3].tag = 0x70
du[4].inumber = 120228
du[4].namelen = 15
du[4].name = "frame002047.tst"
du[4].tag = 0x90
du[5].freetag = 0xffff
du[5].length = 0x3f50

XFS Filesystem Structure sgi®

 56

du[5].tag = 0

Next, the "node" block, the fields are preceded with 'n' for node blocks:

xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 0
nhdr.info.back = 0
nhdr.info.magic = 0xfebe
nhdr.count = 2
nhdr.level = 1
nbtree[0-1] = [hashval,before] 0:[0xa3a440ac,8388616] 1:[0xf3a440bc,8388612]

The following leaf blocks have been allocated once as XFS knows it needs at two blocks when
allocating a B+tree, so the length is 8 fsblocks. For all hashes < 0xa3a440ac, they are located in the
directory offset 8388616 and hashes below 0xf3a440bc are in offset 8388612. Hashes above
f3a440bc don't exist in this directory.

xfs_db> dblock 8388616
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 8388612
lhdr.info.back = 0
lhdr.info.magic = 0xd2ff
lhdr.count = 1023
lhdr.stale = 0
lents[0].hashval = 0x2e
lents[0].address = 0x2
lents[1].hashval = 0x172e
lents[1].address = 0x4
lents[2].hashval = 0x23a04084
lents[2].address = 0x116
...
lents[1021].hashval = 0xa3a440a4
lents[1021].address = 0x1fa2
lents[1022].hashval = 0xa3a440ac
lents[1022].address = 0x1fca

xfs_db> dblock 8388612
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 0
lhdr.info.back = 8388616
lhdr.info.magic = 0xd2ff
lhdr.count = 1027
lhdr.stale = 0
lents[0].hashval = 0xa3a440b4
lents[0].address = 0x1f52
lents[1].hashval = 0xa3a440bc
lents[1].address = 0x1f7a
...
lents[1025].hashval = 0xf3a440b4
lents[1025].address = 0x1f66
lents[1026].hashval = 0xf3a440bc
lents[1026].address = 0x1f8e

An example lookup using xfs_db:

xfs_db> hash frame001845.tst
0xf3a26094

Doing a binary search through the array, we get address 0x1ce6, which is
offset 0xe730. Each fsblock is 4KB in size (0x1000), so it will be offset
0x730 into directory offset 14. From the extent map, this will be fsblock
7482:

xfs_db> fsblock 7482

XFS Filesystem Structure sgi®

 57

xfs_db> type text
xfs_db> p
...
730: 00 00 00 00 00 01 d4 da 0f 66 72 61 6d 65 30 30 frame00
740: 31 38 34 35 2e 74 73 74 00 00 00 00 00 00 27 30 1845.tst.......0

Looking at the freeindex information (fields with an 'f' tag):

xfs_db> fsblock 7516
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246
fhdr.firstdb = 0
fhdr.nvalid = 5
fhdr.nused = 5
fbests[0-4] = 0:0x10 1:0x10 2:0x10 3:0x10 4:0x3f50

Like the Leaf Directory, each of the fbests values correspond to each data block's
bestfree[0].length value.

The raw disk layout, old data is not cleared after the array. The fbests array is highlighted:

xfs_db> type text
xfs_db> p
000: 58 44 32 46 00 00 00 00 00 00 00 05 00 00 00 05 XD2F............
010: 00 10 00 10 00 10 00 10 3f 50 00 00 1f 01 ff ff P......

TODO: Example with a hole in the middle

XFS Filesystem Structure sgi®

 58

B+tree Directories

When the extent map in an inode grows beyond the inode's space, the inode format is changed to a
"btree". The inode contains a filesystem block point to the B+tree extent map for the directory's blocks.
The B+tree extents contain the extent map for the "data", "node", "leaf" and "freeindex" information as
described in Node Directories.

Refer to the previous section on B+tree Data Extents for more information on XFS B+tree extents.

The following situations and changes can apply over Node Directories, and apply here as inode
extents generally cannot contain the number of directory blocks that B+trees can handle:

• The node/leaf trees can be more than one level deep.

• More than one freeindex block may exist, but this will be quite rare. It would required hundreds
of thousand files with quite long file names (or millions with shorter names) to get a second
freeindex block.

xfs_db Example:

A directory has been created with 200,000 entries with each entry being 100 characters long. The
filesystem block size and directory block size are 4KB:

xfs_db> inode 772
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 3 (btree)
...
core.size = 22757376
core.nblocks = 6145
core.extsize = 0
core.nextents = 234
core.naextents = 0
core.forkoff = 0
...
u.bmbt.level = 1
u.bmbt.numrecs = 1
u.bmbt.keys[1] = [startoff] 1:[0]
u.bmbt.ptrs[1] = 1:89

xfs_db> fsblock 89
xfs_db> type bmapbtd
xfs_db> p
magic = 0x424d4150
level = 0
numrecs = 234
leftsib = null
rightsib = null
recs[1-234] = [startoff,startblock,blockcount,extentflag]
 1:[0,53,1,0] 2:[1,55,13,0] 3:[14,69,1,0] 4:[15,72,13,0]
 5:[28,86,2,0] 6:[30,90,21,0] 7:[51,112,1,0] 8:[52,114,11,0]
 ...
 125:[5177,902,15,0] 126:[5192,918,6,0] 127:[5198,524786,358,0]
 128:[8388608,54,1,0] 129:[8388609,70,2,0] 130:[8388611,85,1,0]
 ...
 229:[8389164,917,1,0] 230:[8389165,924,19,0] 231:[8389184,944,9,0]
 232:[16777216,68,1,0] 233:[16777217,7340114,1,0] 234:[16777218,5767362,1,0]

XFS Filesystem Structure sgi®

 59

We have 128 extents and a total of 5555 blocks being used to store name/inode pairs. With only about
2000 values that can be stored in the freeindex block, 3 blocks have been allocated for this
information. The firstdb field specifies the starting directory block number for each array:

xfs_db> dblock 16777216
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246
fhdr.firstdb = 0
fhdr.nvalid = 2040
fhdr.nused = 2040
fbests[0-2039] = ...

xfs_db> dblock 16777217
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246
fhdr.firstdb = 2040
fhdr.nvalid = 2040
fhdr.nused = 2040
fbests[0-2039] = ...

xfs_db> dblock 16777218
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246
fhdr.firstdb = 4080
fhdr.nvalid = 1476
fhdr.nused = 1476
fbests[0-1475] = ...

Looking at the root node in the node block, it's a pretty deep tree:

xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 0
nhdr.info.back = 0
nhdr.info.magic = 0xfebe
nhdr.count = 2
nhdr.level = 2
nbtree[0-1] = [hashval,before] 0:[0x6bbf6f39,8389121] 1:[0xfbbf7f79,8389120]

xfs_db> dblock 8389121
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 8389120
nhdr.info.back = 0
nhdr.info.magic = 0xfebe
nhdr.count = 263
nhdr.level = 1
nbtree[0-262] = ... 262:[0x6bbf6f39,8388928]

xfs_db> dblock 8389120
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 0
nhdr.info.back = 8389121
nhdr.info.magic = 0xfebe
nhdr.count = 319
nhdr.level = 1
nbtree[0-318] = [hashval,before] 0:[0x70b14711,8388919] ...

XFS Filesystem Structure sgi®

 60

The leaves at each the end of a node always point to the end leaves in adjacent nodes. Directory
block 8388928 forward pointer is to block 8388919, and vice versa as highlighted in the following
example:

xfs_db> dblock 8388928
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 8388919
lhdr.info.back = 8388937
lhdr.info.magic = 0xd2ff
...

xfs_db> dblock 8388919
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 8388706
lhdr.info.back = 8388928
lhdr.info.magic = 0xd2ff
...

XFS Filesystem Structure sgi®

 61

Symbolic Links

Symbolic links to a file can be stored in one of two formats: "local" and "extents". The length of the
symlink contents is always specified by the inode's di_size value.

Shortform Symbolic Links

Symbolic links are stored with the "local" di_format if the symbolic link can fit within the inode's data
fork. The link data is an array of characters (di_symlink array in the data fork union).

xfs_db Example:

A short symbolic link to a file is created:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0120777
core.version = 1
core.format = 1 (local)
...
core.size = 12
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
u.symlink = "small_target"

Raw on-disk data with the link contents highlighted:

xfs_db> type text
xfs_db> p
00: 49 4e a1 ff 01 01 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 01
20: 44 bc e1 c7 03 c4 d4 18 44 bc e1 c7 03 c4 d4 18 D.......D.......
30: 44 bc e1 c7 03 c4 d4 18 00 00 00 00 00 00 00 0c D...............
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 73 6d 61 6c 6c 5f 74 61 72 67 65 74 small.target
70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_LOCAL (1)
 di_nblocks = 0
 di_size = size of di_u.di_symlink[] array
 di_nextents = 0

di_u.di_symlink[di_core.di_size] char

di_a.di_attrsf xfs_attr_shortform_t

XFS Filesystem Structure sgi®

 62

Extent Symbolic Links

If the length of the symbolic link exceeds the space available in the inode's data fork, the link is moved
to a new filesystem block and the inode's di_format is changed to "extents". The location of the
block(s) is specified by the data fork's di_bmx[] array. In the significant majority of cases, this will be
in one filesystem block as a symlink cannot be longer than 1024 characters.

xfs_db Example:

A longer link is created (greater than 156 bytes):

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0120777
core.version = 1
core.format = 2 (extents)
...
core.size = 182
core.nblocks = 1
core.extsize = 0
core.nextents = 1
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,37530,1,0]

xfs_db> dblock 0
xfs_db> type symlink
xfs_db> p
"symlink contents..."

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_format = XFS_DINODE_FMT_EXTENTS (2)
 di_nblocks = 1*
 di_size = length of symbolic link
 di_nextents = 1*

di_u.di_bmx[di_core.di_nextents] xfs_bmbt_rec_32_t

offset / block / #blocks

...

di_a.di_attrsf xfs_attr_shortform_t

Symlink contents

valid length = di_core.di_size

* can be 2 with a 512 byte block size and a link > 512 bytes

XFS Filesystem Structure sgi®

 63

Extended Attributes

Extended attributes implement the ability for a user to attach name:value pairs to inodes within the
XFS filesystem. They could be used to store meta-information about the file.

The attribute names can be up to 256 bytes in length, terminated by the first 0 byte. The intent is that
they be printable ASCII (or other character set) names for the attribute. The values can be up to 64KB
of arbitrary binary data. Some XFS internal attributes (eg. parent pointers) use non-printable names
for the attribute.

Access Control Lists (ACLs) and Data Migration Facility (DMF) use extended attributes to store their
associated metadata with an inode.

XFS uses two disjoint attribute name spaces associated with every inode. They are the root and user
address spaces. The root address space is accessible only to the superuser, and then only by
specifying a flag argument to the function call. Other users will not see or be able to modify attributes
in the root address space. The user address space is protected by the normal file permissions
mechanism, so the owner of the file can decide who is able to see and/or modify the value of attributes
on any particular file.

To view extended attributes from the command line, use the getfattr command. To set or delete
extended attributes, use the setfattr command. ACLs control should use the getfacl and
setfacl commands.

XFS attributes supports three namespaces: "user", "trusted" (or "root" using IRIX terminology) and
"secure".

The location of the attribute fork in the inode's literal area is specified by the di_forkoff value in the
inode's core. If this value is zero, the inode does not contain any extended attributes. Non-zero, the
byte offset into the literal area = di_forkoff * 8, which also determines the 2048 byte maximum
size for an inode. Attributes must be allocated on a 64-bit boundary on the disk except shortform
attributes (they are tightly packed). To determine the offset into the inode itself, add 100 (0x64) to
di_forkoff * 8.

The following four sections describe each of the on-disk formats.

XFS Filesystem Structure sgi®

 64

Shortform Attributes

When the all extended attributes can fit within the inode's attribute fork, the inode's di_aformat is set
to "local" and the attributes are stored in the inode's literal area starting at offset di_forkoff * 8.

Shortform attributes use the following structures:

typedef struct xfs_attr_shortform {
 struct xfs_attr_sf_hdr {
 __be16 totsize;
 __u8 count;
 } hdr;
 struct xfs_attr_sf_entry {
 __uint8_t namelen;
 __uint8_t valuelen;
 __uint8_t flags;
 __uint8_t nameval[1];
 } list[1];
} xfs_attr_shortform_t;

typedef struct xfs_attr_sf_hdr xfs_attr_sf_hdr_t;
typedef struct xfs_attr_sf_entry xfs_attr_sf_entry_t;

• namelen and valuelen specify the size of the two byte arrays containing the name and

value pairs. valuelen is zero for extended attributes with no value.

• nameval[] is a single array where it's size is the sum of namelen and valuelen. The
names and values are not null terminated on-disk. The value immediately follows the name in
the array.

• flags specifies the namespace for the attribute (0 = "user"):

Flag Description

XFS_ATTR_ROOT The attribute's namespace is "trusted".

XFS_ATTR_SECURE The attribute's namespace is "secure".

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_anextents = 0
 di_forkoff > 0
 di aformat = XFS DINODE FMT LOCAL (1)

di_u

di_a.di_attrsf xfs_attr_shortform_t

hdr xfs_attr_sf_hdr_t
 totsize = total size of di_attrsf
 count = number of entries in list[]

list[hdr.count] xfs_attr_sf_entry_t

namelen / valuelen / flags /
name[namelen] / value[valuelen]

...

XFS Filesystem Structure sgi®

 65

xfs_db Example:

A file is created and two attributes are set:

setfattr -n user.empty few_attr
setfattr -n trusted.trust -v val1 few_attr

Using xfs_db, we dump the inode:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0100644
...
core.naextents = 0
core.forkoff = 15
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 24
a.sfattr.hdr.count = 2
a.sfattr.list[0].namelen = 5
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = "empty"
a.sfattr.list[1].namelen = 5
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = "trust"
a.sfattr.list[1].value = "val1"

We can determine the actual inode offset to be 220 (15 x 8 + 100) or 0xdc.

Examining the raw dump, the second attribute is highlighted:

xfs_db> type text
xfs_db> p
00: 49 4e 81 a4 01 02 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 02
20: 44 be 1a be 38 d1 26 98 44 be 1a be 38 d1 26 98 D...8...D...8...
30: 44 be 1a e1 3a 9a ea 18 00 00 00 00 00 00 00 04 D...............
40: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 01
50: 00 00 0f 01 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 12
70: 53 a0 00 01 00 00 00 00 00 00 00 00 00 00 00 00 S...............
80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 18 02 00
e0: 05 00 00 65 6d 70 74 79 05 04 02 74 72 75 73 74 ...empty...trust
f0: 76 61 6c 31 00 00 00 00 00 00 00 00 00 00 00 00 val1............

Adding another attribute with attr1, the format is converted to extents and di_forkoff remains
unchanged (and all those zeros in the dump above remain unused):

xfs_db> inode <inode#>
xfs_db> p
...
core.naextents = 1
core.forkoff = 15
core.aformat = 2 (extents)
...
a.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,37534,1,0]

hdr.totsize

XFS Filesystem Structure sgi®

 66

Performing the same steps with attr2, adding one attribute at a time, you can see di_forkoff
change as attributes are added:

xfs_db> inode <inode#>
xfs_db> p
...
core.naextents = 0
core.forkoff = 15
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 17
a.sfattr.hdr.count = 1
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = "empty_attr"

Attribute added:

xfs_db> p
...
core.naextents = 0
core.forkoff = 15
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 31
a.sfattr.hdr.count = 2
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = "empty_attr"
a.sfattr.list[1].namelen = 7
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = "trust_a"
a.sfattr.list[1].value = "val1"

Another attribute is added:

xfs_db> p
...
core.naextents = 0
core.forkoff = 13
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 52
a.sfattr.hdr.count = 3
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = "empty_attr"
a.sfattr.list[1].namelen = 7
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = "trust_a"
a.sfattr.list[1].value = "val1"
a.sfattr.list[2].namelen = 6
a.sfattr.list[2].valuelen = 12
a.sfattr.list[2].root = 0
a.sfattr.list[2].secure = 0
a.sfattr.list[2].name = "second"
a.sfattr.list[2].value = "second_value"

XFS Filesystem Structure sgi®

 67

One more is added:

xfs_db> p
core.naextents = 0
core.forkoff = 10
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 69
a.sfattr.hdr.count = 4
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = "empty_attr"
a.sfattr.list[1].namelen = 7
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = "trust_a"
a.sfattr.list[1].value = "val1"
a.sfattr.list[2].namelen = 6
a.sfattr.list[2].valuelen = 12
a.sfattr.list[2].root = 0
a.sfattr.list[2].secure = 0
a.sfattr.list[2].name = "second"
a.sfattr.list[2].value = "second_value"
a.sfattr.list[3].namelen = 6
a.sfattr.list[3].valuelen = 8
a.sfattr.list[3].root = 0
a.sfattr.list[3].secure = 1
a.sfattr.list[3].name = "policy"
a.sfattr.list[3].value = "contents"

A raw dump is shown to compare with the attr1 dump on a prior page, the header is highlighted:

xfs_db> type text
xfs_db> p
00: 49 4e 81 a4 01 02 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 05
20: 44 be 24 cd 0f b0 96 18 44 be 24 cd 0f b0 96 18 D.......D.......
30: 44 be 2d f5 01 62 7a 18 00 00 00 00 00 00 00 04 D....bz.........
40: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 01
50: 00 00 0a 01 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 01
70: 41 c0 00 01 00 00 00 00 00 00 00 00 00 00 00 00 A...............
80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 45 04 00 0a 00 00 65 6d 70 74 79 E.....empty
c0: 5f 61 74 74 72 07 04 02 74 72 75 73 74 5f 61 76 .attr...trust.av
d0: 61 6c 31 06 0c 00 73 65 63 6f 6e 64 73 65 63 6f al1...secondseco
e0: 6e 64 5f 76 61 6c 75 65 06 08 04 70 6f 6c 69 63 nd.value...polic
f0: 79 63 6f 6e 74 65 6e 74 73 64 5f 76 61 6c 75 65 ycontentsd.value

It can be clearly seen that attr2 allows many more attributes to be stored in an inode before they are
moved to another filesystem block.

XFS Filesystem Structure sgi®

 68

Leaf Attributes

When an inode's attribute fork space is used up with shortform attributes and more are added, the
attribute format is migrated to "extents".

Extent based attributes use hash/index pairs to speed up an attribute lookup. The first part of the "leaf"
contains an array of fixed size hash/index pairs with the flags stored as well. The remaining part of the
leaf block contains the array name/value pairs, where each element varies in length.

Each leaf is based on the xfs_da_blkinfo_t block header declared in Leaf Directories. The
structure encapsulating all other structures in the xfs_attr_leafblock_t.

The structures involved are:

typedef struct xfs_attr_leaf_map {
 __be16 base;
 __be16 size;
} xfs_attr_leaf_map_t;

typedef struct xfs_attr_leaf_hdr {
 xfs_da_blkinfo_t info;
 __be16 count;
 __be16 usedbytes;
 __be16 firstused;
 __u8 holes;
 __u8 pad1;
 xfs_attr_leaf_map_t freemap[3];
} xfs_attr_leaf_hdr_t;

typedef struct xfs_attr_leaf_entry {
 __be32 hashval;
 __be16 nameidx;
 __u8 flags;
 __u8 pad2;
} xfs_attr_leaf_entry_t;

typedef struct xfs_attr_leaf_name_local {
 __be16 valuelen;
 __u8 namelen;
 __u8 nameval[1];
} xfs_attr_leaf_name_local_t;

typedef struct xfs_attr_leaf_name_remote {
 __be32 valueblk;
 __be32 valuelen;
 __u8 namelen;
 __u8 name[1];
} xfs_attr_leaf_name_remote_t;

typedef struct xfs_attr_leafblock {
 xfs_attr_leaf_hdr_t hdr;
 xfs_attr_leaf_entry_t entries[1];
 xfs_attr_leaf_name_local_t namelist;
 xfs_attr_leaf_name_remote_t valuelist;
} xfs_attr_leafblock_t;

Each leaf header uses the following magic number:

#define XFS_ATTR_LEAF_MAGIC 0xfbee

The hash/index elements in the entries[] array are packed from the top of the block. Name/values
grow from the bottom but are not packed. The freemap contains run-length-encoded entries for the
free bytes after the entries[] array, but only the three largest runs are stored (smaller runs are
dropped). When the freemap doesn’t show enough space for an allocation, name/value area is

XFS Filesystem Structure sgi®

 69

compacted and allocation is tried again. If there still isn't enough space, then the block is split. The
name/value structures (both local and remote versions) must be 32-bit aligned.

For attributes with small values (ie. the value can be stored within the leaf), the XFS_ATTR_LOCAL flag
is set for the attribute. The entry details are stored using the xfs_attr_leaf_name_local_t
structure. For large attribute values that cannot be stored within the leaf, separate filesystem blocks
are allocated to store the value. They use the xfs_attr_leaf_name_remote_t structure.

block[0] xfs_attr_leafblock_t
xfs_attr_leaf_name_remote_t
hdr xfs_attr_leaf_hdr_t
 magic = XFS_ATTR_LEAF_MAGIC (0xfbee)
 count = number of entries[]
 usedbytes = number of bytes used in the leaf block
 firstused = index of first entry
 holes =
 freemap[0-2] =

entries[] xfs_attr_leaf_entry_t

hashval / index / flags

...

block[valueblk] __u8[]

 value[valuelist.valuelen]

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_anextents > 0
 di_forkoff > 0
 di aformat = XFS DINODE FMT EXTENTS (2)

di_u

di_a.di_abmx[di_core.di_anextents] xfs_bmbt_rec_32_t

offset / block / #blocks

...

namelist xfs_attr_leaf_name_local_t

namelen / valuelen / name[] / value[]

...

valuelist xfs_attr_leaf_name_remote_t

valueblk / valuelen / namelen / name[]

... flags & XFS_ATTR_LOCAL == 0

flags & XFS_ATTR_LOCAL != 0

XFS Filesystem Structure sgi®

 70

Both local and remote entries can be interleaved as they are only addressed by the hash/index
entries. The flag is stored with the hash/index pairs so the appropriate structure can be used.

Since duplicate hash keys are possible, for each hash that matches during a lookup, the actual name
string must be compared.

An “incomplete” bit is also used for attribute flags. It shows that an attribute is in the middle of being
created and should not be shown to the user if we crash during the time that the bit is set. The bit is
cleared when attribute has finished being setup. This is done because some large attributes cannot
be created inside a single transaction.

xfs_db Example:

A single 30KB extended attribute is added to an inode:

xfs_db> inode <inode#>
xfs_db> p
...
core.nblocks = 9
core.nextents = 0
core.naextents = 1
core.forkoff = 15
core.aformat = 2 (extents)
...
a.bmx[0] = [startoff,startblock,blockcount,extentflag]

0:[0,37535,9,0]

xfs_db> ablock 0
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfbee
hdr.count = 1
hdr.usedbytes = 20
hdr.firstused = 4076
hdr.holes = 0
hdr.freemap[0-2] = [base,size] 0:[40,4036] 1:[0,0] 2:[0,0]
entries[0] = [hashval,nameidx,incomplete,root,secure,local]

0:[0xfcf89d4f,4076,0,0,0,0]
nvlist[0].valueblk = 0x1
nvlist[0].valuelen = 30692
nvlist[0].namelen = 8
nvlist[0].name = "big_attr"

Attribute blocks 1 to 8 (filesystem blocks 37536 to 37543) contain the raw binary value data for the
attribute.

Index 4076 (0xfec) is the offset into the block where the name/value information is. As can be seen by
the value, it's at the end of the block:

xfs_db> type text
xfs_db> p
000: 00 00 00 00 00 00 00 00 fb ee 00 00 00 01 00 14
010: 0f ec 00 00 00 28 0f c4 00 00 00 00 00 00 00 00
020: fc f8 9d 4f 0f ec 00 00 00 00 00 00 00 00 00 00 ...O............
030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
ff0: 00 00 77 e4 08 62 69 67 5f 61 74 74 72 00 00 00 ..w..big.attr...

XFS Filesystem Structure sgi®

 71

A 30KB attribute and a couple of small attributes are added to a file:

xfs_db> inode <inode#>
xfs_db> p
...
core.nblocks = 10
core.extsize = 0
core.nextents = 1
core.naextents = 2
core.forkoff = 15
core.aformat = 2 (extents)
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag]

0:[0,81857,1,0]
a.bmx[0-1] = [startoff,startblock,blockcount,extentflag]

0:[0,81858,1,0]
1:[1,182398,8,0]

xfs_db> ablock 0
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfbee
hdr.count = 3
hdr.usedbytes = 52
hdr.firstused = 4044
hdr.holes = 0
hdr.freemap[0-2] = [base,size] 0:[56,3988] 1:[0,0] 2:[0,0]
entries[0-2] = [hashval,nameidx,incomplete,root,secure,local]

0:[0x1e9d3934,4044,0,0,0,1]
1:[0x1e9d3937,4060,0,0,0,1]
2:[0xfcf89d4f,4076,0,0,0,0]

nvlist[0].valuelen = 6
nvlist[0].namelen = 5
nvlist[0].name = "attr2"
nvlist[0].value = "value2"
nvlist[1].valuelen = 6
nvlist[1].namelen = 5
nvlist[1].name = "attr1"
nvlist[1].value = "value1"
nvlist[2].valueblk = 0x1
nvlist[2].valuelen = 30692
nvlist[2].namelen = 8
nvlist[2].name = "big_attr"

As can be seen in the entries array, the two small attributes have the local flag set and the values are
printed.

A raw disk dump shows the attributes. The last attribute added is highlighted (offset 4044 or 0xfcc):

000: 00 00 00 00 00 00 00 00 fb ee 00 00 00 03 00 34 4
010: 0f cc 00 00 00 38 0f 94 00 00 00 00 00 00 00 00 8..........
020: 1e 9d 39 34 0f cc 01 00 1e 9d 39 37 0f dc 01 00 ..94......97....
030: fc f8 9d 4f 0f ec 00 00 00 00 00 00 00 00 00 00 ...O............
040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 06 05 61 a
fd0: 74 74 72 32 76 61 6c 75 65 32 00 00 00 06 05 61 ttr2value2.....a
fe0: 74 74 72 31 76 61 6c 75 65 31 00 00 00 00 00 01 ttr1value1......
ff0: 00 00 77 e4 08 62 69 67 5f 61 74 74 72 00 00 00 ..w..big.attr...

XFS Filesystem Structure sgi®

 72

Node Attributes

When the number of attributes exceeds the space that can fit in one filesystem block (ie. hash, flag,
name and local values), the first attribute block becomes the root of a B+tree where the leaves contain
the hash/name/value information that was stored in a single leaf block. The inode's attribute format
itself remains extent based. The nodes use the xfs_da_intnode_t structure introduced in Node
Directories.

The location of the attribute leaf blocks can be in any order, the only way to determine the appropriate
is by the node block hash/before values. Given a hash to lookup, you read the node's btree array
and first hashval in the array that exceeds the given hash and it can then be found in the block
pointed to by the before value.

block[first] xfs_attr_leafblock_t

entries[] xfs_attr_leaf_entry_t

hashval/index/flags

...

hdr xfs_attr_leaf_hdr_t
 info.forw
 info.back = 0
 info.magic = XFS_ATTR_LEAF_MAGIC
 count = number of entries

block[]
 hdr.info.forw
 hdr.info.back

block[last]
 hdr.info.forw = 0
 hdr.info.back

block xfs_da_intnode_t

btree[] xfs_da_node_entry

hashval/before

hashval/before

...

hdr xfs_da_node_hdr

 count = size of btree array
 level = 1

info
 forw = 0 / back = 0
 magic = XFS_DA_NODE_MAGIC

"node" block

"leaf" blocks

 xfs_dinode_t

 di_next_unlinked

di_core xfs_dinode_core_t
 di_anextents > 0
 di_forkoff > 0

di aformat = XFS DINODE FMT EXTENTS (2)

di_u

di_a.di_abmx[di_core.di_anextents] xfs_bmbt_rec_32_t

offset / block / #blocks

...

namelist xfs_attr_leaf_name_local_t

valuelist xfs_attr_leaf_name_remote_t

XFS Filesystem Structure sgi®

 73

xfs_db Example:

An inode with 1000 small attributes with the naming "attribute_n" where 'n' is a number:

xfs_db> inode <inode#>
xfs_db> p
...
core.nblocks = 15
core.nextents = 0
core.naextents = 1
core.forkoff = 15
core.aformat = 2 (extents)
...
a.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,525144,15,0]

xfs_db> ablock 0
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfebe
hdr.count = 14
hdr.level = 1
btree[0-13] = [hashval,before]

0:[0x3435122d,1]
1:[0x343550a9,14]
2:[0x343553a6,13]
3:[0x3436122d,12]
4:[0x343650a9,8]
5:[0x343653a6,7]
6:[0x343691af,6]
7:[0x3436d0ab,11]
8:[0x3436d3a7,10]
9:[0x3437122d,9]
10:[0x3437922e,3]
11:[0x3437d22a,5]
12:[0x3e686c25,4]
13:[0x3e686fad,2]

The hashes are in ascending order in the btree array, and if the hash for the attribute we are looking
up is before the entry, we go to the addressed attribute block.

For example, to lookup attribute "attribute_267":

xfs_db> hash attribute_267
0x3437d1a8

In the root btree node, this falls between 0x3437922e and 0x3437d22a, therefore leaf 11 or attribute
block 5 will contain the entry.

xfs_db> ablock 5
xfs_db> p
hdr.info.forw = 4
hdr.info.back = 3
hdr.info.magic = 0xfbee
hdr.count = 96
hdr.usedbytes = 2688
hdr.firstused = 1408
hdr.holes = 0
hdr.freemap[0-2] = [base,size] 0:[800,608] 1:[0,0] 2:[0,0]
entries[0-95] = [hashval,nameidx,incomplete,root,secure,local]

0:[0x3437922f,4068,0,0,0,1]
1:[0x343792a6,4040,0,0,0,1]
2:[0x343792a7,4012,0,0,0,1]
3:[0x343792a8,3984,0,0,0,1]
...
82:[0x3437d1a7,2892,0,0,0,1]
83:[0x3437d1a8,2864,0,0,0,1]

XFS Filesystem Structure sgi®

 74

84:[0x3437d1a9,2836,0,0,0,1]
...
95:[0x3437d22a,2528,0,0,0,1]

nvlist[0].valuelen = 10
nvlist[0].namelen = 13
nvlist[0].name = "attribute_310"
nvlist[0].value = "value_310\d"
nvlist[1].valuelen = 10
nvlist[1].namelen = 13
nvlist[1].name = "attribute_309"
nvlist[1].value = "value_309\d"
nvlist[2].valuelen = 10
nvlist[2].namelen = 13
nvlist[2].name = "attribute_308"
nvlist[2].value = "value_308\d"
nvlist[3].valuelen = 10
nvlist[3].namelen = 13
nvlist[3].name = "attribute_307"
nvlist[3].value = "value_307\d"
...
nvlist[82].valuelen = 10
nvlist[82].namelen = 13
nvlist[82].name = "attribute_268"
nvlist[82].value = "value_268\d"
nvlist[83].valuelen = 10
nvlist[83].namelen = 13
nvlist[83].name = "attribute_267"
nvlist[83].value = "value_267\d"
nvlist[84].valuelen = 10
nvlist[84].namelen = 13
nvlist[84].name = "attribute_266"
nvlist[84].value = "value_266\d"
...

Each of the hash entries has XFS_ATTR_LOCAL flag set (1), which means the attribute's value follows
immediately after the name. Raw disk of the name/value pair at offset 2864 (0xb30), highlighted with
"value_267\d" following immediately after the name:

b00: 62 75 74 65 5f 32 36 35 76 61 6c 75 65 5f 32 36 bute.265value.26
b10: 35 0a 00 00 00 0a 0d 61 74 74 72 69 62 75 74 65 5......attribute
b20: 5f 32 36 36 76 61 6c 75 65 5f 32 36 36 0a 00 00 .266value.266...
b30: 00 0a 0d 61 74 74 72 69 62 75 74 65 5f 32 36 37 ...attribute.267
b40: 76 61 6c 75 65 5f 32 36 37 0a 00 00 00 0a 0d 61 value.267......a
b50: 74 74 72 69 62 75 74 65 5f 32 36 38 76 61 6c 75 ttribute.268valu
b60: 65 5f 32 36 38 0a 00 00 00 0a 0d 61 74 74 72 69 e.268......attri
b70: 62 75 74 65 5f 32 36 39 76 61 6c 75 65 5f 32 36 bute.269value.26

Each entry starts on a 32-bit (4 byte) boundary, therefore the highlighted entry has 2 unused bytes
after it.

XFS Filesystem Structure sgi®

 75

B+tree Attributes

When the attribute's extent map in an inode grows beyond the available space, the inode's attribute
format is changed to a "btree". The inode contains root node of the extent B+tree which then address
the leaves that contains the extent arrays for the attribute data. The attribute data itself in the allocated
filesystem blocks use the same layout and structures as described in Node Attributes.

Refer to the previous section on B+tree Data Extents for more information on XFS B+tree extents.

xfs_db Example:

Added 2000 attributes with 729 byte values to a file:

xfs_db> inode <inode#>
xfs_db> p
...
core.nblocks = 640
core.extsize = 0
core.nextents = 1
core.naextents = 274
core.forkoff = 15
core.aformat = 3 (btree)
...
a.bmbt.level = 1
a.bmbt.numrecs = 2
a.bmbt.keys[1-2] = [startoff] 1:[0] 2:[219]
a.bmbt.ptrs[1-2] = 1:83162 2:109968

xfs_db> fsblock 83162
xfs_db> type bmapbtd
xfs_db> p
magic = 0x424d4150
level = 0
numrecs = 127
leftsib = null
rightsib = 109968
recs[1-127] = [startoff,startblock,blockcount,extentflag]

1:[0,81870,1,0]
...

xfs_db> fsblock 109968
xfs_db> type bmapbtd
xfs_db> p
magic = 0x424d4150
level = 0
numrecs = 147
leftsib = 83162
rightsib = null
recs[1-147] = [startoff,startblock,blockcount,extentflag]

...

xfs_db> ablock 0 (which is fsblock 81870)
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfebe
hdr.count = 2
hdr.level = 2
btree[0-1] = [hashval,before] 0:[0x343612a6,513] 1:[0x3e686fad,512]

The extent B+tree has two leaves that specify the 274 extents used for the attributes. Looking at the
first block, it can be seen that the attribute B+tree is two levels deep. The two blocks at offset 513 and
512 (ie. access using the ablock command) are intermediate xfs_da_intnode_t nodes that index
all the attribute leaves.

XFS Filesystem Structure sgi®

 76

Internal Inodes

XFS allocates several inodes when a filesystem is created. These are internal and not accessible from
the standard directory structure. These inodes are only accessible from the superblock.

Quota Inodes

If quotas are used, two inodes are allocated for user and group quota management. If project quotas
are used, these replace the group quota management and therefore uses the group quota inode.

• Project quota's primary purpose is to track and monitor disk usage for directories. For this to
occur, the directory inode must have the XFS_DIFLAG_PROJINHERIT flag set so all inodes
created underneath the directory inherit the project ID.

• Inodes and blocks owned by ID zero do not have enforced quotas, but only quota accounting.

• Extended attributes do not contribute towards the ID's quota .

• To access each ID's quota information in the file, seek to the ID offset multiplied by the size of
xfs_dqblk_t (136 bytes).

Quota information stored in the two inodes (in data extents) are an array of the xfs_dqblk_t
structure where there is one instance for each ID in the system:

typedef struct xfs_disk_dquot {
 __be16 d_magic;
 __u8 d_version;
 __u8 d_flags;
 __be32 d_id;
 __be64 d_blk_hardlimit;
 __be64 d_blk_softlimit;
 __be64 d_ino_hardlimit;
 __be64 d_ino_softlimit;
 __be64 d_bcount;
 __be64 d_icount;
 __be32 d_itimer;
 __be32 d_btimer;
 __be16 d_iwarns;
 __be16 d_bwarns;
 __be32 d_pad0;
 __be64 d_rtb_hardlimit;
 __be64 d_rtb_softlimit;
 __be64 d_rtbcount;

sb xfs_sb_t
 sb_uquotino
 sb_gquotino

user quota inode xfs_dinode_t

di_u
 extents

grp/prj quota inode xfs_dinode_t

di_u
 extents

quots[] xfs_dqblk_t

UID 0

UID 1

...

quots[] xfs_dqblk_t

GID 0

GID 1

...

XFS Filesystem Structure sgi®

 77

 __be32 d_rtbtimer;
 __be16 d_rtbwarns;
 __be16 d_pad;
} xfs_disk_dquot_t;

typedef struct xfs_dqblk {
 xfs_disk_dquot_t dd_diskdq;
 char dd_fill[32];
} xfs_dqblk_t;

d_magic

Specifies the signature where these two bytes are 0x4451 (XFS_DQUOT_MAGIC), or "DQ" in
ASCII.

d_version

Specifies the structure version, currently this is one (XFS_DQUOT_VERSION).

d_flags

Specifies which type of ID the structure applies to:

#define XFS_DQ_USER 0x0001
#define XFS_DQ_PROJ 0x0002
#define XFS_DQ_GROUP 0x0004

d_id

The ID for the quota structure. This will be a uid, gid or projid based on the value of d_flags.

d_blk_hardlimit

Specifies the hard limit for the number of filesystem blocks the ID can own. The ID will not be
able to use more space than this limit. If it is attempted, ENOSPC will be returned.

d_blk_softlimit

Specifies the soft limit for the number of filesystem blocks the ID can own. The ID can
temporarily use more space than by d_blk_softlimit up to d_blk_hardlimit. If the
space is not freed by the time limit specified by ID zero's d_btimer value, the ID will be denied
more space until the total blocks owned goes below d_blk_softlimit.

d_ino_hardlimit

Specifies the hard limit for the number of inodes the ID can own. The ID will not be able to
create or own any more inodes if d_icount reaches this value.

d_ino_softlimit

Specifies the soft limit for the number of inodes the ID can own. The ID can temporarily create
or own more inodes than specified by d_ino_softlimit up to d_ino_hardlimit. If the
inode count is not reduced by the time limit specified by ID zero's d_itimer value, the ID will
be denied from creating or owning more inodes until the count goes below d_ino_softlimit.

d_bcount

Specifies how many filesystem blocks are actually owned by the ID.

d_icount

Specifies how many inodes are actually owned by the ID.

XFS Filesystem Structure sgi®

 78

d_itimer

Specifies the time when the ID's d_icount exceeded d_ino_softlimit. The soft limit will
turn into a hard limit after the elapsed time exceeds ID zero's d_itimer value. When
d_icount goes back below d_ino_softlimit, d_itimer is reset back to zero.

d_btimer

Specifies the time when the ID's d_bcount exceeded d_blk_softlimit. The soft limit will
turn into a hard limit after the elapsed time exceeds ID zero's d_btimer value. When
d_bcount goes back below d_blk_softlimit, d_btimer is reset back to zero.

d_iwarns
d_bwarns
d_rtbwarns

Specifies how many times a warning has been issued. Currently not used.

d_rtb_hardlimit

Specifies the hard limit for the number of real-time blocks the ID can own. The ID cannot own
more space on the real-time device beyond this limit.

d_rtb_softlimit

Specifies the soft limit for the number of real-time blocks the ID can own. The ID can temporarily
own more space than specified by d_rtb_softlimit up to d_rtb_hardlimit. If
d_rtbcount is not reduced by the time limit specified by ID zero's d_rtbtimer value, the ID
will be denied from owning more space until the count goes below d_rtb_softlimit

d_rtbcount

Specifies how many real-time blocks are currently owned by the ID.

d_rtbtimer

Specifies the time when the ID's d_rtbcount exceeded d_rtb_softlimit. The soft limit will
turn into a hard limit after the elapsed time exceeds ID zero's d_rtbtimer value. When
d_rtbcount goes back below d_rtb_softlimit, d_rtbtimer is reset back to zero.

XFS Filesystem Structure sgi®

 79

Real-time Inodes

There are two inodes allocated to managing the real-time device's space, the Bitmap Inode and the
Summary Inode.

Real-Time Bitmap Inode
The Bitmap Inode tracks the used/free space in the real-time device using an old-style bitmap. One bit
is allocated per real-time extent. The inode's number is stored in the superblock's sb_rbmino field.
The size of an extent is specified by the superblock's sb_rextsize value.

The number of blocks used by the bitmap inode is equal to the number of real-time extents
(sb_rextents) divided by the block size (sb_blocksize) and bits per byte. This value is stored in
sb_rbmblocks. The nblocks and extent array for the inode should match this.

As the bitmap inode is created at mkfs time, the extent should be one contiguous array of blocks on
disk.

Real-Time Summary Inode
The Summary Inode stores information on chunks of free contiguous space and which bitmap block
the free space starts in. The inode's number is stored in the superblock's sb_rsumino field.

The summary is divided into buckets for each power of two for free contiguous lengths. Each bucket
counts the number of extents that fall into the power of two. For example, a contiguous range of 127
extents is free in the second bitmap block, the count for the second block in the 8th bucket is
incremented. If a free range covers more than one block, the count is stored in the appropriate bucket
for the starting block of the range. The buckets are represented by an array of xfs_suminfo_t types
which is a 32-bit integer. On disk, it looks similar to the following diagram:

The size of summary array = sizeof(xfs_suminfo_t) * sb_rbmblocks * sb_rextslog. All
bitmap block counts are grouped together in the one bucket on disk. So, for the above diagram, the
contents offset moves left to right, then top to bottom.

xfs_db Example:

xfs_db> sb 0
xfs_db> p
magicnum = 0x58465342
blocksize = 4096
dblocks = 3933904
rblocks = 65388558
rextents = 255424
...
rbmino = 129
rsumino = 130
rextsize = 256

 first BM block second BM block ...

alloc length = 1

alloc length = 2-3

alloc length = 4-7

alloc length = 8-15

...

XFS Filesystem Structure sgi®

 80

agblocks = 245869
agcount = 16
rbmblocks = 8
...
rextslog = 17
...

XFS Filesystem Structure sgi®

 81

Journaling Log

TODO:

	Introduction
	A Brief History of XFS
	Purpose of this Document

	Common XFS Types
	Allocation Groups
	Superblocks
	 xfs_db Example:

	AG Free Space Management
	AG Free Space Block
	AG Free Space B+trees
	 AG Free List
	xfs_db Examples:

	AG Inode Management
	Inode Numbers
	Inode Information
	Inode B+trees
	xfs_db Examples:

	Real-time Devices

	On-disk Inode
	Inode Core
	Unlinked Pointer
	Data Fork
	Regular Files (S_IFREG)
	Directories (S_IFDIR)
	Symbolic Links (S_IFLNK)
	Other File Types

	Attribute Fork
	Extended Attribute Versions

	Data Extents
	Extent List
	xfs_db Example:

	B+tree Extent List
	xfs_db Example:

	Directories
	Shortform Directories
	xfs_db Example:

	Block Directories
	xfs_db Example:

	Leaf Directories
	 xfs_db Example:

	Node Directories
	xfs_db Example:

	B+tree Directories
	xfs_db Example:

	Symbolic Links
	Shortform Symbolic Links
	xfs_db Example:

	Extent Symbolic Links
	xfs_db Example:

	Extended Attributes
	Shortform Attributes
	xfs_db Example:

	Leaf Attributes
	xfs_db Example:

	Node Attributes
	xfs_db Example:

	B+tree Attributes
	xfs_db Example:

	Internal Inodes
	Quota Inodes
	Real-time Inodes
	Real-Time Bitmap Inode
	Real-Time Summary Inode
	xfs_db Example:

	Journaling Log

