Uses of Class
edu.jas.application.Ideal
-
Packages that use Ideal Package Description edu.jas.application Groebner base application package. -
-
Uses of Ideal in edu.jas.application
Fields in edu.jas.application declared as Ideal Modifier and Type Field Description (package private) Ideal<BigInteger>
IntegerProgram. GB
(package private) Ideal<BigInteger>
IntegerProgram. I
Ideal<C>
IdealWithUniv. ideal
The ideal.Ideal<C>
LocalRing. ideal
Polynomial ideal for localization.Ideal<C>
ResidueRing. ideal
Polynomial ideal for the reduction.Ideal<C>
PrimaryComponent. primary
The primary ideal.Ideal<C>
Condition. zero
Data structure for condition zero.Methods in edu.jas.application that return Ideal Modifier and Type Method Description Ideal<C>
Ideal. annihilator(Ideal<C> H)
Annihilator for ideal modulo this ideal.Ideal<C>
Ideal. annihilator(GenPolynomial<C> h)
Annihilator for element modulo this ideal.Ideal<C>
Ideal. copy()
Clone this.Ideal<C>
Ideal. eliminate(GenPolynomialRing<C> R)
Eliminate.Ideal<C>
Ideal. eliminate(java.lang.String... ename)
Eliminate.Ideal<C>
Ideal. GB()
Groebner Base.Ideal<C>
Ideal. getONE()
Get the one ideal.Ideal<C>
Ideal. getZERO()
Get the zero ideal.Ideal<C>
Ideal. infiniteQuotient(Ideal<C> H)
Infinite Quotient.Ideal<C>
Ideal. infiniteQuotient(GenPolynomial<C> h)
Infinite quotient.Ideal<C>
Ideal. infiniteQuotientOld(GenPolynomial<C> h)
Infinite quotient.Ideal<C>
Ideal. infiniteQuotientRab(Ideal<C> H)
Infinite Quotient.Ideal<C>
Ideal. infiniteQuotientRab(GenPolynomial<C> h)
Infinite quotient.Ideal<C>
Ideal. intersect(Ideal<C> B)
Intersection.Ideal<C>
Ideal. intersect(GenPolynomialRing<C> R)
Intersection.Ideal<C>
Ideal. intersect(java.util.List<Ideal<C>> Bl)
Intersection.Ideal<C>
Ideal. power(int d)
Power.Ideal<C>
Ideal. primaryIdeal(Ideal<C> P)
Zero dimensional ideal associated primary ideal.Ideal<C>
Ideal. product(Ideal<C> B)
Product.Ideal<C>
Ideal. product(GenPolynomial<C> b)
Product.Ideal<C>
Ideal. quotient(Ideal<C> H)
Quotient.Ideal<C>
Ideal. quotient(GenPolynomial<C> h)
Quotient.Ideal<C>
Ideal. radical()
Ideal radical.Ideal<C>
Ideal. squarefree()
Radical approximation.Ideal<C>
Ideal. sum(Ideal<C> B)
Summation.Ideal<C>
Ideal. sum(GenPolynomial<C> b)
Summation.Ideal<C>
Ideal. sum(java.util.List<GenPolynomial<C>> L)
Summation.Methods in edu.jas.application that return types with arguments of type Ideal Modifier and Type Method Description static <C extends GcdRingElem<C>>
java.util.List<Ideal<C>>IdealWithUniv. asListOfIdeals(java.util.List<IdealWithUniv<C>> Bl)
Get list of ideals from list of ideals with univariates.static <C extends GcdRingElem<C>>
java.util.Map<Ideal<C>,PolynomialList<GenPolynomial<C>>>PolyUtilApp. productSlice(PolynomialList<Product<Residue<C>>> L)
Product slice.Methods in edu.jas.application with parameters of type Ideal Modifier and Type Method Description Ideal<C>
Ideal. annihilator(Ideal<C> H)
Annihilator for ideal modulo this ideal.int
Ideal. compareTo(Ideal<C> L)
Ideal list comparison.static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexAlgebraicRoots<D>>PolyUtilApp. complexAlgebraicRoots(Ideal<D> I)
Construct exact set of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexRoots<D>>PolyUtilApp. complexRoots(Ideal<D> G, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<Complex<BigDecimal>>>PolyUtilApp. complexRoots(Ideal<D> I, java.util.List<GenPolynomial<D>> univs, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<Complex<BigDecimal>>>PolyUtilApp. complexRootTuples(Ideal<D> I, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).boolean
Ideal. contains(Ideal<C> B)
Ideal containment.Ideal<C>
Ideal. infiniteQuotient(Ideal<C> H)
Infinite Quotient.int
Ideal. infiniteQuotientExponent(GenPolynomial<C> h, Ideal<C> Q)
Infinite quotient exponent.Ideal<C>
Ideal. infiniteQuotientRab(Ideal<C> H)
Infinite Quotient.Ideal<C>
Ideal. intersect(Ideal<C> B)
Intersection.boolean
Ideal. isAnnihilator(Ideal<C> H, Ideal<C> A)
Test for annihilator of ideal modulo this ideal.boolean
Ideal. isAnnihilator(GenPolynomial<C> h, Ideal<C> A)
Test for annihilator of element modulo this ideal.Ideal<C>
Ideal. primaryIdeal(Ideal<C> P)
Zero dimensional ideal associated primary ideal.Ideal<C>
Ideal. product(Ideal<C> B)
Product.Ideal<C>
Ideal. quotient(Ideal<C> H)
Quotient.static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealAlgebraicRoots<D>>PolyUtilApp. realAlgebraicRoots(Ideal<D> I)
Construct exact set of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealRoots<D>>PolyUtilApp. realRoots(Ideal<D> G, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<BigDecimal>>PolyUtilApp. realRoots(Ideal<D> I, java.util.List<GenPolynomial<D>> univs, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<BigDecimal>>PolyUtilApp. realRootTuples(Ideal<D> I, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).Ideal<C>
Ideal. sum(Ideal<C> B)
Summation.Method parameters in edu.jas.application with type arguments of type Ideal Modifier and Type Method Description Ideal<C>
Ideal. intersect(java.util.List<Ideal<C>> Bl)
Intersection.static <C extends GcdRingElem<C>>
java.lang.StringPolyUtilApp. productSliceToString(java.util.Map<Ideal<C>,PolynomialList<GenPolynomial<C>>> L)
Product slice to String.Constructors in edu.jas.application with parameters of type Ideal Constructor Description Condition(Ideal<C> z)
Condition constructor.Condition(Ideal<C> z, MultiplicativeSet<C> nz)
Condition constructor.IdealWithComplexAlgebraicRoots(Ideal<D> id, java.util.List<GenPolynomial<D>> up, java.util.List<java.util.List<Complex<RealAlgebraicNumber<D>>>> cr)
Constructor.IdealWithComplexRoots(Ideal<C> id, java.util.List<GenPolynomial<C>> up, java.util.List<java.util.List<Complex<BigDecimal>>> cr)
Constructor.IdealWithRealAlgebraicRoots(Ideal<D> id, java.util.List<GenPolynomial<D>> up, java.util.List<java.util.List<RealAlgebraicNumber<D>>> rr)
Constructor.IdealWithRealRoots(Ideal<C> id, java.util.List<GenPolynomial<C>> up, java.util.List<java.util.List<BigDecimal>> rr)
Constructor.IdealWithUniv(Ideal<C> id, java.util.List<GenPolynomial<C>> up)
Constructor.IdealWithUniv(Ideal<C> id, java.util.List<GenPolynomial<C>> up, java.util.List<GenPolynomial<C>> og)
Constructor.LocalRing(Ideal<C> i)
The constructor creates a LocalRing object from an Ideal.PrimaryComponent(Ideal<C> q, IdealWithUniv<C> p)
Constructor.PrimaryComponent(Ideal<C> q, IdealWithUniv<C> p, int e)
Constructor.ResidueRing(Ideal<C> i)
The constructor creates a ResidueRing object from an Ideal.ResidueRing(Ideal<C> i, boolean isMaximal)
The constructor creates a ResidueRing object from an Ideal.
-