Uses of Class
edu.jas.application.IdealWithUniv
-
Packages that use IdealWithUniv Package Description edu.jas.application Groebner base application package. -
-
Uses of IdealWithUniv in edu.jas.application
Subclasses of IdealWithUniv in edu.jas.application Modifier and Type Class Description class
IdealWithComplexAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and complex algebraic roots.(package private) class
IdealWithComplexRoots<C extends GcdRingElem<C>>
Container for Ideals together with univariate polynomials and complex roots.class
IdealWithRealAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and real algebraic roots.class
IdealWithRealRoots<C extends GcdRingElem<C>>
Container for Ideals together with univariate polynomials and real roots.Fields in edu.jas.application declared as IdealWithUniv Modifier and Type Field Description IdealWithUniv<C>
PrimaryComponent. prime
The associated prime ideal.(package private) IdealWithUniv<C>
RealAlgebraicRing. univs
Representing ideal with univariate polynomials IdealWithUniv.Methods in edu.jas.application that return IdealWithUniv Modifier and Type Method Description static <C extends GcdRingElem<C>>
IdealWithUniv<C>Ideal. contraction(IdealWithUniv<Quotient<C>> eid)
Ideal contraction.IdealWithUniv<Quotient<C>>
Ideal. extension(GenPolynomialRing<C> efac)
Ideal extension.IdealWithUniv<Quotient<C>>
Ideal. extension(QuotientRing<C> qfac)
Ideal extension.IdealWithUniv<Quotient<C>>
Ideal. extension(java.lang.String... vars)
Ideal extension.IdealWithUniv<C>
Ideal. normalPositionFor(int i, int j, java.util.List<GenPolynomial<C>> og)
Compute normal position for variables i and j.(package private) IdealWithUniv<C>
Ideal. normalPositionForChar0(int i, int j, java.util.List<GenPolynomial<C>> og)
Compute normal position for variables i and j, characteristic zero.(package private) IdealWithUniv<C>
Ideal. normalPositionForCharP(int i, int j, java.util.List<GenPolynomial<C>> og)
Compute normal position for variables i and j, positive characteristic.IdealWithUniv<C>
Ideal. permContraction(IdealWithUniv<Quotient<C>> eideal)
Ideal contraction and permutation.static <C extends GcdRingElem<C>>
IdealWithUniv<C>Ideal. permutation(GenPolynomialRing<C> oring, IdealWithUniv<C> Cont)
Ideal permutation.Methods in edu.jas.application that return types with arguments of type IdealWithUniv Modifier and Type Method Description java.util.List<IdealWithUniv<C>>
Ideal. decomposition()
Ideal irreducible decomposition.java.util.List<IdealWithUniv<C>>
Ideal. primeDecomposition()
Ideal prime decomposition.java.util.List<IdealWithUniv<C>>
Ideal. radicalDecomposition()
Ideal radical decomposition.java.util.List<IdealWithUniv<C>>
Ideal. zeroDimDecomposition()
Zero dimensional ideal irreducible decomposition.java.util.List<IdealWithUniv<C>>
Ideal. zeroDimDecompositionExtension(java.util.List<GenPolynomial<C>> upol, java.util.List<GenPolynomial<C>> og)
Zero dimensional ideal irreducible decomposition extension.java.util.List<IdealWithUniv<C>>
Ideal. zeroDimElimination(java.util.List<IdealWithUniv<C>> pdec)
Zero dimensional ideal elimination to original ring.java.util.List<IdealWithUniv<C>>
Ideal. zeroDimPrimeDecomposition()
Zero dimensional ideal prime decomposition.java.util.List<IdealWithUniv<C>>
Ideal. zeroDimPrimeDecompositionFE()
Zero dimensional ideal prime decomposition, with field extension.java.util.List<IdealWithUniv<C>>
Ideal. zeroDimRadicalDecomposition()
Zero dimensional radical decomposition.java.util.List<IdealWithUniv<C>>
Ideal. zeroDimRootDecomposition()
Zero dimensional ideal decomposition for real roots.Methods in edu.jas.application with parameters of type IdealWithUniv Modifier and Type Method Description static <D extends GcdRingElem<D> & Rational>
IdealWithComplexAlgebraicRoots<D>PolyUtilApp. complexAlgebraicRoots(IdealWithUniv<D> I)
Construct complex roots for zero dimensional ideal(G).static <C extends GcdRingElem<C>>
IdealWithUniv<C>Ideal. contraction(IdealWithUniv<Quotient<C>> eid)
Ideal contraction.boolean
Ideal. isRadical(IdealWithUniv<C> ru)
Test for radical ideal.IdealWithUniv<C>
Ideal. permContraction(IdealWithUniv<Quotient<C>> eideal)
Ideal contraction and permutation.static <C extends GcdRingElem<C>>
IdealWithUniv<C>Ideal. permutation(GenPolynomialRing<C> oring, IdealWithUniv<C> Cont)
Ideal permutation.static <D extends GcdRingElem<D> & Rational>
IdealWithRealAlgebraicRoots<D>PolyUtilApp. realAlgebraicRoots(IdealWithUniv<D> I)
Construct real roots for zero dimensional ideal(G).Method parameters in edu.jas.application with type arguments of type IdealWithUniv Modifier and Type Method Description static <C extends GcdRingElem<C>>
java.util.List<Ideal<C>>IdealWithUniv. asListOfIdeals(java.util.List<IdealWithUniv<C>> Bl)
Get list of ideals from list of ideals with univariates.static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexAlgebraicRoots<D>>PolyUtilApp. complexAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
Construct complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexRoots<D>>PolyUtilApp. complexRoots(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<Complex<BigDecimal>>>PolyUtilApp. complexRootTuples(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).boolean
Ideal. isDecomposition(java.util.List<IdealWithUniv<C>> L)
Test for ideal decomposition.boolean
Ideal. isZeroDimDecomposition(java.util.List<IdealWithUniv<C>> L)
Test for zero dimensional ideal decomposition.static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealAlgebraicRoots<D>>PolyUtilApp. realAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
Construct real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealRoots<D>>PolyUtilApp. realRoots(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<BigDecimal>>PolyUtilApp. realRootTuples(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).java.util.List<IdealWithUniv<C>>
Ideal. zeroDimElimination(java.util.List<IdealWithUniv<C>> pdec)
Zero dimensional ideal elimination to original ring.java.util.List<PrimaryComponent<C>>
Ideal. zeroDimPrimaryDecomposition(java.util.List<IdealWithUniv<C>> pdec)
Zero dimensional ideal primary decomposition.Constructors in edu.jas.application with parameters of type IdealWithUniv Constructor Description IdealWithComplexAlgebraicRoots(IdealWithUniv<D> iu, java.util.List<java.util.List<Complex<RealAlgebraicNumber<D>>>> cr)
Constructor.IdealWithComplexRoots(IdealWithUniv<C> iu, java.util.List<java.util.List<Complex<BigDecimal>>> cr)
Constructor.IdealWithRealAlgebraicRoots(IdealWithUniv<D> iu, java.util.List<java.util.List<RealAlgebraicNumber<D>>> rr)
Constructor.IdealWithRealRoots(IdealWithUniv<C> iu, java.util.List<java.util.List<BigDecimal>> rr)
Constructor.PrimaryComponent(Ideal<C> q, IdealWithUniv<C> p)
Constructor.PrimaryComponent(Ideal<C> q, IdealWithUniv<C> p, int e)
Constructor.RealAlgebraicRing(IdealWithUniv<C> m, ResidueRing<C> a, RealRootTuple<C> r)
The constructor creates a RealAlgebraicNumber factory object from a IdealWithUniv, ResidueRing and a root tuple.RealAlgebraicRing(IdealWithUniv<C> m, RealRootTuple<C> root)
The constructor creates a RealAlgebraicNumber factory object from a IdealWithUniv and a root tuple.RealAlgebraicRing(IdealWithUniv<C> m, RealRootTuple<C> root, boolean isField)
The constructor creates a RealAlgebraicNumber factory object from a IdealWithUniv and a root tuple.
-