Uses of Class
edu.jas.ps.MultiVarPowerSeries
-
Packages that use MultiVarPowerSeries Package Description edu.jas.ps Generic coefficients power series package. -
-
Uses of MultiVarPowerSeries in edu.jas.ps
Fields in edu.jas.ps declared as MultiVarPowerSeries Modifier and Type Field Description MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. ONE
The constant power series 1 for this ring.MultiVarPowerSeries<C>
Pair. pi
MultiVarPowerSeries<C>
Pair. pj
MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. ZERO
The constant power series 0 for this ring.Fields in edu.jas.ps with type parameters of type MultiVarPowerSeries Modifier and Type Field Description protected java.util.ArrayList<MultiVarPowerSeries<C>>
OrderedPairlist. P
Methods in edu.jas.ps that return MultiVarPowerSeries Modifier and Type Method Description MultiVarPowerSeries<C>
MultiVarPowerSeries. abs()
Absolute value.MultiVarPowerSeries<C>
MultiVarPowerSeries. copy()
Clone this power series.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. copy(MultiVarPowerSeries<C> c)
Copy power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. differentiate(int r)
Differentiate with respect to variable r.MultiVarPowerSeries<C>
MultiVarPowerSeries. divide(MultiVarPowerSeries<C> ps)
Divide by another power series.MultiVarPowerSeries<C>[]
MultiVarPowerSeries. egcd(MultiVarPowerSeries<C> S)
Power series extended greatest common divisor.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. fixPoint(MultiVarPowerSeriesMap<C> map)
Fixed point construction.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. fromInteger(long a)
Get a (constant) MultiVarPowerSeries<C> from a long value.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. fromInteger(java.math.BigInteger a)
Get a (constant) MultiVarPowerSeries<C> from a java.math.BigInteger.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. fromPolynomial(GenPolynomial<C> a)
Get a MultiVarPowerSeries<C> from a GenPolynomial<C>.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. fromPowerSeries(UnivPowerSeries<C> ps, int r)
Get a MultiVarPowerSeries<C> from a univariate power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. gcd(MultiVarPowerSeries<C> ps)
Power series greatest common divisor.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. generate(java.util.function.Function<ExpVector,C> gener)
Generate a power series via lambda expression.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. getCOS(int r)
Get the power series of the cosinus function.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. getEXP(int r)
Get the power series of the exponential function.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. getONE()
Get the one element.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. getSIN(int r)
Get the power series of the sinus function.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. getTAN(int r)
Get the power series of the tangens function.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. getZERO()
Get the zero element.MultiVarPowerSeries<C>
MultiVarPowerSeries. integrate(C c, int r)
Integrate with respect to variable r and with given constant.MultiVarPowerSeries<C>
MultiVarPowerSeries. inverse()
Inverse power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. map(UnaryFunctor<? super C,C> f)
Map a unary function to this power series.MultiVarPowerSeries<C>
MultiVarPowerSeriesMap. map(MultiVarPowerSeries<C> ps)
Map.MultiVarPowerSeries<C>
MultiVarPowerSeries. monic()
Monic.MultiVarPowerSeries<C>
MultiVarPowerSeries. multiply(C a)
Multiply by coefficient.MultiVarPowerSeries<C>
MultiVarPowerSeries. multiply(C c, ExpVector k)
Multiply by exponent vector and coefficient.MultiVarPowerSeries<C>
MultiVarPowerSeries. multiply(MultiVarPowerSeries<C> ps)
Multiply by another power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. negate()
Negate.MultiVarPowerSeries<C>
ReductionSeq. normalform(java.util.List<MultiVarPowerSeries<C>> Pp, MultiVarPowerSeries<C> Ap)
Top normal-form with Mora's algorithm.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. parse(java.io.Reader r)
Parse a power series.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. parse(java.lang.String s)
Parse a power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. prepend(C h, int r)
Prepend a new leading coefficient.MultiVarPowerSeries<C>[]
MultiVarPowerSeries. quotientRemainder(MultiVarPowerSeries<C> S)
Quotient and remainder by division of this by S.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. random()
Generate a random power series with k = 5, d = 0.7.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. random(int k)
Generate a random power series with d = 0.7.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. random(int k, float d)
Generate a random power series.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. random(int k, float d, java.util.Random rnd)
Generate a random power series.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. random(int k, java.util.Random rnd)
Generate a random power series with d = 0.7.MultiVarPowerSeries<C>
MultiVarPowerSeries. reductum()
Reductum.MultiVarPowerSeries<C>
MultiVarPowerSeries. reductum(int r)
Reductum.MultiVarPowerSeries<C>
MultiVarPowerSeries. remainder(MultiVarPowerSeries<C> ps)
Power series remainder.MultiVarPowerSeries<C>
MultiVarPowerSeries. select(Selector<? super C> sel)
Select coefficients.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. seriesOfTaylor(TaylorFunction<C> f, java.util.List<C> a)
Taylor power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. shift(int k, int r)
Shift coefficients.MultiVarPowerSeries<C>
MultiVarPowerSeries. shift(ExpVector k)
Shift coefficients.MultiVarPowerSeries<C>
MultiVarPowerSeries. shiftSelect(Selector<? super C> sel)
Shift select coefficients.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. solvePDE(MultiVarPowerSeries<C> f, C c, int r)
Solve an partial differential equation.MultiVarPowerSeries<C>
ReductionSeq. SPolynomial(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B)
S-Power-series, S-polynomial.MultiVarPowerSeries<C>
MultiVarPowerSeries. subtract(C c, ExpVector k)
Subtract exponent vector and coefficient.MultiVarPowerSeries<C>
MultiVarPowerSeries. subtract(MultiVarPowerSeries<C> ps)
Subtract a another power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. subtractZip(MultiVarPowerSeries<C> ps)
Subtraction of two power series, using zip().MultiVarPowerSeries<C>
MultiVarPowerSeries. sum(C c, ExpVector k)
Sum exponent vector and coefficient.MultiVarPowerSeries<C>
MultiVarPowerSeries. sum(MultiVarCoefficients<C> mvc)
Sum exponent vector and coefficient.MultiVarPowerSeries<C>
MultiVarPowerSeries. sum(MultiVarPowerSeries<C> ps)
Sum a another power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. sum(java.util.Map.Entry<ExpVector,C> m)
Sum monomial.MultiVarPowerSeries<C>
MultiVarPowerSeries. sumZip(MultiVarPowerSeries<C> ps)
Sum of two power series, using zip().MultiVarPowerSeries<C>
ReductionSeq. totalNormalform(java.util.List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A)
Total reduced normal-form with Mora's algorithm.MultiVarPowerSeries<C>
MultiVarPowerSeries. zip(BinaryFunctor<? super C,? super C,C> f, MultiVarPowerSeries<C> ps)
Map a binary function to this and another power series.Methods in edu.jas.ps that return types with arguments of type MultiVarPowerSeries Modifier and Type Method Description java.util.List<MultiVarPowerSeries<C>>
MultiVarPowerSeriesRing. fromPolynomial(java.util.List<GenPolynomial<C>> A)
Get a list of MultiVarPowerSeries<C> from a list of GenPolynomial<C>.java.util.List<MultiVarPowerSeries<C>>
MultiVarPowerSeriesRing. generators()
Get a list of the generating elements.java.util.List<MultiVarPowerSeries<C>>
OrderedPairlist. getList()
Get the list of power series.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. minimalSTD(java.util.List<MultiVarPowerSeries<C>> Gp)
Minimal ordered Standard basis.static <C extends RingElem<C>>
java.util.List<MultiVarPowerSeries<C>>PSUtil. monic(java.util.List<MultiVarPowerSeries<C>> L)
Power series list monic.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. normalizeZerosOnes(java.util.List<MultiVarPowerSeries<C>> A)
Normalize power series list.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. STD(int modv, java.util.List<MultiVarPowerSeries<C>> F)
Standard base using pairlist class.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. STD(java.util.List<MultiVarPowerSeries<C>> F)
Standard base using pairlist class.java.util.List<MultiVarPowerSeries<C>>
ReductionSeq. totalNormalform(java.util.List<MultiVarPowerSeries<C>> P)
Total reduced normalform with Mora's algorithm.Methods in edu.jas.ps with parameters of type MultiVarPowerSeries Modifier and Type Method Description int
MultiVarPowerSeries. compareTo(MultiVarPowerSeries<C> ps)
Compare to.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. copy(MultiVarPowerSeries<C> c)
Copy power series.boolean
ReductionSeq. criterion4(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B, ExpVector e)
GB criterion 4.MultiVarPowerSeries<C>
MultiVarPowerSeries. divide(MultiVarPowerSeries<C> ps)
Divide by another power series.MultiVarPowerSeries<C>[]
MultiVarPowerSeries. egcd(MultiVarPowerSeries<C> S)
Power series extended greatest common divisor.MultiVarPowerSeries<C>
MultiVarPowerSeries. gcd(MultiVarPowerSeries<C> ps)
Power series greatest common divisor.boolean
ReductionSeq. isTopReducible(java.util.List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A)
Is top reducible.MultiVarPowerSeries<C>
MultiVarPowerSeriesMap. map(MultiVarPowerSeries<C> ps)
Map.boolean
ReductionSeq. moduleCriterion(int modv, MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B)
Module criterium.MultiVarPowerSeries<C>
MultiVarPowerSeries. multiply(MultiVarPowerSeries<C> ps)
Multiply by another power series.MultiVarPowerSeries<C>
ReductionSeq. normalform(java.util.List<MultiVarPowerSeries<C>> Pp, MultiVarPowerSeries<C> Ap)
Top normal-form with Mora's algorithm.int
OrderedPairlist. put(MultiVarPowerSeries<C> p)
Put one power Series to the pairlist and reduction matrix.int
OrderedPairlist. putOne(MultiVarPowerSeries<C> one)
Put to ONE-power-series to the pairlist.MultiVarPowerSeries<C>[]
MultiVarPowerSeries. quotientRemainder(MultiVarPowerSeries<C> S)
Quotient and remainder by division of this by S.MultiVarPowerSeries<C>
MultiVarPowerSeries. remainder(MultiVarPowerSeries<C> ps)
Power series remainder.MultiVarPowerSeries<C>
MultiVarPowerSeriesRing. solvePDE(MultiVarPowerSeries<C> f, C c, int r)
Solve an partial differential equation.MultiVarPowerSeries<C>
ReductionSeq. SPolynomial(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B)
S-Power-series, S-polynomial.MultiVarPowerSeries<C>
MultiVarPowerSeries. subtract(MultiVarPowerSeries<C> ps)
Subtract a another power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. subtractZip(MultiVarPowerSeries<C> ps)
Subtraction of two power series, using zip().MultiVarPowerSeries<C>
MultiVarPowerSeries. sum(MultiVarPowerSeries<C> ps)
Sum a another power series.MultiVarPowerSeries<C>
MultiVarPowerSeries. sumZip(MultiVarPowerSeries<C> ps)
Sum of two power series, using zip().MultiVarPowerSeries<C>
ReductionSeq. totalNormalform(java.util.List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A)
Total reduced normal-form with Mora's algorithm.MultiVarPowerSeries<C>
MultiVarPowerSeries. zip(BinaryFunctor<? super C,? super C,C> f, MultiVarPowerSeries<C> ps)
Map a binary function to this and another power series.Method parameters in edu.jas.ps with type arguments of type MultiVarPowerSeries Modifier and Type Method Description boolean
ReductionSeq. contains(java.util.List<MultiVarPowerSeries<C>> S, java.util.List<MultiVarPowerSeries<C>> B)
Ideal containment.boolean
StandardBaseSeq. isSTD(int modv, java.util.List<MultiVarPowerSeries<C>> F)
Standard base test.boolean
StandardBaseSeq. isSTD(java.util.List<MultiVarPowerSeries<C>> F)
Standard base test.boolean
ReductionSeq. isTopReducible(java.util.List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A)
Is top reducible.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. minimalSTD(java.util.List<MultiVarPowerSeries<C>> Gp)
Minimal ordered Standard basis.static <C extends RingElem<C>>
java.util.List<MultiVarPowerSeries<C>>PSUtil. monic(java.util.List<MultiVarPowerSeries<C>> L)
Power series list monic.MultiVarPowerSeries<C>
ReductionSeq. normalform(java.util.List<MultiVarPowerSeries<C>> Pp, MultiVarPowerSeries<C> Ap)
Top normal-form with Mora's algorithm.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. normalizeZerosOnes(java.util.List<MultiVarPowerSeries<C>> A)
Normalize power series list.int
OrderedPairlist. put(java.util.List<MultiVarPowerSeries<C>> F)
Put all power series in F to the pairlist and reduction matrix.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. STD(int modv, java.util.List<MultiVarPowerSeries<C>> F)
Standard base using pairlist class.java.util.List<MultiVarPowerSeries<C>>
StandardBaseSeq. STD(java.util.List<MultiVarPowerSeries<C>> F)
Standard base using pairlist class.java.util.List<MultiVarPowerSeries<C>>
ReductionSeq. totalNormalform(java.util.List<MultiVarPowerSeries<C>> P)
Total reduced normalform with Mora's algorithm.MultiVarPowerSeries<C>
ReductionSeq. totalNormalform(java.util.List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A)
Total reduced normal-form with Mora's algorithm.Constructors in edu.jas.ps with parameters of type MultiVarPowerSeries Constructor Description Pair(MultiVarPowerSeries<C> a, MultiVarPowerSeries<C> b, int i, int j)
Pair constructor.
-