Uses of Interface
edu.jas.arith.Rational
-
Packages that use Rational Package Description edu.jas.application Groebner base application package.edu.jas.arith Basic arithmetic package.edu.jas.poly Generic coefficients polynomial package.edu.jas.root Real and Complex Root Computation package.edu.jas.ufdroot Unique Factorization Domain and Roots package. -
-
Uses of Rational in edu.jas.application
Classes in edu.jas.application with type parameters of type Rational Modifier and Type Class Description class
AlgebraicRootsPrimElem<C extends GcdRingElem<C> & Rational>
Container for the real and complex algebraic roots of a univariate polynomial together with primitive element.(package private) class
CoeffToComplexReal<C extends GcdRingElem<C> & Rational>
Coefficient to complex real algebriac functor.(package private) class
EvaluateToComplexReal<C extends GcdRingElem<C> & Rational>
Polynomial coefficient to complex real algebriac evaluation functor.class
FactorRealReal<C extends GcdRingElem<C> & Rational>
Real algebraic number coefficients factorization algorithms.class
IdealWithComplexAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and complex algebraic roots.class
IdealWithRealAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and real algebraic roots.class
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Complex algebraic number class based on bi-variate real algebraic numbers.class
RealAlgebraicRing<C extends GcdRingElem<C> & Rational>
Real algebraic number factory class based on bi-variate real algebraic numbers.(package private) class
RealFromReAlgCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to real algebriac from algebraic functor.(package private) class
ReAlgFromRealCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to real algebriac from real algebraic functor.Classes in edu.jas.application that implement Rational Modifier and Type Class Description class
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Complex algebraic number class based on bi-variate real algebraic numbers.Methods in edu.jas.application with type parameters of type Rational Modifier and Type Method Description static <C extends GcdRingElem<C> & Rational>
java.util.List<Complex<RealAlgebraicNumber<C>>>RootFactoryApp. complexAlgebraicNumbersComplex(GenPolynomial<Complex<C>> f)
Complex algebraic number roots.static <C extends GcdRingElem<C> & Rational>
java.util.List<Complex<RealAlgebraicNumber<C>>>RootFactoryApp. complexAlgebraicNumbersSquarefree(GenPolynomial<Complex<C>> f)
Complex algebraic number roots.static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexAlgebraicRoots<D>>PolyUtilApp. complexAlgebraicRoots(Ideal<D> I)
Construct exact set of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
IdealWithComplexAlgebraicRoots<D>PolyUtilApp. complexAlgebraicRoots(IdealWithUniv<D> I)
Construct complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexAlgebraicRoots<D>>PolyUtilApp. complexAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
Construct complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexRoots<D>>PolyUtilApp. complexRoots(Ideal<D> G, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<Complex<BigDecimal>>>PolyUtilApp. complexRoots(Ideal<D> I, java.util.List<GenPolynomial<D>> univs, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithComplexRoots<D>>PolyUtilApp. complexRoots(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<Complex<BigDecimal>>>PolyUtilApp. complexRootTuples(Ideal<D> I, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<Complex<BigDecimal>>>PolyUtilApp. complexRootTuples(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>>PolyUtilApp. convertToComplexRealCoefficients(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A)
Convert to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>>PolyUtilApp. evaluateToComplexRealCoefficients(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r)
Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
FactorAbstract<RealAlgebraicNumber<C>>FactorFactory. getImplementation(RealAlgebraicRing<C> fac)
Determine suitable implementation of factorization algorithms, case RealAlgebraicNumber<C>.static <C extends GcdRingElem<C> & Rational>
FactorAbstract<RealAlgebraicNumber<C>>FactorFactory. getImplementation(RealAlgebraicRing<C> fac)
Determine suitable implementation of factorization algorithms, case RealAlgebraicNumber<C>.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp. isRoot(GenPolynomial<Complex<C>> f, Complex<RealAlgebraicNumber<C>> r)
Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp. isRoot(GenPolynomial<Complex<C>> f, java.util.List<Complex<RealAlgebraicNumber<C>>> R)
Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp. isRootRealCoeff(GenPolynomial<C> f, Complex<RealAlgebraicNumber<C>> r)
Is complex algebraic number a root of a polynomial.static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealAlgebraicRoots<D>>PolyUtilApp. realAlgebraicRoots(Ideal<D> I)
Construct exact set of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
IdealWithRealAlgebraicRoots<D>PolyUtilApp. realAlgebraicRoots(IdealWithUniv<D> I)
Construct real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealAlgebraicRoots<D>>PolyUtilApp. realAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
Construct real roots for zero dimensional ideal(G).static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>>PolyUtilApp. realAlgFromRealCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A)
Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>>PolyUtilApp. realFromRealAlgCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A)
Convert to RealAlgebraicNumber coefficients.static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealRoots<D>>PolyUtilApp. realRoots(Ideal<D> G, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<BigDecimal>>PolyUtilApp. realRoots(Ideal<D> I, java.util.List<GenPolynomial<D>> univs, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<IdealWithRealRoots<D>>PolyUtilApp. realRoots(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<BigDecimal>>PolyUtilApp. realRootTuples(Ideal<D> I, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
java.util.List<java.util.List<BigDecimal>>PolyUtilApp. realRootTuples(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C>RootFactoryApp. rootReduce(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b)
Root reduce of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C>RootFactoryApp. rootReduce(GenPolynomial<C> a, GenPolynomial<C> b)
Root reduce of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C>RootFactoryApp. rootReduce(AlgebraicRoots<C> a, AlgebraicRoots<C> b)
Root reduce of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C>RootFactoryApp. rootsOfUnity(AlgebraicRootsPrimElem<C> ar)
Roots of unity of real and complex algebraic numbers.static <D extends GcdRingElem<D> & Rational>
java.lang.StringPolyUtilApp. toString(Complex<RealAlgebraicNumber<D>> c)
String representation of a deximal approximation of a complex number.static <D extends GcdRingElem<D> & Rational>
java.lang.StringPolyUtilApp. toString1(Complex<D> c)
String representation of a deximal approximation of a complex number. -
Uses of Rational in edu.jas.arith
Classes in edu.jas.arith that implement Rational Modifier and Type Class Description class
BigDecimal
BigDecimal class to make java.math.BigDecimal available with RingElem interface.class
BigInteger
BigInteger class to make java.math.BigInteger available with RingElem respectively the GcdRingElem interface.class
BigRational
Immutable arbitrary-precision rational numbers. -
Uses of Rational in edu.jas.poly
Classes in edu.jas.poly with type parameters of type Rational Modifier and Type Class Description (package private) class
CompRatToDec<C extends RingElem<C> & Rational>
Conversion of Complex Rational to Complex BigDecimal.(package private) class
RatToDec<C extends Element<C> & Rational>
Conversion of Rational to BigDecimal.Methods in edu.jas.poly with type parameters of type Rational Modifier and Type Method Description static <C extends RingElem<C> & Rational>
GenPolynomial<Complex<BigDecimal>>PolyUtil. complexDecimalFromRational(GenPolynomialRing<Complex<BigDecimal>> fac, GenPolynomial<Complex<C>> A)
Convert to complex decimal coefficients.static <C extends RingElem<C> & Rational>
GenPolynomial<BigDecimal>PolyUtil. decimalFromRational(GenPolynomialRing<BigDecimal> fac, GenPolynomial<C> A)
Convert to decimal coefficients. -
Uses of Rational in edu.jas.root
Classes in edu.jas.root with type parameters of type Rational Modifier and Type Class Description class
AlgebraicRoots<C extends GcdRingElem<C> & Rational>
Container for the real and complex algebraic roots of a univariate polynomial.(package private) class
AlgFromRealCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to algebraic from real algebraic functor.class
Boundary<C extends RingElem<C> & Rational>
Boundary determined by a rectangle and a polynomial.(package private) class
CoeffToComplex<C extends GcdRingElem<C> & Rational>
Coefficient to complex algebraic functor.(package private) class
CoeffToComplexFromComplex<C extends GcdRingElem<C> & Rational>
Coefficient to complex algebraic from complex functor.(package private) class
CoeffToReal<C extends GcdRingElem<C> & Rational>
Coefficient to real algebraic functor.(package private) class
CoeffToReAlg<C extends GcdRingElem<C> & Rational>
Coefficient to algebraic functor.(package private) class
CoeffToRecReAlg<C extends GcdRingElem<C> & Rational>
Coefficient to recursive algebraic functor.class
ComplexAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Complex algebraic number class based on AlgebraicNumber.class
ComplexAlgebraicRing<C extends GcdRingElem<C> & Rational>
Complex algebraic number factory class based on AlgebraicNumberRing with RingFactory interface.interface
ComplexRoots<C extends RingElem<C> & Rational>
Complex roots interface.class
ComplexRootsAbstract<C extends RingElem<C> & Rational>
Complex roots abstract class.class
ComplexRootsSturm<C extends RingElem<C> & Rational>
Complex roots implemented by Sturm sequences.class
DecimalRoots<C extends GcdRingElem<C> & Rational>
Container for the real and complex algebraic roots of a univariate polynomial.class
Interval<C extends RingElem<C> & Rational>
Interval.(package private) class
PolyToReAlg<C extends GcdRingElem<C> & Rational>
Polynomial to algebraic functor.class
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Real algebraic number class based on AlgebraicNumber.class
RealAlgebraicRing<C extends GcdRingElem<C> & Rational>
Real algebraic number factory class based on AlgebraicNumberRing with RingFactory interface.(package private) class
RealFromAlgCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to real algebriac from algebraic functor.interface
RealRoots<C extends RingElem<C> & Rational>
Real roots interface.class
RealRootsAbstract<C extends RingElem<C> & Rational>
Real roots abstract class.class
RealRootsSturm<C extends RingElem<C> & Rational>
Real root isolation using Sturm sequences.class
RealRootTuple<C extends GcdRingElem<C> & Rational>
RealAlgebraicNumber root tuple.class
Rectangle<C extends RingElem<C> & Rational>
Rectangle.Classes in edu.jas.root that implement Rational Modifier and Type Class Description class
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Real algebraic number class based on AlgebraicNumber.Methods in edu.jas.root with type parameters of type Rational Modifier and Type Method Description static <C extends GcdRingElem<C> & Rational>
GenPolynomial<AlgebraicNumber<C>>PolyUtilRoot. algebraicFromRealCoefficients(GenPolynomialRing<AlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A)
Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
AlgebraicRoots<C>RootFactory. algebraicRoots(GenPolynomial<C> f)
Roots as real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
java.util.List<ComplexAlgebraicNumber<C>>RootFactory. complexAlgebraicNumbers(GenPolynomial<C> f)
Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
java.util.List<ComplexAlgebraicNumber<C>>RootFactory. complexAlgebraicNumbers(GenPolynomial<C> f, BigRational eps)
Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
java.util.List<ComplexAlgebraicNumber<C>>RootFactory. complexAlgebraicNumbersComplex(GenPolynomial<Complex<C>> f)
Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
java.util.List<ComplexAlgebraicNumber<C>>RootFactory. complexAlgebraicNumbersComplex(GenPolynomial<Complex<C>> f, BigRational eps)
Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<C>>PolyUtilRoot. complexFromAny(GenPolynomial<C> f)
Convert to Complex coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>>PolyUtilRoot. convertRecursiveToAlgebraicCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A)
Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>>PolyUtilRoot. convertToAlgebraicCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A)
Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>>PolyUtilRoot. convertToComplexCoefficients(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<C> A)
Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>>PolyUtilRoot. convertToComplexCoefficientsFromComplex(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<Complex<C>> A)
Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>>PolyUtilRoot. convertToRealCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A)
Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>>PolyUtilRoot. convertToRecAlgebraicCoefficients(int depth, GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A)
Convert to recursive RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
DecimalRoots<C>RootFactory. decimalRoots(GenPolynomial<C> f, BigRational eps)
Roots as real and complex decimal numbers.static <C extends GcdRingElem<C> & Rational>
DecimalRoots<C>RootFactory. decimalRoots(AlgebraicRoots<C> ar, BigRational eps)
Roots as real and complex decimal numbers.static <C extends GcdRingElem<C> & Rational>
java.util.List<Complex<BigDecimal>>RootFactory. filterOutRealRoots(GenPolynomial<C> f, java.util.List<Complex<BigDecimal>> c, java.util.List<BigDecimal> r, BigRational eps)
Filter real roots from complex roots.static <C extends GcdRingElem<C> & Rational>
java.util.List<ComplexAlgebraicNumber<C>>RootFactory. filterOutRealRoots(GenPolynomial<C> f, java.util.List<ComplexAlgebraicNumber<C>> c, java.util.List<RealAlgebraicNumber<C>> r)
Filter real roots from complex roots.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory. isRealRoot(GenPolynomial<C> f, Complex<BigDecimal> c, BigDecimal r, BigRational eps)
Is complex decimal number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory. isRealRoot(GenPolynomial<C> f, ComplexAlgebraicNumber<C> c, RealAlgebraicNumber<C> r)
Is complex algebraic number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory. isRoot(GenPolynomial<C> f, ComplexAlgebraicNumber<C> r)
Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory. isRoot(GenPolynomial<C> f, RealAlgebraicNumber<C> r)
Is real algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory. isRootComplex(GenPolynomial<Complex<C>> f, ComplexAlgebraicNumber<C> r)
Is complex algebraic number a root of a complex polynomial.static <C extends RingElem<C> & Rational>
Interval<C>RootUtil. parseInterval(RingFactory<C> fac, java.lang.String s)
Parse interval for a real root from String.static <C extends RingElem<C> & Rational>
Rectangle<C>RootUtil. parseRectangle(RingFactory<Complex<C>> fac, java.lang.String s)
Parse rectangle for a complex root from String.static <C extends GcdRingElem<C> & Rational>
java.util.List<RealAlgebraicNumber<C>>RootFactory. realAlgebraicNumbers(GenPolynomial<C> f)
Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
java.util.List<RealAlgebraicNumber<C>>RootFactory. realAlgebraicNumbers(GenPolynomial<C> f, BigRational eps)
Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
java.util.List<RealAlgebraicNumber<C>>RootFactory. realAlgebraicNumbersField(GenPolynomial<C> f)
Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
java.util.List<RealAlgebraicNumber<C>>RootFactory. realAlgebraicNumbersField(GenPolynomial<C> f, BigRational eps)
Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
java.util.List<RealAlgebraicNumber<C>>RootFactory. realAlgebraicNumbersIrred(GenPolynomial<C> f)
Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
java.util.List<RealAlgebraicNumber<C>>RootFactory. realAlgebraicNumbersIrred(GenPolynomial<C> f, BigRational eps)
Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>>PolyUtilRoot. realFromAlgebraicCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A)
Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
voidRootFactory. rootRefine(AlgebraicRoots<C> a, BigRational eps)
Root refinement of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRoots<C>RootFactory. rootsOfUnity(AlgebraicRoots<C> ar)
Roots of unity of real and complex algebraic numbers. -
Uses of Rational in edu.jas.ufdroot
Classes in edu.jas.ufdroot with type parameters of type Rational Modifier and Type Class Description class
FactorRealAlgebraic<C extends GcdRingElem<C> & Rational>
Real algebraic number coefficients factorization algorithms.
-