Class SparseDoubleMatrix2D
- All Implemented Interfaces:
Serializable
,Cloneable
Implementation:
Note that this implementation is not synchronized.
Uses a OpenIntDoubleHashMap
, which is a compact and performant hashing technique.
Memory requirements:
Cells that
- are never set to non-zero values do not use any memory.
- switch from zero to non-zero state do use memory.
- switch back from non-zero to zero state also do use memory. However, their memory is automatically reclaimed from time to time. It can also manually be reclaimed by calling
trimToSize()
.
worst case: memory [bytes] = (1/minLoadFactor) * nonZeros * 13.
best case: memory [bytes] = (1/maxLoadFactor) * nonZeros * 13.
Where nonZeros = cardinality() is the number of non-zero cells.
Thus, a 1000 x 1000 matrix with minLoadFactor=0.25 and maxLoadFactor=0.5 and 1000000 non-zero cells consumes between 25 MB and 50 MB.
The same 1000 x 1000 matrix with 1000 non-zero cells consumes between 25 and 50 KB.
Time complexity:
This class offers expected time complexity O(1) (i.e. constant time) for the basic operations
get, getQuick, set, setQuick and size
assuming the hash function disperses the elements properly among the buckets.
Otherwise, pathological cases, although highly improbable, can occur, degrading performance to O(N) in the worst case.
As such this sparse class is expected to have no worse time complexity than its dense counterpart DenseDoubleMatrix2D
.
However, constant factors are considerably larger.
Cells are internally addressed in row-major. Performance sensitive applications can exploit this fact. Setting values in a loop row-by-row is quicker than column-by-column, because fewer hash collisions occur. Thus
for (int row=0; row invalid input: '<' rows; row++) { for (int column=0; column invalid input: '<' columns; column++) { matrix.setQuick(row,column,someValue); } }is quicker than
for (int column=0; column invalid input: '<' columns; column++) { for (int row=0; row invalid input: '<' rows; row++) { matrix.setQuick(row,column,someValue); } }
- Version:
- 1.0, 09/24/99
- See Also:
-
Field Summary
FieldsFields inherited from class cern.colt.matrix.impl.AbstractMatrix2D
columns, columnStride, columnZero, rows, rowStride, rowZero
Fields inherited from class cern.colt.matrix.impl.AbstractMatrix
isNoView
Fields inherited from class cern.colt.PersistentObject
serialVersionUID
-
Constructor Summary
ConstructorsModifierConstructorDescriptionSparseDoubleMatrix2D
(double[][] values) Constructs a matrix with a copy of the given values.SparseDoubleMatrix2D
(int rows, int columns) Constructs a matrix with a given number of rows and columns and default memory usage.SparseDoubleMatrix2D
(int rows, int columns, int initialCapacity, double minLoadFactor, double maxLoadFactor) Constructs a matrix with a given number of rows and columns using memory as specified.protected
SparseDoubleMatrix2D
(int rows, int columns, AbstractIntDoubleMap elements, int rowZero, int columnZero, int rowStride, int columnStride) Constructs a view with the given parameters. -
Method Summary
Modifier and TypeMethodDescriptionassign
(double value) Sets all cells to the state specified by value.assign
(DoubleFunction function) Assigns the result of a function to each cell; x[row,col] = function(x[row,col]).assign
(DoubleMatrix2D source) Replaces all cell values of the receiver with the values of another matrix.assign
(DoubleMatrix2D y, DoubleDoubleFunction function) Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).int
Returns the number of cells having non-zero values.void
ensureCapacity
(int minCapacity) Ensures that the receiver can hold at least the specified number of non-zero cells without needing to allocate new internal memory.forEachNonZero
(IntIntDoubleFunction function) Assigns the result of a function to each non-zero cell; x[row,col] = function(x[row,col]).double
getQuick
(int row, int column) Returns the matrix cell value at coordinate [row,column].protected boolean
haveSharedCellsRaw
(DoubleMatrix2D other) Returns true if both matrices share common cells.protected int
index
(int row, int column) Returns the position of the given coordinate within the (virtual or non-virtual) internal 1-dimensional array.like
(int rows, int columns) Construct and returns a new empty matrix of the same dynamic type as the receiver, having the specified number of rows and columns.like1D
(int size) Construct and returns a new 1-d matrix of the corresponding dynamic type, entirelly independent of the receiver.protected DoubleMatrix1D
like1D
(int size, int offset, int stride) Construct and returns a new 1-d matrix of the corresponding dynamic type, sharing the same cells.void
setQuick
(int row, int column, double value) Sets the matrix cell at coordinate [row,column] to the specified value.void
Releases any superfluous memory created by explicitly putting zero values into cells formerly having non-zero values; An application can use this operation to minimize the storage of the receiver.protected DoubleMatrix2D
viewSelectionLike
(int[] rowOffsets, int[] columnOffsets) Construct and returns a new selection view.zMult
(DoubleMatrix1D y, DoubleMatrix1D z, double alpha, double beta, boolean transposeA) Linear algebraic matrix-vector multiplication; z = alpha * A * y + beta*z.zMult
(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB) Linear algebraic matrix-matrix multiplication; C = alpha * A x B + beta*C.Methods inherited from class cern.colt.matrix.DoubleMatrix2D
aggregate, aggregate, assign, copy, equals, equals, get, getContent, getNonZeros, haveSharedCells, like, set, toArray, toString, view, viewColumn, viewColumnFlip, viewDice, viewPart, viewRow, viewRowFlip, viewSelection, viewSelection, viewSorted, viewStrides, zAssign8Neighbors, zMult, zMult, zSum
Methods inherited from class cern.colt.matrix.impl.AbstractMatrix2D
_columnOffset, _columnRank, _rowOffset, _rowRank, checkBox, checkColumn, checkColumnIndexes, checkRow, checkRowIndexes, checkShape, checkShape, columns, rows, setUp, setUp, size, toStringShort, vColumnFlip, vDice, vPart, vRowFlip, vStrides
Methods inherited from class cern.colt.matrix.impl.AbstractMatrix
isView
Methods inherited from class cern.colt.PersistentObject
clone
-
Field Details
-
elements
-
dummy
protected int dummy
-
-
Constructor Details
-
SparseDoubleMatrix2D
public SparseDoubleMatrix2D(double[][] values) Constructs a matrix with a copy of the given values. values is required to have the form values[row][column] and have exactly the same number of columns in every row.The values are copied. So subsequent changes in values are not reflected in the matrix, and vice-versa.
- Parameters:
values
- The values to be filled into the new matrix.- Throws:
IllegalArgumentException
- if for any 1 <= row < values.length: values[row].length != values[row-1].length.
-
SparseDoubleMatrix2D
public SparseDoubleMatrix2D(int rows, int columns) Constructs a matrix with a given number of rows and columns and default memory usage. All entries are initially 0.- Parameters:
rows
- the number of rows the matrix shall have.columns
- the number of columns the matrix shall have.- Throws:
IllegalArgumentException
- if rowsinvalid input: '<'0 || columnsinvalid input: '<'0 || (double)columns*rows > Integer.MAX_VALUE.
-
SparseDoubleMatrix2D
public SparseDoubleMatrix2D(int rows, int columns, int initialCapacity, double minLoadFactor, double maxLoadFactor) Constructs a matrix with a given number of rows and columns using memory as specified. All entries are initially 0. For details related to memory usage seeOpenIntDoubleHashMap
.- Parameters:
rows
- the number of rows the matrix shall have.columns
- the number of columns the matrix shall have.initialCapacity
- the initial capacity of the hash map. If not known, set initialCapacity=0 or small.minLoadFactor
- the minimum load factor of the hash map.maxLoadFactor
- the maximum load factor of the hash map.- Throws:
IllegalArgumentException
- if initialCapacity invalid input: '<' 0 || (minLoadFactor invalid input: '<' 0.0 || minLoadFactor >= 1.0) || (maxLoadFactor invalid input: '<'= 0.0 || maxLoadFactor >= 1.0) || (minLoadFactor >= maxLoadFactor).IllegalArgumentException
- if rowsinvalid input: '<'0 || columnsinvalid input: '<'0 || (double)columns*rows > Integer.MAX_VALUE.
-
SparseDoubleMatrix2D
protected SparseDoubleMatrix2D(int rows, int columns, AbstractIntDoubleMap elements, int rowZero, int columnZero, int rowStride, int columnStride) Constructs a view with the given parameters.- Parameters:
rows
- the number of rows the matrix shall have.columns
- the number of columns the matrix shall have.elements
- the cells.rowZero
- the position of the first element.columnZero
- the position of the first element.rowStride
- the number of elements between two rows, i.e. index(i+1,j)-index(i,j).columnStride
- the number of elements between two columns, i.e. index(i,j+1)-index(i,j).- Throws:
IllegalArgumentException
- if rowsinvalid input: '<'0 || columnsinvalid input: '<'0 || (double)columns*rows > Integer.MAX_VALUE or flip's are illegal.
-
-
Method Details
-
assign
Sets all cells to the state specified by value.- Overrides:
assign
in classDoubleMatrix2D
- Parameters:
value
- the value to be filled into the cells.- Returns:
- this (for convenience only).
-
assign
Assigns the result of a function to each cell; x[row,col] = function(x[row,col]).Example:
matrix = 2 x 2 matrix 0.5 1.5 2.5 3.5 // change each cell to its sine matrix.assign(cern.jet.math.Functions.sin); --> 2 x 2 matrix 0.479426 0.997495 0.598472 -0.350783
For further examples, see the package doc.- Overrides:
assign
in classDoubleMatrix2D
- Parameters:
function
- a function object taking as argument the current cell's value.- Returns:
- this (for convenience only).
- See Also:
-
assign
Replaces all cell values of the receiver with the values of another matrix. Both matrices must have the same number of rows and columns. If both matrices share the same cells (as is the case if they are views derived from the same matrix) and intersect in an ambiguous way, then replaces as if using an intermediate auxiliary deep copy of other.- Overrides:
assign
in classDoubleMatrix2D
- Parameters:
source
- the source matrix to copy from (may be identical to the receiver).- Returns:
- this (for convenience only).
- Throws:
IllegalArgumentException
- if columns() != source.columns() || rows() != source.rows()
-
assign
Description copied from class:DoubleMatrix2D
Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).Example:
// assign x[row,col] = x[row,col]y[row,col] m1 = 2 x 2 matrix 0 1 2 3 m2 = 2 x 2 matrix 0 2 4 6 m1.assign(m2, cern.jet.math.Functions.pow); --> m1 == 2 x 2 matrix 1 1 16 729
For further examples, see the package doc.- Overrides:
assign
in classDoubleMatrix2D
- Parameters:
y
- the secondary matrix to operate on.function
- a function object taking as first argument the current cell's value of this, and as second argument the current cell's value of y,- Returns:
- this (for convenience only).
- See Also:
-
cardinality
public int cardinality()Returns the number of cells having non-zero values.- Overrides:
cardinality
in classDoubleMatrix2D
-
ensureCapacity
public void ensureCapacity(int minCapacity) Ensures that the receiver can hold at least the specified number of non-zero cells without needing to allocate new internal memory. If necessary, allocates new internal memory and increases the capacity of the receiver.This method never need be called; it is for performance tuning only. Calling this method before tt>set()ing a large number of non-zero values boosts performance, because the receiver will grow only once instead of potentially many times and hash collisions get less probable.
- Overrides:
ensureCapacity
in classAbstractMatrix
- Parameters:
minCapacity
- the desired minimum number of non-zero (non-null) cells.minNonZeros
- the desired minimum number of non-zero cells.
-
forEachNonZero
Description copied from class:DoubleMatrix2D
Assigns the result of a function to each non-zero cell; x[row,col] = function(x[row,col]). Use this method for fast special-purpose iteration. If you want to modify another matrix instead of this (i.e. work in read-only mode), simply return the input value unchanged. Parameters to function are as follows: first==row, second==column, third==nonZeroValue.- Overrides:
forEachNonZero
in classDoubleMatrix2D
- Parameters:
function
- a function object taking as argument the current non-zero cell's row, column and value.- Returns:
- this (for convenience only).
-
getQuick
public double getQuick(int row, int column) Returns the matrix cell value at coordinate [row,column].Provided with invalid parameters this method may return invalid objects without throwing any exception. You should only use this method when you are absolutely sure that the coordinate is within bounds. Precondition (unchecked): 0 <= column < columns() invalid input: '&'invalid input: '&' 0 <= row < rows().
- Specified by:
getQuick
in classDoubleMatrix2D
- Parameters:
row
- the index of the row-coordinate.column
- the index of the column-coordinate.- Returns:
- the value at the specified coordinate.
-
index
protected int index(int row, int column) Returns the position of the given coordinate within the (virtual or non-virtual) internal 1-dimensional array.- Overrides:
index
in classAbstractMatrix2D
- Parameters:
row
- the index of the row-coordinate.column
- the index of the column-coordinate.
-
like
Construct and returns a new empty matrix of the same dynamic type as the receiver, having the specified number of rows and columns. For example, if the receiver is an instance of type DenseDoubleMatrix2D the new matrix must also be of type DenseDoubleMatrix2D, if the receiver is an instance of type SparseDoubleMatrix2D the new matrix must also be of type SparseDoubleMatrix2D, etc. In general, the new matrix should have internal parametrization as similar as possible.- Specified by:
like
in classDoubleMatrix2D
- Parameters:
rows
- the number of rows the matrix shall have.columns
- the number of columns the matrix shall have.- Returns:
- a new empty matrix of the same dynamic type.
-
like1D
Construct and returns a new 1-d matrix of the corresponding dynamic type, entirelly independent of the receiver. For example, if the receiver is an instance of type DenseDoubleMatrix2D the new matrix must be of type DenseDoubleMatrix1D, if the receiver is an instance of type SparseDoubleMatrix2D the new matrix must be of type SparseDoubleMatrix1D, etc.- Specified by:
like1D
in classDoubleMatrix2D
- Parameters:
size
- the number of cells the matrix shall have.- Returns:
- a new matrix of the corresponding dynamic type.
-
like1D
Construct and returns a new 1-d matrix of the corresponding dynamic type, sharing the same cells. For example, if the receiver is an instance of type DenseDoubleMatrix2D the new matrix must be of type DenseDoubleMatrix1D, if the receiver is an instance of type SparseDoubleMatrix2D the new matrix must be of type SparseDoubleMatrix1D, etc.- Specified by:
like1D
in classDoubleMatrix2D
- Parameters:
size
- the number of cells the matrix shall have.offset
- the index of the first element.stride
- the number of indexes between any two elements, i.e. index(i+1)-index(i).- Returns:
- a new matrix of the corresponding dynamic type.
-
setQuick
public void setQuick(int row, int column, double value) Sets the matrix cell at coordinate [row,column] to the specified value.Provided with invalid parameters this method may access illegal indexes without throwing any exception. You should only use this method when you are absolutely sure that the coordinate is within bounds. Precondition (unchecked): 0 <= column < columns() invalid input: '&'invalid input: '&' 0 <= row < rows().
- Specified by:
setQuick
in classDoubleMatrix2D
- Parameters:
row
- the index of the row-coordinate.column
- the index of the column-coordinate.value
- the value to be filled into the specified cell.
-
trimToSize
public void trimToSize()Releases any superfluous memory created by explicitly putting zero values into cells formerly having non-zero values; An application can use this operation to minimize the storage of the receiver.Background:
Cells that
- are never set to non-zero values do not use any memory.
- switch from zero to non-zero state do use memory.
- switch back from non-zero to zero state also do use memory. However, their memory can be reclaimed by calling trimToSize().
- Overrides:
trimToSize
in classAbstractMatrix
-
viewSelectionLike
Construct and returns a new selection view.- Specified by:
viewSelectionLike
in classDoubleMatrix2D
- Parameters:
rowOffsets
- the offsets of the visible elements.columnOffsets
- the offsets of the visible elements.- Returns:
- a new view.
-
zMult
public DoubleMatrix1D zMult(DoubleMatrix1D y, DoubleMatrix1D z, double alpha, double beta, boolean transposeA) Description copied from class:DoubleMatrix2D
Linear algebraic matrix-vector multiplication; z = alpha * A * y + beta*z. z[i] = alpha*Sum(A[i,j] * y[j]) + beta*z[i], i=0..A.rows()-1, j=0..y.size()-1. Where A == this.
Note: Matrix shape conformance is checked after potential transpositions.- Overrides:
zMult
in classDoubleMatrix2D
- Parameters:
y
- the source vector.z
- the vector where results are to be stored. Set this parameter to null to indicate that a new result vector shall be constructed.- Returns:
- z (for convenience only).
-
zMult
public DoubleMatrix2D zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB) Description copied from class:DoubleMatrix2D
Linear algebraic matrix-matrix multiplication; C = alpha * A x B + beta*C. C[i,j] = alpha*Sum(A[i,k] * B[k,j]) + beta*C[i,j], k=0..n-1.
Matrix shapes: A(m x n), B(n x p), C(m x p).
Note: Matrix shape conformance is checked after potential transpositions.- Overrides:
zMult
in classDoubleMatrix2D
- Parameters:
B
- the second source matrix.C
- the matrix where results are to be stored. Set this parameter to null to indicate that a new result matrix shall be constructed.- Returns:
- C (for convenience only).
-