Uses of Class
edu.jas.application.Ideal
Packages that use Ideal
-
Uses of Ideal in edu.jas.application
Fields in edu.jas.application declared as IdealModifier and TypeFieldDescription(package private) Ideal
<BigInteger> IntegerProgram.GB
(package private) Ideal
<BigInteger> IntegerProgram.I
IdealWithUniv.ideal
The ideal.LocalRing.ideal
Polynomial ideal for localization.ResidueRing.ideal
Polynomial ideal for the reduction.PrimaryComponent.primary
The primary ideal.Condition.zero
Data structure for condition zero.Methods in edu.jas.application that return IdealModifier and TypeMethodDescriptionIdeal.annihilator
(Ideal<C> H) Annihilator for ideal modulo this ideal.Ideal.annihilator
(GenPolynomial<C> h) Annihilator for element modulo this ideal.Ideal.copy()
Clone this.Ideal.eliminate
(GenPolynomialRing<C> R) Eliminate.Eliminate.Ideal.GB()
Groebner Base.Ideal.getONE()
Get the one ideal.Ideal.getZERO()
Get the zero ideal.Ideal.infiniteQuotient
(Ideal<C> H) Infinite Quotient.Ideal.infiniteQuotient
(GenPolynomial<C> h) Infinite quotient.Ideal.infiniteQuotientOld
(GenPolynomial<C> h) Infinite quotient.Ideal.infiniteQuotientRab
(Ideal<C> H) Infinite Quotient.Ideal.infiniteQuotientRab
(GenPolynomial<C> h) Infinite quotient.Intersection.Ideal.intersect
(GenPolynomialRing<C> R) Intersection.Intersection.Ideal.power
(int d) Power.Ideal.primaryIdeal
(Ideal<C> P) Zero dimensional ideal associated primary ideal.Product.Ideal.product
(GenPolynomial<C> b) Product.Quotient.Ideal.quotient
(GenPolynomial<C> h) Quotient.Ideal.radical()
Ideal radical.Ideal.squarefree()
Radical approximation.Summation.Ideal.sum
(GenPolynomial<C> b) Summation.Ideal.sum
(List<GenPolynomial<C>> L) Summation.Methods in edu.jas.application that return types with arguments of type IdealModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
List<Ideal<C>> IdealWithUniv.asListOfIdeals
(List<IdealWithUniv<C>> Bl) Get list of ideals from list of ideals with univariates.static <C extends GcdRingElem<C>>
Map<Ideal<C>, PolynomialList<GenPolynomial<C>>> PolyUtilApp.productSlice
(PolynomialList<Product<Residue<C>>> L) Product slice.Methods in edu.jas.application with parameters of type IdealModifier and TypeMethodDescriptionIdeal.annihilator
(Ideal<C> H) Annihilator for ideal modulo this ideal.int
Ideal list comparison.static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexAlgebraicRoots<D>> PolyUtilApp.complexAlgebraicRoots
(Ideal<D> I) Construct exact set of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexRoots<D>> PolyUtilApp.complexRoots
(Ideal<D> G, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(Ideal<D> I, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).boolean
Ideal containment.Ideal.infiniteQuotient
(Ideal<C> H) Infinite Quotient.int
Ideal.infiniteQuotientExponent
(GenPolynomial<C> h, Ideal<C> Q) Infinite quotient exponent.Ideal.infiniteQuotientRab
(Ideal<C> H) Infinite Quotient.Intersection.boolean
Ideal.isAnnihilator
(Ideal<C> H, Ideal<C> A) Test for annihilator of ideal modulo this ideal.boolean
Ideal.isAnnihilator
(GenPolynomial<C> h, Ideal<C> A) Test for annihilator of element modulo this ideal.Ideal.primaryIdeal
(Ideal<C> P) Zero dimensional ideal associated primary ideal.Product.Quotient.static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealAlgebraicRoots<D>> PolyUtilApp.realAlgebraicRoots
(Ideal<D> I) Construct exact set of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealRoots<D>> PolyUtilApp.realRoots
(Ideal<D> G, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRootTuples
(Ideal<D> I, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).Summation.Method parameters in edu.jas.application with type arguments of type IdealModifier and TypeMethodDescriptionIntersection.static <C extends GcdRingElem<C>>
StringPolyUtilApp.productSliceToString
(Map<Ideal<C>, PolynomialList<GenPolynomial<C>>> L) Product slice to String.Constructors in edu.jas.application with parameters of type IdealModifierConstructorDescriptionCondition constructor.Condition
(Ideal<C> z, MultiplicativeSet<C> nz) Condition constructor.IdealWithComplexAlgebraicRoots
(Ideal<D> id, List<GenPolynomial<D>> up, List<List<Complex<RealAlgebraicNumber<D>>>> cr) Constructor.IdealWithComplexRoots
(Ideal<C> id, List<GenPolynomial<C>> up, List<List<Complex<BigDecimal>>> cr) Constructor.IdealWithRealAlgebraicRoots
(Ideal<D> id, List<GenPolynomial<D>> up, List<List<RealAlgebraicNumber<D>>> rr) Constructor.IdealWithRealRoots
(Ideal<C> id, List<GenPolynomial<C>> up, List<List<BigDecimal>> rr) Constructor.protected
IdealWithUniv
(Ideal<C> id, List<GenPolynomial<C>> up) Constructor.protected
IdealWithUniv
(Ideal<C> id, List<GenPolynomial<C>> up, List<GenPolynomial<C>> og) Constructor.The constructor creates a LocalRing object from an Ideal.protected
PrimaryComponent
(Ideal<C> q, IdealWithUniv<C> p) Constructor.protected
PrimaryComponent
(Ideal<C> q, IdealWithUniv<C> p, int e) Constructor.ResidueRing
(Ideal<C> i) The constructor creates a ResidueRing object from an Ideal.ResidueRing
(Ideal<C> i, boolean isMaximal) The constructor creates a ResidueRing object from an Ideal.