Uses of Class
edu.jas.poly.Complex
Packages that use Complex
Package
Description
Groebner base application package.
Generic coefficients polynomial package.
Real and Complex Root Computation package.
Unique factorization domain package.
-
Uses of Complex in edu.jas.application
Fields in edu.jas.application declared as ComplexModifier and TypeFieldDescriptionprotected final Complex
<RealAlgebraicNumber<C>> EvaluateToComplexReal.root
Fields in edu.jas.application with type parameters of type ComplexModifier and TypeFieldDescriptionfinal List
<List<Complex<RealAlgebraicNumber<D>>>> IdealWithComplexAlgebraicRoots.can
The list of complex algebraic roots.final List
<List<Complex<BigDecimal>>> IdealWithComplexRoots.croots
The list of complex roots.protected List
<List<Complex<BigDecimal>>> IdealWithComplexAlgebraicRoots.droots
The list of decimal approximations of the complex algebraic roots.protected final GenPolynomialRing
<Complex<RealAlgebraicNumber<C>>> EvaluateToComplexReal.pfac
Methods in edu.jas.application that return ComplexMethods in edu.jas.application that return types with arguments of type ComplexModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersSquarefree
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(Ideal<D> I, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).(package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> p) (package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplexComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<Complex<C>> p) static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.IdealWithComplexAlgebraicRoots.decimalApproximation()
Get decimal approximation of the complex root tuples.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C>>
FactorAbstract<Complex<C>> FactorFactory.getImplementation
(ComplexRing<C> fac) Determine suitable implementation of factorization algorithms, case Complex<C>.Methods in edu.jas.application with parameters of type ComplexModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRootRealCoeff
(GenPolynomial<C> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <D extends GcdRingElem<D> & Rational>
StringPolyUtilApp.toString
(Complex<RealAlgebraicNumber<D>> c) String representation of a deximal approximation of a complex number.static <D extends GcdRingElem<D> & Rational>
StringString representation of a deximal approximation of a complex number.Method parameters in edu.jas.application with type arguments of type ComplexModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersSquarefree
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.(package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> p) (package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplexComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<Complex<C>> p) (package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplexComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<Complex<C>> p) static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.EvaluateToComplexReal.eval
(GenPolynomial<Complex<C>> c) static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static boolean
PolyUtilApp.isComplexRoots
(List<GenPolynomial<Complex<BigDecimal>>> L, List<List<Complex<BigDecimal>>> roots, BigDecimal eps) Test for complex roots of zero dimensional ideal(L).static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, List<Complex<RealAlgebraicNumber<C>>> R) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, List<Complex<RealAlgebraicNumber<C>>> R) Is complex algebraic number a root of a polynomial.Constructors in edu.jas.application with parameters of type ComplexModifierConstructorDescriptionEvaluateToComplexReal
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> fac, Complex<RealAlgebraicNumber<C>> r) Constructor parameters in edu.jas.application with type arguments of type ComplexModifierConstructorDescriptionEvaluateToComplexReal
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> fac, Complex<RealAlgebraicNumber<C>> r) IdealWithComplexAlgebraicRoots
(IdealWithUniv<D> iu, List<List<Complex<RealAlgebraicNumber<D>>>> cr) Constructor.IdealWithComplexRoots
(IdealWithUniv<C> iu, List<List<Complex<BigDecimal>>> cr) Constructor. -
Uses of Complex in edu.jas.poly
Methods in edu.jas.poly that return ComplexModifier and TypeMethodDescriptionComplex.abs()
Complex number absolute value.Complex.conjugate()
Complex number conjugate.Complex.copy()
Copy this.Copy Complex element c.Complex number divide.Complex extended greatest common divisor.AlgebToCompl.eval
(AlgebraicNumber<C> a) ComplexRing.fromInteger
(long a) Get a Complex element from a long.ComplexRing.fromInteger
(BigInteger a) Get a Complex element from a BigInteger.Complex number greatest common divisor.ComplexRing.getIMAG()
Get the i element.ComplexRing.getONE()
Get the one element.ComplexRing.getZERO()
Get the zero element.Complex.inverse()
Complex number inverse.Complex number product.Complex.negate()
Complex number negative.Complex.norm()
Complex number norm.Parse complex number from Reader.Parse complex number from string.Complex.quotientRemainder
(Complex<C> S) Complex number quotient and remainder.ComplexRing.random
(int n) Complex number random.Complex number random.Complex number remainder.Complex number subtract.Complex number summation.Methods in edu.jas.poly that return types with arguments of type ComplexModifier and TypeMethodDescriptionstatic <C extends RingElem<C> & Rational>
GenPolynomial<Complex<BigDecimal>> PolyUtil.complexDecimalFromRational
(GenPolynomialRing<Complex<BigDecimal>> fac, GenPolynomial<Complex<C>> A) Convert to complex decimal coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAlgebraic
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<AlgebraicNumber<C>> A) Complex from algebraic coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAny
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from ring element coefficients.ComplexRing.generators()
Get a list of the generating elements.static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.toComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from real polynomial.Methods in edu.jas.poly with parameters of type ComplexModifier and TypeMethodDescriptionint
Since complex numbers are unordered, we use lexicographical order of re and im.Copy Complex element c.Complex number divide.Complex extended greatest common divisor.Complex number greatest common divisor.Complex number product.Complex.quotientRemainder
(Complex<C> S) Complex number quotient and remainder.Complex number remainder.Complex number subtract.Complex number summation.Method parameters in edu.jas.poly with type arguments of type ComplexModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.algebraicFromComplex
(GenPolynomialRing<AlgebraicNumber<C>> fac, GenPolynomial<Complex<C>> A) AlgebraicNumber from complex coefficients.static <C extends RingElem<C> & Rational>
GenPolynomial<Complex<BigDecimal>> PolyUtil.complexDecimalFromRational
(GenPolynomialRing<Complex<BigDecimal>> fac, GenPolynomial<Complex<C>> A) Convert to complex decimal coefficients.static <C extends RingElem<C> & Rational>
GenPolynomial<Complex<BigDecimal>> PolyUtil.complexDecimalFromRational
(GenPolynomialRing<Complex<BigDecimal>> fac, GenPolynomial<Complex<C>> A) Convert to complex decimal coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAlgebraic
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<AlgebraicNumber<C>> A) Complex from algebraic coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAny
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from ring element coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.imaginaryPartFromComplex
(GenPolynomialRing<C> fac, GenPolynomial<Complex<C>> A) Imaginary part.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.realPartFromComplex
(GenPolynomialRing<C> fac, GenPolynomial<Complex<C>> A) Real part.static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.toComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from real polynomial.Constructor parameters in edu.jas.poly with type arguments of type ComplexModifierConstructorDescriptionCompRatToDec
(RingFactory<Complex<BigDecimal>> ring) ToComplex
(RingFactory<Complex<C>> fac) -
Uses of Complex in edu.jas.root
Fields in edu.jas.root declared as ComplexFields in edu.jas.root with type parameters of type ComplexModifier and TypeFieldDescriptionfinal GenPolynomial
<Complex<C>> Boundary.A
Polynomial.final AlgebraicNumberRing
<Complex<C>> ComplexAlgebraicRing.algebraic
Representing AlgebraicNumberRing.final List
<Complex<BigDecimal>> DecimalRoots.complex
complex decimal roots.final GenPolynomial
<Complex<C>> AlgebraicRoots.cp
Univariate polynomial with complex coefficients equivalent to p.final GenPolynomial
<Complex<C>> DecimalRoots.cp
univariate polynomial with complex coefficients.final Squarefree
<Complex<C>> ComplexRootsAbstract.engine
Engine for square free decomposition.final AlgebraicNumber
<Complex<C>> ComplexAlgebraicNumber.number
Representing AlgebraicNumber.protected final AlgebraicNumber
<Complex<C>> CoeffToComplex.zero
protected final AlgebraicNumber
<Complex<C>> CoeffToComplexFromComplex.zero
Methods in edu.jas.root that return ComplexModifier and TypeMethodDescriptionComplexRootsAbstract.approximateRoot
(Rectangle<C> rt, GenPolynomial<Complex<C>> f, BigRational eps) Approximate complex root.ComplexRootsAbstract.complexMagnitude
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g, BigRational eps) Complex algebraic number magnitude.ComplexRootsAbstract.complexRectangleMagnitude
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g) Complex algebraic number magnitude.Complex[]
ComplexRootsAbstract.copyOfComplex
(Complex[] original, int newLength) Copy the specified array.ComplexAlgebraicNumber.decimalMagnitude()
ComplexAlgebraicNumber magnitude.Rectangle.getCenter()
Complex center.Rectangle.getDecimalCenter()
Complex of BigDecimal approximation of center.Rectangle.getNE()
Get north east corner.Rectangle.getNW()
Get north west corner.Rectangle.getRationalCenter()
Complex of BigRational approximation of center.Rectangle.getSE()
Get south east corner.Rectangle.getSW()
Get south west corner.ComplexAlgebraicNumber.magnitude()
ComplexAlgebraicNumber magnitude.Rectangle.randomPoint()
Random point of recatangle.ComplexRoots.rootBound
(GenPolynomial<Complex<C>> f) Root bound.ComplexRootsAbstract.rootBound
(GenPolynomial<Complex<C>> f) Root bound.Methods in edu.jas.root that return types with arguments of type ComplexModifier and TypeMethodDescriptionComplexRootsAbstract.approximateRoots
(GenPolynomial<Complex<C>> a, BigRational eps) List of decimal approximations of complex roots of complex polynomial.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<C>> PolyUtilRoot.complexFromAny
(GenPolynomial<C> f) Convert to Complex coefficients.static <C extends GcdRingElem<C> & Rational>
List<Complex<BigDecimal>> RootFactory.filterOutRealRoots
(GenPolynomial<C> f, List<Complex<BigDecimal>> c, List<BigDecimal> r, BigRational eps) Filter real roots from complex roots.Methods in edu.jas.root with parameters of type ComplexModifier and TypeMethodDescriptionboolean
Contains a point.Complex[]
ComplexRootsAbstract.copyOfComplex
(Complex[] original, int newLength) Copy the specified array.Rectangle.exchangeNE
(Complex<C> c) Exchange NE corner.Rectangle.exchangeNW
(Complex<C> c) Exchange NW corner.Rectangle.exchangeSE
(Complex<C> c) Exchange SE corner.Rectangle.exchangeSW
(Complex<C> c) Exchange SW corner.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRealRoot
(GenPolynomial<C> f, Complex<BigDecimal> c, BigDecimal r, BigRational eps) Is complex decimal number a real root of a polynomial.ComplexAlgebraicNumber multiplication.ComplexAlgebraicNumber summation.Get decimal approximation.Method parameters in edu.jas.root with type arguments of type ComplexModifier and TypeMethodDescriptionComplexRootsAbstract.approximateRoot
(Rectangle<C> rt, GenPolynomial<Complex<C>> f, BigRational eps) Approximate complex root.ComplexRootsAbstract.approximateRoots
(GenPolynomial<Complex<C>> a, BigRational eps) List of decimal approximations of complex roots of complex polynomial.int
ComplexAlgebraicNumber.compareTo
(AlgebraicNumber<Complex<C>> b) ComplexAlgebraicNumber comparison.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f, BigRational eps) Complex algebraic numbers.ComplexRootsAbstract.complexMagnitude
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g, BigRational eps) Complex algebraic number magnitude.ComplexRootsAbstract.complexRectangleMagnitude
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g) Complex algebraic number magnitude.long
ComplexRoots.complexRootCount
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) Complex root count of complex polynomial on rectangle.abstract long
ComplexRootsAbstract.complexRootCount
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) Complex root count of complex polynomial on rectangle.long
ComplexRootsSturm.complexRootCount
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) Complex root count of complex polynomial on rectangle.ComplexRoots.complexRootRefinement
(Rectangle<C> rect, GenPolynomial<Complex<C>> a, BigRational len) Complex root refinement of complex polynomial a on rectangle.ComplexRootsAbstract.complexRootRefinement
(Rectangle<C> rect, GenPolynomial<Complex<C>> a, BigRational len) Complex root refinement of complex polynomial a on rectangle.ComplexRoots.complexRoots
(GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial.ComplexRoots.complexRoots
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial a on rectangle.ComplexRootsAbstract.complexRoots
(GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial.ComplexRootsAbstract.complexRoots
(GenPolynomial<Complex<C>> a, BigRational len) List of complex roots of complex polynomial.ComplexRootsAbstract.complexRoots
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial a on rectangle.ComplexRootsSturm.complexRoots
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial a on rectangle.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>> PolyUtilRoot.convertToComplexCoefficientsFromComplex
(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<Complex<C>> A) Convert to ComplexAlgebraicNumber coefficients.ComplexRootsSturm.excludeZero
(Rectangle<C> rect, GenPolynomial<Complex<C>> f) Exclude zero.static <C extends GcdRingElem<C> & Rational>
List<Complex<BigDecimal>> RootFactory.filterOutRealRoots
(GenPolynomial<C> f, List<Complex<BigDecimal>> c, List<BigDecimal> r, BigRational eps) Filter real roots from complex roots.ComplexRootsAbstract.invariantMagnitudeRectangle
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g, BigRational eps) Invariant rectangle for algebraic number magnitude.ComplexRootsAbstract.invariantRectangle
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g) Invariant rectangle for algebraic number.ComplexRootsSturm.invariantRectangle
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g) Invariant rectangle for algebraic number.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRootComplex
(GenPolynomial<Complex<C>> f, ComplexAlgebraicNumber<C> r) Is complex algebraic number a root of a complex polynomial.ComplexRootsAbstract.magnitudeBound
(Rectangle<C> rect, GenPolynomial<Complex<C>> f) Magnitude bound.ComplexAlgebraicNumber.multiply
(GenPolynomial<Complex<C>> c) ComplexAlgebraicNumber multiplication.RootUtil.parseRectangle
(RingFactory<Complex<C>> fac, String s) Parse rectangle for a complex root from String.ComplexRoots.rootBound
(GenPolynomial<Complex<C>> f) Root bound.ComplexRootsAbstract.rootBound
(GenPolynomial<Complex<C>> f) Root bound.ComplexAlgebraicNumber.sum
(AlgebraicNumber<Complex<C>> c) ComplexAlgebraicNumber summation.ComplexAlgebraicNumber.sum
(GenPolynomial<Complex<C>> c) ComplexAlgebraicNumber summation.long
ComplexRootsSturm.windingNumber
(Rectangle<C> rect, GenPolynomial<Complex<C>> A) Winding number of complex function A on rectangle.Constructors in edu.jas.root with parameters of type ComplexModifierConstructorDescriptionConstructor.(package private)
Constructor.Constructor.Constructor.Constructor parameters in edu.jas.root with type arguments of type ComplexModifierConstructorDescriptionConstructor.protected
Boundary
(Rectangle<C> r, GenPolynomial<Complex<C>> p, GenPolynomial<Complex<C>>[] b) Constructor.The constructor creates a ComplexAlgebraicNumber object from ComplexAlgebraicRing modul and a AlgebraicNumber value.The constructor creates a ComplexAlgebraicNumber object from ComplexAlgebraicRing modul and a GenPolynomial value.ComplexAlgebraicRing
(GenPolynomial<Complex<C>> m, Rectangle<C> root) The constructor creates a ComplexAlgebraicNumber factory object from a GenPolynomial objects module.ComplexAlgebraicRing
(GenPolynomial<Complex<C>> m, Rectangle<C> root, boolean isField) The constructor creates a ComplexAlgebraicNumber factory object from a GenPolynomial objects module.Constructor.ComplexRootsSturm
(RingFactory<Complex<C>> cf) Constructor. -
Uses of Complex in edu.jas.ufd
Methods in edu.jas.ufd that return types with arguments of type ComplexModifier and TypeMethodDescriptionFactorComplex.baseFactorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorComplex.factorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial factorization of a squarefree polynomial.static <C extends GcdRingElem<C>>
FactorAbstract<Complex<C>> FactorFactory.getImplementation
(ComplexRing<C> fac) Determine suitable implementation of factorization algorithms, case Complex<C>.Method parameters in edu.jas.ufd with type arguments of type ComplexModifier and TypeMethodDescriptionFactorComplex.baseFactorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorComplex.factorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial factorization of a squarefree polynomial.Constructor parameters in edu.jas.ufd with type arguments of type Complex