Uses of Class
edu.jas.poly.AlgebraicNumber
Packages that use AlgebraicNumber
Package
Description
Groebner base application package.
Elementary Integration package.
Generic coefficients polynomial package.
Real and Complex Root Computation package.
Unique factorization domain package.
Unique Factorization Domain and Roots package.
-
Uses of AlgebraicNumber in edu.jas.application
Fields in edu.jas.application declared as AlgebraicNumberModifier and TypeFieldDescriptionprotected final AlgebraicNumber
<C> CoeffConvertAlg.A
protected final AlgebraicNumber
<C> CoeffRecConvertAlg.A
final AlgebraicNumber
<C> PrimitiveElement.A
The representation of the first algebraic element in the new ring.protected final AlgebraicNumber
<C> CoeffRecConvertAlg.B
final AlgebraicNumber
<C> PrimitiveElement.B
The representation of the second algebraic element in the new ring.Fields in edu.jas.application with type parameters of type AlgebraicNumberModifier and TypeFieldDescriptionfinal List
<AlgebraicNumber<C>> AlgebraicRootsPrimElem.runit
Roots of unity of primitive element origin representations.Methods in edu.jas.application that return AlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumber<AlgebraicNumber<C>> a) Convert to primitive element ring.CoeffConvertAlg.eval
(AlgebraicNumber<C> c) CoeffRecConvertAlg.eval
(AlgebraicNumber<AlgebraicNumber<C>> c) Methods in edu.jas.application that return types with arguments of type AlgebraicNumberModifier and TypeMethodDescriptionFactorAlgebraicPrim.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a) Convert coefficients to primitive element ring.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>> FactorFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.Methods in edu.jas.application with parameters of type AlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumber<AlgebraicNumber<C>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a) Convert coefficients to primitive element ring.CoeffConvertAlg.eval
(AlgebraicNumber<C> c) CoeffRecConvertAlg.eval
(AlgebraicNumber<AlgebraicNumber<C>> c) Method parameters in edu.jas.application with type arguments of type AlgebraicNumberModifier and TypeMethodDescriptionFactorAlgebraicPrim.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a) Convert coefficients to primitive element ring.CoeffRecConvertAlg.eval
(AlgebraicNumber<AlgebraicNumber<C>> c) static <C extends GcdRingElem<C>>
PrimitiveElement<C> PolyUtilApp.primitiveElement
(AlgebraicNumberRing<AlgebraicNumber<C>> b) Construct primitive element for double field extension.Constructors in edu.jas.application with parameters of type AlgebraicNumberModifierConstructorDescriptionCoeffConvertAlg
(AlgebraicNumberRing<C> fac, AlgebraicNumber<C> a) CoeffRecConvertAlg
(AlgebraicNumberRing<C> fac, AlgebraicNumber<C> a, AlgebraicNumber<C> b) protected
PrimitiveElement
(AlgebraicNumberRing<C> pe, AlgebraicNumber<C> A, AlgebraicNumber<C> B) Constructor.protected
PrimitiveElement
(AlgebraicNumberRing<C> pe, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumberRing<C> ar, AlgebraicNumberRing<C> br) Constructor.Constructor parameters in edu.jas.application with type arguments of type AlgebraicNumberModifierConstructorDescriptionAlgebraicRootsPrimElem
(AlgebraicRoots<C> ar, PrimitiveElement<C> pe, List<AlgebraicNumber<C>> ru) Constructor. -
Uses of AlgebraicNumber in edu.jas.integrate
Fields in edu.jas.integrate with type parameters of type AlgebraicNumberModifier and TypeFieldDescriptionfinal List
<GenPolynomial<AlgebraicNumber<C>>> LogIntegral.adenom
List of factors of the denominator with coefficients from an AlgebraicNumberRing<C>.final List
<AlgebraicNumber<C>> LogIntegral.afactors
List of algebraic numbers of an algebraic field extension over C. -
Uses of AlgebraicNumber in edu.jas.poly
Fields in edu.jas.poly declared as AlgebraicNumberMethods in edu.jas.poly that return AlgebraicNumberModifier and TypeMethodDescriptionAlgebraicNumber.abs()
AlgebraicNumber absolute value.AlgebraicNumberRing.chineseRemainder
(AlgebraicNumber<C> c, AlgebraicNumber<C> ci, AlgebraicNumber<C> a) AlgebraicNumber chinese remainder algorithm.AlgebraicNumber.copy()
Copy this.AlgebraicNumberRing.copy
(AlgebraicNumber<C> c) Copy AlgebraicNumber element c.AlgebraicNumber.divide
(AlgebraicNumber<C> S) AlgebraicNumber division.AlgebraicNumber<C>[]
AlgebraicNumber.egcd
(AlgebraicNumber<C> S) AlgebraicNumber extended greatest common divisor.PolyToAlg.eval
(GenPolynomial<C> c) AlgebraicNumberRing.fillFromInteger
(long a) Get a AlgebraicNumber element from a long value.AlgebraicNumberRing.fillFromInteger
(BigInteger a) Get an AlgebraicNumber element from a BigInteger value.AlgebraicNumberRing.fromInteger
(long a) Get a AlgebraicNumber element from a long value.AlgebraicNumberRing.fromInteger
(BigInteger a) Get a AlgebraicNumber element from a BigInteger value.AlgebraicNumber.gcd
(AlgebraicNumber<C> S) AlgebraicNumber greatest common divisor.AlgebraicNumberRing.getGenerator()
Get the generating element.AlgebraicNumberRing.getONE()
Get the one element.AlgebraicNumberRing.getZERO()
Get the zero element.AlgebraicNumberRing.interpolate
(AlgebraicNumber<C> c, C ci, C am, C a) AlgebraicNumber interpolation algorithm.AlgebraicNumber.inverse()
AlgebraicNumber inverse.AlgebraicNumber.monic()
AlgebraicNumber monic.AlgebraicNumber multiplication.AlgebraicNumber.multiply
(AlgebraicNumber<C> S) AlgebraicNumber multiplication.AlgebraicNumber.multiply
(GenPolynomial<C> c) AlgebraicNumber multiplication.AlgebraicNumber.negate()
AlgebraicNumber negate.AlgebraicNumberIterator.next()
Get next tuple.Parse AlgebraicNumber from Reader.Parse AlgebraicNumber from String.AlgebraicNumber<C>[]
AlgebraicNumber.quotientRemainder
(AlgebraicNumber<C> S) Quotient and remainder by division of this by S.AlgebraicNumberRing.random
(int n) AlgebraicNumber random.AlgebraicNumber random.AlgebraicNumber.remainder
(AlgebraicNumber<C> S) AlgebraicNumber remainder.AlgebraicNumber.subtract
(AlgebraicNumber<C> S) AlgebraicNumber subtraction.AlgebraicNumber summation.AlgebraicNumber.sum
(AlgebraicNumber<C> S) AlgebraicNumber summation.AlgebraicNumber.sum
(GenPolynomial<C> c) AlgebraicNumber summation.Methods in edu.jas.poly that return types with arguments of type AlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.algebraicFromComplex
(GenPolynomialRing<AlgebraicNumber<C>> fac, GenPolynomial<Complex<C>> A) AlgebraicNumber from complex coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive AlgebraicNumber coefficients.AlgebraicNumberRing.generators()
Get a list of the generating elements.AlgebraicNumberRing.iterator()
Get a AlgebraicNumber iterator.Methods in edu.jas.poly with parameters of type AlgebraicNumberModifier and TypeMethodDescriptionAlgebraicNumberRing.chineseRemainder
(AlgebraicNumber<C> c, AlgebraicNumber<C> ci, AlgebraicNumber<C> a) AlgebraicNumber chinese remainder algorithm.int
AlgebraicNumber.compareTo
(AlgebraicNumber<C> b) AlgebraicNumber comparison.AlgebraicNumberRing.copy
(AlgebraicNumber<C> c) Copy AlgebraicNumber element c.AlgebraicNumber.divide
(AlgebraicNumber<C> S) AlgebraicNumber division.AlgebraicNumber<C>[]
AlgebraicNumber.egcd
(AlgebraicNumber<C> S) AlgebraicNumber extended greatest common divisor.AlgebToCompl.eval
(AlgebraicNumber<C> a) AlgToPoly.eval
(AlgebraicNumber<C> c) AlgebraicNumber.gcd
(AlgebraicNumber<C> S) AlgebraicNumber greatest common divisor.AlgebraicNumberRing.interpolate
(AlgebraicNumber<C> c, C ci, C am, C a) AlgebraicNumber interpolation algorithm.AlgebraicNumber.multiply
(AlgebraicNumber<C> S) AlgebraicNumber multiplication.AlgebraicNumber<C>[]
AlgebraicNumber.quotientRemainder
(AlgebraicNumber<C> S) Quotient and remainder by division of this by S.AlgebraicNumber.remainder
(AlgebraicNumber<C> S) AlgebraicNumber remainder.AlgebraicNumber.subtract
(AlgebraicNumber<C> S) AlgebraicNumber subtraction.AlgebraicNumber.sum
(AlgebraicNumber<C> S) AlgebraicNumber summation.Method parameters in edu.jas.poly with type arguments of type AlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.algebraicFromComplex
(GenPolynomialRing<AlgebraicNumber<C>> fac, GenPolynomial<Complex<C>> A) AlgebraicNumber from complex coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAlgebraic
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<AlgebraicNumber<C>> A) Complex from algebraic coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.fromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) From AlgebraicNumber coefficients. -
Uses of AlgebraicNumber in edu.jas.root
Fields in edu.jas.root declared as AlgebraicNumberModifier and TypeFieldDescriptionfinal AlgebraicNumber
<Complex<C>> ComplexAlgebraicNumber.number
Representing AlgebraicNumber.final AlgebraicNumber
<C> RealAlgebraicNumber.number
Representing AlgebraicNumber.protected final AlgebraicNumber
<Complex<C>> CoeffToComplex.zero
protected final AlgebraicNumber
<Complex<C>> CoeffToComplexFromComplex.zero
protected final AlgebraicNumber
<C> CoeffToReal.zero
Methods in edu.jas.root that return AlgebraicNumberMethods in edu.jas.root that return types with arguments of type AlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<AlgebraicNumber<C>> PolyUtilRoot.algebraicFromRealCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to AlgebraicNumber coefficients.Methods in edu.jas.root with parameters of type AlgebraicNumberModifier and TypeMethodDescriptionint
ComplexAlgebraicNumber.compareTo
(AlgebraicNumber<Complex<C>> b) ComplexAlgebraicNumber comparison.int
RealAlgebraicNumber.compareTo
(AlgebraicNumber<C> b) RealAlgebraicNumber comparison.RealFromAlgCoeff.eval
(AlgebraicNumber<C> c) ComplexAlgebraicNumber.sum
(AlgebraicNumber<Complex<C>> c) ComplexAlgebraicNumber summation.Method parameters in edu.jas.root with type arguments of type AlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<AlgebraicNumber<C>> PolyUtilRoot.algebraicFromRealCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.realFromAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.Constructors in edu.jas.root with parameters of type AlgebraicNumberModifierConstructorDescriptionThe constructor creates a ComplexAlgebraicNumber object from ComplexAlgebraicRing modul and a AlgebraicNumber value.The constructor creates a RealAlgebraicNumber object from RealAlgebraicRing modul and a AlgebraicNumber value. -
Uses of AlgebraicNumber in edu.jas.ufd
Fields in edu.jas.ufd with type parameters of type AlgebraicNumberModifier and TypeFieldDescriptionfinal List
<GenPolynomial<AlgebraicNumber<C>>> PartialFraction.adenom
List of factors of the denominator with coefficients from an AlgebraicNumberRing<C>.final List
<GenPolynomial<AlgebraicNumber<C>>> Factors.afactors
List of factors with coefficients from AlgebraicNumberRing<C>.final List
<AlgebraicNumber<C>> PartialFraction.afactors
List of algebraic numbers of an algebraic field extension over C.final GenPolynomial
<AlgebraicNumber<C>> Factors.apoly
Original polynomial to be factored with coefficients from AlgebraicNumberRing<C>.final List
<Factors<AlgebraicNumber<C>>> Factors.arfactors
List of factors with coefficients from AlgebraicNumberRing<AlgebraicNumber<C>>.final FactorAbstract
<AlgebraicNumber<C>> FactorComplex.factorAlgeb
Factorization engine for algebraic coefficients.Methods in edu.jas.ufd that return types with arguments of type AlgebraicNumberModifier and TypeMethodDescriptionFactorAlgebraic.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.SquarefreeInfiniteAlgebraicFieldCharP.baseRootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root univariate polynomial.FactorAlgebraic.factorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial factorization of a squarefree polynomial.Factors.getFactor
(GenPolynomial<AlgebraicNumber<C>> p) Get the factor for polynomial.Factors.getFactors()
Get the list of factors at one level.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>> FactorFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
SquarefreeAbstract<AlgebraicNumber<C>> SquarefreeFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of squarefree factorization algorithms, case AlgebraicNumber<C>.SquarefreeInfiniteAlgebraicFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<AlgebraicNumber<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteAlgebraicFieldCharP.rootCharacteristic
(AlgebraicNumber<C> P) Characteristics root of a AlgebraicNumber.SquarefreeInfiniteAlgebraicFieldCharP.rootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root main variable.SquarefreeInfiniteAlgebraicFieldCharP.squarefreeFactors
(AlgebraicNumber<C> P) Squarefree factors of a AlgebraicNumber.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUfdUtil.substituteConvertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A, long k) Convert to AlgebraicNumber coefficients.Methods in edu.jas.ufd with parameters of type AlgebraicNumberModifier and TypeMethodDescriptionSquarefreeInfiniteAlgebraicFieldCharP.rootCharacteristic
(AlgebraicNumber<C> P) Characteristics root of a AlgebraicNumber.SquarefreeInfiniteAlgebraicFieldCharP.squarefreeFactors
(AlgebraicNumber<C> P) Squarefree factors of a AlgebraicNumber.Method parameters in edu.jas.ufd with type arguments of type AlgebraicNumberModifier and TypeMethodDescriptionFactorAlgebraic.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.SquarefreeInfiniteAlgebraicFieldCharP.baseRootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root univariate polynomial.FactorAlgebraic.factorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial factorization of a squarefree polynomial.Factors.getFactor
(GenPolynomial<AlgebraicNumber<C>> p) Get the factor for polynomial.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A) Norm of a polynomial with AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A, long k) Norm of a polynomial with AlgebraicNumber coefficients.SquarefreeInfiniteAlgebraicFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<AlgebraicNumber<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteAlgebraicFieldCharP.rootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root main variable.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUfdUtil.substituteConvertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A, long k) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.substituteFromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A, long k) From AlgebraicNumber coefficients.Constructor parameters in edu.jas.ufd with type arguments of type AlgebraicNumberModifierConstructorDescriptionFactorComplex
(ComplexRing<C> fac, FactorAbstract<AlgebraicNumber<C>> factorAlgeb) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact, List<Factors<AlgebraicNumber<C>>> arfact) Constructor.Constructor. -
Uses of AlgebraicNumber in edu.jas.ufdroot
Fields in edu.jas.ufdroot with type parameters of type AlgebraicNumberModifier and TypeFieldDescriptionfinal FactorAbstract
<AlgebraicNumber<C>> FactorRealAlgebraic.factorAlgebraic
Factorization engine for base coefficients.Constructor parameters in edu.jas.ufdroot with type arguments of type AlgebraicNumberModifierConstructorDescriptionFactorRealAlgebraic
(RealAlgebraicRing<C> fac, FactorAbstract<AlgebraicNumber<C>> factorAlgebraic) Constructor.