Interface Matrix2D<N extends Comparable<N>,M extends Matrix2D<N,M>>

All Superinterfaces:
Access1D<N>, Access1D.Aggregatable<N>, Access2D<N>, Access2D.Aggregatable<N>, Group, Group.Additive<M>, NormedVectorSpace<M,N>, Operation, Operation.Addition<M>, Operation.Multiplication<M>, Operation.Subtraction<M>, ScalarOperation, ScalarOperation.Addition<M,N>, ScalarOperation.Division<M,N>, ScalarOperation.Multiplication<M,N>, ScalarOperation.Subtraction<M,N>, Structure1D, Structure2D, VectorSpace<M,N>
All Known Subinterfaces:
DecompositionStore<N>, MatrixStore<N>, PhysicalStore<N>
All Known Implementing Classes:
AboveBelowStore, AbstractStore, BasicMatrix, ColumnsStore, ColumnsSupplier, ComposingStore, ConjugatedStore, DiagonalStore, FactoryStore, GenericStore, IdentityStore, ImageData, ImageData.SingleChannel, IterativeASS.SchurComplementSolver, LeftRightStore, LimitStore, LogicalStore, LowerHessenbergStore, LowerSymmetricStore, LowerTriangularStore, MatrixC128, MatrixH256, MatrixQ128, MatrixR032, MatrixR064, MatrixR128, OffsetStore, R032Store, R064Store, RawStore, RepeatedColumnsStore, RepeatedRowsStore, RowsStore, RowsSupplier, SelectingStore, ShadingStore, SingleStore, SparseStore, SuperimposedStore, TransjugatedStore, TransposedStore, UnaryOperatoStore, UpperHessenbergStore, UpperSymmetricStore, UpperTriangularStore, WrapperStore, ZeroStore

public interface Matrix2D<N extends Comparable<N>,M extends Matrix2D<N,M>> extends Access2D<N>, Access2D.Aggregatable<N>, NormedVectorSpace<M,N>, Operation.Subtraction<M>, Operation.Multiplication<M>, ScalarOperation.Addition<M,N>, ScalarOperation.Subtraction<M,N>, ScalarOperation.Division<M,N>
Definition of what's common to BasicMatrix and MatrixStore. At this point, at least, it is not recommended to write any code in terms of this interface. It's relatively new, the definition may change, and it may even be removed again.
  • Method Details

    • equals

      default boolean equals(Access2D<?> another, NumberContext accuracy)
      Returns:
      true if the same size/shape and elements are equal to the given accuracy. norm of the difference between [this] and [another] is zero within the limits of [precision].
    • toScalar

      Scalar<N> toScalar(int row, int col)
      Extracts one element of this matrix as a Scalar.
      Parameters:
      row - A row index.
      col - A column index.
      Returns:
      One matrix element as a Scalar.
    • transpose

      M transpose()