Uses of Class
edu.jas.application.IdealWithUniv
Packages that use IdealWithUniv
-
Uses of IdealWithUniv in edu.jas.application
Subclasses of IdealWithUniv in edu.jas.applicationModifier and TypeClassDescriptionclass
IdealWithComplexAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and complex algebraic roots.(package private) class
IdealWithComplexRoots<C extends GcdRingElem<C>>
Container for Ideals together with univariate polynomials and complex roots.class
IdealWithRealAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and real algebraic roots.class
IdealWithRealRoots<C extends GcdRingElem<C>>
Container for Ideals together with univariate polynomials and real roots.Fields in edu.jas.application declared as IdealWithUnivModifier and TypeFieldDescriptionfinal IdealWithUniv
<C> PrimaryComponent.prime
The associated prime ideal.(package private) final IdealWithUniv
<C> RealAlgebraicRing.univs
Representing ideal with univariate polynomials IdealWithUniv.Methods in edu.jas.application that return IdealWithUnivModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
IdealWithUniv<C> Ideal.contraction
(IdealWithUniv<Quotient<C>> eid) Ideal contraction.Ideal.extension
(GenPolynomialRing<C> efac) Ideal extension.Ideal.extension
(QuotientRing<C> qfac) Ideal extension.Ideal extension.Ideal.normalPositionFor
(int i, int j, List<GenPolynomial<C>> og) Compute normal position for variables i and j.(package private) IdealWithUniv
<C> Ideal.normalPositionForChar0
(int i, int j, List<GenPolynomial<C>> og) Compute normal position for variables i and j, characteristic zero.(package private) IdealWithUniv
<C> Ideal.normalPositionForCharP
(int i, int j, List<GenPolynomial<C>> og) Compute normal position for variables i and j, positive characteristic.Ideal.permContraction
(IdealWithUniv<Quotient<C>> eideal) Ideal contraction and permutation.static <C extends GcdRingElem<C>>
IdealWithUniv<C> Ideal.permutation
(GenPolynomialRing<C> oring, IdealWithUniv<C> Cont) Ideal permutation.Methods in edu.jas.application that return types with arguments of type IdealWithUnivModifier and TypeMethodDescriptionIdeal.decomposition()
Ideal irreducible decomposition.Ideal.primeDecomposition()
Ideal prime decomposition.Ideal.radicalDecomposition()
Ideal radical decomposition.Ideal.zeroDimDecomposition()
Zero dimensional ideal irreducible decomposition.Ideal.zeroDimDecompositionExtension
(List<GenPolynomial<C>> upol, List<GenPolynomial<C>> og) Zero dimensional ideal irreducible decomposition extension.Ideal.zeroDimElimination
(List<IdealWithUniv<C>> pdec) Zero dimensional ideal elimination to original ring.Ideal.zeroDimPrimeDecomposition()
Zero dimensional ideal prime decomposition.Ideal.zeroDimPrimeDecompositionFE()
Zero dimensional ideal prime decomposition, with field extension.Ideal.zeroDimRadicalDecomposition()
Zero dimensional radical decomposition.Ideal.zeroDimRootDecomposition()
Zero dimensional ideal decomposition for real roots.Methods in edu.jas.application with parameters of type IdealWithUnivModifier and TypeMethodDescriptionstatic <D extends GcdRingElem<D> & Rational>
IdealWithComplexAlgebraicRoots<D> PolyUtilApp.complexAlgebraicRoots
(IdealWithUniv<D> I) Construct complex roots for zero dimensional ideal(G).static <C extends GcdRingElem<C>>
IdealWithUniv<C> Ideal.contraction
(IdealWithUniv<Quotient<C>> eid) Ideal contraction.boolean
Ideal.isRadical
(IdealWithUniv<C> ru) Test for radical ideal.Ideal.permContraction
(IdealWithUniv<Quotient<C>> eideal) Ideal contraction and permutation.static <C extends GcdRingElem<C>>
IdealWithUniv<C> Ideal.permutation
(GenPolynomialRing<C> oring, IdealWithUniv<C> Cont) Ideal permutation.static <D extends GcdRingElem<D> & Rational>
IdealWithRealAlgebraicRoots<D> PolyUtilApp.realAlgebraicRoots
(IdealWithUniv<D> I) Construct real roots for zero dimensional ideal(G).Method parameters in edu.jas.application with type arguments of type IdealWithUnivModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
List<Ideal<C>> IdealWithUniv.asListOfIdeals
(List<IdealWithUniv<C>> Bl) Get list of ideals from list of ideals with univariates.static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexAlgebraicRoots<D>> PolyUtilApp.complexAlgebraicRoots
(List<IdealWithUniv<D>> I) Construct complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexRoots<D>> PolyUtilApp.complexRoots
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).boolean
Ideal.isDecomposition
(List<IdealWithUniv<C>> L) Test for ideal decomposition.boolean
Ideal.isZeroDimDecomposition
(List<IdealWithUniv<C>> L) Test for zero dimensional ideal decomposition.static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealAlgebraicRoots<D>> PolyUtilApp.realAlgebraicRoots
(List<IdealWithUniv<D>> I) Construct real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealRoots<D>> PolyUtilApp.realRoots
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRootTuples
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).Ideal.zeroDimElimination
(List<IdealWithUniv<C>> pdec) Zero dimensional ideal elimination to original ring.Ideal.zeroDimPrimaryDecomposition
(List<IdealWithUniv<C>> pdec) Zero dimensional ideal primary decomposition.Constructors in edu.jas.application with parameters of type IdealWithUnivModifierConstructorDescriptionIdealWithComplexAlgebraicRoots
(IdealWithUniv<D> iu, List<List<Complex<RealAlgebraicNumber<D>>>> cr) Constructor.IdealWithComplexRoots
(IdealWithUniv<C> iu, List<List<Complex<BigDecimal>>> cr) Constructor.IdealWithRealAlgebraicRoots
(IdealWithUniv<D> iu, List<List<RealAlgebraicNumber<D>>> rr) Constructor.IdealWithRealRoots
(IdealWithUniv<C> iu, List<List<BigDecimal>> rr) Constructor.protected
PrimaryComponent
(Ideal<C> q, IdealWithUniv<C> p) Constructor.protected
PrimaryComponent
(Ideal<C> q, IdealWithUniv<C> p, int e) Constructor.RealAlgebraicRing
(IdealWithUniv<C> m, ResidueRing<C> a, RealRootTuple<C> r) The constructor creates a RealAlgebraicNumber factory object from a IdealWithUniv, ResidueRing and a root tuple.RealAlgebraicRing
(IdealWithUniv<C> m, RealRootTuple<C> root) The constructor creates a RealAlgebraicNumber factory object from a IdealWithUniv and a root tuple.RealAlgebraicRing
(IdealWithUniv<C> m, RealRootTuple<C> root, boolean isField) The constructor creates a RealAlgebraicNumber factory object from a IdealWithUniv and a root tuple.