Uses of Class
edu.jas.poly.TermOrder
Packages that use TermOrder
Package
Description
Groebner base application package.
Factorization domain package for solvable polynomial rings.
Groebner bases package.
Groebner bases using unique factorization package.
Generic coefficients polynomial package.
-
Uses of TermOrder in edu.jas.application
Fields in edu.jas.application declared as TermOrderModifier and TypeFieldDescription(package private) TermOrder
IntegerProgram.to
private TermOrder
RingFactoryTokenizer.tord
Methods in edu.jas.application that return TermOrderModifier and TypeMethodDescriptionRingFactoryTokenizer.nextTermOrder()
Parsing method for term order name.Constructors in edu.jas.application with parameters of type TermOrderModifierConstructorDescriptionLocalSolvablePolynomialRing
(RingFactory<SolvableLocal<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.LocalSolvablePolynomialRing
(RingFactory<SolvableLocal<C>> cf, int n, TermOrder t, RelationTable<SolvableLocal<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.LocalSolvablePolynomialRing
(RingFactory<SolvableLocal<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.LocalSolvablePolynomialRing
(RingFactory<SolvableLocal<C>> cf, int n, TermOrder t, String[] v, RelationTable<SolvableLocal<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.LocalSolvablePolynomialRing
(RingFactory<SolvableLocal<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.ResidueSolvablePolynomialRing
(RingFactory<SolvableResidue<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.ResidueSolvablePolynomialRing
(RingFactory<SolvableResidue<C>> cf, int n, TermOrder t, RelationTable<SolvableResidue<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.ResidueSolvablePolynomialRing
(RingFactory<SolvableResidue<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.ResidueSolvablePolynomialRing
(RingFactory<SolvableResidue<C>> cf, int n, TermOrder t, String[] v, RelationTable<SolvableResidue<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.ResidueSolvablePolynomialRing
(RingFactory<SolvableResidue<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.ResidueSolvableWordPolynomialRing
(RingFactory<WordResidue<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.ResidueSolvableWordPolynomialRing
(RingFactory<WordResidue<C>> cf, int n, TermOrder t, RelationTable<WordResidue<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.ResidueSolvableWordPolynomialRing
(RingFactory<WordResidue<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.ResidueSolvableWordPolynomialRing
(RingFactory<WordResidue<C>> cf, int n, TermOrder t, String[] v, RelationTable<WordResidue<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.ResidueSolvableWordPolynomialRing
(RingFactory<WordResidue<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations. -
Uses of TermOrder in edu.jas.fd
Constructors in edu.jas.fd with parameters of type TermOrderModifierConstructorDescriptionQuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, String[] v, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations. -
Uses of TermOrder in edu.jas.gb
Fields in edu.jas.gb declared as TermOrderConstructors in edu.jas.gb with parameters of type TermOrder -
Uses of TermOrder in edu.jas.gbufd
Fields in edu.jas.gbufd declared as TermOrderModifier and TypeFieldDescriptionprotected TermOrder
GroebnerBaseWalk.startTO
The start term order t1.Methods in edu.jas.gbufd with parameters of type TermOrderModifier and TypeMethodDescriptionGroebnerBaseWalk.facetNormal
(TermOrder t1, TermOrder t2, Set<ExpVector> delta, ExpVector zero, long[][] t2weight) Determine new facet normal.Constructors in edu.jas.gbufd with parameters of type TermOrderModifierConstructorDescriptionGroebnerBaseWalk
(GroebnerBaseAbstract<C> gb, TermOrder t1) Constructor.GroebnerBaseWalk
(RingFactory<C> coFac, TermOrder t1) Constructor. -
Uses of TermOrder in edu.jas.poly
Fields in edu.jas.poly declared as TermOrderModifier and TypeFieldDescriptionstatic final TermOrder
TermOrderByName.DEFAULT
Default TermOrder.static final TermOrder
TermOrderByName.deglex
TermOrder name deglex of Sage.static final TermOrder
TermOrderByName.DegreeLexicographic
TermOrder name DegreeLexicographic of Math like CAS.static final TermOrder
TermOrderByName.DegreeReverseLexicographic
TermOrder name DegreeReverseLexicographic of Math like CAS.static final TermOrder
TermOrderByName.degrevlex
TermOrder name degrevlex of Sage.static final TermOrder
TermOrderByName.dp
TermOrder name dp of Singular.static final TermOrder
TermOrderByName.Dp
TermOrder name Dp of Singular.static final TermOrder
TermOrderByName.ds
TermOrder name ds of Singular.static final TermOrder
TermOrderByName.Ds
TermOrder name Ds of Singular.static final TermOrder
TermOrderByName.GRLEX
TermOrder named GRLEX.static final TermOrder
TermOrderByName.IGRLEX
TermOrder named IGRLEX.static final TermOrder
TermOrderByName.invlex
TermOrder name invlex of Sage.static final TermOrder
TermOrderByName.INVLEX
TermOrder named INVLEX.static final TermOrder
TermOrderByName.ITDEGLEX
TermOrder named ITDEGLEX.static final TermOrder
TermOrderByName.lex
TermOrder name lex of Sage.static final TermOrder
TermOrderByName.LEX
TermOrder named LEX.static final TermOrder
TermOrderByName.Lexicographic
TermOrder name Lexicographic of Math like CAS.static final TermOrder
TermOrderByName.lp
TermOrder name lp of Singular.static final TermOrder
TermOrderByName.ls
TermOrder name ls of Singular.static final TermOrder
TermOrderByName.NegativeDegreeLexicographic
TermOrder name NegativeDegreeLexicographic of Math like CAS.static final TermOrder
TermOrderByName.NegativeDegreeReverseLexicographic
TermOrder name NegativeDegreeReverseLexicographic of Math like CAS.static final TermOrder
TermOrderByName.NegativeLexicographic
TermOrder name NegativeLexicographic of Math like CAS.static final TermOrder
TermOrderByName.NegativeReverseLexicographic
TermOrder name NegativeReverseLexicographic of Math like CAS.static final TermOrder
TermOrderByName.negdeglex
TermOrder name negdeglex of Sage.static final TermOrder
TermOrderByName.negdegrevlex
TermOrder name negdegrevlex of Sage.static final TermOrder
TermOrderByName.neglex
TermOrder name neglex of Sage.static final TermOrder
TermOrderByName.negrevlex
TermOrder name negrevlex of Sage.static final TermOrder
TermOrderByName.ReverseLexicographic
TermOrder name ReverseLexicographic of Math like CAS.static final TermOrder
TermOrderByName.REVILEX
TermOrder named REVILEX.static final TermOrder
TermOrderByName.REVITDEG
TermOrder named REVITDEG.static final TermOrder
TermOrderByName.REVITDG
TermOrder named REVITDG.static final TermOrder
TermOrderByName.REVLEX
TermOrder named REVLEX.static final TermOrder
TermOrderByName.REVTDEG
TermOrder named REVTDEG.static final TermOrder
TermOrderByName.rp
TermOrder name rp of Singular.final TermOrder
GenPolynomialRing.tord
The term order.private TermOrder
GenPolynomialTokenizer.tord
final TermOrder
PolynomialComparator.tord
Methods in edu.jas.poly that return TermOrderModifier and TypeMethodDescriptionTermOrder.blockOrder
(int s) Create block term order at split index.TermOrder.blockOrder
(int s, int len) Create block term order at split index.TermOrder.blockOrder
(int s, TermOrder t) Create block term order at split index.TermOrder.blockOrder
(int s, TermOrder t, int len) Create block term order at split index.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, int s) Construct elimination block TermOrder.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, ExpVector e, int s) Construct elimination block TermOrder.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, TermOrder t2, int s) Construct elimination block TermOrder.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, TermOrder t2, ExpVector e, int s) Construct elimination block TermOrder.TermOrder.contract
(int k, int len) Contract variables.TermOrder.extend
(int r, int k) Extend variables.TermOrder.extend
(int r, int k, boolean top) Extend variables.TermOrder.extendLower
(int r, int k) Extend lower variables.TermOrder.extendLower
(int r, int k, boolean top) Extend lower variables.GenPolynomialTokenizer.nextTermOrder()
Parsing method for term order name.TermOrder.permutation
(List<Integer> P) Permutation of the termorder.TermOrder.reverse()
Reverse variables.TermOrder.reverse
(boolean partial) Reverse variables.static TermOrder
TermOrder.reverseWeight
(long[][] w) Weight TermOrder with reversed weight vectors.static final TermOrder
TermOrderByName.weightOrder
(long[] v) Construct weight TermOrder.static final TermOrder
TermOrderByName.weightOrder
(long[][] w) Construct weight TermOrder.static final TermOrder
TermOrderByName.weightOrder
(List<List<Long>> wa) Construct weight TermOrder.Methods in edu.jas.poly with parameters of type TermOrderModifier and TypeMethodDescriptionTermOrder.blockOrder
(int s, TermOrder t) Create block term order at split index.TermOrder.blockOrder
(int s, TermOrder t, int len) Create block term order at split index.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, int s) Construct elimination block TermOrder.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, ExpVector e, int s) Construct elimination block TermOrder.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, TermOrder t2, int s) Construct elimination block TermOrder.static final TermOrder
TermOrderByName.blockOrder
(TermOrder t1, TermOrder t2, ExpVector e, int s) Construct elimination block TermOrder.static final long[][]
TermOrderByName.weightForOrder
(TermOrder to, int n) Construct weight for term order.Constructors in edu.jas.poly with parameters of type TermOrderModifierConstructorDescriptionGenPolynomialRing
(GenPolynomialRing<C> o, TermOrder to) The constructor creates a polynomial factory object with the the same coefficient factory, number of variables and variable names as the given polynomial factory, only the term order differs.GenPolynomialRing
(RingFactory<C> cf, int n, TermOrder t) The constructor creates a polynomial factory object.GenPolynomialRing
(RingFactory<C> cf, int n, TermOrder t, String[] v) The constructor creates a polynomial factory object.GenPolynomialRing
(RingFactory<C> cf, TermOrder t, String[] v) The constructor creates a polynomial factory object.GenPolynomialRing
(RingFactory<C> cf, String[] v, TermOrder t) The constructor creates a polynomial factory object.GenSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.GenSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t, RelationTable<C> rt) The constructor creates a solvable polynomial factory object with the given term order.GenSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.GenSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t, String[] v, RelationTable<C> rt) The constructor creates a solvable polynomial factory object with the given term order.GenSolvablePolynomialRing
(RingFactory<C> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.PolynomialComparator
(TermOrder t, boolean reverse) Constructor.QLRSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.QLRSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t, RelationTable<C> rt) The constructor creates a solvable polynomial factory object with the given term order.QLRSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.QLRSolvablePolynomialRing
(RingFactory<C> cf, int n, TermOrder t, String[] v, RelationTable<C> rt) The constructor creates a solvable polynomial factory object with the given term order.QLRSolvablePolynomialRing
(RingFactory<C> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, String[] v, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, String[] v, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.