Uses of Interface
edu.jas.structure.GcdRingElem
Packages that use GcdRingElem
Package
Description
Groebner base application package.
Basic arithmetic package.
Factorization domain package for solvable polynomial rings.
Groebner bases package.
Module Groebner base package.
Groebner bases using unique factorization package.
Elementary Integration package.
Generic coefficients polynomial package.
Real and Complex Root Computation package.
Basic structural interfaces.
Unique factorization domain package.
Unique Factorization Domain and Roots package.
-
Uses of GcdRingElem in edu.jas.application
Classes in edu.jas.application with type parameters of type GcdRingElemModifier and TypeClassDescriptionclass
AlgebraicRootsPrimElem<C extends GcdRingElem<C> & Rational>
Container for the real and complex algebraic roots of a univariate polynomial together with primitive element.(package private) class
CoeffConvertAlg<C extends GcdRingElem<C>>
Coefficient to convert algebriac functor.(package private) class
CoeffRecConvertAlg<C extends GcdRingElem<C>>
Coefficient recursive to convert algebriac functor.(package private) class
CoeffToComplexReal<C extends GcdRingElem<C> & Rational>
Coefficient to complex real algebriac functor.class
ColoredSystem<C extends GcdRingElem<C>>
Container for a condition, a corresponding colored polynomial list and a Groebner base pair list.class
ComprehensiveGroebnerBaseSeq<C extends GcdRingElem<C>>
Comprehensive Groebner Base sequential algorithm.class
Condition<C extends GcdRingElem<C>>
Condition.class
CReductionSeq<C extends GcdRingElem<C>>
Polynomial parametric ring reduction sequential use algorithm.(package private) class
EvaluateToComplexReal<C extends GcdRingElem<C> & Rational>
Polynomial coefficient to complex real algebriac evaluation functor.class
FactorAlgebraicPrim<C extends GcdRingElem<C>>
Algebraic number coefficients factorization algorithms.class
FactorRealReal<C extends GcdRingElem<C> & Rational>
Real algebraic number coefficients factorization algorithms.class
GBAlgorithmBuilder<C extends GcdRingElem<C>>
Builder for commutative Gröbner bases algorithm implementations.class
GroebnerSystem<C extends GcdRingElem<C>>
Container for a Groebner system.class
Ideal<C extends GcdRingElem<C>>
Ideal implements some methods for ideal arithmetic, for example intersection, quotient and zero and positive dimensional ideal decomposition.class
IdealWithComplexAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and complex algebraic roots.(package private) class
IdealWithComplexRoots<C extends GcdRingElem<C>>
Container for Ideals together with univariate polynomials and complex roots.class
IdealWithRealAlgebraicRoots<D extends GcdRingElem<D> & Rational>
Container for Ideals together with univariate polynomials and real algebraic roots.class
IdealWithRealRoots<C extends GcdRingElem<C>>
Container for Ideals together with univariate polynomials and real roots.class
IdealWithUniv<C extends GcdRingElem<C>>
Container for Ideals together with univariate polynomials.class
Local<C extends GcdRingElem<C>>
Local ring element based on GenPolynomial with RingElem interface.class
LocalRing<C extends GcdRingElem<C>>
Local ring class based on GenPolynomial with RingElem interface.class
LocalSolvablePolynomial<C extends GcdRingElem<C>>
LocalSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
LocalSolvablePolynomialRing<C extends GcdRingElem<C>>
LocalSolvablePolynomialRing generic recursive solvable polynomial factory implementing RingFactory and extending GenSolvablePolynomialRing factory.class
OrderedCPairlist<C extends GcdRingElem<C>>
Pair list management.class
PrimaryComponent<C extends GcdRingElem<C>>
Container for primary components of ideals.class
PrimitiveElement<C extends GcdRingElem<C>>
Container for primitive elements.class
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Complex algebraic number class based on bi-variate real algebraic numbers.class
RealAlgebraicRing<C extends GcdRingElem<C> & Rational>
Real algebraic number factory class based on bi-variate real algebraic numbers.(package private) class
RealFromReAlgCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to real algebriac from algebraic functor.(package private) class
ReAlgFromRealCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to real algebriac from real algebraic functor.class
Residue<C extends GcdRingElem<C>>
Residue ring element based on GenPolynomial with RingElem interface.class
ResidueRing<C extends GcdRingElem<C>>
Residue ring factory based on GenPolynomial with RingFactory interface.class
ResidueSolvablePolynomial<C extends GcdRingElem<C>>
ResidueSolvablePolynomial generic solvable polynomials with solvable residue coefficients implementing RingElem.class
ResidueSolvablePolynomialRing<C extends GcdRingElem<C>>
ResidueSolvablePolynomialRing generic solvable polynomial with residue coefficients factory implementing RingFactory and extending GenSolvablePolynomialRing factory.class
ResidueSolvableWordPolynomial<C extends GcdRingElem<C>>
ResidueSolvableWordPolynomial solvable polynomials with WordResidue coefficients implementing RingElem.class
ResidueSolvableWordPolynomialRing<C extends GcdRingElem<C>>
ResidueSolvableWordPolynomialRing solvable polynomial with word residue coefficients factory.class
SolvableIdeal<C extends GcdRingElem<C>>
Solvable Ideal implements some methods for ideal arithmetic, for example sum, intersection, quotient.class
SolvableLocal<C extends GcdRingElem<C>>
SolvableLocal ring element based on pairs of GenSolvablePolynomial with GcdRingElem interface.class
SolvableLocalResidue<C extends GcdRingElem<C>>
SolvableLocalResidue, that is a (left) rational function, based on pairs of GenSolvablePolynomial with GcdRingElem interface.class
SolvableLocalResidueRing<C extends GcdRingElem<C>>
SolvableLocalResidue ring factory for SolvableLocalResidue based on GenSolvablePolynomial with GcdRingElem interface.class
SolvableLocalRing<C extends GcdRingElem<C>>
SolvableLocal ring factory for SolvableLocal with GcdRingElem interface.class
SolvableResidue<C extends GcdRingElem<C>>
SolvableResidue ring element based on GenSolvablePolynomial with GcdRingElem interface.class
SolvableResidueRing<C extends GcdRingElem<C>>
SolvableResidue ring factory based on GenSolvablePolynomialRing with GcdRingFactory interface.class
WordIdeal<C extends GcdRingElem<C>>
Word Ideal implements some methods for ideal arithmetic, for example containment, sum or product.class
WordResidue<C extends GcdRingElem<C>>
WordResidue ring element based on GenWordPolynomial with GcdRingElem interface.class
WordResidueRing<C extends GcdRingElem<C>>
WordResidue ring factory based on GenWordPolynomialRing with GcdRingFactory interface.Classes in edu.jas.application that implement GcdRingElemModifier and TypeClassDescriptionclass
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Complex algebraic number class based on bi-variate real algebraic numbers.class
Residue<C extends GcdRingElem<C>>
Residue ring element based on GenPolynomial with RingElem interface.class
SolvableLocal<C extends GcdRingElem<C>>
SolvableLocal ring element based on pairs of GenSolvablePolynomial with GcdRingElem interface.class
SolvableLocalResidue<C extends GcdRingElem<C>>
SolvableLocalResidue, that is a (left) rational function, based on pairs of GenSolvablePolynomial with GcdRingElem interface.class
SolvableResidue<C extends GcdRingElem<C>>
SolvableResidue ring element based on GenSolvablePolynomial with GcdRingElem interface.class
WordResidue<C extends GcdRingElem<C>>
WordResidue ring element based on GenWordPolynomial with GcdRingElem interface.Methods in edu.jas.application with type parameters of type GcdRingElemModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
List<Ideal<C>> IdealWithUniv.asListOfIdeals
(List<IdealWithUniv<C>> Bl) Get list of ideals from list of ideals with univariates.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersSquarefree
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexAlgebraicRoots<D>> PolyUtilApp.complexAlgebraicRoots
(Ideal<D> I) Construct exact set of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
IdealWithComplexAlgebraicRoots<D> PolyUtilApp.complexAlgebraicRoots
(IdealWithUniv<D> I) Construct complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexAlgebraicRoots<D>> PolyUtilApp.complexAlgebraicRoots
(List<IdealWithUniv<D>> I) Construct complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexRoots<D>> PolyUtilApp.complexRoots
(Ideal<D> G, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexRoots<D>> PolyUtilApp.complexRoots
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(Ideal<D> I, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <C extends GcdRingElem<C>>
IdealWithUniv<C> Ideal.contraction
(IdealWithUniv<Quotient<C>> eid) Ideal contraction.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumber<AlgebraicNumber<C>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a) Convert coefficients to primitive element ring.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<Product<Residue<C>>> P, int i) From product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, List<GenPolynomial<Product<Residue<C>>>> L, int i) From product representation.static <C extends GcdRingElem<C> & Rational>
FactorAbstract<RealAlgebraicNumber<C>> FactorFactory.getImplementation
(RealAlgebraicRing<C> fac) Determine suitable implementation of factorization algorithms, case RealAlgebraicNumber<C>.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>> FactorFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
FactorAbstract<Complex<C>> FactorFactory.getImplementation
(ComplexRing<C> fac) Determine suitable implementation of factorization algorithms, case Complex<C>.static <C extends GcdRingElem<C>>
FactorAbstract<C> FactorFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of factorization algorithms, case recursive GenPolynomial<C>.static <C extends GcdRingElem<C> & Rational>
FactorAbstract<RealAlgebraicNumber<C>> FactorFactory.getImplementation
(RealAlgebraicRing<C> fac) Determine suitable implementation of factorization algorithms, case RealAlgebraicNumber<C>.static <C extends GcdRingElem<C>>
FactorAbstract<C> FactorFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of factorization algorithms, other cases.static <C extends GcdRingElem<C>>
FactorAbstract<Quotient<C>> FactorFactory.getImplementation
(QuotientRing<C> fac) Determine suitable implementation of factorization algorithms, case Quotient<C>.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, List<Complex<RealAlgebraicNumber<C>>> R) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRootRealCoeff
(GenPolynomial<C> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C>>
IdealWithUniv<C> Ideal.permutation
(GenPolynomialRing<C> oring, IdealWithUniv<C> Cont) Ideal permutation.static <C extends GcdRingElem<C>>
GBAlgorithmBuilder<C> GBAlgorithmBuilder.polynomialRing
(GenPolynomialRing<C> fac) Define polynomial ring.static <C extends GcdRingElem<C>>
PrimitiveElement<C> PolyUtilApp.primitiveElement
(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b) Construct primitive element for double field extension.static <C extends GcdRingElem<C>>
PrimitiveElement<C> PolyUtilApp.primitiveElement
(AlgebraicNumberRing<AlgebraicNumber<C>> b) Construct primitive element for double field extension.static <C extends GcdRingElem<C>>
Map<Ideal<C>, PolynomialList<GenPolynomial<C>>> PolyUtilApp.productSlice
(PolynomialList<Product<Residue<C>>> L) Product slice.static <C extends GcdRingElem<C>>
PolynomialList<GenPolynomial<C>> PolyUtilApp.productSlice
(PolynomialList<Product<Residue<C>>> L, int i) Product slice at i.static <C extends GcdRingElem<C>>
StringPolyUtilApp.productSliceToString
(Map<Ideal<C>, PolynomialList<GenPolynomial<C>>> L) Product slice to String.static <C extends GcdRingElem<C>>
StringPolyUtilApp.productToString
(PolynomialList<Product<Residue<C>>> L) Product slice to String.static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealAlgebraicRoots<D>> PolyUtilApp.realAlgebraicRoots
(Ideal<D> I) Construct exact set of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
IdealWithRealAlgebraicRoots<D> PolyUtilApp.realAlgebraicRoots
(IdealWithUniv<D> I) Construct real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealAlgebraicRoots<D>> PolyUtilApp.realAlgebraicRoots
(List<IdealWithUniv<D>> I) Construct real roots for zero dimensional ideal(G).static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realAlgFromRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realFromRealAlgCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealRoots<D>> PolyUtilApp.realRoots
(Ideal<D> G, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealRoots<D>> PolyUtilApp.realRoots
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRootTuples
(Ideal<D> I, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRootTuples
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C> RootFactoryApp.rootReduce
(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b) Root reduce of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C> RootFactoryApp.rootReduce
(GenPolynomial<C> a, GenPolynomial<C> b) Root reduce of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C> RootFactoryApp.rootReduce
(AlgebraicRoots<C> a, AlgebraicRoots<C> b) Root reduce of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C> RootFactoryApp.rootsOfUnity
(AlgebraicRootsPrimElem<C> ar) Roots of unity of real and complex algebraic numbers.static <C extends GcdRingElem<C>>
Product<Residue<C>> PolyUtilApp.toProductRes
(ProductRing<Residue<C>> pfac, GenPolynomial<C> c) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Product<Residue<C>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, GenPolynomial<GenPolynomial<C>> A) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<Residue<C>>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<Residue<C>>>> PolyUtilApp.toProductRes
(List<ColoredSystem<C>> CS) Product residue representation.static <C extends GcdRingElem<C>>
GenPolynomial<Residue<C>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Residue coefficient representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Residue<C>>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Residue coefficient representation.static <D extends GcdRingElem<D> & Rational>
StringPolyUtilApp.toString
(Complex<RealAlgebraicNumber<D>> c) String representation of a deximal approximation of a complex number.static <D extends GcdRingElem<D> & Rational>
StringString representation of a deximal approximation of a complex number. -
Uses of GcdRingElem in edu.jas.arith
Classes in edu.jas.arith that implement GcdRingElemModifier and TypeClassDescriptionfinal class
BigComplex class based on BigRational implementing the RingElem respectively the StarRingElem interface.final class
BigDecimal class to make java.math.BigDecimal available with RingElem interface.final class
BigComplex class based on BigDecimal implementing the RingElem respectively the StarRingElem interface.final class
BigInteger class to make java.math.BigInteger available with RingElem respectively the GcdRingElem interface.final class
BigOctonion class based on BigRational implementing the RingElem interface and with the familiar MAS static method names.class
BigQuaternion class based on BigRational implementing the RingElem interface and with the familiar MAS static method names.final class
Integer BigQuaternion class based on BigRational implementing the RingElem interface and with the familiar MAS static method names.final class
Immutable arbitrary-precision rational numbers.final class
ModInt class with RingElem interface.final class
ModInteger class with GcdRingElem interface.final class
ModLong class with RingElem interface.class
Direct product element based on RingElem.Fields in edu.jas.arith declared as GcdRingElemModifier and TypeFieldDescriptionfinal GcdRingElem
ModularNotInvertibleException.f
final GcdRingElem
ModularNotInvertibleException.f1
final GcdRingElem
ModularNotInvertibleException.f2
Constructors in edu.jas.arith with parameters of type GcdRingElemModifierConstructorDescriptionConstructor.ModularNotInvertibleException
(String c, GcdRingElem f, GcdRingElem f1, GcdRingElem f2) Constructor.ModularNotInvertibleException
(String c, Throwable t, GcdRingElem f, GcdRingElem f1, GcdRingElem f2) Constructor.ModularNotInvertibleException
(Throwable t, GcdRingElem f, GcdRingElem f1, GcdRingElem f2) Constructor. -
Uses of GcdRingElem in edu.jas.fd
Classes in edu.jas.fd with type parameters of type GcdRingElemModifier and TypeInterfaceDescriptioninterface
GreatestCommonDivisor<C extends GcdRingElem<C>>
(Non-unique) factorization domain greatest common divisor algorithm interface.class
GreatestCommonDivisorAbstract<C extends GcdRingElem<C>>
(Non-unique) factorization domain greatest common divisor common algorithms.class
GreatestCommonDivisorFake<C extends GcdRingElem<C>>
(Non-unique) factorization domain greatest common divisor common algorithms with monic polynomial remainder sequence.class
GreatestCommonDivisorPrimitive<C extends GcdRingElem<C>>
(Non-unique) factorization domain greatest common divisor common algorithms with primitive polynomial remainder sequence.class
GreatestCommonDivisorSimple<C extends GcdRingElem<C>>
(Non-unique) factorization domain greatest common divisor common algorithms with monic polynomial remainder sequence.class
GreatestCommonDivisorSyzygy<C extends GcdRingElem<C>>
(Non-unique) factorization domain greatest common divisor common algorithms with syzygy computation.class
QuotSolvablePolynomial<C extends GcdRingElem<C>>
QuotSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
QuotSolvablePolynomialRing<C extends GcdRingElem<C>>
QuotSolvablePolynomialRing generic recursive solvable polynomial factory implementing RingFactory and extending GenSolvablePolynomialRing factory.class
SGCDParallelProxy<C extends GcdRingElem<C>>
Solvable greatest common divisor parallel proxy.class
SolvableQuotient<C extends GcdRingElem<C>>
SolvableQuotient, that is a (left) rational function, based on GenSolvablePolynomial with RingElem interface.class
SolvableQuotientRing<C extends GcdRingElem<C>>
SolvableQuotient ring factory based on GenPolynomial with RingElem interface.Classes in edu.jas.fd that implement GcdRingElemModifier and TypeClassDescriptionclass
SolvableQuotient<C extends GcdRingElem<C>>
SolvableQuotient, that is a (left) rational function, based on GenSolvablePolynomial with RingElem interface.Methods in edu.jas.fd with type parameters of type GcdRingElemModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> FDUtil.basePseudoLeftDivide
(GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) GenSolvablePolynomial sparse pseudo divide.(package private) static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.experimentalRecursiveLeftDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) static <C extends GcdRingElem<C>>
GreatestCommonDivisorAbstract<C> SGCDFactory.getFakeImplementation
(RingFactory<C> fac) Determine fake implementation of gcd algorithms, other cases.static <C extends GcdRingElem<C>>
GreatestCommonDivisorAbstract<C> SGCDFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of gcd algorithms, other cases.static <C extends GcdRingElem<C>>
GreatestCommonDivisorAbstract<C> SGCDFactory.getProxy
(RingFactory<C> fac) Determine suitable proxy for gcd algorithms, other cases.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, GenSolvablePolynomial<SolvableQuotient<C>> A) Integral solvable polynomial from solvable rational function coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<GenPolynomial<C>>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, Collection<GenSolvablePolynomial<SolvableQuotient<C>>> L) Integral solvable polynomial from solvable rational function coefficients.static <C extends GcdRingElem<C>>
booleanFDUtil.isLeftBasePseudoQuotientRemainder
(GenPolynomial<C> P, GenPolynomial<C> S, GenPolynomial<C> q, GenPolynomial<C> r) Is GenSolvablePolynomial left base pseudo quotient and remainder.static <C extends GcdRingElem<C>>
booleanFDUtil.isRecursivePseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S, GenSolvablePolynomial<GenPolynomial<C>> q, GenSolvablePolynomial<GenPolynomial<C>> r) Is recursive GenSolvablePolynomial pseudo quotient and remainder.static <C extends GcdRingElem<C>>
booleanFDUtil.isRecursiveRightPseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S, GenSolvablePolynomial<GenPolynomial<C>> q, GenSolvablePolynomial<GenPolynomial<C>> r) Is recursive GenSolvablePolynomial right pseudo quotient and remainder.static <C extends GcdRingElem<C>>
booleanFDUtil.isRightBasePseudoQuotientRemainder
(GenPolynomial<C> P, GenPolynomial<C> S, GenPolynomial<C> q, GenPolynomial<C> r) Is GenSolvablePolynomial right base pseudo quotient and remainder.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> FDUtil.leftBasePseudoQuotient
(GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) GenSolvablePolynomial sparse pseudo quotient for univariate polynomials or exact division.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C>[]FDUtil.leftBasePseudoQuotientRemainder
(GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) GenSolvablePolynomial sparse pseudo quotient and remainder for univariate polynomials or exact division.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> FDUtil.leftBaseSparsePseudoRemainder
(GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) GenSolvablePolynomial sparse pseudo remainder for univariate polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<SolvableQuotient<C>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, GenSolvablePolynomial<GenPolynomial<C>> A) Solvable rational function from integral solvable polynomial coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<SolvableQuotient<C>>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, Collection<GenSolvablePolynomial<GenPolynomial<C>>> L) Solvable rational function from integral solvable polynomial coefficients.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial left recursive quotient for recursive polynomials and exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveDivideRightEval
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveLeftDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and partial left exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursivePseudoQuotient
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive pseudo quotient for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>>[]FDUtil.recursivePseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive pseudo quotient and remainder for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and partial right exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightPseudoQuotient
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive right pseudo quotient for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>>[]FDUtil.recursiveRightPseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right sparse pseudo quotient and remainder for recursive solvable polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightSparsePseudoRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right sparse pseudo remainder for recursive solvable polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveSparsePseudoRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial sparse pseudo remainder for recursive solvable polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> FDUtil.rightBasePseudoQuotient
(GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) GenSolvablePolynomial right sparse pseudo quotient for univariate polynomials or exact division.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C>[]FDUtil.rightBasePseudoQuotientRemainder
(GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) GenSolvablePolynomial right sparse pseudo quotient and remainder for univariate polynomials or exact division.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> FDUtil.rightBaseSparsePseudoRemainder
(GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) GenSolvablePolynomial sparse right pseudo remainder for univariate polynomials.Methods in edu.jas.fd that return GcdRingElemModifier and TypeMethodDescriptionC[]
GreatestCommonDivisorAbstract.leftOreCond
(C a, C b) Coefficient left Ore condition.C[]
GreatestCommonDivisorAbstract.rightOreCond
(C a, C b) Coefficient right Ore condition. -
Uses of GcdRingElem in edu.jas.gb
Classes in edu.jas.gb with type parameters of type GcdRingElemModifier and TypeClassDescriptionclass
GBOptimized<C extends GcdRingElem<C>>
Groebner bases via optimized variable and term order.class
GBProxy<C extends GcdRingElem<C>>
Groebner bases parallel proxy.class
SGBProxy<C extends GcdRingElem<C>>
Groebner bases parallel proxy. -
Uses of GcdRingElem in edu.jas.gbmod
Classes in edu.jas.gbmod with type parameters of type GcdRingElemModifier and TypeClassDescriptionclass
ModGroebnerBaseAbstract<C extends GcdRingElem<C>>
Deprecated.use respective methods from GroebnerBaseAbstractclass
ModGroebnerBasePar<C extends GcdRingElem<C>>
Deprecated.use respective methods from GroebnerBaseParallelclass
ModGroebnerBaseSeq<C extends GcdRingElem<C>>
Deprecated.use respective methods from GroebnerBaseSeqclass
ModSolvableGroebnerBasePar<C extends GcdRingElem<C>>
Deprecated.use respective methods from SolvableGroebnerBaseParallelclass
ModSolvableGroebnerBaseSeq<C extends GcdRingElem<C>>
Deprecated.use respective methods from SolvableGroebnerBaseSeq -
Uses of GcdRingElem in edu.jas.gbufd
Classes in edu.jas.gbufd with type parameters of type GcdRingElemModifier and TypeInterfaceDescriptioninterface
CharacteristicSet<C extends GcdRingElem<C>>
Characteristic Set interface.class
CharacteristicSetSimple<C extends GcdRingElem<C>>
Characteristic Set class according to the simple algorithm, where the leading coefficients are not rereduced.class
CharacteristicSetWu<C extends GcdRingElem<C>>
Characteristic Set class according to Wu.class
GroebnerBaseFGLM<C extends GcdRingElem<C>>
Groebner Base sequential FGLM algorithm.class
GroebnerBasePartial<C extends GcdRingElem<C>>
Partial Groebner Bases for subsets of variables.class
GroebnerBasePseudoParallel<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction multi-threaded parallel algorithm.class
GroebnerBasePseudoRecParallel<C extends GcdRingElem<C>>
Groebner Base with recursive pseudo reduction multi-threaded parallel algorithm.class
GroebnerBasePseudoRecSeq<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction sequential algorithm for integral function coefficients.class
GroebnerBasePseudoSeq<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction sequential algorithm.class
GroebnerBaseQuotient<C extends GcdRingElem<C>>
Groebner Base sequential algorithm for rational function coefficients, fraction free computation.class
GroebnerBaseWalk<C extends GcdRingElem<C>>
Groebner Base sequential Groebner Walk algorithm.class
MultiplicativeSet<C extends GcdRingElem<C>>
Multiplicative set of polynomials.class
MultiplicativeSetCoPrime<C extends GcdRingElem<C>>
Multiplicative set of co-prime polynomials.class
MultiplicativeSetFactors<C extends GcdRingElem<C>>
Multiplicative set of irreducible polynomials.class
MultiplicativeSetSquarefree<C extends GcdRingElem<C>>
Multiplicative set of squarefree and co-prime polynomials.(package private) class
PseudoMiReducer<C extends GcdRingElem<C>>
Pseudo Reducing worker threads for minimal GB.(package private) class
PseudoMiReducerRec<C extends GcdRingElem<C>>
Pseudo Reducing worker threads for minimal GB.(package private) class
PseudoReducer<C extends GcdRingElem<C>>
Pseudo GB Reducing worker threads.(package private) class
PseudoReducerRec<C extends GcdRingElem<C>>
Pseudo GB Reducing worker threads.class
SolvableGroebnerBasePseudoRecSeq<C extends GcdRingElem<C>>
Solvable Groebner Base with pseudo reduction sequential algorithm.class
SolvableGroebnerBasePseudoSeq<C extends GcdRingElem<C>>
Solvable Groebner Base with pseudo reduction sequential algorithm.class
SolvablePseudoReductionSeq<C extends GcdRingElem<C>>
Polynomial pseudo reduction sequential use algorithm.class
SolvableSyzygyAbstract<C extends GcdRingElem<C>>
Syzygy abstract class for solvable polynomials.class
SolvableSyzygySeq<C extends GcdRingElem<C>>
Syzygy sequential class for solvable polynomials.class
SyzygyAbstract<C extends GcdRingElem<C>>
SyzygyAbstract class.class
SyzygySeq<C extends GcdRingElem<C>>
SyzygySeq class.class
WordGroebnerBasePseudoRecSeq<C extends GcdRingElem<C>>
Non-commutative word Groebner Base sequential algorithm.class
WordGroebnerBasePseudoSeq<C extends GcdRingElem<C>>
Non-commutative word Groebner Base sequential algorithm.Methods in edu.jas.gbufd with type parameters of type GcdRingElemModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<C> PolyGBUtil.chineseRemainderTheorem
(List<List<GenPolynomial<C>>> F, List<GenPolynomial<C>> A) Chinese remainder theorem.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyGBUtil.CRTInterpolation
(GenPolynomialRing<C> fac, List<List<C>> E, List<C> V) Chinese remainder theorem, interpolation.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getImplementation()
Determine suitable implementation of GB algorithms, no factory case.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getImplementation
(RingFactory<C> fac, PairList<C> pl) Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<C> SGBFactory.getImplementation()
Determine suitable implementation of GB algorithms, no factory case.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<C> SGBFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<C> SGBFactory.getImplementation
(RingFactory<C> fac, PairList<C> pl) Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<Quotient<C>> SGBFactory.getImplementation
(QuotientRing<C> fac) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<Quotient<C>> SGBFactory.getImplementation
(QuotientRing<C> fac, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<Quotient<C>> SGBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<Quotient<C>> SGBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getProxy
(GenPolynomialRing<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getProxy
(RingFactory<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getProxy
(RingFactory<C> fac, PairList<C> pl) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getProxy
(GenPolynomialRing<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<C> SGBFactory.getProxy
(RingFactory<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<C> SGBFactory.getProxy
(RingFactory<C> fac, PairList<C> pl) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.intersect
(GenPolynomialRing<C> pfac, List<GenPolynomial<C>> A, List<GenPolynomial<C>> B) Intersection.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<C>> PolyGBUtil.intersect
(GenSolvablePolynomialRing<C> pfac, List<GenSolvablePolynomial<C>> A, List<GenSolvablePolynomial<C>> B) Intersection.static <C extends GcdRingElem<C>>
List<GenWordPolynomial<C>> PolyGBUtil.intersect
(GenWordPolynomialRing<C> pfac, List<GenWordPolynomial<C>> A, List<GenWordPolynomial<C>> B) Intersection.static <C extends GcdRingElem<C>>
List<GenWordPolynomial<C>> PolyGBUtil.intersect
(GenWordPolynomialRing<C> pfac, List<GenWordPolynomial<C>> A, List<GenWordPolynomial<C>> B, WordGroebnerBaseAbstract<C> bb) Intersection.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.isChineseRemainder
(List<List<GenPolynomial<C>>> F, List<GenPolynomial<C>> A, GenPolynomial<C> h) Is Chinese remainder.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.isResultant
(GenPolynomial<C> A, GenPolynomial<C> B, GenPolynomial<C> r) Test for resultant.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C>[]PolyGBUtil.quotientRemainder
(GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d) Solvable quotient and remainder via reduction.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.subRing
(List<GenPolynomial<C>> A) Subring generators.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.subRingAndMember
(List<GenPolynomial<C>> A, GenPolynomial<C> g) Subring and membership test.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.subRingMember
(List<GenPolynomial<C>> A, GenPolynomial<C> g) Subring membership.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyModUtil.syzGcd
(GenPolynomialRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) Greatest common divisor.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> PolyModUtil.syzGcd
(GenSolvablePolynomialRing<C> r, GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d) Greatest common divisor via least common multiple.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C>[]PolyModUtil.syzGcdCofactors
(GenSolvablePolynomialRing<C> r, GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d) Greatest common divisor and cofactors via least common multiple and reduction.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyModUtil.syzLcm
(GenPolynomialRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) Least common multiple.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> PolyModUtil.syzLcm
(GenSolvablePolynomialRing<C> r, GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d) Least common multiple via ideal intersection.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> PolyModUtil.syzLeftGcd
(GenSolvablePolynomialRing<C> r, GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d) Left greatest common divisor via least common multiple.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<C> PolyModUtil.syzRightGcd
(GenSolvablePolynomialRing<C> r, GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d) Right greatest common divisor via least common multiple. -
Uses of GcdRingElem in edu.jas.integrate
Classes in edu.jas.integrate with type parameters of type GcdRingElemModifier and TypeClassDescriptionclass
ElementaryIntegration<C extends GcdRingElem<C>>
Methods related to elementary integration.class
ElementaryIntegrationBernoulli<C extends GcdRingElem<C>>
Methods related to the Bernoulli algorithm for elementary integration.class
ElementaryIntegrationCzichowski<C extends GcdRingElem<C>>
Method related to elementary integration.class
ElementaryIntegrationLazard<C extends GcdRingElem<C>>
Method related to elementary integration.class
Integral<C extends GcdRingElem<C>>
Container for a rational function integral, polynomial version.class
LogIntegral<C extends GcdRingElem<C>>
Container for the logarithmic part of a rational function integral.class
QuotIntegral<C extends GcdRingElem<C>>
Container for a rational function integral, quotient version . -
Uses of GcdRingElem in edu.jas.poly
Classes in edu.jas.poly with type parameters of type GcdRingElemModifier and TypeClassDescription(package private) class
AlgebToCompl<C extends GcdRingElem<C>>
Algebraic to generic complex functor.(package private) class
AlgToPoly<C extends GcdRingElem<C>>
Algebraic to polynomial functor.(package private) class
AnyToComplex<C extends GcdRingElem<C>>
Any ring element to generic complex functor.(package private) class
CoeffToAlg<C extends GcdRingElem<C>>
Coefficient to algebriac functor.(package private) class
CoeffToRecAlg<C extends GcdRingElem<C>>
Coefficient to recursive algebriac functor.(package private) class
ComplToAlgeb<C extends GcdRingElem<C>>
Ceneric complex to algebraic number functor.(package private) class
PolyToAlg<C extends GcdRingElem<C>>
Polynomial to algebriac functor.class
QLRSolvablePolynomial<C extends GcdRingElem<C> & QuotPair<GenPolynomial<D>>,
D extends GcdRingElem<D>> QLRSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
QLRSolvablePolynomial<C extends GcdRingElem<C> & QuotPair<GenPolynomial<D>>,
D extends GcdRingElem<D>> QLRSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
QLRSolvablePolynomialRing<C extends GcdRingElem<C> & QuotPair<GenPolynomial<D>>,
D extends GcdRingElem<D>> QLRSolvablePolynomialRing generic recursive solvable polynomial factory implementing RingFactory and extending GenSolvablePolynomialRing factory.class
QLRSolvablePolynomialRing<C extends GcdRingElem<C> & QuotPair<GenPolynomial<D>>,
D extends GcdRingElem<D>> QLRSolvablePolynomialRing generic recursive solvable polynomial factory implementing RingFactory and extending GenSolvablePolynomialRing factory.Classes in edu.jas.poly that implement GcdRingElemModifier and TypeClassDescriptionclass
AlgebraicNumber<C extends RingElem<C>>
Algebraic number class.class
Generic Complex class implementing the RingElem interface.Methods in edu.jas.poly with type parameters of type GcdRingElemModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.algebraicFromComplex
(GenPolynomialRing<AlgebraicNumber<C>> fac, GenPolynomial<Complex<C>> A) AlgebraicNumber from complex coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAlgebraic
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<AlgebraicNumber<C>> A) Complex from algebraic coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAny
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from ring element coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.fromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) From AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
Product<C> PolyUtil.toProductGen
(ProductRing<C> pfac, C c) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Product<C>> PolyUtil.toProductGen
(GenPolynomialRing<Product<C>> pfac, GenPolynomial<C> A) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<C>>> PolyUtil.toProductGen
(GenPolynomialRing<Product<C>> pfac, List<GenPolynomial<C>> L) Product representation. -
Uses of GcdRingElem in edu.jas.root
Classes in edu.jas.root with type parameters of type GcdRingElemModifier and TypeClassDescriptionclass
AlgebraicRoots<C extends GcdRingElem<C> & Rational>
Container for the real and complex algebraic roots of a univariate polynomial.(package private) class
AlgFromRealCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to algebraic from real algebraic functor.(package private) class
CoeffToComplex<C extends GcdRingElem<C> & Rational>
Coefficient to complex algebraic functor.(package private) class
CoeffToComplexFromComplex<C extends GcdRingElem<C> & Rational>
Coefficient to complex algebraic from complex functor.(package private) class
CoeffToReal<C extends GcdRingElem<C> & Rational>
Coefficient to real algebraic functor.(package private) class
CoeffToReAlg<C extends GcdRingElem<C> & Rational>
Coefficient to algebraic functor.(package private) class
CoeffToRecReAlg<C extends GcdRingElem<C> & Rational>
Coefficient to recursive algebraic functor.class
ComplexAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Complex algebraic number class based on AlgebraicNumber.class
ComplexAlgebraicRing<C extends GcdRingElem<C> & Rational>
Complex algebraic number factory class based on AlgebraicNumberRing with RingFactory interface.class
DecimalRoots<C extends GcdRingElem<C> & Rational>
Container for the real and complex algebraic roots of a univariate polynomial.(package private) class
PolyToReAlg<C extends GcdRingElem<C> & Rational>
Polynomial to algebraic functor.class
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Real algebraic number class based on AlgebraicNumber.class
RealAlgebraicRing<C extends GcdRingElem<C> & Rational>
Real algebraic number factory class based on AlgebraicNumberRing with RingFactory interface.(package private) class
RealFromAlgCoeff<C extends GcdRingElem<C> & Rational>
Coefficient to real algebriac from algebraic functor.class
RealRootTuple<C extends GcdRingElem<C> & Rational>
RealAlgebraicNumber root tuple.Classes in edu.jas.root that implement GcdRingElemModifier and TypeClassDescriptionclass
ComplexAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Complex algebraic number class based on AlgebraicNumber.class
RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>
Real algebraic number class based on AlgebraicNumber.Methods in edu.jas.root with type parameters of type GcdRingElemModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<AlgebraicNumber<C>> PolyUtilRoot.algebraicFromRealCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
AlgebraicRoots<C> RootFactory.algebraicRoots
(GenPolynomial<C> f) Roots as real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbers
(GenPolynomial<C> f) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbers
(GenPolynomial<C> f, BigRational eps) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f, BigRational eps) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<C>> PolyUtilRoot.complexFromAny
(GenPolynomial<C> f) Convert to Complex coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>> PolyUtilRoot.convertToComplexCoefficients
(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>> PolyUtilRoot.convertToComplexCoefficientsFromComplex
(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<Complex<C>> A) Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
DecimalRoots<C> RootFactory.decimalRoots
(GenPolynomial<C> f, BigRational eps) Roots as real and complex decimal numbers.static <C extends GcdRingElem<C> & Rational>
DecimalRoots<C> RootFactory.decimalRoots
(AlgebraicRoots<C> ar, BigRational eps) Roots as real and complex decimal numbers.static <C extends GcdRingElem<C> & Rational>
List<Complex<BigDecimal>> RootFactory.filterOutRealRoots
(GenPolynomial<C> f, List<Complex<BigDecimal>> c, List<BigDecimal> r, BigRational eps) Filter real roots from complex roots.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.filterOutRealRoots
(GenPolynomial<C> f, List<ComplexAlgebraicNumber<C>> c, List<RealAlgebraicNumber<C>> r) Filter real roots from complex roots.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRealRoot
(GenPolynomial<C> f, Complex<BigDecimal> c, BigDecimal r, BigRational eps) Is complex decimal number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRealRoot
(GenPolynomial<C> f, ComplexAlgebraicNumber<C> c, RealAlgebraicNumber<C> r) Is complex algebraic number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRoot
(GenPolynomial<C> f, ComplexAlgebraicNumber<C> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRoot
(GenPolynomial<C> f, RealAlgebraicNumber<C> r) Is real algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRootComplex
(GenPolynomial<Complex<C>> f, ComplexAlgebraicNumber<C> r) Is complex algebraic number a root of a complex polynomial.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbers
(GenPolynomial<C> f) Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbers
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersField
(GenPolynomial<C> f) Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersField
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersIrred
(GenPolynomial<C> f) Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersIrred
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.realFromAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
voidRootFactory.rootRefine
(AlgebraicRoots<C> a, BigRational eps) Root refinement of real and complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
AlgebraicRoots<C> RootFactory.rootsOfUnity
(AlgebraicRoots<C> ar) Roots of unity of real and complex algebraic numbers. -
Uses of GcdRingElem in edu.jas.structure
Classes in edu.jas.structure with type parameters of type GcdRingElemModifier and TypeInterfaceDescriptioninterface
GcdRingElem<C extends GcdRingElem<C>>
Gcd ring element interface.Subinterfaces of GcdRingElem in edu.jas.structureModifier and TypeInterfaceDescriptioninterface
RegularRingElem<C extends RegularRingElem<C>>
Regular ring element interface. -
Uses of GcdRingElem in edu.jas.ufd
Classes in edu.jas.ufd with type parameters of type GcdRingElemModifier and TypeClassDescription(package private) class
BackSubstKronecker<C extends GcdRingElem<C>>
Kronecker back substitutuion functor.class
FactorAbsolute<C extends GcdRingElem<C>>
Absolute factorization algorithms class.class
FactorAbstract<C extends GcdRingElem<C>>
Abstract factorization algorithms class.class
FactorAlgebraic<C extends GcdRingElem<C>>
Algebraic number coefficients factorization algorithms.class
FactorComplex<C extends GcdRingElem<C>>
Complex coefficients factorization algorithms.class
FactorFraction<C extends GcdRingElem<C>,
D extends GcdRingElem<D> & QuotPair<GenPolynomial<C>>> Fraction factorization algorithms.class
FactorFraction<C extends GcdRingElem<C>,
D extends GcdRingElem<D> & QuotPair<GenPolynomial<C>>> Fraction factorization algorithms.class
FactorInteger<MOD extends GcdRingElem<MOD> & Modular>
Integer coefficients factorization algorithms.interface
Factorization<C extends GcdRingElem<C>>
Factorization algorithms interface.class
FactorModular<MOD extends GcdRingElem<MOD> & Modular>
Modular coefficients factorization algorithms.class
FactorModularBerlekamp<MOD extends GcdRingElem<MOD>>
Modular coefficients Berlekamp factorization algorithms.class
FactorQuotient<C extends GcdRingElem<C>>
Rational function coefficients factorization algorithms.class
Factors<C extends GcdRingElem<C>>
Container for the factors of absolute factorization.class
FactorsList<C extends GcdRingElem<C>>
Container for the factors of a squarefree factorization.class
FactorsMap<C extends GcdRingElem<C>>
Container for the factors of a eventually non-squarefree factorization.class
GCDProxy<C extends GcdRingElem<C>>
Greatest common divisor parallel proxy.interface
GreatestCommonDivisor<C extends GcdRingElem<C>>
Greatest common divisor algorithm interface.class
GreatestCommonDivisorAbstract<C extends GcdRingElem<C>>
Greatest common divisor algorithms.class
GreatestCommonDivisorFake<C extends GcdRingElem<C>>
Greatest common divisor algorithms with gcd always 1.class
GreatestCommonDivisorHensel<MOD extends GcdRingElem<MOD> & Modular>
Greatest common divisor algorithms with subresultant polynomial remainder sequence and univariate Hensel lifting.class
GreatestCommonDivisorModEval<MOD extends GcdRingElem<MOD> & Modular>
Greatest common divisor algorithms with modular evaluation algorithm for recursion.class
GreatestCommonDivisorModular<MOD extends GcdRingElem<MOD> & Modular>
Greatest common divisor algorithms with modular computation and Chinese remainder algorithm.class
GreatestCommonDivisorPrimitive<C extends GcdRingElem<C>>
Greatest common divisor algorithms with primitive polynomial remainder sequence.class
GreatestCommonDivisorSimple<C extends GcdRingElem<C>>
Greatest common divisor algorithms with monic polynomial remainder sequence.class
GreatestCommonDivisorSubres<C extends GcdRingElem<C>>
Greatest common divisor algorithms with subresultant polynomial remainder sequence.class
HenselApprox<MOD extends GcdRingElem<MOD> & Modular>
Container for the approximation result from a Hensel algorithm.class
PartialFraction<C extends GcdRingElem<C>>
Container for the partial fraction decomposition of a squarefree denominator.class
Quotient<C extends GcdRingElem<C>>
Quotient, that is a rational function, based on GenPolynomial with RingElem interface.class
QuotientRing<C extends GcdRingElem<C>>
Quotient ring factory based on GenPolynomial with RingElem interface.class
QuotientTaylorFunction<C extends GcdRingElem<C>>
Polynomial quotient functions capable for Taylor series expansion.interface
Squarefree<C extends GcdRingElem<C>>
Squarefree decomposition interface.class
SquarefreeAbstract<C extends GcdRingElem<C>>
Abstract squarefree decomposition class.class
SquarefreeFieldChar0<C extends GcdRingElem<C>>
Squarefree decomposition for coefficient fields of characteristic 0.class
SquarefreeFieldChar0Yun<C extends GcdRingElem<C>>
Squarefree decomposition for coefficient fields of characteristic 0, algorithm of Yun.class
SquarefreeFieldCharP<C extends GcdRingElem<C>>
Squarefree decomposition for coefficient fields of characteristic p.class
SquarefreeFiniteFieldCharP<C extends GcdRingElem<C>>
Squarefree decomposition for finite coefficient fields of characteristic p.class
SquarefreeInfiniteAlgebraicFieldCharP<C extends GcdRingElem<C>>
Squarefree decomposition for algebraic extensions of infinite coefficient fields of characteristic p > 0.class
SquarefreeInfiniteFieldCharP<C extends GcdRingElem<C>>
Squarefree decomposition for infinite coefficient fields of characteristic p.class
SquarefreeRingChar0<C extends GcdRingElem<C>>
Squarefree decomposition for coefficient rings of characteristic 0.(package private) class
SubstKronecker<C extends GcdRingElem<C>>
Kronecker substitutuion functor.Classes in edu.jas.ufd that implement GcdRingElemModifier and TypeClassDescriptionclass
Quotient<C extends GcdRingElem<C>>
Quotient, that is a rational function, based on GenPolynomial with RingElem interface.Methods in edu.jas.ufd with type parameters of type GcdRingElemModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<C>[]PolyUfdUtil.agcd
(GenPolynomial<C> R, GenPolynomial<C> S, int n) GenPolynomial approximate common divisor.static <C extends GcdRingElem<C>>
AlgebraicNumberRing<C> PolyUfdUtil.algebraicNumberField
(GenPolynomialRing<C> ring, int degree) Construct an algebraic number field of degree d.static <C extends GcdRingElem<C>>
AlgebraicNumberRing<C> PolyUfdUtil.algebraicNumberField
(RingFactory<C> cfac, int degree) Construct an algebraic number field of degree d.static <C extends GcdRingElem<C>>
Quotient<C> PolyUfdUtil.approximantOfPade
(UnivPowerSeriesRing<C> upr, TaylorFunction<C> f, C a, int m, int n) Pade approximant [m/n] of function f.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.backSubstituteKronecker
(GenPolynomialRing<C> fac, GenPolynomial<C> A, long d) Kronecker back substitution.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyUfdUtil.backSubstituteKronecker
(GenPolynomialRing<C> fac, List<GenPolynomial<C>> A, long d) Kronecker back substitution.static <C extends GcdRingElem<C>>
ArrayList<ArrayList<C>> PolyUfdUtil.constructQmatrix
(GenPolynomial<C> A) Construct Berlekamp Q matrix.static <C extends GcdRingElem<C>>
Quotient<C> PolyUfdUtil.derivative
(Quotient<C> r) Derivation of a univariate rational function.static <C extends GcdRingElem<C>>
Quotient<C> PolyUfdUtil.derivative
(Quotient<C> Q, int r) Polynomial quotient partial derivative variable r.static <C extends GcdRingElem<C>>
voidPolyUfdUtil.ensureFieldProperty
(AlgebraicNumberRing<C> afac) Ensure that the field property is determined.static <C extends GcdRingElem<C>>
CPolyUfdUtil.evaluateAll
(RingFactory<C> cfac, Quotient<C> A, List<C> a) Evaluate all variables.static <C extends GcdRingElem<C>>
CPolyUfdUtil.evaluateMain
(RingFactory<C> cfac, Quotient<C> A, C a) Evaluate at main variable.static <C extends GcdRingElem<C>>
EvalPoints<C> PolyUfdUtil.evaluationPoints
(GenPolynomial<C> A) Polynomial suitable evaluation points.static <C extends GcdRingElem<C>>
GenExteriorPolynomial<Quotient<C>> PolyUfdUtil.exteriorDerivativeQuot
(GenExteriorPolynomial<Quotient<C>> P) GenExteriorPolynomial over polynomial quotient exterior derivative.static <C extends GcdRingElem<C>>
SortedMap<Quotient<C>, Long> Factors of Quotient rational function.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>> FactorFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
FactorAbstract<Complex<C>> FactorFactory.getImplementation
(ComplexRing<C> fac) Determine suitable implementation of factorization algorithms, case Complex<C>.static <C extends GcdRingElem<C>>
FactorAbstract<C> FactorFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of factorization algorithms, case recursive GenPolynomial<C>.static <C extends GcdRingElem<C>>
FactorAbstract<C> FactorFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of factorization algorithms, other cases.static <C extends GcdRingElem<C>>
FactorAbstract<Quotient<C>> FactorFactory.getImplementation
(QuotientRing<C> fac) Determine suitable implementation of factorization algorithms, case Quotient<C>.static <C extends GcdRingElem<C>>
GreatestCommonDivisorAbstract<C> GCDFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of gcd algorithms, other cases.static <C extends GcdRingElem<C>>
SquarefreeAbstract<AlgebraicNumber<C>> SquarefreeFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of squarefree factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
SquarefreeAbstract<C> SquarefreeFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of squarefree factorization algorithms, case GenPolynomial<C>.static <C extends GcdRingElem<C>>
SquarefreeAbstract<C> SquarefreeFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of squarefree factorization algorithms, other cases.static <C extends GcdRingElem<C>>
SquarefreeAbstract<Quotient<C>> SquarefreeFactory.getImplementation
(QuotientRing<C> fac) Determine suitable implementation of squarefree factorization algorithms, case Quotient<C>.protected static <C extends GcdRingElem<C>>
SquarefreeAbstract<C> SquarefreeFactory.getImplementationPoly
(GenPolynomialRing<C> fac) static <C extends GcdRingElem<C>>
GreatestCommonDivisorAbstract<C> GCDFactory.getProxy
(RingFactory<C> fac) Determine suitable proxy for gcd algorithms, other cases.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<Quotient<C>> A) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, Collection<GenPolynomial<Quotient<C>>> L) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.introduceLowerVariable
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Introduce lower variable.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isDiophantLift
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S1, GenPolynomial<MOD> S2, GenPolynomial<MOD> C) Modular Diophant relation lifting test.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isDiophantLift
(List<GenPolynomial<MOD>> A, List<GenPolynomial<MOD>> S, GenPolynomial<MOD> C) Modular Diophant relation lifting test.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isExtendedEuclideanLift
(List<GenPolynomial<MOD>> A, List<GenPolynomial<MOD>> S) Modular extended Euclidean relation lifting test.static <C extends GcdRingElem<C>>
booleanPolyUfdUtil.isFactorization
(Quotient<C> P, SortedMap<Quotient<C>, Long> F) Quotient is (squarefree) factorization.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselMultUtil.isHenselLift
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<GenPolynomial<MOD>> L) Modular Hensel lifting algorithm on coefficients test.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isHenselLift
(GenPolynomial<BigInteger> C, BigInteger M, BigInteger p, HenselApprox<MOD> Ha) Modular Hensel lifting test.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> C, List<MOD> V, long d, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, List<MOD> V, long d, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, long e, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> C, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(List<GenPolynomial<MOD>> A, long e, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
GenPolynomial<MOD>[]HenselUtil.liftExtendedEuclidean
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, long k) Constructing and lifting algorithm for extended Euclidean relation.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftExtendedEuclidean
(List<GenPolynomial<MOD>> A, long k) Constructing and lifting algorithm for extended Euclidean relation.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHensel
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S, GenPolynomial<MOD> T) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k, BigInteger g) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselFull
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel full lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k) Modular Hensel lifting algorithm, monic case.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadratic
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B) Modular quadratic Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadratic
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S, GenPolynomial<MOD> T) Modular quadratic Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadraticFac
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadraticFac
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S, GenPolynomial<MOD> T) Modular Hensel lifting algorithm on coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A) Norm of a polynomial with AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A, long k) Norm of a polynomial with AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Quotient<C>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, GenPolynomial<GenPolynomial<C>> A) Rational function from integral polynomial coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<Quotient<C>>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, Collection<GenPolynomial<GenPolynomial<C>>> L) Rational function from integral polynomial coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.randomIrreduciblePolynomial
(GenPolynomialRing<C> ring, int degree) Construct a random irreducible univariate polynomial of degree d.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.randomIrreduciblePolynomial
(RingFactory<C> cfac, int degree) Construct a random irreducible univariate polynomial of degree d.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUfdUtil.substituteConvertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A, long k) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.substituteFromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A, long k) From AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.substituteKronecker
(GenPolynomial<C> A) Kronecker substitution.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.substituteKronecker
(GenPolynomial<C> A, long d) Kronecker substitution.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyUfdUtil.substituteKronecker
(List<GenPolynomial<C>> A, int d) Kronecker substitution. -
Uses of GcdRingElem in edu.jas.ufdroot
Classes in edu.jas.ufdroot with type parameters of type GcdRingElemModifier and TypeClassDescriptionclass
FactorRealAlgebraic<C extends GcdRingElem<C> & Rational>
Real algebraic number coefficients factorization algorithms.