Uses of Class
edu.jas.gb.GroebnerBaseAbstract
Packages that use GroebnerBaseAbstract
Package
Description
Groebner base application package.
Groebner bases package.
Module Groebner base package.
Groebner bases using unique factorization package.
Elementary Integration package.
-
Uses of GroebnerBaseAbstract in edu.jas.application
Fields in edu.jas.application declared as GroebnerBaseAbstractModifier and TypeFieldDescriptionprivate GroebnerBaseAbstract
<C> GBAlgorithmBuilder.algo
The current GB algorithm implementation.protected final GroebnerBaseAbstract
<C> Ideal.bb
Groebner base engine.Methods in edu.jas.application that return GroebnerBaseAbstractModifier and TypeMethodDescriptionGBAlgorithmBuilder.build()
Build the GB algorithm implementation.(package private) static GroebnerBaseAbstract
RunGB.getGBalgo
(String[] args, String bstr, GenPolynomialRing ring) Methods in edu.jas.application with parameters of type GroebnerBaseAbstractModifier and TypeMethodDescription(package private) static void
RunGB.runGB
(PolynomialList S, GroebnerBaseAbstract bb) Constructors in edu.jas.application with parameters of type GroebnerBaseAbstractModifierConstructorDescriptionGBAlgorithmBuilder
(GenPolynomialRing<C> ring, GroebnerBaseAbstract<C> algo) Constructor.GBAlgorithmBuilder
(GenPolynomialRing<C> ring, GroebnerBaseAbstract<C> algo, PairList<C> strategy) Constructor.Ideal
(PolynomialList<C> list, boolean gb, boolean topt, GroebnerBaseAbstract<C> bb) Constructor.Ideal
(PolynomialList<C> list, boolean gb, boolean topt, GroebnerBaseAbstract<C> bb, Reduction<C> red) Constructor.Ideal
(PolynomialList<C> list, boolean gb, GroebnerBaseAbstract<C> bb) Constructor.Ideal
(PolynomialList<C> list, boolean gb, GroebnerBaseAbstract<C> bb, Reduction<C> red) Constructor.Ideal
(PolynomialList<C> list, GroebnerBaseAbstract<C> bb, Reduction<C> red) Constructor. -
Uses of GroebnerBaseAbstract in edu.jas.gb
Subclasses of GroebnerBaseAbstract in edu.jas.gbModifier and TypeClassDescriptionclass
DGroebnerBaseSeq<C extends RingElem<C>>
D-Groebner Base sequential algorithm.class
EGroebnerBaseSeq<C extends RingElem<C>>
E-Groebner Base sequential algorithm.class
GBOptimized<C extends GcdRingElem<C>>
Groebner bases via optimized variable and term order.class
GBProxy<C extends GcdRingElem<C>>
Groebner bases parallel proxy.class
GroebnerBaseArriSigSeqIter<C extends RingElem<C>>
Groebner Base Arri signature based sequential iterative algorithm.class
GroebnerBaseDistributedEC<C extends RingElem<C>>
Groebner Base distributed algorithm.class
GroebnerBaseDistributedHybridEC<C extends RingElem<C>>
Groebner Base distributed hybrid algorithm.class
GroebnerBaseF5zSigSeqIter<C extends RingElem<C>>
Groebner Base F5z signature based sequential iterative algorithm.class
GroebnerBaseGGVSigSeqIter<C extends RingElem<C>>
Groebner Base GGV signature based sequential iterative algorithm.class
GroebnerBaseParallel<C extends RingElem<C>>
Groebner Base parallel algorithm.class
GroebnerBaseParIter<C extends RingElem<C>>
Groebner Base parallel iterative algorithm.class
GroebnerBaseSeq<C extends RingElem<C>>
Groebner Base sequential algorithm.class
GroebnerBaseSeqIter<C extends RingElem<C>>
Groebner Base sequential iterative algorithm.class
GroebnerBaseSeqPairDistributed<C extends RingElem<C>>
Deprecated.no direct alternativeclass
GroebnerBaseSeqPairParallel<C extends RingElem<C>>
Groebner Base parallel algorithm.class
GroebnerBaseSeqPairSeq<C extends RingElem<C>>
Groebner Base sequential algorithm.class
GroebnerBaseSigSeqIter<C extends RingElem<C>>
Groebner Base signature based sequential iterative algorithm.Fields in edu.jas.gb declared as GroebnerBaseAbstractModifier and TypeFieldDescriptionfinal GroebnerBaseAbstract
<C> SolvableGroebnerBaseAbstract.cbb
Commutative Groebner bases engine.final GroebnerBaseAbstract
<C> GBOptimized.e1
GB engine.final GroebnerBaseAbstract
<C> GBProxy.e1
GB engines.final GroebnerBaseAbstract
<C> GBProxy.e2
Constructors in edu.jas.gb with parameters of type GroebnerBaseAbstractModifierConstructorDescriptionGBOptimized constructor.GBOptimized
(GroebnerBaseAbstract<C> e1, boolean rP) GBOptimized constructor.GBProxy
(GroebnerBaseAbstract<C> e1, GroebnerBaseAbstract<C> e2) Proxy constructor. -
Uses of GroebnerBaseAbstract in edu.jas.gbmod
Fields in edu.jas.gbmod declared as GroebnerBaseAbstractModifier and TypeFieldDescriptionprotected final GroebnerBaseAbstract
<C> ModGroebnerBaseSeq.bb
Deprecated.Used Groebner base algorithm.Constructors in edu.jas.gbmod with parameters of type GroebnerBaseAbstractModifierConstructorDescriptionDeprecated.Constructor.Deprecated.Constructor. -
Uses of GroebnerBaseAbstract in edu.jas.gbufd
Subclasses of GroebnerBaseAbstract in edu.jas.gbufdModifier and TypeClassDescriptionclass
GroebnerBaseFGLM<C extends GcdRingElem<C>>
Groebner Base sequential FGLM algorithm.class
GroebnerBasePartial<C extends GcdRingElem<C>>
Partial Groebner Bases for subsets of variables.class
GroebnerBasePseudoParallel<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction multi-threaded parallel algorithm.class
GroebnerBasePseudoRecParallel<C extends GcdRingElem<C>>
Groebner Base with recursive pseudo reduction multi-threaded parallel algorithm.class
GroebnerBasePseudoRecSeq<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction sequential algorithm for integral function coefficients.class
GroebnerBasePseudoSeq<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction sequential algorithm.class
GroebnerBaseQuotient<C extends GcdRingElem<C>>
Groebner Base sequential algorithm for rational function coefficients, fraction free computation.class
GroebnerBaseRational<C extends BigRational>
Groebner Base sequential algorithm for rational coefficients, fraction free computation.class
GroebnerBaseWalk<C extends GcdRingElem<C>>
Groebner Base sequential Groebner Walk algorithm.class
RGroebnerBasePseudoSeq<C extends RegularRingElem<C>>
Regular ring Groebner Base with pseudo reduction sequential algorithm.class
RGroebnerBaseSeq<C extends RegularRingElem<C>>
Regular ring Groebner Base sequential algorithm.Fields in edu.jas.gbufd declared as GroebnerBaseAbstractModifier and TypeFieldDescriptionprotected GroebnerBaseAbstract
<C> GroebnerBasePartial.bb
Backing Groebner base engine.protected GroebnerBaseAbstract
<C> SyzygySeq.bb
Groebner base engine.final GroebnerBaseAbstract
<GenPolynomial<C>> GroebnerBaseQuotient.bba
final GroebnerBaseAbstract
<BigInteger> GroebnerBaseRational.bba
protected GroebnerBaseAbstract
<GenPolynomial<C>> GroebnerBasePartial.rbb
Backing recursive Groebner base engine.private GroebnerBaseAbstract
<C> GroebnerBaseFGLM.sgb
The backing GB algorithm implementation.protected GroebnerBaseAbstract
<C> GroebnerBaseWalk.sgb
The backing GB algorithm implementation.Methods in edu.jas.gbufd that return GroebnerBaseAbstractModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getImplementation()
Determine suitable implementation of GB algorithms, no factory case.static GroebnerBaseAbstract
<BigInteger> GBFactory.getImplementation
(BigInteger fac) Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract
<BigInteger> GBFactory.getImplementation
(BigInteger fac, PairList<BigInteger> pl) Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract
<BigInteger> GBFactory.getImplementation
(BigInteger fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract
<BigInteger> GBFactory.getImplementation
(BigInteger fac, GBFactory.Algo a, PairList<BigInteger> pl) Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<ModInteger> GBFactory.getImplementation
(ModIntegerRing fac) Determine suitable implementation of GB algorithms, case ModInteger.static GroebnerBaseAbstract
<ModInteger> GBFactory.getImplementation
(ModIntegerRing fac, PairList<ModInteger> pl) Determine suitable implementation of GB algorithms, case ModInteger.static GroebnerBaseAbstract
<ModInt> GBFactory.getImplementation
(ModIntRing fac) Determine suitable implementation of GB algorithms, case ModInt.static GroebnerBaseAbstract
<ModInt> GBFactory.getImplementation
(ModIntRing fac, PairList<ModInt> pl) Determine suitable implementation of GB algorithms, case ModInt.static GroebnerBaseAbstract
<ModLong> GBFactory.getImplementation
(ModLongRing fac) Determine suitable implementation of GB algorithms, case ModLong.static GroebnerBaseAbstract
<ModLong> GBFactory.getImplementation
(ModLongRing fac, PairList<ModLong> pl) Determine suitable implementation of GB algorithms, case ModLong.static <C extends RingElem<C>>
GroebnerBaseAbstract<Product<C>> GBFactory.getImplementation
(ProductRing<C> fac) Determine suitable implementation of GB algorithms, case regular rings.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getImplementation
(RingFactory<C> fac) Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getImplementation
(RingFactory<C> fac, PairList<C> pl) Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getProxy
(GenPolynomialRing<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getProxy
(RingFactory<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C> GBFactory.getProxy
(RingFactory<C> fac, PairList<C> pl) Determine suitable parallel/concurrent implementation of GB algorithms if possible.Constructors in edu.jas.gbufd with parameters of type GroebnerBaseAbstractModifierConstructorDescriptionConstructor.GroebnerBaseFGLM
(Reduction<C> red, PairList<C> pl, GroebnerBaseAbstract<C> gb) Constructor.Constructor.Constructor.Constructor.Constructor.GroebnerBaseWalk
(GroebnerBaseAbstract<C> gb, TermOrder t1) Constructor. -
Uses of GroebnerBaseAbstract in edu.jas.integrate
Fields in edu.jas.integrate declared as GroebnerBaseAbstractModifier and TypeFieldDescriptionfinal GroebnerBaseAbstract
<C> ElementaryIntegrationCzichowski.red
Engine for Groebner basis.