Uses of Class
edu.jas.root.RealAlgebraicNumber
Packages that use RealAlgebraicNumber
Package
Description
Groebner base application package.
Real and Complex Root Computation package.
Unique Factorization Domain and Roots package.
-
Uses of RealAlgebraicNumber in edu.jas.application
Fields in edu.jas.application declared as RealAlgebraicNumberModifier and TypeFieldDescriptionfinal RealAlgebraicNumber
<RealAlgebraicNumber<C>> RealAlgebraicNumber.number
Representing recursive RealAlgebraicNumber.Fields in edu.jas.application with type parameters of type RealAlgebraicNumberModifier and TypeFieldDescriptionfinal FactorAbstract
<RealAlgebraicNumber<C>> FactorRealReal.factorAlgebraic
Factorization engine for base coefficients.final RealAlgebraicNumber
<RealAlgebraicNumber<C>> RealAlgebraicNumber.number
Representing recursive RealAlgebraicNumber.final List
<List<RealAlgebraicNumber<D>>> IdealWithRealAlgebraicRoots.ran
The list of real algebraic roots.final RealAlgebraicRing
<RealAlgebraicNumber<C>> RealAlgebraicRing.realRing
Recursive real root ring.Methods in edu.jas.application that return RealAlgebraicNumberMethods in edu.jas.application that return types with arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
FactorAbstract<RealAlgebraicNumber<C>> FactorFactory.getImplementation
(RealAlgebraicRing<C> fac) Determine suitable implementation of factorization algorithms, case RealAlgebraicNumber<C>.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realAlgFromRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.Methods in edu.jas.application with parameters of type RealAlgebraicNumberModifier and TypeMethodDescriptionint
RealAlgebraicNumber.compareTo
(RealAlgebraicNumber<RealAlgebraicNumber<C>> b) RealAlgebraicNumber comparison.RealFromReAlgCoeff.eval
(RealAlgebraicNumber<C> c) RealAlgebraicNumber.multiply
(RealAlgebraicNumber<RealAlgebraicNumber<C>> c) RealAlgebraicNumber multiplication.RealAlgebraicNumber.sum
(RealAlgebraicNumber<RealAlgebraicNumber<C>> c) RealAlgebraicNumber summation.Method parameters in edu.jas.application with type arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionint
RealAlgebraicNumber.compareTo
(RealAlgebraicNumber<RealAlgebraicNumber<C>> b) RealAlgebraicNumber comparison.RealAlgebraicNumber.multiply
(RealAlgebraicNumber<RealAlgebraicNumber<C>> c) RealAlgebraicNumber multiplication.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realAlgFromRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realFromRealAlgCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.RealAlgebraicNumber.sum
(RealAlgebraicNumber<RealAlgebraicNumber<C>> c) RealAlgebraicNumber summation.Constructors in edu.jas.application with parameters of type RealAlgebraicNumberModifierConstructorDescriptionThe constructor creates a RealAlgebraicNumber object from a recursive real algebraic value.Constructor parameters in edu.jas.application with type arguments of type RealAlgebraicNumberModifierConstructorDescriptionAlgebraicRootsPrimElem
(GenPolynomial<C> p, GenPolynomial<Complex<C>> cp, List<RealAlgebraicNumber<C>> r, List<ComplexAlgebraicNumber<C>> c, PrimitiveElement<C> pe, List<AlgebraicNumber<C>> ru) Constructor.FactorRealReal
(RealAlgebraicRing<C> fac, FactorAbstract<RealAlgebraicNumber<C>> factorAlgebraic) Constructor.IdealWithRealAlgebraicRoots
(IdealWithUniv<D> iu, List<List<RealAlgebraicNumber<D>>> rr) Constructor.The constructor creates a RealAlgebraicNumber object from a recursive real algebraic value. -
Uses of RealAlgebraicNumber in edu.jas.root
Fields in edu.jas.root with type parameters of type RealAlgebraicNumberModifier and TypeFieldDescriptionfinal List
<RealAlgebraicNumber<C>> AlgebraicRoots.real
Real algebraic roots.final List
<RealAlgebraicNumber<C>> RealRootTuple.tuple
Tuple of RealAlgebraicNumbers.Methods in edu.jas.root that return RealAlgebraicNumberModifier and TypeMethodDescriptionRealAlgebraicNumber.abs()
RealAlgebraicNumber absolute value.RealAlgebraicNumber.copy()
Copy this.RealAlgebraicRing.copy
(RealAlgebraicNumber<C> c) Copy RealAlgebraicNumber element c.RealAlgebraicNumber.divide
(RealAlgebraicNumber<C> S) RealAlgebraicNumber division.RealAlgebraicNumber.egcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber extended greatest common divisor.PolyToReAlg.eval
(GenPolynomial<C> c) RealFromAlgCoeff.eval
(AlgebraicNumber<C> c) RealAlgebraicRing.fromInteger
(long a) Get a RealAlgebraicNumber element from a long value.RealAlgebraicRing.fromInteger
(BigInteger a) Get a RealAlgebraicNumber element from a BigInteger value.RealAlgebraicRing.fromRational
(BigRational a) Get a RealAlgebraicNumber element from a BigRational value.RealAlgebraicNumber.gcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber greatest common divisor.RealAlgebraicRing.getGenerator()
Get the generating element.RealAlgebraicRing.getONE()
Get the one element.RealAlgebraicRing.getZERO()
Get the zero element.RealAlgebraicNumber.inverse()
RealAlgebraicNumber inverse.RealAlgebraicNumber.monic()
RealAlgebraicNumber monic.RealAlgebraicNumber multiplication.RealAlgebraicNumber.multiply
(GenPolynomial<C> c) RealAlgebraicNumber multiplication.RealAlgebraicNumber.multiply
(RealAlgebraicNumber<C> S) RealAlgebraicNumber multiplication.RealAlgebraicNumber.negate()
RealAlgebraicNumber negate.Parse RealAlgebraicNumber from Reader.Parse RealAlgebraicNumber from String.RealAlgebraicNumber.quotientRemainder
(RealAlgebraicNumber<C> S) Quotient and remainder by division of this by S.RealAlgebraicRing.random
(int n) RealAlgebraicNumber random.RealAlgebraicNumber random.RealAlgebraicNumber.remainder
(RealAlgebraicNumber<C> S) RealAlgebraicNumber remainder.RealAlgebraicNumber.subtract
(RealAlgebraicNumber<C> S) RealAlgebraicNumber subtraction.RealAlgebraicNumber summation.RealAlgebraicNumber.sum
(GenPolynomial<C> c) RealAlgebraicNumber summation.RealAlgebraicNumber.sum
(RealAlgebraicNumber<C> S) RealAlgebraicNumber summation.Methods in edu.jas.root that return types with arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive RealAlgebraicNumber coefficients.RealAlgebraicRing.generators()
Get a list of the generating elements.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbers
(GenPolynomial<C> f) Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbers
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersField
(GenPolynomial<C> f) Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersField
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersIrred
(GenPolynomial<C> f) Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersIrred
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.realFromAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.Methods in edu.jas.root with parameters of type RealAlgebraicNumberModifier and TypeMethodDescriptionint
RealAlgebraicNumber.compareTo
(RealAlgebraicNumber<C> b) RealAlgebraicNumber comparison.static List
<BigInteger> RealArithUtil.continuedFraction
(RealAlgebraicNumber<BigRational> A, int M) Continued fraction.RealAlgebraicRing.copy
(RealAlgebraicNumber<C> c) Copy RealAlgebraicNumber element c.RealAlgebraicNumber.divide
(RealAlgebraicNumber<C> S) RealAlgebraicNumber division.RealAlgebraicNumber.egcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber extended greatest common divisor.AlgFromRealCoeff.eval
(RealAlgebraicNumber<C> c) RealAlgebraicNumber.gcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber greatest common divisor.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRealRoot
(GenPolynomial<C> f, ComplexAlgebraicNumber<C> c, RealAlgebraicNumber<C> r) Is complex algebraic number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRoot
(GenPolynomial<C> f, RealAlgebraicNumber<C> r) Is real algebraic number a root of a polynomial.RealAlgebraicNumber.multiply
(RealAlgebraicNumber<C> S) RealAlgebraicNumber multiplication.RealAlgebraicNumber.quotientRemainder
(RealAlgebraicNumber<C> S) Quotient and remainder by division of this by S.RealAlgebraicNumber.remainder
(RealAlgebraicNumber<C> S) RealAlgebraicNumber remainder.RealAlgebraicNumber.subtract
(RealAlgebraicNumber<C> S) RealAlgebraicNumber subtraction.RealAlgebraicNumber.sum
(RealAlgebraicNumber<C> S) RealAlgebraicNumber summation.Method parameters in edu.jas.root with type arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<AlgebraicNumber<C>> PolyUtilRoot.algebraicFromRealCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to AlgebraicNumber coefficients.boolean
RealRootTuple.contains
(List<RealAlgebraicNumber<C>> c) Contains a point.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.realFromAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.Constructor parameters in edu.jas.root with type arguments of type RealAlgebraicNumberModifierConstructorDescriptionAlgebraicRoots
(GenPolynomial<C> p, GenPolynomial<Complex<C>> cp, List<RealAlgebraicNumber<C>> r, List<ComplexAlgebraicNumber<C>> c) Constructor.Constructor. -
Uses of RealAlgebraicNumber in edu.jas.ufdroot
Methods in edu.jas.ufdroot that return types with arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionFactorRealAlgebraic.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.Method parameters in edu.jas.ufdroot with type arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionFactorRealAlgebraic.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.