
The Kawa Scheme language
16 January 2020

Per Bothner

i

Table of Contents

1 News - Recent Changes . 1

2 Features . 42
2.1 Implemented SRFIs . 44
2.2 Compatibility with standards . 46

3 The Kawa Community . 46
3.1 Reporting bugs . 46
3.2 General Kawa email and discussion . 47
3.3 Acknowledgements and thanks . 47
3.4 Technical Support for Kawa . 49
3.5 Projects using Kawa . 50
3.6 Ideas and tasks for contributing to Kawa . 51

3.6.1 Recusively initialized data structures . 51
3.6.2 Enhance texinfo-js documentation browser
for Kawa documentation . 52

3.6.3 Run interactive process in separate Java Virtual Machine: . . 52
3.6.4 Better dynamic reload . 53
3.6.5 Easier Access to Native Libraries using JNA/JNR 53
3.6.6 Types for units . 53
3.6.7 Compiler should use class-file reading instead of reflection . . 54
3.6.8 Mutually dependent Java and Scheme modules 54
3.6.9 Use Java-7 MethodHandles and invokedynamic 54
3.6.10 Parameterized types . 54
3.6.11 Optimized function types and values using MethodHandles . . 55
3.6.12 Full continuations . 55
3.6.13 Faster tailcalls . 56
3.6.14 TreeList-optimization . 56
3.6.15 Asynchronous evaluation . 56
3.6.16 REPL console and other REPL improvement 56
3.6.17 XQuery-3.0 functionality . 56
3.6.18 XQuery-updates . 57
3.6.19 Common Lisp support . 57
3.6.20 JEmacs improvements . 57
3.6.21 Improved IDE integration . 57

3.6.21.1 Plugin for NetBeans IDE . 57
3.6.21.2 Plugin for Eclipse IDE . 57
3.6.21.3 Improve Emacs integration . 58

3.6.22 Hop-style web programming . 58
3.6.23 String localization . 58
3.6.24 Data binding . 58
3.6.25 Decimal arithmetic and repeated decimals 58
3.6.26 Optional strict typing along with an explicit dynamic type . . 58

ii

4 Getting and installing Kawa 59
4.1 Getting Kawa . 59

4.1.1 Getting the development sources using Git 59
4.2 Getting and running Java . 60
4.3 Installing and using the binary distribution . 60
4.4 Installing and using the source distribution . 61

4.4.1 Build Kawa using configure and make 62
4.4.1.1 Configure options . 62
4.4.1.2 Building on Windows using MinGW 65
4.4.1.3 Building on Windows using Cygwin 65

4.4.2 Building the documentation . 65
4.4.2.1 Plain HTML documentation . 65
4.4.2.2 Fancier HTML documentation . 65
4.4.2.3 Using ebook readers or the –browse-manual option . . . 65
4.4.2.4 Building a printable PDF file . 65

4.4.3 Build Kawa using ant . 66

5 Kawa Scheme Tutorial . 67
5.1 Introduction . 67
5.2 Booleans . 68
5.3 Numbers . 69
5.4 Functions . 71
5.5 Variables . 73
5.6 Composable pictures . 75
5.7 Lists and sequences . 78
5.8 Creating and using objects . 80
5.9 Types and declarations . 82
5.10 Exceptions and errors . 83
5.11 Classes . 84
5.12 Other Java features . 84

Reference Documentation

6 How to start up and run Kawa 87
6.1 Command-line arguments . 87

6.1.1 Argument processing . 87
6.1.2 General options . 88
6.1.3 Options for language selection . 89
6.1.4 Options for warnings and errors . 90
6.1.5 Options for setting variables . 91
6.1.6 Options for the REPL console . 92
6.1.7 Options for controlling output formatting 92
6.1.8 Options for compiling and optimizing . 93
6.1.9 Options for debugging . 94
6.1.10 Options for web servers . 94
6.1.11 Options for the JVM . 95

6.2 Running Command Scripts . 95

iii

6.2.1 Setting kawa options in the script . 96
6.2.2 Other ways to pass options using meta-arg or –script 97
6.2.3 Scripts for compiled code . 97

6.3 The REPL (read-eval-print-loop) console . 97
6.3.1 Input line editing and history . 98
6.3.2 Running a Command Interpreter in a new Window 99
6.3.3 Using DomTerm . 100

6.4 Exiting Kawa . 101
6.5 Compiling to byte-code . 101

6.5.1 Compiling to a set of .class files . 101
6.5.2 Compiling to an archive file . 103
6.5.3 Compiling using Ant . 103
6.5.4 Compiling to a standalone application 103
6.5.5 Compiling to an applet . 104
6.5.6 Compiling to a native executable . 105

7 Syntax . 105
7.1 Notation . 105
7.2 Lexical and datum syntax . 105
7.3 Lexical syntax . 106

7.3.1 Formal account . 106
7.3.2 Line endings . 107
7.3.3 Whitespace and comments . 107
7.3.4 Identifiers . 108
7.3.5 Numbers . 110

7.4 Datum syntax . 110
7.4.1 Datum labels . 111
7.4.2 Abbreviations . 111

7.5 Hash-prefixed forms . 112
7.6 Primitive expression syntax . 113

7.6.1 Literal expressions . 113
7.6.2 Variable references . 114
7.6.3 Procedure calls . 114

7.7 Property access using colon notation . 115
7.7.1 Part lookup rules . 115
7.7.2 Specific cases . 116

7.7.2.1 Invoking methods . 116
7.7.2.2 Accessing fields . 116
7.7.2.3 Type literal . 116
7.7.2.4 Type cast . 116
7.7.2.5 Type test . 116
7.7.2.6 New object construction . 116
7.7.2.7 Getting array length . 116

7.8 Programs and Bodies . 117
7.9 Syntax and conditional compilation . 118
7.10 Macros . 120

7.10.1 Pattern language . 123
7.10.2 Identifier predicates . 125

iv

7.10.3 Syntax-object and datum conversions 128
7.10.4 Signaling errors in macro transformers 130
7.10.5 Convenience forms . 131

7.11 Named quasi-literals . 133

8 Program structure . 134
8.1 Boolean values . 134
8.2 Conditionals . 135
8.3 Variables and Patterns . 140

8.3.1 Patterns . 140
8.4 Definitions . 141
8.5 Local binding constructs . 143
8.6 Lazy evaluation . 144

8.6.1 Delayed evaluation . 145
8.6.2 Implicit forcing . 147
8.6.3 Blank promises . 147
8.6.4 Lazy and eager types . 149

8.7 Repeat patterns and expressions . 149
8.8 Threads . 151
8.9 Exception handling . 151

8.9.1 Simple error objects . 154
8.9.2 Named exceptions . 155
8.9.3 Native exception handling . 155

9 Control features . 156
9.1 Mapping functions . 156
9.2 Multiple values . 158

10 Symbols and namespaces 159
10.1 Simple symbols . 160
10.2 Namespaces and compound symbols . 161

10.2.1 Namespace objects . 161
10.2.2 Compound symbols . 162
10.2.3 Namespace aliases . 163

10.3 Keywords . 165
10.4 Special named constants . 165

11 Procedures . 166
11.1 Application and Arguments Lists . 166

11.1.1 Arguments lists . 166
11.1.2 Explicit argument list objects . 167
11.1.3 Argument list library . 168
11.1.4 Apply procedures . 169

11.2 Lambda Expressions and Formal Parameters 169
11.3 Procedure properties . 172

11.3.1 Standard properties . 173

v

11.4 Generic (dynamically overloaded) procedures 174
11.5 Partial application . 174

12 Quantities and Numbers . 175
12.1 Numerical types . 175

12.1.1 Exactness . 177
12.1.2 Numerical promotion and conversion . 177

12.2 Arithmetic operations . 178
12.3 Numerical input and output . 186
12.4 Quaternions . 187

12.4.1 The (kawa quaternions) module . 189
12.4.2 The (kawa rotations) module . 190

12.4.2.1 Rotation Representation Conversions 191
12.4.2.2 Rotation Operations . 194

12.5 Quantities and Units . 195
12.6 Logical Number Operations . 196

12.6.1 SRFI-60 Logical Number Operations . 199
12.6.2 Deprecated Logical Number Operations 201

12.7 Performance of numeric operations . 201

13 Characters and text . 201
13.1 Characters . 202
13.2 Character sets . 204
13.3 Strings . 205

13.3.1 Basic string procedures . 206
13.3.2 Immutable String Constructors . 207
13.3.3 Selection . 208
13.3.4 String Comparisons . 209
13.3.5 Conversions . 210
13.3.6 Searching and matching . 212
13.3.7 Concatenation and replacing . 213
13.3.8 Mapping and folding . 215
13.3.9 Replication & splitting . 217
13.3.10 String mutation . 218
13.3.11 Strings as sequences . 220

13.3.11.1 Indexing a string . 220
13.3.11.2 Indexing with a sequence . 221

13.3.12 String Cursor API . 221
13.4 String literals . 223

13.4.1 Simple string literals . 223
13.4.2 String templates . 224

13.4.2.1 Special characters . 225
13.4.2.2 Multiline string literals . 226
13.4.2.3 Embedded expressions . 226
13.4.2.4 Formatting . 227

13.5 Unicode character classes and conversions 227
13.5.1 Characters . 228

vi

13.5.2 Deprecated in-place case modification 230
13.6 Regular expressions . 230

13.6.1 Java regular expressions . 231
13.6.2 Portable Scheme regular expressions . 233

14 Data structures . 234
14.1 Sequences . 234
14.2 Lists . 235

14.2.1 SRFI-1 list library . 236
14.2.2 SRFI-101 Purely Functional
Random-Access Pairs and Lists . 236
14.3 Vectors . 237
14.4 Uniform vectors . 239

14.4.1 Relationship with Java arrays . 243
14.5 Bytevectors . 243

14.5.1 Converting to or from strings . 245
14.6 Ranges . 246
14.7 Streams - lazy lists . 247
14.8 Multi-dimensional Arrays . 247

14.8.1 Array shape . 247
14.8.2 Array types . 249
14.8.3 Array literals and printing . 249
14.8.4 Array construction . 251
14.8.5 Array indexing . 253
14.8.6 Modifying arrays . 255
14.8.7 Transformations and views . 256
14.8.8 Miscellaneous . 258

14.9 Hash tables . 258
14.9.1 R6RS hash tables . 258

14.9.1.1 Procedures . 259
14.9.1.2 Inspection . 261
14.9.1.3 Hash functions . 261

14.9.2 SRFI-69 hash tables . 261
14.9.2.1 Type constructors and predicate 262
14.9.2.2 Reflective queries . 262
14.9.2.3 Dealing with single elements . 262
14.9.2.4 Dealing with the whole contents 263
14.9.2.5 Hash functions . 264

15 Eval and Environments . 265
15.1 Locations . 266
15.2 Parameter objects . 268

16 Debugging . 270

vii

17 Input, output, and file handling 270
17.1 Named output formats . 270
17.2 Paths - file name, URLs, and URIs . 271

17.2.1 Extracting Path components . 273
17.3 File System Interface . 274
17.4 Reading and writing whole files . 275

17.4.1 Reading a file . 275
17.4.2 Blobs . 276
17.4.3 Writing to a file . 276
17.4.4 Functions . 276

17.5 Ports . 277
17.5.1 String and bytevector ports . 279
17.5.2 Input . 281
17.5.3 Output . 283
17.5.4 Prompts for interactive consoles (REPLs) 284
17.5.5 Line numbers and other input port properties 285
17.5.6 Miscellaneous . 286

17.6 Formatted Output (Common-Lisp-style) . 287
17.6.1 Implemented CL Format Control Directives 288
17.6.2 Formatting Integers . 288
17.6.3 Formatting real numbers . 289
17.6.4 Miscellaneous formatting operators . 290
17.6.5 Unimplemented CL Format Control Directives 291
17.6.6 Extended, Replaced and Additional Control Directives . . 291

17.7 Pretty-printing . 292
17.7.1 Pretty-printing Scheme forms . 292
17.7.2 Generic pretty-printing functions . 293

17.8 Resources . 294

18 Types . 294
18.1 Standard Types . 295
18.2 Parameterized Types . 297
18.3 Type tests and conversions . 297

19 Object, Classes and Modules 298
19.1 Defining new classes . 298

19.1.1 General class properties . 299
19.1.2 Declaring fields . 299
19.1.3 Declaring methods . 301
19.1.4 Example . 302

19.2 Anonymous classes . 303
19.2.1 Lambda as shorthand for anonymous class 303

19.3 Enumeration types . 304
19.4 Annotations of declarations . 304
19.5 Modules and how they are compiled to classes 305

19.5.1 Name visibility . 306
19.5.2 R7RS explicit library modules . 307

viii

19.5.3 How a module becomes a class . 308
19.5.4 Same class for module and defined class 309
19.5.5 Static vs non-static modules . 310
19.5.6 Module options . 311

19.6 Importing from a library . 312
19.6.1 Searching for modules . 314
19.6.2 Searching for source files . 314
19.6.3 Builtin libraries . 315
19.6.4 Importing a SRFI library . 316
19.6.5 Importing from a plain class . 317

19.7 Record types . 317
19.8 Creating New Record Types On-the-fly . 318
19.9 Calling Java methods from Scheme . 320

19.9.1 Calling static methods using colon notation 320
19.9.2 Calling instance methods using colon notation 320
19.9.3 Method names . 321
19.9.4 Invoking a method with the invoke function 321
19.9.5 Using a namespace prefix . 323

19.10 Allocating objects . 324
19.11 Accessing object fields . 327

19.11.1 Accessing static fields and properties 327
19.11.2 Accessing instance fields and properties 327
19.11.3 Using field and static-field methods . 328
19.11.4 Older colon-dot notation . 329

19.12 Mapping Scheme names to Java names . 330
19.13 Scheme types in Java . 330
19.14 Using Java Arrays . 331

19.14.1 Creating new Java arrays . 331
19.14.2 Accessing Java array elements . 332
19.14.3 Old low-level array macros . 332

19.15 Loading Java functions into Scheme . 332
19.16 Evaluating Scheme expressions from Java 334

19.16.1 Using javax.script portable Java scripting 335

20 Working with XML and HTML 336
20.1 Formatting XML . 336
20.2 Creating HTML nodes . 337
20.3 Creating XML nodes . 338
20.4 XML literals . 339

20.4.1 Element constructors . 339
20.4.2 Elements contents (children) . 340
20.4.3 Attributes . 340
20.4.4 QNames and namespaces . 341
20.4.5 Other XML types . 341

20.4.5.1 Processing instructions . 341
20.4.5.2 XML comments . 341
20.4.5.3 CDATA sections . 342

20.5 Web page scripts . 342

ix

20.6 Self-configuring web page scripts . 343
20.6.1 Using the OpenJDK built-in web server 344
20.6.2 Using a servlet container . 345
20.6.3 Finding a matching script . 345
20.6.4 Determining script language . 345
20.6.5 Compilation and caching . 346

20.7 Installing web page scripts as Servlets . 346
20.7.1 Creating a web application . 346
20.7.2 Compiling a web page script to a servlet 347
20.7.3 Installing a servlet under Tomcat . 348
20.7.4 Installing a servlet under Glassfish . 348
20.7.5 Servlet-specific script functions . 349

20.8 Installing Kawa programs as CGI scripts . 349
20.9 Functions for accessing HTTP requests . 350

20.9.1 Request URL components . 350
20.9.2 Request parameters . 351
20.9.3 Request headers . 352
20.9.4 Request body . 352
20.9.5 Request IP addresses and ports . 352
20.9.6 Miscellaneous request properties . 353

20.10 Generating HTTP responses . 354
20.11 Using non-Scheme languages for XML/HTML 354

20.11.1 XQuery language . 354
20.11.2 XSL transformations . 354

20.11.3 KRL - The Kawa Report Language for
generating XML/HTML . 355

20.11.4 Differences between KRL and BRL . 355

21 Miscellaneous topics . 355
21.1 Composable pictures . 356

21.1.1 Coordinates - points and dimensions . 357
21.1.2 Shapes . 357
21.1.3 Colors and paints . 358
21.1.4 Filling a shape with a color . 359
21.1.5 Stroking (outlining) a shape . 360
21.1.6 Affine transforms . 361
21.1.7 Combining pictures . 362
21.1.8 Images . 365
21.1.9 Compositing - Controlling how pictures are combined . . . 367
21.1.10 Displaying and exporting pictures . 367

21.1.10.1 Export to SVG . 367
21.1.10.2 Display in Swing . 368
21.1.10.3 Convert to image . 368

21.2 Building JavaFX applications . 368
21.2.1 Using JavaFX with JDK 11+ . 369

21.3 Building for Android . 369
21.3.1 Downloading and setting up the Android SDK 369
21.3.2 Building Kawa for Android . 370

x

21.3.3 Creating the application . 370
21.3.4 Running the application on the Android emulator 371
21.3.5 Running the application on your device 371
21.3.6 Some debugging notes . 372
21.3.7 Other resources . 372

21.4 Android view construction . 372
21.4.1 View object allocation . 373
21.4.2 Event handlers . 373

21.5 System inquiry . 373
21.6 Processes . 375

21.6.1 Creating a process . 375
21.6.2 Process literals . 376
21.6.3 Process values and process output . 376
21.6.4 Substitution and tokenization . 377
21.6.5 Input/output redirection . 379
21.6.6 Pipe-lines . 380
21.6.7 Setting the process environment . 381
21.6.8 Waiting for process exit . 381
21.6.9 Exiting the current process . 382
21.6.10 Deprecated functions . 382

21.7 Time-related functions . 383
21.8 Deprecated low-level functions . 384

21.8.1 Low-level Method invocation . 384
21.8.2 Low-level field operations . 384
21.8.3 Old low-level array macros . 385

22 Frequently Asked Questions 385

23 The Kawa language framework 387

24 License . 387
24.1 License for the Kawa software . 388
24.2 License for the Kawa manual . 389

Appendix A Index . 391

Chapter 1: News - Recent Changes 1

Kawa is a general-purpose programming language that runs on the Java platform. It
aims to combine:

• the benefits of dynamic scripting languages (non-verbose code with less boiler-
plate, fast and easy start-up, a REPL (http: / / en . wikipedia . org / wiki /

Read-eval-print_loop), no required compilation step); with

• the benefits of traditional compiled languages (fast execution, static error detection,
modularity, zero-overhead Java platform integration).

It is an extension of the long-established Scheme (http://www.schemers.org/) lan-
guage, which is in the Lisp family of programming languages. Kawa has many Chapter 2
[Features], page 42.

Kawa is also a useful Chapter 23 [Framework], page 387, for implementing other pro-
gramming languages on the Java platform. It has many useful utility classes.

This manual describes version 3.1.1, updated 16 January 2020. See the summary of
Chapter 1 [News], page 1.

The Kawa home page (which is currently just an on-line version of this document) is
http://www.gnu.org/software/kawa/.

The Chapter 5 [Tutorial], page 67, is useful to get stated. While it is woefully incomplete,
it does link to some other more in-depth (but not Kawa-specific) Scheme tutorials.

For copyright information on the software and documentation, see Chapter 24 [License],
page 387.

Various people and orgnizations Section 3.3 [Acknowledgements], page 47.

This package has nothing to do with the defunct Kawa commercial Java IDE.

1 News - Recent Changes

These changes are in more-or-less reverse chronological order, with the most recent changes
first.

See also the list of Qexo (XQuery)-specific changes (../qexo/news.html).

Kawa 3.1.1 (January 16, 2020)

• Various bug-fixes, mostly related to packaging and --browse-manual.

Kawa 3.1 (January 7, 2020)

• Updates for Java 9 and newer.

• Support justification ~<...~> in format (thanks to Helmut Eller).

• Partial (and highly experimental) support for the Language Server Protocol (https://
langserver.org) (used by editors and IDEs for on-the-fly syntax checking and more).

• Revert 3.0 change in allocating closure objects for inlined functions.

• Enhancements to arrays to match SRFI 163 (http://srfi.schemers.org/srfi-163/
srfi-163.html) and SRFI 164 (http://srfi.schemers.org/srfi-163/srfi-164.
html):

• The type gvector is a “generalized vector”.

http://en.wikipedia.org/wiki/Read-eval-print_loop
http://en.wikipedia.org/wiki/Read-eval-print_loop
http://www.schemers.org/
http://www.gnu.org/software/kawa/
../qexo/news.html
https://langserver.org
https://langserver.org
http://srfi.schemers.org/srfi-163/srfi-163.html
http://srfi.schemers.org/srfi-163/srfi-163.html
http://srfi.schemers.org/srfi-163/srfi-164.html
http://srfi.schemers.org/srfi-163/srfi-164.html

Chapter 1: News - Recent Changes 2

• Add optional port parameter to format-array.

• The build-array procedure takes an optional setter procedure.

• New procedures array-shape, ->shape.

• In array constructors, index keywords must be all or none: [int[] length: 5 11 22]

or [int[] length: 5 1: 22 0: 11].

• Various improvements in the Common Lisp implementation, by Helmut Eller.

• New --max-errors option.

• The classes created by define-record-type now extends kawa.lang.Record, which
adds some conveniences, such as printing.

• Support for source location ranges with an end position.

• Various improvements when running under DomTerm include clickable error message
locations.

• Many bug-fixes and minor improvements.

Kawa 3.0 (October 2, 2017)

• Binary release are now built for Java 8. The repository source code is now set up for
Java 8. (Building for Java 6 or 7 is still supported. Java 5 might also work, but has
not been tested recently.)

• Tested and updated for Java 9.

• Most places where you could declare a new identifier binding have been generalized to
accept Section 8.3 [Variables and Patterns], page 140, including literals and boolean
guards.

Related changes:

• The form (! pattern expression) creates [exclam-syntax], page 141, by match-
ing the expression against the pattern. It is like define-constant but generalized
to patterns.

• The conditional match form (? pattern expression) is similar to ! but can only
be used Section 8.2 [Conditionals], page 135. If the match fails, the condition is
false.

• Section 8.7 [Repeat forms], page 149, is a powerful experimental feature, similar
to list comprehensions.

• The new form [def-match], page 138, form is a generalization of case using pat-
terns.

• The internal calling convention used for “apply” (ie. calling an unknown-at-
compile-time procedure) has been completely changed.

• New types for arguments list (possibly with keywords) [Explicit argument list
objects], page 167, along with [Argument list library], page 168, for using them.

• Major changes to strings:

• Incompatible change: String literals are now gnu.lists.IString rather than
java.lang.String. The advantage of using gnu.lists.IString is that
string-ref and string-length are (roughly) constant-time, rather than having
to linearly scan the string.

Chapter 1: News - Recent Changes 3

• Incompatible change: The procedures string-append, string-map, substring,
list->string, vector->string, string-downcase, string-upcase,
string-foldcase, string-titlecase, and the constructor string return
an immutable string (an IString). (The function string-copy is similar to
substring, but returns a mutable string.) This is a work-in-progress with
the goal of implementing SRFI-140 (http://srfi.schemers.org/srfi-140/
srfi-140.html): Other procedures will be changed to return immutable strings.

If you (import (scheme base)) standard procedures such as string-append will
return mutable strings; if you (import (kawa base)) the procedures will return
immutable strings. The command-line options --r5rs or --r6rs or --r7rs over-
ride the default so these procedures return mutable strings.

• Incompatible change: Treating a string as a sequence is now simpler but pos-
sibly slower: The I ’th element is now the I ’th Unicode code point. Indexing
with function-call syntax (string i) is the same as (string-ref string i) and
(length string) is the same as (string-length string). This applies to all
classes that implement java.lang.CharSequence. Indexing may be a linear-time
operation (thus much slower), unless the string is an IString (in which case it is
constant-time),

• Incompatible change: Before, if a Java parameter type was java.lang.String

Kawa would accept any value, converting it using Object’s toString method.
Now Kawa will reject an argument if it is not a java.lang.CharSequence.

• New procedures: istring?, reverse-list->string, string-any,
string-concatenate, string-concatenate-reverse, string-contains,
string-contains-right, string-count, string-drop, string-drop-

right, string-every, string-filter, string-fold, string-fold-right,
string-for-each-index, string-index, string-index-right, string-join,
string-map-index, string-null?, string-prefix?, string-prefix-

length, string-repeat, string-remove, string-replace, string-skip,
string-skip-right, string-split, string-suffix?, string-suffix-

length, string-tabulate, string-take, string-take-right, string-trim,
string-trim-right, string-trim-both, string-unfold, string-unfold-

right, string->utf16, string->utf16be, string->utf16le, utf16->string,
utf16be->string, utf16le->string, xsubstring. These follow SRFI-140 and
return immutable strings. (Some of these had previously been available in
SRFI-13, but the older versions return mutable strings.)

• Incompatible change: Kawa traditionally followed Java in allowing you to pass an array
with the “rest” arguments to a varargs method. For example, you could write:

(define args (Object[] 3 "cm"))

(java.lang.String:format "length:%s%s" args)

This is no longer allowed. Instead, use the splice operator:

(java.lang.String:format "length:%s%s" @args)

• Incompatible change: You used to be able to write a type-specifier in a formal parameter
or return type without using ‘::’, as in:

(define (incr (x int)) int (+ x 1))

http://srfi.schemers.org/srfi-140/srfi-140.html
http://srfi.schemers.org/srfi-140/srfi-140.html

Chapter 1: News - Recent Changes 4

This is no longer allowed, because it conflicts with the syntax for patterns. Instead you
have to write:

(define (incr (x ::int)) ::int (+ x 1))

• New type aliases bitvector and c16vector. The latter is a Section 14.4 [Uniform
vectors], page 239, type for wrapping char[] arrays.

• You can convert a Java array (for example a int[] to the corresponing uniform vec-
tor type (for example u32vector) using the as pseudo-function or the corresponding
conversion procedure (for example ->u32vector). The result shares storage with the
array, so changes in one will update the other.

• The expression (module-class) evaluates to the containing module class.

• Change the Section 19.12 [Mangling], page 330, for field and local variables names
to match the Symbolic Freedom (https: / / blogs . oracle . com / jrose / entry /
symbolic_freedom_in_the_vm) style.

• Internally, expressions now record their ending position (line/column), in addition to
the starting position.

• The new procedure environment-fold can be used to iterate over the bindings of an
environment.

• Change in how closure objects are allocated for inlined functions. This sometimes re-
duces the number of objection allocations and also of helper classes, though in patho-
logical cases it could cause objects to be retained (leak) where it didn’t before.

• New command-line flag --warn-uninitialized (by default on) to control warning
about using uninitialized variables.

• The pre-defined Section 13.2 [Character sets], page 204, are now based on Java 9’s
Unicode 8 support.

Kawa 2.4 (April 30, 2017)

• Final 2.x release. Minor updates and fixes.

Kawa 2.3 (January 13, 2017)

• Moved Kawa’s source code repository (version control system) to use git, hosted at
GitLab (https://gitlab.com/kashell/Kawa).

• Issues (bugs, feature requests, etc) should now be reported using the GitLab Issue
Tracker (https://gitlab.com/kashell/Kawa/issues).

• New with-docbook-stylesheets to make it easier to build the documentation with
better functionality and look.

• The command-line option console:jline-mouse=yes enables moving the input cursor
using a mouse click, when using JLine in the REPL on common xterm-like terminals.
This is disabled by default because it conflicts with other mouse actions, such as making
a selection for copying text. You can press shift to get the terminal’s standard mouse
handling.

Kawa 2.2 (November 12, 2016)

• A binary release is no longer just a Kawa .jar file, but is now a zip archive that
also includes shell/batch scripts for running Kawa, useful third-party libraries, and the
complete documentation in EPUB format. The archives are named kawa-version.zip.

https://blogs.oracle.com/jrose/entry/symbolic_freedom_in_the_vm
https://blogs.oracle.com/jrose/entry/symbolic_freedom_in_the_vm
https://gitlab.com/kashell/Kawa
https://gitlab.com/kashell/Kawa/issues
https://gitlab.com/kashell/Kawa/issues

Chapter 1: News - Recent Changes 5

• The kawa --browse-manual switch makes it easy to [browse-manual-option], page 89.

• The Section 21.1 [Composable pictures], page 356, lets you create “picture” objects,
display them, transform them, combine them, and more.

• There is a new Section 17.7 [Pretty-printing], page 292.

• Basic support for Java 9 (though still some issues).

• Generated files like Makefile.in and configure are no longer in the Subversion source
code repository, though they are still included in the distributed kawa-version.tar.gz

releases. The new top-level script autogen.sh should be run before configure.

• Kawa traditionally followed Java in allowing you to pass an array with the "rest"
arguments to a varargs method. (A "varargs" method includes Java varargs methods,
as well as Kawa methods with a #!rest parameter that is explicitly typed to be an
array type.) For example, you could write:

(define args (Object[] 3 "cm"))

(java.lang.String:format "length:%s%s" args)

This is deprecated, and may stop working in a future release. Instead, use the splice
operator:

(java.lang.String:format "length:%s%s" @args)

• More options for Section 14.6 [Ranges], page 246. For example, you can write [1 by:

2 <=: 9].

• Many enhancements to Section 14.8 [Arrays], page 247, and vectors:

• Shape specifiers (used when creating an array) can now be one of a rank-2 array of
low/high-bounds, as in SRFI-25; a vector of upper bounds; or a vector of ranges.

• New type specifiers for array: array is any array (i.e. any gnu.lists.Array);
arrayN is the same restricted to rank N; array[etype] or arrayN[etype] restrict
the types of elements to etype.

If the etype is a primitive type (for example array2[double]) then indexing is
optimized to method calls that avoid object allocation.

• Generalized array indexing: If A is an array (or a vector), then the expression:
(A I J K ...)

in general evaluates to an array B such that:
(B i1 i2 ... j1 j2 ... k1 k2) is
(A (I i1 i2 ..) (J j1 j2 ...) (K k1 k2 ...) ...)

If an index I is an integer, it is treated as a zero-index array - a scalar.

For example: if (define B (A 2 [4 <: 10])) then (B i) is (A 2 (+ i 4)).

• The procedure array-index-ref is does the above indexing explicitly:
(array-index-ref A I J K ...) is (A I J K ...). The result is a read-only
snapshot.

• The procedure array-index-share is like array-index-ref but creates a modi-
fiable view into argument array.

• (build-array shape procedure) is a general constructor for lazy arrays: If A is
the result, then (A i j k ...) is (procedure [I J K ...]).

• array-transform creates a view, with a mapping of the indexes.

Chapter 1: News - Recent Changes 6

• Other new procedures (like those in the Racket math package): array-size,
array-fill!, array-copy!, array-transform, array-reshape, array-flatten,
array->vector, index-array, build-array.

• Add Common Lisp array reader syntax (#rankA) with Guile extensions (https://
www.gnu.org/software/guile/manual/html_node/Array-Syntax.html), in-
cluding reader sypport for multi-dimensional uniform (primitive) arrays. This is
also used when printing arrays.

• New format-array procedure print an array a tabular 2-dimensional (APL-like)
format. This format is used by default in the top-level of the REPL.

• Print bit-vectors using the Common Lisp (and Guile) reader syntax. For example
#*1100110. Enhanced the reader to read this format.

• Various REPL enhancements and new features:

• The -w switch to create a new REPL window can be followed by various sub-
options to control how and where the window is created. For example -wbrowser
creates a new window using your default web browser.

• Prompts are now normally specified using printf-style templates. The normal
prompt template is specified by the input-prompt1 variable, while continua-
tion lines use input-prompt2. These can be initialized by command-line op-
tions console:prompt1 and console:prompt2, or otherwise use language-specific
defaults. You can still use set-input-port-prompter! to set a more general
prompt-procedure, but it is now only called for the initial line of a command, not
continuation lines.

• The new --with-jline3 configure option builds support for the JLine (version 3)
(https://github.com/jline/jline3) library for handling console input, similar
to GNU readline.

• Context-dependent command-completion (tab-completion) works when using
JLine.

• Various REPL enhancements when using DomTerm (http://domterm.org/).

• If you “print” an XML/HTML node, it gets inserted into the DomTerm objects.
You print images, tables, fancy text, and more.

• If you “print” a picture object or a BuferredImage the picture is shown in the
DomTerm console.

• You can load or modify styles with the domterm-load-stylesheet procedure.

• When pretty-printing, calculation of line-breaks and indentation is handled by
DomTerm. If you change the window width, DomTerm will dynamically re-
calculate the line-breaks of previous pretten output. This works even in the case
of a session saved to an HTML file, as long as JavaScript is enabled.

• Hide/show buttons are emitted as part of the default prompt.

• Multiple literals that have the same value (as in equal?) get compiled to the same
object.

• The syntax &<[expr] is now equivalent to &<{&[expr]}, assuming expr is an expression
that evaluates to a string that named an existing file. That file is read is the result is
the contents of the file (as if by (path-data expr)).

https://www.gnu.org/software/guile/manual/html_node/Array-Syntax.html
https://www.gnu.org/software/guile/manual/html_node/Array-Syntax.html
https://github.com/jline/jline3
https://github.com/jline/jline3
http://domterm.org/

Chapter 1: News - Recent Changes 7

Kawa 2.1 (October 26, 2015)

Lots of little changes, and some big changes to sequences and strings.

• Enhancements to the Kawa tutorial.

• Added parameter as a new typename, for Scheme parameter objects. It can be pa-
rameterized (for example parameter[string]) for better type inference when "calling"
(reading) the parameter.

• We now define “interactive mode” as a REPL or a source module that uses the default
global top-level environment or a source module imported/required by a interactive
module. Interactive mode attempts to support dynamic re-definition and re-loading of
function and other definitions. This is a work-in-progres; interactive mode currently
uses extra indirection to support re-definitions (at a slight performance cost).

• Various changes and fixes in Path/URI handling. Most significantly, the resolve ar-
gorithm used by resolve-uri was re-written to use the algorithm from RFC-3986,
rather than the obsolete RFC-2396 algorithm used by java.net.URI.resolve.

• Change to mangle class and package name in Symbolic Freedom (https://blogs.
oracle.com/jrose/entry/symbolic_freedom_in_the_vm) style. This means that
class names and class filenames usually match the source file, even if special charaters
are used, except for a small number of disallowed characters. Note this is currently
only used for class and package names.

• Allow 'synchronized and 'strictfp as access flags for methods.

• You can now have a type-specifier for define-variable.

• Better support for forward references between macros.

• Added unsigned primitive integer types ubyte, ushort, uint, and ulong. These
are represented at run-time by the corresponding signed types, but Kawa generates
code to do unsigned arithmethic and comparisons. Corresponding boxed classes are
gnu.math.UByte, gnu.math.UShort, gnu.math.UInt, and gnu.math.ULong.

• Improvements and unification of sequences and strings:

• The new sequence type generalizes lists, vectors, arrays, strings, and
more. It is implemented as the java.util.List interface, but strings
(java.lang.CharSequence) and Java arrays are compatible with sequence and
converted as needed.

• The length function is generalized to arbitrary sequences. (For strings it uses the
CharSequence.length method, which returns the number of (16-bit) code units.
This is different from the string-length function, which returns the number of
Unicode code points.)

• A new pseudo-character value #\ignorable-char is introduced. It is ignored in
string-construction contexts.

• The function-call syntax for indexing works for all sequences. If the sequence is a
string, the result is the Unicode (20-bit) scalar value at the specified index. If index
references the trailing surrogate of a surrogate pair the result is #\ignorable-char.
This allows efficient indexing of strings: Handing of surrogate pairs are handled
automatically as long as #\ignorable-char is skipped.

• Indexing of uniform vector types (such as s64vector or f64vector or u16vector)
now return the “standard” primitive type (such as long or double) or the

https://blogs.oracle.com/jrose/entry/symbolic_freedom_in_the_vm
https://blogs.oracle.com/jrose/entry/symbolic_freedom_in_the_vm

Chapter 1: News - Recent Changes 8

new unsigned primitive (such as ushort). This improves performance (since
we can generally use primitive types), and improves compatibility with Java
arrays. Specifically, s64vector now implements Sequence<Long>, and thus
java.util.List<Long> Note that indexing a f64vector returns a double

which as an object is a java.lang.Double, not the Kawa floating-point type
gnu.math.DFloNum. The result is usually the same, but eqv? might return a
different result than previously.

• The arguments to map, for-each, and vector-for-each can now be any sequence
(including strings and native arrays). The arguments to vector-for-each can now
be arbitrary java.util.List values. All of these are inlined. If the sequence type
is known, more efficient custom code is generated.

• A range represents an enumerable sequence, normally integers, but it is represented
compactly using the start value, the step (usually 1), and size. There is a new
convenient syntax for writing a range: if i and j are integers then [i <=: j] is the
sequence of integers starting at i and ending at j (inclusive). You can also write
[i <=: j] (excludes the upper bound), [i >: j] (counts down to j, exclusive),
and [i >=: j] (counts down to j, inclusive).

• You can use a sequences of integers to index a sequence. The result is the sequence
of the selected elements. In general (seq [i0 ... in]) is [(seq i0) ... (seq

in)]. This work well with ranges: (seq [i <: j]) is the subsequence of seq from
i to j (exclusive).

If the seq is a string (a CharSequence) then the result is also a string. In this case
the indexing behavior is slightly different in that indexing selects (16-bit) code
units, which are combined to a string.

• A new dynamic type is like Object. However, it forces runtime lookup and type-
checking, and supresses compile-time type check and errors. (This is similar to C#. It
is useful as an escape hatch if we ever implement traditional strict static type-checking.)

• Specifying the parameter type or return type of a function or method without a ’::’ is
deprecated and results in a warning.

• In --r7rs mode: The ’l’ exponent suffix of a number literal creates a floating-point
double, rather than a BigInteger.

• Added the hyperbolic functions: sinh, cosh, tanh, asinh, acosh, atanh.

• The equal? function can now handle cyclic lists and vectors. So can equal-hash.

• The command-line option --with-arg-count=N allows finer control of command-line-
processing. It is used before an “action”, and specifies the N arguments following
the action are set as the command-line-arguments. After the action, command-line-
processing continues following those N arguments.

• Added the R6RS module (rnrs arithmetic bitwise).

• The kawa.repl argument processor now handles -D options.

• The new class sub-form of import allows you to import classes, and give them ab-
breviated names, like the Java import statement. The new form is more compact and
convenient than define-alias.

You can also use a classname directly, as a symbol, instead of writing it in the form of
a list:

Chapter 1: News - Recent Changes 9

(import (only java.lang.Math PI))

• In the only clause of the import syntax you can now directly rename, without having
to write a rename clause.

• Changes in the calling-convention for --full-tailcalls yields a substantial speed-up
in some situations.

• The type of boolean literals #f and #t is now primitive boolean rather than
java.lang.Boolean.

• General multi-dimensional arrays can be indexed with function call notation. E.g.
(arr i j k) is equivalent to (array-ref a i j k). You can also use set! with either
array-ref or function call notation.

• The #!null value (Java null) is now considered false, not true. Likewise for non-
canonical false Boolean objects (i.e. all instances of java.lang.Boolean for which
booleanValue returns false, not just Boolean.FALSE).

• New standard libraries (kawa base) and (kawa reflect).

• You can now use patterns in the let form and related forms.

• Implemented the lambda lifting (http://en.wikipedia.org/wiki/Lambda_lifting)
optimzation.

• An expression that has type T is now considered compatible with a context requiring an
interface type I only if T implements I (or T is Object). (Before they were considered
possibly-compatible if T was non-final because the run-time class might be a subclass
of T that implements I.)

• New --console flag forces input to be treated as an interactive console, with prompt-
ing. This is needed on Windows under Emacs, where System.console() gives the
wrong result.

• You can now in a sub-class reference fields from not-yet-compiled super-classes. (This
doesn’t work for methods yet.)

• The (? name::type value) operator supports conditional binding. The (!

name::type value) operator supports unconditional binding; it is similar to
define-constant, but supports patterns.

• More efficient implementation of call-with-values: If either argument is a fixed-arity
lambda expression it is inlined. Better type-checking of both call-with-values and
values.

• Jamison Hope enhanced the support for quaternions, primarily the new (kawa

rotations) library.

Kawa 2.0 (December 2 2014)

There are many new features, but the big one is R7RS compatibility.

• New define-alias can define aliases for static class members.

• The treatment of keywords is changing to not be self-evaluating (in Scheme). If you
want a literal keyword, you should quote it. Unquoted keywords should only be used
for keyword arguments. (This will be enforced in a future release.) The compiler
now warns about badly formed keyword arguments, for example if a value is missing
following a keyword.

http://en.wikipedia.org/wiki/Lambda_lifting

Chapter 1: News - Recent Changes 10

• The default is now Java 7, rather than Java 6. This means the checked-in source code
is pre-processed for Java 7, and future binary releases will require Java 7.

• The behavior of parameters and fluid variables has changed. Setting a parameter no
longer changes its value in already-running sub-threads. The implementation is simpler
and should be more efficient.

• The form define-early-constant is similar to define-constant, but it is evaluated
in a module’s class initializer (or constructor in the case of a non-static definition).

• Almost all of R7RS is now working:

• Importing a SRFI library can now use the syntax (import (srfi N [name]))

• The various standard libraries such as (scheme base) are implemented.

• The functions eval and load can now take an environment-specifier. Implemented
the environment function.

• Extended numerator, denominator, gcd, and lcm to inexacts.

• The full R7RS library functionality is working, including define-library The
keyword export is now a synonym for module-export, and both support the
rename keyword. The prefix option of import now works.

• The cond-expand form now supports the library clause.

• Implemented make-promise and delay-force (equivalent to the older name
lazy).

• Changed include so that by default it first seaches the directory containing the
included file, so by default it has the same effect as include-relative. However,
you can override the search path with the -Dkawa.include.path property. Also
implemented include-ci.

• Implemented define-values.

• Fixed string->number to correctly handle a radix specifier in the string.

• The read procedure now returns mutable pairs.

• If you need to use ... in a syntax-rules template you can use (... template),
which disables the special meaning of ... in template. (This is an extension of
the older (... ...).)

• Alternatively, you can can write (syntax-rules dots (literals) rules). The
symbol dots replaces the functionality of ... in the rules.

• An underscore _ in a syntax-rules pattern matches anything, and is ignored.

• The syntax-error syntax (renamed from %syntax-error) allows error reporting
in syntax-rules macros. (The older Kawa-specific syntax-error procedure was
renamed to report-syntax-error.)

• Implemented and documented R7RS exception handling: The syntax guard

and the procedures with-exception-handler, raise, and raise-continuable

all work. The error procedure is R7RS-compatible, and the procedures
error-object?, error-object-message, error-object-irritants,
file-error?, and read-error? were implemented.

• Implemented emergency-exit, and modified exit so finally-blocks are executed.

• Implemented exact-integer?, floor/, floor-quotient, floor-remainder,
truncate/, truncate-quotient, and truncate-remainder.

Chapter 1: News - Recent Changes 11

• The letrec* syntax is now supported. (It works the same as letrec, which is an
allowed extension of letrec.)

• The functions utf8->string and string->utf8 are now documented in the man-
ual.

• The changes to characters and strings are worth covering separately:

• The character type is now a new primitive type (implemented as int). This can
avoid boxing (object allocation)

• There is also a new character-or-eof. (A union of character and the EOF
value, except the latter is encoded as -1, thus avoiding object allocation.) The
functions read-char and peek-char now return a character-or-eof value.

• Functions like string-ref that take a character index would not take into account
non-BMP characters (those whose value is greater than #xffff, thus requiring two
surrogate characters). This was contrary to R6RS/R7RS. This has been fixed,
though at some performance cost . (For example string-ref and string-length

are no longer constant-time.)

• Implemented a string-cursor API (Strings.html#String-Cursor-API) (based
on Chibi Scheme). Thes allow efficient indexing, based on opaque cursors (actually
counts of 16-bits chars).

• Optimized string-for-each, which is now the preferred way to iterate through
a string.

• Implemented string-map.

• New function string-append! for in-place appending to a mutable string.

• New function string-replace! for replacing a substring of a string with some
other string.

• The SRFI-13 function string-append/shared is no longer automatically visible;
you have to (import (srfi :13 strings)) or similar.

• The module-name form allows the name to be a list, as in a R6RS/R7RS-style library
name.

• The syntax @expression is a splicing form. The expression must evaluate to a
sequence (vector, list, array, etc). The function application or constructor form is
equivalent to all the elements of the sequence.

• The parameter object current-path returns (or sets) the default directory of the
current thread.

• Add convenience procedures and syntax for working with processes (Processes.html):
run-process, process-exit-wait, process-exit-ok?, &cmd, &`, &sh.

• The functions path-bytes, and path-data can read or write the entire contents of a file
(http://www.gnu.org/software/kawa/Reading-and-writing-whole-files.html).
Alternatively, you can use the short-hand syntax: &<{pname} &>{pname} &>>{pname}.
These work with "blobs" which may be text or binary depending on context.

• The initial values of (current-output-port) and (current-error-port) are now
hybrid textual/binary ports. This means you can call write-bytevector and write-u8
on them, making it possible for an application to write binary data to standard output.
Similarly, initial value of (current-input-port) is a hybrid textual/binary port, but
only if there is no console (standard input is not a tty).

Strings.html#String-Cursor-API
Processes.html
http://www.gnu.org/software/kawa/Reading-and-writing-whole-files.html
http://www.gnu.org/software/kawa/Reading-and-writing-whole-files.html

Chapter 1: News - Recent Changes 12

• Jamison Hope contributed support for quaternions (http://en.wikipedia.org/wiki/
Quaternion), a generalization of complex numbers containing 4 real components.

• Andrea Bernardini contributed an optimized implementation of case expressions. He
was sponsored by Google Summer of Code.

• The kawa.sh shell script (which is installed as kawa when not configuring with
--enable-kawa-frontend) now handles -D and -J options. The kawa.sh script is
now also built when usint Ant.

• The cond-expand features java-6 though java-9 are now set based on the System

property "java.version" (rather than how Kawa was configured).

• An Emacs-style coding declaration allows you to specify the encoding of a Scheme
source file.

• The command-line option --debug-syntax-pattern-match prints logging importation
to standard error when a syntax-rules or syntax-case pattern matches.

• SRFI-60 (Integers as Bits) (http://srfi.schemers.org/srfi-60/srfi-60.html) is
now fully implemented.

• Ported SRFI-101 (http://srfi.schemers.org/srfi-101/srfi-101.html). These
are immutable (read-only) lists with fast (logarithmic) indexing and functional update
(i.e. return a modified list). These are implemented by a RAPair class which extends
the generic pair type, which means that most code that expects a standard list will
work on these lists as well.

• The class kawa.lib.kawa.expressions contains an experimental Scheme API for ma-
nipulating and validating expressions.

• Internal: Changed representation used for multiple values to an abstract class with
multiple implementations.

• Internal: Started converting to more standard Java code formatting and indentation
conventions, rather than GNU conventions. Some files converted; this is ongoing work.

• Internal: Various I/O-related classes moved to new package gnu.kawa.io.

• Various changes to the configure+make build framework: A C compiler is now only
needed if you configure with --enable-kawa-frontend. Improved support for building
under Windows (using MinGW/MSYS).

• Support for building with GCJ (http://gcc.gnu.org/java/) was removed.

Kawa 1.14 (October 4, 2013)

• You can pass flags from the kawa front-end to the java launcher using -J and -D flags.
The kawa front-end now passes the kawa.command.line property to Java; this is used
by the (command-line) procedure.

• Various improvements to the shell-script handling, including re-written documentation
(Scripts.html).

• Some initial support for Java 8.

• More of R7RS is now working:

• After adding list procedures make-list, list-copy, list-set! all the R7RS list
procedures are implemented.

http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Quaternion
http://srfi.schemers.org/srfi-60/srfi-60.html
http://srfi.schemers.org/srfi-101/srfi-101.html
http://gcc.gnu.org/java/
Scripts.html
Scripts.html

Chapter 1: News - Recent Changes 13

• Other added procedures: square, boolean=?, string-copy!, digit-value,
get-environment-variable, get-environment-variables, current-second,
current-jiffy, jiffies-per-second, and features.

• The predicates finite?, infinite?, and nan? are generalized to complex num-
bers.

• The procedures write, write-simple, and write-shared are now consistent with
R7RS.

• String and character comparison functions are generalized to more than two argu-
ments (but restricted to strings or characters, respectively).

• The procedures string-copy, string->list, and string-fill! now take op-
tional (start,end)-bounds. All of the R7RS string functions are now implemented.

• Support => syntax in case form.

• Support backslash-escaped special characters in symbols when inside vertical bars,
such as '|Hello\nworld|.

• The new functions and syntax are documented in the Kawa manual (index.html);
look for the functions in the index (Overall-Index.html).

• Added define-private-alias keyword.

• Extended string quasi-literals (templates) (Strings . html # String-templates) as
specified by SRFI-109 (http://srfi.schemers.org/srfi-109/srfi-109.html). For
example, if name has the value "John", then:

&{Hello &[name]!}

evaluates to: "Hello John!".

• Named quasi-literal constructors as specified by SRFI-108 (http://srfi.schemers.
org/srfi-108/srfi-108.html).

• A symbol having the form ->type is a type conversion function that converts a value
to type.

• New and improved check for void-valued expressions in a context requiring a value.
This is controlled by the new option --warn-void-used, which defaults to true.

• The datum->syntax procedure takes an optional third parameter to specify the source
location. See testsuite/srfi-108-test.scm for an example.

• Instead of specifying --main the command line, you can now specify (module-compile-
options: main: #t) in the Scheme file. This makes it easier to compile one or more
application (main) modules along with other modules.

• A change to the data structure used to detect never-returning procedure uses a lot less
memory. (Kawa 1.13 implemented a conservative detection of when a procedure cannot
return. This analysis would sometimes cause the Kawa compiler to run out of memory.
The improved analysis uses the same basic algorithm, but with a more space-efficient
“inverted” data structure.)

• Multiple fixes to get Emacs Lisp (JEmacs) working (somewhat) again.

Kawa 1.13 (December 10, 2012)

• We now do a simple (conservative) analysis of when a procedure cannot return. This
is combined with earlier and more precise analysis of reachable code. Not only does

index.html
Overall-Index.html
Strings.html#String-templates
http://srfi.schemers.org/srfi-109/srfi-109.html
http://srfi.schemers.org/srfi-108/srfi-108.html
http://srfi.schemers.org/srfi-108/srfi-108.html

Chapter 1: News - Recent Changes 14

this catch programmer errors better, but it also avoids some internal compiler errors,
because Kawa could get confused by unreachable code.

• Implement 2-argument version of log function, as specified by R6RS and R7RS (and,
prematurely, the Kawa documentation).

• Implement the R7RS bytevector functions. The bytevector type is a synonym for
older u8vector type.

• Implement R7RS vector procedures. Various procedures now take (start,end)-bounds.

• Implement most of the R7RS input/output proecdures. Most significant enhancement
is support for R7RS-conforming binary ports.

• Various enhancements to the manual, including merging in lots of text from R7RS.

• Improved Android support, including a more convenient Ant script contributed by
Julien Rousseau. Also, documentation merged into manual.

Kawa 1.12 (May 30, 2012)

• Implement a compile-time data-flow framework, similar to Single Static Assignment.
This enables better type inference, improves some warnings/errors, and enables some
optimizations.

• Jamison Hope added support for co-variant return types and bridge methods for gener-
ics.

• Macros were improved and more standards-conforming:

• datum->syntax and syntax->datum are preferred names for datum->syntax-

object and syntax-object->datum.

• Implemented bound-identifier=? and re-wrote implementation of
free-identifier=?.

• Implement unsyntax and unsyntax-splicing, along with the reader prefixes #,
and #,@.

• New and improved lazy evaluation functionality:

• Lazy values (resulting from delay or future) are implicitly forced as needed. This
makes “lazy programming” more convenient.

• New type promise.

• The semantics of promises (delay etc) is now compatible with SRFI 45 (http://
srfi.schemers.org/srfi-45/srfi-45.html).

• “Blank promises” are useful for passing data between processes, logic program-
mming, and more. New functions promise-set-value!, promise-set-alias!,
promise-set-exception!, and promise-set-thunk!.

• The stream functions of SRFI-41 (http: / / srfi . schemers . org / srfi-41 /
srfi-41.html) were re-implemented to use the new promise functionality.

• Different functions in the same module can be compiled with or without full tailcall
support. You can control this by using full-tailcalls in with-compile-options.
You can also control full-tailcalls using module-compile-options.

• Charles Turner (sponsored by Google’s Summer of Code (http://code.google.com/
soc/)) enhanced the printer with support for SRFI-38: External Representation for
Data With Shared Structure (http://srfi.schemers.org/srfi-38/).

http://srfi.schemers.org/srfi-45/srfi-45.html
http://srfi.schemers.org/srfi-45/srfi-45.html
http://srfi.schemers.org/srfi-41/srfi-41.html
http://srfi.schemers.org/srfi-41/srfi-41.html
http://code.google.com/soc/
http://code.google.com/soc/
http://srfi.schemers.org/srfi-38/
http://srfi.schemers.org/srfi-38/

Chapter 1: News - Recent Changes 15

• Optimize tail-recursion in module-level procedures. (We used to only do this for internal
functions, for reasons that are no longer relevant.)

• Add support for building Kawa on Windows using configure+make (autotools) and
Cygwin.

• Some support for parameterized (generic) types:

Type[Arg1 Arg2 ... ArgN]

is more-or-less equivalent to Java’s:

Type<Arg1, Arg2, ..., ArgN>

• New language options --r5rs, --r6rs, and --r7rs provide better compatibility with
those Scheme standards. (This is a work-in-progress.) For example --r6rs aims to
disable Kawa extensions that conflict with R6RS. It does not aim to disable all exten-
sions, only incompatible extensions. So far these extensions disable the colon operator
and keyword literals. Selecting --r5rs makes symbols by default case-insensitive.

• The special tokens #!fold-case and #!no-fold-case act like comments except they
enable or disable case-folding of symbols. The old symbol-read-case global is now
only checked when a LispReader is created, not each time a symbol is read.

• You can now use square brackets to construct immutable sequences (vectors).

• A record type defined using define-record-type is now compiled to a class that is a
member of the module class.

• Annotations are now supported. This example (http://per.bothner.com/blog/
2011/Using-JAXB-annotations/) shows how to use JAXB (http://java.sun.com/
xml/downloads/jaxb.html) annotations to automatically convert between between
Java objects and XML files.

• Prevent mutation of vector literals.

• More R6RS procedures: vector-map, vector-for-each, string-for-each,
real-valued?, rational-valued?, integer-valued?, finite?, infinite?, nan?,
exact-integer-sqrt.

• SRFI-14 (http://srfi.schemers.org/srfi-14/srfi-14.html) ("character sets")
and SRFI-41 (http://srfi.schemers.org/srfi-41/srfi-41.html) ("streams") are
now supported, thanks to porting done by Jamison Hope.

• Kawa now runs under JDK 1.7. This mostly involved fixing some errors in
StackMapTable generation.

• You can now have a class created by define-simple-class with the same name as the
module class. For example (define-simple-class foo ...) in a file foo.scm. The
defined class will serve dual-purpose as the module class.

• Improvements in separating compile-time from run-time code, reducing the size of the
runtime jar used for compiled code.

• In the cond-expand conditional form you can now use class-exists:ClassName as a
feature “name” to tests that ClassName exists.

Kawa 1.11 (November 11, 2010)

• A new Kawa logo, contributed by Jakub Jankiewicz (http://jcubic.pl).

http://per.bothner.com/blog/2011/Using-JAXB-annotations/
http://per.bothner.com/blog/2011/Using-JAXB-annotations/
http://java.sun.com/xml/downloads/jaxb.html
http://java.sun.com/xml/downloads/jaxb.html
http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-41/srfi-41.html
http://jcubic.pl

Chapter 1: News - Recent Changes 16

• A new --warn-unknown-member option, which generalizes --warn-invoke-unknown-
method to fields as well as methods.

• A new kawac task (ant-kawac.html), useful for Ant build.xml files, contributed by
Jamison Hope.

• Updated Android support (http: / / per . bothner . com / blog / 2010 /

AndroidHelloScheme).

• New define-enum macro (Enumerations.html) contributed by Jamison Hope.

• Access specifiers 'final and 'enum are now allowed in define-class and related
forms.

• Optimized odd? and even?.

• If you specify the type of a #!rest parameter as an array type, that will now be used
for the "varargs" method parameter. (Before only object arrays did this.)

• When constructing an object and there is no matching constructor method, look for
"add" methods in addition to "set" methods. Also, allow passing constructor args as
well as keyword setters. See here (Allocating-objects.html) for the gory details.

• New expand function (contributed by Helmut Eller, and enabled by (require

'syntax-utils)) for converting Scheme expressions to macro-expanded forms.

• SAM-conversion (Anonymous-classes.html#SAM-conversion): In a context that ex-
pects a Single Abstract Method (SAM) type (for example java.lang.Runnable), if
you pass a lambda you will get an object where the lambda implements the abstract
method.

• In interactive mode allow dynamic rebinding of procedures. I.e. if you re-define a
procedure, the old procedure objects gets modified in-place and re-used, rather than
creating a new procedure object. Thus calls in existing procedures will call the new
version.

• Fix various threading issues related to compilation and eval.

• When format returns a string, return a java.lang.String rather than a
gnu.lists.FString. Also, add some minor optimization.

• Inheritance of environments and fluid variables now work properly for all child threads,
not just ones created using future.

Kawa 1.10 (July 24, 2010)

• Now defaults to using Java 6, when compiling from source. The pre-built jar works
with Java 5, but makes use of some Java 6 features (javax.script, built-in HTTP
server) if available.

• You can write XML literals (XML-literals.html) in Scheme code prefixed by a #, for
example:

#<p>The result is &{result}.</p>

• New functions element-name and attribute-name.

• Various Web server improvements (Server-side-scripts.html). You have the op-
tion of using JDK 6’s builtin web-server (Options.html#Options-for-web-servers)
for auto-configued web pages (Self-configuring-page-scripts.html). Automatic
import of web server functions, so you should not need to (import 'http) any more.

ant-kawac.html
http://per.bothner.com/blog/2010/AndroidHelloScheme
http://per.bothner.com/blog/2010/AndroidHelloScheme
Enumerations.html
Allocating-objects.html
Anonymous-classes.html#SAM-conversion
XML-literals.html
Server-side-scripts.html
Options.html#Options-for-web-servers
Self-configuring-page-scripts.html

Chapter 1: News - Recent Changes 17

• Kawa hashtables (Hash-tables.html) now extend java.util.Map.

• If a source file is specified on the kawa command line without any options, it is read
and compiled as a whole module before it is run. In contrast, if you want to read and
evaluate a source file line-by-line you must use the -f flag.

• You can specify a class name on the kawa command line:

$ kawa fully.qualified.name

This is like the java command. but you don’t need to specify the path to the Kawa
runtime library, and you don’t need a main method (as long as the class is Runnable).

• The usual bug-fixes, including better handling of the ~F format directive; and fix in
handling of macro hygiene of the lambda (bug #27042 (https://savannah.gnu.org/
bugs/index.php?27042)).

• Spaces are now optional before and after the ’::’ in type specifiers. The preferred syntax
leave no space after the ’::’, as in:

(define xx ::int 1)

• define-for-syntax and begin-for-syntax work.

• You can now use car, cdr etc to work with syntax objects that wrap lists, as in
SRFI-72.

• You can now define a package alias:

(define-alias jutil java.util)

(define mylist :: jutil:List (jutil:ArrayList))

• --module-static is now the default. A new --module-nonstatic (or --no-module-
static) option can be used to get the old behavior.

• You can use access: to specify that a field is 'volatile or 'transient.

• You can now have type-specifiers for multiple variables in a do.

• Imported variables are read-only.

• Exported variables are only made into Locations when needed.

• The letter used for the exponent in a floating-point literal determines its type: 12s2 is
a java.lang.Float, 12d2 is a java.lang.Double, 12l2 is a java.math.BigInteger,
12e2 is a gnu.math.DFloat.

• Internal: Asking for a .class file using getResourceAsStream on an
ArrayClassLoader will now open a ByteArrayInputStream on the class bytes.

• A new disassemble function.

• If exp1 has type int, the type of (+ exp1 1) is now (32-bit) int, rather than (unlimited-
precision) integer. Similar for long expressions, other arithmetic operations (as ap-
propriate), and other untyped integer literals (as long as they fit in 32/64 bits respec-
tively).

• Many more oprimization/specializations of arithmetic, especially when argument types
are known.

• Top-level bindings in a module compiled with --main are now implicitly module-
private, unless there is an explicit module-export.

• SRFI-2 (http://srfi.schemers.org/srfi-2/srfi-2.html) (and-let*: an and with
local bindings, a guarded * special form) is now supported.

Hash-tables.html
https://savannah.gnu.org/bugs/index.php?27042
https://savannah.gnu.org/bugs/index.php?27042
http://srfi.schemers.org/srfi-2/srfi-2.html

Chapter 1: News - Recent Changes 18

• The reader now supports shared sub-objects, as in SRFI-38 (http://srfi.schemers.
org/srfi-38/srfi-38.html) and Common Lisp: (#2=(3 4) 9 #2# #2#). (Writing
shared sub-objects is not yet implemented.)

• A module compiled with --main by default exports no bindings (unless overriden by
an explicit module-export).

• Factor out compile-time only code from run-time code. The new kawart-version.jar

is smaller because it has less compile-time only code. (Work in progress.)

• More changes for R6RS compatibility:

• The reader now recognizes +nan.0, +inf.0 and variations.

• The div, mod, div0, mod0, div-and-mod, div0-and-mod0, inexact and exact

functions were implemented.

• command-line and exit.

Kawa 1.9.90 (August 8, 2009)

• Support for javax.script.

• Support for regular expressions (Regular-expressions.html).

• Performance improvements:

• Emit iinc instruction (to increment a local int by a constant).

• Inline the not function if the argument is constant.

• If call-with-current-continuation is only used to exit a block in the current
method, optimize to a goto.

• Generate StackMapTable attributes when targeting Java 6.

• Kawa can now inline a function with multiple calls (without code duplication) if
all call sites have the same return location (continuation). For example: (if p (f

a) (f b)). Also mutually tail-recursive functions are inlined, so you get constant
stack space even without --full-tailcalls. (Thanks for Helmut Eller for a
prototype.)

• A number of changes for R6RS compatibility:

• The char-titlecase, char-foldcase, char-title-case? library functions are
implemented.

• Imported variables are read-only.

• Support the R6RS import keyword, including support for renaming.

• Support the R6RS export keyword (though without support for renaming).

• Implemented the (rnrs hashtables) library.

• Implemented the (rnrs sorting) library.

• CommonLisp-style keyword syntax is no longer supported (for Scheme): A colon
followed by an identifier is no longer a keyword (though an identifier followed by
a colon is still a keyword). (One reason for this change is to support SRFI-97.)

• The character names #\delete, #\alarm, #\vtab are now supported. The old
names #\del, #\rubout, and #\bel are deprecated.

• Hex escapes in character literals are supported. These are now printed where we
before printed octal escapes.

http://srfi.schemers.org/srfi-38/srfi-38.html
http://srfi.schemers.org/srfi-38/srfi-38.html
Regular-expressions.html

Chapter 1: News - Recent Changes 19

• A hex escape in a string literal should be terminated by a semi-colon, but for
compatibily any other non-hex-digit will also terminate the escape. (A terminating
semi-colon will be skipped, though a different terminator will be included in the
string.)

• A backslash-whitespace escape in a string literal will not only ignore the whitespace
through the end of the line, but also any initial whitespace at the start of the
following line.

• The comment prefix #; skips the following S-expression, as specified by SRFI-62
(http://srfi.schemers.org/srfi-62/srfi-62.html).

• All the R6RS exact bitwise arithmetic (http://www.r6rs.org/final/html/
r6rs-lib/r6rs-lib-Z-H-12.html#node_sec_11.4) functions are now imple-
mented and documented in the manual (Logical-Number-Operations.html).
The new standard functions (for example bitwise-and) are now preferred over
the old functions (for example logand).

• If delete-file fails, throws an exception instead of returning #f.

• The code-base now by default assumes Java 5 (JDK 1.5 or newer), and pre-built jar
files will require Java 5. Also, the Kawa source code now uses generics, so you need to
use a generics-aware javac, passing it the appropriate --target flag.

• New SRFIs supported:

• SRFI-62 (http://srfi.schemers.org/srfi-62/srfi-62.html) - S-expression
comments.

• SRFI-64 (http://srfi.schemers.org/srfi-64/srfi-64.html) - Scheme API
for test suites.

• SRFI-95 (http://srfi.schemers.org/srfi-95/srfi-95.html) - Sorting and
Merging.

• SRFI-97 (http://srfi.schemers.org/srfi-97/srfi-97.html) - Names for
SRFI Libraries. This is a naming convention for R6RS import statements to
reference SRFI libraries.

• In BRL text outside square brackets (or nested like]this[) now evaluates to
UnescapedData, which a Scheme quoted string evaluates to String, rather than an
FString. (All of the mentioned types implement java.lang.CharSequence.)

• You can now run Kawa Scheme programs on Android (http://per.bothner.com/
blog/2009/AndroidHelloScheme/), Google’s mobile-phone operating system.

• The macro resource-url is useful for accessing resources.

• A new command-line option --target (or -target) similar to javac’s -target option.

• If there is no console, by default create a window as if -w was specificed.

• If a class method (defined in define-class, define-simple-class or object) does
not have its parameter or return type specified, search the super-classes/interfaces for
matching methods (same name and number of parameters), and if these are consistent,
use that type.

• Trying to modify the car or cdr of a literal list now throws an exception.

• The .zip archive created by compile-file is now compressed.

• Java5-style varargs-methods are recognized as such.

http://srfi.schemers.org/srfi-62/srfi-62.html
http://srfi.schemers.org/srfi-62/srfi-62.html
http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-12.html#node_sec_11.4
http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-12.html#node_sec_11.4
Logical-Number-Operations.html
http://srfi.schemers.org/srfi-62/srfi-62.html
http://srfi.schemers.org/srfi-64/srfi-64.html
http://srfi.schemers.org/srfi-95/srfi-95.html
http://srfi.schemers.org/srfi-97/srfi-97.html
http://per.bothner.com/blog/2009/AndroidHelloScheme/
http://per.bothner.com/blog/2009/AndroidHelloScheme/

Chapter 1: News - Recent Changes 20

• When evaluating or loading a source file, we now always compile to bytecode, rather
than interpreting “simple” expressions. This makes semantics and performance more
consistent, and gives us better exception stack traces.

• The Scheme type specifier <integer> now handles automatic conversion from
java.math.BigInteger and the java.lang classes Long, Integer, Short, and
Byte. The various standard functions that work on <integer> (for example gcd

and arithmetic-shift) can be passed (say) a java.lang.Integer. The generic
functions such as + and the real function modulo should also work. (The result is still
a gnu.math.IntNum.)

• If a name such as (java.util) is lexically unbound, and there is a known package
with that name, return the java.lang.Package instance. Also, the colon operator is
extended so that package:name evaluates to the Class for package.name.

• `prefix:,expression works - it finds a symbol in prefix’s package (aka namespace),
whose local-name is the value of expression.

• A quantity 3.0cm is now syntactic sugar for (* 3.0 unit:cm). Similarly:
(define-unit name value)

is equivalent to:
(define-constant unit:name value)

This means that unit names follow normal name-lookup rules (except being in the unit
“package”), so for example you can have local unit definitions.

• You can specify whether a class has public or package access, and whether it is trans-
lated to an interface or class.

• You can declare an abstract method by writing #!abstract as its body.

• If a name of the form type? is undefined, but type is defined, then treat the former as
(lambda (x) (instance? x type)).

• A major incompatible (but long-sought) change: Java strings (i.e. java.lang.String
values) are now Scheme strings, rather than Scheme symbols. Since Scheme
strings are mutable, while Java Strings are not, we use a different type for
mutable strings: gnu.lists.FString (this is not a change). Scheme string
literals are java.lang.String values. The common type for Scheme string is
java.lang.CharSequence (which was introducted in JDK 1.4).

Scheme symbols are now instances of gnu.mapping.Symbol (api / gnu / mapping /
Symbol.html), specifically the SimpleSymbol class.

• A fully-qualified class name such as java.lang.Integer now evaluates to the
corresponding java.lang.Class object. I.e. it is equivalent to the Java term
java.lang.Integer.class. This assumes that the name does not have a lexical
binding, and that it exists in the class-path at compile time.

Array class names (such as java.lang.Integer[]) and primitive types (such as int)
also work.

The older angle-bracket syntax <java.lang.Integer> also works and has the same
meaning. It also evaluates to a Class. It used to evaluate to a Type (api/gnu/
bytecode/Type.html), so this is a change.

The name bound by a define-simple-class now evaluates to a Class, rather than
a ClassType (api/gnu/bytecode/ClassType.html). A define-simple-class is not
allowed to reference non-static module-level bindings; for that use define-class.

api/gnu/mapping/Symbol.html
api/gnu/mapping/Symbol.html
api/gnu/bytecode/Type.html
api/gnu/bytecode/Type.html
api/gnu/bytecode/ClassType.html

Chapter 1: News - Recent Changes 21

• New convenience macro define-syntax-case (Syntax-and-conditional-compilation.
html).

Kawa 1.9.1 (January 23, 2007)

• Fix some problems building Kawa from source using configure+make.

Kawa 1.9.0 (January 21, 2007)

• New types and functions for working with paths and URIs (Paths.html).

• Reader macros URI, namespace, duration.

• Simplified build using gcj (Source-distribution.html), and added configure flag
–with-gcj-dbtool.

• If two “word” values are written, a space is written between them. A word is most
Scheme values, including numbers and lists. A Scheme string is treated as a word by
write but by not display.

• A new --pedantic command-line flag. It currently only affects the XQuery parser.

• The load-compile procedure was removed.

• The string printed by the --version switch now includes the Subversion revision and
date (but only if Kawa was built using make rather than ant from a checked-out Sub-
version tree).

• Kawa development now uses the Subversion (svn) (http://subversion.tigris.org/
) version control system instead of CVS.

• Show file/line/column on unbound symbols (both when interpreted and when com-
piled).

• Cycles are now allowed between require’d modules. Also, compiling at set of modules
that depend on each other can now specified on the compilation command line in any
order, as long as needed require forms are given.

• The “colon notation” has been generalized. (PathExpressions.html). The syntax
object:name generally means to extract a component with a given name from object,
which may be an object, a class, or a namespace.

• New command-line options --debug-error-prints-stack-trace and --debug-

warning-prints-stack-trace provide stack trace on static error messages.

• The license for the Kawa software (Software-License.html) has been changed to the
X11/MIT license (http://opensource.org/licenses/mit-license.php).

• A much more convenient syntax for working with Java arrays (Array-operations.
html).

The same function-call syntax also works for Scheme vectors, uniform vectors, strings,
lists - and anything else that implements java.util.List.

• The fields and methods of a class and its bases classes are in scope within methods of
the class.

• Unnamed procedures (such as lambda expressions) are printed with the source filename
and line.

• The numeric compare functions (=, <=, etc) and number->string now work
when passed standard Java Number objects (such as java.lang.Long or
java.math.BigDecimal).

Syntax-and-conditional-compilation.html
Syntax-and-conditional-compilation.html
Paths.html
Source-distribution.html
http://subversion.tigris.org/
http://subversion.tigris.org/
PathExpressions.html
Software-License.html
http://opensource.org/licenses/mit-license.php
Array-operations.html
Array-operations.html

Chapter 1: News - Recent Changes 22

• SRFI-10 (http://srfi.schemers.org/srfi-10/srfi-10.html) is now implemented,
providing the #,(name args ...) form. Predefined constructor names so far are URI

and namespace. The define-reader-ctor function is available if you (require

'srfi-10).

• A new --script option makes it easier to write Unix shell scripts.

• Allow general URLs for loading (including the -f flag), compilation and open-input-

file, if the “file name” starts with a URL “scheme” like http:.

• Classes defined (e.g. with define-simple-class) in a module can now mutually ref-
erence each other. On the other hand, you can no longer define-class if the class
extends a class rather than an interface; you must use define-simple-class.

• KawaPageServlet now automatically selects language.

• provide macro.

• quasisyntax and the convenience syntax #`, from SRFI-72 (http://srfi.schemers.
org/srfi-72/srfi-72.html).

• define-for-syntax, syntax-source, syntax-line, and syntax-column, for better
compatibility with mzscheme.

• SRFI-34 (http://srfi.schemers.org/srfi-34/srfi-34.html) (Exception Handling
for Programs), which implements with-exception-handler, guard, and raise, is now
available, if you (require 'srfi-34).
Also, SRFI-35 (http://srfi.schemers.org/srfi-35/srfi-35.html) (Conditions) is
available, if you (require 'srfi-35).

• The case-lambda form from SRFI-16 (http: / / srfi . schemers . org / srfi-16 /
srfi-16.html) is now implemented more efficiently.

Kawa 1.8 (October 18, 2005)

SRFI-69 “Basic hash tables” (http://srfi.schemers.org/srfi-69/srfi-69.html) is
now available, if you (require 'hash-table) or (require 'srfi-69). This is an optimized
and Java-compatible port whose default hash function calls the standard hashCode method.

A define-simple-class can now have one (or more) explicit constructor methods.
These have the spcial name *init*. You can call superclass constructors or sibling construc-
tors (this constructor calls) using the (admittedly verbose but powerful) invoke-special
form.

The runnable function creates a Runnable from a Procedure. It is implemented using
the new class RunnableClosure, which is now also used to implement future.

The kawa command can now be run “in-place” from the build directory: $build_

dir/bin/kawa.

The special field name class in (static-name type 'class) or (prefix:.class) re-
turns the java.lang.Class object corresponding to the type or prefix. This is similar to
the Java syntax.

Contructing an instance (perhaps using make) of a class defined using define-simple-

class in the current module is much more efficient, since it no longer uses reflection.
(Optimizing classes defined using define-class is more difficult.) The constructor function
defined by the define-record-type macro is also optimized.

http://srfi.schemers.org/srfi-10/srfi-10.html
http://srfi.schemers.org/srfi-72/srfi-72.html
http://srfi.schemers.org/srfi-72/srfi-72.html
http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-69/srfi-69.html

Chapter 1: News - Recent Changes 23

You can now access instance methods using this short-hand: (*:methodname instance

arg ...)

This is equivalent to: (invoke instance 'methodname arg ...)

You can now also access a fields using the same colon-notation as used for accessing
methods, except you write a dot before the field name:
(type:.fieldname) ;; is like: (static-field type 'fieldname).
(*:.fieldname instance) ;; is like: (field 'fieldname instance)

(type:.fieldname instance) ;; is like: (*:.fieldname (as instance type))

These all work with set! - for example: (set! (*:.fieldname instance) value).

In the above uses of colon-notation, a type can be any one of:
- a namespace prefix bound using define-namespace to a namespace uri of the form
"class:classname";
- a namespace prefix using define-namespace bound to a <classname> name, which can
be a fully-qualified class name or a locally-declared class, or an alias (which might be an
imported class);
- a fully qualified name of a class (that exists at compile-time), as in
(java.lang.Integer:toHexString 123); or
- a <classname> variable, for example: (<list>:list3 11 12 13).

New fluid variables *print-base*, *print-radix*, *print-right-margin*, and
print-miser-width can control output formatting. (These are based on Common
Lisp.)

You can new emit elipsis (...) in the output of a syntax template using the syntax
(... ...), as in other syntax-case implementations.

The args-fold program-argument processor from SRFI-37 (http://srfi.schemers.
org/srfi-37/srfi-37.html) is available after you (require 'args-fold) or (require

'srfi-37).

The fluid-let form now works with lexical bindings, and should be more compatible
with other Scheme implementations.

(module-export namespace:prefix) can be used to export a namespace prefix.

Static modules are now implemented more similarly to non-static modules. Specifically,
the module body is not automatically run by the class initializer. To get the old behavior,
use the new --module-static-run flag. Alternatively, instead of (module-static #t) use
(module-static 'init-run).

Implement SRFI-39 (http: / / srfi . schemers . org / srfi-39 / srfi-39 . html)
"Parameter-objects". These are like anonymous fluid values and use the same
implementation. current-input-port, current-output-port, and current-error-port

are now parameters.

Infer types of variables declared with a let.

Character comparisons (such as char-=?, char-ci<?) implemented much more effi-
ciently — and (if using Java5) work for characters not in the Basic Multilingual Plane.

Major re-write of symbol and namespace handling. A Symbol (api/gnu/mapping/
Symbol.html) is now immutable, consisting of a "print-name" and a pointer to a Namespace
(api/gnu/mapping/Namespace.html) (package). An Environment (api/gnu/mapping/

http://srfi.schemers.org/srfi-37/srfi-37.html
http://srfi.schemers.org/srfi-37/srfi-37.html
http://srfi.schemers.org/srfi-39/srfi-39.html
api/gnu/mapping/Symbol.html
api/gnu/mapping/Symbol.html
api/gnu/mapping/Namespace.html
api/gnu/mapping/Namespace.html
api/gnu/mapping/Environment.html

Chapter 1: News - Recent Changes 24

Environment.html) is a mapping from Symbol to Location (api/gnu/mapping/Location.
html).

Rename Interpreter to Language (api / gnu / expr / Language . html) and
LispInterpreter to LispLanguage (api/gnu/kawa/lispexpr/LispLanguage.html).

Constant-time property list operations.

Namespace-prefixes are now always resolved at compile-time, never at run-time.

(define-namespace PREFIX <CLASS>) is loosely the same as (define-namespace

PREFIX "class:CLASS") but does the right thing for classes defined in this module,
including nested or non-simple classes.

Macros capture proper scope automatically, not just when using require. This allows
some internal macros to become private.

Major re-write of the macro-handling and hygiene framework. Usable support for
syntax-case; in fact some of the primitives (such as if) are now implemented using
syntax-case. (syntax form) (or the short-cut #!form) evaluates to a syntax object.
(define-syntax (mac x) tr) same as (define-syntax mac (lambda (x) tr)). The fol-
lowing non-hygienic forms are equivalent:

(define-macro (macro-name (param ...) transformer)

(define-macro macro-name (lambda (param ...) transformer))

(defmacro macro-name (PARAM ...) transformer)

Allow vectors and more general ellipsis-forms in patterns and templates.

A new configure switch --with-java-source=version allows you to tweak the Kawa
sources to match Java compiler and libraries you’re using. The default (and how the sources
are distributed) is 2 (for "Java 2" – jdk 1.2 or better), but you can also select "1" (for jdk
1.1.x), and "5" for Java 5 (jdk 1.5). You can also specify a jdk version number: "1.4.1" is
equivalent to "2" (for now). Note the default source-base is incompatible with Java 5 (or
more generally JAXB 1.3 or DOM 3), unless you also --disable-xml.

Configure argument --with-servlet[=servlet-api.jar] replaces --enable-servlet.

Function argument in error message are now numbered starting at one. Type errors now
give better error messages.

A new function calling convention, used for --full-tailcalls. A function call is split
up in two parts: A match0/.../matchN method checks that the actual arguments match the
expected formal arguments, and leaves them in the per-thread CallContext (api/gnu/
mapping/CallContext.html). Then after the calling function returns, a zero-argument
apply() methods evaluates the function body. This new convention has long-term advan-
tages (performance, full continuations), but the most immediate benefit is better handling
of generic (otherloaded) functions. There are also improved error messages.

Real numbers, characters, Lisp/Scheme strings (FString (api/gnu/lists/FString.
html)) and symbols all now implement the Comparable interface.

In define-class/define-simple-class: [Most of this work was funded by Merced
Systems (http://www.mercedsystems.com/).]

• You can specify access: ['private|'protected|'public|'package] to set the Java
access permissions of fields and methods.

• Methods can be static by using the access: 'static specifier.

api/gnu/mapping/Environment.html
api/gnu/mapping/Environment.html
api/gnu/mapping/Location.html
api/gnu/mapping/Location.html
api/gnu/expr/Language.html
api/gnu/kawa/lispexpr/LispLanguage.html
api/gnu/mapping/CallContext.html
api/gnu/mapping/CallContext.html
api/gnu/lists/FString.html
api/gnu/lists/FString.html
http://www.mercedsystems.com/
http://www.mercedsystems.com/

Chapter 1: News - Recent Changes 25

• The reflective routines invoke , field , static-field , slot-ref , slot-set! can
now access non-public methods/fields when appropriate.

• Such classes are no longer initialized when the containing module is loaded.

• The expr in init-form: expr is now evaluated in the outer scope.

• A new init: expr evalues expr in the inner scope.

• An option name following allocation: can now be a string literal or a quoted symbol.
The latter is preferred: allocation: 'class.

• Added 'static as a synonym for 'class following allocation:.

• Initialization of static field (allocation: 'class init: expr) now works, and is per-
formed at class initialization time.

• You can use unnamed “dummy fields” to add initialization-time actions not tied to a
field:

(define-simple-class Foo ()

(:init (perform-some-action)))

Kawa 1.7.90 (2003)

Various fixes and better error messages in number parsing. Some optimizations for the
divide function.

New framework for controlling compiler warnings and other features, supporting
command-line flags, and the Scheme forms with-compile-options and module-compile-

options. The flag --warn-undefined-variable is useful for catching typos.
Implementation funded by Merced Systems (http://www.mercedsystems.com/).

New invoke-special syntax form (implemented by Chris Dean).

New define-variable form (similar to Common Lisp’s defvar).

Kawa 1.7 (June 7, 2003)

KawaPageServlet (api / gnu / kawa / servlet / KawaPageServlet . html) al-
lows automatic loading and on-the-fly compilation in a servlet engine. See
http://www.gnu.org/software/qexo/simple-xquery-webapp.html (. . / qexo /

simple-xquery-webapp.html).

The default source-base requires various Java 2 features, such as collection. However,
make-select1 will comment out Java2 dependencies, allowing you to build Kawa with an
older Java implementation.

The -f flag and the load function can take an absolute URL. New Scheme functions
load-relative and base-uri.

Imported implementation of cut and cute from SRFI-26 (http://srfi.schemers.org/
srfi-26/srfi-26.html) (Notation for Specializing Parameters without Currying).

The way top-level definitions (including Scheme procedures) are mapped into Java fields
is changed to use a mostly reversible mapping. (The mapping to method names remains
more natural but non-reversible.)

define-alias of types can now be exported from a module.

New --no-inline and --inline=none options.

http://www.mercedsystems.com/
api/gnu/kawa/servlet/KawaPageServlet.html
../qexo/simple-xquery-webapp.html
../qexo/simple-xquery-webapp.html
http://srfi.schemers.org/srfi-26/srfi-26.html
http://srfi.schemers.org/srfi-26/srfi-26.html

Chapter 1: News - Recent Changes 26

You can use define-namespace to define “namespace aliases”. This is used for the new
short-hard syntax for method invocation:
(define-namespace Int32 "class:java.lang.Integer")

(Int32:toHexString 255) => "ff"

(Int32:toString (Int32:new "00255")) => "255"

Alternatively, you can write:
(java.lang.Integer:toHexString 255) => "ff"

SRFI-9 (http://srfi.schemers.org/srfi-9/srfi-9.html) (define-record-type) has
been implemented, and compiled to a define-class, with efficient code.

The configure option --with-collections is now the default.

Unknowns are no longer automatically static.

If type not specified in a declaration, don’t infer it from it initial value. If no return type
is specified for a function, default to Object, rather than the return type of the body. (The
latter leads to undesirable different behaviour if definitions are re-arranged.)

You can now define and use classes defined using object, define-class, and
define-simple-class from the “interpreter”, as well as the compiler. Also, a bug where
inherited fields did not get initialized has been fixed.

There are several new procedures useful for servlets.

Numerical comparisions (<, <=, etc) now generates optimized bytecode if the types of the
operands have certain known types. including efficient code for <int>, <long>, <double>,
and <integer>. Much more code can now (with type declaration) be written just as
efficiently in Scheme as in Java.

There have been some internal re-arranging of how Expressions are processed. The
Scheme-specific Translator type now inherits from Compilation, which replaces the old
Parser class. A Complation is now allocated much earlier, as part of parsing, and includes
a SourceMessages object. SourcesMessages now includes (default) line number, which is
used by Compilation for the "current" line numbers. The ExpWalker class includes a
SourceMessages instance (which it gets from the Compilation). CanInline.inline method
now takes ExpWalker parameter. Checking of the number or parameters, and mapping
known procedures to Java methods are now both done during the inlining pass.

The user-visible effect is that Kawa can now emit error mesages more cleanly more places;
the inlining pass can be more agressive, and can emit better error messages, which yields
better type information. This gives us better code with fewer warnings about unknown
methods.

Changes from Kawa 1.6.98 to 1.6.99.

A new language front-end handles a tiny subset of XSLT. An example is the check-format-
users test in gnu/xquery/testsuite/Makefile.

There are now converters between SAX2 and Consumer events, and a basic implemen-
tation of XMLReader based on XMLParser.

The function as-xml prints a value in XML format.

Srfi-0 (cond-expand), srfi-8 (receive), and srfi-25 (multi-dimensional arrays) are now
implemented. So is srfi-1 (list library), though that requires doing (require ’list-lib).

http://srfi.schemers.org/srfi-9/srfi-9.html

Chapter 1: News - Recent Changes 27

The JEmacs code is being re-organized, splitting out the Swing-dependent code into a
separate gnu.jemacs.swing package. This should make it easier to add JEmacs implemen-
tation without Swing.

The class gnu.expr.Interpreter has various new ’eval’ methods that are useful for evalu-
ating Scheme/BRL/XQuery/... expressions from Java.

Kawa now uses current versions of autoconf, autoamke, and libtool, allowing the use of
automake file inclusion.

The comparisons <<, <=, -, >, and => now compile to optimized Java arithmetic if both
operands are <int> or a literal that fits in <int>.

Changes from Kawa 1.6.97 to 1.6.98

Generated HTML and Postscrpt documents are no longer included in the source distribu-
tion. Get kawa-doc-version.tar.gz instead.

(format #t ...) and (format PORT ...) now returns #!void instead of #t.

Support fluid bindings (fluid-let) for any thread, not just Future and main.

A Unix script header #!/PROGRAM is ignored.

You can now take the same Kawa "web" program (written in Scheme, KRL/BRL, or
XQuery) and run it as either a servlet or a CGI script.

There are a number of new functions for accessing HTTP requests and generating HTTP
responses.

Kawa now supports a new experimental programming KRL (the "Kawa Report Lan-
guage"). You select this language using –krl on the Kawa command link. It allows
Scheme code to be inside template files, like HTML pages, using a syntax based on BRL
(brl.sourceforge.net). However, KRL has soem experimental changes to both BRL and
standard Scheme. There is also a BRL-compatibile mode, selected using –brl, though that
currently only supports a subset of BRL functions.

If language is not explicitly specified and you’re running a source file (e.g. "java kawa.repl
myscript.xql"), Kawa tried to derive the language from the the filename extension (e.g.
"xql"). It still defaults to Scheme if there is no extension or the extension is unrecognized.

New command-line option –output-format alias –format can be used to over-ride the
format used to write out top-level (repl, load) values.

XMLPrinter can now print in (non-well-formed-XML) HTML.

Changes from Kawa 1.6.96 to 1.6.97

Changed lots of error messages to use pairs of single quotes rather than starting with a
backquote (accent grave): ’name’ instead of ‘name’. Many newer fonts make the latter look
bad, so it is now discouraged.

The types <String> and <java.lang.String> new behave differently. The type
<java.lang.String> now works just like (say) <java.util.Hashtable>. Converting an
object to a <java.lang.String> is done by a simple coercion, so the incoming value must
be a java.lang.String reference or null. The special type <String> converts any object to a
java.string.String by calling toString; it also handles null by specially testing for it.

Chapter 1: News - Recent Changes 28

For convenience (and backwards compatibility) Kawa uses the type <String> (rather
than <java.lang.String>) when it sees the Java type java.lang.String, for example in
the argument to an invoke.

The default behaviour of ’[’ and ’] was changed back to be token (word) constituents,
matching R5RS and Common Lisp. However, you can easily change this behaviour using
the new setBrackMode method or the defaultBracketMode static field in ReadTable.

You can now build Kawa from source using the Ant build system (from Apache’s Jakarta
project), as an alternative to using the traditional configure+make system. An advantage of
Ant is that it works on most Java systems, without requiring a Unix shell and commands.
Specifically, this makes it easy to build Kawa under MS-Windows. Thanks to James White
for contributing this support.

Added (current-error-port) which does the obvious.

The new let-values and let-values* macros from srfi-11 provide a more convenient way
to use multiple values.

All the abstract apply* and eval* methods now specify ’throws Throwable’. A bunch of
code was changed to match. The main visible advantage is that the throw and primitive-
throw procedures work for any Throwable without requiring it to be (confusingly) wrapped.

Changes from Kawa 1.6.95 to 1.6.96

A new compilation flag –servlet generates a Servlet which can be deployed in a servlet engin
like Tomcat. This is experimental, but it seesm to work for both Scheme source and XQuery
source.

The interface gnu.lists.CharSequence was renamed to avoid conflitcs with the (similar)
interface java.lang.CharSequence in JDK 1.4beta.

New –help option (contributed by Andreas Schlapbach).

Changed the code generation used when –full-tailcalls. It now is closer to that used by
default, in that we don’t generate a class for each non-inlined procedure. In both cases
calling an unknown procedure involves executing a switch statement to select a method. In
addition to generating fewer classes and simplifying one of the more fragile parts of Kawa,
it is also a step towards how full continuations will be implemented.

Changed the convention for name "mangling" - i.e. how Scheme names are mapped
into Java names. Now, if a Scheme name is a valid Java name it is used as is; otherwise
a reversible mangling using "$" characters is used. Thus the Scheme names '< and '$Leq

are both mapped into the same Java name "$Leq". However, other names not contain-
ing "$" should no longer clash, including pairs like "char-letter?" and "charLetter?"

and "isCharLetter" which used to be all mapped to "isCharLetter". Now only names
containing "$" can be ambiguous.

If the compiler can determine that all the operands of (+ ...) or (- ...) are floating-point,
then it will generate optimized code using Java primitive arithmetic.

Guile-style keyword syntax ’#:KEYWORD’ is recognized. (Note this conflicts with
Common Lisp syntax for uninterned symbols.)

New syntax forms define-class and define-simple-class allow you to define classes more
easily. define-class supports true multiple inheritance and first class class values, where each
Scheme class is compiled to a pair of an inteface and a class. define-simple-class generates
more efficient and Java-compatible classes.

Chapter 1: News - Recent Changes 29

Changes from Kawa 1.6.94 to 1.6.95.

A new language "xquery" implements a (so far small subset of) XQuery, the draft XML
Query languaage.

Various internal (Java API) changes: Changes to gnu.expr.Interpreter to make it easier
to add non-Lisp-like languages; gnu.lists.Consumer now has an endAttribute method that
need to be called after each attribute, rather than endAttributes that was called after all
of them.

If configured with –with-gcj, Kawa builds and intalls a ’gckawa’ script to simlify linking
with needed libraries.

The setter function is now inlined, and (set! (field X 'N) V) and (set!

(static-field <T> "N) V) are now inlined.

If configured --with-gcj, then a gckawa helper script is installed, to make it easier to
link Kawa+gcj-compiled applications.

Changes from Kawa 1.6.92 to 1.6.94

The JEmacs code now depends on CommonLisp, rather than vice versa, which means
Commonlisp no longer depends on Swing, and can be built with GCJ. CommonLisp and
JEmacs symbols are now implemented using Binding, not String.

Changes from Kawa 1.6.90 to 1.6.92

Kawa now installs as a .jar file (kawa.jar symlinked to kawa-VERSION.jar), rather than a
collection of .class files.

The Kawa manual includes instructions for how to build Kawa using GCJ, and how to
compile Scheme code to a native executable using GCJ.

Kawa now has builtin pretty-printer support, using an algorithm from Steel Bank Com-
mon Lisp converted from Lisp to Java. The high-level Common Lisp pretty-printing features
are mostly not yet implemented, but the low-level support is there. The standard output
and error ports default to pretty-printing.

A new formatting framework uses the Consumer interface from gnu.lists. You can as-
sociate a format with an output port. Common Lisp and JEmacs finally print using their
respective syntaxes.

All output ports (OutPort instances) are now automatically flushed on program exit,
using a new WriterManager helper class.

The new commmand-line option –debug-print-expr causes the Expression for each ex-
pression to be printed. The option –debug-print-final-expr is similar, but prints Expressions
after optimization and just before compilation. They are printed using the new pretty-
printer.

Changed calling convention for –full-tailcalls to write results to a Consumer, usually a
TreeList or something to be printed. A top-level ModuleBody now uses the same CpsPro-
cedure convention. This is useful for generating xml or html.

New libtool support allows kawa to be built as a shared library.

The new configure flag –with-gcj uses gcj to compile Kawa to both .class files and native
code. This is experimental.

Chapter 1: News - Recent Changes 30

Changes from Kawa 1.6.70 to 1.6.90

The reader (for Scheme and Lisp) has been re-written to be table-driven, based on the
design of Common Lisp readtables.

The new gnu.lists package has new implementations of sequence-related classes. It re-
places most of gnu.kawa.util. See the package.html file.

If the expected type of a non-unary + or - is <int> or <long> and the operands are
integeral types, then the operands will converted to the primitive integer type and the
addition or subtraction done using primitive arithmetic. Similarly if the expected type is
<float> or <long> and the operands have appropriate type. This optimization an make a
big performance difference. (We still need to also optimize compare operations like (< x y)

to really benefit from <int> declarations of loop variables.)

The implementation of procedure closures has been changed to basically be the same
as top-level procedures (except when –full-tailcalls is specified): Each procedure is now an
instance of a ModuleMethod, which each "frame" is an instance of ModuleBody, just like
for top-level functions. This sometimes reduces the number of classes generated, but more
importantly it simplifies the implementation.

A new gnu.xml (api/gnu/xml/package-summary.html) package contains XML-related
code, currently an XML parser and printer, plus some XPath support. The class
gnu.lists.TreeList (api/gnu/lists/TreeList.html) (alias <document>) is useful for
compactly representing nested structures, including XML documents. If you (require

'xml) you will get Scheme interfaces (print-as-xml and parse-xml-from-url) to these
classes.

New package gnu.kawa.functions, for primitive functions (written in Java).

The map and for-each procedure is now inlined. This is most especially beneficial when
it allows the mapped-over procedure to also be inlined, such as when that procedure is a
lambda expression.

Added documentation on compiling with Jikes. Renamed some classes to avoid warning
when compiling with Jikes.

The reverse! procedure was added.

Internal changes: * If a variable reference is unknown, create a Declaration instance with
the IS UNKNOWN flag to represent an imported binding. * The ExpWalker framework for
"tree walking" Expressions had a bit of reorganization. * New package gnu.kawa.functions,
for primitive functions (written in Java).

Added a hook for constant-folding and other optimization/inlining at traversal (Exp-
Walker) time. Optimization of + and - procedures to use primitive Java operations when
the operands are primitive types.

Implementation of SRFI-17. Change the definitions of (set! (f x ...) val) to ((setter f)
x ... val), rather then the old ((setter f) val x ...). You can now associate a setter with a
procedure, either using make-procedure or set-procedure-property!. Also, (setter f) is now
inlined, when possible.

Internally, Syntax (and hence Macro) no longer extend Declaration.

Various Java-level changes, which may be reflected in Scheme later: *
gnu.kawa.util.Consumer interface is similar to ObjectOutput and SAX’s ContentHandler
interfaces. * A gnu.expr.ConsumerTarget is used when evaluating to an implicit Consumer.

api/gnu/xml/package-summary.html
api/gnu/lists/TreeList.html

Chapter 1: News - Recent Changes 31

* These interfaces will make it easy to write functional-style but efficient code for
transforming data streams, including XML. * gnu.kawa.util.FString is now variable-size.

Changes from Kawa 1.6.68 to 1.6.70

The bare beginnings of Common Lisp support, enabled by the –commonlisp (or –clisp)
command line option. This is so far little more than a hack of the EmacsLisp support, but
with lexical scoping and CL-style format.

Changes from Kawa 1.6.66 to 1.6.68

JEmacs news:

• Define emacs-version as Kawa version but with leading 0 instead of 1. For example,
the current value is "0.6.68 JEmacs".

• New testsuite directory.

• Improved autoload framework. Handle ELisp autoload comments.

• Handle escape and meta-key.

• Handle lot more of ELisp.

• Lots more is now done in ELisp, using .el files imported from XEmacs.

• Incomplete support for setting mark, including using selection.

• Basic (but incomplete) implementation of (interactive spec).

• Common Lisp extensions: typep, default arguments.

• A new status.html file to note what works and what doesn’t.

You can now specify in define and define-private the type of a variable. If the variable
is module-level, (define name :: <type> value) creates a field named “name” having the
specified type and initial value. (If type is not specified, the default is not Object, but
rather a Binding that contains the variable’s value.)

You can now define the type of a module-level variable: In (define[-private] :: type
expression) New (define-constant name [:: type] expression) definition form.

A procedure can now have arbitrary properties associated with it. Use procedure-
property and set-procedure-property! to get and set them.

The new procedure make-procedure creates a generic procedure that may contain one
or more methods, as well as specified properties.

New declaration form define-base-unit. Both it and define-unit have been re-implemented
to be module-safe. Basically ’(define-unit ft 12in)’ is sugar for ’(define-constant ft$unit (...
(* 12 in$unit)))’, where ft$unit and in$unit are standard identifiers managed by the module
system. Also, the output syntax for units and quantities is cleaner.

The new declaration (module-export name ...) allows control over the names exported
from a module. The new declaration (module-static ...) allows control over which definitions
are static and which are non-static. This makes it easier to use a module as a Java class.

Procedures names that accidentally clash with inherited method names (such as "run")
are now re-named.

Simple aliases (define-aliases defining an alias for a variable name) are implemented more
efficiently.

Chapter 1: News - Recent Changes 32

The package hierarchy is getter cleaner, with fewer cyclic dependencies: The gnu.math
package no longer has any dependencies on kawa.* or gnu.*. Two classes were moved from
gnu.text to other classes, avoiding another cyclic package dependency between gnu.text
and gnu.mapping. The new gnu.kawa.lispexpr is for compile-time handling of Lisp-like
languages.

Compliation of literals has been re-done. A class that can be used in a literal no
longer needs to be declared as Compilable. Instead, you declare it as implementaing
java.io.Externalizable, and make sure it has appropriate methods.

All the standard "data" types (i.e. not procedures or ports) now implement
java.io.Externalizable, and can thus be serialized. If they appear in literals, they can also
be compiled.

Created a new class gnu.kawa.util.AbstractString, with the Scheme alias
<abstract-string>. The old gnu.kawa.util.FString now extends AbstractString. A
new class CharBuffer provides an growable buffer, with markers (automatically-adjusted
positions). Many of the Scheme <string> procedures now work on <abstract-string>.
The JEmacs BufferContnat class (contains the characters of a buffer) now extends
CharBuffer.

Some JEmacs changes to support a "mode" concept, as well as preliminary support for
inferior-process and telnet modes.

New section in manual / web page for projects using Kawa.

The record feasture (make-record-type etc) how handles "funny" type and fields names
that need to be "mangled" to Java names.

Re-did implementation of define-alias. For example, you can define type-aliases:
(define-alias <marker> <gnu.jemacs.buffer.Marker>)

and then use <marker> instead of <gnu.jemacs.buffer.Marker>.

(field array 'length) now works.

Changes from Kawa 1.6.64 to 1.6.66

Added documentation to the manual for Homogeneous numeric vector datatypes (SRFI-4).

You can now specify characters using their Unicode value: #\u05d0 is alef.

Kawa now uses a more mnemonic name mangling Scheme. For example, a Scheme
function named <= would get compiled to method LsEq.

There is now working and useful module support, thought not all features are imple-
mented. The basic idea is that a module can be any class that has a default constructor
(or all of whose fields and methods are static); the public fields and methods of such a class
are its exported definitions. Compiling a Scheme file produces such a module. Doing:
(require <classname>)

will create an anonymous instance of <classname> (if needed), and add all its exported
definitions to the current environment. Note that if you import a class in a module you are
compiling, then an instance of the module will be created at compile-time, and imported
definitions are not re-imported. (For now you must compile a module, you cannot just load
it.)

The define-private keyword creates a module-local definition.

Chapter 1: News - Recent Changes 33

New syntax to override some properties of the current module:
(module-name <name>) overrides the default name for a module.
(module-extends <class>) specifies the super-class.
(module-implements <interface> ...) specfies the implemented interfaces.

The syntax: (require ’keyword) is syntactic sugar for (require <classname>) where the
classname is find is a "module catalog" (currently hard-wired). This provides compatibil-
ity with Slib. The Slib "features" gen-write, pretty-print, pprint-file, and printf are now
available in Kawa; more will be added, depending on time and demand. See the package
directory gnu/kawa/slib for what is available.

Changes from Kawa 1.6.62 to 1.6.64

A lot of improvements to JEmacs (see JEmacs.SourceForge.net).

kawa-compiled-VERSION.zip is replaced by kawa-compiled-VERSION.jar.

You can now use Kawa to generate applets, using the new –applet switch, Check the
"Applet compilation" section in the manual. Generating an application using the –main
flag should work again. Neither –applet nor –main has Scheme hard-wired any more.

A new macro ‘(this)’ evaluates to the "this object" - the current instance of the current
class. The current implementation is incomplete, and buggy, but it will have to do for now.

The command-line argument -f FILENAME will load the same files types as load.

When a source file is compiled, the top-level definitions (procedures, variables, and
macros) are compiled to final fields on the resulting class. This are not automatically
entered into the current environment; instead that is the responsibility of whoever loads the
compiled class. This is a major step towards a module system for Kawa.

There is a new form define-private which is like define, except that the defined name is
not exported from the current module.

A procedure that has optional arguments is now typically compiled into multiple meth-
ods. If it’s a top-level procedure, these will be methods in the modules "ModuleBody"
class, with the same (mangled) name. The compiler can in many cases call the appropriate
method directly. Usually, each method takes a fixed number of arguments, which means we
save the overhead of creating an array for the arguments.

A top-level procedure declared using the form (define (NAME ARS ...) BODY ..) is
assumed to be "constant" if it isn’t assigned to in the current compilation unit. A call in
the same compilation unit will now be implemented as a direct method call. This is not
done if the prcedure is declared with the form: (define NAME (lambda (ARGS ,,,) BODY
...)

gnu.expr.Declaration no longer inherits from gnu.bytecode.Variable.

A gnu.mapping.Environment now resolves hash index collisions using "double hashing"
and "open addressing" instead of "chaining" through Binding. This allows a Binding to
appear in multiple Environments.

The classes Sequence, Pair, PairWithPosition, FString, and Char were moved from
kawa.lang to the new package gnu.kawa.util. It seems that these classes (except perhaps
Char) belong together. The classes List and Vector were also moved, and at the same time
renamed to LList and FVector, respectively, to avoid clashed with classes in java.util.

Chapter 1: News - Recent Changes 34

New data types and procedures for "uniform vectors" of primitive types were
implemented. These follow the SRFI-4 specification, which you can find at
http://srfi.schemers.org/srfi-4/srfi-4.html .

You can now use the syntax name :: type to specify the type of a parameter. For
example:
(define (vector-length x :: <vector>) (invoke x 'length))

The following also works:
(define (vector-length (x :: <vector>)) ...).

(define-member-alias name object [fname]) is new syntactic sugar for
(define-alias name (field object fname)), where the default for fname is the
mangling of name.

Changes from Kawa 1.6.60 to 1.6.62

The new function ‘invoke’ allows you to call a Java method. All of ‘invoke’, ‘invoke-static’
and ‘make’ now select the bets method. They are also inlined at compile time in many cases.
Specifically, if there is a method known to be definitely applicable, based on compile-time
types of the argument expressions, the compiler will choose the most specific such method.

The functions slot-ref, slot-set!, field, and static-field are now inlined by the compiler
when it can.

Added open-input-string, open-output-string, get-output-string from SRFI-6. See
http://srfi.schemers.org/srfi-6/srfi-6.html.

The manual has a new section "Mapping Scheme names to Java names", and a new chap-
ter "Types". The chapters "Extensions", "Objects and Classes", and "Low-level functions"
have been extensivley re-organized.

The Kawa license has been simplified. There used to be two licenses: One for the
packages gnu.*, and one for the packages kawa.*. There latter has been replaced by the
former. The "License" section of the manual was also improved.

Changes from Kawa 1.6.59 to 1.6.60

There is a new package gnu.kawa.reflect. Some classes that used to be in kawa.lang or
kawa.standard are now there.

The procedures slot-ref and slot-set! are now available. They are equivalent to the
existing ‘field’, but reading a field ‘x’ will look for ‘getX’ method if there is no public ‘x’
field; writing to a field will look for ‘setX’.

The procedure ‘make’ makes it convenient to create new objects.

There is now a teaser screen snapshot of "JEmacs" at http://www.bothner.com/~per/papers/jemacs.png.

The html version of the manual now has a primitive index. The manual has been slightly
re-organized, with a new "Classes and Objects" chapter.

The new functions invoke-static and class-methods allow you to call an arbitary Java
method. They both take a class specification and a method name. The result of class-
methods is a generic procedure consisting of those methods whose names match. (Instance
methods are also matched; they are treated the asme as class methods with an extra initial
argument.) The invoke-static function also takes extra arguments, and actually calls the
"best"-matching method. An example:

(invoke-static <java.lang.Thread> 'sleep 100)

Chapter 1: News - Recent Changes 35

Many fewer classes are now generated when compiling a Scheme file. It used to be that
each top-level procedure got compiled to its own class; that is no longer the case. The
change should lead to faster startup and less resource use, but procedure application will
probably be noticably slower (though not so much slower as when reflection is used). The
reason for the slowdown is that we in the general case now do an extra method call, plus a
not-yet-optimized switch statement. This change is part of the new Kawa module system.
That will allow the compiler to substitute direct methods calls in more cases, which I hope
will more than make up for the slowdown.

A Scheme procedure is now in general compiled to a Java method whose name is a
"mangling" of the Scheme procedure’s name. If the procedure takes a variable number of
parameters, then "$V" is added to the name; this indicates that the last argument is a Java
array containing the rest of the arguments. Conversely, calling a Java method whose name
ends in "$V" passes any excess arguments in the last argument, which must be an array
type.

Many changes to the "Emacs-emulation" library in gnu.jemacs.buffer: * Implemented
commands to read and save files. * We ask for file and buffer names using a dialog pop-up
window. * Split windows correctly, so that the windows that are not split keep their sizes,
the windows being split gets split as specified, and the frame does not change size. Now also
handles horizonal splits. * Fairly good support for buffer-local keymaps and Emacs-style
keymap search order. A new class BufferKeymap manages the active keymaps of a buffer.
Multi-key key-sequences are handled. Pending prefix keys are remembered on a per-buffer
basis (whereas Emacs does it globally).

There is now some low-level support for generic procedures.

The R5RS primitives let-syntax and letrec-syntax for defining local syntax extensions
(macros) should now work. Also define-syntax works as an internal definition. All of these
should now be properly "hygienic". (There is one known exception: symbols listed among
the literals lists are matched as raw symbols, rather that checking that the symbol has the
same binding, if any, as at the defining site.) The plan is to support general functions as
hygienic rewriters, as in the Chez Scheme "syntax-case" system; as one part of that plan,
the syntax-case primitive is available, but so far without any of the supporting machinary
to support hygiene.

The read-line procedure was added. This allows you to efficiently read a line from an
input port. The interface is the same as scsh and Guile.

Changes from Kawa 1.6.58 to 1.6.59

define-alias now works both top-level and inside a function.

Optimized eqv? so if one of the arguments is constant and not Char or Numeric, inline it
the same way eq? is. (This helps case when the labels are symbols, which help the "lattice"
benchmark.) ???

The Emacs-related packages are now grouped under a new gnu.jemacs package.

Improved framework for catching errors. This means improved error messages when
passing a parameter of the wrong type. Many standard procedures have been improved.

Simplified, documented, and tested (!) procedure for building Kawa from source under
Windows (95/98/NT).

Chapter 1: News - Recent Changes 36

New macros trace and untrace for tracing procedures. After executing (trace PROCE-
DURE), debugging output will be written (to the standard error port) every time PRO-
CEDURE is called, with the parameters and return value. Use (untrace PROCEDURE) to
turn tracing off.

New utility functions (system-tmpdir) and (make-temporary-file [format]).

A new (unfinished) framework supports multiple languages. The command-line option
–elisp selects Emacs Lisp, while –scheme (the default) selects Scheme. (The only difference
so far is the reader syntax; that will change.)

The ‘format’ function now provides fairly complete functionality for CommonLisp-style
formatting. (See the Comon Lisp hyperspec at http://www.harlequin.com/education/books/HyperSpec/Body/sec 22-
3.html.) The floating point formatters (~F, ~E, ~G, ~$) now pass the formatst.scm test
(from Slib, but with some "fixes"; in the testsuite directory). Also, output ports now track
column numbers, so ~T and ~& also work correctly.

A new package gnu.emacs provides various building blocks for building an Emacs-like
text editor. These classes are only compiled when Kawa is configured with the new –
with-swing configuration option. This is a large initial step towards "JEmacs" - an Emacs
re-implemented to use Kawa, Java, and Swing, but with full support (using gnu.elisp) for
traditional Emacs Lisp. For more imformation see gnu/emacs/overview.html.

A new configuration option –with-swing can be used if Swing is available. It is currently
only used in gnu.emacs, but that may change.

Changes from Kawa 1.6.56 to 1.6.58

Kawa is now "properly tail-recursive" if you invoke it with the –full-tail-calls flag. (Excep-
tion: the eval procedure does not perform proper tail calls, in violation of R5RS. This will
be fixed in a future release.) Code compiled when –full-tail-calls is in effect is also prop-
erly tail-recursive. Procedures compiled with –full-tail-calls can call procedures compiled
without it, and vice versa (but of course without doing proper tail calls). The default is
still –no-full-tail-calls, partly because of performance concerns, partly because that provides
better compatibility with Java conventions and tools.

The keywords let (including named let), let*, and letrec support type specifiers for the
declared variables For example:

(let ((lst :: <list> (foo x))) (reverse lst))

Square brackets [...] are allowed as a synonym of parentheses (...).

Changes from Kawa 1.6.55 to 1.6.57

A new command-line flag –server PORT specifies that Kawa should run as a telnet server
on the specified PORT, creating a new read-eval-print loop for each connection. This allows
you to connect using any telnet client program to a remote "Kawa server".

A new front-end program, written in C, that provides editing of input lines, using the
GNU readline library. This is a friendlier interface than the plain "java kawa.repl". However,
because kawa.c needs readline and suitable networking library support, it is not built by
default, but only when you configure Kawa with the –enable-kawa-frontend flag.

The way Scheme names are mapped ("mangled") into Java identifiers is now more nat-
ural. E.g. "foo-bar?" now is mapped to "isFooBar".

Chapter 1: News - Recent Changes 37

New syntax (object (SUPERS ...) FIELD-AND-METHODS ...) for creating a new
object instance of an anonymous class. Now fairly powerful.

New procedures field and static-field for more convenient field access.

Syntactic sugar: (lambda args <type> body) -> (lambda args (as <type> body)).
This is especially useful for declaring methods in classes.

A new synchonized form allows you to synchronize on an arbitrary Java object, and
execute some forms while having an exclusive lock on the object. (The syntax matches that
used by Skij.)

Changes from Kawa 1.6.53 to 1.6.55

New –debug-dump-zip option writes out a .zip file for compilation. (Useful for debugging
Kawa.)

You can now declare parameter types.

Lot of work on more efficient procedure representation and calling convention: Inlining,
directly callable statics method, plus some procedures no longer generate a separate Class.

Local functions that are only called from one locations, except for tail-recursion, are now
inlined. This inlines do loops, and most "named let" loops.

New representation of closures (closures with captured local variables). We no longer
use an array for the closure. Instead we store the captured variables in the Procedure itself.
This should be faster (since we can use field accesses rather than array indexing, which
requires bounds checking), and avoids a separate environment object.

If the compiler sees a function call whose (non-lexically-bound) name matches an existing
(globally-defined) procedure, and that procedure instance has a static method named either
"apply" or the mangled procedure name, them the compiler emits a direct call to that
method. This can make a very noticable speed difference, though it may violate strict
Scheme sementics, and some code may break.

Partial support for first-class "location" variables.

Changes from Kawa 1.6.53 to 1.6.54

Created new packages gnu.mapping and gnu.expr. Many classes were moved from kawa.lang
to the new packages. (This is part of the long-term process of splitting Kawa into more
manageable chunks, separating the Scheme-specific code from the language-independent
code, and moving classes under the gnu hierarchy.)

You can now write keywords with the colon first (e.g. :KEYWORD), which has exactly
the same effect and meaning as putting the colon last (e.g. KEYWORD:). The latter is
preferred is being more consistent with normal English use of punctuation, but the former
is allowed for compatibility with soem other Scheme implementations and Common Lisp.

Changes from Kawa 1.6.52 to 1.6.53

The new package gnu.text contains facilities for reading, formatting, and manipulating text.
Some classes in kawa.lang where moved to there.

Added string-upcase!, string-downcase!, string-capitalize!, string-upcase, string-
downcase, and string-capitalize; compatible with Slib.

Chapter 1: News - Recent Changes 38

Character constants can now use octal notation (as in Guile). Writing a character uses
octal format when that seems best.

A format function, similar to that in Common Lisp (and Slib) has been added.

The default parameter of a #!optional or #!key parameter can now be #!null.

Changes since Kawa 1.6.51

The "record" feature has been changed to that a "record-type descriptor" is now a
gnu.bytecode.ClassType (a <record-type>), rather than a java.lang.Class. Thus make-
record-type now returns a <record-typee>, not a Class, and record-type-descriptor

takes a <record-typee>, not a Class.

More robust Eval interfaces.

New Lexer abstract class. New ScmRead class (which extends Lexer) now contains
the Scheme reader (moved from Inport). Now read errors are kept in queue, and can be
recovered from.

Comparing an exact rational and an inexact real (double) is now done as if by first
converting the double to exact, to satisfy R5RS.

Changes since Kawa 1.6.1

The compile virtual method in Expression now takes a Target object, representing the
"destination". The special ConditionalTarget is used to evaluate the test of an ’if expression.
This allows us to generate much better code for and, or, eq?, not and nested if inside an if.

Added port-line, port-column, and set-port-line! to match Guile.

The Makefiles have been written so all out-of-date .java (or .scm). files in a directory
are compiled using a single invocation of javac (or kawa). Building Kawa should now be
much faster. (But note that this depends on unreleased recent autoamke changes.)

How the Kawa version number is compiled into Kawa was changed to make it easier for
people who want to build from source on non-Unix-like systems.

A new gnu.ecmascript package contains an extremely incomplete implementation of
ECMSScript, the ECMA standardized version of JavaScript. It includes an ECMAScript
lexer (basically complete), parser (the framework is there but most of the language is miss-
ing), incomplete expression evaluation, and a read-eval-print-loop (for testing only).

Changes in Kawa 1.6.1

Improved Kawa home page with extra links, pointer to Java-generated api docs, and home-
pages for gnu.math and gnu.bytecode.

Implemented system, make-process, and some related procedures.

Added macros for primitive access to object fields, static fields, and Java arrays. Added
constant-fold syntax, and used it for the other macros.

The –main flag compiles Scheme code to an application (containing a main method),
which can be be invoked directly by a Java interpreter.

Implemented –version (following GNU standards) as kawa.repl command-line flag.

Chapter 1: News - Recent Changes 39

Changes since Kawa 1.5.93

Adding make procedure to create new objects/records.

Extended (set! (f . args) value) to be equivalent to ((setter f) value . args). Implemented
setter, as well as (setter car) and (setter cdr).

Can now get and set a record field value using an application: (rec ’fname) gets the value
of the field named fname in record rec. (set! (rec ’fname) value) sets the value of the field
named fname in rec.

A partial re-write of the implementation of input ports and the Scheme reader, to fix
some problems, add some features, and improve performance.

Compiled .class files are now installed in $(datadir)/java, rather than $(prefix)/java.
By default, that means they are installed in /usr/local/shared/java, rather than
/usr/local/java.

There is now internal infrastructure to support inlining of procedures, and general
procedure-specific optimized code generation.

There is better testing that the right number of arguments are passed to a procedure, and
better error messages when you don’t. If the procedure is inlined, you get a compile-time
error message.

The functions created by primitive-constructor, primitive-virtual-method, primitive-
static-method, and primitive-interface-method are now first-class procedure values. They
use the Java reflection facily, except when the compiler can directly inline them (in which
case it generates the same efficient bytecodes as before).

New functions instance? (tests type membership) and as (converts).

The kawa.html is now split into several files, one per chapter. The table of contents is
now kawa toc.html.

The syntactic form try-catch provides low-level exception handler support. It is basically
the same as Java’s try/catch form, but in Scheme syntax. The new procedure primitive-
throw throws an exception object.

The higher-level catch and throw procedures implement exception handling where the
handler is specified with a "key" (a symbol). These functions were taken from Guile.

The error function has been generalized to take multiple arguments (as in Guile). It is
now a wrapper around (throw ’misc-error ...).

There is a new "friendly" GUI access to the Kawa command-line. If you invoke kawa.repl
with the -w flag, a new interaction window is created. This is uses the AWT TextArea class.
You can create multiple "consoles". They can either share top-level enevironments, or have
separate environments. This window interface has some nice features, including editing.
Added a scheme-window procedure, which is another way to create a window.

Changes since Kawa 1.5

The default prompt now shows continuations lines differently.

The copy-file function was added.

The variable port-char-encoding controls how external files are converted to/from inter-
nal Unicode characters. It also controls whether CR and CR-LF are converted to LF.

Chapter 1: News - Recent Changes 40

The reader by default no longer down-cases letters in symbols. A new variable symbol-
read-case control how case is handled: ’P (the default) preserves case; ’U upper-cases letters;
’D or -" down-cases letters; and ’I inverts case.

The gnu.bytecode package now supports exception handlers. The new syntactic form
try-finally supports a cleanup hook that is run after some other code finishes (normally or
abnormally). Try-finally is used to implement dynamic-wind and fluid-let.

The environment handling has been improved to support thread-specific environments,
a thread-safe fluid-let, and multiple top-levels. (The latter still needs a bit of work.)

The gnu.bytecode package has been extensively changed. There are new classes repre-
senting the various standard Attributes, and data associated with an attribute is now stored
there.

Added new procedures environment-bound? and scheme-implementation-version.

Scheme symbols are represented as java.lang.String objects. Interned symbols are in-
terned Strings; uninterned symbols are uninterned Strings. Note that Java strings literals
are automatically interned in JDK 1.1. This change makes symbols slightly more efficient,
and moves Kawa closer to Java.

Ports now use the JDK 1.1 character-based Reader and Writer classes, rather than the
byte-oriented InputStream and OutputStream classes. This supports different reading and
writing different character encodings [in theory - there is no support yet for other than Ascii
or binary files].

An interactive input port now has a prompt function associated with it. It is settable
with set-input-port-prompter!. The prompt function takes one argument (the input port),
and returns a prompt string. There are also user functions for inquiring about the current
line and column number of an input port.

The R4RS procedures transcript-on and transcript-off are implemented.

Standard types can be referred to using syntax similar to RScheme. For example Scheme
strings now have the type <string> which is preferred to "kawa.lang.FString" (which in
addition to being longer, is also more suspectible to changes in internal implementation).
Though these types are first-class values, this is so far mainly useful for invoking primitive
methods.

Changes from Kawa 1.4 to 1.5

Execute a ~/.kawarc.scm file on startup, if it exists.

Add a number of functions for testing, renaming, and deleting files. These are meant to
be compatible with scsh, Guile, and MIT Scheme: file-exists?, file-directory?, file-readable?,
file-writable?, delete-file, rename-file, create-diretory, and the variable home-directory.

Fixed some small bugs, mainly in gnu.math and in load.

Generalize apply to accept an arbitrary Sequence, or a primitive Java array.

Changes from Kawa 1.2 to 1.4

The codegen package has been renamed gnu.bytecode. The kawa.math package has been
moved to gnu.math. Both packages have new license: No restrictions if you use an unmod-
ified release, but GNU General Public License. Let me know if that causes problems. The
rest of Kawa still has the old license.

Chapter 1: News - Recent Changes 41

Implement defmacro and gentemp.

Implement make-record-type and related functions to create and use new record types.
A record type is implemented as a java.lang.Class object, and this feature depends on the
new reflection features of JDK 1.1.

Implement keywords, and extend lambda parameter lists to support #!optional #!rest
and #!keyword parameters (following DSSSL).

Added more primitives to call arbitrary interface and constructor methods.

Changes from Kawa 1.0 to 1.2

Added primitives to make it easy to call arbitrary Java methods from Scheme.

Exact rational arithetic is now fully implemented. All integer functions now believed
to correctly handle bignums. Logical operations on exact integers have been implemented.
These include all the logical functions from Guile.

Complex numbers are implemented (except {,a}{sin,cos,tan}). Quantities (with units)
are implemented (as in DSSSL).

Eval is available, as specified for R5RS. Also implemented are scheme-report-
environment, null-environment, and interaction-environment.

Internal define is implemented.

Rough support for multiple threads is implemented.

Moved kawa class to kawa/repl. Merged in kawac (compiler) functionality. A ’kawa’
shell-script is now created. This is now the preferred interface to both the interactive
evaluator and the compiler (on Unix-like systems).

Now builds "without a snag" using Cafe 1.51 under Win95. (Symantec JIT (ver 2.00b19)
requires disabling JIT - JAVA_COMPCMD=disable.) Compiles under JDK 1.1 beta (with some
warnings).

A testsuite (and testing framework) was added.

Documentation moved to doc directory. There is now an internals overview, in doc/kawa-
tour.ps.

Changes since 0.4

The numeric classes have been re-written. There is partial support for bignums (infinite-
precision integers), but divide (for example) has not been implemented yet. The repre-
sentation of bignums uses 2’s complement, where the "big digits" are laid out so as to be
compatible with the mpn functions of the GNU Multi-Precision library (gmp). (The intent
is that a future version of Kawa will support an option to use gmp native functions for
speed.)

The kawa application takes a number of useful command-line switches.

Basically all of R4RS has been implemented. All the essential forms and functions
are implemented. Almost all of the optional forms are implemented. The exceptions are
transcript-on, transcript-off, and the functions for complex numbers, and fractions (exact
non-integer rationals).

Loading a source file with load now wraps the entire file in a lambda (named "at-
FileLevel"). This is for better error reporting, and consistency with compile-file.

Chapter 2: Features 42

Changes since 0.3

The hygienic macros described in the appendix to R4RS are now impemented (but only the
define-syntax form). They are used to implement the standard "do" form.

The R5RS multiple value functions values and call-with-values are implemented.

Macros (and primitive syntax) can now be autoloaded as well as procedures.

New kawac application compiles to one or more .class files.

Compile time errors include line numbers. Uncaught exceptions cause a stack trace
that includes .scm line numbers. This makes it more practical to debug Kawa with a Java
debugger.

Quasiquotation is implemented.

Various minor bug fixes and optimizations.

Changes since 0.2

The biggest single change is that Scheme procedures are now compiled to Java bytecodes.
This is mainly for efficiency, but it also allows us to do tail-recursion-elimination in some
cases.

The "codegen" library is included. This is a toolkit that handles most of the details
needed to generate Java bytecode (.class) files.

The internal structure of Kawa has been extensively re-written, especially how syntax
transforms, eval, and apply are done, largely due to the needs for compilation.

Almost all the R4RS procedures are now implemented, except that there are still large
gaps in Section 6.5 "Numbers".

2 Features

Runs on the Java platform, with no native code needed.

Extends the Scheme language (http: / / en . wikipedia . org / wiki /

Scheme_%28programming_language%29), following the R7RS (http: / / r7rs .

org/) specification from 2013. Scheme has many implementations, and is much used in
research and teaching.

Programs run fast (http://per.bothner.com/blog/2010/Kawa-in-shootout/) -
roughly as fast as Java programs, and much faster than other “scripting languages”. This is
due to a sophisticated compiler, compile-time transformations, type inference, and optional
type declarations.

Full, convenient, and efficient access to the huge set of Java libraries means you can
access objects, methods, fields, and classes without run-time overhead.

Start-up times are fast. You don’t have to wait for a lot of initialization. Even if you
start with source code, the parser and compiler are fast.

Section 6.2 [Scripts], page 95, are simple Kawa source files that can run as an application
or command. These are simple to write, start, and run efficiently, since they’re automatically
compiled before execution.

Alternatively, you can embed Kawa as a Section 19.16 [Evaluating Scheme expressions
from Java], page 334.

http://en.wikipedia.org/wiki/Scheme_%28programming_language%29
http://en.wikipedia.org/wiki/Scheme_%28programming_language%29
http://r7rs.org/
http://r7rs.org/
http://per.bothner.com/blog/2010/Kawa-in-shootout/

Chapter 2: Features 43

Deployment is easy and flexible. You just need the Kawa jar file.

Section 7.10 [Macros], page 120, and Section 7.11 [Named quasi-literals], page 133, make
it easy to extend the syntax and implement Domain-Specific Languages.

Kawa provides the usual Section 6.3 [REPL Console], page 97, as well as batch modes.

Kawa has builtin Section 17.7 [Pretty-printing], page 292, support, and fancy formatting.

Kawa supports class-definition facilities, and separately-compiled modules.

You can Section 19.10 [Allocating objects], page 324, with a compact “builder” syntax.
It works out-of-the-box (with no run-time overhead) on many classes and APIs, but can be
customized if need be.

A library for functional Section 21.1 [Composable pictures], page 356, lets you create
“picture” objects, display them, transform them, combine them, convert to SVG or images,
and more. This can be “printed” directly in the Kawa console (either the DomTerm console
or the Swing one).

Section 21.2 [Building JavaFX applications], page 368, is simpler.

You can Section 21.3 [Building for Android], page 369, and there is special handling to
make Section 21.4 [Android view construction], page 372, easier.

Flexible shell-like functionality, including [process literals], page 376.

Section 20.5 [Server-side scripts], page 342, are easy to write and install with Section 20.6
[Self-configuring page scripts], page 343, optionally using Section 20.7 [Servlets], page 346,
and Section 20.4 [XML literals], page 339.

Section 14.8 [Arrays], page 247, and sequences have a lot of flexibility: Arrays can be
multi-dimensional; you can use an array as an index (which generalizes slices and permu-
tations); you can define a lazy array using a function that maps indexes to values; you can
re-map the indexes to yield a transformed array.

Many useful features for mathematics and numerics:

• The full “numeric tower” includes infinite-precision rational numbers and complex num-
bers.

• Compile-time optimization of arithmetic with the use of type declarations and inference.

• A Section 12.5 [Quantities], page 195, is a real number with a unit, such as 3cm.

• Section 12.4 [Quaternions], page 187, are a 4-dimensional generalization of complex
numbers. Unsigned primitive integer types (ubyte, ushort, uint, ulong) are imple-
mented efficiently without object allocation.

A Section 8.6 [Lazy evaluation], page 144, wraps an expression which is evaluated only
when it is needed.

Kawa provides a Chapter 23 [Framework], page 387, for implementing other program-
ming languages, and comes with incomplete support for CommonLisp, Emacs Lisp, and
EcmaScript, and XQuery (http://www.gnu.org/software/qexo/).

http://www.gnu.org/software/qexo/

Chapter 2: Features 44

2.1 Implemented SRFIs

Kawa implements the following semi-standard SRFIs (Scheme Request for Implementation
(http://srfi.schemers.org/)):

• SRFI 0 (http://srfi.schemers.org/srfi-0/srfi-0.html): Feature-based condi-
tional expansion construct, using cond-expand - see Section 7.9 [Syntax and conditional
compilation], page 118.

• SRFI 1 (http: / / srfi . schemers . org / srfi-1 / srfi-1 . html): List Library, if
(require 'list-lib) - see [SRFI-1], page 236.

• SRFI 2 (http://srfi.schemers.org/srfi-2/srfi-2.html): AND-LET*: an AND
with local bindings, a guarded LET* special form.

• SRFI 4 (http://srfi.schemers.org/srfi-4/srfi-4.html): Homogeneous numeric
vector datatypes - see Section 14.4 [Uniform vectors], page 239.

• SRFI 6 (http://srfi.schemers.org/srfi-6/srfi-6.html): Basic String Ports - see
Section 17.5 [Ports], page 277.

• SRFI 8 (http://srfi.schemers.org/srfi-8/srfi-8.html): receive: Binding to
multiple values - see Section 9.2 [Multiple values], page 158.

• SRFI 9 (http://srfi.schemers.org/srfi-9/srfi-9.html): Defining Record Types,
using define-record-type - see Section 19.7 [Record types], page 317.

• SRFI 10 (http://srfi.schemers.org/srfi-10/srfi-10.html): #, external form for
special named types. This is deprecated for various reasons, including that it conflicts
with syntax-case unsyntax. Better to use srfi-108 Section 7.11 [Named quasi-literals],
page 133.

• SRFI 11 (http://srfi.schemers.org/srfi-11/srfi-11.html): Syntax for receiving
multiple values, using let-values and let*-value - see Section 9.2 [Multiple values],
page 158.

• SRFI 13 (http://srfi.schemers.org/srfi-13/srfi-13.html): String Library.
Needs some polishing.

• SRFI 14 (http://srfi.schemers.org/srfi-14/srfi-14.html): Character-set Li-
brary - see Section 13.2 [Character sets], page 204.

• SRFI 16 (http://srfi.schemers.org/srfi-16/srfi-16.html): Syntax for proce-
dures of variable arity, using case-lambda (http://srfi.schemers.org/srfi-16/
srfi-16.html).

• SRFI 17 (http://srfi.schemers.org/srfi-17/srfi-17.html): Generalized set! -
see Section 15.1 [Locations], page 266.

• SRFI 23 (http://srfi.schemers.org/srfi-23/srfi-23.html): Error reporting
mechanism, using error - see Section 8.9 [Exceptions], page 151.

• SRFI 25 (http://srfi.schemers.org/srfi-25/srfi-25.html): Multi-dimensional
Array Primitives - see Section 14.8 [Arrays], page 247.

• SRFI 26 (http://srfi.schemers.org/srfi-26/srfi-26.html): Notation for Spe-
cializing Parameters without Currying - see Chapter 11 [Procedures], page 166.

• SRFI 28 (http://srfi.schemers.org/srfi-28/srfi-28.html): Basic Format
Strings - see Section 17.6 [Format], page 287.

http://srfi.schemers.org/
http://srfi.schemers.org/
http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-2/srfi-2.html
http://srfi.schemers.org/srfi-4/srfi-4.html
http://srfi.schemers.org/srfi-6/srfi-6.html
http://srfi.schemers.org/srfi-8/srfi-8.html
http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-10/srfi-10.html
http://srfi.schemers.org/srfi-11/srfi-11.html
http://srfi.schemers.org/srfi-13/srfi-13.html
http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-25/srfi-25.html
http://srfi.schemers.org/srfi-26/srfi-26.html
http://srfi.schemers.org/srfi-28/srfi-28.html

Chapter 2: Features 45

• SRFI 30 (http://srfi.schemers.org/srfi-30/srfi-30.html): Nested Multi-line
Comments.

• SRFI 35 (http://srfi.schemers.org/srfi-35/srfi-35.html): Conditions.

• SRFI 37 (http://srfi.schemers.org/srfi-37/srfi-37.html): args-fold - a
program argument processor (http://srfi.schemers.org/srfi-37/srfi-37.html),
if (require 'args-fold).

• SRFI 38 (http://srfi.schemers.org/srfi-38/srfi-38.html): External Represen-
tation for Data With Shared Structure. The read-with-shared-structure is missing,
but subsumed by read.

• SRFI 39 (http://srfi.schemers.org/srfi-39/srfi-39.html): See Section 15.2
[Parameter objects], page 268.

• SRFI 41 (http://srfi.schemers.org/srfi-41/srfi-41.html): Streams - see
Section 14.7 [Streams], page 247.

• SRFI 45 (http://srfi.schemers.org/srfi-45/srfi-45.html): Primitives for
Expressing Iterative Lazy Algorithms - see Section 8.6 [Lazy evaluation], page 144.

• SRFI 60 (http://srfi.schemers.org/srfi-60/srfi-60.html): Integers as Bits. -
see Section 12.6 [Logical Number Operations], page 196.

• SRFI 62 (http://srfi.schemers.org/srfi-62/srfi-62.html): S-expression com-
ments.

• SRFI 64 (http://srfi.schemers.org/srfi-64/srfi-64.html): A Scheme API for
test suites.

• SRFI 69 (http://srfi.schemers.org/srfi-69/srfi-69.html): Basic hash tables -
see Section 14.9 [Hash tables], page 258.

• SRFI 87 (http://srfi.schemers.org/srfi-87/srfi-87.html): => in case clauses.

• SRFI 88 (http://srfi.schemers.org/srfi-88/srfi-88.html): Keyword objects -
see Section 10.3 [Keywords], page 165.

• SRFI 95 (http://srfi.schemers.org/srfi-95/srfi-95.html): Sorting and Merg-
ing.

• SRFI 97 (http://srfi.schemers.org/srfi-97/srfi-97.html): Names for SRFI
Libraries.

• SRFI 98 (http://srfi.schemers.org/srfi-98/srfi-98.html): An interface to
access environment variables

• SRFI 101 (http://srfi.schemers.org/srfi-101/srfi-101.html): Purely Func-
tional Random-Access Pairs and Lists - see [SRFI-101], page 236.

• SRFI 107 (http://srfi.schemers.org/srfi-107/): XML reader syntax - see
Section 20.4 [XML literals], page 339.

• SRFI 108 (http://srfi.schemers.org/srfi-108/): Named quasi-literal constructors
- see Section 7.11 [Named quasi-literals], page 133.

• SRFI-109 (http://srfi.schemers.org/srfi-109/srfi-109.html): Extended string
quasi-literals - see [string quasi-literals], page 224.

• SRFI-118 (http: / / srfi . schemers . org / srfi-118 / srfi-118 . html): Simple
adjustable-size strings (string-append! and string-replace!).

http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-37/srfi-37.html
http://srfi.schemers.org/srfi-37/srfi-37.html
http://srfi.schemers.org/srfi-37/srfi-37.html
http://srfi.schemers.org/srfi-38/srfi-38.html
http://srfi.schemers.org/srfi-39/srfi-39.html
http://srfi.schemers.org/srfi-41/srfi-41.html
http://srfi.schemers.org/srfi-45/srfi-45.html
http://srfi.schemers.org/srfi-60/srfi-60.html
http://srfi.schemers.org/srfi-62/srfi-62.html
http://srfi.schemers.org/srfi-64/srfi-64.html
http://srfi.schemers.org/srfi-69/srfi-69.html
http://srfi.schemers.org/srfi-87/srfi-87.html
http://srfi.schemers.org/srfi-88/srfi-88.html
http://srfi.schemers.org/srfi-95/srfi-95.html
http://srfi.schemers.org/srfi-97/srfi-97.html
http://srfi.schemers.org/srfi-98/srfi-98.html
http://srfi.schemers.org/srfi-101/srfi-101.html
http://srfi.schemers.org/srfi-107/
http://srfi.schemers.org/srfi-108/
http://srfi.schemers.org/srfi-109/srfi-109.html
http://srfi.schemers.org/srfi-118/srfi-118.html

Chapter 3: The Kawa Community 46

• SRFI-140 (http://srfi.schemers.org/srfi-140/srfi-140.html): Immutable
Strings.

• SRFI-163 (http://srfi.schemers.org/srfi-163/srfi-163.html): Enhanced array
literals.

• SRFI-164 (http: / / srfi . schemers . org / srfi-164 / srfi-164 . html): Enhanced
multi-dimensional Arrays

2.2 Compatibility with standards

Kawa implements all the required and optional features of R7RS, with the following excep-
tions.

The entire “numeric tower" is implemented. However, some transcendental functions
only work on reals. Integral functions do not necessarily work on inexact (floating-point)
integers. (The whole idea of “inexact integer" in R5RS seems rather pointless ...)

Also, call-with-current-continuation is only “upwards" (?). I.e. once a continua-
tion has been exited, it cannot be invoked. These restricted continuations can be used to
implement catch/throw (such as the examples in R4RS), but not co-routines or backtrack-
ing.

Kawa now does general tail-call elimination, but only if you use the flag --full-

tailcalls. (Currently, the eval function itself is not fully tail-recursive, in violation
of R5RS.) The --full-tailcalls flag is not on by default, partly because it is noticably
slower (though I have not measured how much), and partly I think it is more useful for
Kawa to be compatible with standard Java calling conventions and tools. Code compiled
with --full-tailcalls can call code compiled without it and vice versa.

Even without --full-tailcalls, if the compiler can prove that the procedure being
called is the current function, then the tail call will be replaced by a jump. This includes
must “obvious” cases of calls to the current function named using define or letrec, and
many cases of mutual tail-recursion (including state-machines using letrec).

By default, symbols are case sensitive.

Kawa implements most of the features of the expression language of DSSSL, the
Scheme-derived ISO-standard Document Style Semantics and Specification Language
for SGML. Of the core expression language, the only features missing are character
properties, external-procedure, the time-relationed procedures, and character name
escapes in string literals. From the full expression language, Kawa additionally is missing
format-number, format-number-list, and language objects. Quantities, keyword values,
and the expanded lambda form (with optional and keyword parameters) are supported.

3 The Kawa Community

3.1 Reporting bugs

To report a bug or a feature request use the Issue Tracker (https://gitlab.com/kashell/
Kawa/issues). This does require a GitLab (https://gitlab.com/) account; if this is a
problem you can use the Savannah bug tracker.

http://srfi.schemers.org/srfi-140/srfi-140.html
http://srfi.schemers.org/srfi-163/srfi-163.html
http://srfi.schemers.org/srfi-164/srfi-164.html
https://gitlab.com/kashell/Kawa/issues
https://gitlab.com/kashell/Kawa/issues
https://gitlab.com/

Chapter 3: The Kawa Community 47

Older Savannah bug tracker

The older bug tracker for Kawa on Savannah is still available, but we request you use the
GitLab Issue Tracker (https://gitlab.com/kashell/Kawa/issues) for new issues.

To report a bug or feature request for Kawa (including Qexo or JEmacs) through Sa-
vannah, use the bug-submission page (http://savannah.gnu.org/bugs/?func=additem&
group=kawa). You can browse and comment on existing bug reports using the Kawa Bugzilla
page (http://savannah.gnu.org/bugs/?group=kawa).

When a bug report is created or modified, mail is automatically sent to the
bug-kawa@gnu.org list. You can subscribe, unsubscribe, or browse the archives through
the bug-kawa web interface (http://mail.gnu.org/mailman/listinfo/bug-kawa).

3.2 General Kawa email and discussion

The general Kawa email list is kawa@sourceware.org. This mailing list is used for an-
nouncements, questions, patches, and general discussion relating to Kawa. If you wish
to subscribe, send a blank message request to kawa-subscribe@sourceware.org. To un-
subscribe, send a blank message to kawa-unsubscribe@sourceware.org. (If your mail is
forwarded and you’re not sure which email address you’re subscribed as, send mail to the
address following mailto: in the List-Unsubscribe line in the headers of the messages
you get from the list.)

You can browse the archive of past messages (http://sourceware.org/ml/kawa/).

There are separate mailing lists for Qexo (http://mail.gnu.org/mailman/listinfo/
qexo-general) and JEmacs (http://lists.sourceforge.net/mailman/listinfo/
jemacs-info).

3.3 Acknowledgements and thanks

The author and project leader of Kawa is Per Bothner (http://per.bothner.com/)
per@bothner.com.

Kawa is a re-write of Kawa 0.2, which was a Scheme interpreter written by R. Alexander
Milowski alex@milowski.com.

Thanks to Cygnus Solutions (now part of Red Hat) for sponsoring the initial development
of Kawa, and then transferring their ownership interest to Per.

Financial support

Ean Schuessler and Brainfood (http://www.brainfood.com/) provided financial support
and encouragement.

Thanks to Chris Dean, Dean Ferreyra, and others at Merced Systems (http://www.
mercedsystems.com/) for financial support and other contributions.

Google (http://google.com/) through their Summer of Code (http://code.google.
com/soc/) project sponsored Charles Turner during Summer 2011 and 2012, Andrea Bernar-
dini Summer 2014 and 2015, and Tom Bousso Summer 2017.

Thomas Kirk and AT&T provided financial support, and useful bug reports.

https://gitlab.com/kashell/Kawa/issues
http://savannah.gnu.org/bugs/?func=additem&group=kawa
http://savannah.gnu.org/bugs/?func=additem&group=kawa
http://savannah.gnu.org/bugs/?group=kawa
http://savannah.gnu.org/bugs/?group=kawa
mailto:bug-kawa@gnu.org
http://mail.gnu.org/mailman/listinfo/bug-kawa
mailto:kawa@sourceware.org
mailto:kawa-subscribe@sourceware.org
mailto:kawa-unsubscribe@sourceware.org
http://sourceware.org/ml/kawa/
http://mail.gnu.org/mailman/listinfo/qexo-general
http://mail.gnu.org/mailman/listinfo/qexo-general
http://lists.sourceforge.net/mailman/listinfo/jemacs-info
http://lists.sourceforge.net/mailman/listinfo/jemacs-info
http://per.bothner.com/
mailto:per@bothner.com
mailto:alex@milowski.com
http://www.brainfood.com/
http://www.mercedsystems.com/
http://www.mercedsystems.com/
http://google.com/
http://code.google.com/soc/
http://code.google.com/soc/

Chapter 3: The Kawa Community 48

Various contributions

Jakub Jankiewicz (http://jcubic.pl/) contributed the Kawa logo.

Helmut Eller provided SLIME support, syntaxutils.scm, and many bug reports.

Daniel Bonniot for multiple small improvements to gnu.bytecode and gnu.expr.

Jamison Hope for multiple contributions, including quaternion support, the SRFI-14
implementation, Ant improvements, and Google Summer of Code mentoring.

Jim White for Ant support and other improvements.

Bruce R. Lewis implemented Section 20.11.3 [KRL], page 355, and made other contri-
butions.

Geoff Berry: Handle Exceptions attribute. Other improvements.

Tom Bousso re-implemented gnu.bytecode to make use of ASM (asm.ow2.org); plus
other changes,

Shad Gregory improved JEmacs.

Al Petrofsky improved gnu.math printing and added some IntNum methods.

Marco Vezzoli: SRFI-1 tailoring for Kawa.

Albert Ting - old GuiConsole code.

Christian Surlykke ported JEmacs to use SWT.

Geoff Berry for various gnu.bytecode improvements.

Ivelin Ivanov and Tom Reilly for servlet support.

Anthony Green for Fedora packaging.

Charles Turner for pretty-printer improvements, improvements in the Common Lips
support, and other changes.

Andrea Bernardini optimized the implementation of case, and implemented full contin-
uation support (in experimental callcc branch.

Julien Rousseau and Marius Kjeldahl contributed to Android support.

Peter Lane for many documentation improvements.

William D Clinger for test-cases.

Small fixes and improvements

Patrick Barta; Joseph Bowbeer; Dominique Boucher; Alexander Bunkenburg; Harold Carr;
Emmanuel Castro; Álvaro Castro-Castilla; Sudarshan S Chawathe; Heather Downs; Fran-
cisco Vides Fernández; Nic Ferrier; Oliver Flasch; Weiqi Gao; Luke Gorrie; Mario Domenech
Goulart; Zvi Har’E; Jeff Haynes; Ethan Herdrick; Joerg-Cyril Hoehle; Elliott Hughes; Mike
Kenne; Brian Jones; Gerardo Jorvilleur; Simon Josefsson (JEmacs menu); Shiro Kawai;
Thomas Kirk; Jay Krell; Timo Myyrä; Edouard Parmelan; Walter C. Pelissero; Rafael Je-
sus Alcantara Perez; Lynn Quam; Marcus Otto; Terje Pedersen (some XQuery functions);
Matthias Radestock; Jim Rees; Ola Rinta-Koski; Andreas Schlapbach; Robert D. Skeels;
Benny Tsai; Vladimir Tsichevski; Matthieu Vachon; Vasantha Ganesh; Phil Walker; Knut
Wannheden; Chris Wegrzyn; Kay Zheng; Michael Zucchi.

http://jcubic.pl/
asm.ow2.org

Chapter 3: The Kawa Community 49

Bug reports and test cases

Seth Alves; Khairul Azhar; Bob Bane; Hans Boehm; Adrián Medra~no Calvo; Brian D.
Carlstrom; Luis Casillas; Sudarshan S Chawathe; Ken Dickey (format tests); Helge Di-
etert; Allan Erskine; Marc Feeley (polytype.scm); Margus Freudenthal; Weiqi Gao; Andrea
Girotto; Norman Hard; Gerardo Horvilleur; Yaroslav Kavenchuk; Felix S Klock II; Fran-
cois Leygues; Mirko Luedde; Leonardo Valeri Manera; Kjetil S. Matheussen; Alex Mitchell;
Alex Moiseenko; Marc Nieper-Wißkirchen; Okumura Yuki; Edouard Parmelan; Walter C.
Pelissero; Stephen L. Peters; François Pinard; Bill Robinson; Dan Stanger (Eaton Vance);
Hallvard Traetteberg; Taylor Venable; Alessandro Vernet; Tony White John Whittaker;
Robert Yokota.

Code ported from other packages

Kawa includes Free Software originally written for other purposes, but incorporated into
Kawa, perhaps with some porting. A partial list:

Dorai Sitaram wrote pregexp.

The rationalize algorithm is by Alan Bawden and Marc Feeley.

Lars T Hansen wrote SRFI-11 (let-values, let*-values macros).

Olin Shivers wrote the SRFI-1 list-processing library, and the SRFI-13 reference impe-
mentation.

John David Stone wrote SRFI-8 (receive macro)

Jussi Piitulainen wrote the SRFI-25 specification and tests.

Richard Kelsey and Michael Sperber wrote SRFI-34.

Anthony Carrico wrote the SRFI-37 reference implementation.

Panu Kalliokoski wrote the SRFI-69 reference implementation.

Donovan Kolbly wrote the srfi-64 “meta” testsuite. Alex Shinn improved SRFI-64 porta-
bility.

Philip L. Bewig wrote the SRFI-41 (streams) specification and reference implementation.

Simon Tatham wrote listsort.

Aubrey Jaffer wrote much of SLIB, some of which has been imported into gnu.kawa.slib.
He also wrote some tests we’re using.

3.4 Technical Support for Kawa

If you have a project that depends on Kawa or one of its component packages, you might
do well to get paid priority support from Kawa’s author.

The base price is $2400 for one year. This entitles you to basic support by email or phone.
Per per@bothner.com will answer techical questions about Kawa or its implementation,
investigate bug reports, and suggest work-arounds. I may (at my discretion) provide fixes
and enhancements (patches) for simple problems. Response for support requests received
during the day (California time) will normally be within a few hours.

All support requests must come through a single designated contact person. If Kawa is
important to your business, you probably want at least two contact people, doubling the
price.

mailto:per@bothner.com

Chapter 3: The Kawa Community 50

If the support contract is cancelled (by either party), remaining time will be prorated
and refunded.

Per is also available for development projects.

3.5 Projects using Kawa

MIT App Inventor (http://appinventor.mit.edu/) for Android (formerly Google App
Inventor) uses Kawa to translate its visual blocks language.

The HypeDyn (http://www.narrativeandplay.org/hypedyn/) hypertext fiction au-
thoring tool is written in Kawa. HypeDyn (pronounced "hyped in") is a procedural hy-
pertext fiction authoring tool for people who want to create text-based interactive stories
that adapt to reader choice. HypeDyn is free to download and open source, and runs on
Linux, MacOS and Windows. This is a research project carried out at the Department of
Communications and New Media, National University of Singapore.

Nü Echo (http://www.nuecho.com) develops high-performance speech enabled applica-
tions. Nü Echo uses Kawa for the development of innovative speech application development
tools, like a complete grammar IDE (http://www.nuecho.com/en/services/grammar.
shtml).

Merced Systems, Inc. (http://www.mercedsystems.com/) uses Kawa extensively in
their contact center performance management product Merced Peformance Suite. Kawa
Scheme is used for all development and has allowed Merced to realize the large productivity
gains that come with using Scheme while still maintaining tight integration with a large
number of Java libraries.

JEmacs is included in the Kawa distribution. It is a project to re-implement Emacs,
allowing a mix of Java, Scheme, and Emacs Lisp. It has its own home-page (http://
jemacs.sourceforge.net/).

BRL (“the Beautiful Report Language") is a database-oriented language to embed in
HTML and other markup. BRL (http://brl.sourceforge.net/) allows you to embed
Scheme in an HTML file on a web server.

The SchemeWay Project (http://schemeway.sourceforge.net) is a set of Eclipse
(http://www.eclipse.org) plug-ins for professional Scheme programming. The first plugin
released, SchemeScript, is a fully-featured Scheme editor customizable in Scheme. It embeds
the Kawa Scheme system and has many features that ease Kawa Scheme programming (like
code completion on variable names, class and method names, namespaces, etc).

The Health Media Research Laboratory, part of the Comprehensive Cancer Center at the
University of Michigan, is using Kawa as an integral part of its core tailoring technologies.
Java programs using Kawa libraries are used to administer customized web-based surveys,
generate tailored feedback, validate data, and "characterize," or transform, data. Kawa
code is embedded directly in XML-formatted surveys and data dictionaries. Performance
and ease of implementation has far exceeded expectations. For more information contact
Paul R. Potts, Technical Director, Health Media Research Lab, <potts@umich.edu>.

Mike Dillon (mdillon@gjt.org) did the preliminary work of creating a Kawa plugin
for jEdit. It is called SchemeShell and provides a REPL inside of the jEdit console for
executing expressions in Kawa (much as the BeanShell plugin does with the BeanShell
scripting language). It is currently available only via CVS from:

http://appinventor.mit.edu/
http://www.narrativeandplay.org/hypedyn/
http://www.nuecho.com
http://www.nuecho.com/en/services/grammar.shtml
http://www.nuecho.com/en/services/grammar.shtml
http://www.mercedsystems.com/
http://jemacs.sourceforge.net/
http://jemacs.sourceforge.net/
http://brl.sourceforge.net/
http://schemeway.sourceforge.net
http://www.eclipse.org
http://www.eclipse.org

Chapter 3: The Kawa Community 51

CVSROOT=:pserver:anonymous@cvs.jedit.sourceforge.net:/cvsroot/jedit

MODULE=plugins/SchemeShell

STMicroelectronics (marco.vezzoli@st.com) uses Kawa in a prototypal intranet 3tier
information retrieval system as a communication protocol between server and clients, and
to do server agents programming.

3.6 Ideas and tasks for contributing to Kawa

Kawa (like other Free Software projects) has no lack of tasks and projects to work on. Here
are some ideas.

The ones marked (GSoC) are probably most suitable for a Google Summer of Code
project, in being a reasonable size, self-contained, and not depending on other tasks.

3.6.1 Recusively initialized data structures

(GSoC)

Kawa has convenient syntax to Section 19.10 [Allocating objects], page 324, but it gets
messier it you want to initialize multiple objects that reference each other. Likewise for a
single object “tree” which contains links to the root. In this example, we will looks at two
vectors, but the feature is more useful for tree structures. Assume:

(define-constant list1 [1 2 list2])

(define-constant list2 ['a 'b list1])

The compiler translates this to:

(define-constant list1

(let ((t (object[] length: 3))) ;; allocate native Java array

(set! (t 0) 1)

(set! (t 1) 2)

(set! (t 2) list2)

(FVector:makeConstant t)))

(define-constant list2

(let ((t (object[] length: 3))) ;; allocate native Java array

(set! (t 0) 'a)

(set! (t 1) 'b)

(set! (t 2) list1)

(FVector:makeConstant t)))

The problem is that list2 has not been created when we evaluate the initializing ex-
pression for list.

We can solve the problem by re-writing:

(define-private tmp1 (object[] length: 3))

(define-constant list1 (FVector:makeConstant tmp1)

(define-private tmp2 (object[] length: 3))

(define-constant list2 (FVector:makeConstant tmp2)

(set! (tmp1 0) 1)

(set! (tmp1 1) 2)

(set! (tmp1 2) list2)

(set! (tmp2 0) 1)

Chapter 3: The Kawa Community 52

(set! (tmp2 1) 2)

(set! (tmp2 2) list1)

The complication is that the code for re-writing vector and object constructors is spread
out (depending on the result type), and not where we deal with initializing the variables.
One solution is to introduce an inlineable helper function $build$ defined as:

(define ($build$ raw-value create init)

(let ((result (create raw-value))

(init raw-value result)

result))

Then we can re-write the above code to:

(define-constant list1

($build$

(object[] length: 3)

(lambda (raw) (FVector:makeConstant raw))

(lambda (raw result)

($init-raw-array$ raw 1 2 list2))))

(define-constant list2

($build$

(object[] length: 3)

(lambda (raw) (FVector:makeConstant raw))

(lambda (raw result)

($init-raw-array$ raw 'a 'b list1))))

Note that the call to $build$, as well as the generated lambda expressions, are all easily
inlineable.

Now assume if at the top-level body if there is a sequence of define-constant definitions
initialized with calls to $build$. Now it is relatively easy to move all the init calls after all
alloc and create expressions. The $init-raw-array$ calls are expanded after the code
has been re-ordered.

The project includes both implementing the above framework, as well as updating type-
specific (and default) object creation to use the framework. It would also be good to have
compiler warnings if accessing an uninitialized object.

3.6.2 Enhance texinfo-js documentation browser for Kawa
documentation

(GSoC)

3.6.3 Run interactive process in separate Java Virtual Machine:

(GSoC)

When developing and testing it is useful for the REPL to support hot-swapping (re-
placing functions on-the-fly) and debugging. The main goal being able to smoothly reload
changed modules (files or functions), and have other modules not break. Debugging (such
as setting breakpoints) would not be a priority for this project, but could be a follow-on
project. Skills: Should be experienced with Java, and interested in learning about JVM
TI (https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/index.html)

https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/index.html

Chapter 3: The Kawa Community 53

and similar low-level parts of the platform. Difficulty: Challenging, but you can study how
Java-9’s new jshell (https://en.wikipedia.org/wiki/Jshell) uses the JVM TI.

3.6.4 Better dynamic reload

(GSoC - this is related to the previous item)

Kawa does a lot of optimizations and inlining. This conflicts with being able to “reload”
a module into an already-running interactive environment.

We could add an option to load a module in “reloadable” mode. Kawa already patches an
old function object (a ModuleMethod) so existing references to the function get automatically
updated. However, there are problems if the “signature” of the function changes - for
example if the return type (declared or inferred) becomes more general. In those cases the
best thing is to re-compile any code that depends on the modified function.

Reloading a module that defines a class is even trickier, at least if there are existing
instances that should work as the updated class. We can handle the special case where only
method bodies change: In reloadable mode, each method body is compiled to a separate
function, the actual body indirects to the function. We must also recognize when compiling
a new version of the same class, which requires a textual comparison between the old and
new versions, or a structural comparison between the old class and the new code.

When it comes to top-level variables, an issue is when to re-evaluate the initializing
expression. It is reasonable to do so if and only if the expression is modified, which again
requires a textual comparison.

3.6.5 Easier Access to Native Libraries using JNA/JNR

(GSoC)

The traditional way to access native (C/C++) functions is using JNI, but it’s very awk-
ward. JNA and JNR (https://github.com/jnr) are much easier to use (http://www.
oracle.com/technetwork/java/jvmls2013nutter-2013526.pdf). This project would
design and implement an easy-to-use Kawa wrapper for for JNR. You should study existing
JNR wrappers, such as that for JRuby. Difficulty: Medium. Need to study existing wrap-
pers and "foreign function interfaces" (in multiple languages) and design one suitable for
Kawa. Some Scheme (Kawa) experience would be helpful.

3.6.6 Types for units

(GSoC)

Kawa supports units (such as cm^2 for square centimeters) and Section 12.5 [Quantities],
page 195, (such as 4cm^2). We would like to integrate these into the type system, both for
performance and compile-time type checking.

For syntax we can use a pseudo-parameterized type quantity. For example:

(define a1 ::quantity[cm^2] 4cm^2)

(* 2.0 a1) ;; ⇒ 8cm^2

(+ 2.0 a1) ;; compile-time error

The run-time type of the variable a1 should be a primitive double, without object
allocation. Of course when a1 is converted to an object, we create a Quantity, not a
Double. We can build on Kawa’s existing framework for non-standard primitive types such

https://en.wikipedia.org/wiki/Jshell
https://github.com/jnr
http://www.oracle.com/technetwork/java/jvmls2013nutter-2013526.pdf
http://www.oracle.com/technetwork/java/jvmls2013nutter-2013526.pdf

Chapter 3: The Kawa Community 54

as character and ulong. Skills: Need good Java experience, and somewhat familiar with
the Java Virtual Machine. You will need to become comfortable reading javap output.
Difficulty: Modest.

3.6.7 Compiler should use class-file reading instead of reflection

The Kawa compiler currently uses reflection to determine properties (such as exported
function definitions) from referenced classes. It would be better to read class files. This
should not be too difficult, since the gnu.bytecode library abstracts over class information
read by reflection or class reading.

3.6.8 Mutually dependent Java and Scheme modules

(GSoC - maybe)

We’d like a command for compiling a list of Java and Scheme source files that may have
mutual dependencies. A good way to do this is to hook into javac, which is quite extensible
and pluggable.

One could do something like:

1. Read the “header" of each Kawa source file, to determine the name of the generated
main class.

2. Enter these class names into the javac tables as “uncompleted” classes.

3. Start compiling the Java files. When this requires the members of the Kawa classes,
switch to the Kawa files. From javac, treat these as pre-compiled .class files. I.e. we
treat the Kawa compiler as a black box that produces Symbols in the same way as
reading class files. At this point we should only need the initial “scan” phase on Kawa.

4. If necessary, finish compiling remaining Kawa files.

This approach may not immediately provide as robust mixed-language support as is ideal,
but it is more amenable to incremental improvement than a standalone stub-generator.

This project is good if you know or want to learn how javac works.

3.6.9 Use Java-7 MethodHandles and invokedynamic

Java 7 supports MethodHandles which are meant to provide better performance (ultimately)
for dynamic languages. See JSR 292 (http://jcp.org/en/jsr/detail?id=292) and the
Da Vinci Machine Project (http://openjdk.java.net/projects/mlvm/). Kawa makes
limited use of MethodHandles, and no use of invokedynamic. There is more to be done. For
example, we can start by optimizing arithmetic when the types are unknown at compile-
time. They could make implementing generic functions (multimethods) more efficient. At
some point we want to compile lambdas in the same way as Java 8 does. This can potentially
be more efficient than Kawa’s current mechanism.

Remi Forax’s vmboiler (https://github.com/forax/vmboiler) is a small library on
top of ASM that generates optimistically typed bytecodes. It could be useful for ideas.

3.6.10 Parameterized types

(GSoC)

Kawa has some limited support for parameterized types, but it’s not used much. Improve
type inferencing. Support definition of parameterized classes. Better use of parameterized

http://jcp.org/en/jsr/detail?id=292
http://openjdk.java.net/projects/mlvm/
https://github.com/forax/vmboiler

Chapter 3: The Kawa Community 55

types for sequence class. Support wildcards. (It might be better to have wild-carding be
associated with declarations, as in Scala or proposed for Java (http://openjdk.java.net/
jeps/300), rather than uses.) See also http://openjdk.java.net/jeps/8043488.

3.6.11 Optimized function types and values using MethodHandles

(GSoC)

Kawa doesn’t have true function types: Parameter and result types are only handled for
“known” functions. The general case with optional and keyword parameter is complicated,
but simple fixed-arity procedure types would be very useful.

The following syntax is suggested:

procedure[(T1 .. Tn) Tr]

T1 through T1 are types of the parameters, and Tr is the type of the result. For example:
procedure[(vector int) string]. We call this a typed-procedure type (in contrast to
plain procedure).

If a value has a typed-procedure type then its run-time representation is a just a
MethodHandle. If such a procedure is called, the generated bytecode is to just call its
invokeExact method. The argument expressions are converted (and type-checked) the
same way as if we were calling a statically-known procedure.

Note that passing an int argument of to procedure[(vector int) string] value does
not require allocating an object to “box” the int; we can pass a plain int as-is. Thus using
typed-procedure types can lead to major speed-up. For example the lib-test.scm should
become much faster.

Converting a known procedure to a typed-procedure type is usually just a matter of
creating a MethodHandle that references the method implementing the procedure. Some
glue code may be needed if the types aren’t identical, or if the procedure is a closure.

Converting a type-procedure value p to generic value (such as untyped procedure or
object) can be though of as wrapping it in a lambda:

((lambda (arg1::vector arg2::int)::string (p arg1 arg2))

Coercing a generic value or an untyped procedure to a typed-procedure would need to
generate a method whose signature matches the typed-procedure type, and in the body of
the method use a generic apply.

Coercing from one typed-procedure type to a different typed-procedure type is a combi-
nation of the above techniques (as if converting first to object and then to the target type),
though some optimizations are worth doing.

Adding varargs support can be done later.

We need a fall-back mechanism for platforms (such as Android) that don’t support
MethodHandles. The easiest is to just treat a typed-procedure type as plain procedure at
run-time, though we still want the compile-time type-checking,

3.6.12 Full continuations

Currently being worked on.

Add support for full continuations, which is the major feature missing for Kawa to qualify
as a “true Scheme”. One way to implement continuations is to add a add that converts the

http://openjdk.java.net/jeps/300
http://openjdk.java.net/jeps/300
http://openjdk.java.net/jeps/8043488

Chapter 3: The Kawa Community 56

abstract syntax tree to continuation-passing-style, and then expand the existing full-tail-call
support to manage a stack. There are other ways to solve the problem. This may benefit
from [task-faster-tailcalls], page 56.

3.6.13 Faster tailcalls

Make --full-tailcalls run faster. This may depend on (or incorporate) [task-TreeList-
optimization], page 56.

3.6.14 TreeList-optimization

The TreeList (http://www.gnu.org/software/kawa/api/gnu/lists/TreeList.html)
class is a data structure for “flattened” trees. It is used for XML-style nodes, for multiple
values, and for the full-tail-call API. The basic concept is fine, but it could do with some
re-thinking to make make random-access indexing fast. Also, support for updating is insuf-
ficient. (This needs someone into designing and hacking on low-level data-structures, along
with lots of profiling and testing.)

3.6.15 Asynchronous evaluation

C# recently added asynch and await keywords for asynchronous programming (http://
msdn.microsoft.com/en-us/vstudio/gg316360). Kawa’s recently improved support for
lazy programming seems like a good framework for equivalent functionality: Instead of an
asynch method that returns a Task<T>, the Kawa programmer would write a function that
returns a lazy[T]. This involves some design work, and modifying the compiler to rewrite
the function body as needed.

This is related to full continuations, as the re-writing is similar.

3.6.16 REPL console and other REPL improvement

Currently being worked on.

Improvements to the read-eval-print console. In addition to a traditional Swing console,
it would be useful to support using a web browser as a remote terminal, possibly using web-
sockets. (This allows “printing” HTML-expressions, which can be a useful way to learn
and experiment with web technologies.) See here (http://per.bothner.com/blog/2007/
ReplPane/) for an article on the existing Swing REPL, along with some to-do items. Being
able to hide and show different parts of the output might be nice. Being able to link from
error messages to source might be nice. Better handling of redefinitions is discussed here in
the context of JavaXF Script (http://per.bothner.com/blog/2009/REPL-for-JavaFX/
); this is a general REPL issue, mostly independent of the GUI for it.

An interesting possibility is to use the IPython (http://ipython.org/) framework.
There are existing ports for Scala: either IScala (https://github.com/mattpap/IScala)
or Scala Notebook (https://github.com/Bridgewater/scala-notebook).

3.6.17 XQuery-3.0 functionality

(GSoC, for some subset)

It would be nice to update the XQuery (Qexo) support to some subset of XQuery 3.0
(http://www.w3.org/TR/xquery-30/).

http://www.gnu.org/software/kawa/api/gnu/lists/TreeList.html
http://msdn.microsoft.com/en-us/vstudio/gg316360
http://msdn.microsoft.com/en-us/vstudio/gg316360
http://per.bothner.com/blog/2007/ReplPane/
http://per.bothner.com/blog/2007/ReplPane/
http://per.bothner.com/blog/2009/REPL-for-JavaFX/
http://per.bothner.com/blog/2009/REPL-for-JavaFX/
http://per.bothner.com/blog/2009/REPL-for-JavaFX/
http://ipython.org/
https://github.com/mattpap/IScala
https://github.com/Bridgewater/scala-notebook
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/

Chapter 3: The Kawa Community 57

3.6.18 XQuery-updates

It would be nice to support XQuery updates (http://www.w3.org/TR/xquery-update-10/
). This depends on [task-TreeList-optimization], page 56.

3.6.19 Common Lisp support

Kawa supports a small subset of the Common Lisp language, but it supports a much larger
subset of core Common Lisp concepts and data structures, some designed with Common
Lisp functionality in mind. Examples include packages, arrays, expanded function declara-
tions, type specifications, and format. A lot could be done to improve the Common Lisp
support with modest effort. Some Common Lisp features could also be useful for Scheme:
Documentation strings (or markup) as Java annotations, better MOP-like introspection,
and generic methods a la defmethod (i.e. with multiple definition statements, possibly in
separate files, as opposed to the current make-procedure) all come to mind. Being able
to run some existing Common Lisp code bases with at most modest changes should be
the goal. One such package to start with might be an existing test framework (http://
aperiodic.net/phil/archives/Geekery/notes-on-lisp-testing-frameworks.html),
perhaps FivaAM (http://common-lisp.net/project/bese/FiveAM.html). Full Common
Lisp compatibility is nice, but let’s walk before we can run.

3.6.20 JEmacs improvements

(GSoC, for some subset)

A lot of work is needed to make JEmacs (http://jemacs.sourceforge.net/) useful.
One could try to import a useful package and see what works and what fails. Or one may
look at basic editing primitives. Enhancements may be needed to core Emacs Lisp language
primitives (enhancing [task-common-lisp], page 57, may help), or to the display engine.

Emacs now supports lexical bindings (http://www.gnu.org/software/emacs/manual/
html_node/elisp/Lexical-Binding.html) - we should do the same.

3.6.21 Improved IDE integration

There is some Kawa support for Eclipse (Schemeway), and possibly other IDEs (NetBeans,
IntelliJ). But many improvements are desirable. [task-REPL-improvements], page 56, may
be a component of this.

3.6.21.1 Plugin for NetBeans IDE

Kawa-Scheme support for the NetBeans IDE would be useful. One could perhaps build on
the Clojure plugin.

3.6.21.2 Plugin for Eclipse IDE

Kawa-Scheme support for the Eclipse IDE would be useful. Probably makes sense to en-
hance SchemeWay (http://sourceforge.net/projects/schemeway/). It may also make
sense to build on the Dynamic Languages Toolkit (http://www.eclipse.org/dltk/),
possibly making use of Schemeide (http://schemeide.sourceforge.net/), though DLTk
seems more oriented towards interpreted non-JVM-based languages.

http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://aperiodic.net/phil/archives/Geekery/notes-on-lisp-testing-frameworks.html
http://aperiodic.net/phil/archives/Geekery/notes-on-lisp-testing-frameworks.html
http://common-lisp.net/project/bese/FiveAM.html
http://jemacs.sourceforge.net/
http://www.gnu.org/software/emacs/manual/html_node/elisp/Lexical-Binding.html
http://www.gnu.org/software/emacs/manual/html_node/elisp/Lexical-Binding.html
http://sourceforge.net/projects/schemeway/
http://www.eclipse.org/dltk/
http://schemeide.sourceforge.net/

Chapter 3: The Kawa Community 58

3.6.21.3 Improve Emacs integration

SLIME (http://en.wikipedia.org/wiki/SLIME) is an Emacs mode that provides IDE-
like functionality. It supports Kawa.

JDEE (http://jdee.sourceforge.net/) is a Java development environment, so might
have better hooks to the JVM and Java debugging architecture.

CEDET (http://cedet.sourceforge.net/) is a more general framework of develop-
ment tools.

3.6.22 Hop-style web programming

Hop (http://hop.inria.fr/) is an interesting design for integrating server-side and client-
side programming using a Scheme dialect. These ideas seem like they would port quite well
to Kawa.

3.6.23 String localization

(GSoC)

Support localization by extending the SRFI 109 (http: / / srfi . schemers . org /
srfi-109/srfi-109.html) syntax, in the manner of (and compatible with) GNU gettext
(http://www.gnu.org/software/gettext/). I.e. optionally specify a localization key (to
use as an index in the translation database); if there is no key specified, default to using
the literal parts of the string.

3.6.24 Data binding

Implement a “bind” mechanism similar to that of JavaFX Script (http://docs.oracle.
com/javafx/1.3/tutorials/core/dataBinding/). The idea is that when you initialize
a variable or field, instead of initializing it to a fixed value, you bind it to an expression
depending on other variables. We install “listeners” on those variables, so when those
variables change, we update the bound variable. This feature is useful in many applications,
but the initial focus could be GUI programming and perhaps web programming.

3.6.25 Decimal arithmetic and repeated decimals

(GSoC. Possibly a bit light for a full Summer project, but can be extended or combined with
other projects.)

Exact decimal arithmetic is a variation of exact rational arithmetic, but may be more
user-friendly. In particular, printing using decimals is generally nicer than fractions. It is
also sometimes useful to specify an explicit scale, so we can distinguish 0.2 from 0.20. We
can use the Java BigDecimal class, but run into problems with division - for example (/

1.0 3.0). We should implement a subclass of RatNum that generalizes BigDecimal to also
handle repeating decimals. We need a lexical syntax for repeating decimals. Possible ideas:
0._81_ or 0.#81. If a Scheme number literal is specified as exact and has either a decimal
point or an exponent (for example #e1.25), then it should read as an exact decimal, not a
fraction.

3.6.26 Optional strict typing along with an explicit dynamic type

(GSoC)

http://en.wikipedia.org/wiki/SLIME
http://jdee.sourceforge.net/
http://cedet.sourceforge.net/
http://hop.inria.fr/
http://srfi.schemers.org/srfi-109/srfi-109.html
http://srfi.schemers.org/srfi-109/srfi-109.html
http://www.gnu.org/software/gettext/
http://www.gnu.org/software/gettext/
http://docs.oracle.com/javafx/1.3/tutorials/core/dataBinding/
http://docs.oracle.com/javafx/1.3/tutorials/core/dataBinding/

Chapter 4: Getting and installing Kawa 59

Kawa currently implements “optimistic” typing: The compiler only complains if an
expression has no values in common with the target type - for example, if assigning a
string expression to an integer variable. It would be interesting to experiment with a
--strict-typing option (which would never be the default): Strict typing would only allow
“widening” conversions - i.e. that the expression type be a subtype of the target type. For
example it would complain if assigning a number to an integer unless you used an explicit
cast.

To make this easier to work with we’d make use of the [dynamic-type], page 297, sim-
ilar to what C# does (https://msdn.microsoft.com/en-us/library/dd264736.aspx):
Any expression can be converted to or from dynamic without the compiler complaining.
Similarly, if x is dynamic then x:name is allowed by the compiler regardless of name, with
all checking being deferred to run-time. If a variable is declared without a type, it should
default to dynamic. The dynamic type is represented in the VM as object but with an
annotation (like we do with character).

The type-checker might need some changes to better distinguish implicit conversions
from explicit casts.

4 Getting and installing Kawa

4.1 Getting Kawa

You can compile Kawa from the source distribution. Alternatively, you can install the
pre-compiled binary distribution.

You can get Kawa sources and binaries from the Kawa ftp site ftp://ftp.gnu.org/

pub/gnu/kawa/, or from a mirror site (http://www.gnu.org/order/ftp.html).

The current release of the Kawa source code is ftp://ftp.gnu.org/pub/gnu/kawa/

kawa-3.1.1.tar.gz. (To unpack .tar.gz files Windows users can use 7-Zip (http://www.
7-zip.org/), which is Free Software.)

The corresponding pre-compiled release is ftp: / / ftp . gnu . org / pub / gnu / kawa /

kawa-3.1.1.zip. The most recent snapshot is ftp://ftp.gnu.org/pub/gnu/kawa/

kawa-latest . zip. Instructions for using either are Section 4.3 [Binary distribution],
page 60.

4.1.1 Getting the development sources using Git

The Kawa sources are managed using a git (https://gitlab.com/kashell/Kawa) repos-
itory. If you want the very latest version grab a git client (https://git-scm.com/
downloads), and then check out the source using this command:

git clone https://gitlab.com/kashell/Kawa.git

After a checkout you will need to run:

./autogen.sh

before proceding with instructions for Section 4.4 [Source distribution], page 61.

Once you have it checked out, you can keep it up-to-date with git pull.

You can also browse the git archive (https://gitlab.com/kashell/Kawa/tree/
master) online.

https://msdn.microsoft.com/en-us/library/dd264736.aspx
ftp://ftp.gnu.org/pub/gnu/kawa/
ftp://ftp.gnu.org/pub/gnu/kawa/
http://www.gnu.org/order/ftp.html
ftp://ftp.gnu.org/pub/gnu/kawa/kawa-3.1.1.tar.gz
ftp://ftp.gnu.org/pub/gnu/kawa/kawa-3.1.1.tar.gz
http://www.7-zip.org/
http://www.7-zip.org/
ftp://ftp.gnu.org/pub/gnu/kawa/kawa-3.1.1.zip
ftp://ftp.gnu.org/pub/gnu/kawa/kawa-3.1.1.zip
ftp://ftp.gnu.org/pub/gnu/kawa/kawa-latest.zip
ftp://ftp.gnu.org/pub/gnu/kawa/kawa-latest.zip
https://gitlab.com/kashell/Kawa
https://git-scm.com/downloads
https://git-scm.com/downloads
https://gitlab.com/kashell/Kawa/tree/master
https://gitlab.com/kashell/Kawa/tree/master

Chapter 4: Getting and installing Kawa 60

4.2 Getting and running Java

Before installing Kawa, you will need a working Java system. The released Kawa jar file
assumes Java 8 or newer. You need to build Kawa from source if you have Java 5, Java 6,
or are targeting Android. (Older versions of Kawa have been reported to work with JDK
from 1.1, Kaffe, Symantec Cafe, J++, and GCJ, but these are no longer supported.)

The discussion below assumes you are using the Java Developer’s Kit (JDK) from Oracle.
You can download free copies of JDK 8 (http://www.oracle.com/technetwork/java/
javase/downloads/index.html) for various platforms.

The program java is the Java interpreter. The program javac is the Java compiler,
and is needed if you want to compile the source release yourself. Both programs must be in
your PATH. If you have the JDK in directory $JAVA_HOME, and you are using a Bourne-shell
compatible shell (/bin/sh, ksh, bash, and some others) you can set PATH thus:

PATH=$JAVA_HOME/bin:$PATH

export PATH

4.3 Installing and using the binary distribution

The binary release comes as a .zip archive that includes Kawa itself (as a .jar file
kawa-version.jar), some third-party helper libraries, kawa command scripts (for
GNU/Linux/Unix/MacOS or Windows), and documentation (basically this manual).

After downloading (see Section 4.1 [Getting Kawa], page 59), extract the files from the
.zip archive using a suitable unzip program, which will create a directory kawa-version,
with lib, bin, and doc sub-directories. In the following, we assume the environment variable
KAWA_HOME refers to this directory:

unzip ~/Downloads/kawa-version.zip

export KAWA_HOME=`pwd`/kawa-version

The binary release requires Java 8 or later. If you have an older Java implementa-
tion, or build for a mobile environment like Android, then you will need to get the source
distribution.

If you want to use Kawa as part of some other application, you just need the $KAWA_

HOME/lib/kawa.jar.

Running the kawa command

To run a Kawa script file or the Kawa read-eval-print-loop run the Kawa application. There
are various way to do so.

The recommended way is to execute the $KAWA_HOME/bin/kawa Bash shell script. This
should work on most Unix-like platforms that have Bash installed, including GNU/Linux,
BSD, MacOS, and Cygwin/MingW. (Please report if you have problems.)

The script assumes that either a suitable java program is in your PATH; or the JAVA

environment variable names a suitable java executable; or that JAVA_HOME is set so $JAVA_

HOME/bin/java is suitable.

If you want to put kawa in your search path you can of course do:

PATH=$KAWA_HOME/bin:$PATH

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 4: Getting and installing Kawa 61

Alternatively you can create a symbolic link in an already-searched directory. For ex-
ample:

cd /usr/local/bin

ln -s $KAWA_HOME/bin/kawa kawa

The bin/kawa.bat script works on Windows.

Both scripts add some helper libraries, including support for input editing.

It is also possible to run Kawa using java directly:

java -jar $KAWA_HOME/lib/kawa.jar

or:

CLASSPATH=$KAWA_HOME/lib/kawa.jar

export CLASSPATH

java kawa.repl

On Windows:

set classpath=%KAWA_HOME%\lib\kawa.jar

To run Kawa in a fresh window use the -w flag:

kawa -w

or

java kawa.repl -w

Reading the documentation

The file doc/kawa-manual.epub contains the Kawa documention packaged as an electronic
book, which is readable by most e-book readers. Plugins are also available for common
browsers, for example EPUBReader (http://www.epubread.com) for firefox.

Even easier is to invoke [browse-manual-option], page 89, (or on Windows:
bin\kawa.bat --browse-manual).

An epub is essentially a zip archive, which you can unzip:

cd $KAWA_HOME/doc

unzip kawa-manual.epub

Then you can use a plain browser with the URL file:$KAWA_HOME/doc/OEBPS/index.html.

4.4 Installing and using the source distribution

The Kawa release normally comes as a gzip-compressed tar file named
‘kawa-3.1.1.tar.gz’. Two methods are supporting for compiling the Kawa
sources; choose whichever is most convenient for you.

One method uses the traditional GNU configure script, followed by running make. This
works well on Unix-like systems, such as GNU/Linux. You can also use this method on
Microsoft Windows, with the help of tools from MinGW (http://www.MinGW.org/) or
Cygwin (http://www.cygwin.org/).

The other method uses the ant command, a Java-based build system released by
Apache’s Jakarta project. This uses an build.xml file in place of Makefiles, and works on
non-Unix systems such as Microsoft Windows. However, the ant method does not support
all the features of the configure+make method.

http://www.epubread.com
http://www.MinGW.org/
http://www.cygwin.org/

Chapter 4: Getting and installing Kawa 62

4.4.1 Build Kawa using configure and make

(See [building-on-Windows-with-make], page 64, for some notes for building on Microsoft
Windows.)

If you have a tar.gz file, first unpack that in your build directory:

tar xzf kawa-3.1.1.tar.gz

cd kawa-3.1.1

If you’re building from the Git repository, you need to generate configure and some
other files. This is easiest done with the autogen.sh script:

./autogen.sh

Then you must configure the sources. This you do in the same way you configure most
other GNU software. Normally you can just run the configure script with no arguments:

./configure

The configure script takes a number of [configure options], page 62.

If you have installed Kawa before, make sure your CLASSPATH does not include old
versions of Kawa, or other classes that may conflict with the new ones.

Then you need to compile all the .java source files. Just run make:

make

This assumes that ‘java’ and ‘javac’ are the java interpreter and compiler, respectively.

It has been reported that parallel make doesn’t work, so don’t use the -j2 or above
options.

You can now test the system by running Kawa in place:

java kawa.repl

or you can run the test suite:

make check

or you can install the compiled files:

make install

This will install your classes into $PREFIX/share/java (and its sub-directories). Here
$PREFIX is the directory you specified to configure with the --prefix option, or /usr/local
if you did not specify a --prefix option.

To use the installed files, you need to set CLASSPATH so that $PREFIX/share/java/kawa.jar
is in the path:

CLASSPATH=$PREFIX/share/java/kawa.jar

export CLASSPATH

This is done automatically if you use the ‘kawa’ script.

4.4.1.1 Configure options

The configure script takes a number of options. The --help switch gives you a list of
options. The following are some of the more common or important ones.

--prefix=install-dir

--prefix install-dir

By default make install will install the compiled .jar files info
/usr/local/share/java, the kawa command into /usr/local/bin, and so

Chapter 4: Getting and installing Kawa 63

on in /usr/local. The --prefix option causes the files to be installed under
install-dir instead of /usr/local. For example to install the .jar in
/opt/kawa/share/java and otherwise use /opt/kawa do:

./configure --prefix=/opt/kawa

--with-java-source=version

As distributed, the Kawa source code requires Java 8. If you only have Java 7,
Java 6, or Java 5, use the --with-java-source option:

./configure --with-java-source=6

Kawa no longer supports older verisons of Java (JDK 1.4 or older). It might be
possible to use a tool like Retroweaver (http://retroweaver.sourceforge.
net/) on the Kawa .jar to fix up Java 5 dependencies. Contact the Kawa
author if you want to be a tester for this.

--with-docbook-stylesheets[=path]

Build the documentation (this manual) as an electronic book (in ebook format)
or a website, using the DocBook xslt stylesheets. (You can build the documen-
tation without DocBook, but using it enables nicer-looking and more functional
documentation.)

The stylesheets are found using path; the file path/epub3/chunk.xsl

needs to exist. (For example, on Fedora 25 path can be
/usr/share/sgml/docbook/xsl-ns-stylesheets, while on Debian
use /usr/share/xml/docbook/stylesheet/docbook-xsl-ns.)

--with-domterm

--with-domterm=domterm_home

Compile with extra support for the [Using DomTerm], page 100,
terminal emulator library, where domterm_home is such that domterm_

home/lib/domterm.jar exists. (Some DomTerm support is built-in
regardless.)

If you use this option along with --with-javafx then creating a new Section 6.3
[REPL Console], page 97, window will create a DomTerm window.

As an optional convenience, you can use the domterm.jar in the Kawa binary
distribution.

--with-jline3

--with-jline3=jline3.jar

Build support for using JLine 3 (https://github.com/jline/jline3), which
is a library for handling console input, similar to GNU readline. If specified,
the jline3.jar is added to the classpath of the generated kawa.sh or kawa shell
program.

An advantage of --with-jline3 (compared to --enable-kawa-frontend) is
that the former works without native code (on most Unix-like platforms), and
it does not require a C wrapper program.

As an optional convenience, you can use the jline.jar in the Kawa binary
distribution.

http://retroweaver.sourceforge.net/
http://retroweaver.sourceforge.net/
https://github.com/jline/jline3

Chapter 4: Getting and installing Kawa 64

--with-domterm

--with-domterm=domterm.jar

Compile with extra support for the [Using DomTerm], page 100, terminal em-
ulator library. (Some DomTerm support is built-in regardless.)

If you use this option along with --with-javafx then creating a new Section 6.3
[REPL Console], page 97, window will create a DomTerm window.

As an optional convenience, you can use the domterm.jar in the Kawa binary
distribution.

--with-servlet

--with-servlet=servlet-jar

Build support for Section 20.7 [Servlets], page 346, which are used in web
servers. This requires the servlet-api.jar (available various places including
Tomcat (http://tomcat.apache.org/) or Glassfish (https://glassfish.
java.net/)), for javax.servlet.Servlet and related classes. If this class
isn’t in your classpath, specify its location as servlet-jar. For example:

./configure --with-servlet=/path/to/servlet-api.jar

--enable-jemacs

Build JEmacs (enable Emacs-like text editor) and support (a subset of) the
Emacs Lisp language. JEmacs is a proof of concept - not really usable or
maintained.

--with-javafx

--with-javafx=javafx-home

Set this flag to enable the convenience features for Section 21.2 [Building
JavaFX applications], page 368. The JavaFX classes are included in JDK 8
(but not OpenJDK 8), and you don’t need to specify javafx-home. JDK 11
or later does not include JavaFX, so you need to specify the location of the
modular OpenJFX SDK as javafx-home.

--with-android=android-jar

Build for the Android platform. This requires Section 21.3 [Building for An-
droid], page 369.

--enable-kawa-frontend

If you have the GNU ‘readline’ library installed, you might try adding the
‘--enable-kawa-frontend’ flag. This will build the ‘kawa’ front-end program,
which provides input-line editing and an input history. You can get ‘readline’
from archives of GNU programs, including ftp://www.gnu.org/.

Note that using JLine, enabled by --with-jline3, is now recommended instead
of using the readline frontend.

You may need to specify to make where to find the readline include files
(with READLINE_INCLUDE_PATH) and the library (with READINE_LIB_PATH). For
example on OS/X you need to do:

make READLINE_INCLUDE_PATH=-I/usr/local/unix/readline/include \

READLINE_LIB_PATH=-L/usr/local/unix/readline/lib

http://tomcat.apache.org/
https://glassfish.java.net/
https://glassfish.java.net/
ftp://www.gnu.org/

Chapter 4: Getting and installing Kawa 65

4.4.1.2 Building on Windows using MinGW

The Kawa configure and make process assumes Unix-like tools, which you can get from the
MinGW project (http://mingw.org). Download the MingGW Installation Manager, and
use it to install at least mingw-developer-toolkit. (Also installing msys-groff avoids a
minor problem building the documentation.)

The C:\MinGW\msys\1.0\msys.bat script creates a command window with the bash

shell and the PATH set up as needed. Alternatively, you can use the standard Windows
command prompt if you set your PATH as described in here (http://mingw.org/wiki/
Getting_Started).

4.4.1.3 Building on Windows using Cygwin

The free Cygwin (http://sourceware.org/cygwin/) environment can be used for building
Kawa: The Kawa configure script recognizes Cygwin, and modifies the classpath to use
Windows-style path separators.

Beyond the base packages, you probably want to install autoconf, automake, git,
texinfo, groff, make, and diffutils.

Cygwin (unlike MinGW) has a current version of makeinfo, but an undiagnosed
bug still prevents building kawa.info. You can work around that problem with touch

doc/kawa.info.

4.4.2 Building the documentation

4.4.2.1 Plain HTML documentation

You can build a plain HTML version of the documentation (using makeinfo from the
texinfo distribution):

cd doc && make kawa-html/index.html

In this case, point your browser at file:/kawa_srcdir/doc/kawa-html/index.html.

4.4.2.2 Fancier HTML documentation

To build the documentation in a nicer form suitable for a web-site you need makeinfo

and the DocBook XSLT tools (and to have run configure with the --with-docbook-

stylesheets option):

cd doc && make web/index.html

You can then point your browser at file:/kawa_srcdir/doc/web/index.html.

4.4.2.3 Using ebook readers or the –browse-manual option

To build an EPUB file suitable for ebook readers, as well as enabling support for the [browse-
manual-option], page 89, do:

cd doc && make kawa-manual.epub

This also requires the DocBook XSLT tools.

4.4.2.4 Building a printable PDF file

To build a pdf file suitable for printing or online viewing do:

cd doc && make kawa.pdf

http://mingw.org
http://mingw.org
http://mingw.org/wiki/Getting_Started
http://mingw.org/wiki/Getting_Started
http://sourceware.org/cygwin/

Chapter 4: Getting and installing Kawa 66

The resulting kawa.pdf is somewhat unsatisfactory - when viewed online, links aren’t
clickable. Furthermore, box drawing characters are missing.

4.4.3 Build Kawa using ant

Kawa now includes an Ant buildfile (build.xml). Ant (http://ant.apache.org) is a part
of the Apache Jakarta project. If you don’t hava Ant installed, get it from http://ant.

apache.org/bindownload.cgi. The build is entirely Java based and works equally well on
*nix, Windows, and presumably most any other operating system.

Once Ant has been installed and configured (you may need to set the JAVA_HOME, and
ANT_HOME environment variables), you should be able to change to the directory containing
the build.xml file, and invoke the ‘ant’ command. With the default settings, a successful
build will result in a kawa-3.1.1.jar in the current directory.

There are a few Ant "targets" of interest (they can be supplied on the Ant command
line):

all This is the default, it does classes and jar.

classes Compiles all the files into *.class files into the directory specified by the
build.dir property.

jar Builds a jar into into the directory specified by the dist.dir property.

runw Run Kawa in a GUI window.

clean Deletes all files generated by the build, including the jar.

There is not yet a test target for running the testsuite.

There are various “properties" that control what ant does. You can override these on the
command line or by editing the build.properties file in the same directory as build.xml.
For example, the build.dir property tells ant where to build temporary files, and where to
leave the resulting .jar file. For example, to leave the generated files in the sub-directory
named BUILD do:

ant -Dbuild.dir=BUILD

A sample build.properties is provided and it contains comments explaining many of
the options.

Here are a few general properties that help to customize your build:

build.dir

Path to put the temporary files used for building.

dist.dir Path to put the resulting jar file.

version.local

A suffix to add to the version label for your customized version.

debug Whether (true/false) the Javac "-g" option is enabled.

optimize Whether (true/false) the Javac "-O" option is enabled.

Here are some Kawa-specific ones (all true/false): with-collections,
with-references, with-awt, with-swing, enable-jemacs, and enable-servlet> See
the sample build.properties for more information on these.

http://ant.apache.org
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

67

If you change any of the build properties, you will generally want to do an ‘ant clean’
before building again as the build is often not able to notice that kind of change. In the case
of changing a directory path, you would want to do the clean before changing the path.

A special note for NetBeans users: For some reason the build-tools target which compiles
an Ant task won’t compile with the classpath provided by NetBeans. You may do ‘ant
build-tools’ from the command line outside of NetBeans, in which case you will not want
to use the clean target as that will delete the tool files as well. You can use the clean-build
and/or clean-dist targets as appropriate. Alternatively you can add ant.jar to the
build-tools classpath by copying or linking it into a lib/ext directory in Kawa’s source
directory (the one containing the build.xml file).

5 Kawa Scheme Tutorial

This is obviously incomplete, but it may be useful, especially if you’re starting with Kawa
from scratch. If you’re new to Scheme you might also check out one of these tutorials: Taka-
fumi Shido’s Yet Another Scheme Tutorial (http://www.shido.info/lisp/idx_scm_e.
html); Dorai Sitaram’s Teach Yourself Scheme in Fixnum Days (http://www.ccs.neu.
edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html); or Paul Wilson’s An Introduc-
tion to Scheme and its Implementation (ftp://ftp.cs.utexas.edu/pub/garbage/cs345/
schintro-v14/schintro_toc.html).

5.1 Introduction

You’ve heard about all the hot scripting languages – you might even be tired of hearing about
them. But Kawa offers you something different than the scripting-language du-jour can.
You may be interested in one that runs on the Java virtual machine, either because you have
to interact with other Java tools, or because you like having access to all the Java packages
out there. Or maybe you don’t care about Java, but you care about performance. If so, let
me tell you about Kawa, which is actually one of the very oldest language implementations
running on the Java Virtual Machine, dating back to 1996.

The Kawa language is a dialect/implementation of the Scheme language. (The Kawa
project also supports other languages, including XQuery (http://www.w3.org/XML/Query)
and Emacs Lisp (http://jemacs.sourceforge.net), as well as tools for implementing mew
programming languages, but we won’t cover that in this tutorial.)

Scheme (http: / / www . schemers . org /) is an established language with many
implementations (http: / / community . schemewiki . org / ? scheme-faq-standards #

implementations), a standard (http://www.schemers.org/Documents/Standards/)
specification (the traditional R5RS (http://www.schemers.org/Documents/Standards/
R5RS/), R6RS (http://www.r6rs.org/) which was ratified in 2007, and R7RS (http://
www.r7rs.org/) which was ratified in 2013), and is used by universities for both teaching
and research. Scheme also has a reputation for being difficult to learn, with a weird
parenthesis-heavy syntax, and hard-to-understand concepts like continuations (http://
en . wikipedia . org / wiki / Continuation). Luckily, you don’t need to understand
continuations! (Kawa doesn’t fully implement them anyway.)

http://www.shido.info/lisp/idx_scm_e.html
http://www.shido.info/lisp/idx_scm_e.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
ftp://ftp.cs.utexas.edu/pub/garbage/cs345/schintro-v14/schintro_toc.html
ftp://ftp.cs.utexas.edu/pub/garbage/cs345/schintro-v14/schintro_toc.html
ftp://ftp.cs.utexas.edu/pub/garbage/cs345/schintro-v14/schintro_toc.html
http://www.w3.org/XML/Query
http://jemacs.sourceforge.net
http://www.schemers.org/
http://community.schemewiki.org/?scheme-faq-standards#implementations
http://community.schemewiki.org/?scheme-faq-standards#implementations
http://www.schemers.org/Documents/Standards/
http://www.schemers.org/Documents/Standards/R5RS/
http://www.schemers.org/Documents/Standards/R5RS/
http://www.r6rs.org/
http://www.r7rs.org/
http://www.r7rs.org/
http://en.wikipedia.org/wiki/Continuation
http://en.wikipedia.org/wiki/Continuation

Chapter 5: Kawa Scheme Tutorial 68

The following assumes that Kawa is already installed on your computer; if not see these
Chapter 4 [Installation], page 59. Running the kawa command in interactive mode is a good
way start learning Kawa:

$ kawa

#|kawa:1|#

If you don’t have kawa but you have a Kawa “jar” and you have Java installed you can
instead do:

$ java -jar kawa-version-number.jar

#|kawa:1|#

The prompt string has the form of a Scheme comment, to make it easier to cut-and-paste.
Kawa is expecting you type in an expression or command, which it will evaluate, and then
print out the result. For example, a quoted string is a simple expression that evaluates to
a string value, which will print as itself, before printing the next prompt:

#|kawa:1|# "Hello, world!"

Hello, world!

#|kawa:2|#

The most noticable difference from most other programming languages is that Scheme
uses “prefix” notation for function calls. For example Kawa has a function max which
returns the largest value of the arguments. Instead of max(5, 7, 3) you write (max 5 7 3):

(max 5 7 3) ⇒ 7

(We use the ⇒ symbol above to indicate that the expression (max 5 7 3) evaluates to
the value 7.)

The prefix notation may feel a bit weird, but you quickly get used to it, and it has some
advantages. One is consistency: What are special infix operators in most languages are just
regular functions in Scheme. For example, addition is just a regular function call, and + is
just a regular function name:

(+ 2.5 1.2) ⇒ 3.7

The same prefix notation is used for special operations like assignments:

#|kawa:1|# (set! sqrt-of-2 (sqrt 2))

#|kawa:2|# sqrt-of-2

1.4142135623730951

5.2 Booleans

Scheme uses the syntax #t and #f for Boolean true and false value, respectively. For
example, the “less-than” function is named <. Its result is true if the first argument is
less than the second (or, if there are more than two arguments, that they are in increasing
order):

(< 3 4) ⇒ #t

(< -3 -4) ⇒ #f

(< 2 3 5 7 11)) ⇒ #t

The if special form takes two or three sub-expressions: It evaluates the first expression.
If that is true it evaluates the second expression; otherwise it evaluates the third expression,
if provided:

(if (< 3 4) (+ 5 5) (+ 5 6)) ⇒ 10

Chapter 5: Kawa Scheme Tutorial 69

We call if a special form rather than a function, because for a function all the arguments
are evaluated before the function is called, but in a special form that is not neceassarily the
case.

In addition to #t any value except #f (and the Kawa-specific #!null) counts as “true”
when evaluating the first expression of an if. Unlike C or JavaScript both (zero) and ""

(the empty string) are true:

(if 0 (+ 5 5) (+ 5 6)) ⇒ 10

You can use and, or, and not to create complex boolean expressions. Of these and and
or are special forms that only evaluate as many of the sub-expressions as needed.

(if (not (and (>= i 0) (<= i 9)))

(display "error"))

You can use the cond form as an alternative to if:

(cond ((< 3 3) 'greater)

((> 3 3) 'less)

(else ’equal)) ⇒ equal

The null value (written as #!null in Kawa or null in Java) is also considered as false.

5.3 Numbers

Exact integers and fractions

Kawa has the usual syntax for decimal integers. Addition, subtraction, and multiplication
are written using the usual +, -, and *, but these are all prefix functions that take a variable
number of arguments:

(+ 1 2 3) ⇒ 6

(- 10 3 4) ⇒ (- (- 10 3) 4) ⇒ 3

(* 2 -6) ⇒ -12

Kawa has arbitrary-precision integers.

Let us implement the factorial (http://en.wikipedia.org/wiki/Factorial) function.
Type in the following (we’ll look at the syntax shortly):

#|kawa:1|# (define (factorial x)

#|(---:2|# (if (< x 1) 1

#|(---:3|# (* x (factorial (- x 1)))))

(The prompt changes to indicate a continuation line.) This binds the name factorial

to a new function, with formal parameter x. This new function is immediately compiled to
Java bytecodes, and later a JIT compiler may compile it to native code.

A few tests:

#|kawa:4|# (list (factorial 3) (factorial 4))

(6 24)

#|kawa:5|# (factorial 30)

265252859812191058636308480000000

http://en.wikipedia.org/wiki/Factorial

Chapter 5: Kawa Scheme Tutorial 70

Floating-point real numbers

Given what was said above about being able to add, subtract and multiply integers, the
following may be unexpected:

#|kawa:1|# (/ 2 3)

2/3

#|kawa:2|# (+ (/ 1 3) (/ 2 3))

1

In many languages, dividing two integers, as 2/3, would result in 0. At best, the result
would be a floating point number, similar to 0.666667. Instead, Kawa has a rational number
type, which holds the results of divisions exactly, as a proper fraction. Hence, adding one
third to two thirds will always result in exactly one.

Floating-point real numbers are known in Kawa as inexact numbers, as they cannot be
stored exactly. Consider:

#|kawa:3|# (exact? 2/3)

#t

#|kawa:4|# (exact? 0.33333333)

#f

#|kawa:5|# (exact->inexact 2/3)

0.6666666666666666

The first two examples check numbers for being exact?; there is a corresponding
inexact? test. The last shows how an exact number can be converted to an inexact form.

Numbers are converted between exact and inexact versions when required within oper-
ations or procedures:

#|kawa:6|# (+ 0.33333333 2/3)

0.9999999966666666

#|kawa:7|# (inexact? (+ 0.33333333 2/3))

#t

#|kawa:8|# (sin 2/3)

0.618369803069737

Complex numbers

A complex number is made from two parts: a real part and an imaginary part. They are
written 2+3i. A complex number can be manipulated just like other numbers:

#|kawa:9|# (+ 2+3i 5+2i)

7+5i

#|kawa:10|# (* 2+3i 4-3i)

17+6i

#|kawa:11|# (integer? (+ 2+3i -3i))

#t

Notice how in the last example the result is an integer, which Kawa recognises.

Kawa also includes Section 12.4 [Quaternions], page 187, numbers.

Units and dimensions

In many applications, numbers have a unit. For example, 5 might be a number of dollar
bills, a weight on a scale, or a speed. Kawa enables us to represent numbers as quantities:

Chapter 5: Kawa Scheme Tutorial 71

numbers along with their unit. For example, with weight, we might measure weight in
pounds and ounces, where an ounce is 1/16 of a pound.

Using Kawa, we can define units for our weight measurements, and specify the units
along with numbers:

#|kawa:12|# (define-base-unit pound "Weight")

#|kawa:13|# (define-unit ounce 0.0625pound)

#|kawa:14|# 3pound

3.0pound

#|kawa:15|# (+ 1pound 5ounce)

1.3125pound

In this example we define a base unit, the pound, and a unit based on it, the ounce,
which is valued at 0.0625 pounds (one sixteenth). Numbers can then be written along with
their unit (making them quantities). Arithmetic is possible with quantities, as shown in the
last line, and Kawa will do the smart thing when combining units. In this case, 1 pound
and 5 ounces is combined to make 1.3125 pounds.

5.4 Functions

To declare a new function use define, which has the following form:

(define (function-name parameter-names) body)

This creates a new function named function-name, which takes parameter-names as
parameters. When the function is called, the parameter-names are initialized with the
actual arguments. Then body is evaluated, and its value becomes the result of the call.

For example, in the factorial function we looked at recently, the function-name is
factorial, and the parameter-names is x:

(define (factorial x)

(if (< x 1) 1

(* x (factorial (- x 1)))))

Anonymous functions

An anonymous function is simply a function which does not have a name. We define an
anonymous function using a lambda expression, which has the following form:

(lambda (parameter-names) body)

The lambda expression has the parameter-names and body of a function, but it has no
name. What is the point of this?

An important example is creating a function to act on a list, perhaps using map. The
map function takes two parameters: the first is a function which takes a value and returns
a value; the second is a list. Here, we want to double every number in the list.

The usual way of doing this is to create a named function, called double, and then apply
it to a list:

#|kawa:1|# (define (double x)

#|.....2|# (* 2 x))

#|kawa:3|# (map double (list 1 2 3 4 5))

(2 4 6 8 10)

Chapter 5: Kawa Scheme Tutorial 72

Instead, anonymous functions make it easy to create a function to work on a list, without
having to define it in advance:

#|kawa:4|# (map (lambda (x) (* 2 x)) (list 1 2 3 4 5))

(2 4 6 8 10)

#|kawa:5|# (define y 3)

#|kawa:6|# (map (lambda (x) (* x y)) (list 1 2 3 4 5))

(3 6 9 12 15)

The first example shows the double example rewritten as an anonymous function. The
second example shows how the anonymous function can be changed to fit the place in which
it is used: here, the value of y determines the value by which the list values are multiplied.

Notice that we can name our anonymous functions, in just the same way we name any
value in Kawa, using define:

(define double

(lambda (n)

(* 2 n)))

although more frequently we use the short-hand for defining functions, which we have
already met:

(define (double n)

(* 2 n))

Anonymous functions are “first-class values” in Kawa, and can be passed to other func-
tions as arguments (like we did with map), and they can even be created and returned by
functions as results.

Optional, rest and keyword parameters

You can declare a function that takes optional arguments, or a variable number of argu-
ments. You can also use keyword parameters.

The following function illustrates the use of optional arguments. The function identifies
an optional argument z: if the function is called with 3 arguments, z will be bound to the
third value, otherwise it will be #f.

(define (addup x y #!optional z)

(if z

(+ x y z)

(+ x y)))

The following examples show addup applied to 2, 3 and invalid arguments. It is an error
to pass just one argument or more than three: x and y are compulsory, but z is optional.

#|kawa:12|# (addup 1 2)

3

#|kawa:13|# (addup 1 2 3)

6

#|kawa:14|# (addup 1)

/dev/stdin:14:1: call to 'addup' has too few arguments (1; min=2, max=3)

#|kawa:15|# (addup 1 2 3 4)

/dev/stdin:15:1: call to 'addup' has too many arguments (4; min=2, max=3)

Chapter 5: Kawa Scheme Tutorial 73

In this example, a better way to define the function would be to include a default value
for z, for when its value is not given by the caller. This is done as follows, with the same
behavior as above:

(define (addup x y #!optional (z 0))

(+ x y z))

You can include as many optional parameters as you wish, after the #!optional.

Rest arguments are an alternative way to pass an undefined number of arguments to a
function. Here is addup written with rest arguments, notice the variable name after the .
(dot):

(define (addup x y . args)

(+ x y (apply + args)))

The args are simply a list of all remaining values. The following now all work, as the
function only requires a minimum of two numbers:

#|kawa:4|# (addup 1 2)

3

#|kawa:5|# (addup 1 2 3)

6

#|kawa:6|# (addup 1 2 3 4 5 6 7 8)

36

An alternative way to identify the rest args is with #!rest:

(define (addup x y #!rest args)

(+ x y (apply + args)))

Finally, it can be useful to identify parameters by name and, for this, Kawa provides
keyword arguments. Consider the following function:

#|kawa:38|# (define (vector-3d #!key x y z)

#|.....39|# (vector x y z))

#|kawa:40|# (vector-3d #:x 2 #:z 3 #:y 4)

#(2 4 3)

vector-3d is defined with three keyword arguments: x, y, and z. When the function is
called, we identify the name for each value by writing #: at the start of the name. This
allows us to write the arguments in any order. Keyword parameters can also be given
default values, as with optional parameters. Keyword parameters with no default value,
and no value in the caller, will get the value #f.

In the caller, keywords are symbols with #: at the front (or : at the end): Section 10.3
[Keywords], page 165.

All these extended types of arguments are available both for “named” and for “anony-
mous” functions. Optional, rest and keyword arguments can be mixed together, along with
the usual arguments. For details Section 11.2 [Extended formals], page 169,

5.5 Variables

You can declare a variable using a ! form. This takes a variable name, and an expression.
It declares a new variable with the given name, and gives it the value of the expression.

#|kawa:1|# (! binary-kilo 1024)

Chapter 5: Kawa Scheme Tutorial 74

#|kawa:2|# (! binary-mega (* binary-kilo binary-kilo))

#|kawa:3|# binary-mega

1048576

If you prefer, you can use define instead of !:

#|kawa:1|# (define binary-kilo 1024)

#|kawa:2|# (define binary-mega (* binary-kilo binary-kilo))

#|kawa:3|# binary-mega

1048576

The advantage of using define is that it is portable to other Scheme implementations.
The advantages of using ! is that it is shorter; it generalizes to patterns (see later); and
it guards against accidentally “shadowing” a variable by a nested variable with the same
name.

A ! (or define) typed into the command-line defines a top-level variable.

You can also declare local variables, which are variables defined for a given block of code.
For example, in the following code let is used to set up a local binding of x to 3: this does
not affect the outer binding of x to 5:

(define x 5)

(let ((x 3))

(display x)) ⇒ 3

(display x) ⇒ 5

Alternative forms for defining local variables are let, let*, or letrec/letrec*.

The differences are in the order in which definitions are made. let evaluates all its
definitions in the environment holding at the start of the let statement. In the following
example, the local variables are defined using values from the global variables:

(define x 5)

(define y 2)

(let ((x (+ 2 y)) ; uses value of global y, i.e. 2

(y (+ 3 x))) ; uses value of global x, i.e. 5

(display (list x y))) ⇒ (4 8)

let* instead evaluates each definition in the environment holding at the start of the
let* statement, along with all previous local definitions. In the following example, y is now
defined with the local value of x:

(define x 5)

(define y 2)

(let* ((x (+ 2 y)) ; uses value of global y, i.e. 2

(y (+ 3 x))) ; uses value of local x, i.e. 4

(display (list x y))) ⇒ (4 7)

letrec/letrec* are similar, but allow the definition of recursive functions:

(letrec ((is-even? (lambda (n) (and (not (= 1 n))

(or (zero? n)

Chapter 5: Kawa Scheme Tutorial 75

(is-odd? (- n 1))))))

(is-odd? (lambda (n) (and (not (zero? n))

(or (= 1 n)

(is-even? (- n 1)))))))

(display (is-even? 11))) ⇒ #f

5.6 Composable pictures

The pictures library lets you create geometric shapes and images, and combine them in
interesting ways. You first need to import the library:

(import (kawa pictures))

The easiest way to use and learn the library is with a suitable REPL, where you can type
expressions that evaluate to pictures values, and view the resulting pictures directly on the
console. The easiest way is to start the kawa command with the -w flag. Alternatively, you
can use a [Using DomTerm], page 100-based terminal emulator such as qtdomterm (which
is shown in the image below), and then the kawa command.

The above image shows two simple examples: a filled circle (radius 30 pixels, color
magenta), and a non-filled rotated rectangle (color maroon 3-pixel wide strokes).

See Section 21.1 [Composable pictures], page 356, for details and more examples.

Chapter 5: Kawa Scheme Tutorial 76

Shapes and coordinates

A shape is a geometrical figure consisting of one or more curves and lines. One kind of
shape is a circle; you can create one with the circle procedure, specifying the radius in
“pixels”.

#|kawa:1|# (import (kawa pictures))

#|kawa:2|# (circle 30)

It you print a shape, it will show it as a thin black curve.

A point has two real-numbered parts: the point’s x-coordinate, and its y-coordinate.
The x-coordinate increases as you move right along the page/screen, while the y-coordinate
increases as you move down. (Unlike traditional mathematics, where the y-coordinate
increases as you go up.) The unit distance is one “pixel”, which is defined as CSS or
HTML. You can create a point with &P operator. For example:

&P[30 20]

is a point 30 pixels right and 20 pixels down from the origin point. To create a circle
centered on that point do (center 30 &P[30 20]).

The expression (rectangle &P[10 20] &P[50 40]) creates a rectangle whose upper left
corner is (10,20) and whose lower right corner is (50,40).

A dimension is a pair, a width and height, and is written:

&D[width height]

In addition to being used for sizes, a dimension is also used for relative offsets. For
example, the previous rectangle could also be written (rectangle &P[10 20] &D[40 20]).

You can use line to create a line. More generally, if you specify n points you get a
polyline of n-1 line segments:

#|kawa:3|# (line &P[10 20] &P[50 60] &P[90 0])

The same line using dimensions for relative offsets:

#|kawa:4|# (line &P[10 20] &D[40 20] &D[40 -60])

A closed shape is one whose end point is the same as its start point. The polygon

function creates one using straight line segments

Chapter 5: Kawa Scheme Tutorial 77

#|kawa:5|# (polygon &P[10 20] &P[50 60] &P[90 0])

Colors and filling

You can override the default color (black) using the with-paint procedure, which takes a
color and a picture to produce a new picture:

#|kawa:6|# (with-paint 'red (circle 32))

The first argument can be either one of the standard CSS/HTML5 color names (such as
'red or 'medium-slate-blue), or an integer representing an sRGB color, usually written
as a hex literal in the form #xRRGGBB:

#|kawa:7|# (with-paint #x0808FF (circle 32))

The name with-paint is because the first argument can be not just a color, but a general
“paint”, such as a gradient or a background image. However, we won’t go into that.

If the shape is closed, you can “fill” its inside:

(fill (circle 32))

You can change the color using with-paint:

(with-paint 'goldenrod (fill (circle 32)))

or as an extra argument to fill:

(fill 'goldenrod (circle 32))

draw TODO

Images

An image is a picture represented as a rectangular grid of color values. It may be a pho-
tograph from a camera, or be created by a painting program like Photoshop or gimp. You
can use image-read to read an image from a file, typically a .png or .jpg file.

#|kawa:10|# (define img1 (image-read "http://pics.bothner.com/2013/Cats/06t.jpg"))

Chapter 5: Kawa Scheme Tutorial 78

#|kawa:11|# img1

Transforms TODO

#|kawa:12|# (scale 0.6 (rotate 30 img1))

Combining and adjusting pictures TODO

Using and combining pictures TODO

5.7 Lists and sequences

A sequence is a generalized array or list: Zero or more values treated as a compound value.
Sequences have certain common operations, including indexing and iteration. (Technical
note: Sequences generally implement the java.util.List interface, but Kawa will also
treat strings and native Java arrays as sequences.)

Chapter 5: Kawa Scheme Tutorial 79

Lists

In traditional Lisp-family languages, the list is the most important kind of sequence. (Don’t
confuse Java’s List interface with Kawa’s use of the word list. They’re related, in that a
Kawa “list” implements the List interface, so any list is also List, but not vice versa.)

A list is implemented as a chain of linked pairs. You can create a constant list by quoting
a parenthesized list:

'(3 4 (10 20 30) "a string")

See Section 14.2 [Lists], page 235, for details and operations.

Vectors

A vector is a sequence that is implemented by storing the elements side-by-side in memory.
A vector uses less space than a list of the same length, and is generally more efficient than
a list.

To create a vector you can use a bracketed list:

(! vec1 ['A 'B 'C 'D 'E 'F])

This creates a vector of 6 symbols and binds it to vec1. To select an element you can
use the traditional vector-ref procedure:

(vector-ref vec1 3) ⇒ 'D

Alternatively, in Kawa you can use function-call notation:

(vec1 3) ⇒ 'D

You can also create a vector using the traditional vector constructor:

(! vec2 (vector 'A 'B 'C 'D 'E 'F))

There is one important difference between vec1 and vec2: You can modify vec2 by
changing some or all of its elements. You can’t do that for vec1. (We say that vec1 is an
immutable or constant vector, while vec1 is a mutable or modifiable vector.) To change
an element use either the traditional vector-set! procedure, or function-call notation:

(vector-set! vec2 2 'Y)

(set! (vec2 4) 'Z)

vec2 ⇒ ['A 'B 'Y 'D 'Z 'F]

(vector-set! vec1 2 'Y) ⇒ throws exception

See Section 14.3 [Vectors], page 237, for details and operations.

Java arrays and primitive vectors

See Section 19.14 [Array operations], page 331, for examples.

Indexing of general sequences

You can use function-call notation to index a generalized sequence, whether it is a list,
vector, any java.util.List, native Java array, or string:

((list 'A 'B 'C 'D) 2) ⇒ 'C

("abcdef" 3) ⇒ ⇒
(! farr (float[] 1.5 3 4.5)) ;; native Java array

(farr 2) ⇒ 4.5

Note that indexing a list with an index i will be slow, since it has to step through the
list i times. (So don’t do that!)

Chapter 5: Kawa Scheme Tutorial 80

Ranges

A range is a sequence of numbers in order, spaced uniformly apart. Usually, these are
(exact) integers that increase by one. The usual notation is:

[start <: end]

This is the sequence of integers starting with the integer start (inclusive) and ending
with the integer end (exclusive). For example [3 <: 7] is the sequence [3 4 5 6].

The ‘<:’ is a keyword; the < is a mnemonic for the set of integers that are < the end
value 6. You can also use <=: if you want to include the upper bound: [4 <=: 8] is [4 5 6

7 8].

You can use >=: or >: for a decreasing range. [5 >=: 1] or [5 >: 0] both evaluate to
[5 4 3 2 1]. You can also specifify a step value: [1 by: 2 <=: 9], which evaluates to [1 3

5 7 9]. (Section 14.6 [Ranges], page 246.)

Using vector and ranges indexes

If an index is a sequence of integers, the result is a new sequence (of the same type) selecting
only the elements matching the index values. For example:

#|kawa:2|# (vec1 [3 5 2])

#(D F C)

In general, ((V1 V2) I) is (V1 (V2 I)).

You can use a range to create a slice - a contiguous subset of a list.

#|kawa:3|# (vec1 [2 <: 6])

#(C D E F)

A range is different from a vector integer in that you can use a range as the index in the
LHS of a set!:

#|kawa:4|# (set! (vec1 [2 <: 4]) #(a b c d e))

#|kawa:5|# vec1

#(A B a b c d e E F)

Notice how the number of replaced elements can be different then the number of elements
in the replacement value. I.e. you can do insertion and deletion this way.

#|kawa:7|# (! str1 (string-copy "ABCDEF"))

#|kawa:8|# (set! (str1 [2 <: 5]) "98")

AB98F

5.8 Creating and using objects

An object is a value that has the following features:

• class - each object is an instance of a specific class, making it part of the class hierarchy,
which is an important aspect of the type system;

• properties - various fields and methods, depending on the class;

• identity - it is distinct from all other objects, even if all the properties are the same.

We later discuss Section 5.11 [Tutorial - Classes], page 84. Here we assume you’re using
an existing class, which could be written in Java or Scheme.

Chapter 5: Kawa Scheme Tutorial 81

Creating a new object

To create a new object of class T you call T as if it were a function, passing it the various
constructor arguments:

(java.io.File "src" "build.xml")

If there are keyword arguments they are used to initialize the corresponding named
properties:

(! button1 (javax.swing.JButton text: "Do it!" tool-tip-text: "do it"))

This create a new JButton object (using JButton’s default constructor), and sets the
text and tool-tip-text properties (by calling JButton’s setText and setToolTipText

methods). If there are constructor arguments, they must come before the keywords.

For objects that have components or elements, you can list these at the end. For example:

(java.util.ArrayList 11 22 33)

This creates a fresh java.util.ArrayList (using the default constructor), and then
calls the add method 3 times.

If you prefer you can use the make procedure, but that only handle simple constructor
calls:

(make java.io.File "src" "build.xml")

See Section 19.10 [Allocating objects], page 324, for details.

Calling instance methods

Given an object obj of a class that has a method meth, you can call it with argumens v1
... v2 using Section 7.7 [Colon notation], page 115:

(obj:meth v1 ... v2)

For example:

(button1:paintImmediately 10 10 30 20)

If you prefer, you can use the invoke procedure, normally with a quoted method name:

(invoke button1 'paintImmediately 10 10 30 20)

You need to use invoke (rather than colon notation) if obj is a Class or a type expres-
sion, or its class implements gnu.mapping.HasNamedParts.

See Section 19.9 [Method operations], page 320, for details.

Accessing properties

If obj has a field or property named fld you can also use colon notation:

obj:fld

You use the same syntax whether fld is an actual field in the object, or a property (in the
Java Beans sense). The latter is implemented using a getter/setter pair: Methods named
getF and setF, respectively. For example:

button1:tool-tip-text

is equivalent to:

(button1:getToolTipText)

Chapter 5: Kawa Scheme Tutorial 82

You can also change a field or property using colon notation:

(set! obj:fld value)

For example:

(set! button1:tool-tip-text "really do it!")

This is equivalent to:

(button1:setToolTipText "really do it!")

Instead of colon notation, you can use the field procedure.

See Section 19.11 [Field operations], page 327, for details.

Static fields and methods

Kawa views static properties and methods as properties and methods of the class itself. To
call a static method use the syntax:

(clas:meth v1 ... vn)

For example:

(java.math.BigDecimal:valueOf 12345 2) ⇒ 123.45

To access a static field do clas:fld. For example:

java.awt.Color:RED

You can also use the static-field and invoke-static procedures.

5.9 Types and declarations

A type is a named value for a set of objects with related properties. For example, vector
is the type for standard Scheme vectors. You can use a type to specify that a variable can
only have values of the specified type:

#|kawa:5|# (define v ::vector #(3 4 5))

#|kawa:6|# v

#(3 4 5)

#|kawa:7|# (set! v 12)

/dev/stdin:7:1: warning - cannot convert literal (of type gnu.math.IntNum) to vector

Value (12) for variable 'v' has wrong type (gnu.math.IntNum) (gnu.math.IntNum can-

not be cast to gnu.lists.FVector)

at atInteractiveLevel$7.run(stdin:7)

at gnu.expr.ModuleExp.evalModule(ModuleExp.java:302)

at kawa.Shell.run(Shell.java:275)

at kawa.Shell.run(Shell.java:186)

at kawa.Shell.run(Shell.java:167)

at kawa.repl.main(repl.java:870)

Caused by: java.lang.ClassCastException: gnu.math.IntNum cannot be cast to gnu.lists.FVector

... 6 more

Using a type specification catches errors, and makes your programs more readable. It
can also allow the Kawa compiler to generate code that runs faster.

You can use a type to check that a value is an instance of the type, using either the
instance? function:

(instance? #(3 4 5) vector) ⇒ #t

Chapter 5: Kawa Scheme Tutorial 83

(instance? '(3 4 5) vector) ⇒ #f

As a convenience, you can use a type-name followed by a “?”:

(type? val) == (instance? val type)

You can “call” a type as if it were a function, which constructs a new instance of the
type. The following example shows how to construct a normal Scheme vector, and a Java
array of ints:

#|kawa:1|# (vector)

#()

#|kawa:2|# (instance? (vector) vector)

#t

#|kawa:3|# (define x (int[] 1 2 3))

#|kawa:4|# x

[1 2 3]

#|kawa:5|# (instance? x int[])

#t

A fully-qualified Java class is a type name. So are the names of Java primitive types.
So are Java array types, as shown above.

e.g. a JFrame is constructed by using its class name as a function:

#|kawa:6|# (javax.swing.JFrame)

javax.swing.JFrame[frame0,0,25,0x0,invalid,hidden,layout=java.awt.BorderLayout,

title=,resizable,normal,defaultCloseOperation=HIDE_ON_CLOSE,

rootPane=javax.swing.JRootPane[,0,0,0x0,invalid,

layout=javax.swing.JRootPane$RootLayout,alignmentX=0.0,alignmentY=0.0,border=,

flags=16777673,maximumSize=,minimumSize=,preferredSize=],rootPaneCheckingEnabled=true]

A type is a true run-time value:

(define mytypes (list vector list string))

(instance? #(3 4 5) (car mytypes) ⇒ #t

The define-alias form is useful for defining shorter names for types, like a generaliza-
tion of Java’s import statement:

(define-alias jframe javax.swing.JFrame)

5.10 Exceptions and errors

Kawa supports the exception framework and forms from R6RS and R7RS. See Section 8.9
[Exceptions], page 151, for details.

Native exception handling

You can also work with native Java exceptions at a low level.

The primitive-throw procedure throws a Throwable value. It is implemented just like
Java’s throw.

(primitive-throw (java.lang.IndexOutOfBoundsException "bad index"))

You can catch an exception with the try-catch syntax. For example:

(try-catch

(do-a-bunch-of-stuff)

Chapter 5: Kawa Scheme Tutorial 84

(ex java.lang.Throwable

(format #f "caught ~a~%~!" ex)

(exit)))

A try-finally does the obvious:

(define (call-with-port port proc)

(try-finally

(proc port)

(close-port port)))

Both try-catch and try-finally are expression forms that can return values, while
the corresponding Java forms are statements that cannot return values.

5.11 Classes

See Section 19.1 [Defining new classes], page 298, for the gory details; no tutorial yet.

5.12 Other Java features

Import

The import form can be used to avoid having to write fully-qualified class names. For
example:

(import (class java.util

Map

(HashMap HMap)))

This defines aliases for two classes in the java.util package, one with renaming: Map

is an alias for java.util.Map, and HMap is an alias for java.util.HashMap.

The class keyword is needed because the import form is also used for Kawa’s module
system. See [importing-class-names], page 385, and Section 19.6 [Importing], page 312, for
details.

Synchronized blocks

You can use a synchronized expression:

(synchronized obj form1 ... formn)

This waits until it can get an exclusive lock on obj and then evaluates form1 through
formn. Unlike Java, this is an expression and returns the value of formn.

Annotations

You can write annotation declarations - see Section 19.4 [Annotations], page 304, for details.

Kawa does not yet support annotations on types, or declaring new annotation classes.

Reference Documentation

87

6 How to start up and run Kawa

The easiest way to start up Kawa is to run the ‘kawa’ program. This finds your Java inter-
preter, and sets up ‘CLASSPATH’ correctly. If you have installed Kawa such that $PREFIX/bin
is in your $PATH, just do:

kawa

However, ‘kawa’ only works if you have a Unix-like environment. On some platforms,
‘kawa’ is a program that uses the GNU ‘readline’ library to provide input line editing.

To run Kawa manually, you must start a Java Virtual Machine. How you do this depends
on the Java implementation. For Oracle’s JDK, and some other implementations, you must
have the Java evaluator (usually named java) in your PATH. You must also make sure that
the kawa/repl.class file, the rest of the Kawa packages, and the standard Java packages
can be found by searching CLASSPATH. See Section 4.2 [Running Java], page 60.

Then you do:

java kawa.repl

In either case, you will then get the ‘#|kawa:1|#’ prompt, which means you are in the
Kawa read-eval-print-loop. If you type a Scheme expression, Kawa will evaluate it. Kawa
will then print the result (if there is a non-"void" result).

6.1 Command-line arguments

You can pass various flags to Kawa, for example:

kawa -e '(display (+ 12 4))(newline)'

or:

java kawa.repl -e '(display (+ 12 4))(newline)'

Either causes Kawa to print ‘16’, and then exit.

At startup, Kawa executes an init file from the user’s home directory. The init file is
named .kawarc.scm on Unix-like systems (those for which the file separator is '/'), and
kawarc.scm on other systems. This is done before the read-eval-print loop or before the
first -f or -c argument. (It is not run for a -e command, to allow you to set options to
override the defaults.)

6.1.1 Argument processing

Kawa processes the command-line arguments in order. Options (which either start with
‘-’ or contain a ‘=’) may “use up” one or more command arguments. Some of the options
(‘-c’, ‘-e’, ‘-f’, ‘-s’, ‘-C’, -w, ‘--’, --browse-manual) are action options; others set various
properties.

When all the command-line arguments have been “used up” and if no action options
have been seen, then Kawa enters an interactive read-eval-print loop. (If an action option
has been seen, we’re done.)

If the next command-line argument is not an option (does not start with ‘-’ nor contains
a ‘=’) then we’re done if we’ve seen an action option (and the last action option wasn’t
preceded by --with-arg-count). (Presumably any remaining arguments were command-
line-arguments used by the action option.)

Chapter 6: How to start up and run Kawa 88

Otherwise, the first remaining argument names either a file that is read and evaluated,
or a compiled class. In the former case, the whole file is read and compiled as a mod-
ule before being loaded (unlike the -f flag which reads and evaluates the file command
by command.) If the argument is the fully-qualified name of a class, then the class is
loaded, an instance allocated, and its run method invoked. If the class was compiled from
a Kawa Scheme module, then invoking run has the effect of evaluating the module body.
The command-line-arguments vector is set to any remaining arguments after the file/class
name. (This can be overridden with the --with-arg-count option. Command-line pro-
cessing continues if there are any further arguments.)

6.1.2 General options

-e expr Kawa evaluates expr, which contains one or more Scheme expressions. Does
not cause the ~/.kawarc.scm init file to be run.

-c expr Same as ‘-e expr’, except that it does cause the ~/.kawarc.scm init file to be
run.

-f filename-or-url

Kawa reads and evaluates expressions from the file named by filename-or-url.
If the latter is ‘-’, standard input is read (with no prompting). Otherwise, it
is equivalent to evaluating ‘(load "filename-or-url")’. The filename-or-url
is interpreted as a URL if it is absolute - it starts with a "URI scheme" like
http:.

-s

-- The remaining arguments (if any) are passed to ‘command-line-arguments’
and (the cdr of) (command-line), and an interactive read-eval-print loop is
started. This uses the same "console" as where you started up Kawa; use ‘-w’
to get a new window.

--script filename-or-url

--scriptN filename-or-url

The global variable ‘command-line-arguments’ is set to the remaining argu-
ments (if any). Kawa reads and evaluates expressions from the file named by
filename-or-url. If script is followed by an integer N, then N lines are skipped
first.

Skipping some initial lines is useful if you want to have a non-Kawa preamble
before the actual Kawa code. One use for this is for Kawa shell scripts (see
Section 6.2 [Scripts], page 95).

-w

-wsub-option

Creates a new top-level window, and runs an interactive read-eval-print in the
new window. See [New-Window], page 99. Same as -e (scheme-window #t).
You can specify multiple ‘-w’ options, and also use ‘-s’.

--help Prints out some help.

--version

Prints out the Kawa version number, and then exits.

Chapter 6: How to start up and run Kawa 89

If Kawa was built with a .git repository present, also prints the result of git
describe.

--browse-manual

--browse-manual=command

Browse a local copy of the documentation (this manual).

This creates a mini web-server that reads from doc/kawa-manual.epub, which
is included in the binary distributions, but not built by default from source.

If no command is specified, creates a new mini-browser-window using JavaFX
(if the JavaFX modules are available), or creates a new window or tab in your
default web browser (otherwise). If command is a string containing %U, then
Kawa replaces %U with a URL that references itself, and then executes the
resulting command. If command does not contain %U, then command becomes
command" %U". For example to use the Firefox browser to browse the manual
do either of:

kawa --browse-manual=firefox

kawa --browse-manual="firefox %U"

--server portnum

Start a server listening from connections on the specified portnum. Each con-
nection using the Telnet protocol causes a new read-eval-print-loop to start.
This option allows you to connect using any Telnet client program to a remote
"Kawa server".

--with-arg-count=argc

This option is used before an action option (such as -f). The argc arguments
after the action become the value of the command-line-arguments during the
action. When the action is finished, command-line-processing resumes after
skipping the argc arguments.

For example:

$ kawa -f a.scm -f b.scm x y

When evaluating a.scm the command-line-arguments by default is all the
remaining arguments: ["-f" "b.scm" "x" "y"]. Then b.scm is evaluated with
command-line-arguments set to ["x" "y"]

$ kawa --with-arg-count=0 -f a.scm -f b.scm x y

In this case a.scm is evaluated with command-line-arguments set to the empty
vector [], and then b.scm is evaluated with command-line-arguments set to
["x" "y"]

$ kawa --with-arg-count=4 -f a.scm -f b.scm x y

In this case a.scm is evaluated with command-line-arguments set to ["-f"

"b.scm" "x" "y"]. Since command-line processing skips the arguments speci-
fied by --with-arg-count=4, in this case b.scm is not evaluated.

6.1.3 Options for language selection

--scheme Set the default language to Scheme. (This is the default unless you select
another language, or you name a file with a known extension on the command-
line.)

Chapter 6: How to start up and run Kawa 90

--r5rs

--r6rs

--r7rs Provide better compatibility with the specified Scheme standards. (This is a
work-in-progress.) For example --r6rs aims to disable Kawa extensions that
conflict with R6RS. It does not aim to disable all extensions, only incompatible
extensions. These extensions disable the colon operator and keyword literals,
as well as the use of initial ‘@’ as a splicing operator. The “l” exponent suffix
of a number literal creates a floating-point double, rather than a BigInteger.
Selecting --r5rs makes symbols by default case-insensitive.

--elisp

--emacs

--emacs-lisp

Set the default language to Emacs Lisp. (The implementation is quite incom-
plete.)

--lisp

--clisp

--clisp

--commonlisp

--common-lisp

Set the default language to CommonLisp. (The implementation is very incom-
plete.)

--krl Set the default language to KRL. See Section 20.11.3 [KRL], page 355.

--brl Set the default language to KRL, in BRL-compatibility mode. See
Section 20.11.3 [KRL], page 355.

--xquery Set the default language to the draft XML Query language. See the
Kawa-XQuery page (http: / / www . gnu . org / software / qexo /) for more
information.

--xslt Set the default language to XSLT (XML Stylesheet Language Transformations).
(The implementation is very incomplete.) See the Kawa-XSLT page (http://
www.gnu.org/software/qexo/xslt.html) for more information.

--pedantic

Try to follow the approprate language specification to the letter, even in corner
cases, and even if it means giving up some Kawa convenience features. This
flag so far only affects the XQuery parser, but that will hopefully change.

6.1.4 Options for warnings and errors

--warn-undefined-variable

Emit a warning if the code references a variable which is neither in lexical
scope nor in the compile-time dynamic (global) environment. This is useful for
catching typos. (A define-variable form can be used to silence warnings. It
declares to the compiler that a variable is to be resolved dynamically.) This
defaults to on; to turn it off use the --no-warn-undefined-variable flag.

http://www.gnu.org/software/qexo/
http://www.gnu.org/software/qexo/xslt.html
http://www.gnu.org/software/qexo/xslt.html

Chapter 6: How to start up and run Kawa 91

--warn-unknown-member

Emit a warning if the code references a named member (field or method) for
which there is no match in the compile-time type of the receiver. This defaults
to on; to turn it off use the --no-warn-unknown-member flag.

--warn-invoke-unknown-method

Emit a warning if the invoke function calls a named method for which there
is no matching method in the compile-time type of the receiver. This defaults
to the value of --warn-unknown-member, to turn it off use the --no-warn-

invoke-unknown-method flag.

--warn-unused

Emit a warning if a variable is unused or code never executed. This defaults to
on; to turn it off use the --no-warn-unused flag.

--warn-uninitialized

Warn if accessing an uninitialized variable. This defaults to on; to turn it off
use the --no-warn-uninitialized flag.

--warn-unreachable

Emit a warning if the code can never be executed. This defaults to on; to turn
it off use the --no-warn-unreachable flag.

--warn-void-used

Emit a warning if an expression depends on an expression that is void (always
has zero values), including call to void functions and method. Also warn if an
expression depends on a conditional (if) that has no “else” clause. Examples
include using the value of set-car! as an argument to a function, or to initialize
a variable. This defaults to on; to turn it off use the --no-warn-void-used

flag.

--warn-as-error

Treat a compilation warning as if it were an error and halt compilation.

--max-errors=value

Print no more than value errors or warnings (at a time). The value -1 removes
the limit. The initial default is 20. (A single error may so confuse Kawa that
it prints very many useless error messages.)

An option can be followed by a value, as in --warn-invoke-unknown-method=no. For
boolean options, the values yes, true, on, or 1 enable the option, while no, false, off,
or 0 disable it. You can also negate an option by prefixing it with no-: The option --no-

warn-unknown-member is the same as --warn-unknown-member=no.

These options can also be used in the module source, using module-compile-options

or with-compile-options. (In that case they override the options on the command line.)

6.1.5 Options for setting variables

name=value

Set the global variable with the specified name to the given value. The type of
the value is currently unspecified; the plan is for it to be like XQuery’s untyped
atomic which can be coerced as needed.

Chapter 6: How to start up and run Kawa 92

{namespace-uri}local-name=value

Set the global variable with the specified namespace uri and namespace-local
name to the given value.

These options are processed when invoking the kawa application (i.e. the kawa.repl

application). If you want a Kawa application compiled with --main to process these these
assignments, call the process-command-line-assignments utility function.

-Dvariable-name=variable-value

Sets the JVM property variable-name to variable-value, using the setProperty
method of java.lang.System.

6.1.6 Options for the REPL console

--console

--no-console

Usually Kawa can detect when the standard input port is a “console” or “ter-
minal”, but these are useful for overriding that detection. The --console flag
is useful when the standard input is a pipe, but you want to direct Kawa to
treat it as an interactive terminal. The --no-console flag was useful for older
pre-Java-6 implementations that did not have the java.lang.Console class.

console:type=console-types
console:use-jline=[yes|no]
console:jline-mouse=[yes|no]

See the Section 6.3 [REPL Console], page 97, section.

console:prompt1=prompt1

console:prompt2=prompt2

Initialize [input-prompt1], page 284, respectively.

See also the --output-format flag.

6.1.7 Options for controlling output formatting

--output-format format

--format format

Change the default output format to that specified by format. See Section 17.1
[Named output formats], page 270, for more information and a list.

out:base=integer

The number base (radix) to use by default when printing rational numbers.
Must be an integer between 2 and 36, and the default is of course 10. For
example the option out:base=16 produces hexadecimal output. Equivalent to
setting the *print-base* variable.

out:radix=no|yes

If true, prints an indicator of the radix used when printing rational numbers.
The default is no. Equivalent to setting the *print-radix* variable.

out:doctype-system=system-identifier

If out:doctype-system is specified then a DOCTYPE declaration is written before
writing a top-level XML element, using the specified system-identifier.

Chapter 6: How to start up and run Kawa 93

out:doctype-public=public-identifier

Ignored unless out:doctype-system is also specified, in which case the public-
identifier is written as the public identifiers of the DOCTYPE declaration.

out:xml-indent=kind

Controls whether extra line breaks and indentation are added when printing
XML. If kind is always or yes then newlines and appropriate indentation are
added before and after each element. If kind is pretty then the pretty-printer
is used to only add new lines when an element otherwise won’t fit on a single
line. If kind is no (the default) then no extra line breaks or indentation are
added.

out:line-length=columns

out:right-margin=columns

Specifies the maximum number of number of columns in a line when the pretty-
printer decides where to break a line. (The two options are equivalent.)

6.1.8 Options for compiling and optimizing

--target version

The version can be a JDK or Java specification version: 5, 6, or 7. The JDK
versions 1.5 and 1.6 are equivalent to 5 or 6, respectively. Specify a JVM
(classfile) version to target. This is useful if (for example) you use Java 6,
but want to create .class files that can run on Java 5. In that case specify
--target 5.

The following options control which calling conventions are used:

--full-tailcalls

Use a calling convention that supports proper tail recursion.

--no-full-tailcalls

Use a calling convention that does not support proper tail recursion. Self-tail-
recursion (i.e. a recursive call to the current function) is still implemented
correctly, assuming that the called function is known at compile time.

--no-inline

Disable inlining of known functions and methods. The generated code runs
slower, but you can more reliably trace procedures. Normally Kawa will as-
sume that a procedure fn declared using a (define (fn args) body) form is
constant, assuming it isn’t modified in the current module. However, it is pos-
sible some other module might modify the binding of fn. You can use the
--no-inline to disable the assumption that fn is constant.

The default is currently --no-full-tailcalls because it is usually faster. It is also
closer to the Java call model, so may be better for people primarily interested in using
Kawa for scripting Java systems.

Both calling conventions can co-exist: Code compiled with --full-tailcalls can call
code compiled with --no-full-tailcalls and vice versa.

These options can also be used in the module source, using module-compile-options

or with-compile-options. (In that case they override the options on the command line.)

Chapter 6: How to start up and run Kawa 94

The options ‘-C’, ‘-d’, ‘-T’, ‘-P’, ‘--main’ ‘--applet’, and --servlet are used to
compile a Scheme file; see Section 6.5.1 [Files compilation], page 101. The options
‘--module-static’, --module-nonstatic, --no-module-static, and --module-static-

run control how a module is mapped to a Java class; see [static-or-non-modules], page 310.
The option ‘--connect portnum’ is only used by the ‘kawa’ front-end program.

6.1.9 Options for debugging

The following options are useful if you want to debug or understand how Kawa works.

--debug-dump-zip

Normally, when Kawa loads a source file, or evaluates a non-trivial expression,
it generates new internal Java classes but does not write them out. This option
asks it to write out generated classes in a ‘.zip’ archive whose name has the
prefix ‘kawa-zip-dump-’.

--debug-print-expr

Kawa translates source language forms into an internal Expression data struc-
ture. This option causes that data structure to be written out in a readable
format to the standard output.

--debug-print-final-expr

Similar to the previous option, but prints out the Expression after various
transformations and optimizations have been done, and just before code gener-
ation.

--debug-syntax-pattern-match

Prints logging information to standard error when a syntax-rules or
syntax-case pattern matches.

--debug-error-prints-stack-trace

Prints a stack trace with any error found during compilation.

--debug-warning-prints-stack-trace

Prints a stack trace with any warning found during compilation.

--langserver

Starts Kawa in server mode, responding to requests using the Language Server
Protocol (https://langserver.org). This is used by editors and IDEs for
on-the-fly syntax checking and more. Highly experimental.

6.1.10 Options for web servers

JDK 6 (or later) includes a complete web server library.

--http-auto-handler context-path appdir

Register a web application handler that uses files in the directory appdir to
handle HTTP (web) requests containing the given context-path. That is it
handles requests that start with http://localhost:portcontext-path. (This
assumes the context-path starts with a /.) See Section 20.6 [Self-configuring
page scripts], page 343.

--http-start port

Start the web server, listing on the specified port.

https://langserver.org
https://langserver.org

Chapter 6: How to start up and run Kawa 95

6.1.11 Options for the JVM

The kawa front-end can pass options to the java launcher, using -J or -D options. These
must be given before any other arguments. For example:

kawa -J-Xms48m -Dkawa.command.name=foo foo.scm

is equivalent to (ignoring classpath issues):

java -Xms48m -Dkawa.command.name=foo kawa.repl foo.scm

You can also pass a -D option (but not a -J option) after the class name, in which case
it is processed by the Kawa command-line processor rather than the java launcher. The
effect is normally the same.

-Jjvm-option

Passes the jvm-option to the java command, before the class-name (kawa.repl)
and Kawa options.

-Dvariable-name=variable-value

Sets the JVM property variable-name to variable-value. Equivalent to -J-

Dvariable-name=variable-value.

6.2 Running Command Scripts

If you write a Kawa application, it is convenient to be able to execute it directly (from the
command line or clicking an icon, say), without have to explicitly run kawa or java. On
Unix-like systems the easiest way to do this is to write a small shell script that runs your
Kawa application.

For modest-sized applications it is convenient if the shell script and the Kawa code can
be in the same file. Unix-like systems support a mechanism where a script can specify
a program that should execute it. The convention is that the first line of the file should
start with the two characters ‘#!’ followed by the absolute path of the program that should
process (interpret) the script.

(Windows has batch files, which are similar.)

This convention works well for script languages that use ‘#’ to indicate the start of a
comment, since the interpreter will automatically ignore the line specifying the interpreter
filename. Scheme, however, uses ‘#’ as a multi-purpose prefix, and Kawa specifically uses ‘#!’
as a prefix for various Section 10.4 [Special named constants], page 165, such as #!optional.

Kawa does recognize the three-character sequence ‘#!/’ at the beginning of a file as
special, and ignores it. Here is an example:

#!/usr/local/bin/kawa

(format #t "The command-line was:~{ ~w~}~%" (command-line))

If you copy this text to a file named /home/me/bin/scm-echo, set the execute permission,
and make sure it is in your PATH, then you can execute it just by naming it on command
line:

$ chmod +x /home/me/bin/scm-echo

$ PATH=/home/me/bin:$PATH

$ scm-env a b

The command-line was: "/home/me/bin/scm-echo" "a" "b"

Chapter 6: How to start up and run Kawa 96

The system kernel will automatically execute kawa, passing it the filename as an argu-
ment.

Note that the full path-name of the kawa interpreter must be hard-wired into the script.
This means you may have to edit the script depending on where Kawa is installed on your
system. Another possible problem is that the interpreter must be an actual program, not a
shell script. Depending on how you configure and install Kawa, kawa can be a real program
or a script. You can avoid both problems by the env program, available on most modern
Unix-like systems:

#!/usr/bin/env kawa

(format #t "The command-line was:~{ ~w~}~%" (command-line))

This works the same way, but assumes kawa is in the command PATH.

6.2.1 Setting kawa options in the script

If you need to specify extra arguments to kawa, you can run arbitrary shell command inside
Scheme block comments. Here is an example:

#!/bin/sh

#|

exec kawa out:base=16 out:radix=yes "$0" "$*"

|#

(format #t "The command-line is:~{ ~w~}.~%" (command-line))

(display "It has ")

(display (apply + (map string-length (command-line))))

(display " characters.")

(newline)

The trick is to hide the shell code from Kawa inside a #|...|# block-comment. The
start of the block comment is a line starting with a #, so it is treated as a comment by the
shell. You can then invoke kawa (or java directly) as you prefer, setting up class-path and
jars as needed, and passing whatever arguments you want. (The shell replaces the "$0"

by the name of the script, and replaces the "$@" by the remaining arguments passed to
the script.) You need to make sure the shell finishes before it reaches the end of the block
comment or the Scheme code, which would confuse it. The example uses exec, which tells
the shell to replace itself by kawa; an alternative is to use the shell exit command.

If you copy the above file to /tmp/sch-echo and make that file executable, you can run
it directly:

$ /tmp/scm-echo "a b" "c d"

The command-line is: "/tmp/scm-echo" "a b c d".

It has #x14 characters.

When the Kawa reader sees the initial #/ it sets the command name to the file name,
so it can be used by a future call to (command-name). If you want to override this you can
use the -Dkawa.command.name=name option.

Using comments this way has the advantage that you have the option of running the
script “manually” if you prefer:

$ kawa /tmp/scm-echo out:base=8 "x y"

The command-line is: "/tmp/scm-echo" "out:base=8" "x y".

It has 26 characters.

Chapter 6: How to start up and run Kawa 97

6.2.2 Other ways to pass options using meta-arg or –script

An argument consisting of just a \ (backslash) causes Kawa to read the second line looking
for options. (Quotes and backslashes work like in the shell.) These replace the backslash in
the command line.

This is a less verbose mechanism, but it requires an absolute path to kawa, due to shell
limitations.

#!/usr/bin/kawa \

--scheme --full-tailcalls

(format #t "The command-line is:~{ ~w~}.~%" (command-line))

In this case the effective command line received by Kawa will be --scheme, --full-
tailcalls, followed by the script filename, followed by other arguments specified when
running the script.

The backslash used this way originated in scsh (http://www.scsh.net) where it is
called the meta-arg. (Unlike scsh, Kawa’s #! is not a block comment, but a rest-of-line,
though the backslash causes the following line to also be skipped.)

An alternative method is to use the --script2 option, which tells Kawa to execute the
script after ignoring the initial two lines. For example:

#!/bin/sh

exec kawa --commonlisp out:base=16 --script2 "$0" "$@"

(setq xx 20) (display xx) (newline)

This is slightly more compact than using block-comments as shown earlier, but it has
the disadvantage that you can’t explicitly use kawa or java to run the script unless you
make sure to pass it the --script2 option.

6.2.3 Scripts for compiled code

If you compile your Kawa application to class files (or better: a jar file), you probably still
want to write a small shell script to set things up. Here is one method:

#!/bin/sh

export CLASSPATH=/my/path

exec kawa -Dkawa.command.name="$0" foo "$@"

Using the kawa front-end is a convenience, since it automatically sets up the paths for
the Kawa classes, and (if enabled) it provides readline support for the default input port.

Setting the kawa.command.name property to "$0" (the filename used to invoke the script)
enables (command-line) to use the script name as the command name.

You can invoke java directly, which is necessary when running a jar file:

#!/bin/sh

exec java -cp /path/to/kawa -Dkawa.command.name="$0" foo.jar "$@"

6.3 The REPL (read-eval-print-loop) console

The read-eval-print-loop (REPL) console is a convenient way to do simple programming,
test out things, and experiment. As the name implies, the REPL repeatedly (in a loop)
prints out a prompt, reads an input command, evaluates it, then prints the result.

http://www.scsh.net

Chapter 6: How to start up and run Kawa 98

The REPL is started when you invoke the kawa command with no arguments. For
example:

$ kawa

#|kawa:1|# (define pi (* 2 (asin 1)))

#|kawa:2|# (list pi (sqrt pi))

(3.141592653589793 1.7724538509055159)

#|kawa:3|#

The colors and styles used for the prompt and the user input depend on user preference
and the capabilities of the console device. (If you read this on a color screen you should see
pale green for the prompt and pale yellow for the user input; this matches the defaults for
the DomTerm console.)

You can [Prompts], page 284, if you want. The default format depends on the (pro-
gramming) language used; the one shown above is used for Scheme. It has the form of a
comment, which can be convenient for copying and pasting lines.

You can Section 17.1 [Named output formats], page 270, with the --output-format

command-line option.

The basic console has few frills, but should work in any enviroment where you have a
console or terminal. It has no dependencies, except the kawa .jar file (and Java):

$ java kawa-3.1.1.jar

#|kawa:2|#

On rare occason you may need to specify the --console flag.

6.3.1 Input line editing and history

When typing a command in a console it is helpful to go back and correct mistakes, repeat
and edit previous commands, and so on. How well you can do this varies a lot depending on
which tools you use. Kawa delegates input editing to an external tool. The recommended
and default input-editing tool is the JLine3 library (https://github.com/jline/jline3),
which is bundled with the Kawa binary distribution.

JLine3 handles the normal editing comands, including arrow keys for moving around
in the input, and deleting with backspace or delete. In general, JLine3 uses the same
keybindings as GNU readline, which are based on Emacs key-bindings.

You can use the up-arrow to move to previous commands in the input history and down-
arrow to go forwards. Control-R (“reverse search” searches backwards in the history for a
previous command that contains the search string.

Multi-line commands are treated as a unit by JLine3: If Kawa determines that input is
“incomplete” it will ask for continuation lines - and you can go back and edit previous lines
in the same command. You can explicitly create a multi-line command with Escape-Space.
An entry in the command history may be multiple lines.

Tab-completion works for Kawa-Scheme identifiers: If you type TAB after an identifier,
Kawa will present a list of possible completions.

There are multiple alternatives to using JLine3. You can use GNU readline (if you
configured with --enable-kawa-frontend). You can use a front-end program like rlfe or
fep. You can use Emacs shell or scheme mode. You can also use DomTerm in line-edit
mode, where the browser handles the editing.

https://github.com/jline/jline3

Chapter 6: How to start up and run Kawa 99

console:use-jline=[yes|no]
Disable (with no) or enable (with yes, which is the default) input line editing
with JLine.

console:console:jline-mouse=[yes|no]
Enable (with yes) mouse click reporting from most xterm-like terminals to
JLine, which means you can move the input cursor with the mouse. This is
disabled by default because it conflicts with other useful mouse actions (text se-
lection using drag; middle-button paste; right-button context menu; and wheel
mouse scrolling). If you enable mouse-reporting, on most terminals you can get
the standard behavior when pressing the shift key. E.g. to enable selection,
drag with the shift key pressed. (However, mouse-wheel scrolling may not work
even with shift pressed.)

6.3.2 Running a Command Interpreter in a new Window

Instead of using an existing terminal window for Kawa’s REPL console, you can request a
new window. The command-line options -w creates a new window. Kawa also creates a
new window when it needs to create a REPL (for example if invoked with no options) and
it is not running in a console.

You have a number of options for how the window appears and what it supports, con-
trolled by text following -w. All except -wswing (and -wconsole) use DomTerm, so they
depend on some kind of web browser technology. All except -wswing by default use JLine3
input editing, if available.

-w Pick the default/preferred console implementation. You can specify your pref-
erence with the console:type= option, which is followed by one of the options
below (without the "-w" prefix), It can also be list of options separated by
semi-colons, in which case they are tried in order.

The current default (it may change) is as if you specified:

console:type="google-chrome;browser;javafx;swing;console"

-wbrowser

Creates a Kawa window or tab in your preferred desktop browser. Kawa starts
a builtin HTTP and WebSocket server to communicate with the browser.

-wbrowser=command

Uses command to display the Kawa REPL. The command should include the
pattern %U, which Kawa replaces with a URL that it listens to. (Alternatively,
it can use the pattern %W, which Kawa replaces with the port number of its
WebSocket server. However, this feature may be removed.) If the is no %

in the command, Kawa add " %U". Thus -wbrowser=firefox is the same as
-wbrowser="firefox %U".

-wgoogle-chrome

Creates a new Google Chrome window in “app mode” - i.e. with no location
or menu bar. This is the same as -wbrowser="google-chrome --app=%U".

-wjavafx Creates a new window using JavaFX WebView, which runs in the same JVM
as Kawa. While this doesn’t currently have much in the way of Kawa-specific

Chapter 6: How to start up and run Kawa 100

menus or other features, it has the most potential for adding them in the future.
However, it does require JavaFX, which is not always available, and which does
not see a lot of love from Oracle. (It uses an old version of WebKit.)

-wswing Create a console using the Swing toolkit. This is the old implementation of
-w. It is deprecated because it only supports the builtin Swing line editing.
(I.e. neither DomTerm or JLine3 features are available, though “printing”
Section 21.1 [Composable pictures], page 356, does work.)

-wserve

-wserve=port
Starts up an HTTP server (along with a WebSocket server), but does not
automatically create any browser windows. Instead you can use any modern
browser to load http://localhost:port/. If port is not specified, the systems
selects it (and prints it out).

-wconsole

Same as "--" - i.e. it uses the existing console.

console:type=preference-list
Specify the behavior of plain -w.

6.3.3 Using DomTerm

DomTerm (http://domterm.org) is a family of terminal emulators that use the DomTerm
JavaScript library.

You can either have Kawa start DomTerm:

$ kawa options -w

or start a DomTerm terminal emulator and have it start Kawa:

$ domterm kawa options --

(You can also start a shell in a domterm window, and then start kawa.)

Either approach works and both give you the benefits of DomTerm:

• A xterm/ansi-compatible terminal emulator, which means you can use (for example)
JLine3 for input editing.

• You can “print” images, Section 21.1 [Composable pictures], page 356, or HTML ele-
ments.

• Pretty-printing is handled by the terminal, which means line-breaking is re-computed
when window width changes.

• Hide/show buttons allow you to temporarily hide/unhide the output from a specific
command.

• You can save a session as an HTML file, which can be viewed later. (Still with dynamic
line-breaking and pretty-printing, as well as working hide/show buttons.) The file is
actually XHTML, so it can be processed with XML-reading tools.

• Distinct styles for prompts, input, error output and regular output, which can be
customized with CSS.

For now it is recommended to use both DomTerm and JLine3.

http://domterm.org

Chapter 6: How to start up and run Kawa 101

[Procedure]domterm-load-stylesheet stylesheet [name]
The string stylesheet should be a literal CSS stylesheet which is downloaded into
the current DomTerm console. The new stylesheet is given the attribute name=name,
where name defaults to "Kawa". If there is an existing stylesheey whose name attribute
is name, it is replaced. In this example we change the background color to light gray:

(domterm-load-stylesheet "div.domterm { background-color: lightgray}")

6.4 Exiting Kawa

Kawa normally keeps running as long as there is an active read-eval-print loop still awaiting
input or there is an unfinished other computation (such as requested by a ‘-e’ or ‘-f’
option).

To close a read-eval-print-loop, you can type the special literal #!eof at top level. This
is recognized as end-of-file. Typing an end-of-file character (normally ctrl-D under Unix)
should also work, but that depends on your operating system and terminal interface.

If the read-eval-print-loop is in a new window, you can select ‘Close’ from the ‘File’
menu.

To exit the entire Kawa session, call the [Exiting the current process], page 382, (with 0
or 1 integer arguments).

6.5 Compiling to byte-code

All Scheme functions and source files are invisibly compiled into internal Java byte-codes.
(A traditional interpreter is used for macro-expansion. Kawa used to also interpret “simple”
expressions in interactive mode, but always compiling makes things more consistent, and
allows for better stack traces on errors.)

To save speed when loading large Scheme source files, you probably want to pre-compile
them and save them on your local disk. There are two ways to do this.

You can compile a Scheme source file to a single archive file. You do this using the
compile-file function. The result is a single file that you can move around and load

just like the .scm source file. You just specify the name of the archive file to the load

procedure. Currently, the archive is a "zip" archive and has extension ".zip"; a future
release will probably use "Java Archive" (jar) files. The advantage of compiling to an
archive is that it is simple and transparent.

Alternatively, you can compile a Scheme source file to a collection of ‘.class’ files. You
then use the standard Java class loading mechanism to load the code. The compiled class
files do have to be installed somewhere in the CLASSPATH.

6.5.1 Compiling to a set of .class files

Invoking ‘kawa’ (or ‘java kawa.repl’) with the ‘-C’ flag will compile a ‘.scm’ source file
into one or more ‘.class’ files:

kawa --main -C myprog.scm

You run it as follows:

kawa [-d outdirectory] [-P prefix] [-T topname] [--main | --applet | --servlet] -C in-

file ...

Chapter 6: How to start up and run Kawa 102

Note the ‘-C’ must come last, because ‘Kawa’ processes the arguments and options in
order,

Here:

-C infile ...

The Scheme source files we want to compile.

-d outdirectory

The directory under which the resulting ‘.class’ files will be. The default is
the current directory.

-P prefix A string to prepend to the generated class names. The default is the empty
string.

-T topname

The name of the "top" class - i.e. the one that contains the code for the top-
level expressions and definitions. The default is generated from the infile and
prefix.

--main Generate a main method so that the resulting "top" class can be used as a
stand-alone application. See Section 6.5.4 [Application compilation], page 103.

--applet The resulting class inherits from java.applet.Applet, and can be used as an
applet. See Section 6.5.5 [Applet compilation], page 104.

--servlet

The resulting class implements javax.servlet.http.HttpServlet, and can
be used as a servlet in a servlet container like Tomcat.

When you actually want to load the classes, the outdirectory must be in your
‘CLASSPATH’. You can use the require syntax or the load function to load the code, by
specifying the top-level class, either as a file name (relative to outdirectory) or as a class
name. E.g. if you did:

kawa -d /usr/local/share/java -P my.lib. -T foo -C foosrc.scm

you can use either:

(require my.lib.foo)

or:

(load "my.lib.foo")

Using require is preferred as it imports the definitions from my.lib.foo into the
compile-time environment, while load only imports the definitions into the run-time envi-
ronment.

If you are compiling a Scheme source file (say ‘foosrc.scm’) that uses macros defined
in some other file (say ‘macs.scm’), you need to make sure the definitions are visible to the
compiler. One way to do that is with the ‘-f’:

kawa -f macs.scm -C foosrc.scm

Many of the options Section 6.1 [described earlier], page 87, are relevant when compiling.
Commonly used options include language selection, the --warn-xxx options, and --full-

tailcalls.

Chapter 6: How to start up and run Kawa 103

6.5.2 Compiling to an archive file

[Procedure]compile-file source-file compiled-archive
Compile the source-file, producing a .zip archive compiled-file.

For example, to byte-compile a file ‘foo.scm’ do:

(compile-file "foo.scm" "foo")

This will create ‘foo.zip’, which contains byte-compiled JVM .class files. You can
move this file around, without worrying about class paths. To load the compiled file,
you can later load the named file, as in either (load "foo") or (load "foo.zip").
This should have the same effect as loading ‘foo.scm’, except you will get the faster
byte-compiled versions.

6.5.3 Compiling using Ant

Many Java projects use Ant (http://ant.apache.org) for building Java projects. Kawa
includes a <kawac> Ant task that simplifies compiling Kawa source files to classes. See the
build.xml in the Kawa source distribution for examples. See the kawac task documentation
(ant-kawac.html) for details.

6.5.4 Compiling to a standalone application

A Java application is a Java class with a special method (whose name is main). The appli-
cation can be invoked directly by naming it in the Java command. If you want to generate
an application from a Scheme program, create a Scheme source file with the definitions you
need, plus the top-level actions that you want the application to execute.

For example, assuming your Scheme file is MyProgram.scm, you have two ways at your
disposal to compile this Scheme program to a standalone application:

1. Compile in the regular way described in the previous section, but add the --main

option.

kawa --main -C MyProgram.scm

The --main option will compile all Scheme programs received in arguments to stand-
alone applications.

2. Compile in the regular way decribed in the previous section, but add the main: #t

module compile option to your module.

;; MyProgram.scm

(module-name <myprogram>)

(module-compile-options main: #t)

kawa -C MyProgram.scm

This way you can compile multiple Scheme programs at once, and still control which
one(s) will compile to standalone application(s).

Both methods will create a MyProgram.class which you can either load (as described
in the previous section), or invoke as an application:

java MyProgram [args]

Your Scheme program can access the command-line arguments args by using the global
variable ‘command-line-arguments’, or the R6RS function ‘command-line’.

http://ant.apache.org
ant-kawac.html
ant-kawac.html

Chapter 6: How to start up and run Kawa 104

If there is no explicit module-export in a module compiled with --main then no names
are exported. (The default otherwise is for all names to be exported.)

6.5.5 Compiling to an applet

An applet is a Java class that inherits from java.applet.Applet. The applet can be
downloaded and run in a Java-capable web-browser. To generate an applet from a Scheme
program, write the Scheme program with appropriate definitions of the functions ‘init’,
‘start’, ‘stop’ and ‘destroy’. You must declare these as zero-argument functions with a
<void> return-type.

Here is an example, based on the scribble applet in Flanagan’s "Java Examples in a
Nutshell" (O’Reilly, 1997):

(define-private last-x 0)

(define-private last-y 0)

(define (init) :: void

(let ((applet (this)))

(applet:addMouseListener

(object (java.awt.event.MouseAdapter)

((mousePressed e)

(set! last-x (e:getX))

(set! last-y (e:getY)))))

(applet:addMouseMotionListener

(object (java.awt.event.MouseMotionAdapter)

((mouseDragged e)

(let ((g (applet:getGraphics))

(x (e:getX))

(y (e:getY)))

(g:drawLine last-x last-y x y)

(set! last-x x)

(set! last-y y)))))))

(define (start) :: void (format #t "called start.~%~!"))

(define (stop) :: void (format #t "called stop.~%~!"))

(define (destroy) :: void (format #t "called destroy.~%~!"))

You compile the program with the ‘--applet’ flag in addition to the normal ‘-C’ flag:

java kawa.repl --applet -C scribble.scm

You can then create a ‘.jar’ archive containing your applet:

jar cf scribble.jar scribble*.class

Finally, you create an ‘.html’ page referencing your applet and its support jars:

<html><head><title>Scribble testapp</title></head>

<body><h1>Scribble testapp</h1>

You can scribble here:

<applet code="scribble.class" archive="scribble.jar, kawa-3.1.1.jar" width=200 height=200>

Sorry, Java is needed.</applet>

Chapter 7: Syntax 105

</body></html>

The problem with using Kawa to write applets is that the Kawa .jar file is quite big,
and may take a while to download over a network connection. Some possible solutions:

• Try to strip out of the Kawa .jar any classes your applet doesn’t need.

• Java 2 provides a mechanism to install a download extension (http://java.sun.com/
docs/books/tutorial/ext/basics/download.html).

• Consider some alternative to applets, such as Java Web Start (http://java.sun.com/
products/javawebstart/).

6.5.6 Compiling to a native executable

In the past it was possible to compile a Scheme program to native code using GCJ. However,
using GCJ with Kawa is no longer supported, as GCJ is no longer being actively maintained.

7 Syntax

7.1 Notation

The formal syntax for Kawa Scheme is written in an extended BNF. Non–terminals are
written like-this. Case is insignificant for non–terminal names. Literal text (terminals) are
written like this.

All spaces in the grammar are for legibility.

The following extensions to BNF are used to make the description more concise: thing*

or thing... both mean zero or more occurrences of thing , and thing+ means at least one
thing .

Some non-terminal names refer to the Unicode scalar values of the same name:
character-tabulation (U+0009), linefeed (U+000A), carriage-return (U+000D), line-
tabulation (U+000B), form-feed (U+000C), space (U+0020), next-line (U+0085),
line-separator (U+2028), and paragraph-separator (U+2029).

7.2 Lexical and datum syntax

The syntax of Scheme code is organized in three levels:

1. the lexical syntax that describes how a program text is split into a sequence of lexemes,

2. the datum syntax, formulated in terms of the lexical syntax, that structures the lexeme
sequence as a sequence of syntactic data, where a syntactic datum is a recursively
structured entity,

3. the program syntax formulated in terms of the datum syntax, imposing further structure
and assigning meaning to syntactic data.

Syntactic data (also called external representations) double as a notation for objects,
and the read and write procedures can be used for reading and writing syntactic data,
converting between their textual representation and the corresponding objects. Each syn-
tactic datum represents a corresponding datum value. A syntactic datum can be used in a
program to obtain the corresponding datum value using quote.

http://java.sun.com/docs/books/tutorial/ext/basics/download.html
http://java.sun.com/docs/books/tutorial/ext/basics/download.html
http://java.sun.com/products/javawebstart/
http://java.sun.com/products/javawebstart/

Chapter 7: Syntax 106

Scheme source code consists of syntactic data and (non–significant) comments. Syntactic
data in Scheme source code are called forms. (A form nested inside another form is called a
subform.) Consequently, Scheme’s syntax has the property that any sequence of characters
that is a form is also a syntactic datum representing some object. This can lead to confusion,
since it may not be obvious out of context whether a given sequence of characters is intended
to be a representation of objects or the text of a program. It is also a source of power, since it
facilitates writing programs such as interpreters or compilers that treat programs as objects
(or vice versa).

A datum value may have several different external representations. For example, both
#e28.000 and #x1c are syntactic data representing the exact integer object 28, and the
syntactic data (8 13), (08 13), (8 . (13 . ())) all represent a list containing the exact
integer objects 8 and 13. Syntactic data that represent equal objects (in the sense of equal?)
are always equivalent as forms of a program.

Because of the close correspondence between syntactic data and datum values, we some-
times uses the term datum for either a syntactic datum or a datum value when the exact
meaning is apparent from the context.

7.3 Lexical syntax

The lexical syntax determines how a character sequence is split into a sequence of lex-
emes, omitting non–significant portions such as comments and whitespace. The character
sequence is assumed to be text according to the Unicode standard (http://unicode.org/
). Some of the lexemes, such as identifiers, representations of number objects, strings etc.,
of the lexical syntax are syntactic data in the datum syntax, and thus represent objects.
Besides the formal account of the syntax, this section also describes what datum values are
represented by these syntactic data.

The lexical syntax, in the description of comments, contains a forward reference to
datum, which is described as part of the datum syntax. Being comments, however, these
datums do not play a significant role in the syntax.

Case is significant except in representations of booleans, number objects, and in hexadec-
imal numbers specifying Unicode scalar values. For example, #x1A and #X1a are equivalent.
The identifier Foo is, however, distinct from the identifier FOO.

7.3.1 Formal account

Interlexeme-space may occur on either side of any lexeme, but not within a lexeme.

Identifiers, ., numbers, characters, and booleans, must be terminated by a delimiter or
by the end of the input.

lexeme ::= identifier | boolean | number
| character | string
| (|) | [|] | #(
| fl | ` | , | ,@ | .
| #fl | #` | #, | #,@

delimiter ::= (|) | [|] | " | ; | #
| whitespace

((UNFINISHED))

http://unicode.org/
http://unicode.org/

Chapter 7: Syntax 107

7.3.2 Line endings

Line endings are significant in Scheme in single–line comments and within string literals. In
Scheme source code, any of the line endings in line-ending marks the end of a line. Moreover,
the two–character line endings carriage-return linefeed and carriage-return next-line each
count as a single line ending.

In a string literal, a line-ending not preceded by a \ stands for a linefeed character,
which is the standard line–ending character of Scheme.

7.3.3 Whitespace and comments

intraline-whitespace ::= space | character-tabulation
whitespace ::= intraline-whitespace

| linefeed | line-tabulation | form-feed
| carriage-return | next-line
| any character whose category is Zs, Zl, or Zp

line-ending ::= linefeed | carriage return
| carriage-return linefeed | next-line
| carriage-return next-line | line-separator

comment ::= ; all subsequent characters up to a line-ending
or paragraph-separator

| nested-comment
| #; interlexeme-space datum
| shebang-comment

nested-comment ::= #| comment-text comment-cont* |#
comment-text ::= character sequence not containing #| or |#
comment-cont ::= nested-comment comment-text
atmosphere ::= whitespace | comment
interlexeme-space ::= atmosphere*

As a special case the characters #!/ are treated as starting a comment, but only at the
beginning of file. These characters are used on Unix systems as an Shebang interpreter
directive (http://en.wikipedia.org/wiki/Shebang_(Unix)). The Kawa reader skips
the entire line. If the last non-whitespace character is \ (backslash) then the following line
is also skipped, and so on.

shebang-comment ::= #! absolute-filename text up to non-escaped line-ending

Whitespace characters are spaces, linefeeds, carriage returns, character tabulations, form
feeds, line tabulations, and any other character whose category is Zs, Zl, or Zp. Whitespace
is used for improved readability and as necessary to separate lexemes from each other.
Whitespace may occur between any two lexemes, but not within a lexeme. Whitespace
may also occur inside a string, where it is significant.

The lexical syntax includes several comment forms. In all cases, comments are invisible
to Scheme, except that they act as delimiters, so, for example, a comment cannot appear
in the middle of an identifier or representation of a number object.

A semicolon (;) indicates the start of a line comment. The comment continues to the
end of the line on which the semicolon appears.

http://en.wikipedia.org/wiki/Shebang_(Unix)
http://en.wikipedia.org/wiki/Shebang_(Unix)

Chapter 7: Syntax 108

Another way to indicate a comment is to prefix a datum with #;, possibly with
interlexeme-space before the datum. The comment consists of the comment prefix #; and
the datum together. This notation is useful for “commenting out” sections of code.

Block comments may be indicated with properly nested #| and |# pairs.

#|

The FACT procedure computes the factorial of a

non-negative integer.

|#

(define fact

(lambda (n)

;; base case

(if (= n 0)

#;(= n 1)

1 ; identity of *

(* n (fact (- n 1))))))

7.3.4 Identifiers

identifier ::= initial subsequent*
| peculiar-identifier

initial ::= constituent | special-initial
| inline-hex-escape

letter ::= a | b | c | ... | z
| A | B | C | ... | Z

constituent ::= letter
| any character whose Unicode scalar value is greater than

127, and whose category is Lu, Ll, Lt, Lm, Lo, Mn,
Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co

special-initial ::= ! | $ | % | & | * | / | < | =
| > | ? | ^ | | ~

subsequent ::= initial | digit
| any character whose category is Nd, Mc, or Me
| special-subsequent

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
oct-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex-digit ::= digit

| a | A | b | B | c | C | d | D | e | E | f | F
special-subsequent ::= + | - | . | @
escape-sequence ::= inline-hex-escape

| “character-except-x
| multi-escape-sequence

inline-hex-escape ::= “xhex-scalar-value;
hex-scalar-value ::= hex-digit+
multi-escape-sequence ::= | symbol-element *|
symbol-element ::= any character except | or \

| inline-hex-escape | mnemonic-escape | \ |

Chapter 7: Syntax 109

character-except-x ::= any character except x
peculiar-identifier ::= + | - | ... | -> subsequent*

Most identifiers allowed by other programming languages are also acceptable to Scheme.
In general, a sequence of letters, digits, and “extended alphabetic characters” is an identifier
when it begins with a character that cannot begin a representation of a number object. In
addition, +, -, and ... are identifiers, as is a sequence of letters, digits, and extended alpha-
betic characters that begins with the two–character sequence ->. Here are some examples
of identifiers:

lambda q soup

list->vector + V17a

<= a34kTMNs ->-

the-word-recursion-has-many-meanings

Extended alphabetic characters may be used within identifiers as if they were letters.
The following are extended alphabetic characters:

! $ % & * + - . / < = > ? @ ^ _ ~

Moreover, all characters whose Unicode scalar values are greater than 127 and whose
Unicode category is Lu, Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk,
So, or Co can be used within identifiers. In addition, any character can be used within an
identifier when specified using an escape-sequence. For example, the identifier H\x65;llo
is the same as the identifier Hello.

Kawa supports two additional non-R6RS ways of making identifiers using special char-
acters, both taken from Common Lisp: Any character (except x) following a backslash is
treated as if it were a letter; as is any character between a pair of vertical bars.

Identifiers have two uses within Scheme programs:

• Any identifier may be used as a [variable], page 114, or as a [syntactic keyword],
page 120.

• When an identifier appears as or with in [literal], page 113, it is being used to denote
a Section 10.1 [symbol], page 160.

In contrast with older versions of Scheme, the syntax distinguishes between upper and
lower case in identifiers and in characters specified via their names, but not in numbers, nor
in inline hex escapes used in the syntax of identifiers, characters, or strings. The following
directives give explicit control over case folding.

[Syntax]#!fold-case
[Syntax]#!no-fold-case

These directives may appear anywhere comments are permitted and are treated as
comments, except that they affect the reading of subsequent data. The #!fold-case
directive causes the read procedure to case-fold (as if by string-foldcase) each iden-
tifier and character name subsequently read from the same port. The #!no-fold-case
directive causes the read procedure to return to the default, non-folding behavior.

Note that colon : is treated specially for Section 7.7 [Colon notation], page 115, in Kawa
Scheme, though it is a special-initial in standard Scheme (R6RS).

Chapter 7: Syntax 110

7.3.5 Numbers

((INCOMPLETE))

number ::= ((TODO))
| quantity

decimal ::= digit+ optional-exponent
| . digit+ optional-exponent
| digit+ . digit+ optional-exponent

optional-exponent ::= empty
| exponent-marker optional-sign digit+

exponent-marker ::= e | s | f | d | l

The letter used for the exponent in a floating-point literal determines its type:

e Returns a gnu.math.DFloat - for example 12e2. Note this matches the default
when there is no exponent-marker.

s or f Returns a primitive float (or java.lang.Float when boxed as an object) -
for example 12s2 or 12f2.

d Returns a primitive double (or java.lang.Double when boxed) - for example
12d2.

l Returns a java.math.BigDecimal - for example 12l2.

optional-sign ::= empty | + | -
digit-2 ::= 0 | 1
digit-8 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
digit-10 ::= digit
digit-16 ::= digit-10 | a | b | c | d | e | f

7.4 Datum syntax

The datum syntax describes the syntax of syntactic data in terms of a sequence of lexemes,
as defined in the lexical syntax.

The following grammar describes the syntax of syntactic data in terms of various kinds
of lexemes defined in the grammar in section “Lexical Syntax”:

datum ::= defining-datum
| nondefining-datum
| defined-datum

nondefining-datum ::= lexeme-datum
| compound-datum

lexeme-datum ::= boolean | number
| character | string | symbol

symbol ::= identifier
compound-datum ::= list | vector | uniform-vector | array-literal | extended-string-
literal | xml-literal
list ::= (datum*)

| (datum + . datum)
| abbreviation

vector ::= #(datum *)

Chapter 7: Syntax 111

7.4.1 Datum labels

datum-label ::= #indexnum=
defining-datum ::= datum-label +nondefining-datum
defined-datum ::= #indexnum#
indexnum ::= digit +

The lexical syntax #n=datum reads the same as datum, but also results in datum being
labelled by n, which must a sequence of digits.

The lexical syntax #n# serves as a reference to some object labelled by #n=; the result is
the same object (in the sense of eq?) as the #n=.

Together, these syntaxes permit the notation of structures with shared or circular sub-
structure.

(let ((x (list 'a 'b 'c)))

(set-cdr! (cddr x) x)

x) ⇒ #0=(a b c . #0#)

The scope of a datum label is the portion of the outermost datum in which it appears
that is to the right of the label. Consequently, a reference #n# can occur only after a label
#n=; it is an error to attempt a forward reference. In addition, it is an error if the reference
appears as the labelled object itself (as in #n=#n#), because the object labelled by #n= is
not well defined in this case.

7.4.2 Abbreviations

abbreviation ::= r6rs-abbreviation | kawa-abbreviation
r6rs-abbreviation ::= abbrev-prefix datum
abbrev-prefix ::= fl | ` | , | ,@

| #fl | #`
kawa-abbreviation ::= XXX

The following abbreviations are expanded at read-time:

fldatum means (quote datum).

`datum means (quasiquote datum).

,datum means (unquote datum).

,@datum means (unquote-splicing datum).

#fldatum means (syntax datum).

#`datum means (quasisyntax datum).

#,datum means (unsyntax datum). This abbreviation is currently only recognized when
nested inside an explicit #`datum form, because of a conflict with SRFI-10
named constructors.

#,@datum
means (unsyntax-splicing datum).

datum1:datum2
means ($lookup$ datum1 (quasiquote datum2)). See Section 7.7 [Colon nota-
tion], page 115.

Chapter 7: Syntax 112

[expression ...]
means ($bracket-list$ expression ...).

operator[expression ...]
means ($bracket-apply$ operator expression ...).

7.5 Hash-prefixed forms

A number of different special forms are indicated by an initial hash (number) symbols (#).
Here is a table summarizing them.

Case is ignored for the character followed the #. Thus #x and #X are the same.

#:keyword
Guile-style Section 10.3 [Keywords], page 165, syntax.

#“ [Character literals], page 202.

#! See Section 10.4 [Special named constants], page 165.

#`datum Equivalent to (quasisyntax datum). Convenience syntax for syntax-case
macros.

#fldatum Equivalent to (syntax datum). Convenience syntax for syntax-case macros.

#,datum Equivalent to (unsyntax datum). Currently only recognized when inside a
#`template form. Convenience syntax for syntax-case macros.

#,(name datum ...)
Special named constructors. This syntax is deprecated, because it conflicts with
unsyntax. It is only recognized when not in a #`template form.

#,@datum
Equivalent to (unsyntax-splicing datum).

#(A vector.

#| Start of nested-comment.

#/regex/ See Section 13.6 [Regular expressions], page 230.

#< See Section 20.4 [XML literals], page 339.

#;datum A datum comment - the datum is ignored. (An interlexeme-space may appear
before the datum.)

#number=datum
A reference definition, allowing cyclic and shared structure. Equivalent to the
datum, but also defines an association between the integer number and that
datum, which can be used by a subsequent #number# form.

#number#
A back-reference, allowing cyclic and shared structure.

#Radatum
An [array-literals], page 249, for a multi-dimensional array of rank R.

#b A binary (base-2) number.

Chapter 7: Syntax 113

#d A decimal (base-10) number.

#e A prefix to treat the following number as exact.

#f
#false The standard boolean false object.

#fn(number ...)
A uniform vector of floating-point numbers. The parameter n is a precision,
which can be 32 or 64. See Section 14.4 [Uniform vectors], page 239.

#i A prefix to treat the following number as inexact.

#o An octal (base-8) number.

#baser A number in the specified base (radix).

#sn(number ...)
A uniform vector of signed integers. The parameter n is a precision, which can
be 8, 16, 32, or 64. See Section 14.4 [Uniform vectors], page 239.

#t
#true The standard boolean true object.

#un(number ...)
A uniform vector of unsigned integers. The parameter n is a precision, which
can be 8, 16, 32, or 64. See Section 14.4 [Uniform vectors], page 239.

#x A hexadecimal (base-16) number.

The follow named constructor forms are supported:

#,(path path)
#,(filepath path)
#,(URI path)
#,(symbol local-name [uri [prefix]])
#,(symbol local-name namespace)
#,(namespace uri [prefix])
#,(duration duration)

7.6 Primitive expression syntax

expression ::= literal-expression | variable-reference
| procedure-call | TODO

7.6.1 Literal expressions

literal-expression ::= (quote datum)
| fl datum
| constant

constant ::= number | boolean | character | string

(quote datum) evaluates to datum, which may be any external representation of a
Scheme object. This notation is used to include literal constants in Scheme code.

(quote a) ⇒ a

(quote #(a b c)) ⇒ #(a b c)

Chapter 7: Syntax 114

(quote (+ 1 2)) ⇒ (+ 1 2)

(quote datum) may be abbreviated as 'datum. The two notations are equivalent in all
respects.

’a ⇒ a

’#(a b c) ⇒ #(a b c)

’() ⇒ ()

’(+ 1 2) ⇒ (+ 1 2)

’(quote a) ⇒ (quote a)

’’a ⇒ (quote a)

Numerical constants, string constants, character constants, bytevector constants, and
boolean constants evaluate to themselves; they need not be quoted.

145932 ⇒ 145932

#t ⇒ #t

"abc" ⇒ "abc"

Note that Section 10.3 [Keywords], page 165, need to be quoted, unlike some other
Lisp/Scheme dialect, including Common Lisp, and earlier versions of Kawa. (Kawa cur-
rently evaluates a non-quoted keyword as itself, but that will change.)

7.6.2 Variable references

variable-reference ::= identifier

An expression consisting of a variable is a variable reference if it is not a macro use (see
below). The value of the variable reference is the value stored in the location to which the
variable is bound. It is a syntax violation to reference an unbound variable.

The following example assumes the base library has been imported:

(define x 28)

x ⇒ 28

7.6.3 Procedure calls

procedure-call ::= (operator operand . . .)
operator ::= expression
operand ::= expression
| keyword expression
| @ expression
| @: expression

A procedure call consists of expressions for the procedure to be called and the arguments
to be passed to it, with enclosing parentheses. A form in an expression context is a procedure
call if operator is not an identifier bound as a syntactic keyword.

When a procedure call is evaluated, the operator and operand expressions are evaluated
(in an unspecified order) and the resulting procedure is passed the resulting arguments.

(+ 3 4) ⇒ 7

((if #f + *) 3 4) ⇒ 12

The syntax keyword expression is a keyword argument. This is a mechanism for speci-
fying arguments using a name rather than position, and is especially useful for procedures
with many optional paramaters. Note that keyword must be literal, and cannot be the

Chapter 7: Syntax 115

result from evaluating a non-literal expression. (This is a change from previous versions of
Kawa, and is different from Common Lisp and some other Scheme dialects.)

An expression prefixed by @ or @: is a splice argument. The following expression
must evaluate to an “argument list” (see Section 11.1 [Application and Arguments Lists],
page 166, for details); each element in the argument becomes a separate argument when
call the operator. (This is very similar to the “spread” operator is EcmaScript 6.)

7.7 Property access using colon notation

The colon notation accesses named parts (properties) of a value. It is used to get and
set fields, call methods, construct compound symbols, and more. Evaluating the form
owner:property evaluates the owner then it extracts the named property of the result.

property-access-abbreviation ::= property-owner-expression:property-name
property-owner-expression ::= expression
property-name ::= identifier | ,expression

The property-name is usually a literal name, but it can be an unquoted expression (i.e.
following a ,), in which case the name is evaluated at run-time. No separators are allowed
on either side of the colon.

The input syntax owner:part is translated by the Scheme reader to the internal repre-
sentation ($lookup$ owner (quasiquote part)).

7.7.1 Part lookup rules

Evaluation proceeds as follows. First property-owner-expression is evaluated to yield an
owner object. Evaluating the property-name yields a part name, which is a simple symbol:
Either the literal identifier, or the result of evaluating the property-name expression. If the
expression evaluates to a string, it is converted to a symbol, as if using string->symbol.

• If the owner implements gnu.mapping.HasNamedParts, then the result is that of in-
voking the get method of the owner with the part name as a parameter.

As a special case of this rule, if owner is a gnu.mapping.Namespace, then the result is
the Section 10.2 [Namespaces], page 161.

• If owner is a java.lang.Class or a gnu.bytecode.ObjectType, the result is the static
member named part (i.e. a static field, method, or member class).

• If owner is a java.lang.Package object, we get the member class or sub-package
named part.

• Otherwise, we look for a named member (instance member or field).

Note you can’t use colon notation to invoke instance methods of a Class,
because it will match a previous rule. For example if you want to invoke
the getDeclaredMethod method of the java.util.List , you can’t write
(java.util.List:getDeclaredMethod because that will look for a static method in
java.util.List. Instead, use the invoke or invoke-sttic method. For example:
(invoke java.util.List 'getDeclaredMethod).

If the colon form is on the left-hand-side of an assignment (set!), then the named part
is modified as appropriate.

Chapter 7: Syntax 116

7.7.2 Specific cases

Some of these are deprecated; more compact and readable forms are usually preferred.

7.7.2.1 Invoking methods

(instance:method-name arg ...)
(class:method-name instance arg ...)
(class:method-name arg ...)
(*:method-name instance arg ...)

For details see Section 19.9 [Method operations], page 320.

7.7.2.2 Accessing fields

class:field-name
instance:field-name
(prefix:.field-name instance)

For details see Section 19.11 [Field operations], page 327.

7.7.2.3 Type literal

(type:<>)

Returns the type. Deprecated; usually you can just write:

type

7.7.2.4 Type cast

(type:@ expression)

Performs a cast. Deprecated; usually you can just write:

->type

7.7.2.5 Type test

(type:instanceof? expression)

Deprecated; usually you can just write:

(type? expression)

7.7.2.6 New object construction

(type:new arg ...)

Deprecated; usually you can just write:

(type arg ...)

7.7.2.7 Getting array length

expression:length
(expression:.length)

Chapter 7: Syntax 117

7.8 Programs and Bodies

Program units

A program-unit consists of a sequence of definitions and expressions.

program-unit ::= library-definition + [statements]
| statements

statements ::= statement +
statement ::= definition | expression | (begin statement *)

Typically a program-unit corresponds to a single source file (i.e.a named file in the file
system). Evaluating a program-unit first requires the Kawa processor to analyze the whole
program-unit to determine which names are defined by the definitions, and then evaluates
each statement in order in the context of the defined names. The value of an expression is
normally discarded, but may be printed out instead, depending on the evaluating context.

The read-eval-print-loop (REPL) reads one or more lines until it gets a valid program-
unit, and evaluates it as above, except that the values of expressions are printed to the
console (as if using the display function). Then the REPL reads and evaluates another
program-unit, and so on. A definition in an earlier program-unit is remembered and is
visible in a later program-unit unles it is overridden.

A comment in the first 2 lines of a source file may contain an encoding specification.
This can be used to tell the reader what kind of character set encoding is used for the
file. This only works for a character encoding that is compatible with ASCII (in the sense
that if the high-order bit is clear then it’s an ASCII character), and that are no non-ASCI
characters in the lines upto and including the encoding specification. A basic example is:

;; -*- coding: utf-8 -*-

In general any string that matches the following regular expression works:

coding[:=]\s*([-a-zA-Z0-9]+)

Libraries

A program-unit may contain library-definitions. In addition, any statements in program-
unit comprise an implicit library, in that it can be given a name, and referenced from other
libraries. Certain names defined in the program-unit can be exported, and then they can
be imported by other libraries. For more information see Section 19.5 [Module classes],
page 305.

It is recommended but not required that:

• There should be at most one library-definition in a program-unit.

• The library-name of the library-definition should match the name of the source file.
For example:

(define-library (foo bar) ...)

should be in a file named foo/bar.scm.

• If there is a library-definition, there should be no extra statements - i.e no implicit
library definition. (It is disallowed to export any definitions from the implicit library
if there is also a library-definition.)

Chapter 7: Syntax 118

Following these recommendations makes it easier to locate and organize libraries. How-
ever, having multiple libraries in a single program-unit is occasionally useful for source
distribution and for testing.

Bodies

The body of a lambda, let, let*, let-values, let*-values, letrec, or letrec* expres-
sion, or that of a definition with a body consists of zero or more definitions or expressions
followed by a final expression. (Standard Scheme requires that all definitions precede all
expressions.)

body ::= statement *

Each identifier defined by a definition is local to the body . That is, the identifier is
bound, and the region of the binding is the entire body . Example:

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3)))

⇒ 45

When begin, let-syntax, or letrec-syntax forms occur in a body prior to the first
expression, they are spliced into the body. Some or all of the body, including portions
wrapped in begin, let-syntax, or letrec-syntax forms, may be specified by a macro use.

An expanded body containing variable definitions can be converted into an equivalent
letrec* expression. (If there is a definition following expressions you may need to con-
vert the expressions to dummy definitions.) For example, the let expression in the above
example is equivalent to

(let ((x 5))

(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

7.9 Syntax and conditional compilation

Feature testing

[Syntax]cond-expand cond-expand-clause* [(else command-or-definition*)]
cond-expand-clause ::= (feature-requirement command-or-definition*)
feature-requirement ::= feature-identifier
| (and feature-requirement *)
| (or feature-requirement *)
| (not feature-requirement)
| (library library-name)

feature-identifier ::= a symbol which is the name or alias of a SRFI

The cond-expand form tests for the existence of features at macro-expansion time. It
either expands into the body of one of its clauses or signals an error during syntactic
processing. cond-expand expands into the body of the first clause whose feature
requirement is currently satisfied; the else clause, if present, is selected if none of the
previous clauses is selected.

Chapter 7: Syntax 119

The implementation has a set of feature identifiers which are “present”, as well as a set
of libraries which can be imported. The value of a feature-requirement is determined
by replacing each feature-identifier by #t if it is present (and #f otherwise); replacing
(library library-name) by #t if library-name is importable (and #f otherwise);
and then evaluating the resulting expression as a Scheme boolean expression under
the normal interpretation of and, or, and not.

Examples:

(cond-expand

((and srfi-1 srfi-10)

(write 1))

((or srfi-1 srfi-10)

(write 2))

(else))

(cond-expand

(command-line

(define (program-name) (car (argv)))))

The second example assumes that command-line is an alias for some feature which
gives access to command line arguments. Note that an error will be signaled at
macro-expansion time if this feature is not present.

You can use java-6, java-7, java-8, or java-9 to check if the underlying Java is a
specific version or newer. For example the name java-7 matches for either Java 7,
Java 8, or newer, as reported by System property "java.version".

You can use class-exists:ClassName to check if ClassName exists at compile-time.
The identifier class-exists:org.example.MyClass is roughly equivalent to the test
(library (org example MyClass)). (The latter has some special handling for (srfi
...) as well as builtin Kawa classes.)

The feature in-http-server is defined in a Section 20.6 [Self-configuring page
scripts], page 343, and more specifically in-servlet in a Section 20.7 [Servlets],
page 346.

[Procedure]features
Returns a list of feature identifiers which cond-expand treats as true. This not
a complete list - for example class-exists:ClassName feature identifiers are not
included. It is an error to modify this list. Here is an example of what features

might return:

(features) ⇒
(complex exact-complex full-unicode java-7 java-6 kawa

ratios srfi-0 srfi-4 srfi-6 srfi-8 srfi-9 srfi-11

srfi-16 srfi-17 srfi-23 srfi-25 srfi-26 srfi-28 srfi-30

srfi-39 string-normalize-unicode threads)

File inclusion

[Syntax]include path+

[Syntax]include-relative path+

Chapter 7: Syntax 120

[Syntax]include-ci path+

These take one or more path names expressed as string literals, find corresponding
files, read the contents of the files in the specified order as if by repeated applications
of read, and effectively replace the include with a begin form containing what was
read from the files.

You can control the search path used for include by setting the kawa.include.path
property. For example:

$ kawa -Dkawa.include.path="|:/opt/kawa-includes"

The special "|" path element means to search relative to the directory containing the
including source file. The default search path is "|:." which means to first search the
directory containing the including source file, and then search the directory specified
by (current-path).

The search path for include-relative prepends "|" before the search path used by
include, so it always searches first the directory containing the including source file.
Note that if the default search path is used then include and include-relative are
equivalent; there is only a difference if the kawa.include.path property changes the
default.

Using include-ci is like include, except that it reads each file as if it began with
the #!fold-case directive.

7.10 Macros

Libraries and top–level programs can define and use new kinds of derived expressions and
definitions called syntactic abstractions or macros. A syntactic abstraction is created by
binding a keyword to a macro transformer or, simply, transformer.

The transformer determines how a use of the macro (called a macro use) is transcribed
into a more primitive form.

Most macro uses have the form:

(keyword datum ...)

where keyword is an identifier that uniquely determines the kind of form. This identifier is
called the syntactic keyword, or simply keyword. The number of datums and the syntax of
each depends on the syntactic abstraction.

Macro uses can also take the form of improper lists, singleton identifiers, or set! forms,
where the second subform of the set! is the keyword:

(keyword datum datum)

keyword

(set! keyword datum)

The define-syntax, let-syntax and letrec-syntax forms create bindings for key-
words, associate them with macro transformers, and control the scope within which they
are visible.

The syntax-rules and identifier-syntax forms create transformers via a pattern lan-
guage. Moreover, the syntax-case form allows creating transformers via arbitrary Scheme
code.

Chapter 7: Syntax 121

Keywords occupy the same name space as variables. That is, within the same scope,
an identifier can be bound as a variable or keyword, or neither, but not both, and local
bindings of either kind may shadow other bindings of either kind.

Macros defined using syntax-rules and identifier-syntax are “hygienic” and “ref-
erentially transparent” and thus preserve Scheme’s lexical scoping.

• If a macro transformer inserts a binding for an identifier (variable or keyword) not
appearing in the macro use, the identifier is in effect renamed throughout its scope to
avoid conflicts with other identifiers.

• If a macro transformer inserts a free reference to an identifier, the reference refers to
the binding that was visible where the transformer was specified, regardless of any local
bindings that may surround the use of the macro.

Macros defined using the syntax-case facility are also hygienic unless datum->syntax
is used.

Kawa supports most of the syntax-case feature.

Syntax definitions are valid wherever definitions are. They have the following form:

[Syntax]define-syntax keyword transformer-spec
The keyword is a identifier, and transformer-spec is a function that maps syntax forms
to syntax forms, usually an instance of syntax-rules. If the define-syntax occurs
at the top level, then the top-level syntactic environment is extended by binding the
keyword to the specified transformer, but existing references to any top-level binding
for keyword remain unchanged. Otherwise, it is an internal syntax definition, and is
local to the body in which it is defined.

(let ((x 1) (y 2))

(define-syntax swap!

(syntax-rules ()

((swap! a b)

(let ((tmp a))

(set! a b)

(set! b tmp)))))

(swap! x y)

(list x y)) ⇒ (2 1)

Macros can expand into definitions in any context that permits them. However, it
is an error for a definition to define an identifier whose binding has to be known in
order to determine the meaning of the definition itself, or of any preceding definition
that belongs to the same group of internal definitions.

[Syntax]define-syntax-case name (literals) (pattern expr) ...
A convenience macro to make it easy to define syntax-case-style macros. Defines
a macro with the given name and list of literals. Each pattern has the form of a
syntax-rules-style pattern, and it is matched against the macro invocation syntax
form. When a match is found, the corresponding expr is evaluated. It must evaluate
to a syntax form, which replaces the macro invocation.

(define-syntax-case macro-name (literals)

(pat1 result1)

Chapter 7: Syntax 122

(pat2 result2))

is equivalent to:

(define-syntax macro-name

(lambda (form)

(syntax-case form (literals)

(pat1 result1)

(pat2 result2))))

[Syntax]define-macro (name lambda-list) form ...
This form is deprecated. Functionally equivalent to defmacro.

[Syntax]defmacro name lambda-list form ...
This form is deprecated. Instead of

(defmacro (name ...)

(let ... `(... ,exp ...)))

you should probably do:

(define-syntax-case name ()

((_ ...) (let #`(... #,exp ...))))

and instead of

(defmacro (name ... var ...) `(... var ...))

you should probably do:

(define-syntax-case name ()

((_ ... var ...) #`(... var ...))

Defines an old-style macro a la Common Lisp, and installs (lambda lambda-list

form ...) as the expansion function for name. When the translator sees an applica-
tion of name, the expansion function is called with the rest of the application as the
actual arguments. The resulting object must be a Scheme source form that is futher
processed (it may be repeatedly macro-expanded).

[Procedure]gentemp
Returns a new (interned) symbol each time it is called. The symbol names are
implementation-dependent. (This is not directly macro-related, but is often used
in conjunction with defmacro to get a fresh unique identifier.)

[Procedure]expand form
The result of evaluating form is treated as a Scheme expression, syntax-expanded to
internal form, and then converted back to (roughly) the equivalent expanded Scheme
form.

This can be useful for debugging macros.

To access this function, you must first (require 'syntax-utils).

(require 'syntax-utils)

(expand '(cond ((> x y) 0) (else 1))) ⇒ (if (> x y) 0 1)

Chapter 7: Syntax 123

7.10.1 Pattern language

A transformer-spec is an expression that evaluates to a transformer procedure, which takes
an input form and returns a resulting form. You can do general macro-time compilation with
such a procedure, commonly using syntax-case (which is documented in the R6RS library
specification). However, when possible it is better to use the simpler pattern language of
syntax-rules:

transformer-spec ::=

(syntax-rules (tr-literal *) syntax-rule *)
| (syntax-rules ellipsis (tr-literal *) syntax-rule *)
| expression

syntax-rule ::= (list-pattern syntax-template)
tr-literal ::= identifier
ellipsis ::= identifier

An instance of syntax-rules produces a new macro transformer by specifying a se-
quence of hygienic rewrite rules. A use of a macro whose keyword is associated with a
transformer specified by syntax-rules is matched against the patterns contained in the
syntax-rules beginning with the leftmost syntax rule . When a match is found, the macro
use is transcribed hygienically according to the template. The optional ellipsis species a
symbol used to indicate repetition; it defaults to ... (3 periods).

syntax-pattern ::=

identifier | constant | list-pattern | vector-pattern
list-pattern ::= (syntax-pattern *)
| (syntax-pattern syntax-pattern * . syntax-pattern)
| (syntax-pattern * syntax-pattern ellipsis syntax-pattern *)
| (syntax-pattern * syntax-pattern ellipsis syntax-pattern * . syntax-pattern)

vector-pattern ::= #(syntax-pattern *)
| #(syntax-pattern * syntax-pattern ellipsis syntax-pattern *)

An identifier appearing within a pattern can be an underscore (_), a literal identifier
listed in the list of tr-literals, or the ellipsis. All other identifiers appearing within a pattern
are pattern variables.

The outer syntax-list of the pattern in a syntax-rule must start with an identifier. It
is not involved in the matching and is considered neither a pattern variable nor a literal
identifier.

Pattern variables match arbitrary input elements and are used to refer to elements of
the input in the template. It is an error for the same pattern variable to appear more than
once in a syntax-pattern.

Underscores also match arbitrary input elements but are not pattern variables and so
cannot be used to refer to those elements. If an underscore appears in the literals list, then
that takes precedence and underscores in the pattern match as literals. Multiple underscores
can appear in a syntax-pattern.

Identifiers that appear in (tr-literal*) are interpreted as literal identifiers to be
matched against corresponding elements of the input. An element in the input matches
a literal identifier if and only if it is an identifier and either both its occurrence in the macro
expression and its occurrence in the macro definition have the same lexical binding, or the
two identifiers are the same and both have no lexical binding.

Chapter 7: Syntax 124

A subpattern followed by ellipsis can match zero or more elements of the input, unless
ellipsis appears in the literals, in which case it is matched as a literal.

More formally, an input expression E matches a pattern P if and only if:

• P is an underscore (); or

• P is a non-literal identifier; or

• P is a literal identifier and E is an identifier with the same binding; or

• P is a list (P1 ... Pn) and E is a list of n elements that match P1 through Pn, respec-
tively; or

• P is an improper list (P1 ... Pn . Pn+1) and E is a list or improper list of n or more
elements that match P1 through Pn, respectively, and whose nth tail matches Pn+1; or

• P is of the form (P1 ... Pk Pe ellipsis Pk+1 ... Pk+l) where E is a proper list of n elements,
the first k of which match P1 through Pk, respectively, whose next n-k-l elements each
match Pe, and whose remaining l elements match Pk+1 through Pk+l; or

• P is of the form (P1 ... Pk Pe ellipsis Pk+1 ... Pk+l . Px) where E is a list or improper
list of n elements, the first k of which match P1 through Pk, whose next n-k-l elements
each match Pe, and whose remaining l elements match Pk+1 through Pk+l, and whose
nth and final cdr matches Px; or

• P is a vector of the form #(P1 ... Pn) and E is a vector of n elements that match P1

through Pn; or

• P is of the form #(P1 ... Pk Pe ellipsis Pk+1 ... Pk+l) where E is a vector of n elements
the first k of which match P1 through Pk, whose next n-k-l elements each match Pe,
and whose remaining l elements match Pk+1 through Pk+l; or

• P is a constant and E is equal to P in the sense of the equal? procedure.

It is an error to use a macro keyword, within the scope of its binding, in an expression
that does not match any of the patterns.

syntax-template ::= identifier | constant
| (template-element *)
| (template-element template-element * . syntax-template)
| (ellipsis syntax-template)

template-element ::= syntax-template [ellipsis]

When a macro use is transcribed according to the template of the matching syntax-rule,
pattern variables that occur in the template are replaced by the elements they match in the
input. Pattern variables that occur in subpatterns followed by one or more instances of the
identifier ellipsis are allowed only in subtemplates that are followed by as many instances
of ellipsis . They are replaced in the output by all of the elements they match in the input,
distributed as indicated. It is an error if the output cannot be built up as specified.

Identifiers that appear in the template but are not pattern variables or the identifier
ellipsis are inserted into the output as literal identifiers. If a literal identifier is inserted as a
free identifier then it refers to the binding of that identifier within whose scope the instance
of syntax-rules appears. If a literal identifier is inserted as a bound identifier then it is in
effect renamed to prevent inadvertent captures of free identifiers.

A template of the form (ellipsis template) is identical to template, except that ellipses
within the template have no special meaning. That is, any ellipses contained within tem-

Chapter 7: Syntax 125

plate are treated as ordinary identifiers. In particular, the template (ellipsis ellipsis) pro-
duces a single ellipsis. This allows syntactic abstractions to expand into code containing
ellipses.

(define-syntax be-like-begin

(syntax-rules ()

((be-like-begin name)

(define-syntax name

(syntax-rules ()

((name expr (... ...))

(begin expr (... ...))))))))

(be-like-begin sequence)

(sequence 1 2 3 4) ⇒ 4

7.10.2 Identifier predicates

[Procedure]identifier? obj
Return #t if obj is an identifier, i.e., a syntax object representing an identifier, and
#f otherwise.

The identifier? procedure is often used within a fender to verify that certain sub-
forms of an input form are identifiers, as in the definition of rec, which creates
self–contained recursive objects, below.

(define-syntax rec

(lambda (x)

(syntax-case x ()

((_ x e)

(identifier? #'x)

#'(letrec ((x e)) x)))))

(map (rec fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

'(1 2 3 4 5)) ⇒ (1 2 6 24 120)

(rec 5 (lambda (x) x)) ⇒ exception

The procedures bound-identifier=? and free-identifier=? each take two identifier
arguments and return #t if their arguments are equivalent and #f otherwise. These pred-
icates are used to compare identifiers according to their intended use as free references or
bound identifiers in a given context.

[Procedure]bound-identifier=? id1 id2
id1 and id2 must be identifiers.

The procedure bound-identifier=? returns #t if a binding for one would capture a
reference to the other in the output of the transformer, assuming that the reference
appears within the scope of the binding, and #f otherwise.

Chapter 7: Syntax 126

In general, two identifiers are bound-identifier=? only if both are present in the
original program or both are introduced by the same transformer application (perhaps
implicitly, see datum->syntax).

The bound-identifier=? procedure can be used for detecting duplicate identifiers
in a binding construct or for other preprocessing of a binding construct that requires
detecting instances of the bound identifiers.

[Procedure]free-identifier=? id1 id2
id1 and id2 must be identifiers.

The free-identifier=? procedure returns #t if and only if the two identifiers would
resolve to the same binding if both were to appear in the output of a transformer
outside of any bindings inserted by the transformer. (If neither of two like–named
identifiers resolves to a binding, i.e., both are unbound, they are considered to resolve
to the same binding.)

Operationally, two identifiers are considered equivalent by free-identifier=? if and
only the topmost matching substitution for each maps to the same binding or the
identifiers have the same name and no matching substitution.

The syntax-case and syntax-rules forms internally use free-identifier=? to
compare identifiers listed in the literals list against input identifiers.

(let ((fred 17))

(define-syntax a

(lambda (x)

(syntax-case x ()

((_ id) #'(b id fred)))))

(define-syntax b

(lambda (x)

(syntax-case x ()

((_ id1 id2)

#`(list

#,(free-identifier=? #'id1 #'id2)

#,(bound-identifier=? #'id1 #'id2))))))

(a fred))

⇒ (#t #f)

The following definition of unnamed let uses bound-identifier=? to detect dupli-
cate identifiers.

(define-syntax let

(lambda (x)

(define unique-ids?

(lambda (ls)

(or (null? ls)

(and (let notmem? ((x (car ls)) (ls (cdr ls)))

(or (null? ls)

(and (not (bound-identifier=? x (car ls)))

(notmem? x (cdr ls)))))

(unique-ids? (cdr ls))))))

(syntax-case x ()

Chapter 7: Syntax 127

((_ ((i v) ...) e1 e2 ...)

(unique-ids? #'(i ...))

#'((lambda (i ...) e1 e2 ...) v ...)))))

The argument #'(i ...) to unique-ids? is guaranteed to be a list by the rules given
in the description of syntax above.

With this definition of let:

(let ((a 3) (a 4)) (+ a a)) ⇒ syntax error

However,

(let-syntax

((dolet (lambda (x)

(syntax-case x ()

((_ b)

#'(let ((a 3) (b 4)) (+ a b)))))))

(dolet a))

⇒ 7

since the identifier a introduced by dolet and the identifier a extracted from the
input form are not bound-identifier=?.

Rather than including else in the literals list as before, this version of case explicitly
tests for else using free-identifier=?.

(define-syntax case

(lambda (x)

(syntax-case x ()

((_ e0 ((k ...) e1 e2 ...) ...

(else-key else-e1 else-e2 ...))

(and (identifier? #'else-key)

(free-identifier=? #'else-key #'else))

#'(let ((t e0))

(cond

((memv t '(k ...)) e1 e2 ...)

...

(else else-e1 else-e2 ...))))

((_ e0 ((ka ...) e1a e2a ...)

((kb ...) e1b e2b ...) ...)

#'(let ((t e0))

(cond

((memv t '(ka ...)) e1a e2a ...)

((memv t '(kb ...)) e1b e2b ...)

...))))))

With either definition of case, else is not recognized as an auxiliary keyword if an
enclosing lexical binding for else exists. For example,

(let ((else #f))

(case 0 (else (write "oops")))) ⇒ syntax error

since else is bound lexically and is therefore not the same else that appears in the
definition of case.

Chapter 7: Syntax 128

7.10.3 Syntax-object and datum conversions

[Procedure]syntax->datum syntax-object
[Deprecated procedure]syntax-object->datum syntax-object

Strip all syntactic information from a syntax object and returns the corresponding
Scheme datum.

Identifiers stripped in this manner are converted to their symbolic names, which can
then be compared with eq?. Thus, a predicate symbolic-identifier=? might be
defined as follows.

(define symbolic-identifier=?

(lambda (x y)

(eq? (syntax->datum x)

(syntax->datum y))))

[Procedure]datum->syntax template-id datum [srcloc]
[Deprecated procedure]datum->syntax-object template-id datum

template-id must be a template identifier and datum should be a datum value.

The datum->syntax procedure returns a syntax-object representation of datum that
contains the same contextual information as template-id, with the effect that the
syntax object behaves as if it were introduced into the code when template-id was
introduced.

If srcloc is specified (and neither #f or #!null), it specifies the file position (including
line number) for the result. In that case it should be a syntax object representing
a list; otherwise it is currently ignored, though future extensions may support other
ways of specifying the position.

The datum->syntax procedure allows a transformer to “bend” lexical scoping rules by
creating implicit identifiers that behave as if they were present in the input form, thus
permitting the definition of macros that introduce visible bindings for or references
to identifiers that do not appear explicitly in the input form. For example, the
following defines a loop expression that uses this controlled form of identifier capture
to bind the variable break to an escape procedure within the loop body. (The derived
with-syntax form is like let but binds pattern variables.)

(define-syntax loop

(lambda (x)

(syntax-case x ()

((k e ...)

(with-syntax

((break (datum->syntax #'k 'break)))

#'(call-with-current-continuation

(lambda (break)

(let f () e ... (f)))))))))

(let ((n 3) (ls '()))

(loop

(if (= n 0) (break ls))

(set! ls (cons 'a ls))

Chapter 7: Syntax 129

(set! n (- n 1))))

⇒ (a a a)

Were loop to be defined as:

(define-syntax loop

(lambda (x)

(syntax-case x ()

((_ e ...)

#'(call-with-current-continuation

(lambda (break)

(let f () e ... (f))))))))

the variable break would not be visible in e

The datum argument datum may also represent an arbitrary Scheme form, as demon-
strated by the following definition of include.

(define-syntax include

(lambda (x)

(define read-file

(lambda (fn k)

(let ((p (open-file-input-port fn)))

(let f ((x (get-datum p)))

(if (eof-object? x)

(begin (close-port p) '())

(cons (datum->syntax k x)

(f (get-datum p))))))))

(syntax-case x ()

((k filename)

(let ((fn (syntax->datum #'filename)))

(with-syntax (((exp ...)

(read-file fn #'k)))

#'(begin exp ...)))))))

(include "filename") expands into a begin expression containing the forms found
in the file named by "filename". For example, if the file flib.ss contains:

(define f (lambda (x) (g (* x x))))

and the file glib.ss contains:

(define g (lambda (x) (+ x x)))

the expression:

(let ()

(include "flib.ss")

(include "glib.ss")

(f 5))

evaluates to 50.

The definition of include uses datum->syntax to convert the objects read from the
file into syntax objects in the proper lexical context, so that identifier references and
definitions within those expressions are scoped where the include form appears.

Chapter 7: Syntax 130

Using datum->syntax, it is even possible to break hygiene entirely and write macros
in the style of old Lisp macros. The lisp-transformer procedure defined below
creates a transformer that converts its input into a datum, calls the programmer’s
procedure on this datum, and converts the result back into a syntax object scoped
where the original macro use appeared.

(define lisp-transformer

(lambda (p)

(lambda (x)

(syntax-case x ()

((kwd . rest)

(datum->syntax #'kwd

(p (syntax->datum x))))))))

7.10.4 Signaling errors in macro transformers

[Syntax]syntax-error message args*

The message and args are treated similary as for the error procedure. However,
the error is reported when the syntax-error is expanded. This can be used as a
syntax-rules template for a pattern that is an invalid use of the macro, which can
provide more descriptive error messages. The message should be a string literal, and
the args arbitrary (non-evalualted) expressions providing additional information.

(define-syntax simple-let

(syntax-rules ()

((_ (head ... ((x . y) val) . tail)

body1 body2 ...)

(syntax-error "expected an identifier but got" (x . y)))

((_ ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))))

[Procedure]report-syntax-error location message
This is a procedure that can be called at macro-expansion time by a syntax trans-
former function. (In contrast syntax-error is a syntax form used in the expansion
result.) The message is reported as a compile-time error message. The location is
used for the source location (file name and line/column numbers): In general it can
be a SourceLocator value; most commonly it is a syntax object for a sub-list of the
input form that is erroneous. The value returned by report-syntax-error is an
instance of ErrorExp, which supresses further compilation.

(define-syntax if

(lambda (x)

(syntax-case x ()

((_ test then)

(make-if-exp #'test #'then #!null))

((_ test then else)

(make-if-exp #'test #'then #'else))

((_ e1 e2 e3 . rest)

(report-syntax-error #'rest

Chapter 7: Syntax 131

"too many expressions for 'if'"))

((_ . rest)

(report-syntax-error #'rest

"too few expressions for 'if'")))))

In the above example, one could use the source form x for the location, but using
#'rest is more accurate. Note that the following is incorrect, because e1 might not
be a pair, in which case we don’t have location information for it (due to a Kawa
limitation):

(syntax-case x ()

...

((_ e1)

(report-syntax-error

#'e1 ;; poor location specifier

"too few expressions for 'if'")))))

7.10.5 Convenience forms

[Syntax]with-syntax ((pattern expression) . . .) body
The with-syntax form is used to bind pattern variables, just as let is used to bind
variables. This allows a transformer to construct its output in separate pieces, then
put the pieces together.

Each pattern is identical in form to a syntax-case pattern. The value of each ex-
pression is computed and destructured according to the corresponding pattern, and
pattern variables within the pattern are bound as with syntax-case to the corre-
sponding portions of the value within body.

The with-syntax form may be defined in terms of syntax-case as follows.

(define-syntax with-syntax

(lambda (x)

(syntax-case x ()

((_ ((p e0) ...) e1 e2 ...)

(syntax (syntax-case (list e0 ...) ()

((p ...) (let () e1 e2 ...))))))))

The following definition of cond demonstrates the use of with-syntax to support
transformers that employ recursion internally to construct their output. It handles
all cond clause variations and takes care to produce one-armed if expressions where
appropriate.

(define-syntax cond

(lambda (x)

(syntax-case x ()

((_ c1 c2 ...)

(let f ((c1 #'c1) (c2* #'(c2 ...)))

(syntax-case c2* ()

(()

(syntax-case c1 (else =>)

(((else e1 e2 ...) #'(begin e1 e2 ...))

((e0) #'e0)

Chapter 7: Syntax 132

((e0 => e1)

#'(let ((t e0)) (if t (e1 t))))

((e0 e1 e2 ...)

#'(if e0 (begin e1 e2 ...)))))

((c2 c3 ...)

(with-syntax ((rest (f #'c2 #'(c3 ...))))

(syntax-case c1 (=>)

((e0) #'(let ((t e0)) (if t t rest)))

((e0 => e1)

#'(let ((t e0)) (if t (e1 t) rest)))

((e0 e1 e2 ...)

#'(if e0

(begin e1 e2 ...)

rest)))))))))))

[Syntax]quasisyntax template
[Auxiliary Syntax]unsyntax
[Auxiliary Syntax]unsyntax-splicing

The quasisyntax form is similar to syntax, but it allows parts of the quoted text to
be evaluated, in a manner similar to the operation of quasiquote.

Within a quasisyntax template, subforms of unsyntax and unsyntax-splicing

forms are evaluated, and everything else is treated as ordinary template material, as
with syntax.

The value of each unsyntax subform is inserted into the output in place of the
unsyntax form, while the value of each unsyntax-splicing subform is spliced into
the surrounding list or vector structure. Uses of unsyntax and unsyntax-splicing

are valid only within quasisyntax expressions.

A quasisyntax expression may be nested, with each quasisyntax introducing a new
level of syntax quotation and each unsyntax or unsyntax-splicing taking away a
level of quotation. An expression nested within n quasisyntax expressions must be
within n unsyntax or unsyntax-splicing expressions to be evaluated.

As noted in abbreviation, #`template is equivalent to (quasisyntax template),
#,template is equivalent to (unsyntax template), and #,@template is equivalent to
(unsyntax-splicing template). Note that for backwards compatibility, you should
only use #,template inside a literal #`template form.

The quasisyntax keyword can be used in place of with-syntax in many cases. For
example, the definition of case shown under the description of with-syntax above
can be rewritten using quasisyntax as follows.

(define-syntax case

(lambda (x)

(syntax-case x ()

((_ e c1 c2 ...)

#`(let ((t e))

#,(let f ((c1 #'c1) (cmore #'(c2 ...)))

(if (null? cmore)

(syntax-case c1 (else)

Chapter 7: Syntax 133

((else e1 e2 ...)

#'(begin e1 e2 ...))

(((k ...) e1 e2 ...)

#'(if (memv t '(k ...))

(begin e1 e2 ...))])

(syntax-case c1 ()

(((k ...) e1 e2 ...)

#`(if (memv t '(k ...))

(begin e1 e2 ...)

#,(f (car cmore)

(cdr cmore))))))))))))

Note: Any syntax-rules form can be expressed with syntax-case by making
the lambda expression and syntax expressions explicit, and syntax-rules may
be defined in terms of syntax-case as follows.

(define-syntax syntax-rules

(lambda (x)

(syntax-case x ()

((_ (lit ...) ((k . p) t) ...)

(for-all identifier? #'(lit ... k ...))

#'(lambda (x)

(syntax-case x (lit ...)

((_ . p) #'t) ...))))))

7.11 Named quasi-literals

Traditional Scheme has only a few kinds of values, and thus only a few builtin kinds of
literals. Modern Scheme allows defining new types, so it is desirable to have a mechanism
for defining literal values for the new types.

Consider the [URI], page 272 type. You can create a new instance of a URI using a
constructor function:

(URI "http://example.com/")

This isn’t too bad, though the double-quote characters are an ugly distraction. However,
if you need to construct the string it gets messy:

(URI (string-append base-uri "icon.png"))

Instead use can write:

&URI{http://example.com/}

or:

&URI{&[base-uri]icon.png}

This syntax is translated by the Scheme reader to the more familiar but more verbose
equivalent forms:

($construct$:URI "http://example.com/")

($construct$:URI $<<$ base-uri $>>$ "icon.png")

So for this to work there just needs to be a definition of $construct$:URI, usually a
macro. Normal scope rules apply; typically you’d define $construct$:URI in a module.

Chapter 8: Program structure 134

The names $<<$ and $>>$ are bound to unique zero-length strings. They are used to
allow the implementation of $construct$:URI to determine which arguments are literal
and which come from escaped expressions.

If you want to define your own $construct$:tag, or to read motivation and details, see
the SRFI 108 (http://srfi.schemers.org/srfi-108/srfi-108.html) specification.

extended-datum-literal ::=
& cname { [initial-ignored] named-literal-part * }

| & cname [expression *]{ [initial-ignored] named-literal-part * }
cname ::= identifier
named-literal-part ::=

any character except &, { or }
| { named-literal-part + }
| char-ref
| entity-ref
| special-escape
| enclosed-part
| extended-datum-literal

8 Program structure

See [program units], page 117, for some notes on structure of an entire source file.

8.1 Boolean values

The standard boolean objects for true and false are written as #t and #f. Alternatively,
they may be written #true and #false, respectively.

boolean ::= #t | #f | #true | #false

test-expression ::= expression

What really matters, though, are the objects that the Scheme conditional expressions
(if, cond, and, or, when, unless, do) treat as true or false. The phrase “a true value” (or
sometimes just “true”) means any object treated as true by the conditional expressions, and
the phrase “a false value” (or “false”) means any object treated as false by the conditional
expressions. In this document, test-expression is an expression that is evaluated, but we
only care about whether the result is a true or a false value.

Of all the standard Scheme values, only #f counts as false in conditional expressions.
All other Scheme values, including #t, count as true. A test-expression is an expression
evaluated in this manner for whether it is true or false.

In addition the null value #!null (in Java written as null) is also considered false.
Also, if you for some strange reason create a fresh java.lang.Boolean object whose
booleanValue() returns false, that is also considered false.

Note: Unlike some other dialects of Lisp, Scheme distinguishes #f and the empty list
from each other and from the symbol nil.

Boolean constants evaluate to themselves, so they do not need to be quoted in programs.

#t ⇒ #t

http://srfi.schemers.org/srfi-108/srfi-108.html

Chapter 8: Program structure 135

#true ⇒ #t

#f ⇒ #f

#false ⇒ #f

'#f ⇒ #f

[Type]boolean
The type of boolean values. As a type conversion, a true value is converted to #t,
while a false value is converted to #f. Represented as a primitive Java boolean or
kawa.lang.Boolean when converted to an object.

[Procedure]boolean? obj
The boolean? predicate returns #t if obj is either #t or #f, and returns #f otherwise.

(boolean? #f) ⇒ #t

(boolean? 0) ⇒ #f

(boolean? '()) ⇒ #f

[Procedure]boolean=? boolean1 boolean2 boolean3 ...
Returns #t if all the arguments are booleans and all are #t or all are #f.

8.2 Conditionals

Kawa Scheme has the usual conditional expression forms, such as if, case, and, and or:

(if (> 3 2) 'yes 'no) ⇒ yes

Kawa also allows you bind variables in the condition, using the ‘?’ operator.

(if (and (? x ::integer (get-value)) (> x 0))

(* x 10)

'invalid)

In the above, if (get-value) evaluates to an integer, that integer is bound to the variable
x, which is visible in both following sub-expression of and, as well case the true-part of the
if.

Specifically, the first sub-expression of an if is a test-or-match, which can be a test-
expression, or a ‘?’ match expression, or a combination using and:

test-or-match ::= test-expression
| (? pattern expression)
| (and test-or-match *)

A test-or-match is true if every nested test-expression is true, and every ‘?’ operation
succeeds. It produces a set of variable bindings which is the union of the bindings produced
by all the patterns. In an and form, bindings produced by a pattern are visible to all
subsequent test-or-match sub-expressions.

[Syntax]? pattern expression
The form (? P V) informally is true if the value of V matches the pattern P. Any
variables bound in P are in scope in the “true” path of the containing conditional.

This has the form of an expression, but it can only be used in places where a test-or-
match is required. For example it can be used as the first clause of an if expression,
in which case the scope of the variables bound in the pattern includes the second
(consequent) sub-expression. On the other hand, a ‘?’ form may not be used as an
argument to a procedure application.

Chapter 8: Program structure 136

[Syntax]if test-or-match consequent alternate
[Syntax]if test-or-match consequent

consequent ::= expression
alternate ::= expression

An if expression is evaluated as follows: first, the test-or-match is evaluated. If it it
true, then consequent is evaluated and its values are returned. Otherwise alternate is
evaluated and its values are returned. If test yields #f and no alternate is specified,
then the result of the expression is void.

(if (> 2 3) 'yes 'no) ⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) ⇒ 1

(if #f #f) ⇒ #!void

(if (? x::integer 3)

(+ x 1)

'invalid) ⇒ 4

(if (? x::integer 3.4)

(+ x 1)

'invalid) ⇒ 'invalid

The consequent and alternate expressions are in tail context if the if expression itself
is.

[Syntax]cond cond-clause+

[Syntax]cond cond-clause* (else expression. . .)
cond-clause ::= (test-or-match body)

| (test => expression)

A cond expression is evaluated by evaluating the test-or-matchs of successive cond-
clauses in order until one of them evaluates to a true value. When a test-or-match is
true value, then the remaining expressions in its cond-clause are evaluated in order,
and the results of the last expression in the cond-clause are returned as the results
of the entire cond expression. Variables bound by the test-or-match are visible in
body. If the selected cond-clause contains only the test-or-match and no expressions,
then the value of the last test-expression is returned as the result. If the selected
cond-clause uses the => alternate form, then the expression is evaluated. Its value
must be a procedure. This procedure should accept one argument; it is called on the
value of the test-expression and the values returned by this procedure are returned
by the cond expression.

If all test-or-matchs evaluate to #f, and there is no else clause, then the conditional
expression returns unspecified values; if there is an else clause, then its expressions
are evaluated, and the values of the last one are returned.

(cond ((> 3 2) 'greater)

((< 3 2) 'less)) ⇒ greater

(cond ((> 3 3) 'greater)

((< 3 3) 'less)

(else 'equal)) ⇒ equal

Chapter 8: Program structure 137

(cond ('(1 2 3) => cadr)

(else #f)) ⇒ 2

For a cond-clause of one of the following forms:

(test expression *)

(else expression expression *)

the last expression is in tail context if the cond form itself is. For a cond clause of
the form:

(test => expression)

the (implied) call to the procedure that results from the evaluation of expression is
in tail context if the cond form itself is.

[Syntax]case case-key case-clause+

[Syntax]case case-key case-clause* case-else-clause
case-key ::= expression
case-clause ::= ((datum *) expression +)

| ((datum *) => expression)
case-else-clause ::= (else expression +)

| (else => expression)

Each datum is an external representation of some object. Each datum in the entire
case expression should be distinct.

A case expression is evaluated as follows.

1. The case-key is evaluated and its result is compared using eqv? against the data
represented by the datums of each case-clause in turn, proceeding in order from
left to right through the set of clauses.

2. If the result of evaluating case-key is equivalent to a datum of a case-clause,
the corresponding expressions are evaluated from left to right and the results
of the last expression in the case-clause are returned as the results of the case

expression. Otherwise, the comparison process continues.

3. If the result of evaluating key is different from every datum in each set, then if
there is an case-else-clause its expressions are evaluated and the results of the
last are the results of the case expression; otherwise the result of case expression
is unspecified.

If the selected case-clause or case-else-clause uses the => alternate form, then the
expression is evaluated. It is an error if its value is not a procedure accepting one
argument. This procedure is then called on the value of the key and the values
returned by this procedure are returned by the case expression.

(case (* 2 3)

((2 3 5 7) 'prime)

((1 4 6 8 9) 'composite)) ⇒ composite

(case (car '(c d))

((a) 'a)

((b) 'b)) ⇒ unspecified

(case (car '(c d))

Chapter 8: Program structure 138

((a e i o u) 'vowel)

((w y) 'semivowel)

(else => (lambda (x) x))) ⇒ c

The last expression of a case clause is in tail context if the case expression itself is.

[Syntax]match match-key match-clause+

The match form is a generalization of case using patterns,

match-key ::= expression
match-clause ::=

(pattern [guard] body)

The match-key is evaluated, Then the match-clauses are tried in order. The first
match-clause whose pattern matches (and the guard, if any, is true), is selected, and
the corresponding body evaluated. It is an error if no match-clause matches.

(match value

(0 (found-zero))

(x #!if (> x 0) (found-positive x))

(x #!if (< x 0) (found-negative x))

(x::symbol (found-symbol x))

(_ (found-other)))

One case feature is not (yet) directly supported by match: Matching against a list of
values. However, this is easy to simulate using a guard using memq, memv, or member:

;; compare similar example under case

(match (car '(c d))

(x #!if (memv x '(a e i o u)) ’vowel)

(x #!if (memv x '(w y)) ’semivowel)

(x x))

[Syntax]and test-or-match*

If there are no test-or-match forms, #t is returned.

If the and is not in test-or-match context, then the last sub-expression (if any) must
be a test-expression, and not a ‘?’ form. In this case the test-or-match expressions
are evaluated from left to right until either one of them is false (a test-expression is
false or a ‘?’ match fails), or the last test-expression is reached. In the former case,
the and expression returns #f without evaluating the remaining expressions. In the
latter case, the last expression is evaluated and its values are returned.

If the and is in test-or-match context, then the last sub-form can be ‘?’ form. They
are evaluated in order: If one of them is false, the entire and is false; otherwise the
and is true.

Regardless, any bindings made by earlier ‘?’ forms are visible in later test-or-match
forms.

(and (= 2 2) (> 2 1)) ⇒ #t

(and (= 2 2) (< 2 1)) ⇒ #f

(and 1 2 'c '(f g)) ⇒ (f g)

(and) ⇒ #t

(and (? x ::int 23) (> x 0)) ⇒ #t

Chapter 8: Program structure 139

The and keyword could be defined in terms of if using syntax-rules as follows:

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(if test1 (and test2 ...) #t))))

The last test-expression is in tail context if the and expression itself is.

[Syntax]or test-expression . . .
If there are no test-expressions, #f is returned. Otherwise, the test-expressions are
evaluated from left to right until a test-expression returns a true value val or the
last test-expression is reached. In the former case, the or expression returns val
without evaluating the remaining expressions. In the latter case, the last expression
is evaluated and its values are returned.

(or (= 2 2) (> 2 1)) ⇒ #t

(or (= 2 2) (< 2 1)) ⇒ #t

(or #f #f #f) ⇒ #f

(or '(b c) (/ 3 0)) ⇒ (b c)

The or keyword could be defined in terms of if using syntax-rules as follows:

(define-syntax or

(syntax-rules ()

((or) #f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

The last test-expression is in tail context if the or expression itself is.

[Procedure]not test-expression
The not procedure returns #t if test-expression is false, and returns #f otherwise.

(not #t) ⇒ #f

(not 3) ⇒ #f

(not (list 3)) ⇒ #f

(not #f) ⇒ #t

(not ’()) ⇒ #f

(not (list)) ⇒ #f

(not ’nil) ⇒ #f

(not #!null) ⇒ #t

[Syntax]when test-expression form...
If test-expression is true, evaluate each form in order, returning the value of the last
one.

[Syntax]unless test-expression form...
If test-expression is false, evaluate each form in order, returning the value of the last
one.

Chapter 8: Program structure 140

8.3 Variables and Patterns

An identifier can name either a type of syntax or a location where a value can be stored.
An identifier that names a type of syntax is called a syntactic keyword (informally called a
macro), and is said to be bound to a transformer for that syntax. An identifier that names
a location is called a variable and is said to be bound to that location. The set of all visible
bindings in effect at some point in a program is known as the environment in effect at that
point. The value stored in the location to which a variable is bound is called the variable’s
value. By abuse of terminology, the variable is sometimes said to name the value or to
be bound to the value. This is not quite accurate, but confusion rarely results from this
practice.

Certain expression types are used to create new kinds of syntax and to bind syntactic
keywords to those new syntaxes, while other expression types create new locations and bind
variables to those locations. These expression types are called binding constructs. Those
that bind syntactic keywords are discussed in Section 7.10 [Macros], page 120. The most
fundamental of the variable binding constructs is the [meta-lambda-expression], page 170,
because all other variable binding constructs can be explained in terms of lambda expres-
sions. Other binding constructs include the Section 8.4 [Definitions], page 141, and the
Section 8.5 [Local binding constructs], page 143.

Scheme is a language with block structure. To each place where an identifier is bound
in a program there corresponds a region of the program text within which the binding is
visible. The region is determined by the particular binding construct that establishes the
binding; if the binding is established by a lambda expression, for example, then its region
is the entire lambda expression. Every mention of an identifier refers to the binding of the
identifier that established the innermost of the regions containing the use.

If there is no binding of the identifier whose region contains the use, then the use refers
to the binding for the variable in the global environment, if any; if there is no binding for
the identifier, it is said to be unbound.

8.3.1 Patterns

The usual way to bind variables is to match an incoming value against a pattern. The
pattern contains variables that are bound to some value derived from the value.

(! [x::double y::double] (some-expression))

In the above example, the pattern [x::double y::double] is matched against the in-
coming value that results from evaluating (some-expression). That value is required
to be a two-element sequence. Then the sub-pattern x::double is matched against ele-
ment 0 of the sequence, which means it is coerced to a double and then the coerced value
is matched against the sub-pattern x (which trivially succeeds). Similarly, y::double is
matched against element 1.

The syntax of patterns is a work-in-progress. (The focus until now has been in designing
and implementing how patterns work in general, rather than the details of the pattern
syntax.)

pattern ::= identifier
|

| pattern-literal
| fldatum

Chapter 8: Program structure 141

| pattern :: type
| [lpattern *]

lpattern ::= pattern
| @ pattern
| pattern ...
| guard

pattern-literal ::=
boolean | number | character | string

guard ::= #!if expression

This is how the specific patterns work:

identifier This is the simplest and most common form of pattern. The identifier is bound
to a new variable that is initialized to the incoming value.

This pattern just discards the incoming value. It is equivalent to a unique
otherwise-unused identifier.

pattern-literal
Matches if the value is equal? to the pattern-literal.

fldatum Matches if the value is equal? to the quoted datum.

pattern :: type
The incoming value is coerced to a value of the specified type, and then the
coerced value is matched against the sub-pattern. Most commonly the sub-
pattern is a plain identifier, so the latter match is trivial.

[lpattern*]
The incoming value must be a sequence (a list, vector or similar). In the case
where each sub-pattern is a plain pattern, then the number of sub-patterns
must match the size of the sequence, and each sub-pattern is matched against
the corresponding element of the sequence. More generally, each sub-pattern
may match zero or more consequtive elements of the incoming sequence.

#!if expression
No incoming value is used. Instead the expression is evaluated. If the result is
true, matching succeeds (so far); otherwise the match fails. This form is called
a guard (https://en.wikipedia.org/wiki/Guard_(computer_science)).

@ pattern A splice pattern may match multiple (zero or more) elements of a sequence.
The pattern is matched against the resulting sub-sequence.

(! [x @r] [2 3 5 7 11])

This binds x to 2 and r to [3 5 7 11].

pattern ... Similar to @pattern in that it matches multiple elements of a sequence. How-
ever, each individual element is matched against the pattern, rather than the
elements as a sequence. This is a Section 8.7 [Repeat forms], page 149.

8.4 Definitions

A variable definition binds one or more identifiers and specifies an initial value for each of
them. The simplest kind of variable definition takes one of the following forms:

https://en.wikipedia.org/wiki/Guard_(computer_science)

Chapter 8: Program structure 142

[Syntax]! pattern expression
Evaluate expression, and match the result against pattern. Defining variables in
pattern becomes bound in the current (surrounding) scope.

This is similar to define-constant except generalized to a pattern.

(! [x y] (vector 3 4))

(format "x is ~w and y is ~w" x y) ⇒ "x is 3 and y is 4"

[Syntax]define name [:: type] expression
Evaluate the expression, optionally converting it to type, and bind the name to the
result.

[Syntax]define (name formal-arguments) (annotation | option-pair)*

opt-return-type body
[Syntax]define (name . rest-arg) (annotation | option-pair)*

opt-return-type body
Bind the name to a function definition. The form:

(define (name formal-arguments) option-pair * opt-return-type body)

is equivalent to:

(define name (lambda formal-arguments) name: name option-pair * opt-

return-type body))

while the form:

(define (name . rest-arg) option-pair * opt-return-type body)

is equivalent to:

(define name (lambda rest-arg) name: name option-pair * opt-return-

type body))

You can associate Section 19.4 [Annotations], page 304, with name. A field annotation
will be associated with the generated field; a method annotation will be associated
with the generated method(s).

In addition to define (which can take an optional type specifier), Kawa has some extra
definition forms.

[Syntax]define-private name [:: type] value
[Syntax]define-private (name formals) body

Same as define, except that name is not exported.

[Syntax]define-constant name [:: type] value
[Syntax]define-early-constant name [:: type] value

Defines name to have the given value. The value is readonly, and you cannot assign
to it. (This is not fully enforced.)

If define-early-constant is used or the value is a compile-time constant, then
the compiler will create a final field with the given name and type, and evaluate
value in the module’s class initializer (if the definition is static) or constructor (if
the definition is non-static), before other definitions and expressions. Otherwise, the
value is evaluated in the module body where it appears.

If the value is a compile-time constant, then the definition defaults to being static.

Chapter 8: Program structure 143

[Syntax]define-variable name [:: type] [init]
If init is specified and name does not have a global variable binding, then init is
evaluated, and name bound to the result. Otherwise, the value bound to name does
not change. (Note that init is not evaluated if name does have a global variable
binding.)

Also, declares to the compiler that name will be looked up in the per-thread dynamic
environment. This can be useful for shutting up warnings from --warn-undefined-

variable.

This is similar to the Common Lisp defvar form. However, the Kawa version is
(currently) only allowed at module level.

For define-namespace and define-private-namespace see Section 10.2 [Namespaces],
page 161.

8.5 Local binding constructs

The binding constructs let, let*, letrec, and letrec* give Scheme a block structure, like
Algol 60. The syntax of these four constructs is identical, but they differ in the regions they
establish for their variable bindings. In a let expression, the initial values are computed
before any of the variables become bound; in a let* expression, the bindings and evaluations
are performed sequentially; while in letrec and letrec* expressions, all the bindings are
in effect while their initial values are being computed, thus allowing mutually recursive
definitions.

[Syntax]let ((pattern init) ...) body
Declare new local variables as found in the patterns. Each pattern is matched against
the corresponding init. The inits are evaluated in the current environment (in left-to-
right onder), the variables in the patternss are bound to fresh locations holding the
matched results, the body is evaluated in the extended environment, and the values
of the last expression of body are returned. Each binding of a variable has body as
its region.

(let ((x 2) (y 3))

(* x y)) ⇒ 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) ⇒ 35

An example with a non-trivial pattern:

(let (([a::double b::integer] (vector 4 5)))

(cons b a)) ⇒ (5 . 4.0)

[Syntax]let* ((pattern init) ...) body
The let* binding construct is similar to let, but the bindings are performed sequen-
tially from left to right, and the region of a variables in a pattern is that part of the
let* expression to the right of the pattern. Thus the second pattern is matched in
an environment in which the bindings from the first pattern are visible, and so on.

(let ((x 2) (y 3))

Chapter 8: Program structure 144

(let* ((x 7)

(z (+ x y)))

(* z x))) ⇒ 70

[Syntax]letrec ((variable [:: type] init) ...) body
[Syntax]letrec* ((variable [:: type] init) ...) body

The variables are bound to fresh locations, each variable is assigned in left-to-right
order to the result of the corresponding init, the body is evaluated in the resulting
environment, and the values of the last expression in body are returned. Despite the
left-to-right evaluation and assignment order, each binding of a variable has the entire
letrec or letrec* expression as its region, making it possible to define mutually
recursive procedures.

In Kawa letrec is defined as the same as letrec*. In standard Scheme the order
of evaluation of the inits is undefined, as is the order of assignments. If the order
matters, you should use letrec*.

If it is not possible to evaluate each init without assigning or referring to the value of
the corresponding variable or the variables that follow it, it is an error.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))

⇒ #t

8.6 Lazy evaluation

Lazy evaluation (or call-by-need) delays evaluating an expression until it is actually needed;
when it is evaluated, the result is saved so repeated evaluation is not needed. Lazy evalu-
ation (http://en.wikipedia.org/wiki/Lazy_evaluation) is a technique that can make
some algorithms easier to express compactly or much more efficiently, or both. It is the nor-
mal evaluation mechanism for strict functional (side-effect-free) languages such as Haskell
(http://www.haskell.org). However, automatic lazy evaluation is awkward to combine
with side-effects such as input-output. It can also be difficult to implement lazy evaluation
efficiently, as it requires more book-keeping.

Kawa, like other Schemes, uses “eager evaluation” - an expression is normally evaluated
immediately, unless it is wrapped in a special form. Standard Scheme has some basic
building blocks for “manual” lazy evaluation, using an explicit delay operator to indicate
that an expression is to be evaluated lazily, yielding a promise, and a force function to
force evaluation of a promise. This functionality is enhanced in SRFI 45 (http://srfi.
schemers.org/srfi-45/srfi-45.html), in R7RS-draft (based on SRFI 45), and SRFI 41
(http://srfi.schemers.org/srfi-41/srfi-41.html) (lazy lists aka streams).

http://en.wikipedia.org/wiki/Lazy_evaluation
http://en.wikipedia.org/wiki/Lazy_evaluation
http://www.haskell.org
http://www.haskell.org
http://srfi.schemers.org/srfi-45/srfi-45.html
http://srfi.schemers.org/srfi-45/srfi-45.html
http://srfi.schemers.org/srfi-41/srfi-41.html
http://srfi.schemers.org/srfi-41/srfi-41.html

Chapter 8: Program structure 145

Kawa makes lazy evaluation easier to use, by implicit forcing : The promise is auto-
matically evaluated (forced) when used in a context that requires a normal value, such
as arithmetic needing a number. Kawa enhances lazy evaluation in other ways, including
support for safe multi-threaded programming.

8.6.1 Delayed evaluation

[Syntax]delay expression
The delay construct is used together with the procedure force to implement lazy
evaluation or call by need.

The result of (delay expression) is a promise which at some point in the future may
be asked (by the force procedure) to evaluate expression, and deliver the resulting
value. The effect of expression returning multiple values is unspecified.

[Syntax]delay-force expression
[Syntax]lazy expression

The delay-force construct is similar to delay, but it is expected that its argument
evaluates to a promise. (Kawa treats a non-promise value as if it were a forced
promise.) The returned promise, when forced, will evaluate to whatever the original
promise would have evaluated to if it had been forced.

The expression (delay-force expression) is conceptually similar to (delay (force

expression)), with the difference that forcing the result of delay-force will in effect
result in a tail call to (force expression), while forcing the result of (delay (force

expression)) might not. Thus iterative lazy algorithms that might result in a long
series of chains of delay and force can be rewritten using delay-force to prevent
consuming unbounded space during evaluation.

Using delay-force or lazy is equivalent. The name delay-force is from R7RS; the
name lazy is from the older SRFI-45.

[Procedure]eager obj
Returns a promise that when forced will return obj. It is similar to delay, but does
not delay its argument; it is a procedure rather than syntax.

The Kawa implementation just returns obj as-is. This is because Kawa treats as
equivalent a value and forced promise evaluating to the value.

[Procedure]force promise
The force procedure forces the value of promise. As a Kawa extension, if the promise
is not a promise (a value that does not implement gnu.mapping.Lazy) then the
argument is returned unchanged. If no value has been computed for the promise,
then a value is computed and returned. The value of the promise is cached (or
“memoized”) so that if it is forced a second time, the previously computed value is
returned.

(force (delay (+ 1 2))) ⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p))) ⇒ (3 3)

Chapter 8: Program structure 146

(define integers

(letrec ((next

(lambda (n)

(cons n (delay (next (+ n 1)))))))

(next 0)))

(define head

(lambda (stream) (car (force stream))))

(define tail

(lambda (stream) (cdr (force stream))))

(head (tail (tail integers))) ⇒ 2

The following example is a mechanical transformation of a lazy stream-filtering al-
gorithm into Scheme. Each call to a constructor is wrapped in delay, and each
argument passed to a deconstructor is wrapped in force. The use of (lazy ...)

instead of (delay (force ...)) around the body of the procedure ensures that an
ever-growing sequence of pending promises does not exhaust the heap.

(define (stream-filter p? s)

(lazy

(if (null? (force s))

(delay ’())

(let ((h (car (force s)))

(t (cdr (force s))))

(if (p? h)

(delay (cons h (stream-filter p? t)))

(stream-filter p? t))))))

(head (tail (tail (stream-filter odd? integers))))

⇒ 5

[Procedure]force* promise
Does force as many times as necessary to produce a non-promise. (A non-promise
is a value that does not implement gnu.mapping.Lazy, or if it does implement
gnu.mapping.Lazy then forcing the value using the getValue method yields the
receiver.)

The force* function is a Kawa extension. Kawa will add implicit calls to force* in
most contexts that need it, but you can also call it explicitly.

The following examples are not intended to illustrate good programming style, as delay,
lazy, and force are mainly intended for programs written in the functional style. However,
they do illustrate the property that only one value is computed for a promise, no matter
how many times it is forced.

(define count 0)

(define p

(delay (begin (set! count (+ count 1))

(if (> count x)

count

(force p)))))

Chapter 8: Program structure 147

(define x 5)

p ⇒ a promise

(force p) ⇒ 6

p ⇒ a promise, still

(begin (set! x 10)

(force p)) ⇒ 6

8.6.2 Implicit forcing

If you pass a promise as an argument to a function like sqrt if must first be forced to a
number. In general, Kawa does this automatically (implicitly) as needed, depending on the
context. For example:

(+ (delay (* 3 7)) 13) ⇒ 34

Other functions, like cons have no problems with promises, and automatic forcing would
be undesirable.

Generally, implicit forcing happens for arguments that require a specific type, and does
not happen for arguments that work on any type (or Object).

Implicit forcing happens for:

• arguments to arithmetic functions;

• the sequence and the index in indexing operations, like string-ref;

• the operands to eqv? and equal? are forced, though the operands to eq? are not;

• port operands to port functions;

• the value to be emitted by a display but not the value to be emitted by a write;

• the function in an application.

Type membership tests, such as the instance? operation, generally do not force their
values.

The exact behavior for when implicit forcing happens is a work-in-progress: There are
certainly places where implicit forcing doesn’t happen while it should; there are also likely
to be places where implicit forcing happens while it is undesirable.

Most Scheme implementations are such that a forced promise behaves differently from
its forced value, but some Scheme implementions are such that there is no means by which
a promise can be operationally distinguished from its forced value. Kawa is a hybrid: Kawa
tries to minimize the difference between a forced promise and its forced value, and may
freely optimize and replace a forced promise with its value.

8.6.3 Blank promises

A blank promise is a promise that doesn’t (yet) have a value or a rule for calculating the
value. Forcing a blank promise will wait forever, until some other thread makes the promise
non-blank.

Blank promises are useful as a synchronization mechanism - you can use it to safely
pass data from one thread (the producer) to another thread (the consumer). Note that you
can only pass one value for a given promise: To pass multiple values, you need multiple
promises.

(define p (promise))

Chapter 8: Program structure 148

(future ;; Consumer thread

(begin

(do-stuff)

(define v (force promise)) ; waits until promise-set-value!

(do-stuff-with v)))

;; Producer thread

... do stuff ...

(promise-set-value! p (calculate-value))

[Constructor]promise
Calling promise as a zero-argument constructor creates a new blank promise.

This calls the constructor for gnu.mapping.Promise. You can also create a non-
blank promise, by setting one of the value, alias, thunk, or exception proper-
ties. Doing so is equivalent to calling promise-set-value!, promise-set-alias!,
promise-set-thunk!, or promise-set-exception! on the resulting promise. For
example: (delay exp) is equivalent to:

(promise thunk: (lambda() exp))

The following four procedures require that their first arguments be blank promises.
When the procedure returns, the promise is no longer blank, and cannot be changed. This
is because a promise is conceptually a placeholder for a single “not-yet-known” value; it
is not a location that can be assigned multiple times. The former enables clean and safe
(“declarative") use of multiple threads; the latter is much trickier.

[Procedure]promise-set-value! promise value
Sets the value of the promise to value, which makes the promise forced.

[Procedure]promise-set-exception! promise exception
Associate exception with the promise. When the promise is forced the exception gets
thrown.

[Procedure]promise-set-alias! promise other
Bind the promise to be an alias of other. Forcing promise will cause other to be
forced.

[Procedure]promise-set-thunk! promise thunk
Associate thunk (a zero-argument procedure) with the promise. The first time the
promise is forced will causes the thunk to be called, with the result (a value or an
exception) saved for future calls.

[Procedure]make-promise obj
The make-promise procedure returns a promise which, when forced, will return obj.
It is similar to delay, but does not delay its argument: it is a procedure rather than
syntax. If obj is already a promise, it is returned.

Because of Kawa’s implicit forcing, there is seldom a need to use make-promise,
except for portability.

Chapter 8: Program structure 149

8.6.4 Lazy and eager types

[Type]promise[T]
This parameterized type is the type of promises that evaluate to an value of type
T. It is equivalent to the Java interface gnu.mapping.Lazy<T>. The implementation
class for promises is usually gnu.mapping.Promise, though there are other classes
that implement Lazy, most notably gnu.mapping.Future, used for futures, which
are promises evaluated in a separate thread.

Note the distinction between the types integer (the type of actual (eager) integer val-
ues), and promise[integer] (the type of (lazy) promises that evaluate to integer). The
two are compatible: if a promise[integer] value is provided in a context requiring an
integer then it is automatically evaluated (forced). If an integer value is provided in
context requiring a promise[integer], that conversion is basically a no-op (though the
compiler may wrap the integer in a pre-forced promise).

In a fully-lazy language there would be no distinction, or at least the promise type would
be the default. However, Kawa is a mostly-eager language, so the eager type is the default.
This makes efficient code-generation easier: If an expression has an eager type, then the
compiler can generate code that works on its values directly, without having to check for
laziness.

8.7 Repeat patterns and expressions

Many programming languages have some variant of list comprehension syntax (https://
en.wikipedia.org/wiki/List_comprehension). Kawa splits this into two separate forms,
that can be in separate parts of the program:

• A repeat pattern as you might guess repeats a pattern by matching the pattern once
for each element of a sequence. For example, assume A is a some sequence-valued
expression. Then:

#|kawa:3|# (! [a::integer ...] A)

Here ‘a::integer ...’ is a repeat pattern that matches all the elements pf A. We
call ‘a::integer’ the repeated pattern - it matches an individual element of A. Any
variable defined in a repeated pattern is a repeat variable. In the example, that would
be a.

• A repeat expression creates a sequence by repeating an expression for each element of
the result.

#|kawa:4|# [(* 2 a) ...]

[4 6 10 14 22]

In this case ‘(* 2 a) ...’ is the repeat expression. The repeated expression is ‘(*
2 a)’. The repeated expression is evaluated once for each element of any contained
repeat variable. If there is more than one repeat variable, they are repeated in parallel,
as many times as the “shortest” repeat variable, similar to the map procedure. (If
there is no repeat variable, the repeated expression is potentially evaluated infinitely
many times, which is not allowed. A planned extension will allow it for lazy repeated
expression.)

https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/List_comprehension

Chapter 8: Program structure 150

The use of ‘...’ for repeat patterns and expressions mirrors exactly their use in
syntax-rules patterns and templates.

It is an error to use a repeat variable outside of repeat context:

#|kawa:5|# a

/dev/stdin:2:1: using repeat variable 'a' while not in repeat context

The repeat form feature is not yet complete. It is missing functionality such as selecting
only some elements from a repeat sequence, lazy sequences, and it could be optimized more.

A repeat variable can be used multiple times in the same repeat expressions, or different
repeat expressions:

#|kawa:7|# [a ... a ...]

[2 3 5 7 11 2 3 5 7 11]

#|kawa:8|# [(* a a) ...]

[4 9 25 49 121]

Repeat expressions are useful not just in sequence literals, but in the argument list
of a procedure call, where the resulting sequence is spliced into the argument list. This
is especially useful for functions that take a variable number of arguments, because that
enables a convenient way to do fold/accumulate/reduce (https://en.wikipedia.org/
wiki/Fold_(higher-order_function)) operations. For example:

#|kawa:9|# (+ a ...)

28

because 28 is the result of (+ 2 3 5 7 11).

An elegant way to implement dot product (https: / / en . wikipedia . org / wiki /
Dot_product):

(define (dot-product [x ...] [y ...])

(+ (* x y) ...))

When an ellipse expression references two or more distinct repeat variables then they are
processed “in parallel”. That does not (necessarily) imply muliple threads, but that the first
element of the repeat result is evaluated using the first element of all the repeat sequences,
the second element of the result uses the second element of all the repeat sequences, and so
on.

Sub-patterns in repeat patterns

While the repeated pattern before the ‘...’ is commonly in identifier, it may be a more
complex pattern. We showed earlier the repeated pattern with a type specifier, which
applies to each element:

#|kawa:11|# (define (isum [x::integer ...]) (+ x ...))

#|kawa:12|# (isum [4 5 6])

15

#|kawa:12|# (isum [4 5.1 6])

Argument #1 (null) to 'isum' has wrong type

at gnu.mapping.CallContext.matchError(CallContext.java:189)

at atInteractiveLevel-6.isum$check(stdin:11)

...

(The stack trace line number stdin:11 is that of the isum definition.)

https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Dot_product

Chapter 8: Program structure 151

You can nest repeat patterns, allowing matching against sequences whose elements are
sequences.

#|kawa:31|# (define (fun2 [[x ...] ...] [y ...])

#|.....32|# [[(+ x y) ...] ...])

#|kawa:33|# (fun2 [[1 2 3] [10 11 12]] [100 200])

[[101 102 103] [210 211 212]]

Note that x is double-nested, while y is singly-nested.

Here each element is constrained to be a pair (a -element sequence):

#|kawa:1|# (! [[x y] ...] [[11 12] [21 22] [31 32]])

#|kawa:2|# [(+ x y) ...]

#(23 43 63)

#|kawa:3|# [[x ...] [y ...]]

#(#(11 21 31) #(12 22 32))

8.8 Threads

There is a very preliminary interface to create parallel threads. The interface is similar to
the standard delay/force, where a thread is basically the same as a promise, except that
evaluation may be in parallel.

[Syntax]future expression
Creates a new thread that evaluates expression.

(The result extends java.lang.Thread and implements gnu.mapping.Lazy.)

[Procedure]force thread
The standard force function is generalized to also work on threads. It waits for the
thread’s expression to finish executing, and returns the result.

[Procedure]runnable function
Creates a new Runnable instance from a function. Useful for passing to Java code
that expects a Runnable. You can get the result (a value or a thrown exception)
using the getResult method.

[Syntax]synchronized object form ...
Synchronize on the given object. (This means getting an exclusive lock on the object,
by acquiring its monitor.) Then execute the forms while holding the lock. When the
forms finish (normally or abnormally by throwing an exception), the lock is released.
Returns the result of the last form. Equivalent to the Java synchronized statement,
except that it may return a result.

8.9 Exception handling

An exception is an object used to signal an error or other exceptional situation. The
program or run-time system can throw the exception when an error is discovered. An
exception handler is a program construct that registers an action to handle exceptions
when the handler is active.

Chapter 8: Program structure 152

If an exception is thrown and not handled then the read-eval-print-loop will print a
stack trace, and bring you back to the top level prompt. When not running interactively,
an unhandled exception will normally cause Kawa to be exited.

In the Scheme exception model (as of R6RS and R7RS), exception handlers are one-
argument procedures that determine the action the program takes when an exceptional
situation is signaled. The system implicitly maintains a current exception handler in the
dynamic environment. The program raises an exception by invoking the current exception
handler, passing it an object encapsulating information about the exception. Any procedure
accepting one argument can serve as an exception handler and any object can be used to
represent an exception.

The Scheme exception model is implemented on top of the Java VM’s native exception
model where the only objects that can be thrown are instances of java.lang.Throwable.
Kawa also provides direct access to this native model, as well as older Scheme exception
models.

[Procedure]with-exception-handler handler thunk
It is an error if handler does not accept one argument. It is also an error if thunk
does not accept zero arguments. The with-exception-handler procedure returns
the results of invoking thunk. The handler is installed as the current exception handler
in the dynamic environment used for the invocation of thunk.

(call-with-current-continuation

(lambda (k)

(with-exception-handler

(lambda (x)

(display "condition: ")

(write x)

(newline)

(k 'exception))

(lambda ()

(+ 1 (raise ’an-error))))))

⇒ exception

and prints condition: an-error

(with-exception-handler

(lambda (x)

(display "something went wrong\n"))

(lambda ()

(+ 1 (raise ’an-error))))

prints something went wrong

After printing, the second example then raises another exception.

Performance note: The thunk is inlined if it is a lambda expression. However, the
handler cannot be inlined even if it is a lambda expression, because it could be called
by raise-continuable. Using the guard form is usually more efficient.

[Procedure]raise obj
Raises an exception by invoking the current exception handler on obj. The handler
is called with the same dynamic environment as that of the call to raise, except that

Chapter 8: Program structure 153

the current exception handler is the one that was in place when the handler being
called was installed. If the handler returns, then obj is re-raised in the same dynamic
environment as the handler.

If obj is an instance of java.lang.Throwable, then raise has the same effect as
primitive-throw.

[Procedure]raise-continuable obj
Raises an exception by invoking the current exception handler on obj. The handler is
called with the same dynamic environment as the call to raise-continuable, except
that: (1) the current exception handler is the one that was in place when the handler
being called was installed, and (2) if the handler being called returns, then it will
again become the current exception handler. If the handler returns, the values it
returns become the values returned by the call to raise-continuable.

(with-exception-handler

(lambda (con)

(cond

((string? con)

(display con))

(else

(display "a warning has been issued")))

42)

(lambda ()

(+ (raise-continuable "should be a number")

23)))

prints: should be a number

⇒ 65

[Syntax]guard variable cond-clause+ body
The body is evaluated with an exception handler that binds the raised object to
variable and, within the scope of that binding, evaluates the clauses as if they were
the clauses of a cond expression. That implicit cond expression is evaluated with
the continuation and dynamic environment of the guard expression. If every cond-
clause’s test evaluates to #f and there is no else clause, then raise-continuable is
invoked on the raised object within the dynamic environment of the original call to
raise or raise-continuable, except that the current exception handler is that of
the guard expression.

(guard (condition

((assq 'a condition) => cdr)

((assq 'b condition)))

(raise (list (cons 'a 42))))

⇒ 42

(guard (condition

((assq 'a condition) => cdr)

((assq 'b condition)))

(raise (list (cons 'b 23))))

⇒ (b . 23)

Chapter 8: Program structure 154

Performance note: Using guard is moderately efficient: there is some overhead com-
pared to using native exception handling, but both the body and the handlers in the
cond-clause are inlined.

[Procedure]dynamic-wind in-guard thunk out-guard
All three arguments must be 0-argument procedures. First calls in-guard, then thunk,
then out-guard. The result of the expression is that of thunk. If thunk is exited
abnormally (by throwing an exception or invoking a continuation), out-guard is called.

If the continuation of the dynamic-wind is re-entered (which is not yet possible in
Kawa), the in-guard is called again.

This function was added in R5RS.

[Procedure]read-error? obj
Returns #t if obj is an object raised by the read procedure. (That is if obj is a
gnu.text.SyntaxException.)

[Procedure]file-error? obj
Returns #t if obj is an object raised by inability to open an input or output port
on a file. (This includes java.io.FileNotFoundException as well as certain other
exceptions.)

8.9.1 Simple error objects

[Procedure]error message obj ...
Raises an exception as if by calling raise on a newly allocated simple error object,
which encapsulates the information provided by message (which should a string), as
well as any obj arguments, known as the irritants.

The string representation of a simple error object is as if calling (format "#<ERROR

~a~{ ~w~}>" message irritants). (That is the message is formatted as if with
display while each irritant obj is formatted as if with write.)

This procedure is part of SRFI-23, and R7RS. It differs from (and is incompatible
with) R6RS’s error procedure.

[Procedure]error-object? obj
Returns #t if obj is a simple error object. Specifically, that obj is an instance of
kawa.lang.NamedException. Otherwise, it returns #f.

[Procedure]error-object-message error-object
Returns the message encapsulated by error-object, which must be a simple error
object.

[Procedure]error-object-irritants error-object
Returns a list of the irritants (other arguments) encapsulated by error-object, which
must be a simple error object.

Chapter 8: Program structure 155

8.9.2 Named exceptions

These functions associate a symbol with exceptions and handlers: A handler catches an
exception if the symbol matches.

[Procedure]catch key thunk handler
Invoke thunk in the dynamic context of handler for exceptions matching key. If thunk
throws to the symbol key, then handler is invoked this way:

(handler key args ...)

key may be a symbol. The thunk takes no arguments. If thunk returns normally,
that is the return value of catch.

Handler is invoked outside the scope of its own catch. If handler again throws to the
same key, a new handler from further up the call chain is invoked.

If the key is #t, then a throw to any symbol will match this call to catch.

[Procedure]throw key arg ...
Invoke the catch form matching key, passing the args to the current handler.

If the key is a symbol it will match catches of the same symbol or of #t.

If there is no handler at all, an error is signaled.

8.9.3 Native exception handling

[Procedure]primitive-throw exception
Throws the exception, which must be an instance of a sub-class of
java.lang.Throwable.

[Syntax]try-finally body handler
Evaluate body, and return its result. However, before it returns, evaluate handler.
Even if body returns abnormally (by throwing an exception), handler is evaluated.

(This is implemented just like Java’s try-finally. However, the current implemen-
tation does not duplicate the handler.)

[Syntax]try-catch body handler ...
Evaluate body, in the context of the given handler specifications. Each handler has
the form:

var type exp ...

If an exception is thrown in body, the first handler is selected such that the thrown
exception is an instance of the handler’s type. If no handler is selected, the exception
is propagated through the dynamic execution context until a matching handler is
found. (If no matching handler is found, then an error message is printed, and the
computation terminated.)

Once a handler is selected, the var is bound to the thrown exception, and the exp
in the handler are executed. The result of the try-catch is the result of body if no
exception is thrown, or the value of the last exp in the selected handler if an exception
is thrown.

(This is implemented just like Java’s try-catch.)

156

9 Control features

9.1 Mapping functions

The procedures string-for-each and string-map are documented under Section 13.3
[Strings], page 205.

The procedure string-cursor-for-each is documented under [String Cursor API],
page 221.

[Procedure]map proc sequence1 sequence2 ...
[Procedure]for-each proc sequence1 sequence2 ...

The map procedure applies proc element-wise to the elements of the sequences and
returns a list of the results, in order. The dynamic order in which proc is applied to
the elements of the sequences is unspecified.

The for-each procedure does the same, but is executed for the side-effects of proc,
whose result (if any) is discarded. Unlike map, for-each is guaranteed to call proc
on the elements of the sequencess in order from the first element(s) to the last. The
value returned by for-each is the void value.

Each sequence must be a generalized sequence. (Traditionally, these arguments were
restricted to lists, but Kawa allows sequences, including vectors, Java arrays, and
strings.) If more than one sequence is given and not all sequences have the same
length, the procedure terminates when the shortest sequence runs out. The sequences
can be infinite (for example circular lists), but it is an error if all of them are infinite.

The proc must be a procedure that accepts as many arguments as there are sequence
arguments. It is an error for proc to mutate any of the sequences. In the case of map,
proc must return a single value.

(map cadr '((a b) (d e) (g h)))

⇒ (b e h)

(map (lambda (n) (expt n n))

'(1 2 3 4 5))

⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6 7)) ⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

'(a b)))

⇒ (1 2) or (2 1)

The result of map is a list, even if the arguments are non-lists:

(map +

#(3 4 5)

(float[] 0.5 1.5))

Chapter 9: Control features 157

⇒ (3.5 5.5)

To get a vector result, use vector-map.

(let ((v (make-vector 5)))

(for-each (lambda (i)

(vector-set! v i (* i i)))

'(0 1 2 3 4))

v)

⇒ #(0 1 4 9 16)

A string is considered a sequence of character values (not 16-bit char values):

(let ((v (make-vector 10 #\-)))

(for-each (lambda (i ch)

(vector-set! v i ch))

[0 <:]

"Smile !")

v)

⇒ #(#\S #\m #\i #\l #\e #\space #\x1f603 #\! #\- #\-)

Performance note: These procedures are pretty well optimized. For each sequence
the compiler will by default create an iterator. However, if the type of the sequence
is known, the compiler will inline the iteration code.

[Procedure]vector-map proc sequence1 sequence2 . . .
Same as the map procedure, except the result is a vector. (Traditionally, these ar-
guments were restricted to vectors, but Kawa allows sequences, including lists, Java
arrays, and strings.)

(vector-map cadr '#((a b) (d e) (g h)))

⇒ #(b e h)

(vector-map (lambda (n) (expt n n))

'#(1 2 3 4 5))

⇒ #(1 4 27 256 3125)

(vector-map + '#(1 2 3) ’#(4 5 6 7))

⇒ #(5 7 9)

(let ((count 0))

(vector-map

(lambda (ignored)

(set! count (+ count 1))

count)

'#(a b)))

⇒ #(1 2) or #(2 1)

[Procedure]vector-for-each proc vector1 vector2 . . .
Mostly the same as for-each, however the arguments should be generalized vectors.
Specifically, they should implement java.util.List (which both regular vectors and
uniform vectors do). The vectors should also be efficiently indexable.

Chapter 9: Control features 158

(Traditionally, these arguments were restricted to vectors, but Kawa allows sequences,
including lists, Java arrays, and strings.)

(let ((v (make-list 5)))

(vector-for-each

(lambda (i) (list-set! v i (* i i)))

'#(0 1 2 3 4))

v)

⇒ (0 1 4 9 16)

9.2 Multiple values

The multiple-value feature was added in R5RS.

[Procedure]values object ...
Delivers all of its arguments to its continuation.

[Procedure]call-with-values producer consumer
Calls its producer argument with no arguments and a continuation that, when passed
some values, calls the consumer procedure with those values as arguments.

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))

⇒ 5

(call-with-values * -) ⇒ -1

Performance note: If either the producer or consumer is a fixed-arity lambda expres-
sion, it is inlined.

[Syntax]define-values formals expression
It is an error if a variable appears more than once in the set of formals.

The expression is evaluated, and the formals are bound to the return values in the
same way that the formals in a lambda expression are matched to the arguments in
a procedure call.

(define-values (x y) (integer-sqrt 17))

(list x y) ⇒ (4 1)

(let ()

(define-values (x y) (values 1 2))

(+ x y))

⇒ 3

[Syntax]let-values ((formals expression) ...) body
Each formals should be a formal arguments list, as for a lambda.

The expressions are evaluated in the current environment, the variables of the formals
are bound to fresh locations, the return values of the expressions are stored in the
variables, the body is evaluated in the extended environment, and the values of the
last expression of body are returned. The body is a "tail body", cf section 3.5 of the
R5RS.

Chapter 10: Symbols and namespaces 159

The matching of each formals to values is as for the matching of formals to arguments
in a lambda expression, and it is an error for an expression to return a number of
values that does not match its corresponding formals.

(let-values (((a b . c) (values 1 2 3 4)))

(list a b c)) ⇒ (1 2 (3 4))

(let ((a 'a) (b 'b) (x 'x) (y 'y))

(let-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) ⇒ (x y a b)

[Syntax]let*-values ((formals expression) ...) body
Each formals should be a formal arguments list as for a lambda expression.

let*-values is similar to let-values, but the bindings are performed sequentially
from left to right, and the region of a binding indicated by (formals expression) is
that part of the let*-values expression to the right of the binding. Thus the second
binding is done in an environment in which the first binding is visible, and so on.

(let ((a 'a) (b 'b) (x 'x) (y 'y))

(let*-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) ⇒ (x y x y)

[Syntax]receive formals expression body
This convenience form (from SRFI-8 (http://srfi.schemers.org/srfi-8/srfi-8.
html)) is equivalent to:

(let-values ((formals expression)) body)

For example:

(receive a (values 1 2 3 4)

(reverse a)) ⇒ (4 3 2 1)

(receive (a b . c) (values 1 2 3 4)

(list a b c)) ⇒ (1 2 (3 4))

(let ((a 'a) (b 'b) (x 'x) (y 'y))

(receive (a b) (values x y)

(receive (x y) (values a b)

(list a b x y)))) ⇒ (x y x y)

[Procedure]values-append arg1 ...
The values resulting from evaluating each argument are appended together.

10 Symbols and namespaces

An identifier is a name that appears in a program.

A symbol is an object representing a string that cannot be modified. This string is
called the symbol’s name. Unlike strings, two symbols whose names are spelled the same

http://srfi.schemers.org/srfi-8/srfi-8.html
http://srfi.schemers.org/srfi-8/srfi-8.html

Chapter 10: Symbols and namespaces 160

way are indistinguishable. A symbol is immutable (unmodifiable) and normally viewed as
atomic. Symbols are useful for many applications; for instance, they may be used the way
enumerated values are used in other languages.

In addition to the simple symbols of standard Scheme, Kawa also has compound (two-
part) symbols.

10.1 Simple symbols

Simple symbols have no properties other than their name, an immutable string. They have
the useful property that two simple symbols are identical (in the sense of eq?, eqv? and
equal?) if and only if their names are spelled the same way. A symbol literal is formed
using quote.

[Procedure]symbol? obj
Return #t if obj is a symbol, #f otherwise.

(symbol? 'foo) ⇒ #t

(symbol? (car '(a b))) ⇒ #t

(symbol? "bar") ⇒ #f

(symbol? 'nil) ⇒ #t

(symbol? '()) ⇒ #f

(symbol? #f) ⇒ #f

[Procedure]symbol->string symbol
Return the name of symbol as an immutable string.

(symbol->string 'flying-fish) ⇒ "flying-fish"

(symbol->string 'Martin) ⇒ "Martin"

(symbol->string (string->symbol "Malvina")) ⇒ "Malvina"

[Procedure]string->symbol string
Return the symbol whose name is string.

(eq? 'mISSISSIppi 'mississippi)

⇒ #f

(string->symbol "mISSISSIppi")

⇒ the symbol with name "mISSISSIppi"

(eq? 'bitBlt (string->symbol "bitBlt"))

⇒ #t

(eq? 'JollyWog (string->symbol (symbol->string 'JollyWog)))

⇒ #t

(string=? "K. Harper, M.D."

(symbol->string (string->symbol "K. Harper, M.D.")))

⇒ #t

Chapter 10: Symbols and namespaces 161

10.2 Namespaces and compound symbols

Different applications may want to use the same symbol to mean different things. To
avoid such name clashes we can use compound symbols, which have two string parts: a
local name and a namespace URI. The namespace-uri can be any string, but it is recom-
mended that it have the form of an absolute URI (http://en.wikipedia.org/wiki/
Uniform_Resource_Identifier). It would be too verbose to write the full URI all the
time, so one usually uses a namespace prefix (namespace alias) as a short local alias to refer
to a namespace URI.

Compound symbols are usually written using the infix colon operator:

prefix:local-name

where prefix is a namespace alias bound to some (lexically-known) namespace URI.

Compound symbols are used for namespace-aware XML processing.

10.2.1 Namespace objects

A namespace is a mapping from strings to symbols. The string is the local-name of the
resulting symbol. A namespace is similar to a Common Lisp package.

A namespace has a namespace-uri, which a string; it is recommended that it have the
form of an absolute URI. A namespace may optionally have a prefix, which is a string used
when printing out symbols belonging to the namespace. (If you want “equivalent symbols”
(i.e. those that have the same local-name and same uri) to be the identical symbol object,
then you should use namespaces whose prefix is the empty string.)

[Constructor]namespace name [prefix]
Return a namespace with the given name and prefix. If no such namespace exists,
create it. The namespace-name is commonly a URI, especially when working with
XML, in which case it is called a namespace-uri. However, any non-empty string is
allowed. The prefix can be a string or a simple symbol. (If a symbol is used, then
the symbol’s local-name is used.) The default for prefix is the empty string. Multiple
calls with the same arguments will yield the same namespace object.

The reader macro #,namespace is equivalent to the namespace function, but it is invoked
at read-time:

#,(namespace "http://www.w3.org/1999/XSL/Transform" xsl)

(eq? #,(namespace "foo") (namespace "foo")) ⇒ #t

The form (,#namespace "" "") returns the default empty namespace, which is used for
simple symbols.

[Procedure]namespace-uri namespace
Return the namespace-uri of the argument namespace, as a string.

[Procedure]namespace-prefix namespace
Return the namespace prefix of the argument namespace, as a string.

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Chapter 10: Symbols and namespaces 162

10.2.2 Compound symbols

A compound symbol is one that belongs to a namespace other than the default empty
namespace, and (normally) has a non-empty namespace uri. (It is possible for a symbol
to belong to a non-default namespace and have an empty namespace uri, but that is not
recommended.)

[Constructor]symbol local-name namespace-spec
[Constructor]symbol local-name [uri [prefix]]

Construct a symbol with the given local-name and namespace. If namespace-spec is
a namespace object, then find (or, if needed, construct) a symbol with the given local-
name belonging to the namespace. Multiple calls to symbol with the same namespace
and local-name will yield the same symbol object.

If uri is a string (optionally followed by a prefix), then:

(symbol lname uri [prefix])

is equivalent to:

(symbol lname (namespace uri [prefix]))

Using #t for the namespace-spec is equivalent to using the empty namespace
#,(namespace "").

Using #!null or #f for the namespace-spec creates an uninterned symbol, which does
not belong to any namespace.

[Procedure]symbol-local-name symbol
Return the local name of the argument symbol, as an immutable string. (The string
is interned, except in the case of an uninterned symbol.)

[Procedure]symbol-prefix symbol
Return the prefix of the argument symbol, as an immutable (and interned) string.

[Procedure]symbol-namespace-uri symbol
Return the namespace uri of the argument symbol, as an immutable (and interned)
string.

[Procedure]symbol-namespace symbol
Return the namespace object (if any) of the argument symbol. Returns #!null if the
symbol is uninterned.

[Procedure]symbol=? symbol1 symbol2 symbol3 . . .
Return #t if the symbols are equivalent as symbols, i.e., if their local-names and
namespace-uris are the same. They may have different values of symbol-prefix and
symbol-namespace. If a symbol is uninterned (or is #!null) then symbol=? returns
the same result as eq?.

Two symbols are equal? or eqv? if they’re symbol=?.

Chapter 10: Symbols and namespaces 163

10.2.3 Namespace aliases

A namespace is usually referenced using a shorter namespace alias, which is is a lexical
definition that binds a namespace prefix to a namespace object (and thus a namespace uri).
This allows using compound symbols as identifiers in Scheme programs.

[Syntax]define-namespace name namespace-name
Defines name as a namespace prefix - a lexically scoped "nickname" for the namespace
whose full name is namespace-name, which should be a non-empty string literal. It
is customary for the string have syntactic form of an absolute URI (http://en.
wikipedia.org/wiki/Uniform_Resource_Identifier), but any non-empty string
is acceptable and is used without further interpretation.

Any symbols in the scope of this definitions that contain a colon, and where the part
before the colon matches the name will be treated as being in the package/namespace
whose global unique name is the namespace-name.

Has mostly the same effect as:

(define-constant name #,(namespace namespace-name)

However, using define-namespace (rather than define-constant) is recommended
if you want to use compound symbols as names of variables, especially local variables,
or if you want to quote compound symbols.

Note that the prefix is only visible lexically: it is not part of the namespace, or thus
indirectly the symbols, and so is not available when printing the symbol. You might
consider using define-xml-namespace as an alternative.

A namespace is similar to a Common Lisp package, and the namespace-name is like
the name of the package. However, a namespace alias belongs to the lexical scope,
while a Common Lisp package nickname is global and belongs to the package itself.

If the namespace-name starts with the string "class:", then the name can be used for
invoking Java methods (see Section 19.9 [Method operations], page 320) and accessing
fields (see Section 19.11 [Field operations], page 327).

You can use a namespace as an abbreviation or renaming of a class name, but as a
matter of style define-alias is preferred.

[Syntax]define-private-namespace name namespace-name
Same as define-namespace, but the prefix name is local to the current module.

For example, you might have a set of a geometry definitions defined under the namespace-
uri "http://foo.org/lib/geometry":

(define-namespace geom "http://foo.org/lib/geometry")

(define (geom:translate x y)

(java.awt.geom.AffineTransform:getTranslateInstance x y))

(define geom:zero (geom:translate 0 0))

geom:zero

⇒ AffineTransform[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]

You could have some other definitions for complex math:

(define-namespace complex "http://foo.org/lib/math/complex")

(define complex:zero +0+0i)

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Chapter 10: Symbols and namespaces 164

You can use a namespace-value directly in a compound name:

(namespace "http://foo.org/lib/geometry"):zero

⇒ AffineTransform[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]

The variation define-xml-namespace is used for Section 20.3 [Creating XML nodes],
page 338.

[Syntax]define-xml-namespace prefix "namespace-uri"
Defines a namespace with prefix prefix and URI namespace-uri. This is similar to
define-namespace but with two important differences:

• Every symbol in the namespace automatically maps to an element-constructor-
type, as with the html namespace.

• The prefix is a component of the namespace object, and hence indirectly of any
symbols belongining to the namespace.

Thus the definition is roughly equivalent to:

(define-constant name #,(namespace namespace-name name)

along with an infinite set of definitions, for every possible tag :

(define (name:tag . rest) (apply make-element 'name:tag rest))

$ kawa --output-format xml

#|kawa:1|# (define-xml-namespace na "Namespace1")

#|kawa:2|# (define-xml-namespace nb "Namespace1")

#|kawa:3|# (define xa (na:em "Info"))

#|kawa:4|# xa

<na:em xmlns:na="Namespace1">Info</na:em>

#|kawa:5|# (define xb (nb:em "Info"))

#|kawa:6|# xa

<nb:em xmlns:nb="Namespace1">Info</nb:em>

Note that the prefix is part of the qualified name (it is actually part of the namespace
object), and it is used when printing the tag. Two qualified names (symbols) that have
the same local-name and the same namespace-name are considered equal, even if they have
different prefix. You can think of the prefix as annotation used when printing, but not
otherwise part of the “meaning” of a compound symbol. They are the same object if they
also have the same prefix. This is an important difference from traditional Lisp/Scheme
symbols, but it is how XML QNames work.

#|kawa:7|# (instance? xb na:em)

true

#|kawa:8|# (eq? 'na:em 'nb:em)

false

#|kawa:9|# (equal? 'na:em 'nb:em)

true

#|kawa:10|# (eqv? 'na:em 'nb:em)

true

(Note that #t is printed as true when using XML formatting.)

The predefined html prefix could be defined thus:

(define-xml-namespace html "http://www.w3.org/1999/xhtml")

Chapter 10: Symbols and namespaces 165

10.3 Keywords

Keywords are similar to symbols. They are used mainly for specifying keyword arguments.

Historically keywords have been self-evaluating (you did not need to quote them). This
has changed: you must quote a keyword if you want a literal keyword value, and not quote
it if it is used as a keyword argument.

keyword ::= identifier:
| #:identifier

The two syntaxes have the same meaning: The former is nicer-looking; the latter is more
portable (and required if you use the --r7rs command-line flag).

Details: In r7rs and other Scheme standards the colon character does not have
any special meaning, so foo: or foo:bar are just regular identifiers. Therefore
some other Scheme variants that have keywords (including Guile and Racket)
use the #: syntax. Kawa has some hacks so that most standard Scheme pro-
grams that have colons in identifiers will work. However, for best compatibility,
use the --r7rs command-line flag (which turns colon into a regular character
in a symbol), and the #: syntax.

A keyword is a single token; therefore no whitespace is allowed between the identifier
and the colon or after the #:; these characters are not considered part of the name of the
keyword.

[Procedure]keyword? obj
Return #t if obj is a keyword, and otherwise returns #f.

[Procedure]keyword->string keyword
Returns the name of keyword as a string. The name does not include the final #\:.

[Procedure]string->keyword string
Returns the keyword whose name is string. (The string does not include a final #\:.)

10.4 Special named constants

[Constant]#!optional
Special self-evaluating literal used in lambda parameter lists before optional param-
eters.

[Constant]#!rest
Special self-evaluating literal used in lambda parameter lists before the rest parameter.

[Constant]#!key
Special self-evaluating literal used in lambda parameter lists before keyword param-
eters.

[Constant]#!eof
The end-of-file object.

Note that if the Scheme reader sees this literal at top-level, it is returned literally.
This is indistinguishable from coming to the end of the input file. If you do not want
to end reading, but want the actual value of #!eof, you should quote it.

166

[Constant]#!void
The void value. Same as (values). If this is the value of an expression in a read-
eval-print loop, nothing is printed.

[Constant]#!null
The Java null value. This is not really a Scheme value, but is useful when interfacing
to low-level Java code.

11 Procedures

11.1 Application and Arguments Lists

When a procedure is called, the actual argument expressions are evaluated, and the resulting
values becomes the actual argument list. This is then matched against the formal parameter
list in the procedure definition, and (assuming they match) the procedure body is called.

11.1.1 Arguments lists

An argument list has three parts:

• Zero or more prefix arguments, each of which is a value. These typically get bound to
named required or optional formal parameters, but can also get bound to patterns.

• Zero or more keyword arguments, each of which is a keyword (an identifier specified
with keyword syntax) combined with a value. These are bound to either named keyword
formal parameters, or bundled in with a rest parameter.

• Zero or more postfix arguments, each of which is a value. These are usually bound to
a “rest” formal parameter, which receives any remaining arguments.

If there are no keyword arguments, then it ambiguous where prefix arguments end and
where postfix arguments start. This is normally not a problem: the called procedure
can split them up however it wishes.

Note that all keyword arguments have to be grouped together: It is not allowed to have
a keyword argument followed by a plain argument followed by a keyword argument.

The argument list is constructed by evaluating each operand of the procedure-call in
order:

expression The expression is evaluated, yielding a single value that becomes a prefix or
postfix argument.

keyword expression
The expression is evaluated. The resulting value combined with the keyword
becomes a keyword argument.

@expression
The expression is evaluated. The result must be a sequence - a list, vector,
or primitive array. The values of the sequence are appended to the resulting
argument list. Keyword arguments are not allowed.

Chapter 11: Procedures 167

@:expression
The expression is evaluted. The result can be a sequence; a hash table (viewed
as a collection of (keyword,value) pairs); or an explicit argument list object,
which is a sequence of values or keyword arguments. The values and keyword
arguments are appended to the resulting argument list, though subject to the
restriction that keyword arguments must be adjacent in the resulting argument
list.

11.1.2 Explicit argument list objects

Sometimes it is useful to create an argument list out of pieces, take argument lists apart,
iterate over them, and generally treat an argument list as an actual first-class value.

Explicit argument list objects can take multiple forms. The simplest is a sequence: a
list, vector, or primitive array. Each element of the list becomes a value in the resulting
argument list.

(define v1 '(a b c))

(define v2 (int[] 10 11 12 13))

(list "X" @v1 "Y" @v2 "Z")

⇒ ("X" a b c "Y" 10 11 12 13 "Z")

Things get more complicated once keywords are involved. An explicit argument list with
keywords is only allowed when using the @: splicing form, not the @ form. It can be either
a hash table, or the types arglist or argvector.

Design note: An argument list with keywords is straightforward in Common
Lisp and some Scheme implementations (including order versions of Kawa): It’s
just a list some of whose car cells are keyword objects. The problem with this
model is neither a human or the compiler can reliably tell when an argument is
a keyword, since any variable might have been assigned a keyword. This limits
performance and error checking.

A hash table (anything the implements java.util.Map) whose keys are strings or key-
word objects is interpreted as a sequence of keyword arguments, using the hash-table keys
and values.

[Type]argvector
[Constructor]argvector operand*

List of arguments represented as an immutable vector. A keyword argument takes
two elements in this vector: A keyword object, followed by the value.

(define v1 (argvector 1 2 k1: 10 k2: 11 98 99))

(v1 4) ⇒ 'k2

(v1 5) ⇒ 11

When v1 is viewed as a vector it is equivalent to (vector 1 2 'k1: 10 'k2: 11 98

99). (Note in this case the keywords need to be quoted, since the vector construc-
tor does not take keyword arguments.) However, the argvector “knows” which
arguments are actually keyword arguments, and can be examined using the (kawa

arglist) library discussed below:

(arglist-key-count (argvector 1 x: 2 3)) ⇒ 1

(arglist-key-count (argvector 1 'x: 2 3)) ⇒ 0

Chapter 11: Procedures 168

(arglist-key-count (vector 1 'x: 2 3)) ⇒ 0

In this case:

(fun 'a @:v1)

is equivalent to:

(fun 'a 1 2 k1: 10 k2: 11 98 99)

[Type]arglist
[Constructor]arglist operand*

Similar to argvector, but compatible with list. If there are no keyword arguments,
returns a plain list. If there is at least one keyword argument creates a special
gnu.mapping.ArgListPair object that implements the usual list properties but
internally wraps a argvector.

11.1.3 Argument list library

(import (kawa arglist))

In the following, args is an arglist or argvector (or in general any object that imple-
ment gnu.mapping.ArgList). Also, args can be any sequence, in which case it behaves like
an argvector that has no keyword arguments.

[Procedure]arglist-walk args proc
Call proc once, in order, for each argument in args. The proc is called with two ar-
guments, corresponding to (arglist-key-ref args i) and (arglist-arg-ref args

i) for each i from 0 up to (arglist-arg-count args) (exclusive). I.e. the first ar-
gument is either #!null or the keyword (as a string); the second argument is the
corresponding argument value.

(define (print-arguments args #!optional (out (current-output-port)))

(arglist-walk args

(lambda (key value)

(if key (format out "key: ~a value: ~w~%" key value)

(format out "value: ~w~%" value)))))

[Procedure]arglist-key-count args
Return the number of keyword arguments.

[Procedure]arglist-key-start args
Number of prefix arguments, which is the number of arguments before the first key-
word argument.

[Procedure]arglist-arg-count args
Return the number of arguments. The count includes the number of keyword argu-
ments, but not the actual keywords.

(arglist-arg-count (arglist 10 11 k1: -1 19)) ⇒ 4

[Procedure]arglist-arg-ref args index
Get the index’th argument value. The index counts keyword argument values, but
not the keywords themselves.

(arglist-arg-ref (arglist 10 11 k1: -1 19) 2) ⇒ -1

(arglist-arg-ref (arglist 10 11 k1: -1 19) 3) ⇒ 19

Chapter 11: Procedures 169

[Procedure]arglist-key-ref args index
The index counts arguments like arglist-arg-ref does. If this is a keyword ar-
gument, return the corresponding keyword (as a string); otherwise, return #!null

(which counts as false).

(arglist-key-ref (argvector 10 11 k1: -1 k2: -2 19) 3) ⇒ "k2"

(arglist-key-ref (argvector 10 11 k1: -1 k2: -2 19) 4) ⇒ #!null

[Procedure]arglist-key-index args key
Search for a keyword matching key (which must be an interned string). If there is
no such keyword, return -1. Otherwise return the keyword’s index as an argument to
arglist-key-ref.

[Procedure]arglist-key-value args key default
Search for a keyword matching key (which must be an interned string). If there is
no such keyword, return the default. Otherwise return the corresponding keyword
argument’s value.

11.1.4 Apply procedures

[Procedure]apply proc argi* argrest
Argrest must be a sequence (list, vector, or string) or a primitive Java array. (This
is an extension over standard Scheme, which requires that args be a list.) Calls the
proc (which must be a procedure), using as arguments the argi... values plus all the
elements of argrest.

Equivalent to: (proc argi* @argrest).

[Syntax]constant-fold proc arg1 ...
Same as (proc arg1 ...), unless proc and all the following arguments are compile-
time constants. (That is: They are either constant, or symbols that have a global
binding and no lexical binding.) In that case, proc is applied to the arguments at
compile-time, and the result replaces the constant-fold form. If the application
raises an exception, a compile-time error is reported. For example:

(constant-fold vector 'a 'b 'c)

is equivalent to (quote #(a b c)), assuming vector has not been re-bound.

11.2 Lambda Expressions and Formal Parameters

A lambda expression evaluates to a procedure. The environment in effect when the lambda
expression was evaluated is remembered as part of the procedure. When the procedure is
later called with some actual arguments, the environment in which the lambda expression
was evaluated will be extended by binding the variables in the formal argument list to fresh
locations, and the corresponding actual argument values will be stored in those locations.
(A fresh location is one that is distinct from every previously existing location.) Next,
the expressions in the body of the lambda expression will be evaluated sequentially in the
extended environment. The results of the last expression in the body will be returned as
the results of the procedure call.

(lambda (x) (+ x x)) ⇒ a procedure

Chapter 11: Procedures 170

((lambda (x) (+ x x)) 4) ⇒ 8

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) ⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) ⇒ 10

The formal arguments list of a lambda expression has some extensions over standard
Scheme: Kawa borrows the extended formal argument list of DSSSL, and allows you to
declare the type of the parameter. More generally, you can use Section 8.3 [Variables and
Patterns], page 140.

lambda-expression ::= (lambda formals option-pair * opt-return-type body)
opt-return-type ::= [:: type]
formals ::= (formal-arguments) | rest-arg

An opt-return-type specifies the return type of the procedure: The result of evaluating
the body is coerced to the specified type.

Deprecated : If the first form of the function body is an unbound identifier of the form
<TYPE> (that is the first character is ‘<’ and the last is ‘>’), then that is another way to
specify the function’s return type.

See Section 11.3 [Procedure properties], page 172, for how to set and use an option-pair.

The Section 8.4 [Definitions], page 141, form has a short-hand that combines a lambda
definition with binding the lambda to a variable:

(define (name formal-arguments) opt-return-type body)

formal-arguments ::= required-or-guard * [#!optional optional-arg ...] rest-key-args
rest-key-args ::= [#!rest rest-arg] [#!key key-arg ...] [guard]
| [#!key key-arg ...] [rest-parameter] [guard]
| . rest-arg

When the procedure is applied to an [argument list], page 166, the latter is matched
against formal parameters. This may involve some complex rules and pattern matching.

Required parameters

required-or-guard ::= required-arg | guard
required-arg ::= pattern
| (pattern :: type)

The required-args are matched against the actual (pre-keyword) arguments in order,
starting with the first actual argument. It is an error if there are fewer pre-keyword argu-
ments then there are required-args. While a pattern is most commonly an identifier, more
complicated patterns are possible, thus more (or fewer) variables may be bound than there
are arguments.

Note a pattern may include an opt-type-specifier. For example:

(define (isquare x::integer)

Chapter 11: Procedures 171

(* x x))

In this case the actual argument is coerced to an integer and then the result matched
against the pattern x. This is how parameter types are specified.

The patternmay be enclosed in parentheses for clarify (just like for optional parameters),
but in that case the type specifier is required to avoid ambiguity.

Optional parameters

optional-arg ::= variable opt-type-specifier
| (pattern opt-type-specifier [initializer [supplied-var]])

supplied-var ::= variable

Next the optional-args are bound to remaining pre-keyword arguments. If there are
fewer remaining pre-keyword arguments than there are optional-args, then the remaining
variables are bound to the corresponding initializer. If no initializer was specified, it defaults
to #f. (TODO: If a type is specified the default for initializer is the default value of the
type.) The initializer is evaluated in an environment in which all the previous formal
parameters have been bound. If a supplied-var is specified, it has type boolean, and is
set to true if there was an actual corresponding argument, and false if the initializer was
evaluated.

Keyword parameters

key-arg ::= variable opt-type-specifier
| (variable opt-type-specifier [initializer [supplied-var]])

Keyword parameters follow #!key. For each variable if there is an actual keyword
parameter whose keyword matches variable, then variable is bound to the corresponding
value. If there is no matching artual argument, then the initializer is evaluated and bound
to the argument. If initializer is not specified, it defaults to #f. The initializer is evaluated
in an environment in which all the previous formal parameters have been bound.

(define (fun x #!key (foo 1) (bar 2) (baz 3))

(list x foo bar baz))

(fun 9 baz: 10 foo: 11) ⇒ (9 11 2 10)

The following cause a match failure, unless there is a rest parameter:

• There may not be extra non-keyword arguments (prefix or postfix) beyond those
matched by required and optional parameters.

• There may not be any duplicated keyword arguments.

• All keyowrds in the actual argument list must match one of the keyword formal pa-
rameters.

It is not recommended to use both keyword parameters and a rest parameter that can
match keyword arguments. Currently, the rest parameter will include any arguments that
match the explicit keyword parameters, as well any that don’t, though this may change.

On the other hand, it is fine to have both keyword parameters and a rest parameter does
not accept keywords. In that case the rest parameter will match any “postfix” arguments:

#|kawa:8|# (define (fun x #!key k1 k2 #!rest r)

(format "x:~w k1:~w k2:~w r:~w" x k1 k2 r))

(fun 3 k2: 12 100 101) ⇒ x:3 k1:#f k2:12 r:(100 101)

Chapter 11: Procedures 172

The supplied-var argument is as for optional arguments.

Performance note: Keyword parameters are implemented very efficiently and compactly
when explicit in the code. The parameters are sorted by the compiler, and the actual
keyword arguemnts at the call state are also sorted at compile-time. So keyword matching
just requires a fast linear scan comparing the two sorted lists. This implementation is also
very compact, compared to say a hash table.

If a type is specified, the corresponding actual argument (or the initializer default value)
is coerced to the specified type. In the function body, the parameter has the specified type.

Rest parameters

A “rest parameter” matches any arguments not matched by other parameters. You can
write it using any of the following ways:

rest-parameter ::=

#!rest rest-arg [:: type]
| @rest-arg
| @:rest-arg

rest-arg ::= variable

In addition, if formals is just a rest-arg identifier, or a formal-arguments ends with .

rest-arg (i.e. is a dotted list) that is equivalent to using #!rest.

These forms are similar but differ in the type of the rest-arg and whether keywords are
allowed (as part of the rest-arg):

• If #!rest rest-arg is used with no type specifier (or a type specifier of list) then
rest-arg is a list. Keywords are not allowed if #!key has been seen. (For backward
compatibility, it is allowed to have extra keywords if #!rest is followed by !key.) If
there are any keywords, then rest-arg is more specifically an arglist.

• If #!rest rest-arg is used with type specifier that is a Java array (for example #!rest

r::string[] then rest-arg has that type. Each argument must be compatible with
the element type of the array. Keywords are not allowed (even if type is object[]).

The generated method will be compiled like a Java varargs methods if possible (i.e. no
non-trivial patterns or keyword paremeters).

• Using @rest-arg is equivalent to #!rest rest-arg::object[]: Keywords are not al-
lowed; the type of rest-arg is a Java array; the method is compiled like a Java varargs
method.

• For @:rest-arg then rest-arg is a vector, specifically an argvector. Keywords are
allowed.

Guards (conditional expressions)

A guard is evaluated when it appears in the formal parameter list. If it evaluates to false,
then matching fails. Guards can appears before or after required arguments, or at the very
end, after all other formal parameters.

11.3 Procedure properties

You can associate arbitrary properties with any procedure. Each property is a (key, value)-
pair. Usually the key is a symbol, but it can be any object.

Chapter 11: Procedures 173

The preferred way to set a property is using an option-pair in a lambda-expression. For
example, to set the setter property of a procedure to my-set-car do the following:

(define my-car

(lambda (arg) setter: my-set-car (primitive-car arg)))

The system uses certain internal properties: 'name refers to the name used when a
procedure is printed; 'emacs-interactive is used to implement Emacs interactive spec-
ification; 'setter is used to associate a setter procedure.

[Procedure]procedure-property proc key [default]
Get the property value corresponding to the given key. If proc has no property with
the given key, return default (which defaults to #f) instead.

[Procedure]set-procedure-property! proc key value
Associate the given value with the key property of proc.

To change the print name of the standard + procedure (probably not a good idea!), you
could do:

(set-procedure-property! + 'name 'PLUS)

Note this only changes the name property used for printing:

+ ⇒ #<procedure PLUS>

(+ 2 3) ⇒ 5

(PLUS 3 4) ⇒ ERROR

As a matter of style, it is cleaner to use the define-procedure form, as it is a more
declarative interface.

[Syntax]define-procedure name [propname: propvalue] ... method ...
Defines name as a compound procedure consisting of the specified methods, with the
associated properties. Applying name select the "best" method, and applies that.
See the following section on generic procedures.

For example, the standard vector-ref procedure specifies one method, as well as the
setter property:

(define-procedure vector-ref

setter: vector-set!

(lambda (vector::vector k ::int)

(invoke vector 'get k)))

You can also specify properties in the lambda body:

(define (vector-ref vector::vector k ::int)

setter: vector-set!

(invoke vector 'get k))

11.3.1 Standard properties

name The name of a procedure (as a symbol), which is used when the procedure is
printed.

setter Set the setter procedure associated with the procedure.

Chapter 11: Procedures 174

validate-apply

validate-xapply

Used during the validation phase of the compiler.

compile-apply

Used during the bytecode-generation phase of the compiler: If we see a call to
a known function with this property, we can emit custom bytecode for the call.

11.4 Generic (dynamically overloaded) procedures

A generic procedure is a collection of method procedures. (A "method procedure" is not
the same as a Java method, but the terms are related.) You can call a generic procedure,
which selects the "closest match" among the component method procedures: I.e. the most
specific method procedure that is applicable given the actual arguments.

Warning: The current implementation of selecting the "best" method is not
reliable if there is more than one method. It can select depending on argument
count, and it can select between primitive Java methods. However, selecting
between different Scheme procedures based on parameter types should be con-
sidered experimental. The main problem is we can’t determine the most specific
method, so Kawa just tries the methods in order.

[Procedure]make-procedure [keyword: value]... method...
Create a generic procedure given the specific methods. You can also specify property
values for the result.

The keywords specify how the arguments are used. A method: keyword is optional
and specifies that the following argument is a method. A name: keyword specifies the
name of the resulting procedure, when used for printing. Unrecognized keywords are
used to set the procedure properties of the result.

(define plus10 (make-procedure foo: 33 name: 'Plus10

method: (lambda (x y) (+ x y 10))

method: (lambda () 10)))

11.5 Partial application

[Syntax]cut slot-or-expr slot-or-expr* [<...>]
where each slot-or-expr is either an expression or the literal symbol <>.

It is frequently necessary to specialize some of the parameters of a multi-parameter
procedure. For example, from the binary operation cons one might want to obtain
the unary operation (lambda (x) (cons 1 x)). This specialization of parameters is
also known as partial application, operator section, or projection. The macro cut

specializes some of the parameters of its first argument. The parameters that are to
show up as formal variables of the result are indicated by the symbol <>, pronouced as
"slot". In addition, the symbol <...>, pronounced as "rest-slot", matches all residual
arguments of a variable argument procedure.

A cut-expression is transformed into a lambda expression with as many formal vari-
ables as there are slots in the list slot-or-expr*. The body of the resulting lambda
expression calls the first slot-or-expr with arguments from the slot-or-expr* list in the

175

order they appear. In case there is a rest-slot symbol, the resulting procedure is also
of variable arity, and the body calls the first slot-or-expr with remaining arguments
provided to the actual call of the specialized procedure.

Here are some examples:

(cut cons (+ a 1) <>) is the same as (lambda (x2) (cons (+ a 1) x2))

(cut list 1 <> 3 <> 5) is the same as (lambda (x2 x4) (list 1 x2 3 x4 5))

(cut list) is the same as (lambda () (list))

(cut list 1 <> 3 <...>) is the same as (lambda (x2 . xs) (apply list 1 x2 3 xs))

The first argument can also be a slot, as one should expect in Scheme: (cut <> a b)

is the same as (lambda (f) (f a b))

[Syntax]cute slot-or-expr slot-or-expr* [<...>]
The macro cute (a mnemonic for "cut with evaluated non-slots") is similar to cut,
but it evaluates the non-slot expressions at the time the procedure is specialized, not
at the time the specialized procedure is called.

For example (cute cons (+ a 1) <>) is the same as (let ((a1 (+ a 1))) (lambda (x2) (cons a1 x2)))

As you see from comparing this example with the first example above, the cute-
variant will evaluate (+ a 1) once, while the cut-variant will evaluate it during every
invocation of the resulting procedure.

12 Quantities and Numbers

Kawa supports the full Scheme set of number operations with some extensions.

Kawa converts between Scheme number types and Java number types as appropriate.

12.1 Numerical types

Mathematically, numbers are arranged into a tower of subtypes in which each level is a
subset of the level before it: number; complex number; real number; rational number;
integer.

For example, 3 is an integer. Therefore 3 is also a rational, a real, and a complex number.
The same is true of the Scheme numbers that model 3. For Scheme numbers, these types
are defined by the predicates number?, complex?, real?, rational?, and integer?.

There is no simple relationship between a number’s type and its representation inside
a computer. Although most implementations of Scheme will offer at least two different
representations of 3, these different representations denote the same integer.

Scheme’s numerical operations treat numbers as abstract data, as independent of their
representation as possible. Although an implementation of Scheme may use multiple in-
ternal representations of numbers, this ought not to be apparent to a casual programmer
writing simple programs.

[Type]number
The type of Scheme numbers.

Chapter 12: Quantities and Numbers 176

[Type]quantity
The type of quantities optionally with units. This is a sub-type of number.

[Type]complex
The type of complex numbers. This is a sub-type of quantity.

[Type]real
The type of real numbers. This is a sub-type of complex.

[Type]rational
The type of exact rational numbers. This is a sub-type of real.

[Type]integer
The type of exact Scheme integers. This is a sub-type of rational.

Kawa allows working with expressions of “primitive” types, which are supported by
the JVM without object allocation, and using builtin arithmetic. Using these types may
be much faster, assuming the compiler is able to infer that the variable or expression has
primitive type.

[Type]long
[Type]int
[Type]short
[Type]byte

These are fixed-sized primitive signed exact integer types, of respectively 64, 32, 18,
and 8 bits. If a value of one of these types needs to be converted to an object,
the standard classes java.lang.Long, java.lang.Integer, java.lang.Short, or
java.lang.Byte, respectively, are used.

[Type]ulong
[Type]uint
[Type]ushort
[Type]ubyte

These are fixed-sized primitive unsigned exact integer types, of respectively 64, 32,
18, and 8 bits. These are presented at runtime using the corresponding signed types
(long, int, short, or byte). However, for arithmetic the Kawa compiler generates
code to perform the “mathematically correct” result, truncated to an unsigned result
rather than signed. If a value of one of these types needs to be converted to an object,
the classes gnu.math.ULong, gnu.math.UInt, gnu.math.UShort, or gnu.math.UByte
is used.

[Type]double
[Type]float

These are fixed-size primitive inexact floating-point real types, using the standard 64-
bit or 32-bit IEEE representation. If a value of one of these types needs to be converted
to an object, the standard classes java.lang.Double, or java.lang.Float is used.

Chapter 12: Quantities and Numbers 177

12.1.1 Exactness

It is useful to distinguish between numbers that are represented exactly and those that
might not be. For example, indexes into data structures must be known exactly, as must
some polynomial coefficients in a symbolic algebra system. On the other hand, the re-
sults of measurements are inherently inexact, and irrational numbers may be approximated
by rational and therefore inexact approximations. In order to catch uses of inexact num-
bers where exact numbers are required, Scheme explicitly distinguishes exact from inexact
numbers. This distinction is orthogonal to the dimension of type.

A Scheme number is exact if it was written as an exact constant or was derived from
exact numbers using only exact operations. A number is inexact if it was written as an
inexact constant, if it was derived using inexact ingredients, or if it was derived using inexact
operations. Thus inexactness is a contagious property of a number. In particular, an exact
complex number has an exact real part and an exact imaginary part; all other complex
numbers are inexact complex numbers.

If two implementations produce exact results for a computation that did not involve
inexact intermediate results, the two ultimate results will be mathematically equal. This is
generally not true of computations involving inexact numbers since approximate methods
such as floating-point arithmetic may be used, but it is the duty of the implementation to
make the result as close as practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact
arguments. If the operation is unable to produce an exact result, then it may either report
the violation of an implementation restriction or it may silently coerce its result to an
inexact value.

Except for exact, the operations described in this section must generally return inexact
results when given any inexact arguments. An operation may, however, return an exact
result if it can prove that the value of the result is unaffected by the inexactness of its
arguments. For example, multiplication of any number by an exact zero may produce an
exact zero result, even if the other argument is inexact.

Specifically, the expression (* 0 +inf.0) may return 0, or +nan.0, or report that inexact
numbers are not supported, or report that non-rational real numbers are not supported, or
fail silently or noisily in other implementation-specific ways.

The procedures listed below will always return exact integer results provided all their
arguments are exact integers and the mathematically expected results are representable
as exact integers within the implementation: -, *, +, abs, ceiling, denominator,
exact-integer-sqrt, expt, floor, floor/, floor-quotient, floor-remainder, gcd,
lcm, max, min, modulo, numerator, quotient, rationalize, remainder, square,
truncate, truncate/, truncate-quotient, truncate-remainder.

12.1.2 Numerical promotion and conversion

When combining two values of different numeric types, the values are converted to the first
line in the following that subsumes (follows) both types. The computation is done using
values of that type, and so is the result. For example adding a long and a float converts
the former to the latter, yielding a float.

Chapter 12: Quantities and Numbers 178

Note that short, byte, ushort, ubyte are converted to int regardless, even in the case
of a single-operand operation, such as unary negation. Another exception is trancendental
functions (such as cos), where integer operands are converted to double.

• int subsumes short, byte, ushort, ubyte.

• uint

• long

• ulong

• java.lang.BigInteger

• integer (i.e. gnu.math.IntNum)

• rational (i.e. gnu.math.RatNum)

• float

• double

• gnu.math.FloNum

• real (i.e. gnu.math.RealNum)

• number

• complex

• quantity

When comparing a primitive signed integer value with a primitive unsigned integer (for
example < applied to a int and a ulong) the mathemically correct result is computed, as
it converting both operands to integer.

12.2 Arithmetic operations

[Procedure]real-valued? obj
[Procedure]rational-valued? obj
[Procedure]integer-valued? obj

These numerical type predicates can be applied to any kind of argument. The
real-valued? procedure returns #t if the object is a number object and is equal
in the sense of = to some real number object, or if the object is a NaN, or a complex
number object whose real part is a NaN and whose imaginary part is zero in the sense
of zero?. The rational-valued? and integer-valued? procedures return #t if the
object is a number object and is equal in the sense of = to some object of the named
type, and otherwise they return #f.

(real-valued? +nan.0) ⇒ #t

(real-valued? +nan.0+0i) ⇒ #t

(real-valued? -inf.0) ⇒ #t

(real-valued? 3) ⇒ #t

(real-valued? -2.5+0.0i) ⇒ #t

(real-valued? -2.5+0i) ⇒ #t

(real-valued? -2.5) ⇒ #t

(real-valued? #e1e10) ⇒ #t

Chapter 12: Quantities and Numbers 179

(rational-valued? +nan.0) ⇒ #f

(rational-valued? -inf.0) ⇒ #f

(rational-valued? 6/10) ⇒ #t

(rational-valued? 6/10+0.0i) ⇒ #t

(rational-valued? 6/10+0i) ⇒ #t

(rational-valued? 6/3) ⇒ #t

(integer-valued? 3+0i) ⇒ #t

(integer-valued? 3+0.0i) ⇒ #t

(integer-valued? 3.0) ⇒ #t

(integer-valued? 3.0+0.0i) ⇒ #t

(integer-valued? 8/4) ⇒ #t

Note: These procedures test whether a given number object can be co-
erced to the specified type without loss of numerical accuracy. Specifi-
cally, the behavior of these predicates differs from the behavior of real?,
rational?, and integer? on complex number objects whose imaginary
part is inexact zero.

Note: The behavior of these type predicates on inexact number objects
is unreliable, because any inaccuracy may affect the result.

[Procedure]exact-integer? z
Returns #t if z is both exact and an integer; otherwise returns #f.

(exact-integer? 32) ⇒ #t

(exact-integer? 32.0) ⇒ #t

(exact-integer? 32/5) ⇒ #f

[Procedure]finite? z
Returns #t if z is finite real number (i.e. an infinity and not a NaN), or if z is a
complex number whose real and imaginary parts are both finite.

(finite? 3) ⇒ #t

(finite? +inf.0) ⇒ #f

(finite? 3.0+inf.0i) ⇒ #f

[Procedure]infinite? z
Return #t if z is an infinite real number (+int.0 or -inf.0), or if z is a complex
number where either real or imaginary parts or both are infinite.

(infinite? 5.0) ⇒ #f

(infinite? +inf.0) ⇒ #t

(infinite? +nan.0) ⇒ #f

(infinite? 3.0+inf.0i) ⇒ #t

[Procedure]nan? z
For a real numer returns whether its is a NaN; for a complex number if the real or
imaginary parts or both is a NaN.

(nan? +nan.0) ⇒ #t

(nan? 32) ⇒ #f

(nan? +nan.0+5.0i) ⇒ #t

(nan? 1+2i) ⇒ #f

Chapter 12: Quantities and Numbers 180

[Procedure]+ z . . .
[Procedure]* z . . .

These procedures return the sum or product of their arguments.

(+ 3 4) ⇒ 7

(+ 3) ⇒ 3

(+) ⇒ 0

(+ +inf.0 +inf.0) ⇒ +inf.0

(+ +inf.0 -inf.0) ⇒ +nan.0

(* 4) ⇒ 4

(*) ⇒ 1

(* 5 +inf.0) ⇒ +inf.0

(* -5 +inf.0) ⇒ -inf.0

(* +inf.0 +inf.0) ⇒ +inf.0

(* +inf.0 -inf.0) ⇒ -inf.0

(* 0 +inf.0) ⇒ +nan.0

(* 0 +nan.0) ⇒ +nan.0

(* 1.0 0) ⇒ 0.0

For any real number object x that is neither infinite nor NaN:

(+ +inf.0 x) ⇒ +inf.0

(+ -inf.0 x) ⇒ -inf.0

For any real number object x:

(+ +nan.0 x) ⇒ +nan.0

For any real number object x that is not an exact 0:

(* +nan.0 x) ⇒ +nan.0

The behavior of -0.0 is illustrated by the following examples:

(+ 0.0 -0.0) ⇒ 0.0

(+ -0.0 0.0) ⇒ 0.0

(+ 0.0 0.0) ⇒ 0.0

(+ -0.0 -0.0) ⇒ -0.0

[Procedure]- z
[Procedure]- z1 z2 z3 . . .

With two or more arguments, this procedures returns the difference of its arguments,
associating to the left. With one argument, however, it returns the negation (additive
inverse) of its argument.

(- 3 4) ⇒ -1

(- 3 4 5) ⇒ -6

(- 3) ⇒ -3

(- +inf.0 +inf.0) ⇒ +nan.0

The behavior of -0.0 is illustrated by the following examples:

(- 0.0) ⇒ -0.0

(- -0.0) ⇒ 0.0

(- 0.0 -0.0) ⇒ 0.0

Chapter 12: Quantities and Numbers 181

(- -0.0 0.0) ⇒ -0.0

(- 0.0 0.0) ⇒ 0.0

(- -0.0 -0.0) ⇒ 0.0

[Procedure]/ z
[Procedure]/ z1 z2 z3 . . .

If all of the arguments are exact, then the divisors must all be nonzero. With two
or more arguments, this procedure returns the quotient of its arguments, associating
to the left. With one argument, however, it returns the multiplicative inverse of its
argument.

(/ 3 4 5) ⇒ 3/20

(/ 3) ⇒ 1/3

(/ 0.0) ⇒ +inf.0

(/ 1.0 0) ⇒ +inf.0

(/ -1 0.0) ⇒ -inf.0

(/ +inf.0) ⇒ 0.0

(/ 0 0) ⇒ exception &assertion

(/ 3 0) ⇒ exception &assertion

(/ 0 3.5) ⇒ 0.0

(/ 0 0.0) ⇒ +nan.0

(/ 0.0 0) ⇒ +nan.0

(/ 0.0 0.0) ⇒ +nan.0

If this procedure is applied to mixed non–rational real and non–real
complex arguments, it either raises an exception with condition type
&implementation-restriction or returns an unspecified number object.

[Procedure]floor/ x y
[Procedure]truncate/ x y
[Procedure]div-and-mod x y
[Procedure]div0-and-mod0 x y

These procedures implement number–theoretic integer division. They accept two real
numbers x and y as operands, where y must be nonzero. In all cases the result is two
values q (an integer) and r (a real) that satisfy the equations:

x = q * y + r

q = rounding-op(x/y)

The result is inexact if either argument is inexact.

For floor/ the rounding-op is the floor function (below).

(floor/ 123 10) ⇒ 12 3

(floor/ 123 -10) ⇒ -13 -7

(floor/ -123 10) ⇒ -13 7

(floor/ -123 -10) ⇒ 12 -3

For truncate/ the rounding-op is the truncate function.

(truncate/ 123 10) ⇒ 12 3

(truncate/ 123 -10) ⇒ -12 3

(truncate/ -123 10) ⇒ -12 -3

(truncate/ -123 -10) ⇒ 12 -3

Chapter 12: Quantities and Numbers 182

For div-and-mod the rounding-op is either floor (if y is positive) or ceiling (if y
is negative). We have:

0 <= r < |y|

(div-and-mod 123 10) ⇒ 12 3

(div-and-mod 123 -10) ⇒ -12 3

(div-and-mod -123 10) ⇒ -13 7

(div-and-mod -123 -10) ⇒ 13 7

For div0-and-mod0 the rounding-op is the round function, and r lies within a half–
open interval centered on zero.

-|y/2| <= r < |y/2|

(div0-and-mod0 123 10) ⇒ 12 3

(div0-and-mod0 123 -10) ⇒ -12 3

(div0-and-mod0 -123 10) ⇒ -12 -3

(div0-and-mod0 -123 -10) ⇒ 12 -3

(div0-and-mod0 127 10) ⇒ 13 -3

(div0-and-mod0 127 -10) ⇒ -13 -3

(div0-and-mod0 -127 10) ⇒ -13 3

(div0-and-mod0 -127 -10) ⇒ 13 3

The inconsistent naming is for historical reasons: div-and-mod and div0-and-mod0

are from R6RS, while floor/ and truncate/ are from R7RS.

[Procedure]floor-quotient x y
[Procedure]truncate-quotient x y
[Procedure]div x y
[Procedure]div0 x y

These procedures return the quotient part (first value) of respectively floor/,
truncate/, div-and-mod, and div0-and-mod0.

[Procedure]floor-remainder x y
[Procedure]truncate-remainder x y
[Procedure]mod x y
[Procedure]mod0 x y

These procedures return the remainder part (second value) of respectively floor/,
truncate/, div-and-mod, and div0-and-mod0.

As a Kawa extension y may be zero, in which case the result is x:

(mod 123 0) ⇒ 123 ;; Kawa extension

[Procedure]quotient x y
[Procedure]remainder x y
[Procedure]modulo x y

These are equivalent to truncate-quotient, truncate-remainder, and
floor-remainder, respectively. These are provided for backward compatibility.

(remainder 13 4) ⇒ 1

(remainder -13 4) ⇒ -1

(remainder 13 -4) ⇒ 1

(remainder -13 -4) ⇒ -1

Chapter 12: Quantities and Numbers 183

(remainder -13 -4.0) ⇒ -1.0

(modulo 13 4) ⇒ 1

(modulo -13 4) ⇒ 3

(modulo 13 -4) ⇒ -4

(modulo -13 -4) ⇒ -1

[Procedure]abs x
Returns the absolute value of its argument.

(abs -7) ⇒ 7

(abs -inf.0) ⇒ +inf.0

[Procedure]gcd n1 . . .
[Procedure]lcm n1 . . .

These procedures return the greatest common divisor or least common multiple of
their arguments. The result is always non–negative. The arguments must be integers;
if an argument is inexact, so is the result.

(gcd 32 -36) ⇒ 4

(gcd) ⇒ 0

(lcm 32 -36) ⇒ 288

(lcm 32.0 -36) ⇒ 288.0 ; inexact

(lcm) ⇒ 1

[Procedure]numerator q
[Procedure]denominator q

These procedures return the numerator or denominator of their argument; the re-
sult is computed as if the argument was represented as a fraction in lowest terms.
The denominator is always positive. The denominator of 0 is defined to be 1. The
arguments must be integers; if an argument is inexact, so is the result.

(numerator (/ 6 4)) ⇒ 3

(denominator (/ 6 4)) ⇒ 2

(denominator (inexact (/ 6 4))) ⇒ 2.0

[Procedure]floor x
[Procedure]ceiling x
[Procedure]truncate x
[Procedure]round x

These procedures return inexact integer objects for inexact arguments that are not
infinities or NaNs, and exact integer objects for exact rational arguments.

floor Returns the largest integer object not larger than x.

ceiling Returns the smallest integer object not smaller than x.

truncate Returns the integer object closest to x whose absolute value is not larger
than the absolute value of x.

round Returns the closest integer object to x, rounding to even when x repre-
sents a number halfway between two integers.

Chapter 12: Quantities and Numbers 184

If the argument to one of these procedures is inexact, then the result is also inexact.
If an exact value is needed, the result should be passed to the exact procedure.

Although infinities and NaNs are not integer objects, these procedures return an
infinity when given an infinity as an argument, and a NaN when given a NaN.

(floor -4.3) ⇒ -5.0

(ceiling -4.3) ⇒ -4.0

(truncate -4.3) ⇒ -4.0

(round -4.3) ⇒ -4.0

(floor 3.5) ⇒ 3.0

(ceiling 3.5) ⇒ 4.0

(truncate 3.5) ⇒ 3.0

(round 3.5) ⇒ 4.0

(round 7/2) ⇒ 4

(round 7) ⇒ 7

(floor +inf.0) ⇒ +inf.0

(ceiling -inf.0) ⇒ -inf.0

(round +nan.0) ⇒ +nan.0

[Procedure]rationalize x1 x2
The rationalize procedure returns a number object representing the simplest ra-
tional number differing from x1 by no more than x2.

A rational number r 1 is simpler than another rational number r 2 if r_1 = p_1/q_1

and r_2 = p_2/q_2 (in lowest terms) and |p_1| <= |p_2| and |q_1| <= |q_2|. Thus
3/5 is simpler than 4/7.

Although not all rationals are comparable in this ordering (consider 2/7 and 3/5) any
interval contains a rational number that is simpler than every other rational number
in that interval (the simpler 2/5 lies between 2/7 and 3/5).

Note that 0 = 0/1 is the simplest rational of all.

(rationalize (exact .3) 1/10) ⇒ 1/3

(rationalize .3 1/10) ⇒ #i1/3 ; approximately

(rationalize +inf.0 3) ⇒ +inf.0

(rationalize +inf.0 +inf.0) ⇒ +nan.0

The first two examples hold only in implementations whose inexact real number ob-
jects have sufficient precision.

[Procedure]exp z
[Procedure]log z
[Procedure]log z1 z2
[Procedure]sin z
[Procedure]cos z
[Procedure]tan z
[Procedure]asin z

Chapter 12: Quantities and Numbers 185

[Procedure]acos z
[Procedure]atan z
[Procedure]atan x1 x2

These procedures compute the usual transcendental functions.

The exp procedure computes the base–e exponential of z. The log procedure with
a single argument computes the natural logarithm of z (not the base–10 logarithm);
(log z1 z2) computes the base–z2 logarithm of z1.

The asin, acos, and atan procedures compute arcsine, arccosine, and arctangent,
respectively. The two–argument variant of atan computes:

(angle (make-rectangular x2 x1))

These procedures may return inexact results even when given exact arguments.

(exp +inf.0) ⇒ +inf.0

(exp -inf.0) ⇒ 0.0

(log +inf.0) ⇒ +inf.0

(log 0.0) ⇒ -inf.0

(log 0) ⇒ exception &assertion

(log -inf.0) ⇒ +inf.0+3.141592653589793i ; approximately

(atan -inf.0) ⇒ -1.5707963267948965 ; approximately

(atan +inf.0) ⇒ 1.5707963267948965 ; approximately

(log -1.0+0.0i) ⇒ 0.0+3.141592653589793i ; approximately

(log -1.0-0.0i) ⇒ 0.0-3.141592653589793i ; approximately

; if -0.0 is distinguished

[Procedure]sinh z
[Procedure]cosh z
[Procedure]tanh z
[Procedure]asinh z
[Procedure]acosh z
[Procedure]atanh z

The hyperbolic functions.

[Procedure]square z
Returns the square of z. This is equivalent to (* z z).

(square 42) ⇒ 1764

(square 2.0) ⇒ 4.0

[Procedure]sqrt z
Returns the principal square root of z. For rational z, the result has either positive
real part, or zero real part and non–negative imaginary part. The value of (sqrt z)

could be expressed as:

e^((log z)/2)

The sqrt procedure may return an inexact result even when given an exact argument.

(sqrt -5) ⇒ 0.0+2.23606797749979i ; approximately

(sqrt +inf.0) ⇒ +inf.0

(sqrt -inf.0) ⇒ +inf.0i

Chapter 12: Quantities and Numbers 186

Note that if the argument is a primitive number (such as double) or an instance of the
corresponding boxed class (such as java.lang.Double) then we use the real-number
version of sqrt:

(sqrt (->double -5)) ⇒ NaN

That is, we get different a result for java.lang.Double and gnu.math.DFloNum,
even for arguments that are numerically equal in the sense of =. This is so that the
compiler can use the java.lang.Math.sqrt method without object allocation when
the argument is a double (and because we want double and java.lang.Double to
behave consistently).

[Procedure]exact-integer-sqrt k
The exact-integer-sqrt procedure returns two non–negative exact integer objects
s and r where k = s^2 + r and k < (s+1)^2.

(exact-integer-sqrt 4) ⇒ 2 0 ; two return values

(exact-integer-sqrt 5) ⇒ 2 1 ; two return values

[Procedure]expt z1 z2
Returns z1 raised to the power z2. For nonzero z1, this is z1

z2 = ez2 log z1 . The
value of 0z is 1 if (zero? z), 0 if (real-part z) is positive, and an error otherwise.
Similarly for 0.0z, with inexact results.

12.3 Numerical input and output

[Procedure]number->string z [radix]
The procedure number->string takes a number and a radix and returns as a string
an external representation of the given number in the given radix such that

(let ((number number)

(radix radix))

(eqv? number

(string->number (number->string number radix)

radix)))

is true. It is an error if no possible result makes this expression true.

If present, radix must be an exact integer in the range 2 to 36, inclusive. If omitted,
radix defaults to 10.

If z is inexact, the radix is 10, and the above expression can be satisfied by a result that
contains a decimal point, then the result contains a decimal point and is expressed
using the minimum number of digits (exclusive of exponent and trailing zeroes) needed
to make the above expression; otherwise the format of the result is unspecified.

The result returned by number->string never contains an explicit radix prefix.

Note: The error case can occur only when z is not a complex number or is a complex
number with a non-rational real or imaginary part.

Rationale: If z is an inexact number and the radix is 10, then the above expression is
normally satisfied by a result containing a decimal point. The unspecified case allows
for infinities, NaNs, and unusual representations.

Chapter 12: Quantities and Numbers 187

[Procedure]string->number string [radix]
Returns a number of the maximally precise representation expressed by the given
string. It is an error if radix is not an exact integer in the range 2 to 26, inclusive.

If supplied, radix is a default radix that will be overridden if an explicit radix prefix
is present in the string (e.g. "#o177"). If radix is not supplied, then the default radix
is 10. If string is not a syntactically valid notation for a number, or would result in
a number that the implementation cannot represent, then string->number returns
#f. An error is never signaled due to the content of string.

(string->number "100") ⇒ 100

(string->number "100" 16) ⇒ 256

(string->number "1e2") ⇒ 100.0

(string->number "#x100" 10) ⇒ 256

12.4 Quaternions

Kawa extends the Scheme numeric tower to include quaternions (http://en.wikipedia.
org/wiki/Quaternion) as a proper superset of the complex numbers. Quaternions pro-
vide a convenient notation to represent rotations in three-dimensional space (http://
en.wikipedia.org/wiki/Quaternions_and_spatial_rotation), and are therefore com-
monly found in applications such as computer graphics, robotics, and spacecraft engineering.
The Kawa quaternion API is modeled after this (http://www.ccs.neu.edu/home/dorai/
squat/squat.html) with some additions.

A quaternion is a number that can be expressed in the form ‘w+xi+yj+zk’, where w, x,
y, and z are real, and i, j, and k are imaginary units satisfying i2 = j2 = k2 = ijk = −1.
The magnitude of a quaternion is defined to be its Euclidean norm when viewed as a point
in R4.

The real–part of a quaternion is also called its ‘scalar’, while the i–part, j–part, and
k–part taken together are also called its ‘vector’. A quaternion with zero j–part and k–part
is an ordinary complex number. (If the i–part is also zero, then it is a real). A quaternion
with zero real–part is called a ‘vector quaternion’.

The reader syntax for number literals has been extended to support both rectangular
and polar (hyperspherical) notation for quaternions. The rectangular notation is as above,
i.e. w+xi+yj+zk. The polar notation takes the form r@t%u&v, where r is the magnitude, t
is the first angle, and u and v are two other angles called the “colatitude” and “longitude”.

The rectangular coordinates and polar coordinates are related by the equations:

w = r * cos t

x = r * sin t * cos u

y = r * sin t * sin u * cos v

z = r * sin t * sin u * sin v

With either notation, zero elements may be omitted.

[Procedure]make-rectangular w x
[Procedure]make-rectangular w x y z

These procedures construct quaternions from Cartesian coordinates.

http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
http://www.ccs.neu.edu/home/dorai/squat/squat.html
http://www.ccs.neu.edu/home/dorai/squat/squat.html

Chapter 12: Quantities and Numbers 188

[Procedure]make-polar r t
[Procedure]make-polar r t u v

These procedures construct quaternions from polar coordinates.

[Procedure]+ q . . .
[Procedure]- q . . .
[Procedure]* q . . .
[Procedure]/ q
[Procedure]/ q1 q2 q3 . . .
[Procedure]expt q1 q2
[Procedure]exp q
[Procedure]log q
[Procedure]sqrt q
[Procedure]sin q
[Procedure]cos q
[Procedure]tan q
[Procedure]asin q
[Procedure]acos q
[Procedure]atan q

All of the arithmetic and transcendental functions defined for complex arguments
have been extended to support quaternions.

Quaternion multiplication is not commutative, so there are two possible interpreta-
tions of (/ q1 q2) which would yield different results: either (* q1 (/ q2)), or (* (/

q2) q1). Division in this implementation has been defined such that (/ q1 q2 ...)

is equivalent to (* q1 (/ q2) ...), but it is recommended to use reciprocals (unary
/) and multiplication.

[Procedure]real-part q
Return the real–part of q.

(real-part 0) ⇒ 0

(real-part -i) ⇒ 0

(real-part 1+2i-3j+4k) ⇒ 1

[Procedure]imag-part q
Return the i–part of q.

(imag-part 0) ⇒ 0

(imag-part -i) ⇒ -1

(imag-part 1+2i-3j+4k) ⇒ 2

[Procedure]magnitude q
Return the Euclidean norm of q. If q is a+bi+cj+dk, then (magnitude q) is (sqrt
(apply + (map square (list a b c d))))

[Procedure]angle q
Return the angle of q.

Chapter 12: Quantities and Numbers 189

12.4.1 The (kawa quaternions) module

The following additional functionality is made available by doing one of:

(require 'quaternions) ;; or

(import (kawa quaternions))

[Alias]quaternion
An alias for gnu.math.Quaternion, useful for type declarations.

[Procedure]quaternion? x
Return #t if x is a quaternion, i.e. an ordinary number, and #f otherwise.

(quaternion? 0) ⇒ #t

(quaternion? -i) ⇒ #t

(quaternion? 1+2i-3j+4k) ⇒ #t

(quaternion? 10.0m) ⇒ #f

(quaternion? "x") ⇒ #f

[Procedure]jmag-part q
Return the j–part of q.

(jmag-part 0) ⇒ 0

(jmag-part -i) ⇒ 0

(jmag-part 1+2i-3j+4k) ⇒ -3

[Procedure]kmag-part q
(kmag-part 0) ⇒ 0

(kmag-part -i) ⇒ 0

(kmag-part 1+2i-3j+4k) ⇒ 4

[Procedure]complex-part q
Return the projection of q into the complex plane: (+ (real-part q) (* +i (imag-

part q)))

(complex-part 0) ⇒ 0

(complex-part -i) ⇒ -1i

(complex-part 1+2i-3j+4k) ⇒ 1+2i

[Procedure]vector-part q
Return the vector–part of q.

(vector-part 0) ⇒ 0

(vector-part -i) ⇒ -1i

(vector-part 1+2i-3j+4k) ⇒ +2i-3j+4k

[Procedure]unit-quaternion q
Return a quaternion of unit magnitude with the same direction as q. If q is zero,
return zero. This is like a 4D version of a signum function.

(unit-quaternion 0) ⇒ 0

(unit-quaternion -i) ⇒ -1i

(unit-quaternion 1+2i-3j+4k) ⇒ 0.18257418583505536+0.3651483716701107i-0.5477225575051661j+0.7302967433402214k

Chapter 12: Quantities and Numbers 190

[Procedure]unit-vector q
Return the vector–part of q, scaled to have magnitude 1. If the vector–part is zero,
then return zero.

(unit-vector 0) ⇒ 0

(unit-vector -i) ⇒ -1i

(unit-vector 1+2i-3j+4k) ⇒ +0.3713906763541037i-0.5570860145311556j+0.7427813527082074k

[Procedure]colatitude q
Return the colatitude of q.

[Procedure]longitude q
Return the longitude of q.

[Procedure]vector-quaternion? obj
Return #t if obj is a vector quaternion, i.e. a quaternion with zero real–part.

[Procedure]make-vector-quaternion x y z
Construct vector quaternion xi+yj+zk. This is equivalent to (make-rectangular 0

x y z).

[Procedure]vector-quaternion->list vq
Return a newly allocated list of the x, y, and z components of vq. This is equivalent
to (list (imag-part vq) (jmag-part vq) (kmag-part vq)).

[Procedure]dot-product q1 q2
For two vector quaternions q1 = ai+bj+ck and q2 = di+ej+fk, return ad + be +

cf. This is equal to the R3 dot product for vectors (a, b, c) and (d, e, f), and is also
equal to (- (real-part (* q1 q2))). It is an error if either q1 or q2 has a non-zero
real–part.

[Procedure]cross-product q1 q2
For two vector quaternions q1 = ai+bj+ck and q2 = di+ej+fk, return the R3 cross
product for vectors (a, b, c) and (d, e, f), which is equal to (vector-part (* q1 q2)).
It is an error if either q1 or q2 has a non-zero real–part.

[Procedure]conjugate q
Return (+ (real-part q) (* -1 (vector-part q))).

(conjugate 0) ⇒ 0

(conjugate -i) ⇒ +1i

(conjugate 1+2i-3j+4k) ⇒ 1-2i+3j-4k

12.4.2 The (kawa rotations) module

The (kawa rotations) library provides a set of functions which use unit quaternions to
represent 3D spatial rotations. To use these functions, the library must be imported:

(import (kawa rotations))

These functions normalize their quaternion inputs as needed to be of length 1.

Chapter 12: Quantities and Numbers 191

12.4.2.1 Rotation Representation Conversions

Conversions to and from several alternate representations of rotations are supported.

The set of unit quaternions provides a double covering of all possible 3D rotations: q and
-q represent the same rotation. Most other representations also have multiple numerical
values which map to the same rotation (for example, the rotation about axis-vec by angle

is the same as the rotation about -axis-vec by -angle+2pi). Therefore, these functions
do not necessarily act as inverses in the sense of equal?. Furthermore, rotations involve
trigonometric functions, so there will typically be some floating point error: (acos (cos

0.1)) returns 0.09999999999999945, which is very close to 0.1 but not exact.

Rotation Matrices

[Procedure]quaternion->rotation-matrix q
[Procedure]rotation-matrix->quaternion m

The quaternion->rotation-matrix procedure returns a 3x3 rotation matrix repre-
senting the same rotation as q. The rotation matrix is instantiated as a Section 14.8
[Arrays], page 247, backed by an Section 14.4 [Uniform vectors], page 239.

The rotation-matrix->quaternion procedure performs the reverse operation, pro-
ducing an equivalent unit quaternion for the rotation matrix (multi-dimensional array)
m.

(rotation-matrix->quaternion (quaternion->rotation-matrix -1)) ⇒ 1.0

Axis-Angle Representation

[Procedure]rotation-axis q
[Procedure]rotation-angle q
[Procedure]rotation-axis/angle q

The rotation-axis procedure returns the axis of rotation of the quaternion q as a
unit-length vector quaternion. If the axis of rotation is not well-defined (the angle of
rotation is 0), then +i is arbitrarily chosen as the axis.

The rotation-angle procedure returns the corresponding angle of rotation. Note
that this is not the same as the result of the angle procedure.

The rotation-axis/angle procedure returns the rotation axis and angle as multiple
values.

(let* ((q 1/2+1/2i+1/2j+1/2k)

(ar (rotation-angle q))

(ad (java.lang.Math:toDegrees ar))

(exact-ad (exact ad)))

(rationalize exact-ad 1/10)) ⇒ 120

[Procedure]make-axis/angle axis-vec angle
[Procedure]make-axis/angle axis-x axis-y axis-z angle

The make-axis/angle procedure returns a quaternion representing the given
axis/angle rotation. The axis is specified as either a single vector quaternion
argument axis-vec, or as three reals axis-x, axis-y, and axis-z.

Chapter 12: Quantities and Numbers 192

[Procedure]rotx angle
[Procedure]roty angle
[Procedure]rotz angle

The procedures rotx, roty, and rotz return quaternions representing rotations about
the X-, Y-, and Z-axes.

Intrinsic Angle Sets

The intrinsic angle sets represent arbitrary rotations as a sequence of three rotations about
coordinate frame axes attached to the rotating body (i.e. the axes rotate with the body).

There are twelve possible angle sets which neatly divide into two groups of six. The six
with same first and third axes are also known as “Euler angles”. The six with different first
and third axes are also known as “Tait-Bryan angles”.

[Procedure]intrinsic-xyx q
[Procedure]intrinsic-xzx q
[Procedure]intrinsic-yxy q
[Procedure]intrinsic-yzy q
[Procedure]intrinsic-zxz q
[Procedure]intrinsic-zyz q

These functions decompose the rotation represented by q into Euler angles of the
given set (XYX, XZX, YXY, YZY, ZXZ, or ZYZ) and returns the three angles as
multiple values. The middle angle will be in the range [0,pi]. If it is on the edges of
that range (within 1.0E-12 of 0 or pi), such that the first and third axes are colinear,
then the first angle will be set to 0.

(intrinsic-zyz (* (rotz 0.3) (roty 0.8) (rotz -0.6))) ⇒ 0.3000000000000001 0.7999999999999999 -0.5999999999999999

[Alias]euler-xyx
[Alias]euler-xzx
[Alias]euler-yxy
[Alias]euler-yzy
[Alias]euler-zxz
[Alias]euler-zyz

Aliases for the corresponding intrinsic- procedures.

[Procedure]intrinsic-xyz q
[Procedure]intrinsic-xzy q
[Procedure]intrinsic-yxz q
[Procedure]intrinsic-yzx q
[Procedure]intrinsic-zxy q
[Procedure]intrinsic-zyx q

These functions decompose the rotation represented by q into Tait-Bryan angles of
the given set (XYZ, XZY, YXZ, YZX, ZXY, or ZYX) and returns the three angles
as multiple values. The middle angle will be in the range [-pi/2,pi/2]. If it is on the
edges of that range, such that the first and third axes are colinear, then the first angle
will be set to 0.

[Alias]tait-bryan-xyz
[Alias]tait-bryan-xzy

Chapter 12: Quantities and Numbers 193

[Alias]tait-bryan-yxz
[Alias]tait-bryan-yzx
[Alias]tait-bryan-zxy
[Alias]tait-bryan-zyx

Aliases for the corresponding intrinsic- procedures.

[Procedure]make-intrinsic-xyx alpha beta gamma
[Procedure]make-intrinsic-xzx alpha beta gamma
[Procedure]make-intrinsic-yxy alpha beta gamma
[Procedure]make-intrinsic-yzy alpha beta gamma
[Procedure]make-intrinsic-zxz alpha beta gamma
[Procedure]make-intrinsic-zyz alpha beta gamma

These functions return quaternions representing the given Euler angle rotations.

[Alias]make-euler-xyx
[Alias]make-euler-xzx
[Alias]make-euler-yxy
[Alias]make-euler-yzy
[Alias]make-euler-zxz
[Alias]make-euler-zyz

Aliases for the corresponding make-intrinsic- procedures.

(let-values (((a b c) (euler-xyx (make-euler-xyx 1.0 0.0 2.0))))

(list a b c)) ⇒ (0.0 0.0 3.0)

[Procedure]make-intrinsic-xyz alpha beta gamma
[Procedure]make-intrinsic-xzy alpha beta gamma
[Procedure]make-intrinsic-yxz alpha beta gamma
[Procedure]make-intrinsic-yzx alpha beta gamma
[Procedure]make-intrinsic-zxy alpha beta gamma
[Procedure]make-intrinsic-zyx alpha beta gamma

These functions return quaternions representing the given Tait-Bryan angle rotations.

[Alias]make-tait-bryan-xyz
[Alias]make-tait-bryan-xzy
[Alias]make-tait-bryan-yxz
[Alias]make-tait-bryan-yzx
[Alias]make-tait-bryan-zxy
[Alias]make-tait-bryan-zyx

Aliases for the corresponding make-intrinsic- procedures.

Extrinsic Angle Sets

The extrinsic angle sets represent arbitrary rotations as a sequence of three rotations about
fixed-frame axes (i.e. the axes do not rotate with the body).

There are twelve possible extrinsic angle sets, and each is the dual of an intrinsic set.
The extrinsic rotation about axes A, B, and C by angles a, b, and c is the same as the
intrinsic rotation about axes C, B, and A by angles c, b, and a, with the order of the three
axes reversed.

Chapter 12: Quantities and Numbers 194

[Procedure]extrinsic-xyx q
[Procedure]extrinsic-xyz q
[Procedure]extrinsic-xzx q
[Procedure]extrinsic-zxy q
[Procedure]extrinsic-yxy q
[Procedure]extrinsic-yxz q
[Procedure]extrinsic-yzx q
[Procedure]extrinsic-yzy q
[Procedure]extrinsic-zxy q
[Procedure]extrinsic-zxz q
[Procedure]extrinsic-zyx q
[Procedure]extrinsic-zyz q

These functions decompose the rotation represented by q into extrinsic angles of the
given set and returns the three angles as multiple values.

[Procedure]make-extrinsic-xyx gamma beta alpha
[Procedure]make-extrinsic-xyz gamma beta alpha
[Procedure]make-extrinsic-xzx gamma beta alpha
[Procedure]make-extrinsic-xzy gamma beta alpha
[Procedure]make-extrinsic-yxy gamma beta alpha
[Procedure]make-extrinsic-yxz gamma beta alpha
[Procedure]make-extrinsic-yzx gamma beta alpha
[Procedure]make-extrinsic-yzy gamma beta alpha
[Procedure]make-extrinsic-zxy gamma beta alpha
[Procedure]make-extrinsic-zxz gamma beta alpha
[Procedure]make-extrinsic-zyx gamma beta alpha
[Procedure]make-extrinsic-zyz gamma beta alpha

These functions return quaternions representing the given extrinsic angle rotations.

[Alias]rpy
[Alias]make-rpy

Aliases for extrinsic-xyz and make-extrinsic-xyz.

(let ((r (make-rpy 0.12 -0.23 0.34)))

(let-values (((a b c) (tait-bryan-zyx r)))

(list a b c))) ⇒ (0.3400000000000001 -0.2300000000000001 0.12000000000000002)

12.4.2.2 Rotation Operations

[Procedure]rotate-vector rq vq
Applies the rotation represented by quaternion rq to the vector represented by vec-
tor quaternion vq, and returns the rotated vector. This is equivalent to (* rq vq

(conjugate rq)) for normalized rq.

(rotate-vector +k +2i) ⇒ -2i

(rotate-vector 1/2+1/2i+1/2j+1/2k +i+2j+3k) ⇒ +3.0i+1.0j+2.0k

[Procedure]make-rotation-procedure rq
A partial application of rotate-vector. Returns a single-argument procedure which
will take a vector quaternion argument and rotate it by rq. The returned proce-

Chapter 12: Quantities and Numbers 195

dure closes over both rq and its conjugate, so this will likely be more efficient than
rotate-vector at rotating many vectors by the same rotation.

12.5 Quantities and Units

As a super-class of numbers, Kawa also provides quantities. A quantity is a product of a
unit and a pure number. The number part can be an arbitrary complex number. The unit
is a product of integer powers of base units, such as meter or second.

Quantity literals have the following syntax:

quantity ::= optional-sign decimal unit-term [* unit-term]... [/ unit-term]
unit-term ::= unit-name [^ digit+]
unit-name ::= letter+

Some examples are 10pt (10 points), 5s (5 seconds), and 4cm^2 (4 square centimeters).

Note the quantity syntax is not recognized by the reader. Instead these are read as
symbols. Assuming there is no lexical binding the for the symbol, it will be rewritten at
compile-time into an expression. For example 4cm^2 is transformed into:

(* 4.0 (expt unit:cm 2))

[Procedure]quantity? object
True iff object is a quantity. Note that all numbers are quantities, but not the other
way round. Currently, there are no quantities that are not numbers. To distinguish
a plain unit-less number from a quantity, you can use complex?.

[Procedure]quantity->number q
Returns the pure number part of the quantity q, relative to primitive (base) units.
If q is a number, returns q. If q is a unit, yields the magitude of q relative to base
units.

[Procedure]quantity->unit q
Returns the unit of the quantity q. If q is a number, returns the empty unit.

[Procedure]make-quantity x unit
Returns the product of x (a pure number) and unit. You can specify a string instead
of unit, such as "cm" or "s" (seconds).

[Syntax]define-base-unit unit-name dimension
Define unit-name as a base (primitive) unit, which is used to measure along the
specified dimension.

(define-base-unit dollar "Money")

[Syntax]define-unit unit-name expression
Define unit-name as a unit (that can be used in literals) equal to the quantity
expression.

(define-unit cent 0.01dollar)

The unit-name is declared in the unit namespace, so the above is equivalent to:

(define-constant unit:cent (* 0.01 unit:dollar))

Chapter 12: Quantities and Numbers 196

Angles

The following angle units are dimensionless, with no base unit.

Some procedures treat a unit-less real number as if it were in radians (which mathemati-
cians prefer); some procedures (such as rotate) treat a unit-less real number as if it were
in degrees (which is common in Web and other standards).

[Unit]rad
A unit for angles specified in radians. A full circle is 2*pi radians. Note that (= 1.5

1.5rad) is true, while (eqv? 1.5 1.5rad) is false.

[Unit]deg
A unit for angles specified in degrees. A full circle is 360 degrees.

[Unit]grad
A unit for angles specified in gradians. A full circle is 400 gradians.

12.6 Logical Number Operations

These functions operate on the 2’s complement binary representation of an exact integer.

[Procedure]bitwise-not i
Returns the bit-wise logical inverse of the argument. More formally, returns the exact
integer whose two’s complement representation is the one’s complement of the two’s
complement representation of i.

[Procedure]bitwise-and i ...
[Procedure]bitwise-ior i ...
[Procedure]bitwise-xor i ...

These procedures return the exact integer that is the bit-wise “and”, “inclusive or”,
or “exclusive or” of the two’s complement representations of their arguments. If they
are passed only one argument, they return that argument. If they are passed no
arguments, they return the integer that acts as identity for the operation: -1, 0, or 0,
respectively.

[Procedure]bitwise-if i1 i2 i3
Returns the exact integer that is the bit-wise “if” of the twos complement represen-
tations of its arguments, i.e. for each bit, if it is 1 in i1, the corresponding bit in
i2 becomes the value of the corresponding bit in the result, and if it is 0, the corre-
sponding bit in i3 becomes the corresponding bit in the value of the result. This is
equivaent to the following computation:

(bitwise-ior (bitwise-and i1 i2)

(bitwise-and (bitwise-not i1) i3))

[Procedure]bitwise-bit-count i
If i is non-negative, returns the number of 1 bits in the twos complement representation
of i. Otherwise it returns the result of the following computation:

(bitwise-not (bitwise-bit-count (bitwise-not i)))

Chapter 12: Quantities and Numbers 197

[Procedure]bitwise-length i
Returns the number of bits needed to represent i if it is positive, and the number of
bits needed to represent (bitwise-not i) if it is negative, which is the exact integer
that is the result of the following computation:

(do ((result 0 (+ result 1))

(bits (if (negative? i)

(bitwise-not i)

ei)

(bitwise-arithmetic-shift bits -1)))

((zero? bits)

result))

This is the number of bits needed to represent i in an unsigned field.

[Procedure]bitwise-first-bit-set i
Returns the index of the least significant 1 bit in the twos complement representation
of i. If i is 0, then - 1 is returned.

(bitwise-first-bit-set 0) ⇒ -1

(bitwise-first-bit-set 1) ⇒ 0

(bitwise-first-bit-set -4) ⇒ 2

[Procedure]bitwise-bit-set? i1 i2
Returns #t if the i2’th bit (where i2 must be non-negative) is 1 in the two’s com-
plement representation of i1, and #f otherwise. This is the result of the following
computation:

(not (zero?

(bitwise-and

(bitwise-arithmetic-shift-left 1 i2)

i1)))

[Procedure]bitwise-copy-bit i bitno replacement-bit
Returns the result of replacing the bitno’th bit of i by replacement-bit, where bitno
must be non-negative, and replacement-bit must be either 0 or 1. This is the result
of the following computation:

(let* ((mask (bitwise-arithmetic-shift-left 1 bitno)))

(bitwise-if mask

(bitwise-arithmetic-shift-left replacement-bit bitno)

i))

[Procedure]bitwise-bit-field n start end
Returns the integer formed from the (unsigned) bit-field starting at start and ending
just before end. Same as:

(let ((mask

(bitwise-not

(bitwise-arithmetic-shift-left -1 end))))

(bitwise-arithmetic-shift-right

(bitwise-and n mask)

start))

Chapter 12: Quantities and Numbers 198

[Procedure]bitwise-copy-bit-field to start end from
Returns the result of replacing in to the bits at positions from start (inclusive) to
end (exclusive) by the bits in from from position 0 (inclusive) to position end - start
(exclusive). Both start and start must be non-negative, and start must be less than
or equal to start.

This is the result of the following computation:

(let* ((mask1

(bitwise-arithmetic-shift-left -1 start))

(mask2

(bitwise-not

(bitwise-arithmetic-shift-left -1 end)))

(mask (bitwise-and mask1 mask2)))

(bitwise-if mask

(bitwise-arithmetic-shift-left from

start)

to))

[Procedure]bitwise-arithmetic-shift i j
Shifts i by j. It is a “left” shift if j>0, and a “right” shift if j<0. The result is equal
to (floor (* i (expt 2 j))).

Examples:

(bitwise-arithmetic-shift -6 -1) ⇒-3

(bitwise-arithmetic-shift -5 -1) ⇒ -3

(bitwise-arithmetic-shift -4 -1) ⇒ -2

(bitwise-arithmetic-shift -3 -1) ⇒ -2

(bitwise-arithmetic-shift -2 -1) ⇒ -1

(bitwise-arithmetic-shift -1 -1) ⇒ -1

[Procedure]bitwise-arithmetic-shift-left i amount
[Procedure]bitwise-arithmetic-shift-right i amount

The amount must be non-negative The bitwise-arithmetic-shift-left procedure
returns the same result as bitwise-arithmetic-shift, and (bitwise-arithmetic-

shift-right i amount) returns the same result as (bitwise-arithmetic-shift i

(- amount)).

If i is a primitive integer type, then amount must be less than the number of bits in
the promoted type of i (32 or 64). If the type is unsigned, an unsigned (logic) shift is
done for bitwise-arithmetic-shift-right, rather than a signed (arithmetic) shift.

[Procedure]bitwise-rotate-bit-field n start end count
Returns the result of cyclically permuting in n the bits at positions from start (inclu-
sive) to end (exclusive) by count bits towards the more significant bits, start and end
must be non-negative, and start must be less than or equal to end. This is the result
of the following computation:

(let* ((n ei1)

(width (- end start)))

(if (positive? width)

Chapter 12: Quantities and Numbers 199

(let* ((count (mod count width))

(field0

(bitwise-bit-field n start end))

(field1 (bitwise-arithmetic-shift-left

field0 count))

(field2 (bitwise-arithmetic-shift-right

field0

(- width count)))

(field (bitwise-ior field1 field2)))

(bitwise-copy-bit-field n start end field))

n))

[Procedure]bitwise-reverse-bit-field i start end
Returns the result obtained from i by reversing the order of the bits at positions from
start (inclusive) to end (exclusive), where start and end must be non-negative, and
start must be less than or equal to end.

(bitwise-reverse-bit-field #b1010010 1 4) ⇒ 88 ; #b1011000

[Procedure]logop op x y
Perform one of the 16 bitwise operations of x and y, depending on op.

[Procedure]logtest i j
Returns true if the arguments have any bits in common. Same as (not (zero?

(bitwise-and i j))), but is more efficient.

12.6.1 SRFI-60 Logical Number Operations

Kawa supports SRFI-60 “Integers as Bits” as well, although we generally recommend using
the R6RS-compatible functions instead when possible. Unless noted as being a builtin
function, to use these you must first (require 'srfi-60) or (import (srfi :60)) (or
(import (srfi :60 integer-bits))).

[Procedure]logand i ...
Equivalent to (bitwise-and i ...). Builtin.

[Procedure]logior i ...
Equivalent to (bitwise-ior i ...). Builtin.

[Procedure]logxor i ...
Equivalent to (bitwise-xor i ...). Builtin.

[Procedure]lognot i
Equivalent to (bitwise-not i). Builtin.

[Procedure]bitwise-merge mask i j
Equivalent to (bitwise-if mask i j).

[Procedure]any-bits-set? i j
Equivalent to (logtest i j).

Chapter 12: Quantities and Numbers 200

[Procedure]logcount i
[Procedure]bit-count i

Count the number of 1-bits in i, if it is non-negative. If i is negative, count number
of 0-bits. Same as (bitwise-bit-count i) if i is non-negative. Builtin as logcount.

[Procedure]integer-length i
Equivalent to (bitwise-length i). Builtin.

[Procedure]log2-binary-factors i
[Procedure]first-set-bit i

Equivalent to (bitwise-first-bit-set i).

[Procedure]logbit? pos i
[Procedure]bit-set? pos i

Equivalent to (bitwise-bit-set? i pos).

[Procedure]copy-bit bitno i bool
Equivalent to (bitwise-copy-bit i bitno (if bool 1 0)).

[Procedure]bit-field n start end
Equivalent to (bitwise-bit-field n start end).

[Procedure]copy-bit-field to from start end
Equivalent to (bitwise-copy-bit-field to start end from).

[Procedure]arithmetic-shift i j
Equivalent to (bitwise-arithmetic-shift i j). Builtin.

[Procedure]ash i j
Alias for arithmetic-shift. Builtin.

[Procedure]rotate-bit-field n count start end
Equivalent to (bitwise-rotate-bit-field n start end count).

[Procedure]reverse-bit-field i start end
Equivalent to (bitwise-reverse-bit-field i start end).

[Procedure]integer->list k [length]
[Procedure]list->integer list

The integer->list procedure returns a list of length booleans corresponding to the
bits of the non-negative integer k, with #t for 1 and #f for 0. length defaults to
(bitwise-length k). The list will be in order from MSB to LSB, with the value of
(odd? k) in the last car.

The list->integer procedure returns the integer corresponding to the booleans in
the list list. The integer->list and list->integer procedures are inverses so far
as equal? is concerned.

[Procedure]booleans->integer bool1 ...
Returns the integer coded by the bool1 ... arguments. Equivalent to (list->integer
(list bool1 ...)).

Chapter 13: Characters and text 201

12.6.2 Deprecated Logical Number Operations

This older function is still available, but we recommend using the R6RS-compatible function.

[Procedure]bit-extract n start end
Equivalent to (bitwise-bit-field n start end).

12.7 Performance of numeric operations

Kawa can generally do a pretty good job of generating efficient code for numeric operations,
at least when it knows or can figure out the types of the operands.

The basic operations +, -, and * are compiled to single-instruction bytecode if both
operands are int or long. Likewise, if both operands are floating-point (or one is floating-
point and the other is rational), then single-instruction double or float instructions are
emitted.

A binary operation involving an infinite-precision integer and a fixed-size int or long
is normally evaluated by expanding the latter to integer and using integer arithmetic.
An exception is an integer literal whose value fits in an int or long - in that case the
operation is done using int or long arithmetic.

In general, integer literals have amorphous type. When used to infer the type of a
variable, they have integer type:

(let ((v1 0))

... v1 has type integer ...)

However, a literal whose value fits in the int or long range is implicitly viewed int or
long in certain contexts, primarily method overload resolution and binary arithmetic (as
mentioned above).

The comparison functions <, <=, =, >, and => are also optimized to single instriction
operations if the operands have appropriate type. However, the functions zero?, positive?,
and negative? have not yet been optimized. Instead of (positive? x) write (> x 0).

There are a number of integer division and modulo operations. If the operands are int
or long, it is faster to use quotient and remainder rather than div and mod (or modulo).
If you know the first operand is non-negative and the second is positive, then use quotient
and remainder. (If an operand is an arbitrary-precision integer, then it dosn’t really
matter.)

The logical operations bitwise-and, bitwise-ior, bitwise-xor, bitwise-not,
bitwise-arithmetic-shift-left, bitwise-arithmetic-shift-right are compiled to
single bitcode instructions if the operands are int or long. Avoid bitwise-arithmetic-

shift if the sign of the shift is known. If the operands are arbitrary-precision integer, a
library call is needed, but run-time type dispatch is avoided.

13 Characters and text

Chapter 13: Characters and text 202

13.1 Characters

Characters are objects that represent human-readable characters such as letters and digits.
More precisely, a character represents a Unicode scalar value (http://www.unicode.org/
glossary/#unicode_scalar_value). Each character has an integer value in the range 0 to
#x10FFFF (excluding the range #xD800 to #xDFFF used for Surrogate Code Points (http://
www.unicode.org/glossary/#surrogate_code_point)).

Note: Unicode distinguishes between glyphs, which are printed for humans to
read, and characters, which are abstract entities that map to glyphs (sometimes
in a way that’s sensitive to surrounding characters). Furthermore, different
sequences of scalar values sometimes correspond to the same character. The
relationships among scalar, characters, and glyphs are subtle and complex.

Despite this complexity, most things that a literate human would call a “char-
acter” can be represented by a single Unicode scalar value (although several
sequences of Unicode scalar values may represent that same character). For
example, Roman letters, Cyrillic letters, Hebrew consonants, and most Chinese
characters fall into this category.

Unicode scalar values exclude the range #xD800 to #xDFFF, which are part of
the range of Unicode code points. However, the Unicode code points in this
range, the so-called surrogates, are an artifact of the UTF-16 encoding, and
can only appear in specific Unicode encodings, and even then only in pairs that
encode scalar values. Consequently, all characters represent code points, but
the surrogate code points do not have representations as characters.

[Type]character
A Unicode code point - normally a Unicode scalar value, but could be a surrogate.
This is implemented using a 32-bit int. When an object is needed (i.e. the boxed
representation), it is implemented an instance of gnu.text.Char.

[Type]character-or-eof
A character or the specical #!eof value (used to indicate end-of-file when reading
from a port). This is implemented using a 32-bit int, where the value -1 indicates end-
of-file. When an object is needed, it is implemented an instance of gnu.text.Char
or the special #!eof object.

[Type]char
A UTF-16 code unit. Same as Java primitive char type. Considered to be a sub-
type of character. When an object is needed, it is implemented as an instance of
java.lang.Character. Note the unfortunate inconsistency (for historical reasons)
of char boxed as Character vs character boxed as Char.

Characters are written using the notation #\character (which stands for the given char-
acter; #\xhex-scalar-value (the character whose scalar value is the given hex integer); or
#\character-name (a character with a given name):

character ::= #“any-character
| #“ character-name
| #“x hex-scalar-value
| #“X hex-scalar-value

http://www.unicode.org/glossary/#unicode_scalar_value
http://www.unicode.org/glossary/#unicode_scalar_value
http://www.unicode.org/glossary/#surrogate_code_point
http://www.unicode.org/glossary/#surrogate_code_point

Chapter 13: Characters and text 203

The following character-name forms are recognized:

#“alarm #\x0007 - the alarm (bell) character

#“backspace
#\x0008

#“delete

#“del

#“rubout #\x007f - the delete or rubout character

#“escape

#“esc #\x001b

#“newline
#“linefeed

#\x001a - the linefeed character

#“null
#“nul #\x0000 - the null character

#“page #\000c - the formfeed character

#“return #\000d - the carriage return character

#“space #\x0020 - the preferred way to write a space

#“tab #\x0009 - the tab character

#“vtab #\x000b - the vertical tabulation character

#“ignorable-char
A special character value, but it is not a Unicode code point. It is a special
value returned when an index refers to the second char (code point) of a sur-
rogate pair, and which should be ignored. (When writing a character to a
string or file, it will be written as one or two char values. The exception is
#\ignorable-char, for which zero char values are written.)

[Procedure]char? obj
Return #t if obj is a character, #f otherwise. (The obj can be any character, not just
a 16-bit char.)

[Procedure]char->integer char
[Procedure]integer->char sv

sv should be a Unicode scalar value, i.e., a non–negative exact integer object in
[0, #xD7FF] union [#xE000, #x10FFFF]. (Kawa also allows values in the surrogate
range.)

Given a character, char->integer returns its Unicode scalar value as an exact integer
object. For a Unicode scalar value sv, integer->char returns its associated character.

(integer->char 32) ⇒ #\space

(char->integer (integer->char 5000)) ⇒ 5000

(integer->char #\xD800) ⇒ throws ClassCastException

Chapter 13: Characters and text 204

Performance note: A call to char->integer is compiled as casting the argument to a
character, and then re-interpreting that value as an int. A call to integer->char

is compiled as casting the argument to an int, and then re-interpreting that value as
an character. If the argument is the right type, no code is emitted: the value is just
re-interpreted as the result type.

[Procedure]char=? char1 char2 char3 . . .
[Procedure]char<? char1 char2 char3 . . .
[Procedure]char>? char1 char2 char3 . . .
[Procedure]char<=? char1 char2 char3 . . .
[Procedure]char>=? char1 char2 char3 . . .

These procedures impose a total ordering on the set of characters according to their
Unicode scalar values.

(char<? #\z #\ß) ⇒ #t

(char<? #\z #\Z) ⇒ #f

Performance note: This is compiled as if converting each argument using
char->integer (which requires no code) and the using the corresponing int

comparison.

[Procedure]digit-value char
This procedure returns the numeric value (0 to 9) of its argument if it is a numeric
digit (that is, if char-numeric? returns #t), or #f on any other character.

(digit-value #\3) ⇒ 3

(digit-value #\x0664) ⇒ 4

(digit-value #\x0AE6) ⇒ 0

(digit-value #\x0EA6) ⇒ #f

13.2 Character sets

Sets of characters are useful for text-processing code, including parsing, lexing, and pattern-
matching. SRFI 14 (http://srfi.schemers.org/srfi-14/srfi-14.html) specifies a
char-set type for such uses. Some examples:

(import (srfi :14 char-sets))

(define vowel (char-set #\a #\e #\i #\o #\u))

(define vowely (char-set-adjoin vowel #\y))

(char-set-contains? vowel #\y) ⇒ #f

(char-set-contains? vowely #\y) ⇒ #t

See the SRFI 14 specification (http://srfi.schemers.org/srfi-14/srfi-14.html)
for details.

[Type]char-set
The type of character sets. In Kawa char-set is a type that can be used in type
specifiers:

(define vowely ::char-set (char-set-adjoin vowel #\y))

Kawa uses inversion lists (https://en.wikipedia.org/wiki/Inversion_list) for an
efficient implementation, using Java int arrays to represents character ranges (inversions).

http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-14/srfi-14.html
https://en.wikipedia.org/wiki/Inversion_list

Chapter 13: Characters and text 205

The char-set-contains? function uses binary search, so it takes time proportional to the
logarithm of the number of inversions. Other operations may take time proportional to the
number of inversions.

13.3 Strings

Strings are sequences of characters. The length of a string is the number of characters that
it contains, as an exact non-negative integer. The valid indices of a string are the exact
non-negative integers less than the length of the string. The first character of a string has
index 0, the second has index 1, and so on.

Strings are implemented as a sequence of 16-bit char values, even though they’re se-
mantically a sequence of 32-bit Unicode code points. A character whose value is greater
than #xffff is represented using two surrogate characters. The implementation allows for
natural interoperability with Java APIs. However it does make certain operations (indexing
or counting based on character counts) difficult to implement efficiently. Luckily one rarely
needs to index or count based on character counts; alternatives are discussed below.

There are different kinds of strings:

• An istring is immutable: It is fixed, and cannot be modified. On the other hand,
indexing (e.g. string-ref) is efficient (constant-time), while indexing of other string
implementations takes time proportional to the index.

String literals are istrings, as are the return values of most of the procedures in this
chapter.

An istring is an instance of the gnu.lists.IString class.

• An mstring is mutable: You can replace individual characters (using string-set!).
You can also change the mstring ’s length by inserting or removing characters (using
string-append! or string-replace!).

An mstring is an instance of the gnu.lists.FString class.

• Any other object that implements the java.lang.CharSequence inter-
face is also a string. This includes standard Java java.lang.String and
java.lang.StringBuilder objects.

Some of the procedures that operate on strings ignore the difference between upper
and lower case. The names of the versions that ignore case end with “-ci” (for “case
insensitive”).

Compatibility: Many of the following procedures (for example string-append) return
an immutable istring in Kawa, but return a “freshly allocated” mutable string in standard
Scheme (include R7RS) as well as most Scheme implementations (including previous ver-
sions of Kawa). To get the “compatibility mode” versions of those procedures (which return
mstrings), invoke Kawa with one the --r5rs, --r6rs, or --r7rs options, or you can import

a standard library like (scheme base).

[Type]string
The type of string objects. The underlying type is the interface
java.lang.CharSequence. Immultable strings are gnu.lists.IString or
java.lang.String, while mutable strings are gnu.lists.FString.

Chapter 13: Characters and text 206

13.3.1 Basic string procedures

[Procedure]string? obj
Return #t if obj is a string, #f otherwise.

[Procedure]istring? obj
Return #t if obj is a istring (a immutable, constant-time-indexable string); #f other-
wise.

[Constructor]string char . . .
Return a string composed of the arguments. This is analogous to list.

Compatibility: The result is an istring, except in compatibility mode, when it is a
new allocated mstring.

[Procedure]string-length string
Return the number of characters in the given string as an exact integer object.

Performance note: If the string is not an istring, the calling string-length may
take time proportional to the length of the string, because of the need to scan for
surrogate pairs.

[Procedure]string-ref string k
k must be a valid index of string. The string-ref procedure returns character k of
string using zero–origin indexing.

Performance note: If the string is not an istring, then calling string-ref may take
time proportional to k because of the need to check for surrogate pairs. An alternative
is to use string-cursor-ref. If iterating through a string, use string-for-each.

[Procedure]string-null? string
Is string the empty string? Same result as (= (string-length string) 0) but exe-
cutes in O(1) time.

[Procedure]string-every pred string [start end])
[Procedure]string-any pred string [start end])

Checks to see if every/any character in string satisfies pred, proceeding from left
(index start) to right (index end). These procedures are short-circuiting: if pred re-
turns false, string-every does not call pred on subsequent characters; if pred returns
true, string-any does not call pred on subsequent characters. Both procedures are
“witness-generating”:

• If string-every is given an empty interval (with start = end), it returns #t.

• If string-every returns true for a non-empty interval (with start < end), the
returned true value is the one returned by the final call to the predicate on
(string-ref string (- end 1)).

• If string-any returns true, the returned true value is the one returned by the
predicate.

Note: The names of these procedures do not end with a question mark. This indicates
a general value is returned instead of a simple boolean (#t or #f).

Chapter 13: Characters and text 207

13.3.2 Immutable String Constructors

[Procedure]string-tabulate proc len
Constructs a string of size len by calling proc on each value from 0 (inclusive) to len
(exclusive) to produce the corresponding element of the string. The procedure proc
accepts an exact integer as its argument and returns a character. The order in which
proc is called on those indexes is not specifified.

Rationale: Although string-unfold is more general, string-tabulate is likely to
run faster for the common special case it implements.

[Procedure]string-unfold stop? mapper successor seed [base make-final]
[Procedure]string-unfold-right stop? mapper successor seed [base

make-final]
This is a fundamental and powerful constructor for strings.

• successor is used to generate a series of “seed” values from the initial seed: seed,
(successor seed), (successor2 seed), (successor3 seed), ...

• stop? tells us when to stop — when it returns true when applied to one of these
seed values.

• mapper maps each seed value to the corresponding character(s) in the result
string, which are assembled into that string in left-to-right order. It is an error
for mapper to return anything other than a character or string.

• base is the optional initial/leftmost portion of the constructed string, which de-
faults to the empty string "". It is an error if base is anything other than a
character or string.

• make-final is applied to the terminal seed value (on which stop? returns true)
to produce the final/rightmost portion of the constructed string. It defaults to
(lambda (x) ""). It is an error for make-final to return anything other than a
character or string.

string-unfold-right is the same as string-unfold except the results of mapper
are assembled into the string in right-to-left order, base is the optional rightmost
portion of the constructed string, and make-final produces the leftmost portion of the
constructed string.

You can use it string-unfold to convert a list to a string, read a port into a string,
reverse a string, copy a string, and so forth. Examples:

(define (port->string p)

(string-unfold eof-object? values

(lambda (x) (read-char p))

(read-char p)))

(define (list->string lis)

(string-unfold null? car cdr lis))

(define (string-tabulate f size)

(string-unfold (lambda (i) (= i size)) f add1 0))

Chapter 13: Characters and text 208

To map f over a list lis, producing a string:

(string-unfold null? (compose f car) cdr lis)

Interested functional programmers may enjoy noting that string-fold-right and
string-unfold are in some sense inverses. That is, given operations knull?, kar, kdr,
kons, and knil satisfying

(kons (kar x) (kdr x)) = x and (knull? knil) = #t

then

(string-fold-right kons knil (string-unfold knull? kar kdr x)) = x

and

(string-unfold knull? kar kdr (string-fold-right kons knil string)) = string.

This combinator pattern is sometimes called an “anamorphism.”

13.3.3 Selection

[Procedure]substring string start end
string must be a string, and start and end must be exact integer objects satisfying:

0 <= start <= end <= (string-length string)

The substring procedure returns a newly allocated string formed from the characters
of string beginning with index start (inclusive) and ending with index end (exclusive).

[Procedure]string-take string nchars
[Procedure]string-drop string nchars
[Procedure]string-take-right string nchars
[Procedure]string-drop-right string nchars

string-take returns an immutable string containing the first nchars of string ;
string-drop returns a string containing all but the first nchars of string.
string-take-right returns a string containing the last nchars of string ;
string-drop-right returns a string containing all but the last nchars of string.

(string-take "Pete Szilagyi" 6) ⇒ "Pete S"

(string-drop "Pete Szilagyi" 6) ⇒ "zilagyi"

(string-take-right "Beta rules" 5) ⇒ "rules"

(string-drop-right "Beta rules" 5) ⇒ "Beta "

It is an error to take or drop more characters than are in the string:

(string-take "foo" 37) ⇒ error

[Procedure]string-pad string len [char start end]
[Procedure]string-pad-right string len [char start end]

Returns an istring of length len comprised of the characters drawn from the given
subrange of string, padded on the left (right) by as many occurrences of the character
char as needed. If string has more than len chars, it is truncated on the left (right)
to length len. The char defaults to #\space

(string-pad "325" 5) ⇒ " 325"

(string-pad "71325" 5) ⇒ "71325"

(string-pad "8871325" 5) ⇒ "71325"

Chapter 13: Characters and text 209

[Procedure]string-trim string [pred start end]
[Procedure]string-trim-right string [pred start end]
[Procedure]string-trim-both string [pred start end]

Returns an istring obtained from the given subrange of string by skipping over all
characters on the left / on the right / on both sides that satisfy the second argument
pred: pred defaults to char-whitespace?.

(string-trim-both " The outlook wasn't brilliant, \n\r")

⇒ "The outlook wasn't brilliant,"

13.3.4 String Comparisons

[Procedure]string=? string1 string2 string3 . . .
Return #t if the strings are the same length and contain the same characters in the
same positions. Otherwise, the string=? procedure returns #f.

(string=? "Straße" "Strasse") ⇒ #f

[Procedure]string<? string1 string2 string3 . . .
[Procedure]string>? string1 string2 string3 . . .
[Procedure]string<=? string1 string2 string3 . . .
[Procedure]string>=? string1 string2 string3 . . .

These procedures return #t if their arguments are (respectively): monotonically in-
creasing, monotonically decreasing, monotonically non-decreasing, or monotonically
nonincreasing. These predicates are required to be transitive.

These procedures are the lexicographic extensions to strings of the corresponding
orderings on characters. For example, string<? is the lexicographic ordering on
strings induced by the ordering char<? on characters. If two strings differ in length
but are the same up to the length of the shorter string, the shorter string is considered
to be lexicographically less than the longer string.

(string<? "z" "ß") ⇒ #t

(string<? "z" "zz") ⇒ #t

(string<? "z" "Z") ⇒ #f

[Procedure]string-ci=? string1 string2 string3 . . .
[Procedure]string-ci<? string1 string2 string3 . . .
[Procedure]string-ci>? string1 string2 string3 . . .
[Procedure]string-ci<=? string1 string2 string3 . . .
[Procedure]string-ci>=? string1 string2 string3 . . .

These procedures are similar to string=?, etc., but behave as if they applied
string-foldcase to their arguments before invoking the corresponding procedures
without -ci.

(string-ci<? "z" "Z") ⇒ #f

(string-ci=? "z" "Z") ⇒ #t

(string-ci=? "Straße" "Strasse") ⇒ #t

(string-ci=? "Straße" "STRASSE") ⇒ #t

(string-ci=? "XAOΣ" "χαoσ") ⇒ #t

Chapter 13: Characters and text 210

13.3.5 Conversions

[Procedure]list->string list
The list->string procedure returns an istring formed from the characters in list, in
order. It is an error if any element of list is not a character.

Compatibility: The result is an istring, except in compatibility mode, when it is an
mstring.

[Procedure]reverse-list->string list
An efficient implementation of (compose list->text reverse):

(reverse-list->text '(#\a #\B #\c)) ⇒ "cBa"

This is a common idiom in the epilogue of string-processing loops that accumulate
their result using a list in reverse order. (See also string-concatenate-reverse for
the “chunked” variant.)

[Procedure]string->list string [start [end]]
The string->list procedure returns a newly allocated list of the characters of string
between start and end, in order. The string->list and list->string procedures
are inverses so far as equal? is concerned.

[Procedure]vector->string vector [start [end]]
The vector->string procedure returns a newly allocated string of the objects con-
tained in the elements of vector between start and end. It is an error if any element of
vector between start and end is not a character, or is a character forbidden in strings.

(vector->string #(#\1 #\2 #\3)) ⇒ "123"

(vector->string #(#\1 #\2 #\3 #\4 #\5) 2 4) ⇒ "34"

[Procedure]string->vector string [start [end]]
The string->vector procedure returns a newly created vector initialized to the ele-
ments of the string string between start and end.

(string->vector "ABC") ⇒ #(#\A #\B #\C)

(string->vector "ABCDE" 1 3) ⇒ #(#\B #\C)

[Procedure]string-upcase string
[Procedure]string-downcase string
[Procedure]string-titlecase string
[Procedure]string-foldcase string

These procedures take a string argument and return a string result. They are defined
in terms of Unicode’s locale–independent case mappings from Unicode scalar–value
sequences to scalar–value sequences. In particular, the length of the result string can
be different from the length of the input string. When the specified result is equal in
the sense of string=? to the argument, these procedures may return the argument
instead of a newly allocated string.

The string-upcase procedure converts a string to upper case; string-downcase

converts a string to lower case. The string-foldcase procedure converts the string
to its case–folded counterpart, using the full case–folding mapping, but without the

Chapter 13: Characters and text 211

special mappings for Turkic languages. The string-titlecase procedure converts
the first cased character of each word, and downcases all other cased characters.

(string-upcase "Hi") ⇒ "HI"

(string-downcase "Hi") ⇒ "hi"

(string-foldcase "Hi") ⇒ "hi"

(string-upcase "Straße") ⇒ "STRASSE"

(string-downcase "Straße") ⇒ "straße"

(string-foldcase "Straße") ⇒ "strasse"

(string-downcase "STRASSE") ⇒ "strasse"

(string-downcase "Σ") ⇒ "σ"
; Chi Alpha Omicron Sigma:

(string-upcase "XAOΣ") ⇒ "XAOΣ"

(string-downcase "XAOΣ") ⇒ "χαoς"
(string-downcase "XAOΣΣ") ⇒ "χαoσς"
(string-downcase "XAOΣ Σ") ⇒ "χαoς σ"
(string-foldcase "XAOΣΣ") ⇒ "χαoσσ"
(string-upcase "χαoς") ⇒ "XAOΣ"

(string-upcase "χαoσ") ⇒ "XAOΣ"

(string-titlecase "kNock KNoCK") ⇒ "Knock Knock"

(string-titlecase "who's there?") ⇒ "Who's There?"

(string-titlecase "r6rs") ⇒ "R6rs"

(string-titlecase "R6RS") ⇒ "R6rs"

Since these procedures are locale–independent, they may not be appropriate for some
locales.

Kawa Note: The implementation of string-titlecase does not correctly handle the
case where an initial character needs to be converted to multiple characters, such as
“LATIN SMALL LIGATURE FL” which should be converted to the two letters "Fl".

Compatibility: The result is an istring, except in compatibility mode, when it is an
mstring.

[Procedure]string-normalize-nfd string
[Procedure]string-normalize-nfkd string
[Procedure]string-normalize-nfc string
[Procedure]string-normalize-nfkc string

These procedures take a string argument and return a string result, which is the
input string normalized to Unicode normalization form D, KD, C, or KC, respectively.
When the specified result is equal in the sense of string=? to the argument, these
procedures may return the argument instead of a newly allocated string.

(string-normalize-nfd "\xE9;") ⇒ "\x65;\x301;"

(string-normalize-nfc "\xE9;") ⇒ "\xE9;"

(string-normalize-nfd "\x65;\x301;") ⇒ "\x65;\x301;"

(string-normalize-nfc "\x65;\x301;") ⇒ "\xE9;"

Chapter 13: Characters and text 212

13.3.6 Searching and matching

[Procedure]string-prefix-length string1 string2 [start1 end1 start2 end2]
[Procedure]string-suffix-length string1 string2 [start1 end1 start2 end2]

Return the length of the longest common prefix/suffix of string1 and string2. For
prefixes, this is equivalent to their “mismatch index” (relative to the start indexes).

The optional start/end indexes restrict the comparison to the indicated substrings of
string1 and string2.

[Procedure]string-prefix? string1 string2 [start1 end1 start2 end2]
[Procedure]string-suffix? string1 string2 [start1 end1 start2 end2]

Is string1 a prefix/suffix of string2?

The optional start/end indexes restrict the comparison to the indicated substrings of
string1 and string2.

[Procedure]string-index string pred [start end]
[Procedure]string-index-right string pred [start end]
[Procedure]string-skip string pred [start end]
[Procedure]string-skip-right string pred [start end]

string-index searches through the given substring from the left, returning the index
of the leftmost character satisfying the predicate pred. string-index-right searches
from the right, returning the index of the rightmost character satisfying the predicate
pred. If no match is found, these procedures return #f.

The start and end arguments specify the beginning and end of the search; the valid
indexes relevant to the search include start but exclude end. Beware of “fencepost”"
errors: when searching right-to-left, the first index considered is (- end 1), whereas
when searching left-to-right, the first index considered is start. That is, the start/end
indexes describe the same half-open interval [start,end) in these procedures that
they do in other string procedures.

The -skip functions are similar, but use the complement of the criterion: they search
for the first char that doesn’t satisfy pred. To skip over initial whitespace, for example,
say

(substring string

(or (string-skip string char-whitespace?)

(string-length string))

(string-length string))

These functions can be trivially composed with string-take and string-drop to
produce take-while, drop-while, span, and break procedures without loss of effi-
ciency.

[Procedure]string-contains string1 string2 [start1 end1 start2 end2]
[Procedure]string-contains-right string1 string2 [start1 end1 start2 end2]

Does the substring of string1 specified by start1 and end1 contain the sequence of
characters given by the substring of string2 specified by start2 and end2?

Returns #f if there is no match. If start2 = end2, string-contains returns start1
but string-contains-right returns end1. Otherwise returns the index in string1 for

Chapter 13: Characters and text 213

the first character of the first/last match; that index lies within the half-open interval
[start1,end1), and the match lies entirely within the [start1,end1) range of string1.

(string-contains "eek -- what a geek." "ee" 12 18) ; Searches "a geek"

⇒ 15

Note: The names of these procedures do not end with a question mark. This indicates
a useful value is returned when there is a match.

13.3.7 Concatenation and replacing

[Procedure]string-append string . . .
Returns a string whose characters form the concatenation of the given strings.

Compatibility: The result is an istring, except in compatibility mode, when it is an
mstring.

[Procedure]string-concatenate string-list
Concatenates the elements of string-list together into a single istring.

Rationale: Some implementations of Scheme limit the number of arguments that may
be passed to an n-ary procedure, so the (apply string-append string-list) idiom,
which is otherwise equivalent to using this procedure, is not as portable.

[Procedure]string-concatenate-reverse string-list [final-string [end]])
With no optional arguments, calling this procedure is equivalent to
(string-concatenate (reverse string-list)). If the optional argument
final-string is specified, it is effectively consed onto the beginning of string-list before
performing the list-reverse and string-concatenate operations.

If the optional argument end is given, only the characters up to but not including
end in final-string are added to the result, thus producing

(string-concatenate

(reverse (cons (substring final-string 0 end)

string-list)))

For example:

(string-concatenate-reverse '(" must be" "Hello, I") " going.XXXX" 7)

⇒ "Hello, I must be going."

Rationale: This procedure is useful when constructing procedures that accumulate
character data into lists of string buffers, and wish to convert the accumulated data
into a single string when done. The optional end argument accommodates that use
case when final-string is a bob-full mutable string, and is allowed (for uniformity)
when final-string is an immutable string.

[Procedure]string-join string-list [delimiter [grammar]]
This procedure is a simple unparser; it pastes strings together using the delimiter
string, returning an istring.

The string-list is a list of strings. The delimiter is the string used to delimit elements;
it defaults to a single space " ".

Chapter 13: Characters and text 214

The grammar argument is a symbol that determines how the delimiter is used, and
defaults to 'infix. It is an error for grammar to be any symbol other than these
four:

'infix An infix or separator grammar: insert the delimiter between list elements.
An empty list will produce an empty string.

'strict-infix

Means the same as 'infix if the string-list is non-empty, but will signal
an error if given an empty list. (This avoids an ambiguity shown in the
examples below.)

'suffix Means a suffix or terminator grammar: insert the delimiter after every
list element.

'prefix Means a prefix grammar: insert the delimiter before every list element.

(string-join '("foo" "bar" "baz"))

⇒ "foo bar baz"

(string-join '("foo" "bar" "baz") "")

⇒ "foobarbaz"

(string-join '("foo" "bar" "baz") ":")

⇒ "foo:bar:baz"

(string-join '("foo" "bar" "baz") ":" 'suffix)

⇒ "foo:bar:baz:"

;; Infix grammar is ambiguous wrt empty list vs. empty string:

(string-join '() ":") ⇒ ""

(string-join '("") ":") ⇒ ""

;; Suffix and prefix grammars are not:

(string-join '() ":" 'suffix)) ⇒ ""

(string-join '("") ":" 'suffix)) ⇒ ":"

[Procedure]string-replace string1 string2 start1 end1 [start2 end2]
Returns

(string-append (substring string1 0 start1)

(substring string2 start2 end2)

(substring string1 end1 (string-length string1)))

That is, the segment of characters in string1 from start1 to end1 is replaced by the
segment of characters in string2 from start2 to end2. If start1=end1, this simply
splices the characters drawn from string2 into string1 at that position.

Examples:

(string-replace "The TCL programmer endured daily ridicule."

"another miserable perl drone" 4 7 8 22)

⇒ "The miserable perl programmer endured daily ridicule."

(string-replace "It's easy to code it up in Scheme." "lots of fun" 5 9)

⇒ "It's lots of fun to code it up in Scheme."

Chapter 13: Characters and text 215

(define (string-insert s i t) (string-replace s t i i))

(string-insert "It's easy to code it up in Scheme." 5 "really ")

⇒ "It's really easy to code it up in Scheme."

(define (string-set s i c) (string-replace s (string c) i (+ i 1)))

(string-set "String-ref runs in O(n) time." 19 #\1)

⇒ "String-ref runs in O(1) time."

Also see string-append! and string-replace! for destructive changes to a mutable
string.

13.3.8 Mapping and folding

[Procedure]string-fold kons knil string [start end]
[Procedure]string-fold-right kons knil string [start end]

These are the fundamental iterators for strings.

The string-fold procedure maps the kons procedure across the given string from
left to right:

(... (kons string2 (kons string1 (kons string0 knil))))

In other words, string-fold obeys the (tail) recursion

(string-fold kons knil string start end)

= (string-fold kons (kons stringstart knil) start+1 end)

The string-fold-right procedure maps kons across the given string string from
right to left:

(kons string0
(... (kons stringend-3

(kons stringend-2
(kons stringend-1

knil)))))

obeying the (tail) recursion

(string-fold-right kons knil string start end)

= (string-fold-right kons (kons stringend-1 knil) start end-1)

Examples:

;;; Convert a string or string to a list of chars.

(string-fold-right cons '() string)

;;; Count the number of lower-case characters in a string or string.

(string-fold (lambda (c count)

(if (char-lower-case? c)

(+ count 1)

count))

0

Chapter 13: Characters and text 216

string)

The string-fold-right combinator is sometimes called a "catamorphism."

[Procedure]string-for-each proc string1 string2 . . .
[Procedure]string-for-each proc string1 [start [end]]

The strings must all have the same length. proc should accept as many arguments
as there are strings.

The start-end variant is provided for compatibility with the SRFI-13 version. (In
that case start and end count code Unicode scalar values (character values), not
Java 16-bit char values.)

The string-for-each procedure applies proc element–wise to the characters of the
strings for its side effects, in order from the first characters to the last. proc is always
called in the same dynamic environment as string-for-each itself.

Analogous to for-each.

(let ((v '()))

(string-for-each

(lambda (c) (set! v (cons (char->integer c) v)))

"abcde")

v)

⇒ (101 100 99 98 97)

Performance note: The compiler generates efficient code for string-for-each. If
proc is a lambda expression, it is inlined.

[Procedure]string-map proc string1 string2 . . .
The string-map procedure applies proc element-wise to the elements of the strings
and returns a string of the results, in order. It is an error if proc does not accept
as many arguments as there are strings, or return other than a single character or
a string. If more than one string is given and not all strings have the same length,
string-map terminates when the shortest string runs out. The dynamic order in
which proc is applied to the elements of the strings is unspecified.

(string-map char-foldcase "AbdEgH") ⇒ "abdegh"

(string-map

(lambda (c) (integer->char (+ 1 (char->integer c))))

"HAL")

⇒ "IBM"

(string-map

(lambda (c k)

((if (eqv? k #\u) char-upcase char-downcase) c))

"studlycaps xxx"

"ululululul")

⇒ "StUdLyCaPs"

Traditionally the result of proc had to be a character, but Kawa (and SRFI-140)
allows the result to be a string.

Performance note: The string-map procedure has not been optimized (mainly be-
cause it is not very useful): The characters are boxed, and the proc is not inlined
even if it is a lambda expression.

Chapter 13: Characters and text 217

[Procedure]string-map-index proc string [start end]
Calls proc on each valid index of the specified substring, converts the results of those
calls into strings, and returns the concatenation of those strings. It is an error for
proc to return anything other than a character or string. The dynamic order in
which proc is called on the indexes is unspecified, as is the dynamic order in which
the coercions are performed. If any strings returned by proc are mutated after they
have been returned and before the call to string-map-index has returned, then
string-map-index returns a string with unspecified contents; the string-map-index
procedure itself does not mutate those strings.

[Procedure]string-for-each-index proc string [start end]
Calls proc on each valid index of the specified substring, in increasing order, discarding
the results of those calls. This is simply a safe and correct way to loop over a substring.

Example:

(let ((txt (string->string "abcde"))

(v '()))

(string-for-each-index

(lambda (cur) (set! v (cons (char->integer (string-ref txt cur)) v)))

txt)

v) ⇒ (101 100 99 98 97)

[Procedure]string-count string pred [start end]
Returns a count of the number of characters in the specified substring of string that
satisfy the predicate pred.

[Procedure]string-filter pred string [start end]
[Procedure]string-remove pred string [start end]

Return an immutable string consisting of only selected characters, in order:
string-filter selects only the characters that satisfy pred; string-remove selects
only the characters that not satisfy pred

13.3.9 Replication & splitting

[Procedure]string-repeat string-or-character len
Create an istring by repeating the first argument len times. If the first argument is
a character, it is as if it were wrapped with the string constructor. We can define
string-repeat in terms of the more general xsubstring procedure:

(define (string-repeat S N)

(let ((T (if (char? S) (string S) S)))

(xsubstring T 0 (* N (string-length T))))

[Procedure]xsubstring string [from to [start end]]
This is an extended substring procedure that implements replicated copying of a
substring. The string is a string; start and end are optional arguments that specify
a substring of string, defaulting to 0 and the length of string. This substring is
conceptually replicated both up and down the index space, in both the positive and
negative directions. For example, if string is "abcdefg", start is 3, and end is 6, then
we have the conceptual bidirectionally-infinite string

... d e f d e f d e f d e f d e f d e f d ...

Chapter 13: Characters and text 218

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

xsubstring returns the substring of the string beginning at index from, and ending
at to. It is an error if from is greater than to.

If from and to are missing they default to 0 and from+(end-start), respectively. This
variant is a generalization of using substring, but unlike substring never shares
substructures that would retain characters or sequences of characters that are sub-
structures of its first argument or previously allocated objects.

You can use xsubstring to perform a variety of tasks:

• To rotate a string left: (xsubstring "abcdef" 2 8) ⇒ "cdefab"

• To rotate a string right: (xsubstring "abcdef" -2 4) ⇒ "efabcd"

• To replicate a string: (xsubstring "abc" 0 7) ⇒ "abcabca"

Note that

• The from/to arguments give a half-open range containing the characters from
index from up to, but not including, index to.

• The from/to indexes are not expressed in the index space of string. They refer
instead to the replicated index space of the substring defined by string, start,
and end.

It is an error if start=end, unless from=to, which is allowed as a special case.

[Procedure]string-split string delimiter [grammar limit start end]
Returns a list of strings representing the words contained in the substring of string
from start (inclusive) to end (exclusive). The delimiter is a string to be used as the
word separator. This will often be a single character, but multiple characters are
allowed for use cases such as splitting on "\r\n". The returned list will have one
more item than the number of non-overlapping occurrences of the delimiter in the
string. If delimiter is an empty string, then the returned list contains a list of strings,
each of which contains a single character.

The grammar is a symbol with the same meaning as in the string-join procedure.
If it is infix, which is the default, processing is done as described above, except an
empty string produces the empty list; if grammar is strict-infix, then an empty
string signals an error. The values prefix and suffix cause a leading/trailing empty
string in the result to be suppressed.

If limit is a non-negative exact integer, at most that many splits occur, and the
remainder of string is returned as the final element of the list (so the result will have
at most limit+1 elements). If limit is not specified or is #f, then as many splits as
possible are made. It is an error if limit is any other value.

To split on a regular expression, you can use SRFI 115’s regexp-split procedure.

13.3.10 String mutation

The following procedures create a mutable string, i.e. one that you can modify.

[Procedure]make-string [k [char]]
Return a newly allocated mstring of k characters, where k defaults to 0. If char is
given, then all elements of the string are initialized to char, otherwise the contents of
the string are unspecified.

Chapter 13: Characters and text 219

The 1-argument version is deprecated as poor style, except when k is 0.

Rationale: In many languags the most common pattern for mutable strings is to
allocate an empty string and incrementally append to it. It seems natural to initialize
the string with (make-string), rather than (make-string 0).

To return an immutable string that repeats k times a character char use
string-repeat.

This is as R7RS, except the result is variable-size and we allow leaving out k when it
is zero.

[Procedure]string-copy string [start [end]]
Returns a newly allocated mutable (mstring) copy of the part of the given string
between start and end.

The following procedures modify a mutable string.

[Procedure]string-set! string k char
This procedure stores char in element k of string.

(define s1 (make-string 3 #*))

(define s2 "***")

(string-set! s1 0 #\?) ⇒ void

s1 ⇒ "?**"

(string-set! s2 0 #\?) ⇒ error

(string-set! (symbol->string 'immutable) 0 #\?) ⇒ error

Performance note: Calling string-set! may take time proportional to the length of
the string: First it must scan for the right position, like string-ref does. Then if the
new character requires using a surrogate pair (and the old one doesn’t) then we have
to make room in the string, possibly re-allocating a new char array. Alternatively,
if the old character requires using a surrogate pair (and the new one doesn’t) then
following characters need to be moved.

The function string-set! is deprecated: It is inefficient, and it very seldom does the
correct thing. Instead, you can construct a string with string-append!.

[Procedure]string-append! string value . . .
The string must be a mutable string, such as one returned by make-string or
string-copy. The string-append! procedure extends string by appending each
value (in order) to the end of string. Each value should be a character or a string.

Performance note: The compiler converts a call with multiple values to multiple
string-append! calls. If a value is known to be a character, then no boxing (object-
allocation) is needed.

The following example shows how to efficiently process a string using string-for-

each and incrementally “build” a result string using string-append!.

(define (translate-space-to-newline str::string)::string

(let ((result (make-string 0)))

(string-for-each

(lambda (ch)

(string-append! result

Chapter 13: Characters and text 220

(if (char=? ch #\Space) #\Newline ch)))

str)

result))

[Procedure]string-copy! to at from [start [end]]
Copies the characters of the string from that are between start end end into the string
to, starting at index at. The order in which characters are copied is unspecified,
except that if the source and destination overlap, copying takes place as if the source
is first copied into a temporary string and then into the destination. (This is achieved
without allocating storage by making sure to copy in the correct direction in such
circumstances.)

This is equivalent to (and implemented as):

(string-replace! to at (+ at (- end start)) from start end))

(define a "12345")

(define b (string-copy "abcde"))

(string-copy! b 1 a 0 2)

b ⇒ "a12de"

[Procedure]string-replace! dst dst-start dst-end src [src-start
[src-end]]

Replaces the characters of string dst (between dst-start and dst-end) with the char-
acters of src (between src-start and src-end). The number of characters from src may
be different than the number replaced in dst, so the string may grow or contract.
The special case where dst-start is equal to dst-end corresponds to insertion; the
case where src-start is equal to src-end corresponds to deletion. The order in which
characters are copied is unspecified, except that if the source and destination overlap,
copying takes place as if the source is first copied into a temporary string and then
into the destination. (This is achieved without allocating storage by making sure to
copy in the correct direction in such circumstances.)

[Procedure]string-fill! string fill [start [end]]
The string-fill! procedure stores fill in the elements of string between start and
end. It is an error if fill is not a character or is forbidden in strings.

13.3.11 Strings as sequences

13.3.11.1 Indexing a string

Using function-call syntax with strings is convenient and efficient. However, it has some
“gotchas”.

We will use the following example string:

(! str1 "Smile \x1f603;!")

or if you’re brave:

(! str1 "Smile !")

This is "Smile " followed by an emoticon (“smiling face with open mouth”) followed by
"!". The emoticon has scalar value \x1f603 - it is not in the 16-bit Basic Multi-language
Plane, and so it must be encoded by a surrogate pair (#\xd83d followed by #\xde03).

Chapter 13: Characters and text 221

The number of scalar values (characters) is 8, while the number of 16-bits code units
(chars) is 9. The java.lang.CharSequence:length method counts chars. Both the
length and the string-length procedures count characters. Thus:

(length str1) ⇒ 8

(string-length str1) ⇒ 8

(str1:length) ⇒ 9

Counting chars is a constant-time operation (since it is stored in the data structure).
Counting characters depends on the representation used: In geneeral it may take time
proportional to the length of the string, since it has to subtract one for each surrogate pair;
however the istring type (gnu.lists.IString class) uses a extra structure so it can count
characters in constant-time.

Similarly we can can index the string in 3 ways:

(str1 1) ⇒ #\m :: character

(string-ref str1 1) ⇒ #\m :: character

(str1:charAt 1) ⇒ #\m :: char

Using function-call syntax when the “function” is a string and a single integer argument
is the same as using string-ref.

Things become interesting when we reach the emoticon:

(str1 6) ⇒ #\ :: character

(str1:charAt 6) ⇒ #\d83d :: char

Both string-ref and the function-call syntax return the real character, while the
charAt methods returns a partial character.

(str1 7) ⇒ #\! :: character

(str1:charAt 7) ⇒ #\de03 :: char

(str1 8) ⇒ throws StringIndexOutOfBoundsException

(str1:charAt 8) ⇒ #\! :: char

13.3.11.2 Indexing with a sequence

You can index a string with a list of integer indexes, most commonly a range:

(str [i ...])

is basically the same as:

(string (str i) ...)

Generally when working with strings it is best to work with substrings rather than
individual characters:

(str [start <: end])

This is equivalent to invoking the substring procedure:

(substring str start end)

13.3.12 String Cursor API

Indexing into a string (using for example string-ref) is inefficient because of the possi-
ble presence of surrogate pairs. Hence given an index i access normally requires linearly
scanning the string until we have seen i characters.

Chapter 13: Characters and text 222

The string-cursor API is defined in terms of abstract “cursor values”, which point to a
position in the string. This avoids the linear scan.

Typical usage is:

(let* ((str whatever)

(end (string-cursor-end str)))

(do ((sc::string-cursor (string-cursor-start str)

(string-cursor-next str sc)))

((string-cursor>=? sc end))

(let ((ch (string-cursor-ref str sc)))

(do-something-with ch))))

Alternatively, the following may be marginally faster:

(let* ((str whatever)

(end (string-cursor-end str)))

(do ((sc::string-cursor (string-cursor-start str)

(string-cursor-next-quick sc)))

((string-cursor>=? sc end))

(let ((ch (string-cursor-ref str sc)))

(if (not (char=? ch #\ignorable-char))

(do-something-with ch)))))

The API is non-standard, but is based on that in Chibi Scheme.

[Type]string-cursor
An abstract position (index) in a string. Implemented as a primitive int which counts
the number of preceding code units (16-bit char values).

[Procedure]string-cursor-start str
Returns a cursor for the start of the string. The result is always 0, cast to a
string-cursor.

[Procedure]string-cursor-end str
Returns a cursor for the end of the string - one past the last valid character. Imple-
mented as (as string-cursor (invoke str 'length)).

[Procedure]string-cursor-ref str cursor
Return the character at the cursor. If the cursor points to the second char of a
surrogate pair, returns #\ignorable-char.

[Procedure]string-cursor-next string cursor [count]
Return the cursor position count (default 1) character positions forwards beyond
cursor. For each count this may add either 1 or 2 (if pointing at a surrogate pair) to
the cursor.

[Procedure]string-cursor-next-quiet cursor
Increment cursor by one raw char position, even if cursor points to the start of a surro-
gate pair. (In that case the next string-cursor-ref will return #\ignorable-char.)
Same as (+ cursor 1) but with the string-cursor type.

Chapter 13: Characters and text 223

[Procedure]string-cursor-prev string cursor [count]
Return the cursor position count (default 1) character positions backwards before
cursor.

[Procedure]substring-cursor string [start [end]]
Create a substring of the section of string between the cursors start and end.

[Procedure]string-cursor<? cursor1 cursor2
[Procedure]string-cursor<=? cursor1 cursor2
[Procedure]string-cursor=? cursor1 cursor2
[Procedure]string-cursor>=? cursor1 cursor2
[Procedure]string-cursor>? cursor1 cursor2

Is the position of cursor1 respectively before, before or same, same, after, or after or
same, as cursor2.

Performance note: Implemented as the corresponding int comparison.

[Procedure]string-cursor-for-each proc string [start [end]]
Apply the procedure proc to each character position in string between the cursors
start and end.

13.4 String literals

Kaw support two syntaxes of string literals: The traditional, portable, qdouble-quoted-
delimited literals like "this"; and extended SRFI-109 quasi-literals like &{this}.

13.4.1 Simple string literals

string ::= " string-element *"
string-element ::= any character other than " or \

| mnemonic-escape | \ " | \ \

| \ intraline-whitespace *line-ending intraline-whitespace *
| inline-hex-escape

mnemonic-escape ::= \ a | \ b | \ t | \ n | \ r | ... (see below)

A string is written as a sequence of characters enclosed within quotation marks (").
Within a string literal, various escape sequence represent characters other than themselves.
Escape sequences always start with a backslash (\):

\a Alarm (bell), #\x0007.

\b Backspace, #\x0008.

\e Escape, #\x001B.

\f Form feed, #\x000C.

\n Linefeed (newline), #\x000A.

\r Return, #\x000D.

\t Character tabulation, #\x0009.

\v Vertical tab, #\x000B.

Chapter 13: Characters and text 224

\C-x
\^x Returns the scalar value of x masked (anded) with #x9F. An alternative way to

write the Ascii control characters: For example "\C-m" or "\^m" is the same as
"#\x000D" (which the same as "\r"). As a special case \^? is rubout (delete)
(\x7f;).

\x hex-scalar-value;
\X hex-scalar-value;

A hex encoding that gives the scalar value of a character.

\\ oct-digit+

At most three octal digits that give the scalar value of a character. (Historical,
for C compatibility.)

\u hex-digit+

Exactly four hex digits that give the scalar value of a character. (Historical, for
Java compatibility.)

\M-x (Historical, for Emacs Lisp.) Set the meta-bit (high-bit of single byte) of the
following character x.

\| Vertical line, #\x007c. (Not useful for string literals, but useful for symbols.)

\" Double quote, #\x0022.

\\ Backslah, #\005C.

\intraline-whitespace*line-ending intraline-whitespace*

Nothing (ignored). Allows you to split up a long string over multiple lines;
ignoring initial whitespace on the continuation lines allows you to indent them.

Except for a line ending, any character outside of an escape sequence stands for itself
in the string literal. A line ending which is preceded by \intraline-whitespace* expands to
nothing (along with any trailing intraline-whitespace), and can be used to indent strings for
improved legibility. Any other line ending has the same effect as inserting a \n character
into the string.

Examples:

"The word \"recursion\" has many meanings."

"Another example:\ntwo lines of text"

"Here’s text \

containing just one line"

"\x03B1; is named GREEK SMALL LETTER ALPHA."

13.4.2 String templates

The following syntax is a string template (also called a string quasi-literal or “here document
(http://en.wikipedia.org/wiki/Here_document)”):

&{Hello &[name]!}

Assuming the variable name evaluates to "John" then the example evaluates to "Hello

John!".

The Kawa reader converts the above example to:

($string$ "Hello " $<<$ name $>>$ "!")

http://en.wikipedia.org/wiki/Here_document
http://en.wikipedia.org/wiki/Here_document

Chapter 13: Characters and text 225

See the SRFI-109 (http://srfi.schemers.org/srfi-109/srfi-109.html) specifica-
tion for details.

extended-string-literal ::= &{ [initial-ignored] string-literal-part * }
string-literal-part ::= any character except &, { or }

| { string-literal-part * }
| char-ref
| entity-ref
| special-escape
| enclosed-part

You can use the plain "string" syntax for longer multiline strings, but &{string} has
various advantages. The syntax is less error-prone because the start-delimiter is different
from the end-delimiter. Also note that nested braces are allowed: a right brace } is only an
end-delimiter if it is unbalanced, so you would seldom need to escape it:

&{This has a {braced} section.}

⇒ "This has a {braced} section."

The escape character used for special characters is &. This is compatible with XML
syntax and Section 20.4 [XML literals], page 339.

13.4.2.1 Special characters

char-ref ::=

&# digit + ;
| &#x hex-digit + ;

entity-ref ::=

& char-or-entity-name ;
char-or-entity-name ::= tagname

You can the standard XML syntax for character references, using either decimal or
hexadecimal values. The following string has two instances of the Ascii escape character,
as either decimal 27 or hex 1B:

&{} ⇒ "\e\e"

You can also use the pre-defined XML entity names:

&{& < > " '} ⇒ "& < > \" '"

In addition, { } can be used for left and right curly brace, though you
don’t need them for balanced parentheses:

&{ }_{ / {_} } ⇒ " }_{ / {_} "

You can use the standard XML entity names (http://www.w3.org/2003/entities/
2007/w3centities-f.ent). For example:

&{Lærdalsøyri}

⇒ "Lærdalsøyri"

You can also use the standard R7RS character names null, alarm, backspace, tab,
newline, return, escape, space, and delete. For example:

&{&escape;&space;}

The syntax &name; is actually syntactic sugar (specifically reader syntax) to the variable
reference $entity$:name. Hence you can also define your own entity names:

(define $entity$:crnl "\r\n")

http://srfi.schemers.org/srfi-109/srfi-109.html
http://www.w3.org/2003/entities/2007/w3centities-f.ent
http://www.w3.org/2003/entities/2007/w3centities-f.ent

Chapter 13: Characters and text 226

&{&crnl;} "\r\n"

13.4.2.2 Multiline string literals

initial-ignored ::=

intraline-whitespace * line-ending intraline-whitespace * &|
special-escape ::=

intraline-whitespace * &|
| & nested-comment

| &- intraline-whitespace * line-ending

A line-ending directly in the text is becomes a newline, as in a simple string literal:

(string-capitalize &{one two three

uno dos tres

}) ⇒ "One Two Three\nUno Dos Tres\n"

However, you have extra control over layout. If the string is in a nested expression, it
is confusing (and ugly) if the string cannot be indented to match the surrounding context.
The indentation marker &| is used to mark the end of insignificant initial whitespace. The
&| characters and all the preceding whitespace are removed. In addition, it also suppresses
an initial newline. Specifically, when the initial left-brace is followed by optional (invisible)
intraline-whitespace, then a newline, then optional intraline-whitespace (the indentation),
and finally the indentation marker &| - all of which is removed from the output. Otherwise
the &| only removes initial intraline-whitespace on the same line (and itself).

(write (string-capitalize &{

&|one two three

&|uno dos tres

}) out)

⇒ prints "One Two Three\nUno Dos Tres\n"

As a matter of style, all of the indentation lines should line up. It is an error if there are
any non-whitespace characters between the previous newline and the indentation marker.
It is also an error to write an indentation marker before the first newline in the literal.

The line-continuation marker &- is used to suppress a newline:

&{abc&-

def} ⇒ "abc def"

You can write a #|...|#-style comment following a &. This could be useful for annota-
tion, or line numbers:

&{&#|line 1|#one two

&#|line 2|# three

&#|line 3|#uno dos tres

} ⇒ "one two\n three\nuno dos tres\n"

13.4.2.3 Embedded expressions

enclosed-part ::=

& enclosed-modifier * [expression *]
| & enclosed-modifier * (expression +)

An embedded expression has the form &[expression]. It is evaluated, the result con-
verted to a string (as by display), and the result added in the result string. (If there are

Chapter 13: Characters and text 227

multiple expressions, they are all evaluated and the corresponding strings inserted in the
result.)

&{Hello &[(string-capitalize name)]!}

You can leave out the square brackets when the expression is a parenthesized expression:

&{Hello &(string-capitalize name)!}

13.4.2.4 Formatting

enclosed-modifier ::=

~ format-specifier-after-tilde

Using Section 17.6 [Format], page 287, allows finer-grained control over the output, but a
problem is that the association between format specifiers and data expressions is positional,
which is hard-to-read and error-prone. A better solution places the specifier adjacant to
the data expression:

&{The response was &~,2f(* 100.0 (/ responses total))%.}

The following escape forms are equivalent to the corresponding forms withput the ~fmt-
spec, except the expression(s) are formatted using format:

&~fmt-spec[expression *]

Again using parentheses like this:

&~fmt-spec(expression +)

is equivalent to:

&~fmt-spec[(expression +)]

The syntax of format specifications is arcane, but it allows you to do some pretty neat
things in a compact space. For example to include "_" between each element of the array
arr you can use the ~{...~} format speciers:

(define arr [5 6 7])

&{&~{&[arr]&~^_&~}} ⇒ "5_6_7"

If no format is specified for an enclosed expression, the that is equivalent to a ~a format
specifier, so this is equivalent to:

&{&~{&~a[arr]&~^_&~}} ⇒ "5_6_7"

which is in turn equivalent to:

(format #f "~{~a~^_~}" arr)

The fine print that makes this work: If there are multiple expressions in a &[...] with
no format specifier then there is an implicit ~a for each expression. On the other hand,
if there is an explicit format specifier, it is not repeated for each enclosed expression: it
appears exactly once in the effective format string, whether there are zero, one, or many
expressions.

13.5 Unicode character classes and conversions

Some of the procedures that operate on characters or strings ignore the difference between
upper case and lower case. These procedures have -ci (for “case insensitive”) embedded in
their names.

Chapter 13: Characters and text 228

13.5.1 Characters

[Procedure]char-upcase char
[Procedure]char-downcase char
[Procedure]char-titlecase char
[Procedure]char-foldcase char

These procedures take a character argument and return a character result.

If the argument is an upper–case or title–case character, and if there is a single
character that is its lower–case form, then char-downcase returns that character.

If the argument is a lower–case or title–case character, and there is a single character
that is its upper–case form, then char-upcase returns that character.

If the argument is a lower–case or upper–case character, and there is a single character
that is its title–case form, then char-titlecase returns that character.

If the argument is not a title–case character and there is no single character that is its
title–case form, then char-titlecase returns the upper–case form of the argument.

Finally, if the character has a case–folded character, then char-foldcase returns
that character. Otherwise the character returned is the same as the argument.

For Turkic characters #\x130 and #\x131, char-foldcase behaves as the identity
function; otherwise char-foldcase is the same as char-downcase composed with
char-upcase.

(char-upcase #\i) ⇒ #\I

(char-downcase #\i) ⇒ #\i

(char-titlecase #\i) ⇒ #\I

(char-foldcase #\i) ⇒ #\i

(char-upcase #\ß) ⇒ #\ß

(char-downcase #\ß) ⇒ #\ß

(char-titlecase #\ß) ⇒ #\ß

(char-foldcase #\ß) ⇒ #\ß

(char-upcase #\Σ) ⇒ #\Σ
(char-downcase #\Σ) ⇒ #\σ
(char-titlecase #\Σ) ⇒ #\Σ
(char-foldcase #\Σ) ⇒ #\σ

(char-upcase #\ς) ⇒ #\Σ
(char-downcase #\ς) ⇒ #\ς
(char-titlecase #\ς) ⇒ #\Σ
(char-foldcase #\ς) ⇒ #\σ

Note: char-titlecase does not always return a title–case character.

Note: These procedures are consistent with Unicode’s locale–independent
mappings from scalar values to scalar values for upcase, downcase, title-
case, and case–folding operations. These mappings can be extracted from
UnicodeData.txt and CaseFolding.txt from the Unicode Consortium,
ignoring Turkic mappings in the latter.

Chapter 13: Characters and text 229

Note that these character–based procedures are an incomplete approx-
imation to case conversion, even ignoring the user’s locale. In general,
case mappings require the context of a string, both in arguments and in
result. The string-upcase, string-downcase, string-titlecase, and
string-foldcase procedures perform more general case conversion.

[Procedure]char-ci=? char1 char2 char3 . . .
[Procedure]char-ci<? char1 char2 char3 . . .
[Procedure]char-ci>? char1 char2 char3 . . .
[Procedure]char-ci<=? char1 char2 char3 . . .
[Procedure]char-ci>=? char1 char2 char3 . . .

These procedures are similar to char=?, etc., but operate on the case–folded versions
of the characters.

(char-ci<? #\z #\Z) ⇒ #f

(char-ci=? #\z #\Z) ⇒ #f

(char-ci=? #\ς #\σ) ⇒ #t

[Procedure]char-alphabetic? char
[Procedure]char-numeric? char
[Procedure]char-whitespace? char
[Procedure]char-upper-case? char
[Procedure]char-lower-case? char
[Procedure]char-title-case? char

These procedures return #t if their arguments are alphabetic, numeric, whitespace,
upper–case, lower–case, or title–case characters, respectively; otherwise they return
#f.

A character is alphabetic if it has the Unicode “Alphabetic” property. A character is
numeric if it has the Unicode “Numeric” property. A character is whitespace if has
the Unicode “White Space” property. A character is upper case if it has the Unicode
“Uppercase” property, lower case if it has the “Lowercase” property, and title case if
it is in the Lt general category.

(char-alphabetic? #\a) ⇒ #t

(char-numeric? #\1) ⇒ #t

(char-whitespace? #\space) ⇒ #t

(char-whitespace? #\x00A0) ⇒ #t

(char-upper-case? #\Σ) ⇒ #t

(char-lower-case? #\σ) ⇒ #t

(char-lower-case? #\x00AA) ⇒ #t

(char-title-case? #\I) ⇒ #f

(char-title-case? #\x01C5) ⇒ #t

[Procedure]char-general-category char
Return a symbol representing the Unicode general category of char, one of Lu, Ll,
Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Ps, Pe, Pi, Pf, Pd, Pc, Po, Sc, Sm, Sk, So, Zs, Zp,
Zl, Cc, Cf, Cs, Co, or Cn.

(char-general-category #\a) ⇒ Ll

(char-general-category #\space) ⇒ Zs

(char-general-category #\x10FFFF) ⇒ Cn

Chapter 13: Characters and text 230

13.5.2 Deprecated in-place case modification

The following functions are deprecated; they really don’t and cannot do the right thing,
because in some languages upper and lower case can use different number of characters.

[Procedure]string-upcase! str
Deprecated: Destructively modify str, replacing the letters by their upper-case equiv-
alents.

[Procedure]string-downcase! str
Deprecated: Destructively modify str, replacing the letters by their upper-lower equiv-
alents.

[Procedure]string-capitalize! str
Deprecated: Destructively modify str, such that the letters that start a new word are
replaced by their title-case equivalents, while non-initial letters are replaced by their
lower-case equivalents.

13.6 Regular expressions

Kawa provides regular expressions, which is a convenient mechanism for matching a string
against a pattern and maybe replacing matching parts.

A regexp is a string that describes a pattern. A regexp matcher tries to match this
pattern against (a portion of) another string, which we will call the text string. The text
string is treated as raw text and not as a pattern.

Most of the characters in a regexp pattern are meant to match occurrences of themselves
in the text string. Thus, the pattern “abc” matches a string that contains the characters
“a”, “b”, “c” in succession.

In the regexp pattern, some characters act as metacharacters, and some character se-
quences act as metasequences. That is, they specify something other than their literal
selves. For example, in the pattern “a.c”, the characters “a” and “c” do stand for them-
selves but the metacharacter “.” can match any character (other than newline). Therefore,
the pattern “a.c” matches an “a”, followed by any character, followed by a “c”.

If we needed to match the character “.” itself, we escape it, ie, precede it with a backslash
“\”. The character sequence “\.” is thus a metasequence, since it doesn’t match itself but
rather just “.”. So, to match “a” followed by a literal “.” followed by “c” we use the regexp
pattern “a\.c”. To write this as a Scheme string literal, you need to quote the backslash,
so you need to write "a\\.c". Kawa also allows the literal syntax #/a\.c/, which avoids
the need to double the backslashes.

You can choose between two similar styles of regular expressions. The two differ slightly
in terms of which characters act as metacharacters, and what those metacharacters mean:

• Functions starting with regex- are implemented using the java.util.regex package.
This is likely to be more efficient, has better Unicode support and some other minor
extra features, and literal syntax #/a\.c/ mentioned above.

• Functions starting with pregexp- are implemented in pure Scheme using Dorai
Sitaram’s “Portable Regular Expressions for Scheme” library. These will be portable
to more Scheme implementations, including BRL, and is available on older Java
versions.

Chapter 13: Characters and text 231

13.6.1 Java regular expressions

The syntax for regular expressions is documented here (http://java.sun.com/javase/6/
docs/api/java/util/regex/Pattern.html).

[Type]regex
A compiled regular expression, implemented as java.util.regex.Pattern.

[Constructor]regex arg
Given a regular expression pattern (as a string), compiles it to a regex object.

(regex "a\\.c")

This compiles into a pattern that matches an “a”, followed by any character, followed
by a “c”.

The Scheme reader recognizes “#/” as the start of a regular expression pattern literal,
which ends with the next un-escaped “/”. This has the big advantage that you don’t need
to double the backslashes:

#/a\.c/

This is equivalent to (regex "a\\.c"), except it is compiled at read-time. If you need a
literal “/” in a pattern, just escape it with a backslash: “#/a\/c/” matches a “a”, followed
by a “/”, followed by a “c”.

You can add single-letter modifiers following the pattern literal. The following modifiers
are allowed:

i The modifier “i” cause the matching to ignore case. For example the following
pattern matches “a” or “A”.

#/a/i

m Enables “metaline” mode. Normally metacharacters “^” and “$’ match at the
start end end of the entire input string. In metaline mode “^” and “$” also
match just before or after a line terminator.

Multiline mode can also be enabled by the metasequence “(?m)”.

s Enable “singleline” (aka “dot-all”) mode. In this mode the matacharacter “.
matches any character, including a line breaks. This mode be enabled by the
metasequence “(?s)”.

The following functions accept a regex either as a pattern string or a compiled regex

pattern. I.e. the following are all equivalent:

(regex-match "b\\.c" "ab.cd")

(regex-match #/b\.c/ "ab.cd")

(regex-match (regex "b\\.c") "ab.cd")

(regex-match (java.util.regex.Pattern:compile "b\\.c") "ab.cd")

These all evaluate to the list ("b.c").

The following functions must be imported by doing one of:

(require 'regex) ;; or

(import (kawa regex))

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Chapter 13: Characters and text 232

[Procedure]regex-match-positions regex string [start [end]]
The procedure regexmatchposition takes pattern and a text string, and returns a
match if the regex matches (some part of) the text string.

Returns #f if the regexp did not match the string; and a list of index pairs if it did
match.

(regex-match-positions "brain" "bird") ⇒ #f

(regex-match-positions "needle" "hay needle stack")

⇒ ((4 . 10))

In the second example, the integers 4 and 10 identify the substring that was matched.
4 is the starting (inclusive) index and 10 the ending (exclusive) index of the matching
substring.

(substring "hay needle stack" 4 10) ⇒ "needle"

In this case the return list contains only one index pair, and that pair represents the
entire substring matched by the regexp. When we discuss subpatterns later, we will
see how a single match operation can yield a list of submatches.

regexmatchpositions takes optional third and fourth arguments that specify the
indices of the text string within which the matching should take place.

(regex-match-positions "needle"

"his hay needle stack -- my hay needle stack -- her hay needle stack"

24 43)

⇒ ((31 . 37))

Note that the returned indices are still reckoned relative to the full text string.

[Procedure]regex-match regex string [start [end]]
The procedure regexmatch is called like regexmatchpositions but instead of re-
turning index pairs it returns the matching substrings:

(regex-match "brain" "bird") ⇒ #f

(regex-match "needle" "hay needle stack")

⇒ ("needle")

regexmatch also takes optional third and fourth arguments, with the same meaning
as does regexmatchpositions.

[Procedure]regex-split regex string
Takes two arguments, a regex pattern and a text string, and returns a list of substrings
of the text string, where the pattern identifies the delimiter separating the substrings.

(regex-split ":" "/bin:/usr/bin:/usr/bin/X11:/usr/local/bin")

⇒ ("/bin" "/usr/bin" "/usr/bin/X11" "/usr/local/bin")

(regex-split " " "pea soup")

⇒ ("pea" "soup")

If the first argument can match an empty string, then the list of all the single-character
substrings is returned, plus we get a empty strings at each end.

(regex-split "" "smithereens")

⇒ ("" "s" "m" "i" "t" "h" "e" "r" "e" "e" "n" "s" "")

Chapter 13: Characters and text 233

(Note: This behavior is different from pregexp-split.)

To identify one-or-more spaces as the delimiter, take care to use the regexp “ +”, not
“ *”.

(regex-split " +" "split pea soup")

⇒ ("split" "pea" "soup")

(regex-split " *" "split pea soup")

⇒ ("" "s" "p" "l" "i" "t" "" "p" "e" "a" "" "s" "o" "u" "p" "")

[Procedure]regexreplace regex string replacement
Replaces the matched portion of the text string by another a replacdement string.

(regex-replace "te" "liberte" "ty")

⇒ "liberty"

Submatches can be used in the replacement string argument. The replacement string
can use “$n” as a backreference to refer back to the nth submatch, ie, the substring
that matched the nth subpattern. “$0” refers to the entire match.

(regex-replace #/_(.+?)_/

"the _nina_, the _pinta_, and the _santa maria_"

"*$1*"))

⇒ "the *nina*, the _pinta_, and the _santa maria_"

[Procedure]regexreplace* regex string replacement
Replaces all matches in the text string by the replacement string:

(regex-replace* "te" "liberte egalite fraternite" "ty")

⇒ "liberty egality fratyrnity"

(regex-replace* #/_(.+?)_/

"the _nina_, the _pinta_, and the _santa maria_"

"*$1*")

⇒ "the *nina*, the *pinta*, and the *santa maria*"

[Procedure]regex-quote pattern
Takes an arbitrary string and returns a pattern string that precisely matches it. In
particular, characters in the input string that could serve as regex metacharacters are
escaped as needed.

(regex-quote "cons")

⇒ "\Qcons\E"

regexquote is useful when building a composite regex from a mix of regex strings
and verbatim strings.

13.6.2 Portable Scheme regular expressions

This provides the procedures pregexp, pregexpmatchpositions, pregexpmatch,
pregexpsplit, pregexpreplace, pregexpreplace*, and pregexpquote.

Before using them, you must require them:

(require 'pregexp)

These procedures have the same interface as the corresponding regex- versions, but take
slightly different pattern syntax. The replace commands use “\” instead of “$” to indicate

Chapter 14: Data structures 234

substitutions. Also, pregexpsplit behaves differently from regexsplit if the pattern can
match an empty string.

See here for details (http://www.ccs.neu.edu/home/dorai/pregexp/index.html).

14 Data structures

14.1 Sequences

A sequence is a generalized list, consisting of zero or more values. You can choose be-
tween a number of different kinds of sequence implementations. Scheme traditionally has
Section 14.2 [Lists], page 235, and Section 14.3 [Vectors], page 237. Any Java class that
implements java.util.List is a sequence type. Raw Java arrays can also be viewerd as
a sequence, and strings can be viewed a sequence (or vector) of characters. Kawa also
provides Section 14.4 [Uniform vectors], page 239.

Sequence types differ in their API, but given a sequence type stype you can construct
instances of that type using the syntax:

(stype v0 v1 vn)

For example:

(bytevector 9 8 7 6) ⇒ #u8(9 8 7 6)

For a raw Java class name jname you may need to use the empty keyword ||: to separate
constructor parameters (if any) from sequence elements, as in:

(gnu.lists.U8Vector ||: 9 8 7 6) ⇒ #u8(9 8 7 6)

This syntax works with any type with a default constructor and a 1-argument add

method; see Section 19.10 [Allocating objects], page 324, for details. You can use the same
syntax for allocating arrays, though array creation supports [Creating-new-Java-arrays],
page 331.

To extract an element from Scheme sequence of type stype there is usually a function
stype-ref. For example:

(define vec1 (vector 5 6 7 8))

(vector-ref vec1 2) ⇒ 7

More concisely, you can use (Kawa-specific) function call syntax:

(vec1 3) ⇒ 8

The index can be another sequence, which creates a new sequence of the selected indexes:

(vec1 [3 0 2 1]) ⇒ #(8 5 7 6)

It is convenient to use a Section 14.6 [Ranges], page 246, to select a sub-sequence:

(vec1 [1 <=: 3]) ⇒ #(6 7 8)

(vec1 [2 <:]) ⇒ #(7 8)

The same function call syntax also works for raw Java arrays (though the index is
restricted to an integer, not a sequence or array):

(define arr1 (long[] 4 5 6 7))

(arr1 3) ⇒ 7

http://www.ccs.neu.edu/home/dorai/pregexp/index.html

Chapter 14: Data structures 235

To assign to (replace) an element from a sequence of Scheme type stype there is usually
a function stype-set!:

(vector-set! vec1 1 9)

vec1 ⇒ #(5 9 7 8)

Again, you can use the function call syntax:

(set! (vec1 2) 'x)

vec1 ⇒ #(5 9 x 8)

[Procedure]length seq
Returns the number of elements of the seq.

(length '(a b c)) ⇒ 3

(length '(a (b) (c d e))) ⇒ 3

(length '()) ⇒ 0

(length [3 4 [] 12]) ⇒ 4

(length (vector)) ⇒ 0

(length (int[] 7 6)) ⇒ 2

The length of a string is the number of characters (Unicode code points). In contrast,
the length method (of the CharSequence interface) returns the number of 16-bit code
points:

(length "Hello") ⇒ 5

(define str1 "Hello \x1f603;!")

(invoke str1 'length) ⇒ 9

(length str1) ⇒ 8 ; Used to return 9 in Kawa 2.x.

(string-length str1) ⇒ 8

14.2 Lists

A pair (sometimes called a dotted pair) is a record structure with two fields called the car
and cdr fields (for historical reasons). Pairs are created by the procedure cons. The car and
cdr fields are accessed by the procedures car and cdr. The car and cdr fields are assigned
by the procedures set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be defined recursively as either
the empty list or a pair whose cdr is a list. More precisely, the set of lists is defined as the
smallest set X such that:

• The empty list is in X.

• If list is in X, then any pair whose cdr field contains list is also in X.

The objects in the car fields of successive pairs of a list are the elements of the list. For
example, a two-element list is a pair whose car is the first element and whose cdr is a pair
whose car is the second element and whose cdr is the empty list. The length of a list is the
number of elements, which is the same as the number of pairs.

The empty list is a special object of its own type. It is not a pair, it has no elements,
and its length is zero.

Note: The above definitions imply that all lists have finite length and are terminated by
the empty list.

Chapter 14: Data structures 236

The most general notation (external representation) for Scheme pairs is the “dotted”
notation (c1 . c2) where c1 is the value of the car field and c2 is the value of the cdr field.
For example (4 . 5) is a pair whose car is 4 and whose cdr is 5. Note that (4 . 5) is the
external representation of a pair, not an expression that evaluates to a pair.

A more streamlined notation can be used for lists: the elements of the list are simply
enclosed in parentheses and separated by spaces. The empty list is written (). For example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

A chain of pairs not ending in the empty list is called an improper list. Note that an
improper list is not a list. The list and dotted notations can be combined to represent
improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Needs to finish merging from R7RS!

[Procedure]make-list k [fill]
Returns a newly allocated list of k elements. If a second argument is given, the
each element is initialized to fill. Otherwise the initial contents of each element is
unspecified.

(make-list 2 3) ⇒ (3 3)

14.2.1 SRFI-1 list library

The SRFI-1 List Library (http://srfi.schemers.org/srfi-1/srfi-1.html) is available,
though not enabled by default. To use its functions you must (require 'list-lib) or
(require 'srfi-1).

(require 'list-lib)

(iota 5 0 -0.5) ⇒ (0.0 -0.5 -1.0 -1.5 -2.0)

[Procedure]reverse! list
The result is a list consisting of the elements of list in reverse order. No new pairs are
allocated, instead the pairs of list are re-used, with cdr cells of list reversed in place.
Note that if list was pair, it becomes the last pair of the reversed result.

14.2.2 SRFI-101 Purely Functional Random-Access Pairs and
Lists

SRFI-101 (http://srfi.schemers.org/srfi-101/srfi-101.html) specifies immutable
(read-only) lists with fast (logarithmic) indexing and functional update (i.e. return a mod-
ified list). These are implemented by a RAPair class which extends the generic pair type,
which means that most code that expects a standard list will work on these lists as well.

http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-101/srfi-101.html

Chapter 14: Data structures 237

14.3 Vectors

Vectors are heterogeneous structures whose elements are indexed by integers. A vector
typically occupies less space than a list of the same length, and the average time needed to
access a randomly chosen element is typically less for the vector than for the list.

The length of a vector is the number of elements that it contains. This number is a
non–negative integer that is fixed when the vector is created. The valid indices of a vector
are the exact non–negative integer objects less than the length of the vector. The first
element in a vector is indexed by zero, and the last element is indexed by one less than the
length of the vector.

Vectors are written using the notation #(obj ...). For example, a vector of length 3
3 containing the number zero in element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector. In Kawa, a vector datum is
self-evaluating, but for style (and compatibility with R7RS) is is suggested you quote a
vector constant:

’#(0 (2 2 2 2) "Anna") ⇒ #(0 (2 2 2 2) "Anna")

Compare these different ways of creating a vector:

(vector a b c)

In this case a, b, and c are expressions evaluated at run-time and the results
used to initialize a newly-allocated 3-element vector.

[a b c] Same as using vector, but more concise, and results in an immutable (non-
modifiable) vector.

#(a b c) This is reader syntax and creates a vector literal, at read-time, early in compile-
time. The symbols a, b, and c are not evaluated but instead used literally.

`#(,a ,b ,c)

This is reader-syntax, using quasi-quotation, so a, b, and c are expressions
evaluated at run-time. This is equivalent to [a b c] in that it results in an
immutable vector.

[Type]vector
The type of vector objects.

[Constructor]vector obj . . .
Return a newly allocated vector whose elements contain the given arguments. Anal-
ogous to list.

(vector 'a 'b 'c) ⇒ #(a b c)

Alternatively, you can use square-bracket syntax, which results in an immutable vec-
tor:

['a 'b 'c] ⇒ #(a b c)

Chapter 14: Data structures 238

[Procedure]make-vector k
[Procedure]make-vector k fill

Return a newly allocated vector of k elements. If a second argument is given, then
each element is initialized to fill. Otherwise the initial contents of each element is
#!null.

[Procedure]vector? obj
Return #t if obj is a vector, #f otherwise.

[Procedure]vector-length vector
Return the number of elements in vector as an exact integer.

[Procedure]vector-ref vector k
It is an error if k is not a valid index of vector. The vector-ref procedure returns
the contents of element k of vector.

(vector-ref '#(1 1 2 3 5 8 13 21) 5) ⇒ 8

(vector-ref '#(1 1 2 3 5 8 13 21)

(inexact->exact (round (* 2 (acos -1)))))

⇒ 13

[Procedure]vector-set! vector k obj
It is an error if k is not a valid index of vector. The vector-set! procedure stores
obj in element k of vector, and returns no values.

(let ((vec (vector 0 '(2 2 2 2) "Anna")))

(vector-set! vec 1 '("Sue" "Sue"))

vec)

⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! '#(0 1 2) 1 "doe")

⇒ error ;; constant vector

A concise alternative to vector-ref and vector-set! is to use function call syntax.
For example:

(let ((vec (vector 0 '(2 2 2 2) "Anna")))

(set! (vec 1) '("Sue" "Sue"))

(list (vec 2) (vec 1)))

⇒ ("Anna" ("Sue" "Sue"))

[Procedure]vector->list vector [start [end]]
The vector->list procedure returns a newly allocated list of the objects contained
in the elements of vector between start and end.

(vector->list '#(dah dah didah)) ⇒ (dah dah didah)

(vector->list '#(dah dah didah) 1 2) ⇒ (dah)

[Procedure]list->vector list
The list->vector procedure returns a newly created vector initialized to the ele-
ments of the list list, in order.

(list->vector '(dididit dah)) ⇒ #(dididit dah)

Chapter 14: Data structures 239

[Procedure]vector-copy vector [start [end]]
Returns a newly allocated copy of the elements of the given vector between start and
end . The elements of the new vector are the same (in the sense of eqv?) as the
elements of the old.

(define a #(1 8 2 8)) ; a may be immutable

(define b (vector-copy a))

(vector-set! b 0 3) ; b is mutable

b ⇒ #(3 8 2 8)

(define c (vector-copy b 1 3))

c ⇒ #(8 2)

[Procedure]vector-copy! to at from [start [end]]
Copies the elements of vector from between start and end to vector to, starting at at.
The order in which elements are copied is unspecified, except that if the source and
destination overlap, copying takes place as if the source is first copied into a temporary
vector and then into the destination. This can be achieved without allocating storage
by making sure to copy in the correct direction in such circumstances.

It is an error if at is less than zero or greater than the length of to. It is also an error
if (- (vector-length to) at) is less than (- end start).

(define a (vector 1 2 3 4 5))

(define b (vector 10 20 30 40 50))

(vector-copy! b 1 a 0 2)

b ⇒ #(10 1 2 40 50)

[Procedure]vector-append arg...
Creates a newly allocated vector whose elements are the concatenation of the elements
of the given arguments. Each arg may be a vector or a list.

(vector-append #(a b c) #(d e f))

⇒ #(a b c d e f)

[Procedure]vector-fill! vector fill [start [end]]
Stores fill in in the elements of vector between start and end.

(define a (vector 1 2 3 4 5))

(vector-fill! a 'smash 2 4)

a ⇒ #(1 2 smash smash 5)

The procedures vector-map and vector-for-each are documented in Section 9.1 [Map-
ping functions], page 156.

14.4 Uniform vectors

Uniform vectors are vectors whose elements are of the same numeric type. The are defined
by SRFI-4 (http://srfi.schemers.org/srfi-4/srfi-4.html). The type names (such
as s8vector) are a Kawa extension.

uniform-vector ::= # uniform-tag list
uniform-tag ::= f32 | f64

| s8 | s16 | s32 | s64

http://srfi.schemers.org/srfi-4/srfi-4.html

Chapter 14: Data structures 240

| u8 | u16 | u32 | u64

This example is a literal for a 5-element vector of unsigned short (ushort) values:

(define uvec1 #u16(64000 3200 160 8 0))

Since a uniform vector is a sequence, you can use function-call notation to index one.
For example:

(uvec1 1) ⇒ 3200

In this case the result is a primitive unsigned short (ushort), which is converted to a
gnu.math.UShort if an object is needed.

[Type]s8vector
The type of uniform vectors where each element can contain a signed 8-bit integer.
Represented using an array of byte.

[Type]u8vector
The type of uniform vectors where each element can contain an unsigned 8-bit integer.
Represented using an array of <byte>, but each element is treated as if unsigned.

This type is a synonym for bytevector, which has Section 14.5 [Bytevectors],
page 243.

[Type]s16vector
The type of uniform vectors where each element can contain a signed 16-bit integer.
Represented using an array of short.

[Type]u16vector
The type of uniform vectors where each element can contain an unsigned 16-bit inte-
ger. Represented using an array of short, but each element is treated as if unsigned.

[Type]s32vector
The type of uniform vectors where each element can contain a signed 32-bit integer.
Represented using an array of int.

[Type]u32vector
The type of uniform vectors where each element can contain an unsigned 32-bit inte-
ger. Represented using an array of int, but each element is treated as if unsigned.

[Type]s64vector
The type of uniform vectors where each element can contain a signed 64-bit integer.
Represented using an array of long.

[Type]u64vector
The type of uniform vectors where each element can contain an unsigned 64-bit inte-
ger. Represented using an array of long, but each element is treated as if unsigned.

[Type]f32vector
The type of uniform vectors where each element can contain a 32-bit floating-point
real. Represented using an array of float.

[Type]f64vector
The type of uniform vectors where each element can contain a 64-bit floating-point
real. Represented using an array of double.

Chapter 14: Data structures 241

[Procedure]s8vector? value
[Procedure]u8vector? value
[Procedure]s16vector? value
[Procedure]u16vector? value
[Procedure]s32vector? value
[Procedure]u32vector? value
[Procedure]s64vector? value
[Procedure]u64vector? value
[Procedure]f32vector? value
[Procedure]f64vector? value

Return true iff value is a uniform vector of the specified type.

[Procedure]make-s8vector n [value]
[Procedure]make-u8vector n [value]
[Procedure]make-s16vector n [value]
[Procedure]make-u16vector n [value]
[Procedure]make-s32vector n [value]
[Procedure]make-u32vector n [value]
[Procedure]make-s64vector n [value]
[Procedure]make-u64vector n [value]
[Procedure]make-f32vector n [value]
[Procedure]make-f64vector n [value]

Create a new uniform vector of the specified type, having room for n elements. Ini-
tialize each element to value if it is specified; zero otherwise.

[Constructor]s8vector value ...
[Constructor]u8vector value ...
[Constructor]s16vector value ..
[Constructor]u16vector value ...
[Constructor]s32vector value ...
[Constructor]u32vector value ...
[Constructor]s64vector value ...
[Constructor]u64vector value ...
[Constructor]f32vector value ...
[Constructor]f64vector value ...

Create a new uniform vector of the specified type, whose length is the number of
values specified, and initialize it using those values.

[Procedure]s8vector-length v
[Procedure]u8vector-length v
[Procedure]s16vector-length v
[Procedure]u16vector-length v
[Procedure]s32vector-length v
[Procedure]u32vector-length v
[Procedure]s64vector-length v
[Procedure]u64vector-length v
[Procedure]f32vector-length v

Chapter 14: Data structures 242

[Procedure]f64vector-length v
Return the length (in number of elements) of the uniform vector v.

[Procedure]s8vector-ref v i
[Procedure]u8vector-ref v i
[Procedure]s16vector-ref v i
[Procedure]u16vector-ref v i
[Procedure]s32vector-ref v i
[Procedure]u32vector-ref v i
[Procedure]s64vector-ref v i
[Procedure]u64vector-ref v i
[Procedure]f32vector-ref v i
[Procedure]f64vector-ref v i

Return the element at index i of the uniform vector v.

[Procedure]s8vector-set! v i x
[Procedure]u8vector-set! v i x
[Procedure]s16vector-set! v i x
[Procedure]u16vector-set! v i x
[Procedure]s32vector-set! v i x
[Procedure]u32vector-set! v i x
[Procedure]s64vector-set! v i x
[Procedure]u64vector-set! v i x
[Procedure]f32vector-set! v i x
[Procedure]f64vector-set! v i x

Set the element at index i of uniform vector v to the value x, which must be a number
coercible to the appropriate type.

[Procedure]s8vector->list v
[Procedure]u8vector->list v
[Procedure]s16vector->list v
[Procedure]u16vector->list v
[Procedure]s32vector->list v
[Procedure]u32vector->list v
[Procedure]s64vector->list v
[Procedure]u64vector->list v
[Procedure]f32vector->list v
[Procedure]f64vector->list v

Convert the uniform vetor v to a list containing the elments of v.

[Procedure]list->s8vector l
[Procedure]list->u8vector l
[Procedure]list->s16vector l
[Procedure]list->u16vector l
[Procedure]list->s32vector l
[Procedure]list->u32vector l
[Procedure]list->s64vector l
[Procedure]list->u64vector l

Chapter 14: Data structures 243

[Procedure]list->f32vector l
[Procedure]list->f64vector l

Create a uniform vector of the appropriate type, initializing it with the elements of
the list l. The elements of l must be numbers coercible the new vector’s element type.

14.4.1 Relationship with Java arrays

Each uniform array type is implemented as an underlying Java array, and a length field. The
underlying type is byte[] for u8vector or s8vector; short[] for u16vector or u16vector;
int[] for u32vector or s32vector; long[] for u64vector or s64vector; float[] for
f32vector; and double[] for f32vector. The length field allows a uniform array to only
use the initial part of the underlying array. (This can be used to support Common Lisp’s
fill pointer feature.) This also allows resizing a uniform vector. There is no Scheme function
for this, but you can use the setSize method:

(invoke some-vector 'setSize 200)

If you have a Java array, you can create a uniform vector sharing with the Java array:

(define arr :: byte[] ((primitive-array-new byte) 10))

(define vec :: u8vector (make u8vector arr))

At this point vec uses arr for its underlying storage, so changes to one affect the other.
It vec is re-sized so it needs a larger underlying array, then it will no longer use arr.

14.5 Bytevectors

Bytevectors represent blocks of binary data. They are fixed-length sequences of bytes, where
a byte is an exact integer in the range [0, 255]. A bytevector is typically more space-efficient
than a vector containing the same values.

The length of a bytevector is the number of elements that it contains. This number
is a non-negative integer that is fixed when the bytevector is created. The valid indexes
of a bytevector are the exact non-negative integers less than the length of the bytevector,
starting at index zero as with vectors.

The bytevector type is equivalent to the u8vector Section 14.4 [Uniform vectors],
page 239, type, but is specified by the R7RS standard.

Bytevectors are written using the notation #u8(byte . . .). For example, a bytevector
of length 3 containing the byte 0 in element 0, the byte 10 in element 1, and the byte 5 in
element 2 can be written as following:

#u8(0 10 5)

Bytevector constants are self-evaluating, so they do not need to be quoted in programs.

[Type]bytevector
The type of bytevector objects.

[Constructor]bytevector byte . . .
Return a newly allocated bytevector whose elements contain the given arguments.
Analogous to vector.

(bytevector 1 3 5 1 3 5) ⇒ #u8(1 3 5 1 3 5)

(bytevector) ⇒ #u8()

Chapter 14: Data structures 244

[Procedure]bytevector? obj
Return #t if obj is a bytevector, #f otherwise.

[Procedure]make-bytevector k
[Procedure]make-bytevector k byte

The make-bytevector procedure returns a newly allocated bytevector of length k. If
byte is given, then all elements of the bytevector are initialized to byte, otherwise the
contents of each element are unspecified.

(make-bytevector 2 12) ⇒ #u8(12 12)

[Procedure]bytevector-length bytevector
Returns the length of bytevector in bytes as an exact integer.

[Procedure]bytevector-u8-ref bytevector k
It is an error if k is not a valid index of bytevector. Returns the kth byte of bytevector.

(bytevector-u8-ref ’#u8(1 1 2 3 5 8 13 21) 5)

⇒ 8

[Procedure]bytevector-u8-set! bytevector k byte
It is an error if k is not a valid index of bytevector. Stores byte as the kth byte of
bytevector.

(let ((bv (bytevector 1 2 3 4)

(bytevector-u8-set! bv 1 3)

bv)

⇒ #u8(1 3 3 4)

[Procedure]bytevector-copy bytevector [start [end]]
Returns a newly allocated bytevector containing the bytes in bytevector between start
and end.

(define a #u8(1 2 3 4 5))

(bytevector-copy a 2 4))

⇒ #u8(3 4)

[Procedure]bytevector-copy! to at from [start [end]]
Copies the bytes of bytevectorfrom between start and end to bytevector to, starting
at at. The order in which bytes are copied is unspecified, except that if the source and
destination overlap, copying takes place as if the source is first copied into a temporary
bytevector and then into the destination. This is achieved without allocating storage
by making sure to copy in the correct direction in such circumstances.

It is an error if at is less than zero or greater than the length of to. It is also an error
if (- (bytevector-length to) at) is less than (- end start).

(define a (bytevector 1 2 3 4 5))

(define b (bytevector 10 20 30 40 50))

(bytevector-copy! b 1 a 0 2)

b ⇒ #u8(10 1 2 40 50)

Chapter 14: Data structures 245

[Procedure]bytevector-append bytevector...
Returns a newly allocated bytevector whose elements are the concatenation of the
elements in the given bytevectors.

(bytevector-append #u8(0 1 2) #u8(3 4 5))

⇒ #u8(0 1 2 3 4 5)

14.5.1 Converting to or from strings

[Procedure]utf8->string bytevector [start [end]]
This procedure decodes the bytes of a bytevector between start and end, interpreting
as a UTF-8-encoded string, and returns the corresponding string. It is an error for
bytevector to contain invalid UTF-8 byte sequences.

(utf8->string #u8(#x41)) ⇒ "A"

[Procedure]utf16->string bytevector [start [end]]
[Procedure]utf16be->string bytevector [start [end]]
[Procedure]utf16le->string bytevector [start [end]]

These procedures interpret their <var>bytevector</var> argument as a UTF-16 en-
coding of a sequence of characters, and return an istring containing that sequence.

The bytevector subrange given to utf16->string may begin with a byte order mark
(BOM); if so, that BOM determines whether the rest of the subrange is to be in-
terpreted as big-endian or little-endian; in either case, the BOM will not become a
character in the returned string. If the subrange does not begin with a BOM, it is de-
coded using the same implementation-dependent endianness used by string->utf16.

The utf16be->string and utf16le->string procedures interpret their inputs as
big-endian or little-endian, respectively. If a BOM is present, it is treated as a normal
character and will become part of the result.

It is an error if (- end start) is odd, or if the bytevector subrange contains invalid
UTF-16 byte sequences.

[Procedure]string->utf8 string [start [end]]
This procedure encodes the characters of a string between start and end and returns
the corresponding bytevector, in UTF-8 encoding.

(string->utf8 "λ") ⇒ " #u8(#xCE #xBB)

[Procedure]string->utf16 string [start [end]]
[Procedure]string->utf16be string [start [end]]
[Procedure]string->utf16le string [start [end]]

These procedures return a newly allocated (unless empty) bytevector containing a
UTF-16 encoding of the given substring.

The bytevectors returned by string->utf16be and string->utf16le do not contain
a byte-order mark (BOM); string->utf16be> returns a big-endian encoding, while
string->utf16le returns a little-endian encoding.

The bytevectors returned by string->utf16 begin with a BOM that declares an
implementation-dependent endianness, and the bytevector elements following that
BOM encode the given substring using that endianness.

Chapter 14: Data structures 246

Rationale: These procedures are consistent with the Unicode standard. Unicode
suggests UTF-16 should default to big-endian, but Microsoft prefers little-endian.

14.6 Ranges

A range is an immutable sequence of values that increase “linearly” - i.e. by a fixed amount.
Most commonly it’s a sequence of consequtive integers. An example of the syntax is [3 <:

7] which evaluates to the sequence [3 4 5 6]. You can specify an explicit increment with
a by: option. There are multiple ways to specify when the sequence stops. For example [3
by 2 <=: 7] is the even numbers from 3 up to 7 (inclusive, because of the <=).

Ranges are very useful for loop indexes, or selecting a sub-sequence. If you have a
sequence q and a range r, and you use the syntax (q r) to “apply”q with the argument r,
is result is to select elements of q with indexes in r.

("ABCDEFG" [1 by: 2 <: 7]) ⇒ "BDF"

A range can be unbounded, or non-finite, if you leave off the end value. For example [3
by: 2] is the odd integers starting at 3.

unbounded-range ::=

[start-expression by: step-expression]
| [start-expression <:]

The expression [start by: step] evaluates to an infinite sequence of values, starting
with start, and followed by (+ start step), (+ start (* 2 step)), and so on.

The syntax [start-expression <:] is shorthand for [start-expression by: 1].

bounded-range ::= [start-expression [by: step-expression] range-end]
range-end ::= <: end-expression
| <=: end-expression
| >: end-expression
| >=: end-expression
| size: size-expression

A bounded range takes an initial subsequence of the unbounded range specified by the
start-expression and optional step-expression. The different end-expression variants provide
different ways to specify the initial subsequence.

If size: size is specified, then the resulting range is the first size elements of unbounded
sequence.

In the <: end or <=: end cases then the sequence counts up: The step must be positive,
and defaults to 1. The resulting values are those x such that (< x end), or (<= x end),
respectively.

In the >: end or >=: end cases then the sequence counts down: The step must be
negative, and defaults to -1. The resulting values are those x such that (> x end), or (>=
x end), respectively.

The start-expression, step-expression, and size-expressionmust evaluate to real numbers,
not necessarily integers. For example: [1 by: 0.5 <=: 3.0] is [1.0 1.5 2.0 2.5 3.0].

The two pseudo-ranges [<:] and [>:] are useful as array indexes. They mean “all of
the valid indexes” of the array being indexed. For increasing index values use [<:]; for
decreasing index values (i.e. reversing) use [>:].

Chapter 14: Data structures 247

14.7 Streams - lazy lists

Streams, sometimes called lazy lists, are a sequential data structure containing elements
computed only on demand. A stream is either null or is a pair with a stream in its cdr.
Since elements of a stream are computed only when accessed, streams can be infinite. Once
computed, the value of a stream element is cached in case it is needed again.

Note: These are not the same as Java 8 streams.

(require 'srfi-41)

(define fibs

(stream-cons 1

(stream-cons 1

(stream-map +

fibs

(stream-cdr fibs)))))

(stream->list 8 fibs) ⇒ (1 1 2 3 5 8 13 21)

See the SRFI 41 specification (http://srfi.schemers.org/srfi-41/srfi-41.html)
for details.

The Kawa implementations builds on Section 8.6 [promises], page 144. The stream-null
value is a promise that evaluates to the empty list. The result of stream-cons is an eager
immutable pair whose car and cdr properties return promises.

14.8 Multi-dimensional Arrays

Arrays are heterogeneous data structures that generaize vectors to multiple indexes or
dimensions. Instead of a single integer index, there are multiple indexes: An index is
a vector of integers; the length of a valid index sequence is the rank or the number of
dimensions of an array.

Kawa multi-dimensional arrays follows the by SRFI-25 specification (http://srfi.
schemers . org / srfi-25 / srfi-25 . html), with additions from Racket’s math.array
(https://docs.racket-lang.org/math/array.html) package and other sources.

An array whose rank is 1, and where the (single) lower bound is 0 is a sequence. Fur-
thermore, if such an array is simple (not created by share-array) it will be implemented
using a <vector>. Uniform vectors and strings are also arrays in Kawa.

A rank-0 array has a single value. It is essentially a box for that value. Functions that
require arrays may treat non-arrays as a rank-0 array containing that value.

An array of rank 2 is frequently called a matrix.

Note that Kawa arrays are distinct from Java (native) arrays. The latter is a simpler
one-dimensional vector-like data structure, which is used to implement Kawa arrays and
vectors.

[Procedure]array? obj
Returns #t if obj is an array, otherwise returns #f.

14.8.1 Array shape

The shape of an array consists of bounds for each index.

http://srfi.schemers.org/srfi-41/srfi-41.html
http://srfi.schemers.org/srfi-25/srfi-25.html
http://srfi.schemers.org/srfi-25/srfi-25.html
https://docs.racket-lang.org/math/array.html
https://docs.racket-lang.org/math/array.html

Chapter 14: Data structures 248

The lower bound b and the upper bound e of a dimension are exact integers with (<= b

e). A valid index along the dimension is an exact integer i that satisfies both (<= b i) and
(< i e). The length of the array along the dimension is the difference (- e b). The size of
an array is the product of the lengths of its dimensions.

There is no separate data type for a shape. The canonical representation for a shape (a
canonical shape) is a rank-2 array where the first index is the dimension (zero-based), and
the second index is 0 or 1: Elements (i 0) and (i 1) are respectively the lower bound and
upper bound of dimension i.

For convenience, the procedures that require a shape can accept a shape-specifier, as
if converted by the procedure ->shape. For example (array-reshape array shape) is
equivalent to (array-reshape array (->shape shape)).

[Procedure]->shape specifier
Convert the shape specifier specifier to a canonical shape. The specifier must be
either a canonical shape, or vector with one element for each dimension, as described
below. We use as examples a 2*3 array with lower bounds 0 and a 3*4 array with
lower bounds 1.

• A vector of simple integers. Each integer e is an upper bound, with a zero lower
bound. Equivalent to the range [0 <: e].

A specifier for the first examples is #(2 3), and the second is not expressible.

• A vector of lists of length 2. The first element of each list is the lower bound,
and the second is the upper bound.

Examples: #((0 2) (0 3)) and #((1 3) (1 4)).

• A vector of simple Section 14.6 [Ranges], page 246, one for each dimension, all
of who are bounded (finite), consist of integer values, and have a step of 1.
Each range, which is usually written as [b <: e], expresses the bounds of the
corresponding dimension For the first example you can use [[0 <: 2] [0 <=:

2]]; for the second you can use [[1 <: 3] [1 size: 4]].

• A vector consisting of a mix of integers, length-2 lists, and ranges.

Examples: #(2 (0 3)) and ['(1 3) [1 size: 4]].

• A canonical shape: A rank-2 array S whose own shape is [r 2]. For each di-
mension k (where (<= k 0) and (< k r)), the lower bound bk is (S k 0), and the
upper bound ek is (S k 1).

Examples: #2a((0 2) (0 3)) and #2a((1 3) (1 4)).

[Procedure]shape bound ...
Returns a shape. The sequence bound ... must consist of an even number of exact
integers that are pairwise not decreasing. Each pair gives the lower and upper bound
of a dimension. If the shape is used to specify the dimensions of an array and bound
... is the sequence b0 e0 ... bk ek ... of n pairs of bounds, then a valid index to the
array is any sequence j0 ... jk ... of n exact integers where each jk satisfies (<= bk

jk) and (< jk ek).

The shape of a d-dimensional array is a d * 2 array where the element at k 0 contains
the lower bound for an index along dimension k and the element at k 1 contains the
corresponding upper bound, where k satisfies (<= 0 k) and (< k d).

(shape @bounds) is equivalent to: (array [2 (/ (length bounds) 2)] @bounds)

Chapter 14: Data structures 249

[Procedure]array-shape array
Return the shape of array in the canonical (r 2) form. It is an error to attempt to
modify the shape array.

[Procedure]array-rank array
Returns the number of dimensions of array.

(array-rank

(make-array (shape 1 2 3 4)))

Returns 2.

[Procedure]array-start array k
Returns the lower bound (inclusive) for the index along dimension k. This is most
commonly 0.

[Procedure]array-end array k
Returns the upper bound for the index along dimension k. The bound is exclusive -
i.e. the first integer higher than the last legal index.

[Procedure]array-size array
Return the total number of elements of array. This is the product of (- (array-end

array k) (array-start array k)) for every valid k.

14.8.2 Array types

[Type]array
[Type]arrayN
[Type]array[etype]
[Type]arrayN[etype]

The type array matches all array values. The type arrayN, where N is an integer
matches array of rank N. For example array2 matches rank-2 array - i.e. matrixes.

You can optionally specify the element type etype. This can be a primitive type. For
example a array2[double] is a rank-2 array whose elements are double values.

14.8.3 Array literals and printing

An array literal starts with # followed by its rank, followed by a tag that describes the
underlying vector (by default a), optionally followed by information about its shape, and
finally followed by the cells, organized into dimensions using parentheses.

For example, #2a((11 12 13) (21 22 23)) is a rank-2 array (a matrix) whose shape is
[2 3] or equivalently [[0 <: 2] [0 <: 3]]. It is pretty-printed as:

#2a:2:3

111213

212223

array-literal ::= array-literal-header datum
array-literal-header ::= # rank vectag array-bound *
array-bound ::= [@lower]:length | @lower

Chapter 14: Data structures 250

vectag ::= a | uniform-tag

The vectag specifies the type of the elements of the array.

Following the vectag you can optionally include information about the shape: For each
dimension you can optionally specify the lower bounds (after the character "@"), followed
by the length of the dimension (after the character ":"). The shape information is required
if a lower bound is non-zero, or any length is zero.

The datum contains the elements in a nested-list format: a rank-1 array (i.e. vector) uses
a single list, a rank-2 array uses a list-of-lists, and so on. The elements are in lexicographic
order.

A uniform u32 array of rank 2 with index ranges 2..3 and 3..4:

#2u32@2@3((1 2) (2 3))

This syntax follows Common Lisp with Guile extensions (https://www.gnu.org/
software/guile/manual/html_node/Array-Syntax.html). (Note that Guile prints rank-
0 arrays with an extra set of parentheses. Kawa follows Common Lisp in not doing so.)

When an array is printed with the write function, the result is an array-literal.
Printing with display formats the array in a rectangular grid using the format-array

procedure. (Note that format-array is only used when the output is in column 0, because
Kawa has very limited support for printing rectangles.)

[Procedure]format-array value [port] [element-format]
Produce a nice “pretty” display for value, which is usually an array.

If port is an output port, the formatted output is written into that port. Other-
wise, port must be a boolean (one of #t or #f). If the port is #t, output is to the
(current-output-port). If the port is #f or no port is specified, the output is re-
turned as a string. If the port is specified and is #t or an output-port, the result
of the format-array procedure is unspecified. (This convention matches that of the
format procedure.)

The top line includes an array-literal-header. The lower bound are only printed
if non-zero. The dimension lengths are printed if there is room, or if one of them is
zero.

#|kawa:34|# (! arr (array [[1 <=: 2] [1 <=: 3]]

#|.....35|# #2a((1 2) (3 4)) 9 #2a((3 4) (5 6))

#|.....36|# [42 43] #2a:1:3((8 7 6)) #2a((90 91) (100 101))))

#|kawa:37|# arr

#2a@1:2@1:3

#2a 9#2a

12 34

34 56

#1a:2#2a:1:3#2a:2:2

4243876 90 91

100101

https://www.gnu.org/software/guile/manual/html_node/Array-Syntax.html
https://www.gnu.org/software/guile/manual/html_node/Array-Syntax.html

Chapter 14: Data structures 251

If element-format is specified, it is a format string used for format each non-array:

#|kawa:38|# (format-array arr "~4,2f")

#2a@1:2@1:3

#2a:2:2 9.00#2a:2:2

1.002.00 3.004.00

3.004.00 5.006.00

#1a:2#2a:1:3#2a:2:2

42.0043.008.007.006.00 90.00 91.00

100.00101.00

If the rank is more than 2, then each “layer” is printed separated by double lines.

#|kawa:42|# (array-reshape [1 <=: 24] [3 2 4])

#3a:3:2:4

1 2 3 4

5 6 7 8

9101112

13141516

17181920

21222324

14.8.4 Array construction

See also array-reshape

[Procedure]array shape obj ...
Returns a new array whose shape is given by shape and the initial contents of the
elements are obj ... in row major order. The array does not retain a reference to
shape.

[Procedure]make-array shape
[Procedure]make-array shape value...

Returns a newly allocated array whose shape is given by shape. If value is provided,
then each element is initialized to it. If there is more than one value, they are used
in order, starting over when the values are exhausted. If there is no value, the initial

Chapter 14: Data structures 252

contents of each element is unspecified. (Actually, it is the #!null.) The array does
not retain a reference to shape.

#|kawa:16|# (make-array [2 4] 1 2 3 4 5)

#2a:2:4

1234

5123

Compatibility: Guile has an incompatible make-array procedure.

[Procedure]build-array shape getter [setter]
Construct a “virtual array” of the given shape, which uses no storage for the elements.
Instead, elements are calculated on-demand by calling getter, which takes a single
argument, an index vector.

There is no caching or memoization.

#|kawa:1|# (build-array [[10 <: 12] 3]

#|....:2|# (lambda (ind)

#|....:3|# (let ((x (ind 0)) (y (ind 1)))

#|....:4|# (- x y))))

#2a@10:2:3

10 98

11109

The resulting array is mutable if a setter is provided. The setter takes two arguments:
An index vector, and the new value for the specified element. Below is a simple
and space-efficient (but slow) implementation of sparse arrays: Most element have a
default initial value, but you can override specific elements.

(define (make-sparse-array shape default-value)

(let ((vals '())) ;; association list of (INDEX-VECTOR . VALUE)

(build-array shape

(lambda (I)

(let ((v (assoc I vals)))

(if v (cdr v)

default-value)))

(lambda (I newval)

(let ((v (assoc I vals)))

(if v

(set-cdr! v newval)

(set! vals (cons (cons I newval) vals))))))))

[Procedure]index-array shape
Return a new immutable array of the specified shape where each element is the cor-
responding row-major index. Same as (array-reshape [0 <: size] shape) where
size is the array-size of the resulting array.

#|kawa:1|# (index-array [[1 <: 3] [2 <: 6]])

Chapter 14: Data structures 253

#2a@1:2@2:4

0123

4567

14.8.5 Array indexing

If you “call” an array as it it were a function, it is equivalent to using array-index-ref,
which is generalization of array-ref. For example, given a rank-2 array arr with integer
indexes i and j, the following all get the element of arr at index [i j].

(arr i j)

(array-index-ref arr i j)

(array-ref arr i j)

(array-ref arr [i j])

Using function-call notation or array-index-ref (but not plain array-ref) you can
do generalized APL-style slicing and indirect indexing. See under array-index-ref for
examples.

[Procedure]array-ref array k ...
[Procedure]array-ref array index

Returns the contents of the element of array at index k The sequence k ... must
be a valid index to array. In the second form, index must be either a vector (a 0-based
1-dimensional array) containing k

(array-ref (array [2 3]

'uno 'dos 'tres

'cuatro 'cinco 'seis)

1 0)

Returns cuatro.

(let ((a (array (shape 4 7 1 2) 3 1 4)))

(list (array-ref a 4 1)

(array-ref a (vector 5 1))

(array-ref a (array (shape 0 2)

6 1))))

Returns (3 1 4).

[Procedure]array-index-ref array index ...
Generalized APL-style array indexing, where each index can be either an array or an
integer.

If each index is an integer, then the result is the same as array-ref.

Otherwise, the result is an immutable array whose rank is the sum of the ranks of
each index. An integer is treated as rank-0 array.

If marr is the result of (array-index-ref arr M1 M2 ...) then:

(marr i11 i12 ... i21 i22 ...)

is defined as:

(arr (M1 i11 i12 ...) (M2 i21 i22 ...) ...)

Chapter 14: Data structures 254

Each Mk gets as many indexes as its rank. If Mk is an integer, then it we use it
directly without any indexing.

Here are some examples, starting with simple indexing.

#|kawa:1|# (define arr (array #2a((1 4) (0 4))

#|.....2|# 10 11 12 13 20 21 22 23 30 31 32 33))

#|kawa:3|# arr

#2a@1:3:4

10111213

20212223

30313233

#|kawa:4|# (arr 2 3)

23

If one index is a vector and the rest are scalar integers, then the result is a vector:

#|kawa:5|# (arr 2 [3 1])

#(23 21)

You can select a “sub-matrix” when all indexes are vectors:

#|kawa:6|# (arr [2 1] [3 1 3])

#2a:2:3

232123

131113

Using ranges for index vectors selects a rectangular sub-matrix.

#|kawa:7|# (arr [1 <: 3] [1 <: 4])

#2a:2:3

111213

212223

You can add new dimensions:

#|kawa:8|# (arr [2 1] #2a((3 1) (3 2)))

#3a

2321

2322

1311

1312

The pseudo-range [<:] can be used to select all the indexes along a dimension. To
select row 2 (1-origin):

Chapter 14: Data structures 255

#|kawa:9|# (arr 2 [<:])

#(20 21 22 23)

To reverse the order use [>:]:

#|kawa:10|# (arr 2 [>:])

#(23 22 21 20)

To select column 3:

#|kawa:11|# (arr [<:] 3)

#(13 23 33)

If you actually want a column matrix (i.e. with shape [3 1] you can place the index
in a single-element vector:

#|kawa:12|# (arr [<:] [3])

#2a

13

23

33

To expand that column to 5 colums you can repeat the column index:

#|kawa:13|# [3 by: 0 size: 5]

#(3 3 3 3 3)

#|kawa:14|# (arr [<:] [3 by: 0 size: 5])

#2a:3:5

1313131313

2323232323

3333333333

14.8.6 Modifying arrays

You can use set! to modify one or multiple elements. To modify a single element:

(set! (arr index ...) new-value)

is equivalent to

(array-set! arr index ... new-value)

You can set a slice (or all of the elements). In that case:

(set! (arr index ...) new-array)

is equivalent to:

(array-copy! (array-index-share arr index ...) new-array)

[Procedure]array-set! array k ... obj
[Procedure]array-set! array index obj

Stores obj in the element of array at index k Returns the void value. The sequence
k ... must be a valid index to array. In the second form, index must be either a vector
or a 0-based 1-dimensional array containing k

Chapter 14: Data structures 256

(let ((a (make-array

(shape 4 5 4 5 4 5))))

(array-set! a 4 4 4 "huuhkaja")

(array-ref a 4 4 4))

Returns "huuhkaja".

Compatibility: SRFI-47, Guile and Scheme-48 have array-set! with a different ar-
gument order.

[Procedure]array-copy! dst src
Compatibility: Guile has a array-copy! with the reversed argument order.

[Procedure]array-fill! array value
Set all the values array to value.

14.8.7 Transformations and views

A view or transform of an array is an array a2 whose elements come from some other
array a1, given some transform function T that maps a2 indexes to a1 indexes. Specifically
(array-ref a2 indexes) is (array-ref a1 (T indexes)). Modifying a2 causes a1 to be
modified; modifying a1 may modify a2 (depending on the transform function). The shape
of a2 is in generally different than that of a1.

[Procedure]array-transform array shape transform
This is a general mechanism for creating a view. The result is a new array with
the given shape. Accessing this new array is implemented by calling the transform
function on the index vector, which must return a new index vector valid for indexing
the original array. Here is an example (using the same arr as in the array-index-ref
example):

#|kawa:1|# (define arr (array #2a((1 4) (0 4))

#|.....2|# 10 11 12 13 20 21 22 23 30 31 32 33))

#|kawa:14|# (array-transform arr #2a((0 3) (1 3) (0 2))

#|.....15|# (lambda (ix) (let ((i (ix 0)) (j (ix 1)) (k (ix 2)))

#|.....16|# [(+ i 1)

#|.....17|# (+ (* 2 (- j 1)) k)])))

#3a:3@1:2:2

1011

1213

2021

2223

3031

3233

Chapter 14: Data structures 257

The array-transform is generalization of share-array, in that it does not require
the transform to be affine. Also note the different calling conversions for the tranform:
array-transform takes a single argument (a vector of indexes), and returns a single
result (a vector of indexes); share-array takes one argument for each index, and
returns one value for each index. The difference is historical.

[Procedure]array-index-share array index ...
This does the same generalized APL-style indexing as array-index-ref. However,
the resulting array is a modifiable view into the argument array.

[Procedure]array-reshape array shape
Creates a new array narray of the given shape, such that (array->vector array)

and (array->vector narray) are equivalent. I.e. the i’th element in row-major-
order of narray is the i’th element in row-major-order of array. Hence (array-size

narray) (as specied from the shape) must be equal to (array-size array). The
resulting narray is a view such that modifying array also modifies narray and vice
versa.

[Procedure]share-array array shape proc
Returns a new array of shape shape that shares elements of array through proc. The
procedure proc must implement an affine function that returns indices of array when
given indices of the array returned by share-array. The array does not retain a
reference to shape.

(define i_4

(let* ((i (make-array

(shape 0 4 0 4)

0))

(d (share-array i

(shape 0 4)

(lambda (k)

(values k k)))))

(do ((k 0 (+ k 1)))

((= k 4))

(array-set! d k 1))

i))

Note: the affinity requirement for proc means that each value must be a sum of
multiples of the arguments passed to proc, plus a constant.

Implementation note: arrays have to maintain an internal index mapping from indices
k1 ... kd to a single index into a backing vector; the composition of this mapping
and proc can be recognised as (+ n0 (* n1 k1) ... (* nd kd)) by setting each index
in turn to 1 and others to 0, and all to 0 for the constant term; the composition
can then be compiled away, together with any complexity that the user introduced in
their procedure.

Here is an example where the array is a uniform vector:

(share-array

(f64vector 1.0 2.0 3.0 4.0 5.0 6.0)

(shape 0 2 0 3)

Chapter 14: Data structures 258

(lambda (i j) (+ (* 2 i) j)))

⇒ #2f64((1.0 2.0 3.0) (4.0 5.0 6.0))

[Procedure]array-flatten array
[Procedure]array->vector array

Return a vector consisting of the elements of the array in row-major-order.

The result of array-flatten is fresh (mutable) copy, not a view. The result of
array->vector is a view: If array is mutable, then modifying array changes the
flattened result and vice versa.

If array is “simple”, array->vector returns the original vector. Specifically, if vec is
a vector then:

(eq? vec (array->vector (array-reshape vec shape)))

14.8.8 Miscellaneous

[Procedure]format-array value [element-format]

14.9 Hash tables

A hashtable is a data structure that associates keys with values. The hashtable has no in-
trinsic order for the (key, value) associations it contains, and supports in-place modification
as the primary means of setting the contents of a hash table. Any object can be used as
a key, provided a hash function and a suitable equivalence function is available. A hash
function is a procedure that maps keys to exact integer objects.

The hashtable provides key lookup and destructive update in amortised constant time,
provided that a good hash function is used. A hash function h is acceptable for an equiv-
alence predicate e iff (e obj1 obj2) implies (= (h obj1) (h obj2)). A hash function h is
good for a equivalence predicate e if it distributes the resulting hash values for non-equal
objects (by e) as uniformly as possible over the range of hash values, especially in the case
when some (non-equal) objects resemble each other by e.g. having common subsequences.
This definition is vague but should be enough to assert that e.g. a constant function is not
a good hash function.

Kawa provides two complete sets of functions for hashtables:

• The functions specified by R6RS have names starting with hashtable-

• The functions specified by the older SRFI-69 (http://srfi.schemers.org/srfi-69/
srfi-69.html) specifiation have names starting with hash-table-

Both interfaces use the same underlying datatype, so it is possible to mix and match
from both sets. That datatype implements java.util.Map. Freshly-written code should
probably use the R6RS functions.

14.9.1 R6RS hash tables

To use these hash table functions in your Kawa program you must first:

(import (rnrs hashtables))

This section uses the hashtable parameter name for arguments that must be hashtables,
and the key parameter name for arguments that must be hashtable keys.

http://srfi.schemers.org/srfi-69/srfi-69.html
http://srfi.schemers.org/srfi-69/srfi-69.html

Chapter 14: Data structures 259

[Procedure]make-eq-hashtable
[Procedure]make-eq-hashtable k

Return a newly allocated mutable hashtable that accepts arbitrary objects as keys,
and compares those keys with eq?. If an argument is given, the initial capacity of the
hashtable is set to approximately k elements.

[Procedure]make-eqv-hashtable
[Procedure]make-eqv-hashtable k

Return a newly allocated mutable hashtable that accepts arbitrary objects as keys,
and compares those keys with eqv?. If an argument is given, the initial capacity of
the hashtable is set to approximately k elements.

[Procedure]make-hashtable hash-function equiv
[Procedure]make-hashtable hash-function equiv k

hash-function and equiv must be procedures. hash-function should accept a key as
an argument and should return a non–negative exact integer object. equiv should
accept two keys as arguments and return a single value. Neither procedure should
mutate the hashtable returned by make-hashtable.

The make-hashtable procedure returns a newly allocated mutable hashtable using
hash-function as the hash function and equiv as the equivalence function used to
compare keys. If a third argument is given, the initial capacity of the hashtable is set
to approximately k elements.

Both hash-function and equiv should behave like pure functions on the domain of
keys. For example, the string-hash and string=? procedures are permissible only
if all keys are strings and the contents of those strings are never changed so long as
any of them continues to serve as a key in the hashtable. Furthermore, any pair of
keys for which equiv returns true should be hashed to the same exact integer objects
by hash-function.

Note: Hashtables are allowed to cache the results of calling the hash func-
tion and equivalence function, so programs cannot rely on the hash func-
tion being called for every lookup or update. Furthermore any hashtable
operation may call the hash function more than once.

14.9.1.1 Procedures

[Procedure]hashtable? obj
Return #t if obj is a hashtable, #f otherwise.

[Procedure]hashtable-size hashtable
Return the number of keys contained in hashtable as an exact integer object.

[Procedure]hashtable-ref hashtable key default
Return the value in hashtable associated with key. If hashtable does not contain an
association for key, default is returned.

[Procedure]hashtable-set! hashtable key obj
Change hashtable to associate key with obj, adding a new association or replacing
any existing association for key, and returns unspecified values.

Chapter 14: Data structures 260

[Procedure]hashtable-delete! hashtable key
Remove any association for key within hashtable and returns unspecified values.

[Procedure]hashtable-contains? hashtable key
Return #t if hashtable contains an association for key, #f otherwise.

[Procedure]hashtable-update! hashtable key proc default
proc should accept one argument, should return a single value, and should not mutate
hashtable.

The hashtable-update! procedure applies proc to the value in hashtable associated
with key, or to default if hashtable does not contain an association for key. The
hashtable is then changed to associate key with the value returned by proc.

The behavior of hashtable-update! is equivalent to the following code, but is may
be (and is in Kawa) implemented more efficiently in cases where the implementation
can avoid multiple lookups of the same key:

(hashtable-set!

hashtable key

(proc (hashtable-ref

hashtable key default)))

[Procedure]hashtable-copy hashtable
[Procedure]hashtable-copy hashtable mutable

Return a copy of hashtable. If the mutable argument is provided and is true, the
returned hashtable is mutable; otherwise it is immutable.

[Procedure]hashtable-clear! hashtable
[Procedure]hashtable-clear! hashtable k

Remove all associations from hashtable and returns unspecified values.

If a second argument is given, the current capacity of the hashtable is reset to ap-
proximately k elements.

[Procedure]hashtable-keys hashtable
Return a vector of all keys in hashtable. The order of the vector is unspecified.

[Procedure]hashtable-entries hashtable
Return two values, a vector of the keys in hashtable, and a vector of the corresponding
values.

Example:

(let ((h (make-eqv-hashtable)))

(hashtable-set! h 1 'one)

(hashtable-set! h 2 'two)

(hashtable-set! h 3 'three)

(hashtable-entries h))

⇒ #(1 2 3) #(one two three) ; two return values

the order of the entries in the result vectors is not known.

Chapter 14: Data structures 261

14.9.1.2 Inspection

[Procedure]hashtable-equivalence-function hashtable
Return the equivalence function used by hashtable to compare keys. For hashtables
created with make-eq-hashtable and make-eqv-hashtable, returns eq? and eqv?

respectively.

[Procedure]hashtable-hash-function hashtable
Return the hash function used by hashtable. For hashtables created by make-eq-

hashtable or make-eqv-hashtable, #f is returned.

[Procedure]hashtable-mutable? hashtable
Return #t if hashtable is mutable, otherwise #f.

14.9.1.3 Hash functions

The equal-hash, string-hash, and string-ci-hash procedures of this section are accept-
able as the hash functions of a hashtable only if the keys on which they are called are not
mutated while they remain in use as keys in the hashtable.

[Procedure]equal-hash obj
Return an integer hash value for obj, based on its structure and current contents.
This hash function is suitable for use with equal? as an equivalence function.

Note: Like equal?, the equal-hash procedure must always terminate,
even if its arguments contain cycles.

[Procedure]string-hash string
Return an integer hash value for string, based on its current contents. This hash
function is suitable for use with string=? as an equivalence function.

[Procedure]string-ci-hash string
Return an integer hash value for string based on its current contents, ignoring case.
This hash function is suitable for use with string-ci=? as an equivalence function.

[Procedure]symbol-hash symbol
Return an integer hash value for symbol.

14.9.2 SRFI-69 hash tables

To use these hash table functions in your Kawa program you must first:

(require 'srfi-69)

or

(require 'hash-table)

or

(import (srfi 69 basic-hash-tables))

Chapter 14: Data structures 262

14.9.2.1 Type constructors and predicate

[Procedure]make-hash-table [equal? [hash [size-hint]]] 7→ hash-table
Create a new hash table with no associations. The equal? parameter is a predicate
that should accept two keys and return a boolean telling whether they denote the
same key value; it defaults to the equal? function.

The hash parameter is a hash function, and defaults to an appropriate hash function
for the given equal? predicate (see the Hashing section). However, an acceptable de-
fault is not guaranteed to be given for any equivalence predicate coarser than equal?,
except for string-ci=?. (The function hash is acceptable for equal?, so if you use
coarser equivalence than equal? other than string-ci=?, you must always provide
the function hash yourself.) (An equivalence predicate c1 is coarser than a equiva-
lence predicate c2 iff there exist values x and y such that (and (c1 x y) (not (c2 x

y))).)

The size-hint parameter can be used to suggested an approriate initial size. This
option is not part of the SRFI-69 specification (though it is handled by the reference
implementation), so specifying that option might be unportable.

[Procedure]hash-table? obj 7→ boolean
A predicate to test whether a given object obj is a hash table.

[Procedure]alist->hash-table alist [equal? [hash [size-hint]]] 7→ hash-table
Takes an association list alist and creates a hash table hash-table which maps the car
of every element in alist to the cdr of corresponding elements in alist. The equal?,
hash, and size-hint parameters are interpreted as in make-hash-table. If some key
occurs multiple times in alist, the value in the first association will take precedence
over later ones. (Note: the choice of using cdr (instead of cadr) for values tries to
strike balance between the two approaches: using cadr would render this procedure
unusable for cdr alists, but not vice versa.)

14.9.2.2 Reflective queries

[Procedure]hash-table-equivalence-function hash-table
Returns the equivalence predicate used for keys of hash-table.

[Procedure]hash-table-hash-function hash-table
Returns the hash function used for keys of hash-table.

14.9.2.3 Dealing with single elements

[Procedure]hash-table-ref hash-table key [thunk] 7→ value
This procedure returns the value associated to key in hash-table. If no value is
associated to key and thunk is given, it is called with no arguments and its value is
returned; if thunk is not given, an error is signalled. Given a good hash function, this
operation should have an (amortised) complexity of O(1) with respect to the number
of associations in hash-table.

Chapter 14: Data structures 263

[Procedure]hash-table-ref/default hash-table key default 7→ value
Evaluates to the same value as (hash-table-ref hash-table key (lambda ()

default)). Given a good hash function, this operation should have an (amortised)
complexity of O(1) with respect to the number of associations in hash-table.

[Procedure]hash-table-set! hash-table key value 7→ void
This procedure sets the value associated to key in hash-table. The previous associ-
ation (if any) is removed. Given a good hash function, this operation should have
an (amortised) complexity of O(1) with respect to the number of associations in
hash-table.

[Procedure]hash-table-delete! hash-table key 7→ void
This procedure removes any association to key in hash-table. It is not an error if
no association for the key exists; in this case, nothing is done. Given a good hash
function, this operation should have an (amortised) complexity of O(1) with respect
to the number of associations in hash-table.

[Procedure]hash-table-exists? hash-table key 7→ boolean
This predicate tells whether there is any association to key in hash-table. Given a
good hash function, this operation should have an (amortised) complexity of O(1)
with respect to the number of associations in hash-table.

[Procedure]hash-table-update! hash-table key function [thunk] 7→ void
Semantically equivalent to, but may be implemented more efficiently than, the fol-
lowing code:

(hash-table-set! hash-table key

(function (hash-table-ref hash-table key thunk)))

[Procedure]hash-table-update!/default hash-table key function default 7→
void

Behaves as if it evaluates to (hash-table-update! hash-table key function

(lambda () default)).

14.9.2.4 Dealing with the whole contents

[Procedure]hash-table-size hash-table 7→ integer
Returns the number of associations in hash-table. This operation takes constant time.

[Procedure]hash-table-keys hash-table 7→ list
Returns a list of keys in hash-table. The order of the keys is unspecified.

[Procedure]hash-table-values hash-table 7→ list
Returns a list of values in hash-table. The order of the values is unspecified, and is
not guaranteed to match the order of keys in the result of hash-table-keys.

[Procedure]hash-table-walk hash-table proc 7→ void
proc should be a function taking two arguments, a key and a value. This procedure
calls proc for each association in hash-table, giving the key of the association as key
and the value of the association as value. The results of proc are discarded. The
order in which proc is called for the different associations is unspecified.

Chapter 14: Data structures 264

[Procedure]hash-table-fold hash-table f init-value 7→ final-value
This procedure calls f for every association in hash-table with three arguments: the
key of the association key, the value of the association value, and an accumulated
value, val. The val is init-value for the first invocation of f, and for subsequent
invocations of f, the return value of the previous invocation of f. The value final-value
returned by hash-table-fold is the return value of the last invocation of f. The
order in which f is called for different associations is unspecified.

[Procedure]hash-table->alist hash-table 7→ alist
Returns an association list such that the car of each element in alist is a key in
hash-table and the corresponding cdr of each element in alist is the value associated
to the key in hash-table. The order of the elements is unspecified.

The following should always produce a hash table with the same mappings as a hash
table h:

(alist->hash-table (hash-table->alist h)

(hash-table-equivalence-function h)

(hash-table-hash-function h))

[Procedure]hash-table-copy hash-table 7→ hash-table
Returns a new hash table with the same equivalence predicate, hash function and
mappings as in hash-table.

[Procedure]hash-table-merge! hash-table1 hash-table2 7→ hash-table
Adds all mappings in hash-table2 into hash-table1 and returns the resulting hash
table. This function may modify hash-table1 destructively.

14.9.2.5 Hash functions

The Kawa implementation always calls these hash functions with a single parameter, and
expects the result to be within the entire (32-bit signed) int range, for compatibility with
standard hashCode methods.

[Procedure]hash object [bound] 7→ integer
Produces a hash value for object in the range from 0 (inclusive) tp to bound (exclu-
sive).

If bound is not given, the Kawa implementation returns a value within the range
(- (expt 2 32)) (inclusive) to (- (expt 2 32) 1) (inclusive). It does this by calling
the standard hashCode method, and returning the result as is. (If the object is the
Java null value, 0 is returned.) This hash function is acceptable for equal?.

[Procedure]string-hash string [bound] 7→ integer
The same as hash, except that the argument string must be a string. (The Kawa
implementation returns the same as the hash function.)

[Procedure]string-ci-hash string [bound] 7→ integer
The same as string-hash, except that the case of characters in string does not affect
the hash value produced. (The Kawa implementation returns the same the hash

function applied to the lower-cased string.)

265

[Procedure]hash-by-identity object [bound] 7→ integer
The same as hash, except that this function is only guaranteed to be acceptable for
eq?. Kawa uses the identityHashCode method of java.lang.System.

15 Eval and Environments

[Procedure]environment list*

This procedure returns a specifier for the environment that results by starting with
an empty environment and then importing each list, considered as an import-set, into
it. The bindings of the environment represented by the specifier are immutable, as is
the environment itself. See the eval function for examples.

[Procedure]null-environment version
This procedure returns an environment that contains no variable bindings, but con-
tains (syntactic) bindings for all the syntactic keywords.

The effect of assigning to a variable in this environment (such as let) is undefined.

[Procedure]scheme-report-environment version
The version must be an exact non-negative inetger corresponding to a version of one
of the Revisedversion Reports on Scheme. The procedure returns an environment
that contains exactly the set of bindings specified in the corresponding report.

This implementation supports version that is 4 or 5.

The effect of assigning to a variable in this environment (such as car) is undefined.

[Procedure]interaction-environment
This procedure return an environment that contains implementation-defined bindings,
as well as top-level user bindings.

[Procedure]environment-bound? environment symbol
Return true #t if there is a binding for symbol in environment; otherwise returns #f.

[Procedure]environment-fold environment proc init
Call proc for each key in the environment, which may be any argument to eval, such
as (interaction-environment) or a call to the environment procedure. The proc
is called with two arguments: The binding’s key, and an accumulator value. The init
is the initial accumulator value; the result returned by proc is used for subsequent
accumulator values. The value returned by environment-fold is the final acumulator
value.

A key is normally a symbol, but can also be a KeyPair object (a pair of a symbol
and a property symbol used to implement Common Lisp-style property lists).

(environment-fold (environment '(scheme write)) cons '())

⇒ (display write-shared write write-simple)

To get all the predefined bindings use (environment '(kawa base)).

Chapter 15: Eval and Environments 266

[Syntax]fluid-let ((variable init) ...) body ...
Evaluate the init expressions. Then modify the dynamic bindings for the variables
to the values of the init expressions, and evaluate the body expressions. Return the
result of the last expression in body. Before returning, restore the original bindings.
The temporary bindings are only visible in the current thread, and its descendent
threads.

[Procedure]base-uri [node]
If node is specified, returns the base-URI property of the node. If the node does
not have the base-URI property, returns #f. (The XQuery version returns the empty
sequence in that case.)

In the zero-argument case, returns the "base URI" of the current context. By default
the base URI is the current working directory (as a URL). While a source file is
loaded, the base URI is temporarily set to the URL of the document.

[Procedure]eval expression [environment]
This procedure evaluates expression in the environment indicated by environment.
The default for environment is the result of (interaction-environment).

(eval ’(* 7 3) (environment '(scheme base)))

⇒ 21

(let ((f (eval '(lambda (f x) (f x x))

(null-environment 5))))

(f + 10))

⇒ 20

(eval '(define foo 32) (environment '(scheme base)))

⇒ error is signaled

[Procedure]load path [environment]
[Procedure]load-relative path [environment]

The path can be an (absolute) URL or a filename of a source file, which is read and
evaluated line-by-line. The path can also be a fully-qualified class name. (Mostly
acts like the -f command-line option, but with different error handling.) Since load
is a run-time function it doesn’t know about the enclosing lexical environment, and
the latter can’t know about definitions introduced by load. For those reasons it is
highly recommended that you use instead use [require], page 312 or [include],
page 119.

Evaluation is done in the specified environment, which defauls to result of
(interaction-environment).

The load-relative procedure is like load, except that path is a URI that is relative
to the context’s current base URI.

15.1 Locations

A location is a place where a value can be stored. An lvalue is an expression that refers to
a location. (The name "lvalue" refers to the fact that the left operand of set! is an lvalue.)

Chapter 15: Eval and Environments 267

The only kind of lvalue in standard Scheme is a variable. Kawa also allows computed
lvalues. These are procedure calls used in "lvalue context", such as the left operand of
set!.

You can only use procedures that have an associated setter. In that case, (set! (f arg

...) value) is equivalent to ((setter f) arg ... value) Currently, only a few procedures
have associated setters, and only builtin procedures written in Java can have setters.

For example:

(set! (car x) 10)

is equivalent to:

((setter car) x 10)

which is equivalent to:

(set-car! x 10)

[Procedure]setter procedure
Gets the "setter procedure" associated with a "getter procedure". Equivalent to
(procedure-property procedure 'setter). By convention, a setter procedure
takes the same parameters as the "getter" procedure, plus an extra parameter that
is the new value to be stored in the location specified by the parameters. The
expectation is that following ((setter proc) args ... value) then the value of
(proc args ...) will be value.

The setter of setter can be used to set the setter property. For example the
Scheme prologue effectively does the following:

(set! (setter vector-set) vector-set!)

Kawa also gives you access to locations as first-class values:

[Syntax]location lvalue
Returns a location object for the given lvalue. You can get its value (by applying it,
as if it were a procedure), and you can set its value (by using set! on the application).
The lvalue can be a local or global variable, or a procedure call using a procedure
that has a setter.

(define x 100)

(define lx (location x))

(set! (lx) (cons 1 2)) ;; set x to (1 . 2)

(lx) ;; returns (1 . 2)

(define lc (location (car x)))

(set! (lc) (+ 10 (lc)))

;; x is now (11 . 2)

[Syntax]define-alias variable lvalue
Define variable as an alias for lvalue. In other words, makes it so that (location

variable) is equivalent to (location lvalue). This works both top-level and inside
a function.

[Syntax]define-private-alias variable lvalue
Same as define-alias, but the variable is local to the current module.

Chapter 15: Eval and Environments 268

Some people might find it helpful to think of a location as a settable thunk. Others may
find it useful to think of the location syntax as similar to the C ‘&’ operator; for the ‘*’
indirection operator, Kawa uses procedure application.

You can use define-alias to define a shorter type synonym, similar to Java’s import
TypeName (single-type-import) declaration:

(define-alias StrBuf java.lang.StringBuffer)

15.2 Parameter objects

A parameter object is a procedure that is bound to a location, and may optionally have a
conversion procedure. The procedure accepts zero or one argument. When the procedure
is called with zero arguments, the content of the location is returned. On a call with one
argument the content of the location is updated with the result of applying the parameter
object’s conversion procedure to the argument.

Parameter objects are created with the make-parameter procedure which takes one or
two arguments. The second argument is a one argument conversion procedure. If only
one argument is passed to make-parameter the identity function is used as a conversion
procedure. A new location is created and asociated with the parameter object. The ini-
tial content of the location is the result of applying the conversion procedure to the first
argument of make-parameter.

Note that the conversion procedure can be used for guaranteeing the type of the param-
eter object’s binding and/or to perform some conversion of the value.

The parameterize special form, when given a parameter object and a value, binds the
parameter object to a new location for the dynamic extent of its body. The initial content
of the location is the result of applying the parameter object’s conversion procedure to the
value. The parameterize special form behaves analogously to let when binding more than
one parameter object (that is the order of evaluation is unspecified and the new bindings
are only visible in the body of the parameterize special form).

When a new thread is created using future or runnable then the child thread inherits
initial values from its parent. Once the child is running, changing the value in the child
does not affect the value in the parent or vice versa. (In the past this was not the case:
The child would share a location with the parent except within a parameterize. This was
changed to avoid unsafe and inefficient coupling between threads.)

Note that parameterize and fluid-let have similar binding and sharing behavior. The
difference is that fluid-let modifies locations accessed by name, while make-parameter

and parameterize create anonymous locations accessed by calling a parameter procedure.

The R5RS procedures current-input-port and current-output-port are parameter
objects.

[Procedure]make-parameter init [converter]
Returns a new parameter object which is bound in the global dynamic environment
to a location containing the value returned by the call (converter init). If the
conversion procedure converter is not specified the identity function is used instead.

The parameter object is a procedure which accepts zero or one argument. When it is
called with no argument, the content of the location bound to this parameter object

Chapter 15: Eval and Environments 269

in the current dynamic environment is returned. When it is called with one argument,
the content of the location is set to the result of the call (converter arg), where arg
is the argument passed to the parameter object, and an unspecified value is returned.

(define radix

(make-parameter 10))

(define write-shared

(make-parameter

#f

(lambda (x)

(if (boolean? x)

x

(error "only booleans are accepted by write-shared")))))

(radix) ⇒ 10

(radix 2)

(radix) ⇒ 2

(write-shared 0) gives an error

(define prompt

(make-parameter

123

(lambda (x)

(if (string? x)

x

(with-output-to-string (lambda () (write x)))))))

(prompt) ⇒ "123"

(prompt ">")

(prompt) ⇒ ">"

[Syntax]parameterize ((expr1 expr2) ...) body
The expressions expr1 and expr2 are evaluated in an unspecified order. The value
of the expr1 expressions must be parameter objects. For each expr1 expression and
in an unspecified order, the local dynamic environment is extended with a binding
of the parameter object expr1 to a new location whose content is the result of the
call (converter val), where val is the value of expr2 and converter is the conversion
procedure of the parameter object. The resulting dynamic environment is then used
for the evaluation of body (which refers to the R5RS grammar nonterminal of that
name). The result(s) of the parameterize form are the result(s) of the body.

(radix) ⇒ 2

(parameterize ((radix 16)) (radix)) ⇒ 16

(radix) ⇒ 2

(define (f n) (number->string n (radix)))

(f 10) ⇒ "1010"

270

(parameterize ((radix 8)) (f 10)) ⇒ "12"

(parameterize ((radix 8) (prompt (f 10))) (prompt)) ⇒ "1010"

16 Debugging

[Syntax]trace procedure
Cause procedure to be "traced", that is debugging output will be written to the
standard error port every time procedure is called, with the parameters and return
value.

Note that Kawa will normally assume that a procedure defined with the procedure-
defining variant of define is constant, and so it might be inlined:

(define (ff x) (list x x))

(trace ff) ;; probably won't work

(ff 3) ;; not traced

It works if you specify the --no-inline flag to Kawa. Alternatively, you can use the
variable-defining variant of define:

#|kawa:1|# (define ff (lambda (x) name: 'ff (list x x)))

#|kawa:2|# (trace ff) ;; works

#|kawa:3|# (ff 3)

call to ff (3)

return from ff => (3 3)

(3 3)

Note the use of the name: procedure property to give the anonymous lambda a name.

[Syntax]untrace procedure
Turn off tracing (debugging output) of procedure.

[Procedure]disassemble procedure
Returns a string representation of the disassembled bytecode for procedure, when
known.

17 Input, output, and file handling

Kawa has a number of useful tools for controlling input and output:

A programmable reader.

A powerful pretty-printer.

17.1 Named output formats

The --output-format (or --format) command-line switch can be used to override the
default format for how values are printed on the standard output. This format is used for
values printed by the read-eval-print interactive interface. It is also used to control how
values are printed when Kawa evaluates a file named on the command line (using the -f

flag or just a script name). (It also affects applications compiled with the --main flag.) It
currently affects how values are printed by a load, though that may change.

Chapter 17: Input, output, and file handling 271

The default format depends on the current programming language. For Scheme, the
default is scheme for read-eval-print interaction, and ignore for files that are loaded.

The formats currently supported include the following:

scheme Values are printed in a format matching the Scheme programming language, as
if using display. "Groups" or "elements" are written as lists.

readable-scheme

Like scheme, as if using write: Values are generally printed in a way that they
can be read back by a Scheme reader. For example, strings have quotation
marks, and character values are written like ‘#\A’.

elisp Values are printed in a format matching the Emacs Lisp programming language.
Mostly the same as scheme.

readable-elisp

Like elisp, but values are generally printed in a way that they can be read
back by an Emacs Lisp reader. For example, strings have quotation marks, and
character values are written like ‘?A’.

clisp

commonlisp

Values are printed in a format matching the Common Lisp programming lan-
guage, as if written by princ. Mostly the same as scheme.

readable-clisp

readable-commonlisp

Like clisp, but as if written by prin1: values are generally printed in a way
that they can be read back by a Common Lisp reader. For example, strings
have quotation marks, and character values are written like ‘#\A’.

xml

xhtml

html Values are printed in XML, XHTML, or HTML format. This is discussed in
more detail in Section 20.1 [Formatting XML], page 336.

cgi The output should follow the CGI standards. I.e. assume that this script is in-
voked by a web server as a CGI script/program, and that the output should start
with some response header, followed by the actual response data. To generate
the response headers, use the response-header function. If the Content-type
response header has not been specified, and it is required by the CGI standard,
Kawa will attempt to infer an appropriate Content-type depending on the
following value.

ignore Top-level values are ignored, instead of printed.

17.2 Paths - file name, URLs, and URIs

A Path is the name of a file or some other resource. The path mechanism provides a layer
of abstraction, so you can use the same functions on either a filename or a URL/URI.
Functions that in standard Scheme take a filename have been generalized to take a path or
a path string, as if using the path function below. For example:

(open-input-file "http://www.gnu.org/index.html")

Chapter 17: Input, output, and file handling 272

(open-input-file (URI "ftp://ftp.gnu.org/README"))

[Type]path
A general path, which can be a filename or a URI. It can be either a filename or a
URI. Represented using the abstract Java class gnu.kawa.io.Path.

Coercing a value to a Path is equivalent to calling the path constructor documented
below.

[Constructor]path arg
Coerces the arg to a path. If arg is already a path, it is returned unchanged. If
arg is a java.net.URI, or a java.net.URL then a URI value is returned. If arg is
a java.io.File, a filepath value is returned. Otherwise, arg can be a string. A
URI value is returned if the string starts with a URI scheme (such as "http:"), and
a filepath value is returned otherwise.

[Predicate]path? arg
True if arg is a path - i.e. an instance of a gnu.kawa.io.Path.

[Procedure]current-path [new-value]
With no arguments, returns the default directory of the current thread as a path. This
is used as the base directory for relative pathnames. The initial value is that of the
user.dir property as returned by (java.lang.System:getProperty "user.dir").

If a new-value argument is given, sets the default directory:

(current-path "/opt/myApp/")

A string value is automatically converted to a path, normally a filepath.

Alternatively, you can change the default using a setter:

(set! (current-path) "/opt/myApp/")

Since current-path is a Section 15.2 [Parameter objects], page 268, you can locally
change the value using [parameterize-syntax], page 269.

[Type]filepath
The name of a local file. Represented using the Java class gnu.kawa.io.FilePath,
which is a wrapper around java.io.File.

[Predicate]filepath? arg
True if arg is a filepath - i.e. an instance of a gnu.kawa.io.FilePath.

[Type]URI
A Uniform Resource Indicator, which is a generalization of the more familiar URL.
The general format is specified by RFC 2396: Uniform Resource Identifiers (URI):
Generic Syntax (http://www.ietf.org/rfc/rfc2396.txt). Represented using the
Java class gnu.kawa.io.URIPath, which is a wrapper around java.net.URI. A URI
can be a URL, or it be a relative URI.

[Predicate]URI? arg
True if arg is a URI - i.e. an instance of a gnu.kawa.io.URIPath.

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Chapter 17: Input, output, and file handling 273

[Type]URL
A Uniform Resource Locator - a subtype of URI. Represented using the Java class
gnu.kawa.io.URLPath, which is a wrapper around a java.net.URL, in addition to
extending gnu.kawa.io.URIPath.

17.2.1 Extracting Path components

[Procedure]path-scheme arg
Returns the “URI scheme” of arg (coerced to a path) if it is defined, or #f other-
wise. The URI scheme of a filepath is "file" if the filepath is absolute, and #f

otherwise.

(path-scheme "http://gnu.org/") ⇒ "http"

[Procedure]path-authority arg
Returns the authority part of arg (coerced to a path) if it is defined, or #f otherwise.
The “authority” is usually the hostname, but may also include user-info or a port-
number.

(path-authority "http://me@localhost:8000/home") ⇒ "me@localhost:8000"

[Procedure]path-host arg
Returns the name name part of arg (coerced to a path) if it is defined, or #f otherwise.

(path-host "http://me@localhost:8000/home") ⇒ "localhost"

[Procedure]path-user-info arg
Returns the “user info” of arg (coerced to a path) if it is specified, or #f otherwise.

(path-host "http://me@localhost:8000/home") ⇒ "me"

[Procedure]path-port arg
Returns the port number of arg (coerced to a path) if it is specified, or -1 otherwise.
Even if there is a default port associated with a URI scheme (such as 80 for http),
the value -1 is returned unless the port number is explictly specified.

(path-host "http://me@localhost:8000/home") ⇒ 8000

(path-host "http://me@localhost/home") ⇒ -1

[Procedure]path-file arg
Returns the “path component” of the arg (coerced to a path). (The name path-path
might be more logical, but it is obviously a bit awkward.) The path component of
a file name is the file name itself. For a URI, it is the main hierarchical part of the
URI, without schema, authority, query, or fragment.

(path-file "http://gnu.org/home/me.html?add-bug#body") ⇒ "/home/me.html"

[Procedure]path-directory arg
If arg (coerced to a path) is directory, return arg ; otherwise return the “parent” path,
without the final component.

(path-directory "http://gnu.org/home/me/index.html#body")

⇒ (path "http://gnu.org/home/me/")

(path-directory "http://gnu.org/home/me/")

⇒ (path "http://gnu.org/home/me/")

Chapter 17: Input, output, and file handling 274

(path-directory "./dir")⇒ (path "./dir") if dir is a directory, and (path ".")

otherwise.

[Procedure]path-parent arg
Returns the “parent directory” of arg (coerced to a path). If arg is not a directory,
same as path-directory arg.

(path-parent "a/b/c") ⇒ (path "a/b")

(path-parent "file:/a/b/c") ⇒ (path "file:/a/b/c")

(path-parent "file:/a/b/c/") ⇒ (path "file:/a/b/")

[Procedure]path-last arg
The last component of path component of arg (coerced to a path). Returns a sub-
string of (path-file arg). If that string ends with ‘/’ or the path separator, that last
character is ignored. Returns the tail of the path-string, following the last (non-final)
‘/’ or path separator.

(path-last "http:/a/b/c") ⇒ "c"

(path-last "http:/a/b/c/") ⇒ "c"

(path-last "a/b/c") ⇒ "c"

[Procedure]path-extension arg
Returns the “extension” of the arg (coerced to a path).

(path-extension "http://gnu.org/home/me.html?add-bug#body") ⇒ "html"

(path-extension "/home/.init") ⇒ #f

[Procedure]path-query arg
Returns the query part of arg (coerced to a path) if it is defined, or #f otherwise.
The query part of a URI is the part after ‘?’.

(path-query "http://gnu.org/home?add-bug") ⇒ "add-bug"

[Procedure]path-fragment arg
Returns the fragment part of arg (coerced to a path) if it is defined, or #f otherwise.
The fragment of a URI is the part of after ‘#’.

(path-query "http://gnu.org/home#top") ⇒ "top"

[Procedure]resolve-uri uri base
Returns a uri unchanged if it is an absolute URI. Otherwise resolves it against a base
URI base, which is normally (though not always) absolute.

This uses the algorithm specifyed by RFC-3986 (assuming base is absolute), unlike
the obsolete RFC-2396 algorithm used by java.net.URI.resolve.

17.3 File System Interface

[Procedure]file-exists? filename
Returns true iff the file named filename actually exists. This function is defined
on arbitrary path values: for URI values we open a URLConnection and invoke
getLastModified().

Chapter 17: Input, output, and file handling 275

[Procedure]file-directory? filename
Returns true iff the file named filename actually exists and is a directory. This
function is defined on arbitrary path values; the default implementation for non-file
objects is to return #t iff the path string ends with the character ‘/’.

[Procedure]file-readable? filename
Returns true iff the file named filename actually exists and can be read from.

[Procedure]file-writable? filename
Returns true iff the file named filename actually exists and can be writen to. (Unde-
fined if the filename does not exist, but the file can be created in the directory.)

[Procedure]delete-file filename
Delete the file named filename. On failure, throws an exception.

[Procedure]rename-file oldname newname
Renames the file named oldname to newname.

[Procedure]copy-file oldname newname-from path-to
Copy the file named oldname to newname. The return value is unspecified.

[Procedure]create-directory dirname
Create a new directory named dirname. Unspecified what happens on error (such as
exiting file with the same name). (Currently returns #f on error, but may change to
be more compatible with scsh.)

[Procedure]system-tmpdir
Return the name of the default directory for temporary files.

[Procedure]make-temporary-file [format]
Return a file with a name that does not match any existing file. Use format (which
defaults to "kawa~d.tmp") to generate a unique filename in (system-tmpdir). The
implementation is safe from race conditions, and the returned filename will not be
reused by this JVM.

17.4 Reading and writing whole files

The following procedures and syntax allow you to read and write the entire contents of a
file, without iterating using a port.

17.4.1 Reading a file

For reading the contents of a file in a single operation, you can use the following syntax:

&<{ named-literal-part+}
This is equivalent to using the path-data function (defined below):

(path-data &{ named-literal-part+})
For example:

(define dir "/home/me/")

(define help-message &<{&[dir]HELP})

This binds help-message to the contents of the file named HELP in the dir directory.

Chapter 17: Input, output, and file handling 276

17.4.2 Blobs

The content of a file is, in general, a sequence of uninterpreted bytes. Often these bytes
represent text in a locale-dependent encoding, but we don’t always know this. Sometimes
they’re images, or videos, or word-processor documents. A filename extension or a “magic
number” in the file can give you hints, but not certainty as to the type of the data.

A blob (http://en.wikipedia.org/wiki/Binary_large_object) is a raw uninter-
preted sequence of bytes. It is a bytevector that can be automatically converted to other
types as needed, specifically to a string or a bytevector.

The &<{..} returns a blob. For example, assume the file README contains (bytes repre-
senting) the text "Check doc directory.\n". Then:

#|kawa:1|# (define readme &<{README}))

|kawa:2|# readme:class

class gnu.lists.Blob

#|kawa:3|# (write (->string readme))

"Check doc directory.\n"

#|kawa:4|# (write (->bytevector readme))

#u8(67 104 101 99 107 32 100 111 99 32 100 105 114 101 99 116 111 114 121 46 10)

#|kawa:5|# (->bytevector readme):class

class gnu.lists.U8Vector

17.4.3 Writing to a file

The &<{..} syntax can be used with set! to replace the contents of a file:

(set! &<{README} "Check example.com\n")

The new contents must be blob-compatible - i.e. a bytevector or a string.

If you dislike using < as an output operator, you can instead using the &>{..} operation,
which evaluates to a function whose single argument is the new value:

(&>{README} "Check example.com\n")

In general:

&>{ named-literal-part+}
is equivalent to:

(lambda (new-contents)

(set! &<{ named-literal-part+} new-contents))

You can use &>> to append more data to a file:

(&>>{README} "or check example2.com\n")

17.4.4 Functions

[Procedure]path-data path
Reads the contents of the file specified by path, where path can be a Section 17.2
[Paths], page 271, object, or anything that can be converted to a Path, including a
filename string or a URL. returning the result as a blob. The result is a blob, which is
a kind of bytevector than can be auto-converted to a string or bytevecor as required.

The function path-data has a setter, which replaces the contents with new contents:

(set! &<{file-name} new-contents)

http://en.wikipedia.org/wiki/Binary_large_object

Chapter 17: Input, output, and file handling 277

[Procedure]path-bytes path
Reads the contents of the file specified by path, as with the path-data function, but
the result is a plain bytevector, rather than a blob. This functtion also has a setter,
which you can use to replace the file-contents by new bytevector-valued data.

17.5 Ports

Ports represent input and output devices. An input port is a Scheme object that can deliver
data upon command, while an output port is a Scheme object that can accept data.

Different port types operate on different data:

• A textual port supports reading or writing of individual characters from or to a backing
store containing characters using read-char and write-char below, and it supports
operations defined in terms of characters, such as read and write.

• A binary port supports reading or writing of individual bytes from or to a backing store
containing bytes using read-u8 and write-u8 below, as well as operations defined in
terms of bytes (integers in the range 0 to 255).

All Kawa binary ports created by procedures documented here are also textual ports.
Thus you can either read/write bytes as described above, or read/write characters
whose scalar value is in the range 0 to 255 (i.e. the Latin-1 character set), using
read-char and write-char.

A native binary port is a java.io.InputStream or java.io.OutputStream instance.
These are not textual ports. You can use methods read-u8 and write-u8, but not
read-char and write-char on native binary ports. (The functions input-port?,
output-port?, binary-port?, and port? all currently return false on native binary
ports, but that may change.)

[Procedure]call-with-port port proc
The call-with-port procedure calls proc with port as an argument. If proc returns,
then the port is closed automatically and the values yielded by the proc are returned.

If proc does not return, then the port must not be closed automatically unless it is
possible to prove that the port will never again be used for a read or write operation.

As a Kawa extension, port may be any object that implements java.io.Closeable.
It is an error if proc does not accept one argument.

[Procedure]call-with-input-file path proc
[Procedure]call-with-output-file path proc

These procedures obtain a textual port obtained by opening the named file for input
or output as if by open-input-file or open-output-file. The port and proc are
then passed to a procedure equivalent to call-with-port.

It is an error if proc does not accept one argument.

[Procedure]input-port? obj
[Procedure]output-port? obj
[Procedure]textual-port? obj
[Procedure]binary-port? obj

Chapter 17: Input, output, and file handling 278

[Procedure]port? obj
These procedures return #t if obj is an input port, output port, textual port, binary
port, or any kind of port, respectively. Otherwise they return #f.

These procedures currently return #f on a native Java streams (java.io.InputStream
or java.io.OutputStream), a native reader (a java.io.Reader that is not an
gnu.mapping.Inport), or a native writer (a java.io.Writer that is not an
gnu.mapping.Outport). This may change if conversions between native ports and
Scheme ports becomes more seamless.

[Procedure]input-port-open? port
[Procedure]output-port-open? port

Returns #t if port is still open and capable of performing input or output, respectively,
and #f otherwise. (Not supported for native binary ports - i.e. java.io.InputStteam
or java.io.OutputStream.)

[Procedure]current-input-port
[Procedure]current-output-port
[Procedure]current-error-port

Returns the current default input port, output port, or error port (an output port),
respectively. (The error port is the port to which errors and warnings should be sent
- the standard error in Unix and C terminology.) These procedures are Section 15.2
[Parameter objects], page 268, which can be overridden with [parameterize-syntax],
page 269.

The initial bindings for (current-output-port) and (current-error-port)

are hybrid textual/binary ports that wrap the values of the corresponding
java.lang.System fields out, and err. The latter, in turn are bound to the
standard output and error streams of the JVM process. This means you can write
binary data to standard output using write-bytevector and write-u8.

The initial value (current-input-port) similarly is a textual port that wraps the
java.lang.System field in, which is bound to the standard input stream of the JVM
process. It is a hybrid textual/binary port only if there is no console (as determined
by (java.lang.System:console) returning #!null) - i.e. if standard input is not a
tty.

Here is an example that copies standard input to standard output:

(let* ((in (current-input-port))

(out (current-output-port))

(blen ::int 2048)

(buf (make-bytevector blen)))

(let loop ()

(define n (read-bytevector! buf in))

(cond ((not (eof-object? n))

(write-bytevector buf out 0 n)

(loop)))))

Chapter 17: Input, output, and file handling 279

[Procedure]with-input-from-file path thunk
[Procedure]with-output-to-file path thunk

The file is opened for input or output as if by open-input-file or open-output-

file, and the new port is made to be the value returned by current-input-port or
current-output-port (as used by (read), (write obj), and so forth). The thunk
is then called with no arguments. When the thunk returns, the port is closed and the
previous default is restored. It is an error if thunk does not accept zero arguments.
Both procedures return the values yielded by thunk. If an escape procedure is used
to escape from the continuation of these procedures, they behave exactly as if the
current input or output port had been bound dynamically with parameterize.

[Procedure]open-input-file path
[Procedure]open-binary-input-file path

Takes a path naming an existing file and returns a textual input port or binary input
port that is capable of delivering data from the file.

The procedure open-input-file checks the fluid variable [port-char-encoding],
page 286, to determine how bytes are decoded into characters. The procedure
open-binary-input-file is equivalent to calling open-input-file with
port-char-encoding set to #f.

[Procedure]open-output-file path
[Procedure]open-binary-output-file path

Takes a path naming an output file to be created and returns respectively a textual
output port or binary output port that is capable of writing data to a new file by
that name. If a file with the given name already exists, the effect is unspecified.

The procedure open-output-file checks the fluid variable [port-char-encoding],
page 286, to determine how characters are encoded as bytes. The procedure
open-binary-output-file is equivalent to calling open-output-file with
port-char-encoding set to #f.

[Procedure]close-port port
[Procedure]close-input-port port
[Procedure]close-output-port port

Closes the resource associated with port, rendering the port incapable of delivering
or accepting data. It is an error to apply the last two procedures to a port which is
not an input or output port, respectively. (Specifically, close-input-port requires a
java.io.Reader, while close-output-port requires a java.io.Writer. In contrast
close-port accepts any object whose class implements java.io.Closeable.)

These routines have no effect if the port has already been closed.

17.5.1 String and bytevector ports

[Procedure]open-input-string string
Takes a string and returns a text input port that delivers characters from the string.
The port can be closed by close-input-port, though its storage will be reclaimed
by the garbage collector if it becomes inaccessible.

(define p

Chapter 17: Input, output, and file handling 280

(open-input-string "(a . (b c . ())) 34"))

(input-port? p) ⇒ #t

(read p) ⇒ (a b c)

(read p) ⇒ 34

(eof-object? (peek-char p)) ⇒ #t

[Procedure]open-output-string
Returns an textual output port that will accumulate characters for retrieval by
get-output-string. The port can be closed by the procedure close-output-port,
though its storage will be reclaimed by the garbage collector if it becomes inaccessible.

(let ((q (open-output-string))

(x '(a b c)))

(write (car x) q)

(write (cdr x) q)

(get-output-string q)) ⇒ "a(b c)"

[Procedure]get-output-string output-port
Given an output port created by open-output-string, returns a string consisting of
the characters that have been output to the port so far in the order they were output.
If the result string is modified, the effect is unspecified.

(parameterize

((current-output-port (open-output-string)))

(display "piece")

(display " by piece ")

(display "by piece.")

(newline)

(get-output-string (current-output-port)))

⇒ "piece by piece by piece.\n"

[Procedure]call-with-input-string string proc
Create an input port that gets its data from string, call proc with that port as its
one argument, and return the result from the call of proc

[Procedure]call-with-output-string proc
Create an output port that writes its data to a string, and call proc with that port
as its one argument. Return a string consisting of the data written to the port.

[Procedure]open-input-bytevector bytevector
Takes a bytevector and returns a binary input port that delivers bytes from the
bytevector.

[Procedure]open-output-bytevector
Returns a binary output port that will accumulate bytes for retrieval by get-output-

bytevector.

[Procedure]get-output-bytevector port
Returns a bytevector consisting of the bytes that have been output to the port so far in
the order they were output. It is an error if port was not created with open-output-

bytevector.

Chapter 17: Input, output, and file handling 281

17.5.2 Input

If port is omitted from any input procedure, it defaults to the value returned by
(current-input-port). It is an error to attempt an input operation on a closed port.

[Procedure]read [port]
The read procedure converts external representations of Scheme objects into the
objects themselves. That is, it is a parser for the non-terminal datum. It returns the
next object parsable from the given textual input port, updating port to point to the
first character past the end of the external representation of the object.

If an end of file is encountered in the input before any characters are found that
can begin an object, then an end-of-file object is returned. The port remains open,
and further attempts to read will also return an end-of-file object. If an end of
file is encountered after the beginning of an object’s external representation, but the
external representation is incomplete and therefore not parsable, an error that satisfies
read-error? is signaled.

[Procedure]read-char [port]
Returns the next character available from the textual input port, updating the port
to point to the following character. If no more characters are available, an end-of-file
value is returned.

The result type is character-or-eof.

[Procedure]peek-char [port]
Returns the next character available from the textual input port, but without updating
the port to point to the following character. If no more characters are available, an
end-of-file value is returned.

The result type is character-or-eof.

Note: The value returned by a call to peek-char is the same as the value that would
have been returned by a call to read-char with the same port. The only difference is
that the very next call to read-char or peek-char on that port will return the value
returned by the preceding call to peek-char. In particular, a call to peek-char on
an interactive port will hang waiting for input whenever a call to read-char would
have hung.

[Procedure]read-line [port [handle-newline]]
Reads a line of input from the textual input port. The handle-newline parameter
determines what is done with terminating end-of-line delimiter. The default, 'trim,
ignores the delimiter; 'peek leaves the delimiter in the input stream; 'concat appends
the delimiter to the returned value; and 'split returns the delimiter as a second value.
You can use the last three options to tell if the string was terminated by end-or-line
or by end-of-file. If an end of file is encountered before any end of line is read, but
some characters have been read, a string containing those characters is returned. (In
this case, 'trim, 'peek, and 'concat have the same result and effect. The 'split

case returns two values: The characters read, and the delimiter is an empty string.)
If an end of file is encountered before any characters are read, an end-of-file object is
returned. For the purpose of this procedure, an end of line consists of either a linefeed
character, a carriage return character, or a sequence of a carriage return character
followed by a linefeed character.

Chapter 17: Input, output, and file handling 282

[Procedure]eof-object? obj
Returns #t if obj is an end-of-file object, otherwise returns #f.

Performance note: If obj has type character-or-eof, this is compiled as an int

comparison with -1.

[Procedure]eof-object
Returns an end-of-file object.

[Procedure]char-ready? [port]
Returns #t if a character is ready on the textual input port and returns #f otherwise.
If char-ready returns #t then the next read-char operation on the given port is
guaranteed not to hang. If the port is at end of file then char-ready? returns #t.

Rationale: The char-ready? procedure exists to make it possible for a program to
accept characters from interactive ports without getting stuck waiting for input. Any
input editors as- sociated with such ports must ensure that characters whose existence
has been asserted by char-ready? cannot be removed from the input. If char-ready?
were to return #f at end of file, a port at end-of-file would be indistinguishable from
an interactive port that has no ready characters.

[Procedure]read-string k [port]
Reads the next k characters, or as many as are available before the end of file, from
the textual input port into a newly allocated string in left-to-right order and returns
the string. If no characters are available before the end of file, an end-of-file object is
returned.

[Procedure]read-u8 [port]
Returns the next byte available from the binary input port, updating the port to
point to the following byte. If no more bytes are available, an end-of-file object is
returned.

[Procedure]peek-u8 [port]
Returns the next byte available from the binary input port, but without updating
the port to point to the following byte. If no more bytes are available, an end-of-file
object is returned.

[Procedure]u8-ready? [port]
Returns #t if a byte is ready on the binary input port and returns #f otherwise. If
u8-ready? returns #t then the next read-u8 operation on the given port is guaranteed
not to hang. If the port is at end of file then u8-ready? returns #t.

[Procedure]read-bytevector k [port]
Reads the next k bytes, or as many as are available before the end of file, from the
binary input port into a newly allocated bytevector in left-to-right order and returns
the bytevector. If no bytes are available before the end of file, an end-of-file object is
returned.

[Procedure]read-bytevector! bytevector [port [start [end]]]
Reads the next end − start bytes, or as many as are available before the end of file,
from the binary input port into bytevector in left-to-right order beginning at the start

Chapter 17: Input, output, and file handling 283

position. If end is not supplied, reads until the end of bytevector has been reached.
If start is not supplied, reads beginning at position 0. Returns the number of bytes
read. If no bytes are available, an end-of-file object is returned.

17.5.3 Output

If port is omitted from any output procedure, it defaults to the value returned by
(current-output-port). It is an error to attempt an output operation on a closed port.

The return type of these methods is void.

[Procedure]write obj [port]
Writes a representation of obj to the given textual output port. Strings that appear in
the written representation are enclosed in quotation marks, and within those strings
backslash and quotation mark characters are escaped by backslashes. Symbols that
contain non-ASCII characters are escaped with vertical lines. Character objects are
written using the #\ notation.

If obj contains cycles which would cause an infinite loop using the normal written
representation, then at least the objects that form part of the cycle must be repre-
sented using [datum labels], page 110. Datum labels must not be used if there are no
cycles.

[Procedure]write-shared obj [port]
The write-shared procedure is the same as write, except that shared structure must
be represented using datum labels for all pairs and vectors that appear more than
once in the output.

[Procedure]write-simple obj [port]
The write-simple procedure is the same as write, except that shared structure is
never represented using datum labels. This can cause write-simple not to terminate
if obj contains circular structure.

[Procedure]display obj [port]
Writes a representation of obj to the given textual output port. Strings that appear
in the written representation are output as if by write-string instead of by write.
Symbols are not escaped. Character objects appear in the representation as if written
by write-char instead of by write. The display representation of other objects is
unspecified.

[Procedure]newline [port]
Writes an end of line to textual output port. This is done using the println method
of the Java class java.io.PrintWriter.

[Procedure]write-char char [port]
Writes the character char (not an external representation of the character) to the
given textual output port.

[Procedure]write-string string [port [start [end]]]
Writes the characters of string from start to end in left-to-right order to the textual
output port.

Chapter 17: Input, output, and file handling 284

[Procedure]write-u8 byte [port]
Writes the byte to the given binary output port.

[Procedure]write-bytevector bytevector [port [start [end]]]
Writes the bytes of bytevector from start to end in left-to-right order to the binary
output port.

[Procedure]flush-output-port [port]
[Procedure]force-output [port]

Forces any pending output on port to be delivered to the output file or device and
returns an unspecified value. If the port argument is omitted it defaults to the
value returned by (current-output-port). (The name force-output is older, while
R6RS added flush-output-port. They have the same effect.)

17.5.4 Prompts for interactive consoles (REPLs)

When an interactive input port is used for a read-eval-print-loop (REPL or console) it is
traditional for the REPL to print a short prompt string to signal that the user is expected
to type an expression. These prompt strings can be customized.

[Variable]input-prompt1
[Variable]input-prompt2

These are fluid variable whose values are string templates with placeholders similar
to printf-style format. The placeholders are expanded (depending on the current
state), and the resulting string printed in front of the input line.

The input-prompt1 is used normally. For multi-line input commands (for example if
the first line is incomplete), input-prompt1 is used for the first line of each command,
while input-prompt2 is used for subsequent “continuation” lines.

The following placeholders are handled:

%% A literal ‘%’.

%N The current line number. This is (+ 1 (port-line port)).

%nPc Insert padding at this possion, repeating the following character c as
needed to bring the total number of columns of the prompt to that spec-
ified by the digits n.

%Pc Same as %nPc, but n defaults to the number of columns in the initial
prompt from the expansion of input-prompt1. This is only meaningful
when expanding input-prompt2 for continuation lines.

%{hidden%}
Same as hidden, but the characters of hidden are assumed to have zero
visible width. Can be used for ANSI escape sequences (https://en.
wikipedia.org/wiki/ANSI_escape_code) to change color or style:

(set! input-prompt1 "%{\e[48;5;51m%}{Kawa:%N} %{\e[0m%}")

The above changes both the text and the background color (to a pale
blue).

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code

Chapter 17: Input, output, and file handling 285

%Hcd If running under DomTerm, use the characters c and d as a clickable
mini-button to hide/show (fold) the command and its output. (When
output is visible c is displayed; clicking on it hides the output. When
output is hidden d is displayed; clicking on it shows the output.) Ignored
if not running under DomTerm.

%M Insert a “message” string. Not normally used by Kawa, but supported
by JLine.

These variables can be initialized by the command-line arguments
console:prompt1=prompt1 and console:prompt2=prompt2, respectively.
If these are not specified, languages-specific defaults are used. For example
for Scheme the default value of input-prompt1 is "#|%Hkawa:%N|# " and
input-prompt2 is "#|%P.%N| ". These have the form of Scheme comments, to make
it easier to cut-and-paste.

If input-prompt1 (respectively input-prompt2) does not contain an escape sequence
(either "%{ or the escape character "\e") then ANSI escape sequences are added to
to highlight the prompt. (Under DomTerm this sets the prompt style, which can be
customised with CSS but defaults to a light green background; if using JLine the
background is set to light green.)

For greater flexibility, you can also set a prompter procedure.

[Procedure]set-input-port-prompter! port prompter
Set the prompt procedure associated with port to prompter, which must be a one-
argument procedure taking an input port, and returning a string. The procedure
is called before reading the first line of a command; its return value is used as the
first-line prompt.

The prompt procedure can have side effects. In Bash shell terms: It combines the
features of PROMPT_COMMAND and PS1.

The initial prompter is default-prompter, which returns the expansion of
input-prompt1.

[Procedure]input-port-prompter port
Get the prompt procedure associated with port.

[Procedure]default-prompter port
The default prompt procedure. Normally (i.e. when input-port-read-state is a
space) returns input-prompt1 after expanding the %-placeholders. Can also expand
input-prompt2 when input-port-read-state is not whitespace.

17.5.5 Line numbers and other input port properties

[Function]port-column input-port
[Function]port-line input-port

Return the current column number or line number of input-port, using the current
input port if none is specified. If the number is unknown, the result is #f. Otherwise,
the result is a 0-origin integer - i.e. the first character of the first line is line 0, column
0. (However, when you display a file position, for example in an error message, we

Chapter 17: Input, output, and file handling 286

recommend you add 1 to get 1-origin integers. This is because lines and column
numbers traditionally start with 1, and that is what non-programmers will find most
natural.)

[Procedure]set-port-line! port line
Set (0-origin) line number of the current line of port to num.

[Procedure]input-port-line-number port
Get the line number of the current line of port, which must be a (non-binary) input
port. The initial line is line 1. Deprecated; replaced by (+ 1 (port-line port)).

[Procedure]set-input-port-line-number! port num
Set line number of the current line of port to num. Deprecated; replaced by
(set-port-line! port (- num 1)).

[Procedure]input-port-column-number port
Get the column number of the current line of port, which must be a (non-binary) input
port. The initial column is column 1. Deprecated; replaced by (+ 1 (port-column

port)).

[Procedure]input-port-read-state port
Returns a character indicating the current read state of the port. Returns #\Return
if not current doing a read, #\" if reading a string; #\| if reading a comment; #\(if
inside a list; and #\Space when otherwise in a read. The result is intended for use
by prompt prcedures, and is not necessarily correct except when reading a new-line.

[Variable]symbol-read-case
A symbol that controls how read handles letters when reading a symbol. If the first
letter is ‘U’, then letters in symbols are upper-cased. If the first letter is ‘D’ or ‘L’,
then letters in symbols are down-cased. If the first letter is ‘I’, then the case of letters
in symbols is inverted. Otherwise (the default), the letter is not changed. (Letters
following a ‘\’ are always unchanged.) The value of symbol-read-case only checked
when a reader is created, not each time a symbol is read.

17.5.6 Miscellaneous

[Variable]port-char-encoding
Controls how bytes in external files are converted to/from internal Unicode characters.
Can be either a symbol or a boolean. If port-char-encoding is #f, the file is assumed
to be a binary file and no conversion is done. Otherwise, the file is a text file. The
default is #t, which uses a locale-dependent conversion. If port-char-encoding is
a symbol, it must be the name of a character encoding known to Java. For all text
files (that is if port-char-encoding is not #f), on input a #\Return character or a
#\Return followed by #\Newline are converted into plain #\Newline.

This variable is checked when the file is opened; not when actually reading or writing.
Here is an example of how you can safely change the encoding temporarily:

(define (open-binary-input-file name)

(fluid-let ((port-char-encoding #f)) (open-input-file name)))

Chapter 17: Input, output, and file handling 287

[Variable]*print-base*
The number base (radix) to use by default when printing rational numbers. Must be
an integer between 2 and 36, and the default is of course 10. For example setting
print-base to 16 produces hexadecimal output.

[Variable]*print-radix*
If true, prints an indicator of the radix used when printing rational numbers. If
print-base is respectively 2, 8, or 16, then #b, #o or #x is written before the num-
ber; otherwise #Nr is written, where N is the base. An exception is when *print-base*

is 10, in which case a period is written after the number, to match Common Lisp;
this may be inappropriate for Scheme, so is likely to change.

[Variable]*print-right-margin*
The right margin (or line width) to use when pretty-printing.

[Variable]*print-miser-width*
If this an integer, and the available width is less or equal to this value, then the pretty
printer switch to the more miser compact style.

[Variable]*print-xml-indent*
When writing to XML, controls pretty-printing and indentation. If the value is
'always or 'yes force each element to start on a new suitably-indented line. If
the value is 'pretty only force new lines for elements that won’t fit completely on a
line. The the value is 'no or unset, don’t add extra whitespace.

17.6 Formatted Output (Common-Lisp-style)

[Procedure]format destination fmt . arguments
An almost complete implementation of Common LISP format description according
to the CL reference book Common LISP from Guy L. Steele, Digital Press. Backward
compatible to most of the available Scheme format implementations.

Returns #t, #f or a string; has side effect of printing according to fmt. If destination
is #t, the output is to the current output port and #!void is returned. If destination
is #f, a formatted string is returned as the result of the call. If destination is a
string, destination is regarded as the format string; fmt is then the first argument
and the output is returned as a string. If destination is a number, the output is to the
current error port if available by the implementation. Otherwise destination must be
an output port and #!void is returned.

fmt must be a string or an instance of gnu.text.MessageFormat or
java.text.MessageFormat. If fmt is a string, it is parsed as if by parse-format.

[Procedure]parse-format format-string
Parses format-string, which is a string of the form of a Common LISP format
description. Returns an instance of gnu.text.ReportFormat, which can be passed
to the format function.

A format string passed to format or parse-format consists of format directives (that
start with ‘~’), and regular characters (that are written directly to the destination). Most

Chapter 17: Input, output, and file handling 288

of the Common Lisp (and Slib) format directives are implemented. Neither justification,
nor pretty-printing are supported yet.

Plus of course, we need documentation for format!

17.6.1 Implemented CL Format Control Directives

Documentation syntax: Uppercase characters represent the corresponding control directive
characters. Lowercase characters represent control directive parameter descriptions.

~A Any (print as display does).

~@A left pad.

~mincol,colinc,minpad,padcharA

full padding.

~S S-expression (print as write does).

~@S left pad.

~mincol,colinc,minpad,padcharS

full padding.

~C Character.

~@C prints a character as the reader can understand it (i.e. #\ prefixing).

~:C prints a character as emacs does (eg. ^C for ASCII 03).

17.6.2 Formatting Integers

~D Decimal.

~@D print number sign always.

~:D print comma separated.

~mincol,padchar,commachar,commawidthD

padding.

~X Hexadecimal.

~@X print number sign always.

~:X print comma separated.

~mincol,padchar,commachar,commawidthX

padding.

~O Octal.

~@O print number sign always.

~:O print comma separated.

~mincol,padchar,commachar,commawidthO

padding.

~B Binary.

~@B print number sign always.

Chapter 17: Input, output, and file handling 289

~:B print comma separated.

~mincol,padchar,commachar,commawidthB

padding.

~nR Radix n.

~n,mincol,padchar,commachar,commawidthR

padding.

~@R print a number as a Roman numeral.

~:@R print a number as an “old fashioned” Roman numeral.

~:R print a number as an ordinal English number.

~R print a number as a cardinal English number.

~P Plural.

~@P prints y and ies.

~:P as ~P but jumps 1 argument backward.

~:@P as ~@P but jumps 1 argument backward.

commawidth is the number of characters between two comma characters.

17.6.3 Formatting real numbers

~F Fixed-format floating-point (prints a flonum like mmm.nnn).

~width,digits,scale,overflowchar,padcharF

~@F If the number is positive a plus sign is printed.

~E Exponential floating-point (prints a flonum like mmm.nnnEee)

~width,digits,exponentdigits,scale,overflowchar,padchar,exponentcharE

~@E If the number is positive a plus sign is printed.

~G General floating-point (prints a flonum either fixed or exponential).

~width,digits,exponentdigits,scale,overflowchar,padchar,exponentcharG

~@G If the number is positive a plus sign is printed.

A slight difference from Common Lisp: If the number is printed in fixed form
and the fraction is zero, then a zero digit is printed for the fraction, if allowed
by the width and digits is unspecified.

~$ Dollars floating-point (prints a flonum in fixed with signs separated).

~digits,scale,width,padchar$

~@$ If the number is positive a plus sign is printed.

~:@$ A sign is always printed and appears before the padding.

~:$ The sign appears before the padding.

Chapter 17: Input, output, and file handling 290

17.6.4 Miscellaneous formatting operators

~% Newline.

~n% print n newlines.

~& print newline if not at the beginning of the output line.

~n& prints ~& and then n-1 newlines.

~| Page Separator.

~n| print n page separators.

~~ Tilde.

~n~ print n tildes.

~<newline>
Continuation Line.

~:<newline>
newline is ignored, white space left.

~@<newline>
newline is left, white space ignored.

~T Tabulation.

~@T relative tabulation.

~colnum,colincT

full tabulation.

~? Indirection (expects indirect arguments as a list).

~@? extracts indirect arguments from format arguments.

~(str~) Case conversion (converts by string-downcase).

~:(str~) converts by string-capitalize.

~@(str~) converts by string-capitalize-first.

~:@(str~)

converts by string-upcase.

~* Argument Jumping (jumps 1 argument forward).

~n* jumps n arguments forward.

~:* jumps 1 argument backward.

~n:* jumps n arguments backward.

~@* jumps to the 0th argument.

~n@* jumps to the nth argument (beginning from 0)

~[str0~;str1~;...~;strn~]

Conditional Expression (numerical clause conditional).

~n[take argument from n.

Chapter 17: Input, output, and file handling 291

~@[true test conditional.

~:[if-else-then conditional.

~; clause separator.

~:; default clause follows.

~{str~} Iteration (args come from the next argument (a list)).

~n{ at most n iterations.

~:{ args from next arg (a list of lists).

~@{ args from the rest of arguments.

~:@{ args from the rest args (lists).

~^ Up and out.

~n^ aborts if n = 0

~n,m^ aborts if n = m

~n,m,k^ aborts if n <= m <= k

~<mincol Start justification: spacing is evenly distributed between text segments with a
width of mincol. This enables an even right margin.

~> End of segments to justify.

17.6.5 Unimplemented CL Format Control Directives

~:A print #f as an empty list (see below).

~:S print #f as an empty list (see below).

~:^

17.6.6 Extended, Replaced and Additional Control Directives

These are not necesasrily implemented in Kawa!

~I print a R4RS complex number as ~F~@Fi with passed parameters for ~F.

~Y Pretty print formatting of an argument for scheme code lists.

~K Same as ~?.

~! Flushes the output if format destination is a port.

~_ Print a #\space character

~n_ print n #\space characters.

~nC Takes n as an integer representation for a character. No arguments are con-
sumed. n is converted to a character by integer->char. n must be a positive
decimal number.

~:S Print out readproof. Prints out internal objects represented as #<...> as strings
"#<...>" so that the format output can always be processed by read.

Chapter 17: Input, output, and file handling 292

~:A Print out readproof. Prints out internal objects represented as #<...> as strings
"#<...>" so that the format output can always be processed by read.

~F, ~E, ~G, ~$

may also print number strings, i.e. passing a number as a string and format it
accordingly.

17.7 Pretty-printing

Pretty-printing is displaying a data structure as text, by adding line-breaks and indenttaion
so that the visual structure of the output corresponds to the logical structure of data
structure. This makes it easier to read and understand. Pretty-printing takes into account
the column width of the output so as to avoid using more lines than needed.

Pretty-printing of standard sequences types such as lists and vectors is done by default.
For example:

#|kawa:11|# (set! *print-right-margin* 50)

#|kawa:12|# '(ABCDEF (aa bb cc dd) (x123456789

#|.....13|# y123456789 z123456789) ABCDEFG HIJKL)

(ABCDEF (aa bb cc dd)

(x123456789 y123456789 z123456789) ABCDEFG HIJK)

Setting *print-right-margin* to 50 causes output to be limited to 50 columns. Notice
the top-level list has to be split, but sub-lists (aa bb cc dd) and (x123456789 y123456789

z123456789) don’t need to be split.

When outputting to a DomTerm REPL, then *print-right-margin* is ignored, and the
line-breaking is actually handled by DomTerm. If you change the window width, DomTerm
will dynamically re-calculate the line-breaks of previous pretten output. This works even
in the case of a session saved to an HTML file, as long as JavaScript is enabled.

The concepts and terminology are based on those of Common Lisp (https://www.cs.
cmu.edu/Groups/AI/html/cltl/clm/node253.html).

17.7.1 Pretty-printing Scheme forms

Scheme and Lisp code is traditionally pretty-printed slightly differently than plain lists.
The pprint procedure assumes the argument is a Scheme form, and prints its accordingly.
For example the special form (let ...) is printed differently from a regular function call
(list ...).

[Procedure]pprint obj [out]
Assume obj is a Scheme form, and pretty-print it in traditional Scheme format. For
example:

#|kawa:1|# (import (kawa pprint))

#|kawa:2|# (define fib-form

#|.....3|# '(define (fibonacci n)

#|.....4|# (let loop ((i0 0) (i1 1) (n n))

#|.....5|# (if (<= n 0) i0

#|.....6|# (loop i1 (+ i0 i1) (- n 1))))))

#|kawa:7|# (set! *print-right-margin* 80)

#|kawa:8|# (pprint fib-form)

https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node253.html
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node253.html

Chapter 17: Input, output, and file handling 293

(define (fibonacci n)

(let loop ((i0 0) (i1 1) (n n)) (if (<= n 0) i0 (loop i1 (+ i0 i1) (-

n 1)))))

#|kawa:9|# (set! *print-right-margin* 40)

#|kawa:10|# (pprint fib-form)

(define (fibonacci n)

(let loop ((i0 0) (i1 1) (n n))

(if (<= n 0)

i0

(loop i1 (+ i0 i1) (- n 1)))))

The pprint special-cases forms that start with define, if, lambda, let, and a few
more, and formats them with “traditional” indentation. However, it is not as complete
or polished as it should be. (It should also use a programmable dispatch table, rather
than having these special cases hard-wired. That is an improvemet for another day.)

17.7.2 Generic pretty-printing functions

The following procedures are used to indicate logical blocks, and optional newlines.

To access them do:

(import (kawa pprint))

In the following, out is the output port, which defaults to (current-output-port).

[Syntax]pprint-logical-block options statement*

Evaluate the statements within the context of a new “logical block”.

The options are one or more of the following:

prefix: prefix
per-line: per-line-prefix

Emit prefix or per-line-prefix (only one of them can be specified) before
the start of the logical block. If per-line-prefix is provided, it is also print
for each line within the logical block, indented the same. These are strings
and default to "".

suffix: suffix
Emit suffix after the end of the logical block.

out: out The output file.

For example to print a list you might do:

(pprint-logical-block prefix: "(" suffix: ")"

print contents of list)

This macro is equivalent to:

(pprint-start-logical-block prefix is-per-line suffix out)

(try-finally

(begin statement*)

(pprint-end-logical-block suffix out))

[Procedure]pprint-start-logical-block prefix is-per-line suffix out
Start a logical block. The is-per-line argument is a boolean to specifiy of prefix is a
per-line-prefix or a plain prefix.

Chapter 18: Types 294

[Procedure]pprint-end-logical-block suffix out
End a logical block.

[Procedure]pprint-newline kind [out]
Print a conditional newline, where kind is one of the symbols 'fill, 'linear,
'mandatory, or 'miser. Usually follows printing of a space, as nothing is printed
if the line is not broken here.

[Procedure]pprint-ident mode amount [out]
Change how much following lines are indented (with the current logical block). The
amount is the size of the indentation, in characters. The mode is either 'current (if
the amount is relative to the current position), or 'block (if the amount is relative
to the start (after any prefix) of the current logical block).

17.8 Resources

A resource is a file or other fixed data that an application may access. Resources are part
of the application and are shipped with it, but are stored in external files. Examples are
images, sounds, and translation (localization) of messages. In the Java world a resource is
commonly bundled in the same jar file as the application itself.

[Syntax]resource-url resource-name
Returns a URLPath you can use as a URL, or you can pass to it open-input-file

to read the resource data. The resource-name is a string which is passed to the
ClassLoader of the containing module. If the module class is in a jar file, things will
magically work if the resource is in the same jar file, and resource-name is a filename
relative to the module class in the jar. If the module is immediately evaluated, the
resource-name is resolved against the location of the module source file.

[Syntax]module-uri
Evaluates to a special URI that can be used to access resources relative to the class of
the containing module. The URI has the form "class-resource://CurrentClass/"

in compiled code, to allow moving the classes/jars. The current ClassLoader is asso-
ciated with the URI, so accessing resources using the URI will use that ClassLoader.
Therefore you should not create a "class-resource:" URI except by using this
function or resolve-uri, since that might try to use the wrong ClassLoader.

The macro resource-url works by using module-uri and resolving that to a normal
URL.

[Syntax]module-class
Evaluates to the containing module class, as a java.lang.Class instance.

18 Types

A type is a set of values, plus an associated set of operations valid on those values. Types
are useful for catching errors ("type-checking"), documenting the programmer’s intent, and
to help the compiler generate better code. Types in some languages (such as C) appear
in programs, but do not exist at run-time. In such languages, all type-checking is done at

Chapter 18: Types 295

compile-time. Other languages (such as standard Scheme) do not have types as such, but
they have predicates, which allow you to check if a value is a member of certain sets; also,
the primitive functions will check at run-time if the arguments are members of the allowed
sets. Other languages, including Java and Common Lisp, provide a combination: Types
may be used as specifiers to guide the compiler, but also exist as actual run-time values. In
Java, for each class, there is a corresponding java.lang.Class run-time object, as well as
an associated type (the set of values of that class, plus its sub-classes, plus null).

Kawa, like Java, has first-class types, that is types exist as objects you can pass around
at run-time. The most used types correspond to Java classes and primitive types, but Kawa
also has other non-Java types.

Type specifiers have a type expressions, and a type expression is conceptually an ex-
pression that is evaluated to yield a type value. The current Kawa compiler is rather
simple-minded, and in many places only allows simple types that the compiler can evaluate
at compile-time. More specifically, it only allows simple type names that map to primitive
Java types or Java classes.

type ::= expression
opt-type-specifier ::= [:: type]

Various Kawa constructs require or allow a type to be specified. You can use a type
specifier most places where you Section 8.3 [Variables and Patterns], page 140. Types
specifiers can appear in other placess, such as procedure return type specifiers. For example
in this procedure definition, ::vector is an argument type specifier (and vec::vector is a
pattern), while ::boolean is a return type specifier.

(define (vector-even? vec::vector)::boolean

(not (odd? (vector-length vec))))

(vector-even? #(3 4 5)) ⇒ #f

(vector-even? (list 3 4 5 6)) ⇒ error

18.1 Standard Types

These types are predefined with the following names.

Instead of plain typename you can also use the syntax <typename> with angle brackets,
but that syntax is no longer recommended, because it doesn’t “fit” as well with some ways
type names are used.

To find which Java classes these types map into, look in kawa/standard/Scheme.java.

Note that the value of these variables are instances of gnu.bytecode.Type, not (as you
might at first expect) java.lang.Class.

The numeric types (number, quantity, complex, real, rational, integer, long, int,
short, byte ulong, uint, ushort, ubyte, double, float) are discussed in Section 12.1
[Numerical types], page 175.

The types character and char are discussed in Section 13.1 [Characters], page 202.

[Variable]Object
An arbitrary Scheme value - and hence an arbitrary Java object.

Chapter 18: Types 296

[Variable]symbol
The type of Scheme symbols. (Implemented using the Java class
gnu.mapping.Symbol.) (Compatibility: Previous versions of Kawa imple-
mented a simple Scheme symbol using an interned java.lang.String.)

[Variable]keyword
The type of keyword values. See Section 10.3 [Keywords], page 165.

[Variable]list
The type of Scheme lists (pure and impure, including the empty list).

[Variable]pair
The type of Scheme pairs. This is a sub-type of list.

[Variable]string
The type of Scheme strings. (Implemented using gnu.lists.IString or
java.lang.String for immutable strings, and gnu.lists.FString for mutable
strings. These all implement the interface java.lang.CharSequence. (Compatibility:
Previous versions of Kawa always used gnu.lists.FString.)

[Variable]character
The type of Scheme character values. This is a sub-type of Object, in contrast to
type char, which is the primitive Java char type.

[Variable]vector
The type of Scheme vectors.

[Variable]procedure
The type of Scheme procedures.

[Variable]input-port
The type of Scheme input ports.

[Variable]output-port
The type of Scheme output ports.

[Variable]String
This type name is a special case. It specifies the class java.lang.String. However,
coercing a value to String is done by invoking the toString method on the value to
be coerced. Thus it "works" for all objects. It also works for #!null.

When Scheme code invokes a Java method, any parameter whose type is
java.lang.String is converted as if it was declared as a String.

[Variable]parameter
A parameter object, as created by make-parameter. This type can take a type
parameter (sic):

(define-constant client ::parameter[Client] (make-parameter #!null))

This lets Kawa know that reading the parameter (as in (client)) returns a value of
the specified type (in this case Client).

Chapter 18: Types 297

More will be added later.

A type specifier can also be one of the primitive Java types. The numeric types long,
int, short, byte, float, and double are converted from the corresponding Scheme number
classes. Similarly, char can be converted to and from Scheme characters. The type boolean
matches any object, and the result is false if and only if the actual argument is #f. (The
value #f is identical to Boolean.FALSE, and #t is identical to Boolean.TRUE.) The return
type void indicates that no value is returned.

A type specifier can also be a fully-qualified Java class name (for example
java.lang.StringBuffer). In that case, the actual argument is cast at run time to
the named class. Also, java.lang.StringBuffer[] represents an array of references to
java.lang.StringBuffer objects.

[Variable]dynamic
Used to specify that the type is unknown, and is likely to change at run-time. Warn-
ings about unknown member names are supressed (a run-time name lookup is formed).
An expression of type dynamic is (statically) compatible with any type.

18.2 Parameterized Types

Kawa has some basic support for parameterized (generic) types. The syntax:

Type[Arg1 Arg2 ... ArgN]

is more-or-less equivalent to Java’s:

Type<Arg1, Arg2, ..., ArgN>

This is a work-in-progress. You can use this syntax with fully-qualified class names, and
also type aliases:

(define v1 ::gnu.lists.FVector[gnu.math.IntNum] [4 5 6])

(define-alias fv gnu.lists.FVector)

(define v2 ::fv[integer] [5 6 7])

(define-alias fvi fv[integer])

(define v3 ::fvi [6 7 8])

18.3 Type tests and conversions

Scheme defines a number of standard type testing predicates. For example (vector? x) is
#t if and only if x is a vector.

Kawa generalizes this to arbitrary type names: If T is a type-name (that is in scope at
compile-time), then T? is a one-argument function that returns #t if the argument is an
instance of the type T, and #f otherwise:

(gnu.lists.FVector? #(123)) ⇒ #t

(let ((iarr (int[] 10))) (int[]? iarr)) ⇒ #t

To convert (coerce) the result of an expression value to a type T use the syntax: (->T
value).

(->float 12) ⇒ 12.0f0

In general:

(T? x) ⇒ (instance? x T)

(->T x) ⇒ (as T x)

298

[Procedure]instance? value type
Returns #t iff value is an instance of type type. (Undefined if type is a primitive
type, such as int.)

[Procedure]as type value
Converts or coerces value to a value of type type. Throws an exception if that cannot
be done. Not supported for type to be a primitive type such as int.

19 Object, Classes and Modules

Kawa provides various ways to define, create, and access Java objects. Here are the currently
supported features.

The Kawa module system is based on the features of the Java class system.

[Syntax]this
Returns the "this object" - the current instance of the current class. The current
implementation is incomplete, not robust, and not well defined. However, it will have
to do for now. Note: "this" is a macro, not a variable, so you have to write it using
parentheses: ‘(this)’. A planned extension will allow an optional class specifier
(needed for nested clases).

19.1 Defining new classes

Kawa provides various mechanisms for defining new classes. The define-class and
define-simple-class forms will usually be the preferred mechanisms. They have
basically the same syntax, but have a couple of differences. define-class allows multiple
inheritance as well as true nested (first-class) class objects. However, the implementation
is more complex: code using it is slightly slower, and the mapping to Java classes is a
little less obvious. (Each Scheme class is implemented as a pair of an interface and an
implementation class.) A class defined by define-simple-class is slightly more efficient,
and it is easier to access it from Java code.

The syntax of define-class are mostly compatible with that in the Guile and Stk
dialects of Scheme.

[Syntax]define-class class-name (supers ...) (annotation|option-pair)*

field-or-method-decl ...
[Syntax]define-simple-class class-name (supers ...)

(annotation|option-pair)* field-or-method-decl ...
Defines a new class named class-name. If define-simple-class is used, creates
a normal Java class named class-name in the current package. (If class-name has
the form <xyz> the Java implementation type is named xyz.) For define-class

the implementation is unspecified. In most cases, the compiler creates a class pair,
consisting of a Java interface and a Java implementation class.

class-name ::= identifier
option-pair ::= option-keyword option-value
field-or-method-decl ::= field-decl | method-decl

Chapter 19: Object, Classes and Modules 299

19.1.1 General class properties

The class inherits from the classes and interfaces listed in supers. This is a list of names of
classes that are in scope (perhaps imported using require), or names for existing classes or
interfaces optionally surrounded by <>, such as <gnu.lists.Sequence>. If define-simple-
class is used, at most one of these may be the name of a normal Java class or classes
defined using define-simple-class; the rest must be interfaces or classes defined using
define-class. If define-class is used, all of the classes listed in supers should be inter-
faces or classes defined using define-class.

interface: make-interface
Specifies whether Kawa generates a Java class, interface, or both. If make-
interface is #t, then a Java interface is generated. In that case all the supertypes
must be interfaces, and all the declared methods must be abstract. If make-
interface is #f, then a Java class is generated. If interface: is unspecified, the
default is #f for define-simple-class. For define-class the default is to
generate an interface, and in addition (if needed) a helper class that implements
the interface. (In that case any non-abstract methods are compiled to static
methods. The methods that implement the interface are just wrapper methods
that call the real static methods. This allows Kawa to implement true multiple
inheritance.)

access: kind
Specifies the Java access permission on the class. Can be one of 'public (which
is the default in Kawa), 'package (which the default "unnamed" permission
in Java code), 'protected, 'private, 'volatile, or 'transient. Can also
be used to specify final, abstract, or enum, as in Java. (You don’t need to
explicitly specify the class is abstract if any method-body is #!abstract, or
you specify interface: #t.) The kind can also be a list, as for example:

access: '(protected volatile)

class-name: "cname"
Specifies the Java name of the created class. The name specified after
define-class or define-simple-class is the Scheme name, i.e. the name
of a Scheme variable that is bound to the class. The Java name is by default
derived from the Scheme name, but you can override the default with a
class-name: specifier. If the cname has no periods, then it is a name in
the package of the main (module) class. If the cname starts with a period,
then you get a class nested within the module class. In this case the actual
class name is moduleClass$rname, where rname is cname without the initial
period. To force a class in the top-level (unnamed) package (something not
recommended) write a period at the end of the cname.

19.1.2 Declaring fields

field-decl ::= (field-name (annotation | opt-type-specifier | field-option)*)
field-name ::= identifier
field-option ::= keyword expression

As a matter of style the following order is suggested, though this not enforced:

(field-name annotation* opt-type-specifier field-option*)

Chapter 19: Object, Classes and Modules 300

Each field-decl declares a instance "slot" (field) with the given field-name. By default it
is publicly visible, but you can specify a different visiblity with the access: specifier. The
following field-option keywords are implemented:

type: type Specifies that type is the type of (the values of) the field. Equivalent to ‘::
type’.

allocation: kind
If kind is 'class or 'static a single slot is shared between all instances of the
class (and its sub-classes). Not yet implemented for define-class, only for
define-simple-class. In Java terms this is a static field.

If kind is 'instance then each instance has a separate value "slot", and they
are not shared. In Java terms, this is a non-static field. This is the default.

access: kind
Specifies the Java access permission on the field. Can be one of 'private,
'protected, 'public (which is the default in Kawa), or 'package (which the
default "unnamed" permission in Java code). Can also be used to specify
volatile, transient, enum, or final, as in Java, or a quoted list with these
symbols.

init: expr An expression used to initialize the slot. The expression is evaluated in a scope
that includes the field and method names of the current class.

init-form: expr
An expression used to initialize the slot. The lexical environment of the expr
is that of the define-class; it does not include the field and method names
of the current class. or define-simple-class.

init-value: value
A value expression used to initialize the slot. For now this is synonymous with
init-form:, but that may change (depending on what other implementation do),
so to be safe only use init-value: with a literal.

init-keyword: name:
A keyword that that can be used to initialize instance in make calls. For now,
this is ignored, and name should be the same as the field’s field-name.

The field-name can be left out. That indicates a "dummy slot", which is useful for
initialization not tied to a specific field. In Java terms this is an instance or static initializer,
i.e., a block of code executed when a new instance is created or the class is loaded.

In this example, x is the only actual field. It is first initialized to 10, but if
(some-condition) is true then its value is doubled.

(define-simple-class <my-class> ()

(allocation: 'class

init: (perform-actions-when-the-class-is-initizalized))

(x init: 10)

(init: (if (some-condition) (set! x (* x 2)))))

Chapter 19: Object, Classes and Modules 301

19.1.3 Declaring methods

method-decl ::= ((method-name formal-arguments)
method-option * [deprecated-return-specifier] method-body)

method-name ::= identifier
method-option ::= annotation | opt-return-type | option-pair
method-body ::= body | #!abstract | #!native
deprecated-return-specifier ::= identifier

Each method-decl declares a method, which is by default public and non-static, and
whose name is method-name. (If method-name is not a valid Java method name, it is
mapped to something reasonable. For example foo-bar? is mapped to isFooBar.) The
types of the method arguments can be specified in the formal-arguments. The return type
can be specified by a opt-return-type, deprecated-return-specifier, or is otherwise the type
of the body. Currently, the formal-arguments cannot contain optional, rest, or keyword pa-
rameters. (The plan is to allow optional parameters, implemented using multiple overloaded
methods.)

A method-decl in a define-simple-class can have the following option-keywords:

access: kind
Specifies the Java access permission on the method. Can be one of 'private,
'protected, 'public, or 'package. Can also be 'synchronized, 'final,
'strictfp, or a quoted list.

allocation: kind
If kind is 'class or 'static creates a static method.

throws: (exception-class-name ...)
Specifies a list of checked exception that the method may throw. Equivalent to
a throws specification in Java code. For example:

(define-simple-class T

(prefix)

((lookup name) throws: (java.io.FileNotFoundException)

(make java.io.FileReader (string-append prefix name))))

The scope of the body of a method includes the field-decls and method-decls of the class,
including those inherited from superclasses and implemented interfaces.

If the method-body is the special form #!abstract, then the method is abstract. This
means the method must be overridden in a subclass, and you’re not allowed to create an
instance of the enclosing class.

(define-simple-class Searchable () interface: #t

((search value) :: boolean #!abstract))

If the method-body is the special form #!native, then the method is native, imple-
mented using JNI (http://en.wikipedia.org/wiki/Java_Native_Interface).

The special method-name ‘*init*’ can be used to name a non-default constructor (only
if make-interface discussed above is #f). It can be used to initialize a freshly-allocated
instance using passed-in parameters. You can call a superclass or a sibling constructor
using the invoke-special special function. (This is general but admittedly a bit verbose;
a more compact form may be added in the future.) See the example below.

http://en.wikipedia.org/wiki/Java_Native_Interface

Chapter 19: Object, Classes and Modules 302

19.1.4 Example

In the following example we define a simple class 2d-vector and a class 3d-vector that
extends it. (This is for illustration only - defining 3-dimensional points as an extension of
2-dimensional points does not really make sense.)

(define-simple-class 2d-vector ()

(x ::double init-keyword: x:)

;; Alternative type-specification syntax.

(y type: double init-keyword: y:)

(zero-2d :: 2d-vector allocation: 'static

init-value: (2d-vector 0))

;; An object initializer (constructor) method.

((*init* (x0 ::double) (y0 ::double))

(set! x x0)

(set! y y0))

((*init* (xy0 ::double))

;; Call above 2-argument constructor.

(invoke-special 2d-vector (this) '*init* xy0 xy0))

;; Need a default constructor as well.

((*init*) #!void)

((add (other ::2d-vector)) ::2d-vector

;; Kawa compiles this using primitive Java types!

(2d-vector

x: (+ x other:x)

y: (+ y other:y)))

((scale (factor ::double)) ::2d-vector

(2d-vector x: (* factor x) y: (* factor y))))

(define-simple-class 3d-vector (2d-vector)

(z type: double init-value: 0.0 init-keyword: z:)

;; A constructor which calls the superclass constructor.

((*init* (x0 ::double) (y0 ::double) (z0 ::double))

(invoke-special 2d-vector (this) '*init* x0 y0)

(set! z z0))

;; Need a default constructor.

((*init*) #!void)

((scale (factor ::double)) ::2d-vector

;; Note we cannot override the return type to 3d-vector

;; because Kawa doesn't yet support covariant return types.

(3d-vector

x: (* factor x)

y: (* factor (this):y) ;; Alternative syntax.

z: (* factor z))))

Note we define both explicit non-default constructor methods, and we associate fields
with keywords, so they can be named when allocating an object. Using keywords requires
a default constructor, and since having non-default constructors suppresses the implicit

Chapter 19: Object, Classes and Modules 303

default constructor we have to explicitly define it. Using both styles of constructors is
rather redundant, though.

19.2 Anonymous classes

[Syntax]object (supers ...) field-or-method-decl ...
Returns a new instance of an anonymous (inner) class. The syntax is similar to
define-class.

object-field-or-method-decl ::= object-field-decl | method-decl
object-field-decl ::= (field-name (annotation | opt-type-specifier | field-option)* [object-
init])
object-init ::= expression

Returns a new instance of a unique (anonymous) class. The class inherits from the list
of supers, where at most one of the elements should be the base class being extended
from, and the rest are interfaces.

This is roughly equivalent to:

(begin

(define-simple-class hname (supers ...) field-or-method-decl ...)

(make hname))

A field-decl is as for define-class, except that we also allow an abbreviated syntax.
Each field-decl declares a public instance field. If object-finit is given, it is an expres-
sion whose value becomes the initial value of the field. The object-init is evaluated
at the same time as the object expression is evaluated, in a scope where all the
field-names are visible.

A method-decl is as for define-class.

19.2.1 Lambda as shorthand for anonymous class

An anonymous class is commonly used in the Java platform where a function language
would use a lambda expression. Examples are call-back handlers, events handlers, and run

methods. In these cases Kawa lets you use a lambda expression as a short-hand for an
anonymous class. For example:

(button:addActionListener

(lambda (e) (do-something)))

is equivalent to:

(button:addActionListener

(object (java.awt.event.ActionListener)

((actionPerformed (e ::java.awt.event.ActionEvent))::void

(do-something))))

This is possible when the required type is an interface or abstract class with a Single
(exactly one) Abstract Methods. Such a class is sometimes called a SAM-type, and the
conversion from a lambda expression to an anonymous class is sometimes called SAM-
conversion.

Note that Kawa can also infer the parameter and return types of a method that overrides
a method in a super-class.

Chapter 19: Object, Classes and Modules 304

19.3 Enumeration types

An enumeration type is a set of named atomic enumeration values that are distinct from
other values. You define the type using define-enum, and you reference enumeration values
using colon notation:

(define-enum colors (red blue green))

(define favorite-color colors:green)

Displaying an enum just prints the enum name, but readable output using write (or the
~s format specifier) prepends the type name:

(format "~a" favorite-color) ⇒ "green"

(format "~s" favorite-color) ⇒ "colors:green"

The static values method returns a Java array of the enumeration values, in declaration
order, while ordinal yields the index of an enumeration value:

(colors:values) ⇒ [red blue green]

((colors:values) 1) ⇒ blue

(favorite-color:ordinal) ⇒ 2

If you invoke the enumeration type as a function, it will map the name (as a string) to
the corresponding value. (This uses the valueOf method.)

(colors "red") ⇒ red

(colors "RED") ⇒ throws IllegalArgumentException

(eq? favorite-color (colors:valueOf "green")) ⇒ #t

Kawa enumerations are based on Java enumerations. Thus the above is similar to a
Java5 enum declaration, and the type colors above extends java.lang.Enum.

[Syntax]define-enum enum-type-name option-pair... (enum-value-name ...)
field-or-method-decl...

This declares a new enumeration type enum-type-name, whose enumerations values
are the enum-value-name list. You can specify extra options and members using
option-pair and field-or-method-decl, which are as in define-simple-class.
(The define-enum syntax is similar to a define-simple-class that extends
java.lang.Enum.)

(Note that R6RS has a separate Enumerations library (rnrs enum). Unfortunately, this
is not compatible with standard Java enums. R6RS enums are simple symbols, which means
you cannot distinguish two enum values from different enumeration types if they have the
same value, nor from a vanilla symbol. That makes them less useful.)

19.4 Annotations of declarations

The Java platform lets you associate with each declaration zero or more annotations
(http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.
html). They provide an extensible mechanism to associate properties with declarations.
Kawa support for annotations is not complete (the most important functionality missing is
being able to declare annotation types), but is fairly functional. Here is a simple example
illustrating use of JAXB annotations (http://jcp.org/en/jsr/detail?id=222): an
XmlRootElement annotation on a class, and an XmlElement annotation on a field:

(import (class javax.xml.bind.annotation XmlRootElement XmlElement))

http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://jcp.org/en/jsr/detail?id=222

Chapter 19: Object, Classes and Modules 305

(define-simple-class Bib () (@XmlRootElement name: "bib")

(books (@XmlElement name: "book" type: Book) ::java.util.ArrayList))

(define-simple-class Book () ...)

This tutorial (http://per.bothner.com/blog/2011/Using-JAXB-annotations) ex-
plains the JAXB example in depth.

Here is the syntax:

annotation ::= (@annotation-typename annotations-element-values)
annotations-element-values ::= annotation-element-value
| annotation-element-pair ...

annotation-element-pair ::= keyword annotation-element-value
annotation-element-value ::= expression
annotation-typename ::= expression

An annotations-element-values consisting of just a single annotation-element-value is
equivalent to an annotation-element-pair with a value: keyword.

Each keyword must correspond to the name of an element (a zero-argument method)
in the annotation type. The corresponding annotation-element-value must be compatible
with the element type (return type of the method) of the annotation type.

Allowed element types are of the following kinds:

• Primitive types, where the annotation-element-value must be number or boolean co-
ercible to the element type.

• Strings, where the annotation-element-value is normally a string literal.

• Classes, where the annotation-element-value is normally a classname.

• Enumeration types. The value usually has the form ClassName:enumFieldname.

• Nested annotation types, where the annotation-element-value must be a compatible
annotation value.

• An array of one of the allowable types. An array constructor expression works, but
using the square bracket syntax is recommended.

Annotations are usually used in declarations, where they are required to be “constant-
folded” to compile-time constant annotation values. This is so they can be written to class
files. However, in other contexts an annotation can be used as an expression with general
sub-expressions evaluated at run-time:

(define bk-name "book")

(define be (@XmlElement name: bk-name type: Book))

(be:name) ⇒ "book"

(This may have limited usefulness: There are some bugs, including lack of support for
default values for annotation elements. These bugs can be fixed if someone reports a need
for runtime construction of annotation values.)

19.5 Modules and how they are compiled to classes

Modules provide a way to organize Scheme into reusable parts with explicitly defined inter-
faces to the rest of the program. A module is a set of definitions that the module exports,
as well as some actions (expressions evaluated for their side effect). The top-level forms in
a Scheme source file compile a module; the source file is the module source. When Kawa

http://per.bothner.com/blog/2011/Using-JAXB-annotations

Chapter 19: Object, Classes and Modules 306

compiles the module source, the result is the module class. Each exported definition is
translated to a public field in the module class.

19.5.1 Name visibility

The definitions that a module exports are accessible to other modules. These are the
"public" definitions, to use Java terminology. By default, all the identifiers declared at
the top-level of a module are exported, except those defined using define-private. (If
compiling with the --main flag, then by default no identifiers are exported.) However, a
major purpose of using modules is to control the set of names exported. One reason is to
reduce the chance of accidental name conflicts between separately developed modules. An
even more important reason is to enforce an interface: Client modules should only use the
names that are part of a documented interface, and should not use internal implementation
procedures (since those may change).

If there is a module-export (or export) declaration in the module, then only those
names listed are exported. There can be more than one module-export, and they can be
anywhere in the Scheme file. The recommended style has a single module-export near the
beginning of the file.

[Syntax]module-export export-spec*

[Syntax]export export-spec*

The forms export and module-export are equivalent. (The older Kawa name is
module-export; export comes from R7RS.) Either form specifies a list of identifiers
which can be made visible to other libraries or programs.

export-spec ::= identifier
| (rename identifier1 identifier2)

In the former variant, an identifier names a single binding defined within or imported
into the library, where the external name for the export is the same as the name of
the binding within the library. A rename spec exports the binding defined within or
imported into the library and named by identifier1, using identifier2 as the external
name.

Note that it is an error if there is no definition for identifier (or identifier1) in the
current module, or if it is defined using define-private.

As a matter of style, export or module-export should appear after module-name

but before other commands (including import or require). (This is a requirement if
there are any cycles.)

In this module, fact is public and worker is private:

(module-export fact)

(define (worker x) ...)

(define (fact x) ...)

Alternatively, you can write:

(define-private (worker x) ...)

(define (fact x) ...)

Chapter 19: Object, Classes and Modules 307

19.5.2 R7RS explicit library modules

A R7RS define-library form is another way to create a module. The R7RS term li-
brary is roughly the same as a Kawa module. In Kawa, each source file is a [implicit
library], page 117, which may contain zero or more explicit sub-modules (in the form of
define-library) optionally followed by the definitions and expressions of the implicit (file-
level) module.

[Syntax]define-library library-name library-declaration*

library-name ::= (library-name-parts)
library-name-parts ::= identifier+

A library-name is a list whose members are identifiers and exact non-negative integers.
It is used to identify the library uniquely when importing from other programs or libraries.
Libraries whose first identifier is scheme are reserved for use by the R7RS report and future
versions of that report. Libraries whose first identifier is srfi are reserved for libraries
implementing Scheme Requests for Implementation (http://srfi.schemer.org/). It is
inadvisable, but not an error, for identifiers in library names to contain any of the characters
| \ ? * < " : > + [] / . or control characters after escapes are expanded.

See [module-name], page 308, for how a library-name is mapped to a class name.

library-declaration ::=

export-declaration
| import-declaration
| (begin statement *)
| (include filename +)
| (include-ci filename +)
| (include-library-declarations filename +)
| (cond-expand cond-expand-clause * [(else command-or-definition*)])
| statement

The begin, include, and include-ci declarations are used to specify the body of the
library. They have the same syntax and semantics as the corresponding expression types.
This form of begin is analogous to, but not the same as regular begin. A plain statement
(which is allowed as a Kawa extension) is also part of the body of the library, as if it were
wrapped in a begin).

The include-library-declarations declaration is similar to include except that the
contents of the file are spliced directly into the current library definition. This can be used,
for example, to share the same export declaration among multiple libraries as a simple
form of library interface.

The cond-expand declaration has the same syntax and semantics as the cond-expand

expression type, except that it expands to spliced-in library declarations rather than ex-
pressions enclosed in begin.

When a library is loaded, its expressions are executed in textual order. If a library’s
definitions are referenced in the expanded form of a program or library body, then that
library must be loaded before the expanded program or library body is evaluated. This rule
applies transitively. If a library is imported by more than one program or library, it may
possibly be loaded additional times.

http://srfi.schemer.org/

Chapter 19: Object, Classes and Modules 308

Similarly, during the expansion of a library (foo), if any syntax keywords imported from
another library (bar) are needed to expand the library, then the library (bar) must be
expanded and its syntax definitions evaluated before the expansion of (foo).

Regardless of the number of times that a library is loaded, each program or library that
imports bindings from a library must do so from a single loading of that library, regardless
of the number of import declarations in which it appears. That is, (import (only (foo)

a)) followed by (import (only (foo) b)) has the same effect as (import (only (foo) a

b)).

19.5.3 How a module becomes a class

If you want to just use a Scheme module as a module (i.e. load or require it), you don’t
care how it gets translated into a module class. However, Kawa gives you some control over
how this is done, and you can use a Scheme module to define a class which you can use with
other Java classes. This style of class definition is an alternative to define-class, which
lets you define classes and instances fairly conveniently.

The default name of the module class is the main part of the filename of the Scheme
source file (with directories and extensions stripped off). That can be overridden by the -T
Kawa command-line flag. The package-prefix specified by the -P flag is prepended to give
the fully-qualified class name.

[Syntax]module-name name
[Syntax]module-name <name>
[Syntax]module-name library-name

Sets the name of the generated class, overriding the default. If there is no ‘.’ in the
name, the package-prefix (specified by the -P Kawa command-line flag) is prepended.

If the form library-name is used, then the class name is the result of taking each
identifier in the library-name-parts, Section 19.12 [Mangling], page 330, if needed, and
concatenating them separated by periods. For example (org example doc-utils)

becomes org.example.doc-utils. (You can’t reference the class name doc-utils

directly in Java, but the JVM has no problems with it. In Java you can use reflection
to access classes with such names.)

As a matter of style, module-name should be the first command in a file (after possible
comments). It must appear before a require or import, in case of cycles.

By default, the base class of the generated module class is unspecified; you cannot count
on it being more specific than Object. However, you can override it with module-extends.

[Syntax]module-extends class
Specifies that the class generated from the immediately surrounding module should
extend (be a sub-class of) the class class.

[Syntax]module-implements interface ...
Specifies that the class generated from the immediately surrounding module should
implement the interfaces listed.

Note that the compiler does not currently check that all the abstract methods requires
by the base class or implemented interfaces are actually provided, and have the correct

Chapter 19: Object, Classes and Modules 309

signatures. This will hopefully be fixed, but for now, if you are forgot a method, you will
probably get a verifier error

For each top-level exported definition the compiler creates a corresponding public field
with a similar (mangled) name. By default, there is some indirection: The value of the
Scheme variable is not that of the field itself. Instead, the field is a gnu.mapping.Location

object, and the value Scheme variable is defined to be the value stored in the Location.
Howewer, if you specify an explicit type, then the field will have the specified type, in-
stead of being a Location. The indirection using Location is also avoided if you use
define-constant.

If the Scheme definition defines a procedure (which is not re-assigned in the module),
then the compiler assumes the variable as bound as a constant procedure. The compiler
generates one or more methods corresponding to the body of the Scheme procedure. It
also generates a public field with the same name; the value of the field is an instance of a
subclass of <gnu.mapping.Procedure> which when applied will execute the correct method
(depending on the actual arguments). The field is used when the procedure used as a value
(such as being passed as an argument to map), but when the compiler is able to do so, it
will generate code to call the correct method directly.

You can control the signature of the generated method by declaring the parameter types
and the return type of the method. See the applet (see Section 6.5.5 [Applet compilation],
page 104) example for how this can be done. If the procedures has optional parameters,
then the compiler will generate multiple methods, one for each argument list length. (In
rare cases the default expression may be such that this is not possible, in which case an
"variable argument list" method is generated instead. This only happens when there is a
nested scope inside the default expression, which is very contrived.) If there are #!keyword
or #!rest arguments, the compiler generate a "variable argument list" method. This is
a method whose last parameter is either an array or a <list>, and whose name has $V

appended to indicate the last parameter is a list.

Top-leval macros (defined using either define-syntax or defmacro) create a field whose
type is currently a sub-class of kawa.lang.Syntax; this allows importing modules to detect
that the field is a macro and apply the macro at compile time.

Unfortunately, the Java class verifier does not allow fields to have arbitrary names.
Therefore, the name of a field that represents a Scheme variable is "mangled" (see
Section 19.12 [Mangling], page 330) into an acceptable Java name. The implementation
can recover the original name of a field X as ((gnu.mapping.Named) X).getName()

because all the standard compiler-generated field types implement the Named interface.

19.5.4 Same class for module and defined class

You can declare a class using define-simple-class with the same name as the module
class, for example the following in a file named foo.scm:

(define-simple-class foo ...)

In this case the defined class will serve dual-purpose as the module class.

To avoid confusion, in this case you must not specify module-extends,
module-implements, or (module-static #t). Also, the defined class should not have
public static members. In that case it works out pretty well: public static members

Chapter 19: Object, Classes and Modules 310

represent bindings exported by the module; other non-private members “belong” to the
defined class.

In this case (module-static 'init-run) is implied.

19.5.5 Static vs non-static modules

There are two kinds of module class: A static module is a class (or gets compiled to a
class) all of whose public fields are static, and that does not have a public constructor. A
JVM can only have a single global instance of a static module. An instance module has
a public default constructor, and usually has at least one non-static public field. There
can be multiple instances of an instance module; each instance is called a module instance.
However, only a single instance of a module can be registered in an environment, so in
most cases there is only a single instance of instance modules. Registering an instance in
an environment means creating a binding mapping a magic name (derived from the class
name) to the instance.

In fact, any Java class class that has the properties of either an instance module or a
static module, is a module, and can be loaded or imported as such; the class need not have
written using Scheme.

You can control whether a module is compiled to a static or a non-static class using
either a command-line flag to the compiler, or using the module-static special form.

--module-static

Generate a static module (as if (module-static #t) were specified). This is
(now) the default.

--module-nonstatic

--no-module-static

Generate a non-static module (as if (module-static #f) were specified). This
used to be the default.

--module-static-run

Generate a static module (as if (module-static 'init-run) were specified).

[Syntax]module-static name ...
[Syntax]module-static #t
[Syntax]module-static #f
[Syntax]module-static 'init-run

Control whether the generated fields and methods are static. If #t or 'init-run is
specified, then the module will be a static module, all definitions will be static. If
'init-run is specified, in addition the module body is evaluated in the class’s static
initializer. (Otherwise, it is run the first time it is require’d.) Otherwise, the module
is an instance module. If there is a non-empty list of names then the module is an
instance module, but the names that are explicitly listed will be compiled to static
fields and methods. If #f is specified, then all exported names will be compiled to
non-static (instance) fields and methods.

By default, if no module-static is specified:

1. If there is a module-extends or module-implements declaration, or one of the
--applet or --servlet command-line flags was specified, then (module-static

#f) is implied.

Chapter 19: Object, Classes and Modules 311

2. If one of the command-line flags --no-module-static, --module-nonstatic,
--module-static, or --module-static-run was specified, then the default is
#f, #f, #t, or 'init-run, respectively.

3. If the module class is [dual-purpose-class], page 309, then (module-static

'init-run) is implied.

4. Otherwise the default is (module-static #t). (It used to be (module-static

#f) in older Kawa versions.)

The default is (module-static #t). It usually produces more efficient code, and is
recommended if a module contains only procedure or macro definitions. However, a
static module means that all environments in a JVM share the same bindings, which
you may not want if you use multiple top-level environments.

The top-level actions of a module will get compiled to a run method. If there is
an explicit method-extends, then the module class will also automatically implement
java.lang.Runnable. (Otherwise, the class does not implement Runnable, since in that
case the run method return an Object rather than void. This will likely change.)

19.5.6 Module options

Certain compilation options can be be specified either on the command-line when compiling,
or in the module itself.

[Syntax]module-compile-options [key: value] ...
This sets the value of the key option to value for the current module (source file).
It takes effect as soon it is seen during the first macro-expansion pass, and is active
thereafter (unless overridden by with-compile-options).

The key: is one of the supported option names (The ending colon makes it a Kawa
keyword). Valid option keys are:

• main: - Generate an application, with a main method.

• full-tailcalls: - Use a calling convention that supports proper tail recursion.

• warn-undefined-variable: - Warn if no compiler-visible binding for a variable.

• warn-unknown-member: - Warn if referencing an unknown method or field.

• warn-invoke-unknown-method: - Warn if invoke calls an unknown method (sub-
sumed by warn-unknown-member).

• warn-unused: - Warn if a variable is usused or code never executed.

• warn-uninitialized: - Warn if accessing an uninitialized variable.

• warn-unreachable: - Warn if this code can never be executed.

• warn-void-used: - Warn if an expression depends on the value of a void sub-
expression (one that never returns a value).

• warn-as-error: - Treat a compilation warning as if it were an error.

The value must be a literal value: either a boolean (#t or #f), a number, or a string,
depending on the key. (All the options so far are boolean options.)

(module-compile-options warn-undefined-variable: #t)

;; This causes a warning message that y is unknown.

(define (func x) (list x y))

Chapter 19: Object, Classes and Modules 312

[Syntax]with-compile-options [key: value] ... body
Similar to module-compile-options, but the option is only active within body.

The module option key main: has no effect when applied to a particular body via the
with-compile-options syntax.

(define (func x)

(with-compile-options warn-invoke-unknown-method: #f

(invoke x 'size)))

19.6 Importing from a library

You can import a module into the current namespace with import or require. This adds
the exported bindings (or a subset of them) to the current lexical scope. It follows that
these bindings (which are said to be imported) are determined at compile-time.

[Syntax]import import-set*

An import declaration provides a way to import identifiers exported by a library
(module). Each import-set names a set of bindings from a library and possibly spec-
ifies local names for the imported bindings.

import-set ::=
classname

| library-reference
| (library library-reference)
| (class class-prefix import-only-name*)
| (only import-set import-only-name*)
| (except import-set identifier*)
| (prefix import-set identifier)
| (rename import-set rename-pair *)

library-reference ::= (library-name-parts [explicit-source-name])
import-only-name ::= identifier|rename-pair
explicit-source-name ::= string
rename-pair ::= (identifier1 identifier2)

A library-reference is mapped to a class name by concatenating all the identifiers,
separated by dots. For example:

(import (gnu kawa slib srfi37))

is equivalent to:

(import gnu.kawa.slib.srfi37)

as well as to:

(require gnu.kawa.slib.srfi37)

By default, all of an imported library’s exported bindings are made visible within
an importing library using the names given to the bindings by the imported library.
The precise set of bindings to be imported and the names of those bindings can be
adjusted with the only, except, prefix, and rename forms as described below.

• An only form produces a subset of the bindings from another import-set, includ-
ing only the listed identifiers. The included identifiers must be in the original

Chapter 19: Object, Classes and Modules 313

import-set. If a rename-pair is used, then the identifier1 must be in the orig-
inal import-set, and is renamed to identifier2. For example:

(import (only (kawa example) A (B1 B2) C (D1 D2)))

is equivalent to:

(import (rename (only (kawa example) A B1 C D1)

(B1 B2) (D1 D2)))

The names A, B1, C, and D1 must exist in the library (kawa example). The
bindings are accessible using the names A, B2, C, and D2.

• An except form produces a subset of the bindings from another import-set,
including all but the listed identifiers. All of the excluded identifiers must be in
the original import-set.

• A prefix form adds the identifier prefix to each name from another import-set.

• A rename form:

(rename (identifier1 identifier2) ...)

removes the bindings for identifier1 ... to form an intermediate import-set,
then adds the bindings back for the corresponding identifier2 ... to form the
final import-set. Each identifier1 must be in the original import-set, each
identifier2 must not be in the intermediate import-set, and the identifier2s must
be distinct.

A class form is a convenient way to define abbreviations for class names; it may
be more convenient than define-alias. The class-prefix is concatenated with each
identifier (with a period in between) to produce a classname. Each identifier becomes
an alias for the class. For example:

(import (class java.util Map (HashMap HMap)))

This defines Map as an alias for java.util.Map, and HMap as an alias for
java.util.HashMap. (You can think of the class form as similar to a only form,
where the class-prefix names a special kind of library represented of a Java package,
and whose exported bindings are the classes in the package.)

You can combine the class form with only, except, rename, and prefix, though
only prefix is likely to be useful. For example:

(import (prefix (class java.lang Long Short) jl-))

is equivalent to

(import (class java.lang (Long jl-Long) (Short jl-Short)))

which is equivalent to:

(define-private-alias jl-Short java.lang.Short)

(define-private-alias jl-Long java.lang.Long)

[Syntax]require flfeatureName
[Syntax]require classname [explicit-source-name]
[Syntax]require explicit-source-name]

Search for a matching module (class), and add the names exported by that module to
the current set of visible names. Normally, the module is specified using classname.

Chapter 19: Object, Classes and Modules 314

The form require has similar functionality as import, but with a different syntax,
and without options like rename.

If a "sourcepath" is specified then that is used to locate the source file for the module,
and if necessary, compile it.

If a 'featurename is specified then the featurename is looked up (at compile time)
in the "feature table" which yields the implementing classname.

[Syntax]provide flfeaturename
Declare that 'featurename is available. A following cond-expand in this scope will
match featurename.

Using require and provide with featurenames is similar to the same-named macros in
SLib, Emacs, and Common Lisp. However, in Kawa these are not functions, but instead they
are syntax forms that are processed at compile time. That is why only quoted featurenames
are supported. This is consistent with Kawa emphasis on compilation and static binding.

For some examples, you may want to look in the gnu/kawa/slib directory.

19.6.1 Searching for modules

When Kawa sees a import or require it searches for either a matching source file or a
previously-compiled class with a matching name.

For import we generate a classname by converting it in the same way module-name does:
taking each identifier in the library-name-parts, mangling if needed, and concatenating the
parts separated by periods.

If there is a matching module in any program-unit that is in the process of being com-
piled, we use that. This may be a file requested to be compiled with the -C command-line
switch, or an extra library-definition in a file already parsed. Kawa will attempt to finish
compiling the module and load the class, but if there are circular dependencies it will use
the uncompiled definitions.

Next Kawa looks for a matching class in the context classpath. (There is special han-
dling if the library-name starts with srfi, and certain builtin classes will have kawa.lib.

prepended.)

Kawa also searches for a matching source file, described below. It uses the implicit
source name (formed by concatenating the library-name parts, separated by "/"), as well
as any explicit-source-name. The source file is parsed as a program-unit. It is an error if
the program-unit does not declare a library (explicit or implicit) with the matching name.

If Kawa finds both a matching source file and a class, it will pick one based on which is
newer.

19.6.2 Searching for source files

The Java property kawa.import.path controls how import and require search for a suit-
able source file. Example usage:

$ kawa -Dkawa.import.path=".:<foo fo>/opt/fo-libs/*.scm:/usr/local/kawa"

The value of the kawa.import.path property is a list of path elements, separated by
":". Each path element is combined with either the explicit source name or the implicit

Chapter 19: Object, Classes and Modules 315

source name to produce a filename. If a matching file exists, then we have found a source
file.

If a path element contains a "*" then the "*" is replaced by the implicit source
name (without an extension). (Any explicit source name is ignored in this case.) For
example, for (import (foo bar)) or (require foo.bar) the implicit source name is
"foo/bar". If the path element is "/opt/kawa/*.sc" then the resulting filename is
"/opt/kawa/foo/bar.sc".

If there is no "*" in the path element, and there is an explicit source, then it is appended
to the path element (or replaces the path element if the explicit source is absolute). Oth-
erwise we use the implicit source, followed by the default file extension. (The default file
extension is that of the current source if that is a named file; otherwise the default for the
current language, which is ".scm" for Scheme.)

A path element that starts with a selector of the form "<library-name-parts>" is only
applicable if a prefix of the requested module name matches the library-name-parts. If
there is "*" in the path element, that is replaced by the corresponding rest of the implicit
source name. For example if importing (fee fo foo fum) and the path element is "<fee

fo>/opt/fo-libs/*.scm" then the resulting filename is "/opt/fo-libs/foo/fum.scm". If
there is a selector but no "*", then the rest of the path element following the selector is
combined with the explicit or implicit source as if there were no selector (assuming of course
that the selector matches).

If the resulting filename is relative, then it is resolved relative to the current root. For
example the source to a library with the name (x y) that compiles to a class x.y might be
a file named /a/b/x/y.scm. Then the current root would be /a/b/ - that is the directory
that results from removing the library name suffix from the file name.

More generally: assume the current module has N name components. For example the
name (x y) (with the class name x.y) has 2 components. The current root is what you get
when you take the current file name (say "/a/b/c/d.scm"), and remove everything after the
N ’th slash ("/") from the end (say "c/d.scm"; what remains (e.g. "/a/b/" is the current
root. (If the current input source is not a named file, use the value of (current-path) with
a "/" appended.)

The default search path is "." - i.e. just search relative to the current root.

19.6.3 Builtin libraries

The following libraries are bundled with Kawa:

Chapter 19: Object, Classes and Modules 316

(scheme base)

(scheme case-lambda)

(scheme char)

(scheme complex)

(scheme cxr)

(scheme cxr)

(scheme eval)

(scheme inexact)

(scheme lazy)

(scheme load)

(scheme process-context)

(scheme read)

(scheme repl)

(scheme time)

(scheme write)

(scheme r5rs)

The above are standard libraries as defined by R7RS.

(rnrs arithmetic bitwise)

(rnrs hashtables)

(rnrs lists)

(rnrs programs)

(rnrs sorting)

(rnrs unicode)

The above are standard libraries as defined by R6RS.

(kawa reflect)

Defines procedures and syntax for acessing Java objects and members: as field
instance? invoke invoke-static invoke-special make primitive-throw

set-field! set-static-field! static-field

(kawa expressions)

(kawa hashtable)

(kawa quaternions)

(kawa rotations)

(kawa regex)

(kawa string-cursors)

Various Kawa libraries add details.

(kawa base)

All the bindings by default available to the kawa top-level.

19.6.4 Importing a SRFI library

Importing a supported SRFI numbered N is conventionally doing using a (import (srfi

N)) or the older R6RS syntax (import (srfi :N)) (with a colon, for historical reasons).
You can also give it a name, as specified by SRFI 95 (http://srfi.schemers.org/
srfi-95/srfi-95.html). For example, any of these work:

(import (srfi 95))

(import (srfi 95 sorting-and-merging))

http://srfi.schemers.org/srfi-95/srfi-95.html
http://srfi.schemers.org/srfi-95/srfi-95.html

Chapter 19: Object, Classes and Modules 317

(import (srfi :95))

(import (srfi :95 sorting-and-merging))

You can also use (require 'srfi-N):

(require 'srfi-95)

19.6.5 Importing from a plain class

Note you can import from many classes, even if they weren’t compiled from a library-
definition. The set of public fields in a class are considered as the set of exported definitions,
with the names demangled as needed.

The module can be static module (all public fields must be static), or an instance module
(it has a public default constructor).

If an imported definition is a non-static field and if no module instance for that class has
been registered in the current environment, then a new instance is created and registered
(using a "magic" identifier). If the module class either inherits from gnu.expr.ModuleBody

or implements java.lang.Runnable then the corresponding run method is executed. (This
is done after the instance is registered so that cycles can be handled.) These actions
(creating, registering, and running the module instance) are done both at compile time and
at run time, if necessary.

All the imported fields of the module class are then incorporated in the current set of
local visible names in the current module. (This is for both instance and static modules.)
This is done at compile time - no new bindings are created at run-time (except for the magic
binding used to register the module instance), and the imported bindings are private to the
current module. References to the imported bindings will be compiled as field references,
using the module instance (except for static fields).

19.7 Record types

The define-record-type form can be used for creating new data types, called record types.
A predicate, constructor, and field accessors and modifiers are defined for each record type.
The define-record-type feature is specified by SRFI-9 (http://srfi.schemers.org/
srfi-9/srfi-9.html), which is implemented by many modern Scheme implementations.

[Syntax]define-record-type type-name (constructor-name field-tag ...)
predicate-name (field-tag accessor-name [modifier-name]) ...

The form define-record-type is generative: each use creates a new record type
that is distinct from all existing types, including other record types and Scheme’s
predefined types. Record-type definitions may only occur at top-level (there are two
possible semantics for ‘internal’ record-type definitions, generative and nongenerative,
and no consensus as to which is better).

An instance of define-record-type is equivalent to the following definitions:

• The type-name is bound to a representation of the record type itself.

• The constructor-name is bound to a procedure that takes as many arguments as
there are field-tags in the (constructor-name ...) subform and returns a new
type-name record. Fields whose tags are listed with constructor-name have the
corresponding argument as their initial value. The initial values of all other fields
are unspecified.

http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-9/srfi-9.html

Chapter 19: Object, Classes and Modules 318

• The predicate-name is a predicate that returns #t when given a value returned
by constructor-name and #f for everything else.

• Each accessor-name is a procedure that takes a record of type type-name and
returns the current value of the corresponding field. It is an error to pass an
accessor a value which is not a record of the appropriate type.

• Each modifier-name is a procedure that takes a record of type type-name and
a value which becomes the new value of the corresponding field. The result
(in Kawa) is the empty value #!void. It is an error to pass a modifier a first
argument which is not a record of the appropriate type.

Set!ing the value of any of these identifiers has no effect on the behavior of any of
their original values.

Here is an example of how you can define a record type named pare with two fields x
and y:

(define-record-type pare

(kons x y)

pare?

(x kar set-kar!)

(y kdr))

The above defines kons to be a constructor, kar and kdr to be accessors, set-kar! to
be a modifier, and pare? to be a predicate for pares.

(pare? (kons 1 2)) ⇒ #t

(pare? (cons 1 2)) ⇒ #f

(kar (kons 1 2)) ⇒ 1

(kdr (kons 1 2)) ⇒ 2

(let ((k (kons 1 2)))

(set-kar! k 3)

(kar k)) ⇒ 3

Kawa compiles the record type into a nested class. If the define-record-type appears
at module level, the result is a class that is a member of the module class. For example if
the above pare class is define in a module parelib, then the result is a class named pare

with the internal JVM name parelib$pare. The define-record-type can appear inside
a procedure, in which case the result is an inner class.

The nested class has a name derived from the type-name. If the type-name is valid Java
class name, that becomes the name of the Java class. If the type-name has the form <name>

(for example <pare>), then name is used, if possible, for the Java class name. Otherwise,
the name of the Java class is derived by "mangling" the type-name. In any case, the package
is the same as that of the surrounding module.

Kawa generates efficient code for the resulting functions, without needing to use run-time
reflection.

19.8 Creating New Record Types On-the-fly

Calling the make-record-type procedure creates a new record data type at run-time, with-
out any compile-time support. It is primarily provided for compatibility; in most cases it
is better to use the define-record-type form (see Section 19.7 [Record types], page 317).

Chapter 19: Object, Classes and Modules 319

[Procedure]make-record-type type-name field-names
Returns a record-type descriptor, a value representing a new data type disjoint from
all others. The type-name argument must be a string, but is only used for debugging
purposes (such as the printed representation of a record of the new type). The field-
names argument is a list of symbols naming the fields of a record of the new type. It
is an error if the list contains any duplicates.

[Procedure]record-constructor rtd [field-names]
Returns a procedure for constructing new members of the type represented by rtd.
The returned procedure accepts exactly as many arguments as there are symbols in the
given list, field-names; these are used, in order, as the initial values of those fields in a
new record, which is returned by the constructor procedure. The values of any fields
not named in that list are unspecified. The field-names argument defaults to the list
of field names in the call to make-record-type that created the type represented by
rtd; if the field-names argument is provided, it is an error if it contains any duplicates
or any symbols not in the default list.

[Procedure]record-predicate rtd
Returns a procedure for testing membership in the type represented by rtd. The
returned procedure accepts exactly one argument and returns a true value if the
argument is a member of the indicated record type; it returns a false value otherwise.

[Procedure]record-accessor rtd field-name
Returns a procedure for reading the value of a particular field of a member of the type
represented by rtd. The returned procedure accepts exactly one argument which must
be a record of the appropriate type; it returns the current value of the field named by
the symbol field-name in that record. The symbol field-name must be a member of the
list of field-names in the call to make-record-type that created the type represented
by rtd.

[Procedure]record-modifier rtd field-name
Returns a procedure for writing the value of a particular field of a member of the type
represented by rtd. The returned procedure accepts exactly two arguments: first, a
record of the appropriate type, and second, an arbitrary Scheme value; it modifies
the field named by the symbol field-name in that record to contain the given value.
The returned value of the modifier procedure is unspecified. The symbol field-name
must be a member of the list of field-names in the call to make-record-type that
created the type represented by rtd.

[Procedure]record? obj
Returns a true value if obj is a record of any type and a false value otherwise.

[Procedure]record-type-descriptor record
Returns a record-type descriptor representing the type of the given record. That
is, for example, if the returned descriptor were passed to record-predicate, the
resulting predicate would return a true value when passed the given record.

Chapter 19: Object, Classes and Modules 320

[Procedure]record-type-name rtd
Returns the type-name associated with the type represented by rtd. The returned
value is eqv? to the type-name argument given in the call to make-record-type that
created the type represented by rtd.

[Procedure]record-type-field-names rtd
Returns a list of the symbols naming the fields in members of the type represented
by rtd. The returned value is equal? to the field-names argument given in the call
to make-record-type that created the type represented by rtd.

Records are extensions of the class Record. These procedures use the Java 1.1 reflection
facility.

19.9 Calling Java methods from Scheme

You can call a Java method as if it were a Scheme procedure using various mechanisms.

19.9.1 Calling static methods using colon notation

The easiest way to invoke a static method is to use Section 7.7 [Colon notation], page 115,
specifically:

(class-expression:method-name argument ...)

The class-expression can be a class in the current lexical scope, such as a class defined
using define-simple-class:

(define-simple-class MyClass ()

((add2 x y) allocation: 'static (+ x y)))

(MyClass:add2 3 4) ⇒ 7

Often class-expression is a fully-qualified class name:

(java.lang.Math:sqrt 9.0) ⇒ 3.0

This is only allowed when the name is of a class that exists and is accessible both at
compile-time and run-time, and the name is not otherwise lexically bound.

You can also use a defined alias:

(define-alias jlMath java.lang.Math)

(jlMath:sqrt 16.0) ⇒ 4.0

You can even evaluate class-expression at run-time (in which case Kawa may have to
use slower reflection):

(let ((math java.lang.Math)) (math:sqrt 9.0)) ⇒ 3.0

Here java.lang.Math evaluates to a java.lang.Class instance for the named class
(like Java’s java.lang.Class.class, again assuming the class exists and is accessible both
at compile-time and run-time, and the name is not otherwise lexically bound.

19.9.2 Calling instance methods using colon notation

The syntax is:

(instance:method-name argument ...)

This invokes the method named method-name with the evaluated instance as the target
object and the evaluated arguments as the method arguments.

Chapter 19: Object, Classes and Modules 321

For example:

((list 9 8 7):toString) ⇒ "(9 8 7)"

([5 6 7]:get 2) ⇒ 7

This older syntax is also available:

(*:method-name instance argument ...)

For example:

(*:toString (list 9 8 7))

You can also name the class explicitly:

(class-expression:method-name instance argument ...)

For example:

(java.util.List:get [5 6 7] 2) ⇒ 7

Using an explicit class is like coercing the instance:

(*:method-name (as class-expression instance)argument ...)

Note that for some special values, including java.lang.Class instances, you can’t use
the compact form of Section 7.7 [Colon notation], page 115, where the instance is before
the comma:

(java.lang.Integer:getDeclaredField "MAX_VALUE") ⇒ error

This is because in this case we look for a static member of java.lang.Integer (at
least as currently defined and implemented), while we want an instance member of
java.lang.Class. In those cases you can use one of these alternative forms, which all
return the same java.lang.reflect.Field result:

(*:getDeclaredField java.lang.Integer "MAX_VALUE")

(java.lang.Class:getDeclaredField java.lang.Integer "MAX_VALUE")

(invoke java.lang.Integer 'getDeclaredField "MAX_VALUE")

19.9.3 Method names

The method to invoke is selected using the specified method name and argments. If specified
name is not a Java name, it is "mangled" (see Section 19.12 [Mangling], page 330) into a
valid Java name. All accessible methods whose names match are considered. Methods that
match after appending $V or $X or VX are also considered. A $V suffix matches a variable
number of arguments: any excess arguments are collect into an gnu.lists.LList or a Java
array (depending on the final parameter type). A $X specifies that the method expects an
extra implicit CallContext parameter. In that case the method’s result is written to the
CallContext, so the method result type must be void.

(Kawa may compile a procedure with a #!rest or keyword args whose name is fn to a
method named fn$V. It adds an implicit parameter for the extra arguments. By default
this extra extra parameter is a Scheme list. You can specify a Java array type instead, in
which case the method is named fn without the $V, and instead it is marked as a Java-5
varargs method. The array element type must be compatible with all the extra arguments.)

19.9.4 Invoking a method with the invoke function

If you prefer, you can instead use the following functions. (There is also an older deprecated
lower-level interface (see [Low-level Method invocation], page 384.)

Chapter 19: Object, Classes and Modules 322

[Procedure]invoke-static class name args ...
The class can be a java.lang.Class, a gnu.bytecode.ClassType, or a symbol or
string that names a Java class. The name can be symbol or string that names one
or more methods in the Java class.

Any accessible methods (static or instance) in the specified class (or its super-classes)
that match "name" or "name$V" collectively form a generic procedure. When the
procedure is applied to the argument list, the most specific applicable method is
chosen depending on the argument list; that method is then called with the given
arguments. Iff the method is an instance method, the first actual argument is used
as the this argument. If there are no applicable methods (or no methods at all!), or
there is no "best" method, WrongType is thrown.

An example:

(invoke-static java.lang.Thread 'sleep 100)

The behavior of interpreted code and compiled code is not identical, though you
should get the same result either way unless you have designed the classes rather
strangely. The details will be nailed down later, but the basic idea is that the compiler
will "inline" the invoke-static call if it can pick a single "best" matching method.

[Procedure]invoke object name args ...
The name can be <symbol> or <string> that names one or more methods in the
Java class.

Any accessible methods (static or instance) in the specified class (or its super-classes)
that match "name" or "name$V" collectively form a generic procedure. When the
procedure is applied to the argument list, the most specific applicable method is
chosen depending on the argument list; that method is then called with the given
arguments. Iff the method is an instance method, the object is used as the this

argument; otherwise object is prepended to the args list. If there are no applicable
methods (or no methods at all!), or there is no "best" method, WrongType is thrown.

The behavior of interpreted code and compiled code is not indentical, though you
should get the same result either way unless you have designed the classes rather
strangely. The details will be nailed down later, but the basic idea is that the compiler
will "inline" the invoke-static call if it can pick a single "best" matching method.

If the compiler cannot determine the method to call (assuming the method name is
constant), the compiler has to generate code at run-time to find the correct method.
This is much slower, so the compiler will print a warning. To avoid a waning, you
can use a type declaration, or insert a cast:

(invoke (as java.util.Date my-date) 'setDate cur-date)

or

(let ((my-date ::java.util.Date (calculate-date))

(cur-date ::int (get-cur-date)))

(invoke my-date 'setDate cur-date))

[Procedure]invoke-special class receiver-object name arg ...
The class can be a java.lang.Class, a gnu.bytecode.ClassType, or a symbol or
string that names a Java class. The name can be symbol or string that names one
or more methods in the Java class.

Chapter 19: Object, Classes and Modules 323

This procedure is very similar to invoke and invoke-static and invokes the specified
method, ignoring any methods in subclasses that might overide it. One interesting
use is to invoke a method in your super-class like the Java language super keyword.

Any methods in the specified class that match "name" or "name$V" collectively form
a generic procedure. That generic procedure is then applied as in invoke using the
receiver-object and the arguments (if any).

The compiler must be able to inline this procedure (because you cannot force a specific
method to be called using reflection). Therefore the class and name must resolve at
compile-time to a specific method.

(define-simple-class <MyClass> (<java.util.Date>)

((get-year) :: <int>

(+ (invoke-special <java.util.Date> (this) 'get-year)) 1900)

((set-year (year :: <int>)) :: <void>

(invoke-special <java.util.Date> (this) 'set-year (- year 1900))))

[Procedure]class-methods class name
Return a generic function containing those methods of class that match the name
name, in the sense of invoke-static. Same as:

(lambda args (apply invoke-static (cons class (cons name args))))

Some examples using these functions are ‘vectors.scm’ and ‘characters.scm’ the di-
rectory ‘kawa/lib’ in the Kawa sources.

19.9.5 Using a namespace prefix

This way of invoking a method is deprecated.

You can use define-namespace to define an alias for a Java class:

(define-namespace Int32 "class:java.lang.Integer")

In this example the name Int32 is a namespace alias for the namespace whose full
name is "class:java.lang.Integer". The full name should be the 6 characters "class:"
followed by the fully-qualified name of a Java class.

Instead of a vamespace-uri you can use a variable that names a class, usually of the form
<classname>. The following is equivalent to the above:

(define-namespace Int32 <java.lang.Integer>)

However, there is one important difference: The <classname> is first searched in the
lexical scope. It may resolve to a class defined in the current compilation unit (perhaps
defined using define-simple-class), or imported from another module, or an alias (such
as from define-alias). Only if <classname> is not found in the current scope is it tried
as the class name classname.

You can name a method using a qualified name containing a colon. The part of the
name before the colon is a namespace alias (in this case Int32), and the part of the name
after the colon is the method name. For example:

(Int32:toHexString 255) ⇒ "ff"

This invokes the static method toHexString in the Java class java.lang.Integer,
passing it the argument 255, and returning the String "ff".

Chapter 19: Object, Classes and Modules 324

The general syntax is

(prefix:method-name arg ...)

This invokes the method named method-name in the class corresponding to prefix, and
the args are the method arguments.

You can use the method name new to construct new objects:

(Int32:new '|255|)

This is equivalent to the Java expression new Integer("255"). You can also write:

(Int32:new "255")

You can also call instance methods using a namespace prefix:

(Int32:doubleValue (Int32:new "00255"))

This returns the double value 255.0.

As a shorthand, you can use the name of a Java class instead of a namespace alias:

(java.lang.Integer:toHexString 255)

(java.lang.Object:toString some-value)

If Kawa sees a qualified name with a prefix that is not defined and that matches the name
of a known class, then Kawa will automatically treat the prefix as a nickname for namespace
uri like class:java.lang.Integer. Both conditions should be true at both compile-time
and run-time. However, using an explicit define-namespace is recommended.

As a final shorthand you can use an identifier in handle brackets, such as an existing
type alias like <list>. The following are all equivalent:

(<list>:list3 'a 'b 'c)

This is equivalent to:

(define-namespace prefix <list>

(prefix:list3 'a 'b 'c)

for some otherwise-unused prefix.

19.10 Allocating objects

The recommended way to create an instance of a type T is to “call” T as if it were a
function, with the arguments used to initialize the object. If T is a class and T has a
matching constructor, then the arguments will used for constructor arguments:

(java.util.StringTokenizer "this/is/a/test" "/")

(You can think of the type T as being coerced to an instance-constructor function.)

If T is a container or collection type, then typically the arguments will be used to specify
the child or component values. Many standard Scheme procedures fit this convention. For
example in Kawa list and vector evaluate to types, rather than procedures as in standard
Scheme, but because types can be used as constructor functions it just works:

(list 'a (+ 3 4) 'c) ⇒ (a 7 c)

(vector 'a 'b 'c) ⇒ #(a b c)

Any class T that has a default constructor and an add method can be initialized this way.
Examples are java.util collection classes, and jawa.awt and javax.swing containers.

(java.util.ArrayList 11 22 33) ⇒ [11, 22, 333]

Chapter 19: Object, Classes and Modules 325

The above expression is equivalent to:

(let ((tmp (java.util.ArrayList)))

(tmp:add 11)

(tmp:add 22)

(tmp:add 33)

tmp)

Allocating Java arrays (see [Creating-new-Java-arrays], page 331) uses a similar pattern:

(int[] 2 3 5 7 11)

Sometimes you want to set some named property to an initial value. You can do that
using a keyword argument. For example:

(javax.swing.JButton text: "Do it!" tool-tip-text: "do it")

This is equivalent to using setter methods:

(let ((tmp (javax.swing.JButton)))

(tmp:setText "Do it!")

(tmp:setToolTipText "do it")

tmp)

A keyword argument key-name: can can translated to either a setKeyName: or a
addKeyName: method. The latter makes it convenient to add listeners:

(javax.swing.JButton

text: "Do it!"

action-listener:

(object (java.awt.event.ActionListener)

((actionPerformed e) (do-the-action))))

This is equivalent to:

(let ((tmp (javax.swing.JButton)))

(tmp:setText "Do it!")

(tmp:addActionListener

(object (java.awt.event.ActionListener)

((actionPerformed e) (do-the-action))))

tmp)

Making use of so-called “SAM-conversion” (see [SAM-conversion], page 303) makes it
even more convenient:

(javax.swing.JButton

text: "Do it!"

action-listener:

(lambda (e) (do-the-action)))

The general case allows for a mix of constructor arguments, property keywords, and
child values:

class-type constructor-value... property-initializer... child-value...
constructor-value ::= expression
property-initializer ::= keyword expression
child-value ::= expression

Chapter 19: Object, Classes and Modules 326

First an object is constructed with the constructor-value arguments (if any) passed to the
object constructor; then named properties (if any) are used to initialize named properties;
and then remaining arguments are used to add child values.

There is an ambiguity if there is no property-initializer - we can’t distinguish between
a constructor-value and a child-value. In that case, if there is a matching constructor
method, then all of the arguments are constructor arguments; otherwise, there must a
default constructor, and all of the arguments are child-value arguments.

There is a trick you can you if you need both constructor-value and child-value argu-
ments: separate them with an “empty keyword” ||:. This matches a method named add,
which means that the next argument effectively a child-value - as do all the remaining
arguments. Example:

(let ((vec #(1 2 3)))

(java.util.ArrayList vec ||: 4 5 6))

⇒ [1, 2, 3, 4, 5, 6]

The compiler rewrites these allocations expression to generated efficient bytecode, as-
suming that the “function” being applied is a type known by the compiler. Most of the
above expressions also work if the type is applied at run-time, in which case Kawa has to
use slower reflection:

(define iarr int[])

(apply iarr (list 3 4 5)) ⇒ [3 4 5]

However addXxx methods and SAM-conversion are currently only recognized in the case
of a class known at compile-time, not at run-time.

Here is a working Swing demo illustrating many of these techniques:

(import (class javax.swing

JButton Box JFrame))

(define-simple-class HBox (Box)

((*init*) (invoke-special Box (this) '*init* 0)))

(define value 0)

(define txt

(javax.swing.JLabel

text: "0"))

(define (set-value i)

(set! value i)

(set! txt:text (number->string i)))

(define fr

(JFrame

title: "Hello!"

(Box 1#|VERTICAL|# ||:

(javax.swing.Box:createGlue)

txt

(javax.swing.Box:createGlue)

Chapter 19: Object, Classes and Modules 327

(HBox

(JButton ;; uses 1-argument constructor

"Decrement" ;; constructor argument

tool-tip-text: "decrement"

action-listener: (lambda (e) (set-value (- value 1))))

(javax.swing.Box:createGlue)

(JButton ;; uses 0-argument constructor

text: "Increment"

tool-tip-text: "increment"

action-listener: (lambda (e) (set-value (+ value 1))))))))

(fr:setSize 200 100)

(set! fr:visible #t)

If you prefer, you can use the older make special function:

[Procedure]make type args ...
Constructs a new object instance of the specified type, which must be either a
java.lang.Class or a <gnu.bytecode.ClassType>. Equivalent to:

type args ...

Another (semi-deprecated) function is to use the colon notation with the new pseudo-
function. The following three are all equivalent:

(java.awt.Point:new x: 4 y: 3)

(make java.awt.Point: x: 4 y: 3)

(java.awt.Point x: 4 y: 3)

19.11 Accessing object fields

19.11.1 Accessing static fields and properties

The recommmended way to access fields uses the Section 7.7 [Colon notation], page 115.
For static fields and properties the following is recommended:

class-expression:field-name

For example:

java.lang.Integer:MAX_VALUE

A property with a get method is equivalent to a field. The following are all equivalent:

java.util.Currency:available-currencies

java.util.Currency:availableCurrencies

(java.util.Currency:getAvailableCurrencies)

Just like for a method call, the class-expression can be a class in the current lexical scope,
a fully-qualified class name, or more generally an expression that evaluates to a class.

19.11.2 Accessing instance fields and properties

The syntax is:

instance:field-name

Chapter 19: Object, Classes and Modules 328

The field-name can of course be the name of an actual object field, but it can also
be the name of a property with a zero-argument get method. For example, if cal is a
java.util-Calendar instance, then the following are all equivalent:

cal:time-zone

cal:timeZone

(cal:getTimeZone)

(cal:get-time-zone)

You can use colon notation to assign to a field:

(set! cal:time-zone TimeZone:default)

which is equivalent to:

(cal:setTimeZone (TimeZone:getDefault))

A Java array only has the length field, plus the class property:

(int[] 4 5 6):length ⇒ 3

(int[] 4 5 6):class:name ⇒ "int[]"

19.11.3 Using field and static-field methods

The following methods are useful in cases where colon notation is ambiguous, for example
where there are both fields and methods with the same name. You might also prefer as a
matter of style, to emphasise that a field is being accessed.

[Procedure]field object fieldname
Get the instance field with the given fieldname from the given Object. Returns the
value of the field, which must be accessible. This procedure has a setter, and so can
be used as the first operand to set!.

The field name is "mangled" (see Section 19.12 [Mangling], page 330) into a valid Java
name. If there is no accessible field whose name is "fieldname", we look for a no-
argument method whose name is "getFieldname" (or "isFieldname" for a boolean
property).

If object is a primitive Java array, then fieldname can only be 'length, and the result
is the number of elements of the array.

[Procedure]static-field class fieldname
Get the static field with the given fieldname from the given class. Returns the value
of the field, which must be accessible. This procedure has a setter, and so can be
used as the first operand to set!.

If the fieldname is the special name class, then it returns the java.lang.Class

object corresponding to class (which is usually a gnu.bytecode.ClassType object).

Examples:

(static-field java.lang.System 'err)

;; Copy the car field of b into a.

(set! (field a 'car) (field b 'car))

[Procedure]slot-ref object fieldname
A synonym for (field object fieldname).

Chapter 19: Object, Classes and Modules 329

[Procedure]slot-set! object fieldname value
A synonym for (set! (field object fieldname) value).

19.11.4 Older colon-dot notation

There is older syntax where following the colon there is field name a following the colon
and a period.

To access an static field named field-name use this syntax

(prefix:.field-name instance)

The prefix can be as discussed in See Section 19.9 [Method operations], page 320. Here
are 5 equivalent ways:

(java.lang.Integer:.MAX_VALUE)

(<java.lang.Integer>:.MAX_VALUE)

(define-namespace Int32 <java.lang.Integer>)

(Int32:.MAX_VALUE)

(define-namespace Integer "class:java.lang.Integer")

(Integer:.MAX_VALUE)

(define-alias j.l.Integer java.lang.Integer)

(j.l.Integer:.MAX_VALUE)

You can set a static field using this syntax:

(set! (prefix:.field-name) new-value)

The special field name class can be used to extract the java.lang.Class object for a
class-type. For example:

(java.util.Vector:.class) ⇒ class java.util.Vector

To access a instance field named field-name use the following syntax. Note the period
before the field-name.

(*:.field-name instance)

This syntax works with set! - to set the field use this syntax:

(set! (*:.field-name instance) new-value)

Here is an example:

(define p (list 3 4 5))

(*:.cdr p) ⇒ (4 5)

(set! (*:.cdr p) (list 6 7))

p ⇒ (3 6 7)

You can specify an explicit class:

(prefix:.field-name instance)

If prefix is bound to <class>, then the above is equivalent to:

(*:.field-name (as <class> instance))

Chapter 19: Object, Classes and Modules 330

19.12 Mapping Scheme names to Java names

Programs use "names" to refer to various values and procedures. The definition of what
is a "name" is different in different programming languages. A name in Scheme (and
other Lisp-like languages) can in principle contain any character (if using a suitable quoting
convention), but typically names consist of "words" (one or more letters) separated by
hyphens, such as ‘make-temporary-file’. Digits and some special symbols are also used.
Traditionally, Scheme is case-insensitive; this means that the names ‘loop’, ‘Loop’, and
‘LOOP’ are all the same name. Kawa is by default case-sensitive, but we recommend that
you avoid using upper-case letters as a general rule.

The Java language and the Java virtual machine uses names for classes, variables, fields
and methods. Names in the Java language can contain upper- and lower-case letters, digits,
and the special symbols ‘_’ and ‘$’. The Java virtual machine (JVM) allows most characters,
but still has some limitations.

Kawa translates class names, package names, field names, and local variable
names using the ”symbolic” convention (https://blogs.oracle.com/jrose/entry/
symbolic_freedom_in_the_vm), so most characters are unchanged. For example the
Scheme function ‘file-exists?’ becomes the field ‘file-exists?’, but dotted.name

becomes ‘dotted\,name’. Such names may not be valid Java name, so to access them
from a Java program you might have to use reflection.

When translating procedure names to method names, Kawa uses a different translation,
in order to achieve more “Java-like” names. This means translating a Scheme-style name
like ‘make-temporary-file’ to "mixed-case" words, such as ‘makeTemporaryFile’. The
basic rule is simple: Hyphens are dropped, and a letter that follows a hyphen is translated
to its upper-case (actually "title-case") equivalent. Otherwise, letters are translated as is.

Some special characters are handled specially. A final ‘?’ is replaced by an initial ‘is’,
with the following letter converted to titlecase. Thus ‘number?’ is converted to ‘isNumber’
(which fits with Java conventions), and ‘file-exists?’ is converted to ‘isFileExists’
(which doesn’t really). The pair ‘->’ is translated to ‘To’. For example ‘list->string’
is translated to ‘listTostring’.

Some symbols are mapped to a mnemonic sequence, starting with a dollar-sign, followed
by a two-character abbreviation. For example, the less-than symbol ‘<’ is mangled as ‘$Ls’.
See the source code to the mangleName method in the gnu.expr.Mangling class for the full
list. Characters that do not have a mnemonic abbreviation are mangled as ‘$’ followed by
a four-hex-digit unicode value. For example ‘Tamil vowel sign ai’ is mangled as ‘$0bc8’.

Note that this mapping may map different Scheme names to the same Java name. For
example ‘string?’, ‘String?’, ‘is-string’, ‘is-String’, and ‘isString’ are all mapped
to the same Java identifier ‘isString’. Code that uses such "Java-clashing" names is not
supported. There is very partial support for renaming names in the case of a clash, and
there may be better support in the future. However, some of the nice features of Kawa
depend on being able to map Scheme name to Java names naturally, so we urge you to
not write code that "mixes" naming conventions by using (say) the names ‘open-file’ and
‘openFile’ to name two different objects.

19.13 Scheme types in Java

All Scheme values are implemented by sub-classes of ‘java.lang.Object’.

https://blogs.oracle.com/jrose/entry/symbolic_freedom_in_the_vm
https://blogs.oracle.com/jrose/entry/symbolic_freedom_in_the_vm

Chapter 19: Object, Classes and Modules 331

Scheme symbols are implemented using java.lang.String. (Don’t be confused by
the fact the Scheme sybols are represented using Java Strings, while Scheme strings are
represented by gnu.lists.FString. It is just that the semantics of Java strings match
Scheme symbols, but do not match mutable Scheme strings.) Interned symbols are presented
as interned Strings. (Note that with JDK 1.1 string literals are automatically interned.)

Scheme integers are implemented by gnu.math.IntNum. Use the make static function to
create a new IntNum from an int or a long. Use the intValue or longValue methods to get
the int or long value of an IntNum.

A Scheme "flonum" is implemented by gnu.math.DFloNum.

A Scheme pair is implemented by gnu.lists.Pair.

A Scheme vector is implemented by gnu.lists.FVectror.

Scheme characters are implemented using gnu.text.Char.

Scheme strings are implemented using gnu.lists.FString.

Scheme procedures are all sub-classes of gnu.mapping.Procedure. The "action" of a
‘Procedure’ is invoked by using one of the ‘apply*’ methods: ‘apply0’, ‘apply1’, ‘apply2’,
‘apply3’, ‘apply4’, or ‘applyN’. Various sub-class of ‘Procedure’ provide defaults for the
various ‘apply*’ methods. For example, a ‘Procedure2’ is used by 2-argument proce-
dures. The ‘Procedure2’ class provides implementations of all the ‘apply*’ methods except
‘apply2’, which must be provided by any class that extends Procedure2.

19.14 Using Java Arrays

19.14.1 Creating new Java arrays

To allocate a Java array you can use the array type specifier as a constructor function. For
example, to allocate an array with room for 10 elements each of each is a primitive int:

(int[] length: 10)

You can specify the initial elements instead of the length:

(object[] 31 32 33 34)

This creates a 4-length array, initialized to the given values.

Note this is a variation of the generation object-allocation (see Section 19.10 [Allocating
objects], page 324) pattern. You can explicitly use the make function, if you prefer:

(make object[] 31 32 33 34)

If you specify a length, you can also specify initial values for selected elements. If you
specify an index, in the form of a literal integer-valued keyword, then following elements
are placed starting at that position.

(int[] length: 100 10 12 80: 15 16 50: 13 14)

This creates an array with 100 elements. Most of them are initialized to the default
value of zero, but elements with indexes 0, 1, 50, 51, 80, 81 are initialized to the values 10,
12, 13, 14, 15, 16, respectively.

Chapter 19: Object, Classes and Modules 332

19.14.2 Accessing Java array elements

You can access the elements of a Java array by treating it as a one-argument function,
where the argument is the index:

(define primes (integer[] 2 3 5 7 11 13))

(primes 0) ⇒ 2

(primes 5) ⇒ 13

You can set an element by treating the array as a function with a setter:

(set! (primes 0) -2)

(set! (primes 3) -7)

primes ⇒ [-2 3 5 -7 11 13]

To get the number of elements of an array, you can treat it as having a length field:

primes:length ⇒ 6

Here is a longer example. This is the actual definition of the standard gcd function.
Note the args variable receives all the arguments on the form of an integer array. (This
uses the Java5 varargs feature.)

(define (gcd #!rest (args ::integer[])) ::integer

(let ((n ::int args:length))

(if (= n 0)

0

(let ((result ::integer (args 0)))

(do ((i ::int 1 (+ i 1)))

((>= i n) result)

(set! result (gnu.math.IntNum:gcd result (args i))))))))

The above example generates good code, thanks to judicious use of casts and type
specifications. In general, if Kawa knows that a “function” is an array then it will generate
efficient bytecode instructions for array operations.

19.14.3 Old low-level array macros

The deprecated [Low-level array macros], page 385, are also supported.

19.15 Loading Java functions into Scheme

When kawa -C compiles (see Section 6.5.1 [Files compilation], page 101) a Scheme module
it creates a class that implements the java.lang.Runnable interface. (Usually it is a
class that extends the gnu.expr.ModuleBody.) It is actually fairly easy to write similar
"modules" by hand in Java, which is useful when you want to extend Kawa with new
"primitive functions" written in Java. For each function you need to create an object that
extends gnu.mapping.Procedure, and then bind it in the global environment. We will look
at these two operations.

There are multiple ways you can create a Procedure object. Below is a simple
example, using the Procedure1 class, which is class extending Procedure that can be
useful for one-argument procedure. You can use other classes to write procedures. For
example a ProcedureN takes a variable number of arguments, and you must define
applyN(Object[] args) method instead of apply1. (You may notice that some builtin

Chapter 19: Object, Classes and Modules 333

classes extend CpsProcedure. Doing so allows has certain advantages, including support
for full tail-recursion, but it has some costs, and is a bit trickier.)

import gnu.mapping.*;

import gnu.math.*;

public class MyFunc extends Procedure1

{

// An "argument" that is part of each procedure instance.

private Object arg0;

public MyFunc(String name, Object arg0)

{

super(name);

this.arg0 = arg0;

}

public Object apply1 (Object arg1)

{

// Here you can so whatever you want. In this example,

// we return a pair of the argument and arg0.

return gnu.lists.Pair.make(arg0, arg1);

}

}

You can create a MyFunc instance and call it from Java:

Procedure myfunc1 = new MyFunc("my-func-1", Boolean.FALSE);

Object aresult = myfunc1.apply1(some_object);

The name my-func-1 is used when myfunc1 is printed or when myfunc1.toString() is
called. However, the Scheme variable my-func-1 is still not bound. To define the function
to Scheme, we can create a "module", which is a class intended to be loaded into the top-
level environment. The provides the definitions to be loaded, as well as any actions to be
performed on loading

public class MyModule

{

// Define a function instance.

public static final MyFunc myfunc1

= new MyFunc("my-func-1", IntNum.make(1));

}

If you use Scheme you can use require:

#|kawa:1|# (require <MyModule>)

#|kawa:2|# (my-func-1 0)

(1 0)

Note that requiremagically defines my-func-1 without you telling it to. For each public
final field, the name and value of the field are entered in the top-level environment when
the class is loaded. (If there are non-static fields, or the class implements Runnable, then
an instance of the object is created, if one isn’t available.) If the field value is a Procedure

(or implements Named), then the name bound to the procedure is used instead of the field

Chapter 19: Object, Classes and Modules 334

name. That is why the variable that gets bound in the Scheme environment is my-func-1,
not myfunc1.

Instead of (require <MyModule>), you can do (load "MyModule") or (load

"MyModule.class"). If you’re not using Scheme, you can use Kawa’s -f option:

$ kawa -f MyModule --xquery --

#|kawa:1|# my-func-1(3+4)

<list>1 7</list>

If you need to do some more complex calculations when a module is loaded, you can put
them in a run method, and have the module implement Runnable:

public class MyModule implements Runnable

{

public void run ()

{

Interpreter interp = Interpreter.getInterpreter();

Object arg = Boolean.TRUE;

interp.defineFunction (new MyFunc ("my-func-t", arg));

System.err.println("MyModule loaded");

}

}

Loading MyModule causes "MyModule loaded" to be printed, and my-func-t to be de-
fined. Using Interpreter’s defineFunction method is recommended because it does the
righ things even for languages like Common Lisp that use separate "namespaces" for vari-
ables and functions.

A final trick is that you can have a Procedure be its own module:

import gnu.mapping.*;

import gnu.math.*;

public class MyFunc2 extends Procedure2

{

public MyFunc(String name)

{

super(name);

}

public Object apply2 (Object arg1, arg2)

{

return gnu.lists.Pair.make(arg1, arg2);

}

public static final MyFunc myfunc1 = new MyFunc("my-func-2);

}

19.16 Evaluating Scheme expressions from Java

The following methods are recommended if you need to evaluate a Scheme expression from
a Java method. (Some details (such as the ‘throws’ lists) may change.)

Chapter 19: Object, Classes and Modules 335

[Static method]void Scheme.registerEnvironment ()
Initializes the Scheme environment. Maybe needed if you try to load a module com-
piled from a Scheme source file.

[Static method]Object Scheme.eval (InPort port, Environment env)
Read expressions from port, and evaluate them in the env environment, until end-of-
file is reached. Return the value of the last expression, or Interpreter.voidObject
if there is no expression.

[Static method]Object Scheme.eval (String string, Environment env)
Read expressions from string, and evaluate them in the env environment, until
the end of the string is reached. Return the value of the last expression, or
Interpreter.voidObject if there is no expression.

[Static method]Object Scheme.eval (Object sexpr, Environment env)
The sexpr is an S-expression (as may be returned by read). Evaluate it in the env
environment, and return the result.

For the Environment in most cases you could use ‘Environment.current()’. Before
you start, you need to initialize the global environment, which you can do with

Environment.setCurrent(new Scheme().getEnvironment());

Alternatively, rather than setting the global environment, you can use this style:

Scheme scm = new Scheme();

Object x = scm.eval("(+ 3 2)");

System.out.println(x);

19.16.1 Using javax.script portable Java scripting

Kawa also supports the standard javax.script (http://docs.oracle.com/javase/8/
docs/api/javax/script/package-summary.html) API. The main advantage of this API
is if you want your users to be able to choose between multiple scripting languages. That
way you can support Kawa without Kawa-specific programming.

For example the standard JDK tool jrunscript (http://docs.oracle.com/javase/8/
docs/technotes/tools/unix/jrunscript.html) provides a read-eval-print-loop for any
language that implements the javax.script API. It knows nothing about Kawa but can
still use it:

$ jrunscript -cp kawa.jar -l scheme

scheme> (cadr '(3 4 5))

4

(Of course the jrunscript REPL isn’t as nice as the one that Kawa provides. For
example the latter can handle multi-line inputs.)

http://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/jrunscript.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/jrunscript.html

336

20 Working with XML and HTML

Kawa has a number of features for working with XML, HTML, and generated web pages.

In Kawa you don’t write XML or HTML directly. Instead you write expressions that
evaluate to “node objects” corresponding to elements, attributes, and text. You then write
these node objects using either an XML or HTML format.

Many web-page-generating tools require you to work directly with raw HTML, as for
example:

(display "<p>Don't use the <code><blink></code> tag.</p>")

In Kawa you would instead do:

(display (html:p "Don't use the " (html:code "<blink>") " tag."))

The conversion from node objects to XML or HTML is handled by the formatter (or
serializer). Some advantages of doing it this way are:

• You don’t have to worry about quoting special characters. Missing or incorrect quoting
is a common source of bugs and security problems on systems that work directly with
text, such as PHP.

• Some errors, such as mismatched element tags, are automatically avoided.

• The generated XML can be validated as it is generated, or even using compile-time
type-checking. (Kawa doesn’t yet do either.)

• In an application that also reads XML, you can treat XML that is read in and XML
that is generated using the same functions.

20.1 Formatting XML

The easiest way to generate HTML or XML output is to run Kawa with the appropriate
Section 17.1 [--output-format option], page 270.

The intentation is that these output modes should be compatible with
XSLT 2.0 and XQuery 1.0 Serialization (http: / / www . w3 . org / TR / 2006 /

PR-xslt-xquery-serialization-20061121/). (However, that specifies many options,
most of which have not yet been implemented.

xml Values are printed in XML format. "Groups" or "elements" are written as
using xml element syntax. Plain characters (such as ‘<’) are escaped (such as
‘<’).

xhtml Same as xml, but follows the xhtml compatibility guidelines.

html Values are printed in HTML format. Mostly same as xml format, but certain
elements without body, are written without a closing tag. For example

is written without , which would be illegal for html, but required for
xml. Plain characters (such as ‘<’) are not escaped inside <script> or <style>
elements.

To illustrate:

$ kawa --output-format html

#|kawa:1|# (html:img src:"img.jpg")

http://www.w3.org/TR/2006/PR-xslt-xquery-serialization-20061121/
http://www.w3.org/TR/2006/PR-xslt-xquery-serialization-20061121/

Chapter 20: Working with XML and HTML 337

$ kawa --output-format xhtml

#|kawa:1|# (html:img src:"img.jpg")

$ kawa --output-format xml

#|kawa:1|# (html:img src:"img.jpg")

And here is the default scheme formatting:

$ kawa

#|kawa:1|# (html:img src:"img.jpg")

({http://www.w3.org/1999/xhtml}img src: img.jpg)

[Procedure]as-xml value
Return a value (or multiple values) that when printed will print value in XML syntax.

(require 'xml)

(as-xml (make-element 'p "Some " (make-element 'em "text") "."))

prints <p>Some text.</p>.

[Procedure]unescaped-data data
Creates a special value which causes data to be printed, as is, without normal escap-
ing. For example, when the output format is XML, then printing "<?xml?>" prints
as ‘<?xml?>’, but (unescaped-data "<?xml?>") prints as ‘<?xml?>’.

20.2 Creating HTML nodes

The html prefix names a special namespace (see Section 10.2 [Namespaces], page 161) of
functions to create HTML element nodes. For example, html:em is a constructor that when
called creates a element node whose tag is em. If this element node is formatted as HTML,
the result has an tag.

[Syntax]html:tag attributes ... content ...
Creates an element node whose tag is tag. The parameters are first zero or more
attributes, followed by zero of more child values. An attribute is either an attribute
value (possibly created using make-attribute), or a pair of arguments: A keyword
followed by the attribute value. Child values are usually either strings (text content),
or nested element nodes, but can also be comment or processing-instruction nodes.

(html:a href: "http://gnu.org/" "the "(html:i "GNU")" homepage")

The compound identifier html:tag is actually a type: When you call it as a function
you’re using Kawa’s standard coercion of a type to its constructor function. This means
you can do type tests:

(define some-node ...)

(if (instance? some-node html:blink)

(error "blinking not allowed!"))

Object identity is currently not fully specified. Specifically, it is undefined if a nested
(child) element node is copied “by value” or “by reference”. This is related to whether
nodes have a parent reference. In the XPath/XQuery data model nodes do have a parent

Chapter 20: Working with XML and HTML 338

reference, and child nodes are conceptually copied. (In the actual implemention copying
is commonly avoided.) Kawa/Scheme currently followed the XQuery copying semantics,
which may not be the most appropriate for Scheme.

20.3 Creating XML nodes

The XML data model is similar to HTML, with one important addition: XML tags may
be qualified names, which are similar to Section 10.2 [compound symbols], page 161.

You must do this to use the following types and functions:

(require 'xml)

The following types and functions assume:

(require 'xml)

[Procedure]make-element tag [attribute ...] child ...
Create a representation of a XML element, corresponding to

<tag attribute...>child...</tag>

The result is a TreeList, though if the result context is a consumer the result is
instead "written" to the consumer. Thus nested calls to make-element only result
in a single TreeList. More generally, whether an attribute or child is includded by
copying or by reference is (for now) undefined. The tag should currently be a symbol,
though in the future it should be a qualified name. An attribute is typically a call to
make-attribute, but it can be any attribute-valued expression.

(make-element 'p

"The time is now: "

(make-element 'code (make <java.util.Date>)))

[Procedure]element-name element
Returns the name (tag) of the element node, as a symbol (QName).

[Procedure]make-attribute name value...
Create an "attribute", which is a name-value pair. For now, name should be a symbol.

[Procedure]attribute-name element
Returns the name of the attribute node, as a symbol (QName).

[Type]comment
Instances of this type represent comment values, specifically including comments in
XML files. Comment nodes are currently ignored when printing using Scheme for-
matting, though that may change.

[Constructor]comment comment-text
Create a comment object with the specified comment-text.

[Type]processing-instruction
Instances of this type represent “processing instructions”, such as may appear in XML
files. Processing-instruction nodes are currently ignored when printing using Scheme
formatting, though that may change.

Chapter 20: Working with XML and HTML 339

[Constructor]processing-instruction target contents
Crreate a processing-instruction object with the specified target (a simple symbol)
and contents (a string).

20.4 XML literals

You can write XML literals directly in Scheme code, following a #. Notice that the outermost
element needs to be prefixed by #, but nested elements do not (and must not).

#<p>The result is final!</p>

Actually, these are not really literals since they can contain enclosed expressions:

#The result is &{result}.

The value of result is substituted into the output, in a similar way to quasi-quotation.
(If you try to quote one of these “XML literals”, what you get is unspecified and is subject
to change.)

An xml-literal is usually an element constructor, but there some rarely used forms
(processing-instructions, comments, and CDATA section) we’ll cover later.

xml-literal ::= #xml-constructor
xml-constructor ::= xml-element-constructor
| xml-PI-constructor
| xml-comment-constructor
| xml-CDATA-constructor

20.4.1 Element constructors

xml-element-constructor ::=

<QName xml-attribute*>xml-element-datum...</QName >

| <xml-name-form xml-attribute*>xml-element-datum...</>
| <xml-name-form xml-attribute*/>

xml-name-form ::= QName
| xml-enclosed-expression

xml-enclosed-expression ::=

{ expression}
| (expression...)

The first xml-element-constructor variant uses a literal QName, and looks like standard
non-empty XML element, where the starting QName and the ending QName must match
exactly:

#Next

As a convenience, you can leave out the ending tag(s):

This is a paragraph in <emphasis>DocBook</> syntax.</>

You can use an expression to compute the element tag at runtime - in that case you
must leave out the ending tag:

#<p>This is <(if be-bold 'strong 'em)>important</>!</p>

You can use arbitrary expression inside curly braces, as long as it evaluates to a symbol.
You can leave out the curly braces if the expression is a simple parenthesised compound
expression. The previous example is equivalent to:

#<p>This is <{(if be-bold 'strong 'em)}>important</>!</p>

Chapter 20: Working with XML and HTML 340

The third xml-element-constructor variant above is an XML “empty element”; it is
equivalent to the second variant when there are no xml-element-datum items.

(Note that every well-formed XML element, as defined in the XML specifications, is a
valid xml-element-constructor, but not vice versa.)

20.4.2 Elements contents (children)

The “contents” (children) of an element are a sequence of character (text) data, and nested
nodes. The characters &, <, and > are special, and need to be escaped.

xml-element-datum ::=

any character except &, or <.
| xml-constructor
| xml-escaped

xml-escaped ::=

&xml-enclosed-expression
| &xml-entity-name;
| xml-character-reference

xml-character-reference ::=

&#digit+;
| &#xhex-digit+;

Here is an example shows both hex and decimal character references:

#<p>ABCDE</p> ⇒ <p>ABCDE</p>

xml-entity-name ::= identifier

Currently, the only supported values for xml-entity-name are the builtin XML names
lt, gt, amp, quot, and apos, which stand for the characters <, >, &, ", and ', respectively.
The following two expressions are equivalent:

#<p>< > & " '</p>

#<p>&{"< > & \" '"}</p>

20.4.3 Attributes

xml-attribute ::=

xml-name-form=xml-attribute-value
xml-attribute-value ::=

"quot-attribute-datum*"
| flapos-attribute-datum*fl

quot-attribute-datum ::=

any character except ", &, or <.
| xml-escaped

apos-attribute-datum ::=

any character except ', &, or <.
| xml-escaped

If the xml-name-form is either xmlns or a compound named with the prefix xmlns, then
technically we have a namespace declaration, rather than an attribute.

Chapter 20: Working with XML and HTML 341

20.4.4 QNames and namespaces

The names of elements and attributes are qualified names (QNames), which are represented
using compound symbols (see Section 10.2 [Namespaces], page 161). The lexical syntax for
a QName is either a simple identifier, or a (prefix,local-name) pair:

QName ::= xml-local-part
| xml-prefix:xml-local-part

xml-local-part ::= identifier
xml-prefix ::= identifier

An xml-prefix is an alias for a namespace-uri, and the mapping between them is defined
by a namespace-declaration. You can either use a define-namespace form, or you can use
a namespace declaration attribute:

xml-namespace-declaration-attribute ::=

xmlns:xml-prefix=xml-attribute-value
| xmlns=xml-attribute-value

The former declares xml-prefix as a namespace alias for the namespace-uri specified by
xml-attribute-value (which must be a compile-time constant). The second declares that
xml-attribute-value is the default namespace for simple (unprefixed) element tags. (A
default namespace declaration is ignored for attribute names.)

(let ((qn (element-name #<gnu:b xmlns:gnu="http://gnu.org/"/>)))

(list (symbol-local-name qn)

(symbol-prefix qn)

(symbol-namespace-uri qn)))

⇒ ("b" "gnu" "http://gnu.org/")

20.4.5 Other XML types

20.4.5.1 Processing instructions

An xml-PI-constructor can be used to create an XML processing instruction, which can be
used to pass instructions or annotations to an XML processor (or tool). (Alternatively, you
can use the processing-instruction type constructor.)

xml-PI-constructor ::= <?xml-PI-target xml-PI-content?>
xml-PI-target ::= NCname (i.e. a simple (non-compound) identifier)
xml-PI-content ::= any characters, not containing ?>.

For example, the DocBook XSLT stylesheets can use the dbhtml instructions to specify
that a specific chapter should be written to a named HTML file:

#<chapter><?dbhtml filename="intro.html" ?>

<title>Introduction</title>

...

</chapter>

20.4.5.2 XML comments

You can cause XML comments to be emitted in the XML output document. Such comments
can be useful for humans reading the XML document, but are usually ignored by programs.
(Alternatively, you can use the comment type constructor.)

Chapter 20: Working with XML and HTML 342

xml-comment-constructor ::= <!--xml-comment-content-->
xml-comment-content ::= any characters, not containing --.

20.4.5.3 CDATA sections

A CDATA section can be used to avoid excessive use of xml-entity-ref such as & in
element content.

xml-CDATA-constructor ::= <![CDATA[xml-CDATA-content]]>
xml-CDATA-content ::= any characters, not containing]]>.

The following are equivalent:

#<p>Specal characters <![CDATA[< > & ' "]]> here.</p>

#<p>Specal characters < > & " ' here.</p>

Kawa remembers that you used a CDATA section in the xml-element-constructor and will
write it out using a CDATA constructor.

20.5 Web page scripts

A Kawa web page script is a Kawa program that is invoked by a web server because the
server received an HTTP request. The result of evaluating the top-level expressions becomes
the HTTP response that the servlet sends back to the client, usually a browser.

A web page script may be as simple as:

(format "The time is <~s>." (java.util.Date))

This returns a response of consisting of a formatted string giving the current time. The
string would interpreted as text/plain content: The angle brackets are regular characters,
and not HTML tag markers.

The script can alternatively evaluate to XML/HTML node values, for example those
created by Section 20.4 [XML literals], page 339:

#<p>Hello, &(request-remote-host)!</p>

In this case the response would be text/html or similar content: The angle brackets
should be interpreted by the browser as HTML tag markers. The function request-remote-

host is available (automatically) to web page scripts; it returns the host that made the
HTTP request, which is then interpolated into the response.

Following sections will go into more details about how to write web page scripts. You
can do so in any supported Kawa language, including Scheme, BRL, KRL, or XQuery.

A web server will use a URL mapping to map a request URL to a specific web page
script. This can be done in a number of different ways:

• The easiest to manage is to use Kawa’s mechanism for Section 20.6 [Self-configuring
page scripts], page 343. Ths is especially easy if you the web server built in to JDK 6,
since no configuration files are needed. You can also use a “servlet engine” like Tomcat
or Glassfish.

• You can explicitly compile the web page script to a servlet, in the same way Java
servlets are compiled. This can then be installed ("deployed") in a servlet-supporting
web server, such a Tomcat or Glassfish. See Section 20.7 [Servlets], page 346.

• You can run the servlet as a Section 20.8 [CGI scripts], page 349.

Chapter 20: Working with XML and HTML 343

For details on how to extract information from the request see Section 20.9 [HTTP
requests], page 350. For details on how the response is created see Section 20.10 [HTTP
response], page 354. If the response is HTML or XML, you may want to read Section 20.2
[Creating HTML nodes], page 337, or Section 20.3 [Creating XML nodes], page 338, or
Section 20.4 [XML literals], page 339.

Here are some examples, starting with a simple hello.scm:

(response-content-type 'text/html) ; Optional

(html:p

"The request URL was: " (request-url))

(make-element 'p

(let ((query (request-query-string)))

(if query

(values-append "The query string was: " query)

"There was no query string.")))

This returns two <p> (paragraph) elements: One using make-element and one using the
html:p constructor. Or you may prefer to use Section 20.4 [XML literals], page 339.

The same program using KRL:

<p>The request URL was: [(request-url)]</p>,

<p>[(let ((query (request-query-string)))

(if query

(begin]The query string was: [query)

]There was no query string.[))]</p>

You can also use XQuery:

<p>The request URL was: {request-url()}</p>

<p>{let $query := request-query-string() return

if ($query)

then ("The query string was: ",$query)

else "There was no query string."}</p>

The +default+ script in the doc directory is useful for reading the Kawa documenta-
tion using a browser. The script uses the jar: URL scheme to automatically extract and
uncompress the pages from doc/kawa-manual.epub, which is in EPUB3 format. Read the
script for usage instructions.

20.6 Self-configuring web page scripts

Kawa makes it easy to set up a web site without configuration files. Instead, the mapping
from request URL to web page script matches the layout of files in the application directory.

Many web servers make it easy to execute a script using a script processor which is
selected depending on the extension of the requested URL. That is why you see lots of
URLs that end in .cgi, .php, or .jsp. This is bad, because it exposes the server-side
implementation to the user: Not only are such URLs ugly, but they make it difficult to
change the server without breaking people’s bookmarks and search engines. A server will
usually provide a mechanism to use prettier URLs, but doing so requires extra effort, so
many web-masters don’t.

Chapter 20: Working with XML and HTML 344

If you want a script to be executed in response to a URL http://host/app/foo/bar you
give the script the name app/foo/bar, in the appropriate server “application” directory (as
explained below). You get to pick the name bar. Or you can use the name bar.html, even
though the file named bar.html isn’t actually an html file - rather it produces html when
evaluated. Or better: just use a name without an extension at all. Kawa figures out what
kind of script it is based on the content of the file, rather than the file name. Once Kawa
has found a script, it looks at the first line to see if it can recognize the kind (language) of
the script. Normally this would be a comment that contains the name of a programming
language that Kawa knows about. For example:

;; Hello world page script written in -*- scheme -*-

#<p>Hello, &(request-remote-host)!</p>

(Using the funny-looking string -*- scheme -*- has the bonus is that it recognized by
the Emacs text editor.)

A script named +default+ is run if there isn’t a matching script. For example assume
the following is a file named +default.

;; This is -*- scheme -*-

(make-element 'p "servlet-path: " (request-servlet-path))

This becomes the default script for HTTP requests that aren’t handled by a more specific
script. The request-servlet-path function returns the "servlet path", which is the part
of the requested URL that is relative to the current web application. Thus a request for
http://host:port/app/this/is/a/test will return:

servlet-path: /this/is/a/test

You can use the feature variable in-http-server in a cond-expand to test if the code
is executing in a web server.

20.6.1 Using the OpenJDK built-in web server

The easiest way to run a Kawa web server is to use the web server built in to JDK 6 or
later.

kawa --http-auto-handler context-path appdir --http-start port

This starts a web server that listens on the given port, using the files in directory appdir
to handle requests that start with the given context-path. The context-path must start
with a "/" (one is added if needed), and it is recommended that it also end with a "/"

(otherwise you might get some surprising behavior).

You can specify multiple --http-auto-handler options.

For example use the files in the current directory to handle all requests on the standard
port 80 do:

kawa --http-auto-handler / . --http-start 80

There are some examples in the testsuite/webtest directory the Kawa source distri-
bution. You can start the server thus:

bin/kawa --http-auto-handler / testsuite/webtest/ --http-start 8888

and then for example browse to http://localhost:8888/adder.scm.

For lots of information about the HTTP request, browse to http://localhost:8888/info/anything.

Chapter 20: Working with XML and HTML 345

20.6.2 Using a servlet container

You can also can use a “servlet container” such as Tomcat or Glassfish with self-configuring
script. See Section 20.7 [Servlets], page 346, for information on how to install these servers,
and the concept of web applications. Once you have these server installed, you create a web
application with the following in the appdir/WEB-INF/web.xml configuration file:

<web-app>

<display-name>Kawa auto-servlet</display-name>

<servlet>

<servlet-name>KawaPageServlet</servlet-name>

<servlet-class>gnu.kawa.servlet.KawaPageServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>KawaPageServlet</servlet-name>

<url-pattern>/*</url-pattern>

</servlet-mapping>

</web-app>

This creates a web application where all URLs are handled by the
gnu.kawa.servlet.KawaPageServlet servlet class, which is included in the
Kawa jar file. The KawaPageServlet class handles the searching and compiling described
in this page.

20.6.3 Finding a matching script

When Kawa receives a request for:

http://host:port/appname/a/b/anything

it will look for a file:

appdir/a/b/anything

If such a file exists, the script will be executed, as described below. If not, it will look
for a file name +default+ in the same directory. If that desn’t exist either, it will look for
+default+ in the parent directory, then the grand-parent directory, and so on until it gets to
the appname web application root directory. So the default script is this: appdir/+default.

If that doesn’t exist then Kawa returns a 404 "page not found" error.

20.6.4 Determining script language

Once Kawa has found a script file corresponding to a request URL, it needs to determine
if this is a data file or a web page script, and in the latter case, what language it is written
in.

Kawa recognizes the following "magic strings" in the first line of a script:

kawa:scheme

The Scheme language.

kawa:xquery

The XQuery language.

kawa:language

Some other language known to Kawa.

Chapter 20: Working with XML and HTML 346

Kawa also recognizes Emacs-style "mode specifiers":

-*- scheme -*-

The Scheme language.

-*- xquery -*-

The XQuery language (though Emacs doesn’t know about XQuery).

-*- emacs-lisp -*-

-*- elisp -*-

The Emacs Lisp extension language.

-*- common-lisp -*-

-*- lisp -*-

The Common Lisp language.

Also, it also recognizes comments in the first two columns of the line:

;; A Scheme or Lisp comment - assumed to be in the Scheme language.

(: Start of an XQuery comment, so assumed to be in the XQuery language.

If Kawa doesn’t recognize the language of a script (and it isn’t named +default+) then it
assumes the file is a data file. It asks the servlet engine to figure out the content type (using
the getMimeType method of ServletContext), and just copies the file into the response.

20.6.5 Compilation and caching

Kawa automatically compiles a script into a class. The class is internal to the server, and is
not written out to disk. (There is an unsupported option to write the compiled file to a class
file, but there is no support to use previously-compiled classes.) The server then creates a
module instance to handle the actual request, and runs the body (the run method) of the
script class. On subsequence requests for the same script, the same class and instance are
reused; only the run is re-executed.

If the script is changed, then it is re-compiled and a new module instance created. This
makes it very easy to develop and modify a script. (Kawa for performance reasons doesn’t
check more than once a second whether a script has been modified.)

20.7 Installing web page scripts as Servlets

You can compile a Kawa program to a Servlet (http: / / en . wikipedia . org / wiki /
Java_Servlet), and run it in a servlet engine (a Servlet-aware web server). One or more
servlets are installed together as a web application. This section includes specific informa-
tion for the Tomcat and Glassfish web servers.

20.7.1 Creating a web application

A web application is a group of data, servlets, and configuration files to handle a related
set of URLs. The servlet specification (http://jcp.org/aboutJava/communityprocess/
final/jsr315/index.html) specifies the directory structure of a web application.

Assume the web application is called myapp, and lives in a directory with the
same name. The application normally handles requests for URLs that start with
http://example.com/myapp. Most files in the application directory are used to handle

http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/Java_Servlet
http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html

Chapter 20: Working with XML and HTML 347

requests with corresponding URL. For example, a file myapp/list/help.html would be
the response to the request http://example.com/myapp/list/help.html.

The directory WEB-INF is special. It contains configuration files, library code, and other
server data.

So to create the myapp application, start with:

mkdir myapp

cd myapp

mkdir WEB-INF WEB-INF/lib WEB-INF/classes

Copy the Kawa jar from the lib direcory. (You can also use a “hard” link, but symbolic
links may not work, for security systems.)

cp kawa-home/kawa-3.1.1.jar WEB-INF/lib/kawa.jar

If you build Kawa from source, you must specify the --with-servlet [configure options],
page 62.

You should also create the file WEB-INF/web.xml. For now, this is is just a place-holder:

<web-app>

<display-name>My Application</display-name>

</web-app>

20.7.2 Compiling a web page script to a servlet

Assume for simplicity that the source files are in the WEB-INF/classes directory, and make
that the current directory:

cd .../myapp/WEB-INF/classes

Depending on the source language, you compile your script sing the --servlet switch:

kawa --servlet -C hello.scm

or:

kawa --servlet --krl -C hello.krl

or:

kawa --servlet --xquery -C hello.xql

This lets the web-application find the compiled servlets. Finally, you just need to add
the new servlet to the WEB-INF/web.xml file:

<web-app>

<display-name>My Application</display-name>

<servlet>

<servlet-name>MyHello</servlet-name>

<servlet-class>hello</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>MyHello</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

Chapter 20: Working with XML and HTML 348

The <servlet> clause says that the servlet named MyHello is implemented by the Java
class hello. The <servlet-mapping> clause says that a request URL /hello should be
handled by the servlet named MyHello. The URL is relative to the application context
path, so the actual URL would be http://example.com/myapp/hello.

20.7.3 Installing a servlet under Tomcat

Apache’s Tomcat (http://tomcat.apache.org/) is an open-source implementation of the
servlet specifications. After you download it (http://tomcat.apache.org/download-60.
cgi), uncompress it in some convenient location, which is commonly referred to as
$CATALINA_HOME.

To install your web application, copy/move its directory to be in the $CATALINA_

HOME/webapps directory. Thus for the example above you would have a $CATALINA_

HOME/webapps/myapp directory.

To start or stop Tomcat use the scripts in $CATALINA_HOME/bin. For example to start
Tomcat on a GNU/Linux system run $CATALINA_HOME/bin/startup.sh. This will start a
web server that listens on the default port of 8080, so you can browse the above example
at http://localhost:8080/myapp/hello.

If you’re running Fedora GNU/Linux, you can use the tomcat6 package:

yum install tomcat6

export CATALINA_HOME=/usr/share/tomcat6

You can the manage Tomcat like other system services. You can install webapps under
$CATALINA_HOME/webapps.

20.7.4 Installing a servlet under Glassfish

Glassfish (https://glassfish.dev.java.net/) from Oracle/Sun is a open-source “appli-
cation server” that implements Java EE 6, including the 3.0 servlet specification. After you
download it (https://glassfish.dev.java.net/downloads/3.0.1-final.html), un-
compress it in some convenient location. This location is called as-install-parent in the Quick
Start Guide (http://docs.sun.com/app/docs/doc/820-7689/aboaa?a=view). The com-
mands you will use is most in as-install/bin, where as-install is as-install/glassfish.

To start the server, do:

as-install/bin/startserv

or under under Windows:

as-install\bin\startserv.bat

The default post to listen to is 8080; you can the port (and lots of other properties)
using the adminstration console at port 4848.

A web application does not need to be any particular location, instead you just install
it with this command:

as-install/bin/adadmin deploy appdir

where appdir is the application directory - myapp in the example. (Use asadmin.bat

under Windows.)

http://tomcat.apache.org/
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-60.cgi
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/downloads/3.0.1-final.html
http://docs.sun.com/app/docs/doc/820-7689/aboaa?a=view
http://docs.sun.com/app/docs/doc/820-7689/aboaa?a=view

Chapter 20: Working with XML and HTML 349

20.7.5 Servlet-specific script functions

The following functions only work within a servlet container. To use these functions, first
do:

(require 'servlets)

You can conditionalize your code to check at compile-time for servlets, like this:

(cond-expand

(in-servlet

(require 'servlets)

(format "[servlet-context: ~s]" (current-servlet-context)))

(else

"[Not in a servlet]"))

For a run-time check you can test if (current-servlet) is non-#!null.

[Procedure]current-servlet
When called from a Kawa servlet handler, returns the actual javax.servlet.http.HttpServlet
instance. Returns #!null if the current context is not that of KawaServlet. (Hence
this function also returns #!null if you compile a servlet “by hand” rather that
using the --servet option.)

[Procedure]current-servlet-context
Returns the context of the currently executing servlet, as an instance of
javax.servlet.ServletContext.

[Procedure]current-servlet-config
Returns the ServletConfig of the currently executing servlet.

[Procedure]get-request
Return the current servlet request, as an instance of javax.servlet.http.HttpServletRequest.

[Procedure]get-response
Return the current servlet response, as an instance of javax.servlet.http.HttpServletResponse.

[Procedure]request-servlet-path
Get the servlet path of the current request. Similar to request-script-path, but
not always the same, depending on configuration, and does not end with a "/".

[Procedure]request-path-info
Get the path info of the current request. Corresponds to the CGI variable PATH_INFO.

[Procedure]servlet-context-realpath [path]
Returns the file path of the current servlet’s "Web application".

20.8 Installing Kawa programs as CGI scripts

The recommended way to have a web-server run a Kawa program as a CGI script is to
compile the Kawa program to a servlet (as explained in Section 20.5 [Server-side scripts],
page 342, and then use Kawa’s supplied CGI-to-servlet bridge.

Chapter 20: Working with XML and HTML 350

First, compile your program to one or more class files as explained in Section 20.5
[Server-side scripts], page 342. For example:

kawa --servlet --xquery -C hello.xql

Then copy the resulting .class files to your server’s CGI directory. On Red Hat
GNU/Linux, you can do the following (as root):

cp hello*.class /var/www/cgi-bin/

Next find the cgi-servlet program that Kawa builds and installs. If you installed
Kawa in the default place, it will be in /usr/local/bin/cgi-servlet. (You’ll have this
if you installed Kawa from source, but not if you’re just using Kawa .jar file.) Copy this
program into the same CGI directory:

cp /usr/local/bin/cgi-servlet /var/www/cgi-bin/

You can link instead of copying:

ln -s /usr/local/bin/cgi-servlet /var/www/cgi-bin/

However, because of security issues this may not work, so it is safer to copy the file.
However, if you already have a copy of cgi-servlet in the CGI-directory, it is safe to make
a hard link instead of making an extra copy.

Make sure the files have the correct permissions:

chmod a+r /var/www/cgi-bin/hello*.class /var/www/cgi-bin/hello

chmod a+x /var/www/cgi-bin/hello

Now you should be able to run the Kawa program, using the URL http://localhost/

cgi-bin/hello. It may take a few seconds to get the reply, mainly because of the start-up
time of the Java VM. That is why servlets are preferred. Using the CGI interface can still
be useful for testing or when you can’t run servlets.

20.9 Functions for accessing HTTP requests

The following functions are useful for accessing properties of a HTTP request, in a Kawa
program that is run either as a servlet or a CGI script. These functions can be used from
plain Scheme, from KRL (whether in BRL-compatible mode or not), and from XQuery.

The examples below assume the request http://example.com:8080/myapp/foo/bar?val1=xyz&val2=abc,
where myapp is the application context. We also assume that this is handled by a script
foo/+default+.

The file testsuite/webtest/info/+default+ in the Kawa source distribution calls
most of these functions. You can try it as described in Section 20.6 [Self-configuring page
scripts], page 343.

20.9.1 Request URL components

[Procedure]request-URI
Returns the URI of the request, as a value of type URI. This excludes the server
specification, but includes the query string. (It is the combination of CGI variables
SCRIPT_NAME, PATH_INFO, and QUERY_STRING. Using servlets terminology, it is the
combination of Context Path, Servlet Path, PathInfo, and Query String.)

(request-URI) ⇒ "/myapp/foo/bar?val1=xyz&val2=abc"

http://localhost/cgi-bin/hello
http://localhost/cgi-bin/hello

Chapter 20: Working with XML and HTML 351

[Procedure]request-path
Returns the URI of the request, as a value of type URI. This excludes the server spec-
ification and the query string. Equivalent to (path-file (request-URI)). (It is the
combination of CGI variables SCRIPT_NAME, and PATH_INFO. Same as the concatena-
tion of (request-context-path), (request-script-path), and (request-local-

path). Using servlets terminology, it is the combination of Context Path, Servlet
Path, and PathInfo.)

(request-path) ⇒ "/myapp/foo/bar"

[Procedure]request-uri
This function is deprecated, because of possible confusion with request-URI. Use
request-path instead.

[Procedure]request-url
Returns the complete URL of the request, except the query string. The result is a
java.lang.StringBuffer.

(request-url) ⇒ "http://example.com:8080/myapp/foo/bar"

[Procedure]request-context-path
Returns the context path, relative to the server root. This is an initial substring of
the (request-path). Similar to the Context Path of a servlet request, except that
it ends with a "/".

(request-context-path) ⇒ "/myapp/"

[Procedure]request-script-path
Returns the path of the script, relative to the context. This is either an empty string,
or a string that ends with "/", but does not start with one. (The reason for this
is to produce URIs that work better with operations like resolve-uri.) This is
conceptually similar to request-servlet-path, though not always the same, and
the "/" conventions differ.

(request-script-path) ⇒ "foo/"

[Procedure]request-local-path
Returns the remainder of the request-path, relative to the request-script-path.

(request-local-path) ⇒ "bar"

[Procedure]request-query-string
Returns the query string from an HTTP request. The query string is the part of
the request URL after a question mark. Returns false if there was no query string.
Corresponds to the CGI variable QUERY_STRING.

(request-query-string) ⇒ "val1=xyz&val2=abc"

20.9.2 Request parameters

Request parameters are used for data returned from forms, and for other uses. They may
be encoded in the query string or in the request body.

Chapter 20: Working with XML and HTML 352

[Procedure]request-parameter name [default]
If there is a parameter with the given name (a string), return the (first) corresponding
value, as a string. Otherwise, return the default value, or #!null if there is no default.

(request-parameter "val1") ⇒ "xyz"

(request-parameter "val9" "(missing)") ⇒ "(missing)"

[Procedure]request-parameters name
If there is are one or more parameter with the given name (a string), return them all
(as multiple values). Otherwise, return no values (i.e. (values)).

(request-parameters "val1") ⇒ "xyz"

(request-parameters "val9") ⇒ #!void

[Procedure]request-parameter-map
Request a map of all the parameters. This is a map from strings to a sequence of
strings. (Specifically, a java.util.Map<String,java.util.List<String>>.)

20.9.3 Request headers

The request headers are a set of (keyword, string)-pairs transmitted as part of the HTTP
request, before the request body.

[Procedure]request-header name
If there is a header with the given name (a string), return the corresponding value
string. Otherwise, return #!null.

(request-header "accept-language") ⇒ "en-us,en;q=0.5"

[Procedure]request-header-map
Request a map of all the headers. This is a map from strings to a sequence of strings.
(Specifically, a java.util.Map<String,java.util.List<String>>.)

20.9.4 Request body

[Procedure]request-input-port
Return a textual input port for reading the request body, as a sequence of characters.

[Procedure]request-input-stream
Return a binary input stream for reading the request body, as a sequence of bytes.

[Procedure]request-body-string
Return the entire request body as a string

20.9.5 Request IP addresses and ports

Information about the interface and port on which the request was received.

[Procedure]request-local-socket-address
The local address on which the request was received. This is the combination
of (request-local-host) and (request-local-port), as an instance of
java.net.InetSocketAddress.

Chapter 20: Working with XML and HTML 353

[Procedure]request-local-host
Get the IP address of the interface on which request was received, as an
java.net.InetAddress.

[Procedure]request-local-IP-address
Get the IP address of the interface on which request was received, a string in numeric
form:

(request-local-host) ⇒ "127.0.0.1"

[Procedure]request-local-port
Get the port this request was received on.

(request-local-port) ⇒ 8080

Information about the interface and port of the remote client that invoked the request.

[Procedure]request-remote-socket-address
The address of the remote client (usually a web browser) which invoked the request.
This is the combination of (request-remove-host) and (request-remote-port),
as an instance of java.net.InetSocketAddress.

[Procedure]request-remote-host
Get the IP address of the remote client which invoked the request, as an
java.net.InetAddress.

[Procedure]request-remote-IP-address
Get the IP address of the remote client which invoked the request, as a string in
numeric form.

(request-remote-host) ⇒ "123.45.6.7"

[Procedure]request-remote-port
The port used by the remote client.

20.9.6 Miscellaneous request properties

[Procedure]request-path-translated
Map the request-path to a file name (a string) in the server application directory.
Corresponds to the CGI variable PATH_TRANSLATED.

[Procedure]request-method
Returns the method of the HTTP request, usually "GET" or "POST". Corresponds to
the CGI variable REQUEST_METHOD.

[Procedure]request-scheme
Returns the scheme (protocol) of the request. Usually "http", or "https".

Chapter 20: Working with XML and HTML 354

20.10 Generating HTTP responses

The result of evaluating the top-level expressions of a web page script becomes the HTTP
response that the servlet sends back to the browser. The result is typically an HTML/XML
element code object Kawa will automatically format the result as appropriate for the type.
Before the main part of the response there may be special "response header values", as
created by the response-header function. Kawa will use the response header values to set
various required and optional fields of the HTTP response. Note that response-header

does not actually do anything until it is "printed" to the standard output. Note also that
a "Content-Type" response value is special since it controls the formatting of the following
non-response-header values.

[Procedure]response-header key value
Create the response header ‘key: value’ in the HTTP response. The result is a
"response header value" (of some unspecified type). It does not directly set or print a
response header, but only does so when you actually "print" its value to the response
output stream.

[Procedure]response-content-type type
Species the content-type of the result - for example "text/plain". Convenience
function for (response-header "Content-Type" type).

[Procedure]error-response code [message]
Creates a response-header with an error code of code and a response message of
message. (For now this is the same as response-status.)

Note this also returns a response-header value, which does not actually do anything
unless it is returned as the result of executing a servlet body.

[Procedure]response-status code [message]
Creates a response-header with an status code of code and a response message of
message. (For now this is the same as error-response.)

20.11 Using non-Scheme languages for XML/HTML

20.11.1 XQuery language

Bundled with Kawa is a fairly complete implementation of W3C’s new XML Query language
(http://www.w3c.org/XML/Query). If you start Kawa with the --xquery it selects
the "XQuery" source language; this also prints output using XML syntax. See the Qexo
(Kawa-XQuery) home page (http://www.gnu.org/software/qexo/) for examples and
more information.

20.11.2 XSL transformations

There is an experimental implementation of the XSLT (XML Stylesheet Language Trans-
formations) language. Selecting --xslt at the Kawa command line will parse a source file
according to the syntax on an XSLT stylesheet. See the Kawa-XSLT page (http://www.
gnu.org/software/qexo/xslt.html) for more information.

http://www.w3c.org/XML/Query
http://www.w3c.org/XML/Query
http://www.gnu.org/software/qexo/
http://www.gnu.org/software/qexo/
http://www.gnu.org/software/qexo/xslt.html
http://www.gnu.org/software/qexo/xslt.html

Chapter 21: Miscellaneous topics 355

20.11.3 KRL - The Kawa Report Language for generating
XML/HTML

KRL (the "Kawa Report Language") is powerful Kawa dialect for embedding Scheme code
in text files such as HTML or XML templates. You select the KRL language by specifying
--krl on the Kawa command line.

KRL is based on on BRL (http://brl.sourceforge.net/), Bruce Lewis’s "Beautiful
Report Language", and uses some of BRL’s code, but there are some experimental differ-
ences, and the implementation core is different. You can run KRL in BRL-compatility-mode
by specifying --brl instead of --krl.

20.11.4 Differences between KRL and BRL

This section summarizes the known differences between KRL and BRL. Unless otherwise
specified, KRL in BRL-compatibility mode will act as BRL.

• In BRL a normal Scheme string "mystring" is the same as the inverted quote string
]mystring[, and both are instances of the type <string>. In KRL "mystring" is a
normal Scheme string of type <string>, but]mystring[is special type that suppresses
output escaping. (It is equivalent to (unescaped-data "mystring").)

• When BRL writes out a string, it does not do any processing to escape special characters
like <. However, KRL in its default mode does normally escape characters and strings.
Thus "<a>" is written as <a&gr;. You can stop it from doing this by overriding
the output format, for example by specifying --output-format scheme on the Kawa
command line, or by using the unescaped-data function.

• Various Scheme syntax forms, including lambda, take a body , which is a list of one or
more declarations and expressions. In normal Scheme and in BRL the value of a body
is the value of the last expression. In KRL the value of a body is the concatenation of
all the values of the expressions, as if using values-append.

• In BRL a word starting with a colon is a keyword. In KRL a word starting with a colon
is an identifier, which by default is bound to the make-element function specialized to
take the rest of the word as the tag name (first argument).

• BRL has an extensive utility library. Most of this has not yet been ported to KRL,
even in BRL-compatibility mode.

21 Miscellaneous topics

[Procedure]scheme-implementation-version
Returns the Kawa version number as a string.

[Procedure]scheme-window [shared]
Create a read-eval-print-loop in a new top-level window. If shared is true, it uses the
same environment as the current (interaction-environment); if not (the default),
a new top-level environment is created.

You can create multiple top-level window that can co-exist. They run in separate
threads.

http://brl.sourceforge.net/

Chapter 21: Miscellaneous topics 356

21.1 Composable pictures

The (kawa pictures) library lets you create geometric shapes and images, and combine
them in interesting ways. The Section 5.6 [Tutorial - Pictures], page 75, gives an introduc-
tion.

The easiest way to use and learn the pictures library is with a suitable REPL. You
can use the old Swing-based console or any [Using DomTerm], page 100-based terminal
emulator. You can create a suitable window either by starting kawa with the -w flag, or
by running the kawa command inside an existing DomTerm-based terminal emulator. The
screenshot below is of the latter, using the qtdomterm terminal emulator.

After (import (kawa swing)) you can use show-picture to display a picture in a Swing
window.

A picture is an object that can be displayed on a screen, web-page, or printed page, and
combined with other pictures.

A picture has a method printing itself in a graphical context. It also has various prop-
erties.

An important property of a picture is its bounding box. This is a rectangle (with edges
parallel to the axes) that surrounds the contents of the picture. Usually the entire visible
part of the picture is inside the bounding box, but in some cases part of the picture may

Chapter 21: Miscellaneous topics 357

stick outside the bounding box. For example when a circle is drawn (stroked) with a “pen”,
the bounding box is that of the infinitely-thin mathematical circle, so “ink” from the pen
that is outside the circle may be outside the bounding box.

A picture has an origin point corresponding to the (0 0) cordinates. The origin is
commonly but not always inside the bounding box. Certain operations (for example hbox)
combine pictures by putting them “next to” each other, where “next to” is defined in terms
of the bounding box and origin point.

21.1.1 Coordinates - points and dimensions

The library works with a two-dimensional grid, where each position has an x cordinate and
y coordinate. Normally, x values increase as you move right on the screen/page, while y
values increase as you move down. This convention matches that used by Java 2D, SVG,
and many other graphics libraries. However, note that this is different from the traditional
mathematical convention of y values increasing as you go up.

By default, one unit is one “pixel”. (More precisely, it is the px unit in the CSS specifi-
cation.)

[Type]Point
A point is a pair consisting of an x and a y coordinate.

[Literal]&P[x y]
Construct a point value with the specified x and y values. Both x and y are expres-
sions that evaluate to real numbers:

&P[(+ old-right 10) baseline]

[Type]Dimension
A dimension value is a pair of a width and a height. It is used for the size of pictures
in the two dimensions.

In a context that expects a point, a dimension is treated as an offset relative to some
other point.

[Literal]&D[width height]
Construct a dimension value with the specified width and height values, which are
both expressions that evaluate to real numbers.

21.1.2 Shapes

A shape is a collection of lines and curves. Examples include lines, circles, and polygons. A
shape can be stroked, which you can think of as being drawn by a very fancy calligraphic
pen that follows the lines and curves of the shape.

A closed shape is a shape that is continuous and ends up where it started. This includes
circles and polygons. A closed shape can be filled, which means the entire “interior” is
painted with some color or texture.

A shape is represented by the Java java.awt.Shape interface. The picture library
only provides relatively simple shapes, but you can use any methods that create a
java.awt.Shape object.

Shape is effectively a sub-type of picture, though they’re represented using using disjoint
classes: If you use a shape where a picture is required, the shape is automatically converted
to a picture, as if using the draw procedure.

Chapter 21: Miscellaneous topics 358

[Procedure]line p1 [p2 ...]
In the simple case two points are specified, and the result is a line that goes from
point p1 to p2. If n points are specied, the result is a polyline: a path consisting of
n-1 line segments, connecting adjacent arguments. (If only a single point is specified,
the result is degenerate single-point shape.)

All of the points except the first can optionally be specified using a dimension, which
is treated an an offset from the previous point:

(line &P[30 40] &D[10 5] &D[10 -10])

is the same as:

(line &P[30 40] &P[40 45] &P[50 35])

[Procedure]polygon p1 [p2 ...]
Constructs a closed shape from line segments. This is the same as calling line with
the same arguments, with the addition of a final line segment from the last point back
to the first point.

[Procedure]rectangle p1 [p2]
A rectangle is closed polygon of 4 line segments that are alternatively parallel to the
x-axis and the y-axis. I.e. if you rotate a rectangle it is no longer a rectangle by
this definition, though of course it still has a rectangular shape. If p2 is not specified,
constructs a rectangle whose upper-left corner is &P[0 0] and whose lower-right corner
is p1. If p2 is specified, constructs a rectangle whose upper-left corner is p1 and whose
lower-right corner is p2. If p2 is a dimension it is considered a relative offset from p1,
just like for polygon.

[Procedure]circle radius [center]
Creates a circle with the specified radius. If the center is not specified, it defaults to
&P[0 0].

21.1.3 Colors and paints

A paint is a color pattern used to fill part of the canvas. A paint can be a color, a texture
(a replicated pattern), or a gradient (a color that gradually fades to some other color).

A color is defined by red, green, and blue values. It may also have an alpha component,
which specifies transparency.

[Procedure]->paint value
Converts value to a color - or more general a paint. Specificlly, the return type is
java.awt.Paint. The value can be any one of:

• A java.awt.Paint, commonly a java.awt.Color.

• A 24-bit integer value is converted to a color. Assume the integer is equal to a
hexadecimal literal of the form #xRRGGBB. Then RR (bits 16-23) is the intensity
of the red component; GG (bits 8-15) is the intensity of the green component; and
RR (bits 0-7) is the intensity of the red component.

• One of the standard HTML/CSS/SVG color names, as a string or symbol. See
the table in gnu/kawa/models/StandardColor.java source file. Case is ignored,
and you can optionally use hyphens to separate words. For example 'hot-pink,
'hotpink, and 'hotPink are all the same sRGB color #xFF69B4.

Chapter 21: Miscellaneous topics 359

[Procedure]with-paint paint picture
Create a new picture that is the “same” as picture but use paint as the default paint.
For paint you can use any valid argument to ->paint. The default paint (which is
the color black if none is specified) is used for both fill (paint interior) and draw

(stroke outline).

#|kawa:1|# (! circ1 (circle 20 &P[20 20]))

#|kawa:2|# (hbox (fill circ1) (draw circ1))

#|kawa:3|# (with-paint 'hot-pink (hbox (fill circ1) (draw circ1)))

Above we use with-paint to create a cloned picture, which is the same as the original
hbox, except for the default paint, in this case the color hot-pink.

#|kawa:4|# (! circ2 (hbox (fill circ1) (with-paint 'hot-pink (fill circ1))))

#|kawa:5|# circ2

#|kawa:6|# (with-paint 'lime-green circ2)

Here circ2 is an hbox of two filled circles, one that has unspecified paint, and one
that is hot-pink. Printing circ2 directly uses black for the circle with unspecified
color, but if we wrap circ2 in another with-paint that provides a default that is
used for the first circle.

21.1.4 Filling a shape with a color

[Procedure]fill shape
[Procedure]fill paint shape

Fill the “inside” of shape. If no paint is specified, uses the current default paint.
Otherwise, (fill paint shape) is the same (with-paint paint (fill shape)).

Chapter 21: Miscellaneous topics 360

21.1.5 Stroking (outlining) a shape

[Procedure]draw option* shape+

Returns a picture that draws the outline of the shape. This is called stroking. An
option may be one of:

• A Paint or Color object, which is used to draw the shape.

• A standard color name, such as 'red or 'medium-slate-blue. This is mapped
to a Color.

• A join-specifier, which is a symbol specifying how each curve of the shape is
connected to the next one. The options are 'miter-join, 'round-join, and
'bevel-join. The default if none is specified is 'miter-join.

• A end-cap-specifier, which is a symbol specifying how each end of the shape is
terminated. The options are 'square-cap, 'round-cap, or 'butt-cap. The
default is 'butt-cap. (This follows SVG and HTML Canvas. The default in
plain Java AWT is a square cap.)

• A real number specifies the thickness of the stroke.

• A java.awt.Stroke object. This combines join-specifier, end-cap-specifier,
thickness, and more in a single object. The BasicStroke class can specify
dashes, though that is not yet supported for SVG output; only AWT or image
output.

Let us illustrate with a sample line lin and a helper macro show-draw, which adds
a border around a shape, then draws the given shape with some options, and finally
re-draws the shape in plain form.

#|kawa:10|# (define lin (line &P[0 0] &P[300 40] &P[200 100] &P[50 70]))

#|kawa:11|# (define-syntax show-draw

#|....:12|# (syntax-rules ()

#|....:13|# ((_ options ... shape)

#|....:14|# (border 12 'bisque (zbox (draw options ... shape) shape)))))

#|....:15|# (show-draw 8 'lime lin)

Chapter 21: Miscellaneous topics 361

#|....:16|# (show-draw 8 'lime 'round-cap 'round-join lin)

#|....:17|# (show-draw 8 'lime 'square-cap 'bevel-join lin)

Notice how the different cap and join styles change the drawing. Also note how the

stroke (color lime) extends beyond its bounding box, into the surrounding border (color

bisque).

21.1.6 Affine transforms

A 2D affine transform is a linear mapping from coordinates to coordinates. It generalizes
translation, scaling, flipping, shearing, and their composition. An affine transform maps
straight parallel lines into other straight parallel lines, so it is only a subset of possible
mappings - but a very useful subset.

[Procedure]affine-transform xx xy yx yy x0 y0
[Procedure]affine-transform px py p0

Creates a new affine transform. The result of applying (affine-transform xx xy yx
yy x0 y0) to the point &P[x y] is the transformed point

&P[(+ (* x xx) (* y yx) x0)

(+ (* x xy) (* y yy) y0)]

If using point arguments, (affine-transform &P[xx xy] &P[yx yy] &P[x0 y0]) is
equivalent to: (affine-transform xx xy yx yy x0 y0).

Chapter 21: Miscellaneous topics 362

[Procedure]with-transform transform picture
[Procedure]with-transform transform shape

Creates a transformed picture.

If the argument is a shape, then the result is also a shape.

[Procedure]with-transform transform point
Apply a transform to a single point, yielding a new point.

[Procedure]with-transform transform1 transform2
Combine two transforms, yielding the composed transform.

[Procedure]rotate angle
[Procedure]rotate angle picture

The one-argument variant creates a new affine transform that rotates a picture about
the origin by the specified angle. A positive angle yields a clockwise rotation. The
angle can be either a quantity (with a unit of either rad radians, deg (degrees), or
grad (gradians)), or it can be a unit-less real number (which is treated as degrees).

The two-argument variant applies the resulting transform to the specified picture. It
is equivalent to:

(with-transform (rotate angle) picture)

[Procedure]scale factor
[Procedure]scale factor picture

Scales the picture by the given factor. The factor can be a real number. The factor
can also be a point or a dimension, in which case the two cordinates are scaled by a
different amount.

The two-argument variant applies the resulting transform to the specified picture. It
is equivalent to:

(with-transform (scale factor) picture)

[Procedure]translate offset
[Procedure]translate offset picture

The single-argument variant creates a transform that adds the offset to each point.
The offset can be either a point or a dimension (which are treated quivalently).

The two-argument variant applies the resulting transform to the specified picture. It
is equivalent to:

(with-transform (translate offset) picture)

21.1.7 Combining pictures

[Procedure]hbox [spacing] picture ...
[Procedure]vbox [spacing] picture ...
[Procedure]zbox picture ...

Make a combined picture from multiple sub-pictures drawn either “next to” or “on
top of” each other.

The case of zbox is simplest: The sub-pictures are drawn in argument order at the
same position (origin). The “z” refers to the idea that the pictures are stacked on
top of each other along the “Z-axis” (the one perpendicular to the screen).

Chapter 21: Miscellaneous topics 363

The hbox and vbox instead place the sub-pictures next to each other, in a row or
column. If spacing is specified, if must be a real number. That much extra spacing
is added between each sub-picture.

More precisely: hbox shifts each sub-picture except the first so its left-origin control-
point (see discussion at re-center) has the same position as the right-origin control
point of the previous picture plus the amount of spacing. Similarly, vbox shifts each
sub-picture except the first so its top-origin control point has the same position as
the bottom-origin point of the previous picture, plus spacing.

The bounding box of the result is the smallest rectangle that includes the bounding
boxes of the (shifted) sub-pictures. The origin of the result is that of the first picture.

[Procedure]border [size [paint]] picture
Return a picture that combines picture with a rectangular border (frame) around
picture’s bounding box. The size specifies the thickness of the border: it can be real
number, in which it is the thickness on all four sides; it can be a Dimension, in which
case the width is the left and right thickness, while the height is the top and bottom
thickness; or it can be a Rectangle, in which case it is the new bounding box. If paint
is specified it is used for the border; otherwise the default paint is used. The border
is painted before (below) the picture painted. The bounding box of the result is that
of the border, while the origin point is that of the original picture.

#|kawa:2|# (with-paint 'blue (border &D[8 5] (fill 'pink (circle 30))))

[Procedure]padding width [background] picture
This is similar to border, but it just adds extra space around picture, without paint-
ing it. The size is specified the same way. If background is specified, it becomes
the background paint for the entire padded rectangle (both picture and the extra
padding).

#|kawa:3|# (define circ1 (fill 'teal (circle 25)))

#|kawa:4|# (zbox (line &P[-30 20] &P[150 20])

#|kawa:5|# (hbox circ1 (padding 6 'yellow circ1) (padding 6 circ1)))

Chapter 21: Miscellaneous topics 364

This shows a circle drawn three ways: as-is; with padding and a background color;
with padding and a transparent background. A line is drawn before (below) the circles
to contrast the yellow vs transparent backgrounds.

[Procedure]re-center [xpos] [ypos] picture
Translate the picture such that the point specified by xpos and ypos is the new origin
point, adjusting the bounding box to match. If the picture is a shape, so is the result.

The xpos can have four possible values, all of which are symbols: 'left (move the
origin to the left edge of the bounding box); 'right (move the origin to the right edge
of the bounding box); 'center (or 'centre) (move the origin to halfway between the
left and right edges); or 'origin (don’t change the location along the x-axis). The
ypos can likewise have four possible values: 'top (move the origin to the top edge
of the bounding box); 'bottom (move the origin to the bottom edge of the bounding
box); 'center (or 'centre) (move the origin to halfway between the top and bottom
edges); or 'origin (don’t change the location along the y-axis).

A single 'center argument is the same as specifying 'center for both axis; this is
the default. A single 'origin argument is the same as specifying 'origin for both
axis; this is the same as just picture.

The 16 control points are shown below, relative to a picture’s bounding box and the
X- and Y-axes. The abbreviations have the obvious values, for example LC means
'left 'center.

LT OT CT RT

LC OC C RC

LOOCORO

LB OB CB RB

The result of (for example) (re-center 'left 'center P) is P translated so the
origin is at control point LC.

#|kawa:1|# (define D (fill 'light-steel-blue (polygon &P[-20 0] &P[0 -

20] &P[60 0] &P[0 40])))

#|kawa:2|# (zbox D (draw 'red (circle 5)))

Above we defined D as a vaguely diamond-shaped quadrilateral. A small red circle is
added to show the origin point. Below we display 5 versions of D in a line (an hbox),
starting with the original D and 4 calls to re-center.

#|kawa:3|# (zbox (hbox D (re-center 'top D) (re-center 'bottom D)

Chapter 21: Miscellaneous topics 365

#|....:4|# (re-center 'center D) (re-center 'origin D))

#|....:5|# (line &P[0 0] &P[300 0]))

The line at y=0 shows the effects of re-center.

21.1.8 Images

An image is a picture represented as a rectangular grid of color values. An image file is
some encoding (usually compressed) of an image, and mostly commonly has the extensions
png, gif, or jpg/jpeg.

A “native image” is an instance of java.awt.image.BufferedImage, while a “pic-
ture image” is an instance of gnu.kawa.models.DrawImage. (Both classes implement the
java.awt.image.RenderedImage interface.) A BufferedImage is automatically converted
to a DrawImage when needed.

[Procedure]image bimage
[Procedure]image picture
[Procedure]image src: path

Creates a picture image, using either an existing native image bimage, or an image
file specified by path.

Writing (image src: path) is roughly the same as (image (read-image path)) ex-
cept that the former has the path associated with the resulting picture image. This
can make a difference when the image is used or displayed.

If the argument is a picture, it is converted to an image as if by ->image.

[Procedure]image-read path
Read an image file from the specified path, and returns a native image object (a
BufferedImage).

#|kawa:10|# (define img1 (image-read "http://pics.bothner.com/2013/Cats/06t.jpg"))

Chapter 21: Miscellaneous topics 366

#|kawa:11|# img1

#|kawa:12|# (scale 0.6 (rotate 30 img1))

Note that while img1 above is a (native) image, the scaled rotated image is not an image
object. It is a picture - a more complex value that contains an image.

[Procedure]image-write picture path
The picture is converted to an image (as if by using ->image) and then it is written
to the specified path. The format used depends on (the lower-cased string value of)
the path: A JPG file if the name ends with ".jpg" or ".jpeg"; a GIF file if the name
ends with ".gif"; a PNG file if the name ends with ".png". (Otherwise, the defalt
is PNG, but that might change.)

[Procedure]image-width image
[Procedure]image-height image

Return the width or height of the given image, in pixels.

Chapter 21: Miscellaneous topics 367

[Procedure]->image picture
Convert picture to an image (a RenderedImage). If the picture is an image, return
as-is. Otherwise, create an empty image (a BufferedImage whose size is the picture’s
bounding box), and “paint” the picture into it.

#|kawa:1|# (define c (fill (circle 10)))

#|kawa:2|# (scale 3 (hbox c (->image c)))

Here we take a circle c, and convert it to an image. Note how when the image is
scaled, the pixel artifacts are very noticable. Also note how the origin of the image
is the top-level corner, while the origin of the original circle is its center.

21.1.9 Compositing - Controlling how pictures are combined

[Procedure]with-composite [[compose-op] picture] ...
Limited support - SVG and DomTerm output has not been implemented.

21.1.10 Displaying and exporting pictures

21.1.10.1 Export to SVG

[Procedure]picture-write-svg picture path [headers]
Writes the picture to the file specified by path, in SVG (Structered Vector Graphics)
format. If headers is true (which is the default) first write out the XML and DOC-
TYPE declarations that should be in a well-formed standaline SVG file. Otherwise,
just write of the <svg> element. (Modern browers should be able to display a file con-
sisting of just the <svg> element, as long as it has extension .svg, .xml, or .html;
the latter may add some extra padding.)

[Procedure]picture->svg-node picture
Returns a SVG representation of picture, in the form of an <svg> element, similar
to those discussed in Section 20.3 [Creating XML nodes], page 338. If you convert the
<svg> element to a string, you get formatted XML; if you write the <svg> element
you get an Section 20.4 [XML literals], page 339, of form "#<svg>...</svg>". If you
display the <svg> element in a DomTerm terminal you get the picture (as a picture).
This works because when you display an element in DomTerm it gets inserted into
the display.

Chapter 21: Miscellaneous topics 368

21.1.10.2 Display in Swing

These procedures require (import (kawa swing)) in addition to (import (kawa

pictures)).

The convenience function show-picture is useful for displaying a picture in a new
(Swing) window.

[Procedure]show-picture picture
If this is the first call to show-pictures, displays picture in a new top-level window
(using the Swing toolkit). Sequenent calls to show-picture will reuse the window.

#|kawa:1|# (import (kawa swing) (kawa pictures))

#|kawa:2|# (show-picture some-picture)

#|kawa:3|# (set-frame-size! &D[200 200]) ; Adjust window size

#|kawa:4|# (show-picture some-other-picture)

[Procedure]picture->jpanel picture
Return a JPanel that displays picture. You can change the displayed picture by:

(set! panel:picture some-other-picture)

[Procedure]set-frame-size! size [frame]
If frame is specified, set its size. Otherwise, remember the size for future
show-picture calls; if there is already a show-picture window, adjust its size.

21.1.10.3 Convert to image

You can convert a picture to an image using the ->image procedure, or write it to a file
using the image-write procedure.

21.2 Building JavaFX applications

Kawa makes it easy to build “rich client” (i.e. GUI) applications using JavaFX (http://
www.oracle.com/technetwork/java/javafx/overview/index.html). For example the
following program will print up a window with a button; clicking on the button will print
a message on the console output about the event.

(require 'javafx-defs)

(javafx-application)

(javafx-scene

title: "Hello Button"

width: 600 height: 450

(Button

text: "Click Me"

layout-x: 25

layout-y: 40

on-action: (lambda (e) (format #t "Event: ~s~%~!" e))))

JavaFX support is builtin to the pre-built kawa-3.1.1.jar. It is easiest to use JDK 8;
see below if you’re using JDK 7. If you build Kawa from source, specify --with-javafx on
the configure command line (assuming you’re using JDK 8).

http://www.oracle.com/technetwork/java/javafx/overview/index.html
http://www.oracle.com/technetwork/java/javafx/overview/index.html

Chapter 21: Miscellaneous topics 369

Assume the above file is HelloButton1.scm, you can run it like this:

$ kawa HelloButton1.scm

For more information and examples read this (slightly older) introduction (http://per.
bothner.com/blog/2011/JavaFX-using-Kawa-intro/), and this on animation (http://
localhost/per/blog/2011/JavaFX-using-Kawa-animation/).

The browse-kawa-manual script in the doc directory (source only) uses JavaFX Web-
View to create a window for browsing the Kawa documentation.

21.2.1 Using JavaFX with JDK 11+

Starting with JDK 11, JavaFX has been moved to a separate project and is no longer
included in the JDK. The separate project OpenJFX provides an SDK that includes modular
jar files which can be added to the CLASSPATH or via the --module-path parameter to javac
and java.

To run the previous HelloButton1.scm you can do:

$ java -cp $KAVA_HOME/kawa.jar --module-path $JAVAFX_HOME/lib \

--add-modules javafx.web HelloButton1.scm

If you build Kawa from source you must use an appropriate JDK version and enable the
modular OpenJFX SDK:

$./configure --with-javafx=path-to-sdk ...other-args...

The resulting Kawa binary sets up the module path and the boostrap module so you
just need to do:

$ kawa HelloButton1.scm

21.3 Building for Android

Google’s phone/tablet operating system Android (https://developers.google.com/
android/) is based on a custom virtual machine on top of a Linux kernel. Even though
Android isn’t strictly (or legally) speaking Java, you can build Android applications using
Kawa.

Below is "Hello world" written in Kawa Scheme. A slightly more interesting example is
in Section 21.4 [Android view construction], page 372.

(require 'android-defs)

(activity hello

(on-create-view

(android.widget.TextView (this)

text: "Hello, Android from Kawa Scheme!")))

The following instructions have been tested on GNU/Linux, specifically Fedora
17. This link (http: / / asieno . com / blog / index . php / post / 2012 / 08 / 16 /

Setting-up-the-environment-Android-Kawa) may be helpful if you’re building on
Windows.

21.3.1 Downloading and setting up the Android SDK

First download the Android SDK (http://code.google.com/android/download.html).
Unzip in a suitable location, which we’ll refer to as ANDROID_HOME.

export ANDROID_HOME=/path/to/android-sdk-linux

http://per.bothner.com/blog/2011/JavaFX-using-Kawa-intro/
http://per.bothner.com/blog/2011/JavaFX-using-Kawa-intro/
http://localhost/per/blog/2011/JavaFX-using-Kawa-animation/
http://localhost/per/blog/2011/JavaFX-using-Kawa-animation/
https://developers.google.com/android/
https://developers.google.com/android/
http://asieno.com/blog/index.php/post/2012/08/16/Setting-up-the-environment-Android-Kawa
http://asieno.com/blog/index.php/post/2012/08/16/Setting-up-the-environment-Android-Kawa
http://code.google.com/android/download.html

Chapter 21: Miscellaneous topics 370

PATH=$ANDROID_HOME/tools:$ANDROID_HOME/platform-tools:$PATH

Next you have to get the appropriate platform SDK:

$ android update sdk

You need to select an Android “platform”. Platform (API) 16 corresponds to Android
4.1.2 (Jelly Bean). Select that or whatever you prefer, and click Install. (You can install
multiple platforms, but each project is built for a specific platform.)

ANDROID_PLATFORM=android-16

21.3.2 Building Kawa for Android

Set JAVA_HOME to where your JDK tree is. You should use JDK 6; JDK 7 does not work at
time of writing.

$ export JAVA_HOME=/opt/jdk1.6

First Section 4.1 [Getting Kawa], page 59.

If using Ant (as is recommended on Windows):

$ ant -Denable-android=true

Alternatively, you can use configure and make:

$ KAWA_DIR=path_to_Kawa_sources

$ cd $KAWA_DIR

$./configure --with-android=$ANDROID_HOME/platforms/$ANDROID_PLATFORM/android.jar --disable-xquery --disable-jemacs

$ make

21.3.3 Creating the application

Next, we need to create a project or “activity”. This tutorial assumes you want to create
the project in the target directory KawaHello, with the main activity being a class named
hello in a package kawa.android:

PROJECT_DIR=KawaHello

PROJECT_CLASS=hello

PROJECT_PACKAGE=kawa.android

PROJECT_PACKAGE_PATH=kawa/android

To create the project use the following command:

$ android create project --target $ANDROID_PLATFORM --name $PROJECT_DIR --activity $PROJECT_CLASS --path ./$PROJECT_DIR --package $PROJECT_PACKAGE

Replace the skeleton hello.java by the Scheme code at the top of this note, placing in
a file named hello.scm:

$ cd $PROJECT_DIR

$ HELLO_APP_DIR=`pwd`

$ cd $HELLO_APP_DIR/src/$PROJECT_PACKAGE_PATH

$ rm $PROJECT_CLASS.java

$ create $PROJECT_CLASS.scm

We need to copy/link the Kawa jar file so the Android SDK can find it:

$ cd $HELLO_APP_DIR

$ ln -s $KAWA_DIR/kawa-3.1.1.jar libs/kawa.jar

Chapter 21: Miscellaneous topics 371

Optionally, you can use kawart-3.1.1.jar, which is slightly smaller, but does not support
eval, and does not get built by the Ant build:

$ ln -s $KAWA_DIR/kawart-3.1.1.jar libs/kawa.jar

Copy or link custom_rules.xml from the Kawa sources:

ln -s $KAWA_DIR/gnu/kawa/android/custom_rules.xml .

Finally to build the application just do:

$ ant debug

21.3.4 Running the application on the Android emulator

First you need to create an Android Virtual Device (avd) (http://developer.android.
com/tools/devices). Start:

android

Then from menu Tools select Manage AVDs.... In the new window click New.... Pick
a Name (we use avd16 in the following), a Target (to match $ANDROID_PLATFORM), and
optionally change the other properties, before clicking Create AVD.

Now you can start up the Android emulator:

$ emulator -avd avd16 &

Wait until Android has finished booting (you will see the Android home screen), click
the menu and home buttons. Now install our new application:

adb install bin/KawaHello-debug.apk

21.3.5 Running the application on your device

If the emulator is running, kill it:

$ kill %emulator

On your phone or other Android devude, enable USB debugging. (This is settable from
the Settings application, under Applications / Development.)

Connect the phone to your computer with the USB cable. Verify that the phone is
accessible to adb:

$ adb devices

List of devices attached

0A3A560F0C015024 device

If you don’t see a device listed, it may be permission problem. You can figure out which
device corresponds to the phone by doing:

$ ls -l /dev/bus/usb/*

/dev/bus/usb/001:

total 0

...

crw-rw-rw- 1 root wheel 189, 5 2010-10-18 16:52 006

...

The timestamp corresponds to when you connected the phone. Make the USB connection
readable:

$ sudo chmod a+w /dev/bus/usb/001/006

http://developer.android.com/tools/devices
http://developer.android.com/tools/devices

Chapter 21: Miscellaneous topics 372

Obviously if you spend time developing for an Androd phone you’ll want to automate
this process; this link (https://sites.google.com/site/siteofhx/Home/android/
drivers/udc) or this link (https://groups.google.com/forum/?fromgroups=#!topic/
android-developers/nTfhhPktGfM) may be helpful.

Anyway, once adb can talk to the phone, you install in the same way as before:

adb install bin/KawaHello-debug.apk

21.3.6 Some debugging notes

You will find a copy of the SDK documentation in $ANDROID_HOME/docs/index.html.

If the emulator complains that your application has stopped unexpectedly, do:

$ adb logcat

This shows log messages, stack traces, output from the Log.i logging method, and other
useful information. (You can alternatively start ddms (Dalvik Debug Monitor Service), click
on the kawa.android line in the top-left sub-window to select it, then from the Device

menu select Run logcat....).

To uninstall your application, do:

$ adb uninstall kawa.android

21.3.7 Other resources

(A more interesting text-to-speech (http://androidscheme.blogspot.com/2010/10/
text-to-speech-app.html) example app is on Santosh Rajan’s Android-Scheme blog
(http://androidscheme.blogspot.com/).)

https://github.com/ecraven/SchemeAndroidOGL

21.4 Android view construction

An Android user interface is constructed from View objects. The following is an example
that illustrates some features of Kawa to help write views hierarchies, The example is self-
contained, and can be built and run as described in Section 21.3 [Building for Android],
page 369.

(require 'android-defs)

(activity hello

(on-create-view

(define counter ::integer 0)

(define counter-view

(TextView text: "Not clicked yet."))

(LinearLayout orientation: LinearLayout:VERTICAL

(TextView text: "Hello, Android from Kawa Scheme!")

(Button

text: "Click here!"

on-click-listener: (lambda (e)

(set! counter (+ counter 1))

(counter-view:setText

(format "Clicked ~d times." counter))))

counter-view)))

https://sites.google.com/site/siteofhx/Home/android/drivers/udc
https://sites.google.com/site/siteofhx/Home/android/drivers/udc
https://groups.google.com/forum/?fromgroups=#!topic/android-developers/nTfhhPktGfM
https://groups.google.com/forum/?fromgroups=#!topic/android-developers/nTfhhPktGfM
http://androidscheme.blogspot.com/2010/10/text-to-speech-app.html
http://androidscheme.blogspot.com/2010/10/text-to-speech-app.html
http://androidscheme.blogspot.com/
http://androidscheme.blogspot.com/
https://github.com/ecraven/SchemeAndroidOGL

Chapter 21: Miscellaneous topics 373

The first import form imports various useful definitions from the Kawa Android library.
Using these is not required for writing a Kawa application, but makes it more convenient.

The names LinearLayout, TextView, and Button are just aliases for standard Android
View sub-classes. A few are prefined by (require 'android-defs), or you can define them
yourself using define-alias.

An Android application consists of one or more activities, each of which is an instance
of the android.app.Activity class. You can use the activity macro to define your
Activity class. The first macro argument (in this case hello) is the class name, and
the others are members of the class, in the syntax of a field-or-method-decl. The sub-form
on-create-view is an abbreviation for declaring an onCreatemethod (which is called when
the Activity starts up followed by a setContentView: The body of the on-create-view

is evaluated. The result should be a View expression, which is passed to setContentView.

[Procedure]current-activity [new-value]
With no arguments, returns the current Activity. If a new-value argument is given,
sets the current activity. It is set automatically by the on-create and on-create-

view methods of the activity macro.

Since current-activity is a Section 15.2 [Parameter objects], page 268, you can
locally change the value using [parameterize-syntax], page 269.

21.4.1 View object allocation

To create an instance of a View class you “call” the class as if it were a function, as described
in Section 19.10 [Allocating objects], page 324. For example:

(TextView (this) text: "Hello, Android from Kawa Scheme!")

If you (require 'android-defs) that defines some special handling for View classes.
You can leave out the (this) argument, which refers to the enclosing Activity:

(TextView text: "Hello, Android from Kawa Scheme!")

21.4.2 Event handlers

You can register event listeners on Android View objects using methods typically named
setOnEVENTListener. For example setOnClickListener. When allocating an object
you can leave out the set, and you can optionally use Scheme-style names: on-click-

listener. The argument is an object of a special nested listener class, for example
View$OnClickListener. These are single-method classes, so you can use a lambda ex-
pression and [SAM-conversion], page 303, will automatically create the needed listener
class.

21.5 System inquiry

[Variable]home-directory
A string containing the home directory of the user.

[Procedure]command-line
Returns a nonempty list of immutable strings. The first element is an implementation-
specific name for the running top-level program. The remaining elements are the

Chapter 21: Miscellaneous topics 374

command-line arguments, as passed to the main method (except for those flags pro-
cessed by Kawa itself).

The first element will depend on how the Kawa module was invoked. Kawa uses the
following rules to determine the command name:

1. If the property kawa.command.name is set, that is used. This variable can be set
on the kawa command line, for example from a script:

kawa -Dkawa.command.name="$0" foo "$@"

This variable is also set implicitly by the meta-arg option. FIXME.

2. If we’re reading a source file that starts with the Unix command-file prefix ‘#!/’
then we use the name of the source file. The assumption is that such a file is an
executable script.

3. If the Java property kawa.command.line is set, then we use that (after stripping
off text that duplicates the remaining arguments). The kawa program sets this
property to the command line used to invoke it (specifically the contents of the
entire argv array), before invoking the java program.

4. If the Java property sun.java.command is set, then we use that (after stripping
off text that duplicates the remaining arguments), and then prepending the string
"java ". The OpenJDK java program sets this property.

5. If all else fails, the command name is "kawa".

[Variable]command-line-arguments
Any command-line arguments (following flags processed by Kawa itself) are assigned
to the global variable ‘command-line-arguments’, which is a vector of strings.

[Procedure]process-command-line-assignments
Process any initial command-line options that set variables. These have the form
name=value. Any such command-line options (at the start of the command-line) are
processed and removed from the command-line.

$ java kawa.repl -- abc=123 def

#|kawa:1|# (write (command-line))

("java kawa.repl --" "abc=123" "def")

#|kawa:2|# (process-command-line-assignments)

#|kawa:3|# (write (command-line))

("java kawa.repl -- abc=123" "def")

#|kawa:4|# abc

123

This function is mostly useful for Kawa applications compiled with the --main option.
(It is used to set XQuery external variables.)

[Procedure]get-environment-variable name
Many operating systems provide each running process with an environment conisting
of environment variables. (This environment is not to be confused with the Scheme
environments that can be passed to eval.) Both the name and value of an envi-
ronment variable are strings. The procedure get-environment-variable returns
the value of the environment variable name, or #f if the environment variable is not

Chapter 21: Miscellaneous topics 375

found. (This uses the java.lang.System:getenv method.) It is an error to mutate
the resulting string.

(get-environment-variable "PATH")

⇒ "/usr/local/bin:/usr/bin:/bin"

[Procedure]get-environment-variables
Returns the names and values of all the environment variables as an alist, where the
car of each entry is the name of an environment variable, and the cdr is its value,
both as strings. It is an error to mutate any of the strings or the alist itself.

(get-environment-variables)

⇒ (("USER" . "root") ("HOME" . "/"))

21.6 Processes

A process is a native (operating-system-level) application or program that runs separately
from the current virtual machine.

Many programming languages have facilities to allow access to system processes (com-
mands). (For example Java has java.lang.Process and java.lang.ProcessBuilder.)
These facilities let you send data to the standard input, extract the resulting output, look
at the return code, and sometimes even pipe commands together. However, this is rarely
as easy as it is using the old Bourne shell; for example command substitution is awkward.
Kawa’s solution is based on these two ideas:

• A “process expression” (typically a function call) evaluates to a LProcess value, which
provides access to a Unix-style (or Windows) process.

• In a context requiring a string (or a bytevector), an LProcess is automatically converted
to a string (or bytevector) comprising the standard output from the process.

21.6.1 Creating a process

The most flexible way to start a process is with either the run-process procedure or the
&`{command} syntax for [process literals], page 376.

[Procedure]run-process process-keyword-argument* command
Creates a process object, specifically a gnu.kawa.functions.LProcess object. A
process-keyword-argument can be used to set various options, as discussed below.

The command is the process command-line (name and arguments). It can be an array
of strings, in which case those are used as the command arguments directly:

(run-process ["ls" "-l"])

The command can also be a single string, which is split (tokenized) into command
arguments separated by whitespace. Quotation groups words together just like tra-
ditional shells:

(run-process "cmd a\"b 'c\"d k'l m\"n'o")

⇒ (run-process ["cmd" "ab 'cd" "k'l m\"no"])

The syntax shorthand &`{command} or &sh{command} (discussed below) is usually
more convenient.

Chapter 21: Miscellaneous topics 376

process-keyword-argument ::=
process-redirect-argument

| process-environment-argument
| process-misc-argument

We discuss process-redirect-argument and process-environment-argument later. The
process-misc-argument options are just the following:

shell: shell Currently, shell must be one of #f (which is ignored) or #t. The latter means to
use an external shell to tokenize the command. I.e. the following are equivalent:

(run-process shell: #t "command")

(run-process ["/bin/sh" "-c" "command"])

directory: dir
Change the working directory of the new process to dir.

21.6.2 Process literals

A simple process literal is a kind of Section 7.11 [Named quasi-literals], page 133, that uses
the backtick character (`) as the cname. For example:

&`{date --utc}

This is equivalent to:

(run-process "date --utc")

In general the following are roughly equivalent (using [string quasi-literals], page 224):

&`[args...]{command}

(run-process args... &{command})

The reason for the “roughly” is if command contains escaped sub-expressions; in that
case &` may process the resulting values differently from plain string-substitution, as dis-
cussed below.

If you use &sh instead of &` then a shell is used:

&sh{rm *.class}

which is equivalent to:

&`{/bin/sh -c "rm *.class"}

In general, the following are equivalent:

&sh[args...]{command}

&`[shell: #t args...]{command}

21.6.3 Process values and process output

The value returned from a call to run-process or a process literal is an instance of
gnu.kawa.functions.LProcess. This class extends java.lang.Process, so you can treat
it as any other Process object.

#|kawa:1|# (define p1 &`{date --utc})

#|kawa:2|# (p1:toString)

gnu.kawa.functions.LProcess@377dca04

#|kawa:3|# (write p1)

gnu.kawa.functions.LProcess@377dca04

Chapter 21: Miscellaneous topics 377

What makes an LProcess interesting is that it is also a [Blobs], page 275, which is
automatically converted to a string (or bytevector) in a context that requires it. The
contents of the blob comes from the standard output of the process. The blob is evaluated
Section 8.6 [Lazy evaluation], page 144, so data it is only collected when requested.

#|kawa:4|# (define s1 ::string p1)

#|kawa:5|# (write s1)

"Wed Jan 1 01:18:21 UTC 2014\n"

#|kawa:6|# (define b1 ::bytevector p1)

(write b1)

#u8(87 101 100 32 74 97 110 ... 52 10)

The display procedure prints it in “human” form, as a string:

#|kawa:7|# (display p1)

Wed Jan 1 01:18:21 UTC 2014

This is also the default REPL formatting:

#|kawa:8|# &`{date --utc}

Wed Jan 1 01:18:22 UTC 2014

When you type a command to a shell, its output goes to the console, Similarly, in a
REPL the output from the process is copied to the console output - which can sometimes
by optimized by letting the process inherit its standard output from the Kawa process.

21.6.4 Substitution and tokenization

To substitute the variable or the result of an expression in the command line use the usual
syntax for quasi literals:

(define filename (make-temporary-file))

&sh{run-experiment >&[filename]}

Since a process is convertible a string, we need no special syntax for command substitu-
tion:

`{echo The directory is: &[&`{pwd}]}

or equivalently:

`{echo The directory is: &`{pwd}}

Things get more interesting when considering the interaction between substitution and
tokenization. This is not simple string interpolation. For example, if an interpolated value
contains a quote character, we want to treat it as a literal quote, rather than a token delim-
iter. This matches the behavior of traditional shells. There are multiple cases, depending
on whether the interpolation result is a string or a vector/list, and depending on whether
the interpolation is inside quotes.

• If the value is a string, and we’re not inside quotes, then all non-whitespace characters
(including quotes) are literal, but whitespace still separates tokens:

(define v1 "a b'c ")

&`{cmd x y&[v1]z} ⇒ (run-process ["cmd" "x" "ya" "b'c" "z"])

• If the value is a string, and we are inside single quotes, all characters (including white-
space) are literal.

&`{cmd 'x y&[v1]z'} ⇒ (run-process ["cmd" "x ya b'c z"])

Chapter 21: Miscellaneous topics 378

Double quotes work the same except that newline is an argument separator. This is
useful when you have one filename per line, and the filenames may contain spaces, as
in the output from find:

&`{ls -l "&`{find . -name '*.pdf'}"}

This solves a problem that is quite painful with traditional shells.

• If the value is a vector or list (of strings), and we’re not inside quotes, then each element
of the array becomes its own argument, as-is:

(define v2 ["a b" "c\"d"])

&`{cmd &[v2]} ⇒ (run-process ["cmd" "a b" "c\"d"])

However, if the enclosed expression is adjacent to non-space non-quote characters, those
are prepended to the first element, or appended to the last element, respectively.

&`{cmd x&[v2]y} ⇒ (run-process ["cmd" "xa b" "c\"dy"])

&`{cmd x&[[]]y} ⇒ (run-process ["cmd" "xy"])

This behavior is similar to how shells handle "$@" (or "${name[@]}" for general arrays),
though in Kawa you would leave off the quotes.

Note the equivalence:

&`{&[array]} ⇒ (run-process array)

• If the value is a vector or list (of strings), and we are inside quotes, it is equivalent to
interpolating a single string resulting from concatenating the elements separated by a
space:

&`{cmd "&[v2]"}

⇒ (run-process ["cmd" "a b c\"d"])

This behavior is similar to how shells handle "$*" (or "${name[*]}" for general arrays).

• If the value is the result of a call to unescaped-data then it is parsed as if it were
literal. For example a quote in the unescaped data may match a quote in the literal:

(define vu (unescaped-data "b ' c d '"))

&`{cmd 'a &[vu]z'} ⇒ (run-process ["cmd" "a b " "c" "d" "z"])

• If we’re using a shell to tokenize the command, then we add quotes or backslashes as
needed so that the shell will tokenize as described above:

(define authors ["O'Conner" "de Beauvoir"])

&sh{list-books &[authors]}

The command passed to the shell is:

list-books 'O'\''Conner' 'de Beauvoir

Having quoting be handled by the $construct$:sh implementation automatically elim-
inates common code injection problems.

Smart tokenization only happens when using the quasi-literal forms such as
&`{command}. You can of course use string templates with run-process:

(run-process &{echo The directory is: &`{pwd}})

However, in that case there is no smart tokenization: The template is evaluated to a
string, and then the resulting string is tokenized, with no knowledge of where expressions
were substituted.

Chapter 21: Miscellaneous topics 379

21.6.5 Input/output redirection

You can use various keyword arguments to specify standard input, output, and error
streams. For example to lower-case the text in in.txt, writing the result to out.txt,
you can do:

&`[in-from: "in.txt" out-to: "out.txt"]{tr A-Z a-z}

or:

(run-process in-from: "in.txt" out-to: "out.txt" "tr A-Z a-z")

A process-redirect-argument can be one of the following:

in: value The value is evaluated, converted to a string (as if using display), and copied
to the input file of the process. The following are equivalent:

&`[in: "text\n"]{command}

&`[in: &`{echo "text"}]{command}

You can pipe the output from command1 to the input of command2 as follows:

&`[in: &`{command1}]{command2}

in-from: path
The process reads its input from the specified path, which can be any value
coercible to a filepath.

out-to: path
The process writes its output to the specified path.

err-to: path
Similarly for the error stream.

out-append-to: path
err-append-to: path

Similar to out-to and err-to, but append to the file specified by path, instead
of replacing it.

in-from: flpipe
out-to: flpipe
err-to: flpipe

Does not set up redirection. Instead, the specified stream is avail-
able using the methods getOutputStream, getInputStream, or
getErrorStream, respectively, on the resulting Process object, just like Java’s
ProcessBuilder.Redirect.PIPE.

in-from: flinherit
out-to: flinherit
err-to: flinherit

Inherits the standard input, output, or error stream from the current JVM
process.

out-to: port
err-to: port

Redirects the standard output or error of the process to the specified port.

Chapter 21: Miscellaneous topics 380

out-to: flcurrent
err-to: flcurrent

Same as out-to: (current-output-port), or err-to: (current-error-

port), respectively.

in-from: port
in-from: flcurrent

Re-directs standard input to read from the port (or (current-input-port)).
It is unspecified how much is read from the port. (The implementation is to
use a thread that reads from the port, and sends it to the process, so it might
read to the end of the port, even if the process doesn’t read it all.)

err-to: flout
Redirect the standard error of the process to be merged with the standard
output.

The default for the error stream (if neither err-to or err-append-to is specified) is
equivalent to err-to: 'current.

Note: Writing to a port is implemented by copying the output or error stream of the
process. This is done in a thread, which means we don’t have any guarantees when the
copying is finished. (In the future we might change process-exit-wait (discussed later)
wait for not only the process to finish, but also for these helper threads to finish.)

A here document (https://en.wikipedia.org/wiki/Here_document) is a form a
literal string, typically multi-line, and commonly used in shells for the standard input of a
process. You can use string literals or [string quasi-literals], page 224, for this. For example,
this passes the string "line1\nline2\nline3\n" to the standard input of command:

(run-process [in: &{

&|line1

&|line2

&|line3

}] "command")

Note the use of &| to mark the end of ignored indentation.

21.6.6 Pipe-lines

Piping the output of one process as the input of another is in principle easy - just use the
in: process argument. However, writing a multi-stage pipe-line quickly gets ugly:

&`[in: &`[in: "My text\n"]{tr a-z A-Z}]{wc}

The convenience macro pipe-process makes this much nicer:

(pipe-process

"My text\n"

&`{tr a-z A-Z}

&`{wc})

[Syntax]pipe-process input process*

All of the process expressions must be run-process forms, or equivalent &`{command}
forms. The result of evaluating input becomes the input to the first process; the
output from the first process becomes the input to the second process, and so on.
The result of whole pipe-process expression is that of the last process.

https://en.wikipedia.org/wiki/Here_document

Chapter 21: Miscellaneous topics 381

Copying the output of one process to the input of the next is optimized: it uses a
copying loop in a separate thread. Thus you can safely pipe long-running processes
that produce huge output. This isn’t quite as efficient as using an operating system
pipe, but is portable and works pretty well.

21.6.7 Setting the process environment

By default the new process inherits the system environment of the current (JVM) process as
returned by System.getenv(), but you can override it. A process-environment-argument
can be one of the following:

env-name: value
In the process environment, set the "name" to the specified value. For example:

&`[env-CLASSPATH: ".:classes"]{java MyClass}

NAME: value
Same as using the env-NAME option above, but only if the NAME is uppercase
(i.e. if uppercasing NAME yields the same string). For example the previous
example could be written:

&`[CLASSPATH: ".:classes"]{java MyClass}

environment: env
The env is evaluated and must yield a HashMap. This map is used as the system
environment of the process.

21.6.8 Waiting for process exit

When a process finishes, it returns an integer exit code. The code is traditionally 0 on
successful completion, while a non-zero code indicates some kind of failure or error.

[Procedure]process-exit-wait process
The process expression must evaluate to a process (any java.lang.Process object).
This procedure waits for the process to finish, and then returns the exit code as an
int.

(process-exit-wait (run-process "echo foo")) ⇒ 0

[Procedure]process-exit-ok? process
Calls process-exit-wait, and then returns #false if the process exited it 0, and
returns #true otherwise.

This is useful for emulating the way traditional shell do logic control flow operations
based on the exit code. For example in sh you might write:

if grep Version Makefile >/dev/null

then echo found Version

else echo no Version

fi

The equivalent in Kawa:

(if (process-exit-ok? &`{grep Version Makefile})

&`{echo found}

&`{echo not found})

Chapter 21: Miscellaneous topics 382

Strictly speaking these are not quite the same, since the Kawa version silently throws
away the output from grep (because no-one has asked for it). To match the output
from the sh, you can use out-to: 'inherit:

(if (process-exit-ok? &`[out-to: 'inherit]{grep Version Makefile})

&`{echo found}

&`{echo not found})

21.6.9 Exiting the current process

[Procedure]exit [code]
Exits the Kawa interpreter, and ends the Java session. Returns the value of code to
the operating system: The code must be integer, or the special values #f (equivalent
to -1), or #t (equivalent to 0). If code is not specified, zero is returned. The code is a
status code; by convention a non-zero value indicates a non-standard (error) return.

Before exiting, finally-handlers (as in try-finally, or the after procedure of
dynamic-wind) are executed, but only in the current thread, and only if the current
thread was started normally. (Specifically if we’re inside an ExitCalled block with
non-zero nesting - see gnu.kawa.util.ExitCalled.) Also, JVM shutdown hooks
are executed - which includes flushing buffers of output ports. (Specifically Writer

objects registered with the WriterManager.)

[Procedure]emergency-exit [code]
Exits the Kawa interpreter, and ends the Java session. Communicates an exit value in
the same manner as exit. Unlike exit, neither finally-handlers nor shutdown hooks
are executed.

21.6.10 Deprecated functions

[Procedure]make-process command envp
Creates a <java.lang.Process> object, using the specified command and envp. The
command is converted to an array of Java strings (that is an object that has type
<java.lang.String[]>. It can be a Scheme vector or list (whose elements should be
Java strings or Scheme strings); a Java array of Java strings; or a Scheme string. In
the latter case, the command is converted using command-parse. The envp is process
environment; it should be either a Java array of Java strings, or the special #!null
value.

Except for the representation of envp, this is similar to:

(run-process environment: envp command)

[Procedure]system command
Runs the specified command, and waits for it to finish. Returns the return code from
the command. The return code is an integer, where 0 conventionally means successful
completion. The command can be any of the types handled by make-process.

Equivalent to:

(process-exit-wait (make-process command #!null))

Chapter 21: Miscellaneous topics 383

[Variable]command-parse
The value of this variable should be a one-argument procedure. It is used to convert
a command from a Scheme string to a Java array of the constituent "words". The
default binding, on Unix-like systems, returns a new command to invoke "/bin/sh"

"-c" concatenated with the command string; on non-Unix-systems, it is bound to
tokenize-string-to-string-array.

[Procedure]tokenize-string-to-string-array command
Uses a java.util.StringTokenizer to parse the command string into an array of
words. This splits the command using spaces to delimit words; there is no spe-
cial processing for quotes or other special characters. (This is the same as what
java.lang.Runtime.exec(String) does.)

21.7 Time-related functions

[Procedure]current-second
Returns an inexact number represent the current time on the International Atomic
Time (TAI) (http://en.wikipedia.org/wiki/International_Atomic_Time) scale.
The value 0.0 represents midnight on January 1, 1070 TAI (equivalent to 10 seconds
before midnight Universal Time), and the value 1.0 represents on TAI second later.
Neither high acuracy nor high precision are required; in particular returning Coordi-
nated Universal Time plus a suitable constant might be the best an implementation
cat do. The Kawa implementation just multiplies by 0.001 the result of calling the
method currentTimeMillis in class java.lang.System.

[Procedure]current-jiffy
Returns the number of jiffies as an exact integer that have elapses since an arbitrary
implementation-defined epoch (instant). A jiffy is an implementation-defined fraction
of a second which is defined by the return value of the jiffies-per-second proce-
dure. The starting epoch (instant 0) is guaranteed to be constant during a run of the
program, but may vary between runs. (At the time of writing, Kawa’s jiffy is one
nano-second.)

Rationale: Jiffies are allowed to be implementation-dependent so that current-jiffy
can execute with minimal overhead. It should be very likely that a compactly rep-
resented integer will suffice as the return value. Any particular jiffy size will be
inappropriate some some implementations: a microsecond is too long for a very fast
machine, while a much smaller unit would force many implementations to return in-
tegers which have to allocated for most calls, rendering current-jiffy less useful for
accurate timing measurements.

[Procedure]jiffies-per-second
Returns an exact integer representing the number of jiffies per SI second. This value
is an implementation-specified constant. (At the time of writing, the value in Kawa
is 1,000,000,000.)

[Procedure]sleep time
Suspends the current thread for the specified time. The time can be either a pure
number (in secords), or a quantity whose unit is a time unit (such as 10s).

http://en.wikipedia.org/wiki/International_Atomic_Time
http://en.wikipedia.org/wiki/International_Atomic_Time

Chapter 21: Miscellaneous topics 384

21.8 Deprecated low-level functions

These sections document older and less convenient ways to call Java methods, access Java
fields, and use Java arrays.

21.8.1 Low-level Method invocation

The following lower-level primitives require you to specify the parameter and return
types explicitly. You should probably use the functions invoke and invoke-static (see
Section 19.9 [Method operations], page 320) instead.

[Syntax]primitive-constructor class (argtype ...)
Returns a new anonymous procedure, which when called will create a new object of
the specified class, and will then call the constructor matching the specified argument
types.

[Syntax]primitive-virtual-method class method rtype (argtype ...)
Returns a new anonymous procedure, which when called will invoke the instance
method whose name is the string method in the class whose name is class.

[Syntax]primitive-static-method class method rtype (argtype ...)
Returns a new anonymous procedure, which when called will invoke the static method
whose name is the string method in the class whose name is class.

[Syntax]primitive-interface-method interface method rtype (argtype ...)
Returns a new anonymous procedure, which when called will invoke the matching
method from the interface whose name is interface.

The macros return procedure values, just like lambda. If the macros are used directly
as the procedure of a procedure call, then kawa can inline the correct bytecodes to call the
specified methods. (Note also that neither macro checks that there really is a method that
matches the specification.) Otherwise, the Java reflection facility is used.

21.8.2 Low-level field operations

The following macros evaluate to procedures that can be used to access or change the fields
of objects or static fields. The compiler can inline each to a single bytecode instruction (not
counting type conversion).

These macros are deprecated. The fields and static-field functions (see
Section 19.11 [Field operations], page 327) are easier to use, more powerful, and just as
efficient. However, the high-level functions currently do not provide access to non-public
fields.

[Syntax]primitive-get-field class fname ftype
Use this to access a field named fname having type type in class class. Evaluates
to a new one-argument procedure, whose argument is a reference to an object of the
specified class. Calling that procedure returns the value of the specified field.

[Syntax]primitive-set-field class fname ftype
Use this to change a field named fname having type type in class class. Evaluates to
a new two-argument procedure, whose first argument is a reference to an object of

Chapter 22: Frequently Asked Questions 385

the specified class, and the second argument is the new value. Calling that procedure
sets the field to the specified value. (This macro’s name does not end in a ‘!’, because
it does not actually set the field. Rather, it returns a function for setting the field.)

[Syntax]primitive-get-static class fname ftype
Like primitive-get-field, but used to access static fields. Returns a zero-argument
function, which when called returns the value of the static field.

[Syntax]primitive-set-static class fname ftype
Like primitive-set-field, but used to modify static fields. Returns a one-argument
function, which when called sets the value of the static field to the argument.

21.8.3 Old low-level array macros

The following macros evaluate to procedures that can be used to manipulate primitive Java
array objects. The compiler can inline each to a single bytecode instruction (not counting
type conversion).

[Syntax]primitive-array-new element-type
Evaluates to a one-argument procedure. Applying the resulting procedure to an
integer count allocates a new Java array of the specified length, and whose elements
have type element-type.

[Syntax]primitive-array-set element-type
Evaluates to a three-argument procedure. The first argument of the resulting proce-
dure must be an array whose elements have type element-type; the second argument
is an index; and the third argument is a value (coercible to element-type) which
replaces the value specified by the index in the given array.

[Syntax]primitive-array-get element-type
Evaluates to a two-argument procedure. The first argument of the resulting procedure
must be an array whose elements have type element-type; the second argument is an
index. Applying the procedure returns the element at the specified index.

[Syntax]primitive-array-length element-type
Evaluates to a one-argument procedure. The argument of the resulting procedure
must be an array whose elements have type element-type. Applying the procedure
returns the length of the array. (Alternatively, you can use (field array 'length).)

22 Frequently Asked Questions

What is the equivalent of Java import?

To provide a short name for a class instead of the complete fully-qualified name use ei-
ther define-alias (or define-private-alias) or the import-class combination. For
example, to be able to write ArrayList instead of java.util.ArrayList do either:

(import (class java.util ArrayList))

or

(define-alias ArrayList java.util.ArrayList)

Chapter 22: Frequently Asked Questions 386

Using import is recommended: It handles errors better, and it allows you to define
multiple aliases conveniently:

(import (class java.util Map HashMap))

Both forms allow renaming. For example if you want to refer to java.lang.StringBuilder
as StrBuf do:

(import (class java.lang (StringBuilder StrBuf)))

or:

(define-alias StrBuf java.lang.StringBuilder)

The name(s) defined by import are by default private. A name defined using
define-alias is by default exported; to avoid that use define-private-alias instead.

You can also use define-namespace to introduce an abbreviation or renaming of a class
name, but as a matter of style define-alias is preferred.

There is no direct equivalent to Java’s import PackageOrTypeName.* (type-import-on-
demand) declaration, but you can alias a package:

(define-alias jutil java.util)

(define mylist :: jutil:List (jutil:ArrayList))

To import a static member, giving it a shortened name (like Java’s static-import-on-
demand declaration), you can use define-alias. For example:

(define-alias console java.lang.System:console)

For static fields only (not methods or member classes) you can use an import form,
either:

(import (only (java lang System) out))

or:

(import (only java.lang.System out))

This works because Kawa can treat any class as a “library”; in which case it considers
all public static fields as exported bindings.

How do I refer to a Java member (nested) class?

Consider the Java SE member class javax.swing.text.AbstractDocument.Content. Us-
ing the Java syntax doesn’t work in Kawa. Inside you should use Kawa’s colon operator:

javax.swing.text.AbstractDocument:Content

Alternatively, you can use the internal JVM class name:

javax.swing.text.AbstractDocument$Content

Why does Kawa’s REPL use display rather than write?

The read-eval-print-loop of most Scheme implementations prints the evaluation result using
write, while Kawa uses display by default.

First note that it is easy to override the default with the --output-format command-line
option:

$kawa --output-format readable-scheme

#|kawa:1|# "abc"

"abc"

Chapter 24: License 387

The reason display is the default is because of a vision of the REPL console as more
than just printing out Scheme objects in textual form for use by a programmer. Some
examples:

• A math program can display equations and graphs as the output of an expression.

• An expression can evaluate to a“Section 21.1 [Composable pictures], page 356” which
would be displayed inline.

• An HTML/XML obj can be insert into the output in visual form if the console under-
stands HTML. (There is a prototype for this that works by using the JavaFX WebView
as the display.)

• The plan for "Kawa-shell" functionality is to have expressions that evaluate to process
objects, which would be lazy strings. This string would be the data from standard
output. Thus the effect of displaying a process object would be to print out the standard
output - just like a regular shell. Users would find it confusing/annoying if shell output
used quotes.

This "repl-as-pad"model doesn’t work as well if the repl uses write rather than display.

23 The Kawa language framework

Kawa is a framework written in Java for implementing high-level and dynamic languages,
compiling them into Java bytecodes.

The Kawa distributions includes of other programming languages besides Scheme, in-
cluding XQuery (Qexo) (. . /qexo/index.html) and Emacs Lisp (JEmacs) (http://
JEmacs.sourceforge.net/).

For a technical overview of Kawa, see these http://www.gnu.org/software/kawa/

internals/index.html. Javadoc generated documentation of the Kawa classes (http://
www.gnu.org/software/kawa/api/) is also available. The packages gnu.bytecode

(http://www.gnu.org/software/kawa/api/gnu/bytecode/package-summary.html),
gnu.math (http://www.gnu.org/software/kawa/api/gnu/math/package-summary.
html), gnu.lists (http: / / www . gnu . org / software / kawa / api / gnu / lists /

package-summary.html), gnu.xml (http://www.gnu.org/software/kawa/api/gnu/
xml/package-summary.html), gnu.expr (http://www.gnu.org/software/kawa/api/
gnu/expr/package-summary.html), gnu.mapping (http://www.gnu.org/software/
kawa/api/gnu/mapping/package-summary.html), and gnu.text (http://www.gnu.
org/software/kawa/api/gnu/text/package-summary.html), are used by Kawa, and
distributed with it, but may be independently useful.

This article (gnu . bytecode / compiling-regexps . html) explains how to use
gnu.bytecode to compile regular expressions to bytecode.

24 License

../qexo/index.html
http://JEmacs.sourceforge.net/
http://JEmacs.sourceforge.net/
http://www.gnu.org/software/kawa/internals/index.html
http://www.gnu.org/software/kawa/internals/index.html
http://www.gnu.org/software/kawa/api/
http://www.gnu.org/software/kawa/api/
http://www.gnu.org/software/kawa/api/gnu/bytecode/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/bytecode/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/math/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/math/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/lists/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/lists/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/xml/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/xml/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/expr/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/expr/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/mapping/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/mapping/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/text/package-summary.html
http://www.gnu.org/software/kawa/api/gnu/text/package-summary.html
gnu.bytecode/compiling-regexps.html

Chapter 24: License 388

24.1 License for the Kawa software

The license for the Kawa software (except the optional JEmacs and BRL features - see
below) is the X11/MIT license (http://opensource.org/licenses/mit-license.php)
which is quoted below.

The software (with related files and documentation) in these packages

are copyright (C) 1996-2009 Per Bothner.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

In the past the Kawa license was a “modified GNU GPL (General Public License)".
If you find any files that contain the old license or otherwise seem to contradict the new
license, please report that as a bug.

Some of the JEmacs files are based on Emacs and have a GPL license, which is incom-
patible with non-Free (proprietary) products. For that reason, the gnu.jemacs.* packages
are not included any more in the standard .jar, or by default when building from source, to
avoid surprises. To build JEmacs you have to specify the configure flag --enable-jemacs

or the ant flag -Denable-jemacs=true.

Some code in gnu/brl and gnu/kawa/brl is copyright Bruce R. Lewis and Eaton Vance
Management, with a modified-GPL license: no restrictions if used unmodified, but otherwise
the GPL applies. These packages are no longer included by default in Kawa builds, but have
to be selected with the configure flag --enable-brl or the ant flag -Denable-brl=true.

Kawa uses some math routines from fdlib’s libf77, which have a AT&T Bell Laboratories
and Bellcore copyright. See the source file gnu/math/DComplex.java.

The sorting routine in gnu.xquery.util.OrderedTuples is a re-implementatiomn in
Java of code copyrighted by Simon Tatham.

Some of the Scheme code in kawa/lib and gnu/kawa/slib are copyright other parties,
and may have slightly different license wording, but I believe none of then contradicts the
main Kawa license or impose extra restrictions. Search for the word copyright in these
directories.

http://opensource.org/licenses/mit-license.php

Chapter 24: License 389

Some code has been converted from other languages, with permission. This includes
the rationalize method in gnu/math/RatNum.java, based on an algorithm of Alan
Bawden, as expressed by Marc Feeley in C-Gambit. The concepts and algorithm of
gnu/text/PrettyWriter.java are converted from SBCL, which is in the public domain.

24.2 License for the Kawa manual

Here is the copyright license for this manual:

Copyright c© 1996, 1997, 1998, 1999, 2005 Per Bothner

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the author.

Parts of this manual are copied from the R6RS (http://www.r6rs.org/) or R7RS
(http://www.r7rs.org/), which both state:

We intend this report to belong to the entire Scheme community, and so we
grant permission to copy it in whole or in part without fee. In particular, we
encourage implementors of Scheme to use this report as a starting point for
manuals and other documentation, modifying it as necessary.

Parts of this manual were derived from the SLIB manual, copyright c© 1993-1998 Todd
R. Eigenschink and Aubrey Jaffer.

Parts of this manual were derived from ISO/EIC 10179:1996(E) (Document Style and
Specifical Language) - unknown copyright.

This manual has quoted from SRFI-6 (Basic String Ports), which is Copyright (C)
William D Clinger (1999). All Rights Reserved.

This manual has quoted from SRFI-8 (receive: Binding to multiple values), which is
Copyright (C) John David Stone (1999). All Rights Reserved.

This manual has quoted from SRFI-9 (Defining Record Types) which is Copyright (C)
Richard Kelsey (1999). All Rights Reserved.

This manual has quoted from SRFI-11 (Syntax for receiving multiple values), which is
Copyright (C) Lars T. Hansen (1999). All Rights Reserved.

This manual has quoted from SRFI-25 (Multi-dimensional Array Primitives), which is
Copyright (C) Jussi Piitulainen (2001). All Rights Reserved.

This manual has quoted from SRFI-26 (Notation for Specializing Parameters without
Currying), which is Copyright (C) Sebastian Egner (2002). All Rights Reserved.

This manual has quoted from SRFI-39 (Parameter objects), which is Copyright (C) Marc
Feeley (2002). All Rights Reserved.

The following notice applies to SRFI-6, SRFI-8, SRFI-9, SRFI-11, SRFI-25, SRFI-26,
and SRFI-39, which are quoted in this manual, but it does not apply to the manual as a
whole:

http://www.r6rs.org/
http://www.r7rs.org/
http://www.r7rs.org/

Chapter 24: License 390

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the Scheme Request For Imple-
mentation process or editors, except as needed for the purpose of developing
SRFIs in which case the procedures for copyrights defined in the SRFI pro-
cess must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked
by the authors or their successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and THE AUTHOR AND THE SRFI EDITORS DISCLAIM ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This manual has quoted from SRFI-69 (Basic hash tables), which is Copyright (C) Panu
Kalliokoski (2005). All Rights Reserved.

The following notice applies to SRFI-69, which is quoted in this manual, but it does not
apply to the manual as a whole:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the Software), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

This manual has made use of text and examples from Dorai Sitaram’s pregexp imple-
mentation. But not where the latter talks about pregexp-xxx functions; the manual also
talks about the regex-xxx functions (which are similar but use a slightly different regular
expression syntax). The pregexp distribution has the following COPYING file:

Copyright (c) 1999-2005, Dorai Sitaram. All rights reserved.

391

Permission to copy, modify, distribute, and use this work or a modified copy of
this work, for any purpose, is hereby granted, provided that the copy includes
this copyright notice, and in the case of a modified copy, also includes a notice
of modification. This work is provided as is, with no warranty of any kind.

Appendix A Index

!
! . 142

#
#!eof . 165
#!fold-case . 109
#!key . 165
#!no-fold-case . 109
#!null . 166
#!optional . 165
#!rest . 165
#!void . 166

&
&D[. 357
&P[. 357

*
* . 180, 188
print-base . 287
print-miser-width . 287
print-radix . 287
print-right-margin . 287
print-xml-indent . 287

+
+ . 180, 188

–
- . 180, 188
--no-warn-whatever . 90
--output-format . 92
--warn-whatever . 90
->image . 367
->paint . 358
->shape . 248

/
/ . 181, 188

?
? . 135

~
~$. 289

~% . 290

~& . 290

~(. 290

~* . 290

~; . 291

~? . 290

~[. 290

~^ . 291

~{ . 291
~| . 290

~~ . 290

~a . 288

~b . 288

~c . 288

~d . 288

~e . 289

~f . 289

~g . 289

~newline . 290

~o . 288

~p . 289

~r . 289

~s . 288

~t . 290

~x . 288

392

A
abbrev-prefix . 111
abbreviation . 111
abs . 183
acos . 184, 188
acosh . 185
affine-transform . 361
alist->hash-table . 262
alternate . 136
and . 138
angle . 188
annotation . 305
annotation-element-pair . 305
annotation-element-value 305
annotation-typename . 305
annotations-element-values 305
any-bits-set? . 199
apos-attribute-datum . 340
apply . 169
arglist . 168
arglist-arg-count . 168
arglist-arg-ref . 168
arglist-key-count . 168
arglist-key-index . 169
arglist-key-ref . 169
arglist-key-start . 168
arglist-key-value . 169
arglist-walk . 168
argvector . 167
arithmetic-shift . 200
array . 249, 251
array->vector . 258
array-bound . 249
array-copy! . 256
array-end . 249
array-fill! . 256
array-flatten . 258
array-index-ref . 253
array-index-share . 257
array-literal . 249
array-literal-header . 249
array-rank . 249
array-ref . 253
array-reshape . 257
array-set! . 255
array-shape . 249
array-size . 249
array-start . 249
array-transform . 256
array? . 247
array[etype] . 249
arrayN . 249
arrayN[etype] . 249
as . 298
as-xml . 337
ash . 200
asin . 184, 188
asinh . 185

atan . 185, 188
atanh . 185
atmosphere . 107
attribute-name . 338

B
base-uri . 266
binary-port? . 277
bit-count . 200
bit-extract . 201
bit-field . 200
bit-set? . 200
bitwise-and . 196
bitwise-arithmetic-shift 198
bitwise-arithmetic-shift-left 198
bitwise-arithmetic-shift-right 198
bitwise-bit-count . 196
bitwise-bit-field . 197
bitwise-bit-set? . 197
bitwise-copy-bit . 197
bitwise-copy-bit-field . 198
bitwise-first-bit-set . 197
bitwise-if . 196
bitwise-ior . 196
bitwise-length . 197
bitwise-merge . 199
bitwise-not . 196
bitwise-reverse-bit-field 199
bitwise-rotate-bit-field 198
bitwise-xor . 196
body . 118
boolean . 134, 135
boolean=? . 135
boolean? . 135
booleans->integer . 200
border . 363
bound-identifier=? . 125
bounded-range . 246
build-array . 252
byte . 176
bytevector . 243
bytevector-append . 245
bytevector-copy . 244
bytevector-copy! . 244
bytevector-length . 244
bytevector-u8-ref . 244
bytevector-u8-set! . 244
bytevector? . 244

393

C
call-with-input-file . 277
call-with-input-string . 280
call-with-output-file . 277
call-with-output-string . 280
call-with-port . 277
call-with-values . 158
case . 137
case-clause . 137
case-else-clause . 137
case-key . 137
catch . 155
ceiling . 183
char . 202
char->integer . 203
char-alphabetic? . 229
char-ci<=? . 229
char-ci<? . 229
char-ci=? . 229
char-ci>=? . 229
char-ci>? . 229
char-downcase . 228
char-foldcase . 228
char-general-category . 229
char-lower-case? . 229
char-numeric? . 229
char-or-entity-name . 225
char-ready? . 282
char-ref . 225
char-set . 204
char-title-case? . 229
char-titlecase . 228
char-upcase . 228
char-upper-case? . 229
char-whitespace? . 229
char<=? . 204
char<? . 204
char=? . 204
char>=? . 204
char>? . 204
char? . 203
character . 202, 296
character-except-x . 108
character-or-eof . 202
child-value . 325
circle . 358
class-methods . 323
class-name . 298
close-input-port . 279
close-output-port . 279
close-port . 279
cname . 134
coding specifier . 117
colatitude . 190
colon notation . 115
command-line . 373
command-line-arguments . 374
command-parse . 383

comment . 107, 338
comment-cont . 107
comment-text . 107
compile-file . 103
complex . 176
complex-part . 189
compound-datum . 110
cond . 136
cond-clause . 136
cond-expand . 118
cond-expand-clause . 118
configure options . 62
conjugate . 190
consequent . 136
constant . 113
constant-fold . 169
constituent . 108
constructor-value . 325
copy-bit . 200
copy-bit-field . 200
copy-file . 275
cos . 184, 188
cosh . 185
create-directory . 275
cross-product . 190
current-activity . 373
current-error-port . 278
current-input-port . 278
current-jiffy . 383
current-output-port . 278
current-path . 272
current-second . 383
current-servlet . 349
current-servlet-config . 349
current-servlet-context . 349
cut . 174
cute . 175

D
datum . 110
datum->syntax . 128
datum->syntax-object . 128
datum-label . 111
decimal . 110
default-prompter . 285
define . 142
define-alias . 267
define-base-unit . 195
define-class . 298
define-constant . 142
define-early-constant . 142
define-enum . 304
define-library . 307
define-macro . 122
define-namespace . 163
define-private . 142
define-private-alias . 267

394

define-private-namespace 163
define-procedure . 173
define-record-type . 317
define-simple-class . 298
define-syntax . 121
define-syntax-case . 121
define-unit . 195
define-values . 158
define-variable . 143
define-xml-namespace . 164
defined-datum . 111
defining-datum . 111
defmacro . 122
deg . 196
delay . 145
delay-force . 145
delete-file . 275
delimiter . 106
denominator . 183
deprecated-return-specifier 301
digit . 108
digit-10 . 110
digit-16 . 110
digit-2 . 110
digit-8 . 110
digit-value . 204
Dimension . 357
disassemble . 270
display . 283
div . 182
div-and-mod . 181
div0 . 182
div0-and-mod0 . 181
domterm-load-stylesheet . 101
dot-product . 190
double . 176
draw . 360
dynamic . 297
dynamic-wind . 154

E
eager . 145
element-name . 338
ellipsis . 123
emergency-exit . 382
enclosed-modifier . 227
enclosed-part . 226
encoding specifier . 117
entity-ref . 225
environment . 265
environment-bound? . 265
environment-fold . 265
eof-object . 282
eof-object? . 282
equal-hash . 261
error . 154
error-object-irritants . 154

error-object-message . 154
error-object? . 154
error-response . 354
escape-sequence . 108
euler-xyx . 192
euler-xzx . 192
euler-yxy . 192
euler-yzy . 192
euler-zxz . 192
euler-zyz . 192
eval . 266
exact complex number . 177
exact-integer-sqrt . 186
exact-integer? . 179
exactness . 177
exit . 382
exp . 184, 188
expand . 122
explicit-source-name . 312
exponent-marker . 110
export . 306
export-spec . 306
expression . 113
expt . 186, 188
extended-datum-literal . 134
extended-string-literal . 225
extrinsic-xyx . 194
extrinsic-xyz . 194
extrinsic-xzx . 194
extrinsic-yxy . 194
extrinsic-yxz . 194
extrinsic-yzx . 194
extrinsic-yzy . 194
extrinsic-zxy . 194
extrinsic-zxz . 194
extrinsic-zyx . 194
extrinsic-zyz . 194

F
f32vector . 240, 241
f32vector->list . 242
f32vector-length . 241
f32vector-ref . 242
f32vector-set! . 242
f32vector? . 241
f64vector . 240, 241
f64vector->list . 242
f64vector-length . 241
f64vector-ref . 242
f64vector-set! . 242
f64vector? . 241
feature-identifier . 118
feature-requirement . 118
features . 119
fff-rec . 118
field . 328
field-decl . 299

395

field-name . 299
field-option . 299
field-or-method-decl . 298
file-directory? . 275
file-error? . 154
file-exists? . 274
file-readable? . 275
file-writable? . 275
filepath . 272
filepath? . 272
fill . 359
finite? . 179
first-set-bit . 200
float . 176
floor . 183
floor-quotient . 182
floor-remainder . 182
floor/ . 181
fluid-let . 266
flush-output-port . 284
for-each . 156
force . 145, 151
force* . 146
force-output . 284
formal-arguments . 170
formals . 170
format . 287
format-array . 250, 258
free-identifier=? . 126
future . 151

G
gcd . 183
gentemp . 122
get-environment-variable 374
get-environment-variables 375
get-output-bytevector . 280
get-output-string . 280
get-request . 349
get-response . 349
Glassfish . 348
grad . 196
guard . 141, 153

H
hash . 264
hash-by-identity . 265
hash-table->alist . 264
hash-table-copy . 264
hash-table-delete! . 263
hash-table-equivalence-function 262
hash-table-exists? . 263
hash-table-fold . 264
hash-table-hash-function 262
hash-table-keys . 263
hash-table-merge! . 264

hash-table-ref . 262
hash-table-ref/default . 263
hash-table-set! . 263
hash-table-size . 263
hash-table-update! . 263
hash-table-update!/default 263
hash-table-values . 263
hash-table-walk . 263
hash-table? . 262
hashtable-clear! . 260
hashtable-contains? . 260
hashtable-copy . 260
hashtable-delete! . 260
hashtable-entries . 260
hashtable-equivalence-function 261
hashtable-hash-function . 261
hashtable-keys . 260
hashtable-mutable? . 261
hashtable-ref . 259
hashtable-set! . 259
hashtable-size . 259
hashtable-update! . 260
hashtable? . 259
hbox . 362
hex-digit . 108
hex-scalar-value . 108
home-directory . 373
html:tag . 337

I
identifier . 108
identifier? . 125
if . 136
imag-part . 188
image . 365
image-height . 366
image-read . 365
image-width . 366
image-write . 366
import . 312
import-only-name . 312
import-set . 312
include . 119
include-ci . 119
include-relative . 119
index-array . 252
indexnum . 111
inexact complex number . 177
infinite? . 179
initial . 108
initial-ignored . 226
inline-hex-escape . 108
input-port . 296
input-port-column-number 286
input-port-line-number . 286
input-port-open? . 278
input-port-prompter . 285

396

input-port-read-state . 286
input-port? . 277
input-prompt1 . 284
input-prompt2 . 284
instance? . 298
int . 176
integer . 176
integer->char . 203
integer->list . 200
integer-length . 200
integer-valued? . 178
interaction-environment . 265
interlexeme-space . 107
intraline-whitespace . 107
intrinsic-xyx . 192
intrinsic-xyz . 192
intrinsic-xzx . 192
intrinsic-xzy . 192
intrinsic-yxy . 192
intrinsic-yxz . 192
intrinsic-yzx . 192
intrinsic-yzy . 192
intrinsic-zxy . 192
intrinsic-zxz . 192
intrinsic-zyx . 192
intrinsic-zyz . 192
invoke . 322
invoke-special . 322
invoke-static . 322
istring . 205
istring? . 206

J
JavaFX . 368
jiffies-per-second . 383
jmag-part . 189

K
kawa-abbreviation . 111
kawac . 103
key-arg . 171
keyword . 165, 296
keyword->string . 165
keyword? . 165
kmag-part . 189

L
lambda-expression . 170
lazy . 145
lcm . 183
length . 235
let . 143
let* . 143
let*-values . 159
let-values . 158
letrec . 144
letrec* . 144
letter . 108
lexeme . 106
lexeme-datum . 110
library-declaration . 307
library-definition . 307
library-name . 307
library-name-parts . 307
library-reference . 312
line . 358
line-ending . 107
list . 110, 296
list->f32vector . 242
list->f64vector . 243
list->integer . 200
list->s16vector . 242
list->s32vector . 242
list->s64vector . 242
list->s8vector . 242
list->string . 210
list->u16vector . 242
list->u32vector . 242
list->u64vector . 242
list->u8vector . 242
list->vector . 238
list-pattern . 123
literal-expression . 113
load . 266
load-relative . 266
location . 267
log . 184, 188
log2-binary-factors . 200
logand . 199
logbit? . 200
logcount . 200
logior . 199
lognot . 199
logop . 199
logtest . 199
logxor . 199
long . 176
longitude . 190
lpattern . 141

397

M
magnitude . 188
make . 327
make-array . 251
make-attribute . 338
make-axis/angle . 191
make-bytevector . 244
make-element . 338
make-eq-hashtable . 259
make-eqv-hashtable . 259
make-euler-xyx . 193
make-euler-xzx . 193
make-euler-yxy . 193
make-euler-yzy . 193
make-euler-zxz . 193
make-euler-zyz . 193
make-extrinsic-xyx . 194
make-extrinsic-xyz . 194
make-extrinsic-xzx . 194
make-extrinsic-xzy . 194
make-extrinsic-yxy . 194
make-extrinsic-yxz . 194
make-extrinsic-yzx . 194
make-extrinsic-yzy . 194
make-extrinsic-zxy . 194
make-extrinsic-zxz . 194
make-extrinsic-zyx . 194
make-extrinsic-zyz . 194
make-f32vector . 241
make-f64vector . 241
make-hash-table . 262
make-hashtable . 259
make-intrinsic-xyx . 193
make-intrinsic-xyz . 193
make-intrinsic-xzx . 193
make-intrinsic-xzy . 193
make-intrinsic-yxy . 193
make-intrinsic-yxz . 193
make-intrinsic-yzx . 193
make-intrinsic-yzy . 193
make-intrinsic-zxy . 193
make-intrinsic-zxz . 193
make-intrinsic-zyx . 193
make-intrinsic-zyz . 193
make-list . 236
make-parameter . 268
make-polar . 188
make-procedure . 174
make-process . 382
make-promise . 148
make-quantity . 195
make-record-type . 319
make-rectangular . 187
make-rotation-procedure . 194
make-rpy . 194
make-s16vector . 241
make-s32vector . 241
make-s64vector . 241

make-s8vector . 241
make-string . 218
make-tait-bryan-xyz . 193
make-tait-bryan-xzy . 193
make-tait-bryan-yxz . 193
make-tait-bryan-yzx . 193
make-tait-bryan-zxy . 193
make-tait-bryan-zyx . 193
make-temporary-file . 275
make-u16vector . 241
make-u32vector . 241
make-u64vector . 241
make-u8vector . 241
make-vector . 238
make-vector-quaternion . 190
map . 156
match . 138
match-clause . 138
match-key . 138
method-body . 301
method-decl . 301
method-name . 301
method-option . 301
mnemonic-escape . 223
mod . 182
mod0 . 182
module-class . 294
module-compile-options . 311
module-export . 306
module-extends . 308
module-implements . 308
module-name . 308
module-static . 310
module-uri . 294
modulo . 182
mstring . 205
multi-escape-sequence . 108

N
named-literal-part . 134
namespace . 161
namespace-prefix . 161
namespace-uri . 161
nan? . 179
nested-comment . 107
newline . 283
nondefining-datum . 110
not . 139
null-environment . 265
number . 110, 175
number->string . 186
numerator . 183

398

O
object . 303
Object . 295
object-field-decl . 303
object-field-or-method-decl 303
object-init . 303
oct-digit . 108
open-binary-input-file . 279
open-binary-output-file . 279
open-input-bytevector . 280
open-input-file . 279
open-input-string . 279
open-output-bytevector . 280
open-output-file . 279
open-output-string . 280
operand . 114
operator . 114
opt-return-type . 170
opt-type-specifier . 295
option-pair . 298
optional-arg . 171
optional-exponent . 110
optional-sign . 110
options . 87
or . 139
output-port . 296
output-port-open? . 278
output-port? . 277

P
padding . 363
pair . 296
parameter . 296
parameterize . 269
parse-format . 287
path . 272
path-authority . 273
path-bytes . 277
path-data . 276
path-directory . 273
path-extension . 274
path-file . 273
path-fragment . 274
path-host . 273
path-last . 274
path-parent . 274
path-port . 273
path-query . 274
path-scheme . 273
path-user-info . 273
path? . 272
pattern . 140
pattern-literal . 141
peculiar-identifier . 109
peek-char . 281
peek-u8 . 282
picture->jpanel . 368

picture->svg-node . 367
picture-write-svg . 367
pipe-process . 380
Point . 357
polygon . 358
port-char-encoding . 286
port-column . 285
port-line . 285
port? . 277
pprint . 292
pprint-end-logical-block 294
pprint-ident . 294
pprint-logical-block . 293
pprint-newline . 294
pprint-start-logical-block 293
primitive-array-get . 385
primitive-array-length . 385
primitive-array-new . 385
primitive-array-set . 385
primitive-constructor . 384
primitive-get-field . 384
primitive-get-static . 385
primitive-interface-method 384
primitive-set-field . 384
primitive-set-static . 385
primitive-static-method . 384
primitive-throw . 155
primitive-virtual-method 384
procedure . 296
procedure-call . 114
procedure-property . 173
process-command-line-assignments 374
process-exit-ok? . 381
process-exit-wait . 381
process-keyword-argument 376
processing-instruction 338, 339
program-unit . 117
promise . 148
promise-set-alias! . 148
promise-set-exception! . 148
promise-set-thunk! . 148
promise-set-value! . 148
promise[T] . 149
prompts . 284
property-access-abbreviation 115
property-initializer . 325
property-name . 115
property-owner-expression 115
provide . 314

399

Q
QName . 341
quantity . 176, 195
quantity->number . 195
quantity->unit . 195
quantity? . 195
quasisyntax . 132
quaternion . 189
quaternion->rotation-matrix 191
quaternion? . 189
quot-attribute-datum . 340
quotient . 182

R
r6rs-abbreviation . 111
rad . 196
raise . 152
raise-continuable . 153
range-end . 246
rational . 176
rational-valued? . 178
rationalize . 184
re-center . 364
read . 281
read-bytevector . 282
read-bytevector! . 282
read-char . 281
read-error? . 154
read-line . 281
read-string . 282
read-u8 . 282
real . 176
real-part . 188
real-valued? . 178
receive . 159
record-accessor . 319
record-constructor . 319
record-modifier . 319
record-predicate . 319
record-type-descriptor . 319
record-type-field-names . 320
record-type-name . 320
record? . 319
rectangle . 358
regex . 231
regexreplace . 233
regexreplace* . 233
regex-match . 232
regex-match-positions . 232
regex-quote . 233
regex-split . 232
remainder . 182
rename-file . 275
rename-pair . 312
repeat expression . 149
repeat pattern . 149
repeat variable . 149

report-syntax-error . 130
request-body-string . 352
request-context-path . 351
request-header . 352
request-header-map . 352
request-input-port . 352
request-input-stream . 352
request-local-host . 353
request-local-IP-address 353
request-local-path . 351
request-local-port . 353
request-local-socket-address 352
request-method . 353
request-parameter . 352
request-parameter-map . 352
request-parameters . 352
request-path . 351
request-path-info . 349
request-path-translated . 353
request-query-string . 351
request-remote-host . 353
request-remote-IP-address 353
request-remote-port . 353
request-remote-socket-address 353
request-scheme . 353
request-script-path . 351
request-servlet-path . 349
request-uri . 351
request-URI . 350
request-url . 351
require . 313
required-arg . 170
required-or-guard . 170
resolve-uri . 274
resource-url . 294
response-content-type . 354
response-header . 354
response-status . 354
rest-arg . 172
rest-key-args . 170
rest-parameter . 172
reverse! . 236
reverse-bit-field . 200
reverse-list->string . 210
rotate . 362
rotate-bit-field . 200
rotate-vector . 194
rotation-angle . 191
rotation-axis . 191
rotation-axis/angle . 191
rotation-matrix->quaternion 191
rotx . 192
roty . 192
rotz . 192
round . 183
rpy . 194
run-process . 375
runnable . 151

400

S
s16vector . 240, 241
s16vector->list . 242
s16vector-length . 241
s16vector-ref . 242
s16vector-set! . 242
s16vector? . 241
s32vector . 240, 241
s32vector->list . 242
s32vector-length . 241
s32vector-ref . 242
s32vector-set! . 242
s32vector? . 241
s64vector . 240, 241
s64vector->list . 242
s64vector-length . 241
s64vector-ref . 242
s64vector-set! . 242
s64vector? . 241
s8vector . 240, 241
s8vector->list . 242
s8vector-length . 241
s8vector-ref . 242
s8vector-set! . 242
s8vector? . 241
scale . 362
scheme-implementation-version 355
scheme-report-environment 265
scheme-window . 355
Scheme.eval . 335
Scheme.registerEnvironment 335
servlet-context-realpath 349
set-frame-size! . 368
set-input-port-line-number! 286
set-input-port-prompter! 285
set-port-line! . 286
set-procedure-property! . 173
setter . 267
shape . 248
share-array . 257
shebang-comment . 107
short . 176
show-picture . 368
sin . 184, 188
sinh . 185
sleep . 383
slot-ref . 328
slot-set! . 329
special-escape . 226
special-initial . 108
special-subsequent . 108
sqrt . 185, 188
square . 185
statement . 117
statements . 117
static-field . 328
String . 296
string . 205, 206, 223, 296

string->keyword . 165
string->list . 210
string->number . 187
string->symbol . 160
string->utf16 . 245
string->utf16be . 245
string->utf16le . 245
string->utf8 . 245
string->vector . 210
string-any . 206
string-append . 213
string-append! . 219
string-capitalize! . 230
string-ci-hash . 261, 264
string-ci<=? . 209
string-ci<? . 209
string-ci=? . 209
string-ci>=? . 209
string-ci>? . 209
string-concatenate . 213
string-concatenate-reverse 213
string-contains . 212
string-contains-right . 212
string-copy . 219
string-copy! . 220
string-count . 217
string-cursor . 222
string-cursor-end . 222
string-cursor-for-each . 223
string-cursor-next . 222
string-cursor-next-quiet 222
string-cursor-prev . 223
string-cursor-ref . 222
string-cursor-start . 222
string-cursor<=? . 223
string-cursor<? . 223
string-cursor=? . 223
string-cursor>=? . 223
string-cursor>? . 223
string-downcase . 210
string-downcase! . 230
string-drop . 208
string-drop-right . 208
string-element . 223
string-every . 206
string-fill! . 220
string-filter . 217
string-fold . 215
string-fold-right . 215
string-foldcase . 210
string-for-each . 216
string-for-each-index . 217
string-hash . 261, 264
string-index . 212
string-index-right . 212
string-join . 213
string-length . 206
string-literal-part . 225

401

string-map . 216
string-map-index . 217
string-normalize-nfc . 211
string-normalize-nfd . 211
string-normalize-nfkc . 211
string-normalize-nfkd . 211
string-null? . 206
string-pad . 208
string-pad-right . 208
string-prefix-length . 212
string-prefix? . 212
string-ref . 206
string-remove . 217
string-repeat . 217
string-replace . 214
string-replace! . 220
string-set! . 219
string-skip . 212
string-skip-right . 212
string-split . 218
string-suffix-length . 212
string-suffix? . 212
string-tabulate . 207
string-take . 208
string-take-right . 208
string-titlecase . 210
string-trim . 209
string-trim-both . 209
string-trim-right . 209
string-unfold . 207
string-unfold-right . 207
string-upcase . 210
string-upcase! . 230
string<=? . 209
string<? . 209
string=? . 209
string>=? . 209
string>? . 209
string? . 206
subsequent . 108
substring . 208
substring-cursor . 223
supplied-var . 171
symbol . 110, 162, 296
symbol->string . 160
symbol-element . 108
symbol-hash . 261
symbol-local-name . 162
symbol-namespace . 162
symbol-namespace-uri . 162
symbol-prefix . 162
symbol-read-case . 286
symbol=? . 162
symbol? . 160
synchronized . 151
syntax->datum . 128
syntax-error . 130
syntax-object->datum . 128

syntax-pattern . 123
syntax-rule . 123
syntax-template . 124
system . 382
system-tmpdir . 275

T
tait-bryan-xyz . 192
tait-bryan-xzy . 192
tait-bryan-yxz . 192
tait-bryan-yzx . 193
tait-bryan-zxy . 193
tait-bryan-zyx . 193
tan . 184, 188
tanh . 185
template-element . 124
test-expression . 134
test-or-match . 135
textual-port? . 277
this . 298
throw . 155
tokenize-string-to-string-array 383
Tomcat . 348
tr-literal . 123
trace . 270
transformer-spec . 123
translate . 362
truncate . 183
truncate-quotient . 182
truncate-remainder . 182
truncate/ . 181
try-catch . 155
try-finally . 155
type . 295

U
u16vector . 240, 241
u16vector->list . 242
u16vector-length . 241
u16vector-ref . 242
u16vector-set! . 242
u16vector? . 241
u32vector . 240, 241
u32vector->list . 242
u32vector-length . 241
u32vector-ref . 242
u32vector-set! . 242
u32vector? . 241
u64vector . 240, 241
u64vector->list . 242
u64vector-length . 241
u64vector-ref . 242
u64vector-set! . 242
u64vector? . 241
u8-ready? . 282
u8vector . 240, 241

402

u8vector->list . 242
u8vector-length . 241
u8vector-ref . 242
u8vector-set! . 242
u8vector? . 241
ubyte . 176
uint . 176
ulong . 176
unbounded-range . 246
unescaped-data . 337
uniform-tag . 239
uniform-vector . 239
unit-name . 195
unit-quaternion . 189
unit-term . 195
unit-vector . 190
unless . 139
unsyntax . 132
unsyntax-splicing . 132
untrace . 270
URI . 272
URI? . 272
URL . 273
ushort . 176
utf16->string . 245
utf16be->string . 245
utf16le->string . 245
utf8->string . 245

V
values . 158
values-append . 159
variable-reference . 114
vbox . 362
vectag . 249
vector . 110, 237, 296
vector->list . 238
vector->string . 210
vector-append . 239
vector-copy . 239
vector-copy! . 239
vector-fill! . 239
vector-for-each . 157
vector-length . 238
vector-map . 157
vector-part . 189
vector-pattern . 123
vector-quaternion->list . 190
vector-quaternion? . 190
vector-ref . 238
vector-set! . 238
vector? . 238

W
warn-as-error . 91
warn-invoke-unknown-method 91
warn-undefined-variable . 90
warn-uninitialized . 91
warn-unknown-member . 90
warn-unreachable . 91
warn-unused . 91
warn-void-used . 91
when . 139
whitespace . 107
with-compile-options . 312
with-composite . 367
with-exception-handler . 152
with-input-from-file . 279
with-output-to-file . 279
with-paint . 359
with-syntax . 131
with-transform . 362
write . 283
write-bytevector . 284
write-char . 283
write-shared . 283
write-simple . 283
write-string . 283
write-u8 . 284

X
xml-attribute . 340
xml-attribute-value . 340
xml-CDATA-constructor . 342
xml-CDATA-content . 342
xml-character-reference . 340
xml-comment-constructor . 342
xml-comment-content . 342
xml-constructor . 339
xml-element-constructor . 339
xml-element-datum . 340
xml-enclosed-expression . 339
xml-entity-name . 340
xml-escaped . 340
xml-literal . 339
xml-local-part . 341
xml-name-form . 339
xml-namespace-declaration-attribute 341
xml-PI-constructor . 341
xml-PI-content . 341
xml-PI-target . 341
xml-prefix . 341
xsubstring . 217

Z
zbox . 362

	News - Recent Changes
	Features
	Implemented SRFIs
	Compatibility with standards

	The Kawa Community
	Reporting bugs
	General Kawa email and discussion
	Acknowledgements and thanks
	Technical Support for Kawa
	Projects using Kawa
	Ideas and tasks for contributing to Kawa
	Recusively initialized data structures
	Enhance texinfo-js documentation browser for Kawa documentation
	Run interactive process in separate Java Virtual Machine:
	Better dynamic reload
	Easier Access to Native Libraries using JNA/JNR
	Types for units
	Compiler should use class-file reading instead of reflection
	Mutually dependent Java and Scheme modules
	Use Java-7 MethodHandles and invokedynamic
	Parameterized types
	Optimized function types and values using MethodHandles
	Full continuations
	Faster tailcalls
	TreeList-optimization
	Asynchronous evaluation
	REPL console and other REPL improvement
	XQuery-3.0 functionality
	XQuery-updates
	Common Lisp support
	JEmacs improvements
	Improved IDE integration
	Plugin for NetBeans IDE
	Plugin for Eclipse IDE
	Improve Emacs integration

	Hop-style web programming
	String localization
	Data binding
	Decimal arithmetic and repeated decimals
	Optional strict typing along with an explicit dynamic type

	Getting and installing Kawa
	Getting Kawa
	Getting the development sources using Git

	Getting and running Java
	Installing and using the binary distribution
	Installing and using the source distribution
	Build Kawa using configure and make
	Configure options
	Building on Windows using MinGW
	Building on Windows using Cygwin

	Building the documentation
	Plain HTML documentation
	Fancier HTML documentation
	Using ebook readers or the --browse-manual option
	Building a printable PDF file

	Build Kawa using ant

	Kawa Scheme Tutorial
	Introduction
	Booleans
	Numbers
	Functions
	Variables
	Composable pictures
	Lists and sequences
	Creating and using objects
	Types and declarations
	Exceptions and errors
	Classes
	Other Java features

	How to start up and run Kawa
	Command-line arguments
	Argument processing
	General options
	Options for language selection
	Options for warnings and errors
	Options for setting variables
	Options for the REPL console
	Options for controlling output formatting
	Options for compiling and optimizing
	Options for debugging
	Options for web servers
	Options for the JVM

	Running Command Scripts
	Setting kawa options in the script
	Other ways to pass options using meta-arg or --script
	Scripts for compiled code

	The REPL (read-eval-print-loop) console
	Input line editing and history
	Running a Command Interpreter in a new Window
	Using DomTerm

	Exiting Kawa
	Compiling to byte-code
	Compiling to a set of .class files
	Compiling to an archive file
	Compiling using Ant
	Compiling to a standalone application
	Compiling to an applet
	Compiling to a native executable

	Syntax
	Notation
	Lexical and datum syntax
	Lexical syntax
	Formal account
	Line endings
	Whitespace and comments
	Identifiers
	Numbers

	Datum syntax
	Datum labels
	Abbreviations

	Hash-prefixed forms
	Primitive expression syntax
	Literal expressions
	Variable references
	Procedure calls

	Property access using colon notation
	Part lookup rules
	Specific cases
	Invoking methods
	Accessing fields
	Type literal
	Type cast
	Type test
	New object construction
	Getting array length

	Programs and Bodies
	Syntax and conditional compilation
	Macros
	Pattern language
	Identifier predicates
	Syntax-object and datum conversions
	Signaling errors in macro transformers
	Convenience forms

	Named quasi-literals

	Program structure
	Boolean values
	Conditionals
	Variables and Patterns
	Patterns

	Definitions
	Local binding constructs
	Lazy evaluation
	Delayed evaluation
	Implicit forcing
	Blank promises
	Lazy and eager types

	Repeat patterns and expressions
	Threads
	Exception handling
	Simple error objects
	Named exceptions
	Native exception handling

	Control features
	Mapping functions
	Multiple values

	Symbols and namespaces
	Simple symbols
	Namespaces and compound symbols
	Namespace objects
	Compound symbols
	Namespace aliases

	Keywords
	Special named constants

	Procedures
	Application and Arguments Lists
	Arguments lists
	Explicit argument list objects
	Argument list library
	Apply procedures

	Lambda Expressions and Formal Parameters
	Procedure properties
	Standard properties

	Generic (dynamically overloaded) procedures
	Partial application

	Quantities and Numbers
	Numerical types
	Exactness
	Numerical promotion and conversion

	Arithmetic operations
	Numerical input and output
	Quaternions
	The (kawa quaternions) module
	The (kawa rotations) module
	Rotation Representation Conversions
	Rotation Operations

	Quantities and Units
	Logical Number Operations
	SRFI-60 Logical Number Operations
	Deprecated Logical Number Operations

	Performance of numeric operations

	Characters and text
	Characters
	Character sets
	Strings
	Basic string procedures
	Immutable String Constructors
	Selection
	String Comparisons
	Conversions
	Searching and matching
	Concatenation and replacing
	Mapping and folding
	Replication & splitting
	String mutation
	Strings as sequences
	Indexing a string
	Indexing with a sequence

	String Cursor API

	String literals
	Simple string literals
	String templates
	Special characters
	Multiline string literals
	Embedded expressions
	Formatting

	Unicode character classes and conversions
	Characters
	Deprecated in-place case modification

	Regular expressions
	Java regular expressions
	Portable Scheme regular expressions

	Data structures
	Sequences
	Lists
	SRFI-1 list library
	SRFI-101 Purely Functional Random-Access Pairs and Lists

	Vectors
	Uniform vectors
	Relationship with Java arrays

	Bytevectors
	Converting to or from strings

	Ranges
	Streams - lazy lists
	Multi-dimensional Arrays
	Array shape
	Array types
	Array literals and printing
	Array construction
	Array indexing
	Modifying arrays
	Transformations and views
	Miscellaneous

	Hash tables
	R6RS hash tables
	Procedures
	Inspection
	Hash functions

	SRFI-69 hash tables
	Type constructors and predicate
	Reflective queries
	Dealing with single elements
	Dealing with the whole contents
	Hash functions

	Eval and Environments
	Locations
	Parameter objects

	Debugging
	Input, output, and file handling
	Named output formats
	Paths - file name, URLs, and URIs
	Extracting Path components

	File System Interface
	Reading and writing whole files
	Reading a file
	Blobs
	Writing to a file
	Functions

	Ports
	String and bytevector ports
	Input
	Output
	Prompts for interactive consoles (REPLs)
	Line numbers and other input port properties
	Miscellaneous

	Formatted Output (Common-Lisp-style)
	Implemented CL Format Control Directives
	Formatting Integers
	Formatting real numbers
	Miscellaneous formatting operators
	Unimplemented CL Format Control Directives
	Extended, Replaced and Additional Control Directives

	Pretty-printing
	Pretty-printing Scheme forms
	Generic pretty-printing functions

	Resources

	Types
	Standard Types
	Parameterized Types
	Type tests and conversions

	Object, Classes and Modules
	Defining new classes
	General class properties
	Declaring fields
	Declaring methods
	Example

	Anonymous classes
	Lambda as shorthand for anonymous class

	Enumeration types
	Annotations of declarations
	Modules and how they are compiled to classes
	Name visibility
	R7RS explicit library modules
	How a module becomes a class
	Same class for module and defined class
	Static vs non-static modules
	Module options

	Importing from a library
	Searching for modules
	Searching for source files
	Builtin libraries
	Importing a SRFI library
	Importing from a plain class

	Record types
	Creating New Record Types On-the-fly
	Calling Java methods from Scheme
	Calling static methods using colon notation
	Calling instance methods using colon notation
	Method names
	Invoking a method with the invoke function
	Using a namespace prefix

	Allocating objects
	Accessing object fields
	Accessing static fields and properties
	Accessing instance fields and properties
	Using field and static-field methods
	Older colon-dot notation

	Mapping Scheme names to Java names
	Scheme types in Java
	Using Java Arrays
	Creating new Java arrays
	Accessing Java array elements
	Old low-level array macros

	Loading Java functions into Scheme
	Evaluating Scheme expressions from Java
	Using javax.script portable Java scripting

	Working with XML and HTML
	Formatting XML
	Creating HTML nodes
	Creating XML nodes
	XML literals
	Element constructors
	Elements contents (children)
	Attributes
	QNames and namespaces
	Other XML types
	Processing instructions
	XML comments
	CDATA sections

	Web page scripts
	Self-configuring web page scripts
	Using the OpenJDK built-in web server
	Using a servlet container
	Finding a matching script
	Determining script language
	Compilation and caching

	Installing web page scripts as Servlets
	Creating a web application
	Compiling a web page script to a servlet
	Installing a servlet under Tomcat
	Installing a servlet under Glassfish
	Servlet-specific script functions

	Installing Kawa programs as CGI scripts
	Functions for accessing HTTP requests
	Request URL components
	Request parameters
	Request headers
	Request body
	Request IP addresses and ports
	Miscellaneous request properties

	Generating HTTP responses
	Using non-Scheme languages for XML/HTML
	XQuery language
	XSL transformations
	KRL - The Kawa Report Language for generating XML/HTML
	Differences between KRL and BRL

	Miscellaneous topics
	Composable pictures
	Coordinates - points and dimensions
	Shapes
	Colors and paints
	Filling a shape with a color
	Stroking (outlining) a shape
	Affine transforms
	Combining pictures
	Images
	Compositing - Controlling how pictures are combined
	Displaying and exporting pictures
	Export to SVG
	Display in Swing
	Convert to image

	Building JavaFX applications
	Using JavaFX with JDK 11+

	Building for Android
	Downloading and setting up the Android SDK
	Building Kawa for Android
	Creating the application
	Running the application on the Android emulator
	Running the application on your device
	Some debugging notes
	Other resources

	Android view construction
	View object allocation
	Event handlers

	System inquiry
	Processes
	Creating a process
	Process literals
	Process values and process output
	Substitution and tokenization
	Input/output redirection
	Pipe-lines
	Setting the process environment
	Waiting for process exit
	Exiting the current process
	Deprecated functions

	Time-related functions
	Deprecated low-level functions
	Low-level Method invocation
	Low-level field operations
	Old low-level array macros

	Frequently Asked Questions
	The Kawa language framework
	License
	License for the Kawa software
	License for the Kawa manual

	Index

