Uses of Class
org.apache.commons.geometry.euclidean.threed.AffineTransformMatrix3D
Packages that use AffineTransformMatrix3D
Package
Description
This package provides basic 3D geometry components.
This package provides components related to rotations in 3 dimensional
Euclidean space.
This package provides basic geometry components on the 2-sphere.
-
Uses of AffineTransformMatrix3D in org.apache.commons.geometry.euclidean.threed
Fields in org.apache.commons.geometry.euclidean.threed declared as AffineTransformMatrix3DModifier and TypeFieldDescriptionprivate static final AffineTransformMatrix3D
AffineTransformMatrix3D.IDENTITY_INSTANCE
Shared transform set to the identity matrix.Methods in org.apache.commons.geometry.euclidean.threed that return AffineTransformMatrix3DModifier and TypeMethodDescriptionstatic AffineTransformMatrix3D
AffineTransformMatrix3D.createRotation
(Vector3D center, QuaternionRotation rotation) Create a transform representing a rotation about the given center point.static AffineTransformMatrix3D
AffineTransformMatrix3D.createScale
(double factor) Create a transform representing a scale operation with the given scale factor applied to all axes.static AffineTransformMatrix3D
AffineTransformMatrix3D.createScale
(double x, double y, double z) Create a transform representing a scale operation.static AffineTransformMatrix3D
AffineTransformMatrix3D.createScale
(Vector3D factors) Create a transform representing a scale operation.static AffineTransformMatrix3D
AffineTransformMatrix3D.createTranslation
(double x, double y, double z) Create a transform representing the given translation.static AffineTransformMatrix3D
AffineTransformMatrix3D.createTranslation
(Vector3D translation) Create a transform representing the given translation.static AffineTransformMatrix3D
AffineTransformMatrix3D.from
(UnaryOperator<Vector3D> fn) Construct a new transform representing the given function.static AffineTransformMatrix3D
AffineTransformMatrix3D.fromColumnVectors
(Vector3D u, Vector3D v, Vector3D w) Get a new transform create from the given column vectors.static AffineTransformMatrix3D
AffineTransformMatrix3D.fromColumnVectors
(Vector3D u, Vector3D v, Vector3D w, Vector3D t) Get a new transform created from the given column vectors.static AffineTransformMatrix3D
AffineTransformMatrix3D.identity()
Get the transform representing the identity matrix.AffineTransformMatrix3D.inverse()
Get an instance representing the inverse transform.AffineTransformMatrix3D.linear()
Return a matrix containing only the linear portion of this transform.AffineTransformMatrix3D.linearTranspose()
Return a matrix containing the transpose of the linear portion of this transform.AffineTransformMatrix3D.multiply
(AffineTransformMatrix3D m) Get a new transform created by multiplying this instance by the argument.private static AffineTransformMatrix3D
AffineTransformMatrix3D.multiply
(AffineTransformMatrix3D a, AffineTransformMatrix3D b) Multiply two transform matrices together and return the result as a new transform instance.static AffineTransformMatrix3D
AffineTransformMatrix3D.of
(double... arr) Get a new transform with the given matrix elements.AffineTransformMatrix3D.premultiply
(AffineTransformMatrix3D m) Get a new transform created by multiplying the argument by this instance.AffineTransformMatrix3D.rotate
(QuaternionRotation rotation) Apply a rotation to the current instance, returning the result as a new transform.AffineTransformMatrix3D.rotate
(Vector3D center, QuaternionRotation rotation) Apply a rotation around the given center point to the current instance, returning the result as a new transform.AffineTransformMatrix3D.scale
(double factor) Apply a scale operation to the current instance, returning the result as a new transform.AffineTransformMatrix3D.scale
(double x, double y, double z) Apply a scale operation to the current instance, returning the result as a new transform.Apply a scale operation to the current instance, returning the result as a new transform.AffineTransformMatrix3D.translate
(double x, double y, double z) Apply a translation to the current instance, returning the result as a new transform.Apply a translation to the current instance, returning the result as a new transform.Methods in org.apache.commons.geometry.euclidean.threed with parameters of type AffineTransformMatrix3DModifier and TypeMethodDescriptionAffineTransformMatrix3D.multiply
(AffineTransformMatrix3D m) Get a new transform created by multiplying this instance by the argument.private static AffineTransformMatrix3D
AffineTransformMatrix3D.multiply
(AffineTransformMatrix3D a, AffineTransformMatrix3D b) Multiply two transform matrices together and return the result as a new transform instance.AffineTransformMatrix3D.premultiply
(AffineTransformMatrix3D m) Get a new transform created by multiplying the argument by this instance. -
Uses of AffineTransformMatrix3D in org.apache.commons.geometry.euclidean.threed.rotation
Methods in org.apache.commons.geometry.euclidean.threed.rotation that return AffineTransformMatrix3DModifier and TypeMethodDescriptionQuaternionRotation.toMatrix()
Return anAffineTransformMatrix3D
representing the same rotation as this instance. -
Uses of AffineTransformMatrix3D in org.apache.commons.geometry.spherical.twod
Fields in org.apache.commons.geometry.spherical.twod declared as AffineTransformMatrix3DModifier and TypeFieldDescriptionprivate final AffineTransformMatrix3D
Transform2S.euclideanTransform
Euclidean transform matrix underlying the spherical transform.private static final AffineTransformMatrix3D
Transform2S.XY_PLANE_REFLECTION
Static transform instance that reflects across the x-y plane.Methods in org.apache.commons.geometry.spherical.twod that return AffineTransformMatrix3DModifier and TypeMethodDescriptionTransform2S.getEuclideanTransform()
Get the Euclidean transform matrix underlying the spherical transform.Constructors in org.apache.commons.geometry.spherical.twod with parameters of type AffineTransformMatrix3DModifierConstructorDescriptionprivate
Transform2S
(AffineTransformMatrix3D euclideanTransform) Construct a new instance from its underlying Euclidean transform.