Interface AbelianGroupElem<C extends AbelianGroupElem<C>>

Type Parameters:
C - element type
All Superinterfaces:
Comparable<C>, Element<C>, Serializable
All Known Subinterfaces:
AlgebraElem<A,C>, FieldElem<C>, GcdRingElem<C>, ModulElem<M,C>, NoncomRingElem<C>, Polynomial<C>, RegularRingElem<C>, RingElem<C>, StarRingElem<C>
All Known Implementing Classes:
AlgebraicNumber, BigComplex, BigDecimal, BigDecimalComplex, BigInteger, BigOctonion, BigQuaternion, BigQuaternionInteger, BigRational, Complex, ComplexAlgebraicNumber, ExpVector, ExpVectorByte, ExpVectorInteger, ExpVectorLong, ExpVectorShort, GenExteriorPolynomial, GenMatrix, GenPolynomial, GenSolvablePolynomial, GenVector, GenWordPolynomial, Local, Local, LocalSolvablePolynomial, ModInt, ModInteger, ModLong, MultiVarPowerSeries, Product, QLRSolvablePolynomial, Quotient, Quotient, QuotSolvablePolynomial, RealAlgebraicNumber, RealAlgebraicNumber, RecSolvablePolynomial, RecSolvableWordPolynomial, Residue, Residue, ResidueSolvablePolynomial, ResidueSolvableWordPolynomial, SolvableLocal, SolvableLocalResidue, SolvableQuotient, SolvableResidue, UnivPowerSeries, WordResidue

public interface AbelianGroupElem<C extends AbelianGroupElem<C>> extends Element<C>
Abelian group element interface. Defines the additive methods.
  • Method Details

    • isZERO

      boolean isZERO()
      Test if this is zero.
      Returns:
      true if this is 0, else false.
    • signum

      int signum()
      Signum.
      Returns:
      the sign of this.
    • sum

      C sum(C S)
      Sum of this and S.
      Parameters:
      S -
      Returns:
      this + S.
    • subtract

      C subtract(C S)
      Subtract S from this.
      Parameters:
      S -
      Returns:
      this - S.
    • negate

      C negate()
      Negate this.
      Returns:
      - this.
    • abs

      C abs()
      Absolute value of this.
      Returns:
      |this|.