
JSON Tools Core 1.6

Bruno Ranschaert

June 29, 2021

Contents

1 Introduction 2
1.1 Introduction . 2
1.2 Acknowledgements . 3
1.3 About S.D.I-Consulting . 3
1.4 Dependencies . 3
1.5 License . 3
1.6 JSON Extensions . 3

2 The Core Tools 3
2.1 Parsing - Reading JSON . 3
2.2 Rendering - Writing JSON . 4
2.3 Mapping . 4

2.3.1 When to choose mapping . 4
2.3.2 The mapping process . 5

2.4 Serialization . 7
2.4.1 Primitive Types . 8
2.4.2 Reference Types . 8
2.4.3 The serialization process . 10

2.5 Validation . 11
2.5.1 Basic Rules . 12
2.5.2 Type Rules . 13
2.5.3 Attribute Rules . 13
2.5.4 Structural Rules . 15

A License Header 18

B Validator for Validators 19

C Changes since 1.5 22

1

1 Introduction

1.1 Introduction

JSON (JavaScript Object Notation) is a file format to represent data. It is similar to XML but has
different characteristics. It is suited to represent configuration information, implement commu-
nication protocols and so on. XML is more suited to represent annotated documents. JSON
parsing is very fast, the parser can be kept lean and mean. It is easy for humans to read and
write. It is based on a subset of the JavaScript programming language1. JSON is a text format
that is completely language independent but uses conventions that are familiar to program-
mers of the C-family of languages2. These properties make JSON an ideal data-interchange
language. The format is specified on the JSON web site3, for the details please visit this site.
JSON is a very simple format. As a result, the parsing and rendering is fast and easy, you
can concentrate on the content of the file in stead of the format. In XML it is often difficult
to fully understand all features (e.g. name spaces, validation, ...). As a result, XML tends to
become part of the problem i.s.o. the solution. In JSON everything is well defined, all aspects
of the representation are clear, you can concentrate on how you are going to represent your
application concepts. The following example comes from the JSON example page 4.

1 { "widget" : {
2 "debug" : "on",
3 "text" : {
4 "onMouseUp" : "sun1.opacity␣=␣(sun1.opacity␣/␣100)␣*␣90;",
5 "hOffset" : 250,
6 "data" : "Click␣Here",
7 "alignment" : "center",
8 "style" : "bold",
9 "size" : 36,

10 "name" : "text1",
11 "vOffset" : 100 },
12 "image" : {
13 "hOffset" : 250,
14 "alignment" : "center",
15 "src" : "Images/Sun.png",
16 "name" : "sun1",
17 "vOffset" : 250 },
18 "window" : {
19 "width" : 500,
20 "height" : 500,
21 "title" : "Sample␣Konfabulator␣Widget",
22 "name" : "main_window" } } }

This project wants to provide the tools to manipulate and use the format in a Java application.

1Standard ECMA-262 3rd Edition - December 1999.
2Including C, C++, "C#", Java, JavaScript, Perl, Python, and many others.
3The JSON web site: http://www.json.org/
4JSON Example page: http://www.json.org/example.html

2

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.json.org/
http://www.json.org/example.html

1.2 Acknowledgements

The JSON Tools library is the result of many suggestions, contributions and reviews from the users.
Without the feedback the library would not be as versatile and stable as it is today. Thank you
for all the feedback that makes the library better.

1.3 About S.D.I-Consulting

Visit the web site http://www.sdi-consulting.com for more information. Visit the JSON Tools
project summary5 page, the project itself is hosted on the Berlios service6.

1.4 Dependencies

The parser uses ANTLR 2.7.77 , so the ANTLR runtime is needed for this. It might work with other
versions, I simply did not test it. I am aware that ANTLR v3 is available, but it is still in beta. We
will stick to the stable release. The project is based on the maven2 build system.
The JSON Tools libraries are written using the new language features from JDK 1.5 8. Enumer-
ations and generics are used because these make the code nicer to read. There are no
dependencies to the new libraries. On the other hand, there is no guarantee we will keep it
this way in future releases. If you want to use the libraries for an earlier version of the JDK, the
retrotranslator tool9 might be an option.

1.5 License

The library is released under the LGPL10. You are free to use it for commercial or non-commercial
applications as long as you leave the copyright intact and add a reference to the project. You
can find a copy of the license header in appendix A. Let me know what you like and what you
don’t like about the library so that I can improve it.

1.6 JSON Extensions

Comments. I added line comments which start with "#". It is easier for the examples to be able
to put comments in the file. The comments are not retained, they are skipped and ignored.

2 The Core Tools

2.1 Parsing - Reading JSON

The most important tool in the tool set is the parser, it enables you to convert a JSON file or
stream into a Java model. All JSON objects remember the position in the file (line, column), so
if you are doing post processing of the data you can always refer to the position in the original
file. Invoking the parser is very simple as you can see in this example:

5JSON Tools summary: http://sdi-consulting.com/menu/software/frameworks/jsontools.html
6JSON Tools project page: http://jsontools.berlios.de
7ANTLR: http://www.antlr.org/
8Sun Java 5: http://java.sun.com/j2se/1.5
9Retrotranslator: http://retrotranslator.sourceforge.net

10Gnu LGPL: http://www.gnu.org/licenses/lgpl.html

3

http://www.sdi-consulting.com
http://sdi-consulting.com/menu/software/frameworks/jsontools.html
http://jsontools.berlios.de
http://www.antlr.org/
http://java.sun.com/j2se/1.5
http://retrotranslator.sourceforge.net
http://www.gnu.org/licenses/lgpl.html

1 JSONParser lParser = new JSONParser(JSONTest.class.getResourceAsStream("/config.json"));
2 JSONValue lValue = lParser.nextValue ();

The JSON model is a hierarchy of types, the hierarchy looks like this:

1 JSONValue
2 JSONComplex
3 JSONObject
4 JSONArray
5 JSONSimple
6 JSONNull
7 JSONBoolean
8 JSONString
9 JSONNumber

10 JSONInteger
11 JSonDecimal

2.2 Rendering - Writing JSON

The classes in the JSON model can render themselves to a String. You can choose to render to
a pretty form, nicely indented and easily readable by humans, or you can render to a com-
pact form, no spaces or indentations are provided. This is suited to use on a communications
channel when you are implementing a communication protocol.
In the introduction we already saw a pretty rendering of some widget data. The same struc-
ture can be rendered without pretty printing in order to reduce whitespace. This can be an
interesting feature when space optimization is very important, e.g. communication protocols.

2.3 Mapping

2.3.1 When to choose mapping

Both mapping tool (this section) and serialization tool (section 2.4 on page 7) can be used
to convert Java into JSON and vice versa. These tools have different goals. The goals of the
mapper are:

• The JSON text should be clean and straightforward. So no meta information can be
stored.

• The data contained in the JSON text should not be dependent on the Java programming
language. You do not need to know that the data was produced in Java or that it will be
parsed in Java.

• Not all Java data structures have to be mapped: recursive structures, differentiation be-
tween primitives and reference types are less important. If a trade-off has to be made, it
will be in favor of the JSON format.

The JSON from the mapper can be easily interpreted in another language. An example could
be JavaScript in the context of an AJAX11 communication with the server. The service could

11AJAX = Asynchronous JavaScript and XML, see http://en.wikipedia.org/wiki/AJAX for more information.

4

http://en.wikipedia.org/wiki/AJAX

be talking some JSON protocol. It is not difficult to map Java data to JSON. It can be done like
this:

1 import com.sdicons.json.mapper .*;
2 ...
3 JSONValue lObj = JSONMapper.toJSON(myPojo);

Converting back to Java is done like this:

1 import com.sdicons.json.mapper .*;
2 ...
3 MyBean bean = (MyBean) JSONMapper.toJava(lObj , MyBean.class);

Note that the mapper needs some help to convert JSON into Java. As we stated in the goals of
the mapper, we cannot store meta information in the JSON text. As a result the mapper cannot
know how the JSON text should be mapped. Therefore we pass a class to the mapper (line
3) so that the mapper can exploit this information. In fact, there are two kinds of information
the mapper can work with (1) classes as in the example and (2) types e.g. List<Integer>. The
rationale for this might be illustrated by the following example. Consider a JSON text

1 ["01/12/2006", "03/12/2007", ...]

This list could be interpreted as a list of Strings, but also as a list of Dates. The mapper has no
idea what to do with it. When we pass the type LinkedList<Date> or the type LinkedList<String>,
the mapper can exploit this type information and do the right thing. Also note that the mapper
automatically exploits this information when the outer layer is a bean, and the list is one of the
beans properties.

2.3.2 The mapping process

The mapper uses a repository of helpers. Each helper is specialized in mapping instances of a
certain class or interface. The mappers are organized in the repository in a hierarchical way,
ordered according to the class hierarchy. When mapping an object, the mapper will try to find
the most specific helper available. The default hierarchy looks like this:

1 // Calling this method:
2 System.out.println(JSONMapper.getRepository (). prettyPrint ());
3

4 // Results in this output:
5 java.lang.Object
6 java.lang.String
7 java.lang.Boolean
8 java.lang.Byte
9 java.lang.Short

10 java.lang.Integer
11 java.lang.Long
12 java.lang.Float
13 java.lang.Double
14 java.math.BigInteger
15 java.math.BigDecimal
16 java.lang.Character

5

17 java.util.Date
18 java.util.Collection
19 java.util.Map

The basic Java types (byte, int, char, ..., arrays) are handled internally by the mapper, no
helpers are used for this. For all reference types, the repository is used to find an appropriate
handler. If there is no specific helper available, the mapper will eventually use the root mapper.
Currently there are two flavors available of the root mapper that handles java.lang.Object.

• ObjectMapper is the default helper for objects that have no specific helper. It tries to access
the object as a JavaBean. The object has to have an empty constructor, and the helper
will only look at the getters/setters to retreive the contents of the bean. This helper is the
default root helper for compatibility reasons with earlier versions of the JSON Tools. The
JavaBean helper can be explicitly activated by calling the method JSONMapper.useJavaBeanAccess().

• ObjectMaperDirect is optional, this helper will access the fields directly, no getters or setters
are needed. The fields can even be private. This POJO helper can be activated by calling
the method JSONMapper.usePojoAccess();.

It is also possible to add your own mapper helpers to the repository. As you can see, the
default repository is only two levels deep, but it can be much more specialized according to
the business needs. There are two different ways to create a helper or to influence the mapping
process.

• @JSONMap, @JSONConstruct. If the ObjectHelperDirect is activated as described above, then
the class that you want to map can simply annotate two methods with these annotations.
The @JSONMap annotation has to be used to mark a method that returns an object array. This
method will be called by the mapping process when an instance of the class is mapped
from the Java model to JSON. These values will be used by the mapper when the instance
is mapped from JSON to Java by invoking the constructor that is annotated with the
@JSONConstruct annotation.

• Another way to create a helper is to create a new class, derived from SimpleMapperHelper,
and add it to the mapper repository by calling the method JSONMapper.addHelper(myHelper).

Here is an example of an annotated class. It is the first solution, in combination with ObjectMapperDirect.
Do not forget to activate the POJO mapper.

1 public class MyDate
2 {
3 // The fields will be mapped as well , independent of the
4 // constructor values.
5 private Date theDate;
6 private String theTimeZone;
7

8 // Because of this annotation , the ObjectMapperDirect will call this
9 // function and serialize the values in the object array. These values

10 // will be used later on to call the annotated constructor.
11 @JSONMap
12 public Object [] getTime ()
13 {

6

14 return new Object []{ theDate.getTime(), theTimeZone };
15 }
16

17 // This constructor will be called with the same values that were
18 // provided by the other annotated method.
19 @JSONConstruct
20 public MyDate(long aTime , String aTimeZone)
21 {
22 theDate = new Date(aTime);
23 theTimeZone = aTimeZone;
24 }
25 }

2.4 Serialization

Both mapping tool (section 2.3 on page 4) and serialization tool (this section) can be used
to convert Java into JSON and vice versa. These tools have different goals. The goals of the
serializer are:

• The serialization tool could be an alternative for native serialization12 (regarding function-
ality). This does not mean that all kinds of classes are supported out of the box, but it
means that the general mechanism should be there and there should be an easy way to
extend the mechanism so that we can deal with all classes.

• The serialization tool should preserve the difference between reference types and primi-
tive types.

• Recursive types should be supported without putting the (de)serializer into an infinite loop.

• Instance identity should be preserved. If the same instance is referenced from other in-
stances, the same structure should be reconstructed during de-serialization. There should
only be one instance representing the original referenced instance.

• The content of the JSON text can contain meta information which can help de-serialization.
We are allowed to add extra information in the JSON text in order to accomplish the other
goals.

This tool enables you to render POJO’s 13 to a JSON file. It is similar to the XML serialization
in Java or the XML Stream library, but it uses the JSON format. The result is a very fast text
serialization, you can customize it if you want. The code is based on the SISE project, it was
adjusted to make use of and benefit from the JSON format. Marshaling (converting from Java
to JSON) as well as un-marshaling is very straightforward:

1 import com.sdicons.json.serializer.marshall .*;
2 ...
3 myTestObject = ...
4 Marshall marshall = new JSONMarshall ();
5 JSONObject result = marshall.marshall(myTestObject);

12Java serialization: http://java.sun.com/j2se/1.5.0/docs/guide/serialization/
13POJO = Plain Old Java Object. See http://en.wikipedia.org/wiki/Plain_Old_Java_Object for more information.

7

http://java.sun.com/j2se/1.5.0/docs/guide/serialization/
http://en.wikipedia.org/wiki/Plain_Old_Java_Object

And the other way around:

1 import com.sdicons.json.serializer.marshall .*;
2 ...
3 JSONObject myJSONObject = ...
4 MarshallValue lResult = marshall.unmarshall(myJSONObject);
5 ... = lResult.getReference ()

You might wonder what the MarshallValue (on line 4) is all about, why is un-marshaling giving
an extra object back? The answer is that we went to great lengths to provide marshaling
or un-marshaling for both Java reference types as Java basic types. A basic type needs to
be fetched using specific methods (there is no other way). In order to provide these specific
methods we need an extra class.

2.4.1 Primitive Types

Primitive types are represented like this.

1 { ">" : "P",
2 "=" : "1",
3 "t" : "int" }

The “>” attribute with value “P” indicates a primitive type. The “=” attribute contains the rep-
resentation of the value and the “t” attribute contains the original Java type.

2.4.2 Reference Types

An array is defined recursively like this. We can see the “>” attribute this time with the “A” value,
indicating that the object represents an array. The “C” attribute contains the type representa-
tion for arrays as it is defined in JavaṪhe “=” attribute contains a list of the values.

1 { ">" : "A",
2 "c" : "I",
3 "=" :
4 [
5 {
6 ">" : "P",
7 "=" : "0",
8 "t" : "int" },
9 {

10 ">" : "P",
11 "=" : "1",
12 "t" : "int" },
13 {
14 ">" : "P",
15 "=" : "2",
16 "t" : "int" },
17 {
18 ">" : "P",
19 "=" : "3",

8

20 "t" : "int" },
21 {
22 ">" : "P",
23 "=" : "4",
24 "t" : "int" },
25 {
26 ">" : "P",
27 "=" : "5",
28 "t" : "int" }] }

An object is represented like this.

1 {
2 ">" : "O",
3 "c" : "com.sdicons.json.serializer.MyBean",
4 "&" : "id0",
5 "=" : {
6 "int2" :
7 { ">" : "null" },
8 "ptr" :
9 { ">" : "R",

10 "*" : "id0" },
11 "name" :
12 { ">" : "O",
13 "c" : "java.lang.String",
14 "&" : "id2",
15 "=" : "This␣is␣a␣test ..." },
16 "int1" :
17 { ">" : "null" },
18 "id" :
19 { ">" : "O",
20 "c" : "java.lang.Integer",
21 "&" : "id1",
22 "=" : "1003" } } }

The “>” marker contains “O” for object this time. The “C” attribute contains a fully qualified
class name. The “&” contains a unique id, it can be used to refer to the object so that we are
able to represent recursive data structures. The “=” attribute contains a JSON object having
a property for each JavaBean property. The property value is recursively a representation of a
Java object. Note that there is a special notation to represent Java null values.

1 { ">" : "null" }

Also note that you can refer to other objects with the reference object which looks like this:

1 { ">" : "R",
2 "*" : "id0" }

9

2.4.3 The serialization process

The serialization process uses the same mechanism as the mapping process (section 2.3.2 on
page 5), but the repository contains serialization helpers in stead of mapping helpers. There
are also two different flavors of root serializers available:

• ObjectHelper Serializes an instance as a JavaBean. This is the default for compatibility rea-
sons. You can explicitly activate it by calling ((JsonMarshall) marshall).useJavaBeanAccess().

• ObjectHelperDirect Serializes an instance as a POJO. You an activate this by calling the
method ((JsonMarshall) marshall).usePojoAccess().

You can customize the serializer for your own business model in two ways.

• @JSONSerialize, @JSONConstruct in combination with the ObjectHelperDirect.

• Deriving your own helper class from MarshallHelper and adding it with the method call
((JsonMarshall) marshall).addHelper(myHelper).

Here is an example of an annotated class.

1 public class MyDate
2 {
3 // These private fields will be serialized in addition to the
4 // constructor values.
5 private Date theDate;
6 private String theTimeZone;
7

8 // This method will be called during serialization to obtain the
9 // values that can later be used to call the constructor.

10 @JSONSerialize
11 public Object [] getTime ()
12 {
13 return new Object []{ theDate.getTime(), theTimeZone };
14 }
15

16 // This constructor will be called with the values that were provided
17 // by the other annotated method.
18 @JSONConstruct
19 public MyDate(long aTime , String aTimeZone)
20 {
21 theDate = new Date(aTime);
22 theTimeZone = aTimeZone;
23 }
24 }

The result of the serialization looks like the following listing. As you can see, there are two extra
artificial fields cons-0 on line 5 and cons-1 on line 10 which are generted automatically by the
serializer, these properties contain the values which were provided by the method which was
annotated with @JSONSerialize. These same properties will be used for calling the @JSONConstruct

annotated constructor.

10

1 { ">" : "O",
2 "&" : "id0",
3 "c" : "MyDate",
4 "=" : {
5 "cons -0" : {
6 ">" : "O",
7 "&" : "id1",
8 "c" : "java.lang.Long",
9 "=" : "1212717107857" },

10 "cons -1" : {
11 ">" : "O",
12 "&" : "id2",
13 "c" : "java.lang.String",
14 "=" : "CEST" },
15 "theDate" : {
16 ">" : "O",
17 "&" : "id3",
18 "c" : "java.util.Date",
19 "=" : "2008 -06 -06␣03:51:47 ,857␣CEST" },
20 "theTimeZone" : {
21 ">" : "R",
22 "*" : "id2" } } }

2.5 Validation

This tool enables you to validate your JSON files. You can specify which content you expect,
the validator can check these constraints for you. The system is straightforward to use and
extend. You can add your own rules if you have specific needs. The validation definition is in
JSON - as you would expect. Built-in rules:

1 { "name" : "Some␣rule␣name",
2 "type" : "<built -in -type >" }

A validation document consists of a validation rule. This rule will be applied to the JSONValue

that has to be validated. The validation rules can be nested, so it is possible to create complex
rules out of simpler ones. The “type” attribute is obligatory. The “name” is optional, it will be
used during error reporting and for re-use. The predefined rules are listed below. The name
can come in handy while debugging. The name of the failing validation will be available in
the exception. If you give each rule its own name or number, you can quickly find out on which
predicate the validation fails. Here is an example of how you can create a validator.

1 // First we create a parser to read the validator specification which is
2 // defined using the (what did you think) JSON format.
3 // The validator definition is located in the "my-validator.json" resource in the
4 // class path.
5 JSONParser lParser =
6 new JSONParser(
7 MyClass.class.getResourceAsStream("my-validator.json"));
8

9 // We parse the validator spec and convert it into a Java representation.
10 JSONObject lValidatorObject = (JSONObject) lParser.nextValue ();
11

12 // Finally we can convert our validator using the Java model.

11

13 Validator lValidator = new JSONValidator(lValidatorObject);
14

15 And now that you have the validator , you can start validating your data.
16

17 // First we create a parser to read the data.
18 JSONParser lParser = new JSONParser(MyClass.class.getResourceAsStream("data.json"));
19

20 // We parse the datafile and convert it into a Java representation.
21 JSONValue lMyData = lParser.nextValue ();
22

23 // Now we can use the validator to check on our data. We can test if the data has the
24 // correct format or not.
25 lValidator.validate(lMyData);

2.5.1 Basic Rules

These rules are the basic rules in boolean logic.

“type” : “true”

• Parameters: -

• Description: This rule always succeeds.

A validator that will succeed on all JSON data structures.

1 { "name" :"This␣validator␣validates␣*everything*",
2 "type" :"true" }

“type” : “false”

• Parameters: -

• Description: This rule always fails.

A validator that rejects all data structures.

1 { "name" :"This␣validator␣rejects␣all",
2 "type" :"false" }

“type” : “and”

• Parameters:

– rules: Array of nested rules.

• Description: All nested rules have to hold for the and rule to succeed.

A validator that succeeds if the object under scrutiny is both a list and has content consisting
of integers.

1 { "name" :"List␣of␣integers",
2 "type" :"and",
3 "rules" : [{"type":"array"}, {"type":"content","rule":{"type":"int"} }] }

“type” : “or”

• Parameters:

– rules: Array of nested rules.

12

• Description: One of the nested rules has to succeed for this rule to succeed.

A validator that validates booleans or integers.

1 { "name" :"Null␣or␣int",
2 "type" :"or",
3 "rules" : [{"type":"int"}, {"type":"bool"}] }

“type” : “not”

• Parameters:

– rule: A single nested rule.

• Description: The rule succeeds if the nested rule fails and vice versa.

2.5.2 Type Rules

These rules are predefined rules which allows you to specify type restrictions on the JSON data
elements. The meaning of these predicates is obvious, they will not be discussed. See the
examples for more information. Following type clauses can be used:

• “type” : “complex”
• “type” : “array”
• “type” : “object”
• “type” : “simple”
• “type” : “null”
• “type” : “bool”
• “type” : “string”
• “type” : “number”
• “type” : “int”
• “type” : “decimal”

2.5.3 Attribute Rules

These rules check for attributes of certain types.

“type” : “length”

• Parameters:

– min: (optional) The minimal length of the array.

– max : (optional) The maximal length of the array.

• Description: Applicable to complex objects and string objects. The rule will fail if the
object under investigation has another type. For array objects the number of elements
is counted, for objects the number of properties and for strings, the length of its value in
Java (not the JSON representation; "\n" in the file counts as a single character).

A validator that only wants arrays of length 5.

1 { "name" :"Array␣of␣length␣5",
2 "type" :"and",
3 "rules" : [{"type":"array"}, {"type":"length","min":5,"max":5}] }

13

“type” : “range”

• Parameters:

– min: (optional) The minimal value.

– max : (optional) The maximal value.

• Description: Applicable to JSONNumbers, i.e. JSONInteger and JSONDecimal.

Allow numbers between 50 and 100.

1 { "name" :"Range␣validator",
2 "type" :"range",
3 "min" : 50,
4 "max" : 100 }

“type” : “enum”

• Parameters:

– values: An array of JSON values.

• Description: The value has to occur in the provided list. The list can contain simple types
as well as complex nested types.

An enum validator.

1 { "name" :"Enum␣validator",
2 "type" :"enum",
3 "values" : [13, 17, "JSON", 123.12 , [1, 2, 3], {"key":"value"}] }

“type” : “regexp”

• Parameters:

– pattern: A regular expression pattern.

• Description: For strings, requires a predefined format according to the regular expression.

A validator that validates strings containing a sequence of a’s , b’s and c’s.

1 { "name" :"A-B-C␣validator",
2 "type" :"regexp",
3 "pattern" : "a*b*c*" }

“type” : “content”

• Parameters:

– rule: The rule that specifies how the content of a complex structure - an array or the
property values of an object - should behave.

• Description: Note that in contrast with the “properties” rule (for objects), you can specify
in a single rule what all property values of an object should look like.

See “type” : “and” on page 12.

“type” : “properties”

14

• Parameters:

– pairs: A list of “key/value” pair descriptions. Note that in contrast with the content
rule above you can specify a rule per attribute. Each description contains three
properties:

* key : The key string.

* optional: A boolean indicating whether this property is optional or not.

* rule: A validation rule that should be applied to the properties value.

• Description: This predicate is only applicable (and only has meaning) on object data
structures. It will fail on any other type.

It will validate objects looking like this:

1 Example data structure that will be validated:
2 {{"name":"Bruno␣Ranschaert", "country":"Belgium", "salary":13.0 }}
3

4 The validator looks like this:
5 { "name" :"Contact␣spec.",
6 "type" :"properties",
7 "pairs" : [{"key":"name", "optional":false , "rule":{"type":"string"}},
8 {"key":"country", "optional":false , "rule":{"type":"string"}},
9 {"key":"salary", "optional":true , "rule":{"type":"decimal" } }] }

2.5.4 Structural Rules

“type” : “ref”

• Parameters:

– *: The name of the rule to invoke.

• Description: This rule lets you specify recursive rules. Be careful not to create infinite
validations which is quite possible using this rule. The containing rule will be fetched just
before validation, there will be no error message during construction when the containing
rule is not found. The rule will fail in this case. If there are several rules with the same name,
only the last one with that name is remembered and the last one will be used.

A validator that validates nested lists of integers. A ref is needed to enable recursion in the
validator.

1 { "name" :"Nested␣list␣of␣integers",
2 "type" :"and",
3 "rules" : [
4 {"type":"array"},
5 {"type":"content",
6 "rule": {
7 "type" : "or",
8 "rules": [
9 {"type":"int"},

10 {"type":"ref", "*" : "Nested␣list␣of␣integers" }] } }] }

“type” : “let”

15

• Parameters:

– rules: A list of rules.

– * : The name of the rule that should be used.

• Description: Lets you specify a number of named rules in advance. It is a convenience
rule that lets you specify a list of global shared validation rules in advance before using
these later on. It becomes possible to first define a number of recurring types and then
give the starting point. It is a utility rule that lets you tackle more complex validations. Note
that it makes no sense to define anonymous rules inside the list, it is impossible to refer to
these later on.

1 { "name" :"Let␣test␣-␣␣a’s␣or␣b’s",
2 "type" :"let",
3 "*" : "start",
4 "rules" :
5 [{"name":"start", "type":"or", "rules":[{"type":"ref", "*":"a"},
6 {"type":"ref", "*":"b"}]},
7 {"name":"a", "type":"regexp", "pattern":"a*"},
8 {"name":"b", "type":"regexp", "pattern":"b*" }] }

The validator class looks like this:

1 public class MyValidator
2 extends CustomValidator
3 {
4 public MyValidator(
5 String aName , JSONObject aRule ,
6 HashMap <String , Validator > aRuleset)
7 {
8 super(aName , aRule , aRuleset);
9 }

10

11 public void validate(JSONValue aValue)
12 throws ValidationException
13 {
14 // Do whatever you need to do on aValue ...
15 // If validation is ok, simply return.
16 // If validation fails , you can use:
17 // fail(JSONValue aValue) or
18 // fail(String aReason , JSONValue aValue)
19 // to throw the Validation exception for you.
20 }
21 }

“type” : “custom”

• Parameters:

– class: The fully qualified class name of the validator.

• Description: An instance of this validator will be created and will be given a hash map of
validations. A custom validator should be derived from CustomValidator.

16

1 { "name" :"Custom␣test",
2 "type" :"custom",
3 "class" : "com.sdicons.json.validator.MyValidator" }

“type” : “switch”

• Parameters:

– key : The key name of the object that will act as the discriminator.

– case: A list of objects containing the parameters “values” and “rule”. The first one is
a list of values the second one a validator rule.

• Description: The switch validator is a convenience one. It is a subset of the or validator,
but the problem with the or validator is that it does a bad job for error reporting when
things go wrong. The reason is that all rules fail and it is not always clear why, because the
reason a rule fails might be some levels deeper. The switch validator selects a validator
based on the value of a property encountered in the value being validated. The error
produced will be the one of the selected validator. The first applicable validator is used,
the following ones are ignored. Example: The top level rule in the validator for validators
contains a switch that could have been described by an or, but the switch gives better
error messages.

17

A License Header

JSONTOOLS - Java JSON Tools
Copyright (C) 2006-2008 S.D.I.-Consulting BVBA
http://www.sdi-consulting.com
mailto://nospam@sdi-consulting.com

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

18

B Validator for Validators

This example validator is able to validate validators. The example is a bit contrived because the
validators really don’t need validation because it is built-in in the construction. It is interesting
because it can serve as a definition of how to construct a validator.

1 {
2 "name":"Validator␣validator",
3 "type":"let",
4 "*":"rule",
5 "rules":
6 [
7 ########## START ##########
8 {
9 "name":"rule",

10 "type":"switch",
11 "key":"type",
12 "case":
13 [
14 {"values":["true", "false", "null"], "rule":{"type":"ref","*":"atom -rule"}},
15 {"values":["int", "complex", "array", "object", "simple",
16 "null", "bool", "string", "number", "decimal"],
17 "rule":{"type":"ref","*":"type -rule"}},
18 {"values":["not", "content"], "rule":{"type":"ref","*":"rules -rule"}},
19 {"values":["and", "or"], "rule":{"type":"ref","*":"ruleset -rule"}},
20 {"values":["length", "range"], "rule":{"type":"ref","*":"minmax -rule"}},
21 {"values":["ref"], "rule":{"type":"ref","*":"ref -rule"}},
22 {"values":["custom"], "rule":{"type":"ref","*":"custom -rule"}},
23 {"values":["enum"], "rule":{"type":"ref","*":"enum -rule"}},
24 {"values":["let"], "rule":{"type":"ref","*":"let -rule"}},
25 {"values":["regexp"], "rule":{"type":"ref","*":"regexp -rule"}},
26 {"values":["properties"], "rule":{"type":"ref","*":"properties -rule"}},
27 {"values":["switch"], "rule": {"type":"ref","*":"switch -rule"}}
28]
29 },
30 ########## RULESET ##########
31 {
32 "name":"ruleset",
33 "type":"and",
34 "rules":[{"type":"array"},{"type":"content","rule":{"type":"ref","*":"rule"}}]
35 },
36 ########## PAIRS ##########
37 {
38 "name":"pairs",
39 "type":"and",
40 "rules":[{"type":"array"},{"type":"content","rule":{"type":"ref","*":"pair"}}]
41 },
42 ########## PAIR ##########
43 {
44 "name":"pair",
45 "type":"properties",
46 "pairs" :
47 [{"key":"key", "optional":false , "rule":{"type":"string"}},
48 {"key":"optional", "optional":false , "rule":{"type":"bool"}},
49 {"key":"rule", "optional":false , "rule":{"type":"ref","*":"rule"}}
50]
51 },
52 ########## CASES ##########
53 {
54 "name":"cases",
55 "type":"and",
56 "rules":[{"type":"array"},{"type":"content","rule":{"type":"ref","*":"case"}}]
57 },
58 ########## CASE ##########
59 {
60 "name":"case",
61 "type":"properties",
62 "pairs" :

19

63 [{"key":"values", "optional":false , "rule":{"type":"array"}},
64 {"key":"rule", "optional":false , "rule":{"type":"ref","*":"rule"}}
65]
66 },
67 ########## ATOM ##########
68 {
69 "name":"atom -rule",
70 "type":"properties",
71 "pairs" :
72 [{"key":"name", "optional":true , "rule":{"type":"string"}},
73 {"key":"type", "optional":false , "rule":
74 {"type":"enum","values":["true", "false", "null"]}}
75]
76 },
77 ########## RULESET -RULE ##########
78 {
79 "name":"ruleset -rule",
80 "type":"properties",
81 "pairs" :
82 [{"key":"name", "optional":true , "rule":{"type":"string"}},
83 {"key":"type", "optional":false , "rule":{"type":"enum","values":["and", "or"]}},
84 {"key":"rules", "optional":false , "rule":{"type":"ref","*":"ruleset"}}
85]
86 },
87 ########## RULES -RULE ##########
88 {
89 "name":"rules -rule",
90 "type":"properties",
91 "pairs" :
92 [{"key":"name", "optional":true , "rule":{"type":"string"}},
93 {"key":"type", "optional":false , "rule":{"type":"enum","values":["not", "content"]}},
94 {"key":"rule", "optional":false , "rule":{"type":"ref","*":"rule"}}
95]
96 },
97 ########## TYPE ##########
98 {
99 "name":"type -rule",

100 "type":"properties",
101 "pairs" :
102 [{"key":"name", "optional":true , "rule":{"type":"string"}},
103 {"key":"type", "optional":false , "rule":{"type":"enum",
104 "values":["int", "complex", "array", "object",
105 "simple", "null", "bool", "string", "number",
106 "decimal"]}}
107]
108 },
109 ########## MINMAX ##########
110 {
111 "name":"minmax -rule",
112 "type":"properties",
113 "pairs" :
114 [{"key":"name", "optional":true , "rule":{"type":"string"}},
115 {"key":"type", "optional":false , "rule":{"type":"enum","values":["length", "range"]}},
116 {"key":"min", "optional":true , "rule":{"type":"number"}},
117 {"key":"max", "optional":true , "rule":{"type":"number"}}
118]
119 },
120 ########## REF ##########
121 {
122 "name":"ref -rule",
123 "type":"properties",
124 "pairs" :
125 [{"key":"name", "optional":true , "rule":{"type":"string"}},
126 {"key":"type", "optional":false , "rule":{"type":"enum","values":["ref"]}},
127 {"key":"*", "optional":false , "rule":{"type":"string"}}
128]
129 },
130 ########## CUSTOM ##########
131 {

20

132 "name":"custom -rule",
133 "type":"properties",
134 "pairs" :
135 [{"key":"name", "optional":true , "rule":{"type":"string"}},
136 {"key":"type", "optional":false , "rule":{"type":"enum","values":["custom"]}},
137 {"key":"class", "optional":true , "rule":{"type":"string"}}
138]
139 },
140 ########## ENUM ##########
141 {
142 "name":"enum -rule",
143 "type":"properties",
144 "pairs" :
145 [{"key":"name", "optional":true , "rule":{"type":"string"}},
146 {"key":"type", "optional":false , "rule":{"type":"enum","values":["enum"]}},
147 {"key":"values", "optional":true , "rule":{"type":"array"}}
148]
149 },
150 ########## LET ##########
151 {
152 "name":"let -rule",
153 "type":"properties",
154 "pairs" :
155 [{"key":"name", "optional":true , "rule":{"type":"string"}},
156 {"key":"type", "optional":false , "rule":{"type":"enum","values":["let"]}},
157 {"key":"rules", "optional":false , "rule":{"type":"ref","*":"ruleset"}},
158 {"key":"*", "optional":false , "rule":{"type":"string"}}
159]
160 },
161 ########## REGEXP ##########
162 {
163 "name":"regexp -rule",
164 "type":"properties",
165 "pairs" :
166 [{"key":"name", "optional":true , "rule":{"type":"string"}},
167 {"key":"type", "optional":false , "rule":{"type":"enum","values":["regexp"]}},
168 {"key":"pattern", "optional":false , "rule":{"type":"string"}}
169]
170 },
171 ########## PROPERTIES ##########
172 {
173 "name":"properties -rule",
174 "type":"properties",
175 "pairs" :
176 [{"key":"name", "optional":true , "rule":{"type":"string"}},
177 {"key":"type", "optional":false , "rule":{"type":"enum","values":["properties"]}},
178 {"key":"pairs", "optional":false , "rule":{"type":"ref","*":"pairs"}}
179]
180 },
181 ########## SWITCH ##########
182 {
183 "name":"switch -rule",
184 "type":"properties",
185 "pairs" :
186 [{"key":"name", "optional":true , "rule":{"type":"string"}},
187 {"key":"type", "optional":false , "rule":{"type":"enum","values":["switch"]}},
188 {"key":"key", "optional":false , "rule":{"type":"string"}},
189 {"key":"case", "optional":false , "rule":{"type":"ref","*":"cases"}}
190]
191 }
192]
193 }

21

C Changes since 1.5

Changes to the mapper:
* Added ObjectMapperDirect, a helper that can map plain POJO’s.

In previous version only a helper for JavaBean properties was provided.
* Added @JSONMap, @JSONConstruct annotations that let you quickly create

mapper helpers for POJO’s that do not have an empty constructor.
* Added a method to the mapper that lets you add mappers quickly.
* Added an Enum mapper.

Changes to the serialzer (Marshall) same system as for the mapper was added:
* Added ObjectHelperDirect, a helper to serialize POJO’s.
* Added @JSONSerialize and @JSONConstruct.
* Added method to the marshall that lets you add helpers.

Miscelaneous:
* Update to newer version of ANTLR (no not the version 3 which is still in beta).
* Code review, small code improvements.
* Converted documentation from lout to latex. Lout is a fine system, but latex is

more mainstream so more tools, packages and help are available.
* Documentation update.

22

	Introduction
	Introduction
	Acknowledgements
	About S.D.I-Consulting
	Dependencies
	License
	JSON Extensions

	The Core Tools
	Parsing - Reading JSON
	Rendering - Writing JSON
	Mapping
	When to choose mapping
	The mapping process

	Serialization
	Primitive Types
	Reference Types
	The serialization process

	Validation
	Basic Rules
	Type Rules
	 Attribute Rules
	Structural Rules

	 License Header
	 Validator for Validators
	Changes since 1.5

