
Azure Confidential VM: Platform Guest

Attestation

Overview

Confidential VM, an Azure Confidential Computing offering, is an IaaS Virtual Machine

for tenants with stringent security and confidentiality requirements. A basic capability in

a confidential computing environment is to have assurance that the platform in which

the Confidential VM is running can be trusted. If the platform cannot be trusted, then

the workload and associated data, if deployed, will be at a greater risk for compromise.

With Platform guest attestation, a relying party can assure and have increased

confidence that their software inside a Confidential VM runs on expected confidential

hardware platform (e.g: AMD-SEVSNP).

Scenarios

The common scenarios for Platform guest attestation are as follows:

• Ensure a Confidential VM is running on an expected confidential hardware

platform (currently AMD SEV-SNP only)

• Ensure a Confidential VM (or Trusted Launch VM) has secure boot enabled that

protects lowers layers (firmware, bootloader, kernel) of the VM from malware

(rootkit, bootkit).

• Ensure that a relying party is presented evidence that a Confidential VM is

running on a confidential hardware platform

Workflow

To realize the scenarios above, a few components and services are involved; namely:

client program, platform guest attestation client library, hardware (for report), and

Microsoft Azure Attestation service. The mechanics of the request flow is shown in the

diagrams below.

Typical operational workflows to incorporate the client library and make attestation

requests are described below.

Platform Attestation: request in separate client program

https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://docs.microsoft.com/en-us/azure/attestation/overview

In this workflow, attestation requests are performed in a separate client program to

determine if the Confidential VM is running on desired hardware platform before a

workload is launched.

To perform attestation, a client program (called Platform checker client in diagram) must

integrate with the attestation library and run inside a confidential VM. Upon making a

request to the attestation library, the client program can parse the response to

determine if the VM is running on a desired hardware platform, and/or secure boot

setting to launch the sensitive workload.

Platform Attestation: request from inside a workload

In this workflow, attestation requests are performed inside the workload (at the start of

this program) to determine if the Confidential VM is running on desired hardware

platform before a workload is launched.

To perform attestation, the customer workload must integrate with the attestation

library and run inside a confidential VM. Upon making a request to the attestation

library, the customer workload can parse the response to determine if the VM is running

on a desired hardware platform, and/or secure boot setting to continue to fully setup

the sensitive workload.

Platform attestation: Relying party handshake

In addition to platform attestation, in one of the scenarios, the Confidential VM (CVM)

must prove its running on a confidential platform before a relying party will engage. The

Confidential VM must present the attestation token to the relying party to start the

engagement. Examples of engagement are the CVM want secrets from a Secrets

management service, or a client wants to ensure the CVM is running on confidential

platform before it divulges PII data for CVM to process. The handshake between a

Confidential VM and relying party is depicted in the diagram below.

To understand the relying party scenario, the sequence diagram shows the

request/response between the involved systems using guest attestation library APIs. In

this example, the Confidential VM interacts with the Secrets manager to bootstrap itself

using the received secrets.

API description

Platform guest attestation library provides APIs to perform attestation, encrypt and

decrypt data. APIs listed here can be used to accomplish scenarios and workflows

described above. Note that the APIs can only be invoked after the CVM is in a running

state.

Definition: Attest

The Attest API takes ‘Client Parameters’ object as input, initiates an attestation request to

Microsoft Azure Attestation Service (MAA), and returns a decrypted attestation token.

AttestationResult Attest (const attest::ClientParameters& client_params,
unsigned char** jwt_token)

Parameters

[in] client_params

ClientParameters object containing the parameters from the

client needed for attestation.

Zero or more key value pairs for any client/customer

metadata to be returned in response payload. Key value pairs

must be in JSON string format:

"{\"key1\":\"value1\",\"key2\":\"value2\"}"

 E.g: attestation freshness

{\”Nonce\”:\”011510062022\”}

[out] jwt_token

The decrypted jwt token that will be returned by MAA as a

response to the attestation request. The memory is allocated by

the method and the caller is expected to free this memory by

calling Attest::Free() method

Returns

AttestationResult

In case of success, AttestationResult object with error code
ErrorCode::Success will be returned. In case of failure, an
appropriate ErrorCode will be set in the AttestationResult object
and error description will be provided.

Return one of the following error codes:

• -1: Error initializing failure

• -2: Error parsing response

• -3: MSI token not found

• -4: Request exceeded retries

• -5: Request failed

• -6: Attestation failed

• -7: Send request failed

• -8: Invalid input parameter

• -9: Attestation parameters validation failed

• -10: Memory allocation failed

• -11: Failed to get os info

• -12: TPM internal failure

• -13: TPM operation failed

• -14: JWT decryption failed

• -15: JWT decryption TPM error

• -16: Invalid JSON response

• -17: Empty VCEK certificate

• -18: Empty response

• -19: Empty request body

• -20: Report parsing failure

• -21: Report empty

• -22: Error extracting JWK info

• -23: Error converting JWK to RSA public key

• -24: EVP pkey encryption init failed

• -25: EVP pkey encrypt failed

• -26: Data decryption TPM error

• -27: Error parsing DNS info

Definition: Encrypt

The Encrypt API takes data to be encrypted and JWT as input and encrypts the data using
public ephemeral key present in the JWT.
AttestationResult Encrypt (const attest::EncryptionType encryption_type,

const unsigned char * jwt_token,
const unsigned char * data,
uint32_t data_size,
unsigned char ** encrypted_data,
uint32_t * encrypted_data_size,
unsigned char ** encryption_metadata,
uint32_t * encryption_metadata_size)

Parameters

[in] encryption_type

the type of encryption currently the only encryption type
supported is 'NONE', which expects the caller to pass
symmetric key as the data to be encrypted. The RSA Public
key present in the JWT is used to perform the encryption.

[in] jwt_token

the attestation JWT (null terminated string)

[in] data

the data to be encrypted

[in] data_size

the size of the data to be encrypted

[out] encrypted_data

the encrypted data (the memory is allocated by the method

and the caller is expected to free this memory by calling

Attest::Free() method)

[out] encrypted_data_size

the size of the encrypted data

[out] encryption_metadata

the encryption metadata in form of base64 encoded JSON

(the memory is allocated by the method and the caller is

expected to free this memory by calling Attest::Free()

method)

[out] encryption_metadata_size

the size of the encryption metadata

Returns

AttestationResult

Return one of the following error codes:

• -1: Error initializing failure

• -2: Error parsing response

• -3: MSI token not found

• -4: Request exceeded retries

• -5: Request failed

• -6: Attestation failed

• -7: Send request failed

• -8: Invalid input parameter

• -9: Attestation parameters validation failed

• -10: Memory allocation failed

• -11: Failed to get os info

• -12: TPM internal failure

• -13: TPM operation failed

• -14: JWT decryption failed

• -15: JWT decryption TPM error

• -16: Invalid JSON response

• -17: Empty VCEK certificate

• -18: Empty response

• -19: Empty request body

• -20: Report parsing failure

• -21: Report empty

• -22: Error extracting JWK info

• -23: Error converting JWK to RSA public key

• -24: EVP pkey encryption init failed

• -25: EVP pkey encrypt failed

• -26: Data decryption TPM error

• -27: Error parsing DNS info

Definition: Decrypt

The Decrypt API takes encrypted data as input and decrypts the data using private ephemeral key
sealed to the TPM.

AttestationResult Decrypt(const attest::EncryptionType encryption_type,
const unsigned char * encrypted_data,
uint32_t encrypted_data_size,

const unsigned char * encryption_metadata,
uint32_t encryption_metadata_size,
unsigned char ** decrypted_data,
uint32_t * decrypted_data_size)

Parameters

[in] encryption_type

the type of encryption currently the only encryption type

supported is 'NONE', which expects the caller to pass the

encrypted symmetric key as input. The RSA Private key

present in the TPM is used to perform the decryption.

[in] encrypted_data

The encrypted data

[in] encrypted_data_size

The size of encrypted data

[in] encryption_metadata

The encryption metadata

[in] encryption_metadata_size

The size of encryption metadata

[out] decrypted_data

The decrypted data (the memory is allocated by the method

and the caller is expected to free this memory by calling

Attest::Free() method)

[out] decrypted_data_size

The size of decrypted data

Returns

AttestationResult

Return one of the following error codes:

• -1: Error initializing failure

• -2: Error parsing response

• -3: MSI token not found

• -4: Request exceeded retries

• -5: Request failed

• -6: Attestation failed

• -7: Send request failed

• -8: Invalid input parameter

• -9: Attestation parameters validation failed

• -10: Memory allocation failed

• -11: Failed to get os info

• -12: TPM internal failure

• -13: TPM operation failed

• -14: JWT decryption failed

• -15: JWT decryption TPM error

• -16: Invalid JSON response

• -17: Empty VCEK certificate

• -18: Empty response

• -19: Empty request body

• -20: Report parsing failure

• -21: Report empty

• -22: Error extracting JWK info

• -23: Error converting JWK to RSA public key

• -24: EVP pkey encryption init failed

• -25: EVP pkey encrypt failed

• -26: Data decryption TPM error

• -27: Error parsing DNS info

Definition: Free

This API deallocates the memory previously allocated by the library

Free(void* ptr);

Parameters

[in] ptr

Pointer to memory block previously allocated

Returns

- -

JWT Information

The full structure of the JWT is available here. Different parts of the JWT can be

extracted to fulfill the scenarios described above. Key fields for platform guest

attestation are listed below.

Claim Attribute Value (sample)

- x-ms-azurevm-vmid 2DEDC52A-6832-46CE-9910-

E8C9980BF5A7

AMD SEV-SNP

hardware

x-ms-isolation-tee -

x-ms-isolation-tee sevsnpvm

x-ms-compliance-status azure-compliant-cvm

Secure boot x-ms-runtime -> vm-
configuration

-

secure-boot true

Virtual TPM tpm-enabled true

x-ms-runtime->keys -

kid TpmEphemeralEncryptionKey

Compilation instructions

Linux

https://github.com/akashgupta29/attestation-app-windows/blob/main/sampleJWTReadable

Create a Linux Confidential or Trusted Launch virtual machine in Azure and clone the

application.

Use the command below to install the build-essential package. This package will install

everything required for compiling our sample application written in C++.

$ sudo apt-get install build-essential

Use the below commands to install libcurl4-openssl-dev and libjsoncpp-dev packages

$ sudo apt-get install libcurl4-openssl-dev

$ sudo apt-get install libjsoncpp-dev

Download the attestation package from the following location

- https://packages.microsoft.com/repos/azurecore/pool/main/a/azguestattestation1/

Use the below command to install the attestation package

$ sudo dpkg -i azguestattestation1_<latest-version>_amd64.deb

Windows

Create a Windows Confidential or Trusted Launch virtual machine in Azure and clone the

sample application.

Install Visual Studio with the Desktop development with C++ workload installed and

running on your computer. If it's not installed yet, follow the steps in Install C++ support

in Visual Studio.

To build your project, choose Build Solution from the Build menu. The Output window

shows the results of the build process.

Once the build is successful, to run the application navigate to the Release build folder

and run the AttestationClientApp.exe file.

Sample Code

Sample code on how to use the attest API and make attestation requests for a

Confidential VM is available in GitHub [Linux, Windows]. Depending on your operational

https://packages.microsoft.com/repos/azurecore/pool/main/a/azguestattestation1/
https://docs.microsoft.com/en-us/cpp/build/vscpp-step-0-installation?view=msvc-170
https://docs.microsoft.com/en-us/cpp/build/vscpp-step-0-installation?view=msvc-170
https://github.com/akashgupta29/attestation-app-linux/blob/main/main.cpp
https://github.com/akashgupta29/attestation-app-windows/blob/9ba13ada727bcb2e2735aa8817f84b1855cd7e5a/AttestationClientApp.cpp

workflow (see Workflows section), the sample code can be reused in your client

program or workload code, or you can use it as is.

