The rand_bytes function binds to RAND_bytes in OpenSSL to generate cryptographically strong pseudo-random bytes. See the OpenSSL documentation for what this means.

rnd <- rand_bytes(10)
print(rnd)
 [1] 87 90 4d 60 eb 85 d5 61 77 92

Bytes are 8 bit and hence can have 2^8 = 256 possible values.

as.numeric(rnd)
 [1] 135 144  77  96 235 133 213  97 119 146

Each random byte can be decomposed into 8 random bits (booleans)

x <- rand_bytes(1)
as.logical(rawToBits(x))
[1] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE

Secure Random Numbers

rand_num is a simple (2 lines) wrapper to rand_bytes to generate random numbers (doubles) between 0 and 1.

rand_num(10)
 [1] 0.6503316 0.3532948 0.5664871 0.8035756 0.5170119 0.6195451 0.4199222
 [8] 0.2069687 0.7146577 0.8349252

To map random draws from [0,1] into a probability density, we can use a Cumulative Distribution Function. For example we can combine qnorm and rand_num to simulate rnorm:

# Secure rnorm
x <- qnorm(rand_num(1000), mean = 100, sd = 15)
hist(x)

Same for discrete distributions:

# Secure rbinom
y <- qbinom(rand_num(1000), size = 20, prob = 0.1)
hist(y, breaks = -.5:(max(y)+1))