BIND 9 Administrator Reference Manual¶
1. Introduction¶
The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the Internet in a hierarchical manner, the rules used for delegating authority over names, and the system implementation that actually maps names to Internet addresses. DNS data is maintained in a group of distributed hierarchical databases.
1.1. Scope of Document¶
The Berkeley Internet Name Domain (BIND) implements a domain name server for a number of operating systems. This document provides basic information about the installation and care of the Internet Systems Consortium (ISC) BIND version 9 software package for system administrators.
This manual covers BIND version 9.18.1.
1.2. Organization of This Document¶
In this document, Chapter 1 introduces the basic DNS and BIND concepts. Chapter 2 describes resource requirements for running BIND in various environments. Information in Chapter 3 is task-oriented in its presentation and is organized functionally, to aid in the process of installing the BIND 9 software. The task-oriented section is followed by Chapter 4, which is organized as a reference manual to aid in the ongoing maintenance of the software. Chapter 5 contains more advanced concepts that the system administrator may need for implementing certain options. Chapter 6 addresses security considerations, and Chapter 7 contains troubleshooting help. The main body of the document is followed by several appendices which contain useful reference information, such as a bibliography and historic information related to BIND and the Domain Name System.
1.3. Conventions Used in This Document¶
In this document, we generally use Fixed Width
text to indicate the
following types of information:
- pathnames
- filenames
- URLs
- hostnames
- mailing list names
- new terms or concepts
- literal user input
- program output
- keywords
- variables
Text in “quotes,” bold, or italics is also used for emphasis or clarity.
1.4. The Domain Name System (DNS)¶
This document explains the installation and upkeep of the BIND (Berkeley Internet Name Domain) software package. We begin by reviewing the fundamentals of the Domain Name System (DNS) as they relate to BIND.
1.4.1. DNS Fundamentals¶
The Domain Name System (DNS) is a hierarchical, distributed database. It stores information for mapping Internet host names to IP addresses and vice versa, mail routing information, and other data used by Internet applications.
Clients look up information in the DNS by calling a resolver library,
which sends queries to one or more name servers and interprets the
responses. The BIND 9 software distribution contains a name server,
named
, and a set of associated tools.
1.4.2. Domains and Domain Names¶
The data stored in the DNS is identified by domain names that are organized as a tree according to organizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The domain name of the node is the concatenation of all the labels on the path from the node to the root node. This is represented in written form as a string of labels listed from right to left and separated by dots. A label need only be unique within its parent domain.
For example, a domain name for a host at the company Example, Inc.
could be ourhost.example.com
, where com
is the top-level domain
to which ourhost.example.com
belongs, example
is a subdomain of
com
, and ourhost
is the name of the host.
For administrative purposes, the name space is partitioned into areas called zones, each starting at a node and extending down to the “leaf” nodes or to nodes where other zones start. The data for each zone is stored in a name server, which answers queries about the zone using the DNS protocol.
The data associated with each domain name is stored in the form of resource records (RRs). Some of the supported resource record types are described in Types of Resource Records and When to Use Them.
For more detailed information about the design of the DNS and the DNS protocol, please refer to the standards documents listed in Requests for Comment (RFCs).
1.4.3. Zones¶
To properly operate a name server, it is important to understand the difference between a zone and a domain.
As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those contiguous parts of the domain tree for which a name server has complete information and over which it has authority. It contains all domain names from a certain point downward in the domain tree except those which are delegated to other zones. A delegation point is marked by one or more NS records in the parent zone, which should be matched by equivalent NS records at the root of the delegated zone.
For instance, consider the example.com
domain, which includes names
such as host.aaa.example.com
and host.bbb.example.com
, even
though the example.com
zone includes only delegations for the
aaa.example.com
and bbb.example.com
zones. A zone can map
exactly to a single domain, but could also include only part of a
domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that
is, has no subdomains. Every subdomain is a domain and every domain
except the root is also a subdomain. The terminology is not intuitive
and we suggest reading RFC 1033, RFC 1034, and RFC 1035 to gain a complete
understanding of this difficult and subtle topic.
Though BIND 9 is called a “domain name server,” it deals primarily in
terms of zones. The primary
and secondary
declarations in the named.conf
file specify zones, not domains. When BIND asks some other site if it is
willing to be a secondary server for a domain, it is actually asking
for secondary service for some collection of zones.
1.4.4. Authoritative Name Servers¶
Each zone is served by at least one authoritative name server, which contains the complete data for the zone. To make the DNS tolerant of server and network failures, most zones have two or more authoritative servers, on different networks.
Responses from authoritative servers have the “authoritative answer”
(AA) bit set in the response packets. This makes them easy to identify
when debugging DNS configurations using tools like dig
(Diagnostic Tools).
1.4.4.1. The Primary Server¶
The authoritative server, where the main copy of the zone data is maintained, is called the primary (formerly master) server, or simply the primary. Typically it loads the zone contents from some local file edited by humans or perhaps generated mechanically from some other local file which is edited by humans. This file is called the zone file or master file.
In some cases, however, the master file may not be edited by humans at all, but may instead be the result of dynamic update operations.
1.4.4.2. Secondary Servers¶
The other authoritative servers, the secondary servers (formerly known as slave servers) load the zone contents from another server using a replication process known as a zone transfer. Typically the data is transferred directly from the primary, but it is also possible to transfer it from another secondary. In other words, a secondary server may itself act as a primary to a subordinate secondary server.
Periodically, the secondary server must send a refresh query to determine
whether the zone contents have been updated. This is done by sending a
query for the zone’s Start of Authority (SOA) record and checking whether the SERIAL field
has been updated; if so, a new transfer request is initiated. The timing
of these refresh queries is controlled by the SOA REFRESH and RETRY
fields, but can be overridden with the max-refresh-time
,
min-refresh-time
, max-retry-time
, and min-retry-time
options.
If the zone data cannot be updated within the time specified by the SOA EXPIRE option (up to a hard-coded maximum of 24 weeks), the secondary zone expires and no longer responds to queries.
1.4.4.3. Stealth Servers¶
Usually, all of the zone’s authoritative servers are listed in NS records in the parent zone. These NS records constitute a delegation of the zone from the parent. The authoritative servers are also listed in the zone file itself, at the top level or apex of the zone. Servers that are not in the parent’s NS delegation can be listed in the zone’s top-level NS records, but servers that are not present at the zone’s top level cannot be listed in the parent’s delegation.
A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS records. Stealth servers can be used for keeping a local copy of a zone, to speed up access to the zone’s records or to make sure that the zone is available even if all the “official” servers for the zone are inaccessible.
A configuration where the primary server itself is a stealth server is often referred to as a “hidden primary” configuration. One use for this configuration is when the primary is behind a firewall and is therefore unable to communicate directly with the outside world.
1.4.5. Caching Name Servers¶
The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not capable of performing the full DNS resolution process by themselves by talking directly to the authoritative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such a server is called a recursive name server; it performs recursive lookups for local clients.
To improve performance, recursive servers cache the results of the lookups they perform. Since the processes of recursion and caching are intimately connected, the terms recursive server and caching server are often used synonymously.
The length of time for which a record may be retained in the cache of a caching name server is controlled by the Time-To-Live (TTL) field associated with each resource record.
1.4.5.1. Forwarding¶
Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead, it can forward some or all of the queries that it cannot satisfy from its cache to another caching name server, commonly referred to as a forwarder.
Forwarders are typically used when an administrator does not wish for all the servers at a given site to interact directly with the rest of the Internet. For example, a common scenario is when multiple internal DNS servers are behind an Internet firewall. Servers behind the firewall forward their requests to the server with external access, which queries Internet DNS servers on the internal servers’ behalf.
Another scenario (largely now superseded by Response Policy Zones) is to send queries first to a custom server for RBL processing before forwarding them to the wider Internet.
There may be one or more forwarders in a given setup. The order in which
the forwarders are listed in named.conf
does not determine the
sequence in which they are queried; rather, named
uses the response
times from previous queries to select the server that is likely to
respond the most quickly. A server that has not yet been queried is
given an initial small random response time to ensure that it is tried
at least once. Dynamic adjustment of the recorded response times ensures
that all forwarders are queried, even those with slower response times.
This permits changes in behavior based on server responsiveness.
1.4.6. Name Servers in Multiple Roles¶
The BIND name server can simultaneously act as a primary for some zones, a secondary for other zones, and as a caching (recursive) server for a set of local clients.
However, since the functions of authoritative name service and caching/recursive name service are logically separate, it is often advantageous to run them on separate server machines. A server that only provides authoritative name service (an authoritative-only server) can run with recursion disabled, improving reliability and security. A server that is not authoritative for any zones and only provides recursive service to local clients (a caching-only server) does not need to be reachable from the Internet at large and can be placed inside a firewall.
2. BIND Resource Requirements¶
2.1. Hardware Requirements¶
DNS hardware requirements have traditionally been quite modest. For many installations, servers that have been retired from active duty have performed admirably as DNS servers.
However, the DNSSEC features of BIND 9 may be quite CPU-intensive, so organizations that make heavy use of these features may wish to consider larger systems for these applications. BIND 9 is fully multithreaded, allowing full utilization of multiprocessor systems for installations that need it.
2.2. CPU Requirements¶
CPU requirements for BIND 9 range from i386-class machines, for serving static zones without caching, to enterprise-class machines to process many dynamic updates and DNSSEC-signed zones, serving many thousands of queries per second.
2.3. Memory Requirements¶
Server memory must be sufficient to hold both the cache and the
zones loaded from disk. The max-cache-size
option can
limit the amount of memory used by the cache, at the expense of reducing
cache hit rates and causing more DNS traffic. It is still good practice
to have enough memory to load all zone and cache data into memory;
unfortunately, the best way to determine this for a given installation
is to watch the name server in operation. After a few weeks, the server
process should reach a relatively stable size where entries are expiring
from the cache as fast as they are being inserted.
2.4. Name Server-Intensive Environment Issues¶
For name server-intensive environments, there are two configurations that may be used. The first is one where clients and any second-level internal name servers query the main name server, which has enough memory to build a large cache; this approach minimizes the bandwidth used by external name lookups. The second alternative is to set up second-level internal name servers to make queries independently. In this configuration, none of the individual machines need to have as much memory or CPU power as in the first alternative, but this has the disadvantage of making many more external queries, as none of the name servers share their cached data.
2.5. Supported Platforms¶
Current support status of various platforms and BIND 9 versions can be found in the ISC Knowledgebase:
https://kb.isc.org/docs/supported-platforms
In general, this version of BIND will build and run on any POSIX-compliant system with a C11-compliant C compiler, BSD-style sockets with RFC-compliant IPv6 support, POSIX-compliant threads, and the required libraries.
The following C11 features are used in BIND 9:
- Atomic operations support, either in the form of C11 atomics or
__atomic
builtin operations. - Thread Local Storage support, either in the form of C11
_Thread_local
/thread_local
, or the__thread
GCC extension.
The C11 variants are preferred.
ISC regularly tests BIND on many operating systems and architectures, but lacks the resources to test all of them. Consequently, ISC is only able to offer support on a “best effort” basis for some.
2.5.1. Regularly tested platforms¶
As of Jan 2022, BIND 9.18 is fully supported and regularly tested on the following systems:
- Debian 9, 10, 11
- Ubuntu LTS 18.04, 20.04
- Fedora 35
- Red Hat Enterprise Linux / CentOS / Oracle Linux 7, 8
- FreeBSD 12.3, 13.0
- OpenBSD 7.0
- Alpine Linux 3.15
The amd64, i386, armhf and arm64 CPU architectures are all fully supported.
2.5.2. Best effort¶
The following are platforms on which BIND is known to build and run. ISC makes every effort to fix bugs on these platforms, but may be unable to do so quickly due to lack of hardware, less familiarity on the part of engineering staff, and other constraints. None of these are tested regularly by ISC.
- macOS 10.12+
- Solaris 11
- NetBSD
- Other Linux distributions still supported by their vendors, such as:
- Ubuntu 20.10+
- Gentoo
- Arch Linux
- OpenWRT/LEDE 17.01+
- Other CPU architectures (mips, mipsel, sparc, …)
2.5.3. Community maintained¶
These systems may not all have the required dependencies for building BIND easily available, although it will be possible in many cases to compile those directly from source. The community and interested parties may wish to help with maintenance, and we welcome patch contributions, although we cannot guarantee that we will accept them. All contributions will be assessed against the risk of adverse effect on officially supported platforms.
- Platforms past or close to their respective EOL dates, such as:
- Ubuntu 14.04, 16.04 (Ubuntu ESM releases are not supported)
- CentOS 6
- Debian Jessie
- FreeBSD 10.x, 11.x
2.6. Unsupported Platforms¶
These are platforms on which BIND 9.18 is known not to build or run:
- Platforms without at least OpenSSL 1.0.2
- Windows
- Solaris 10 and older
- Platforms that don’t support IPv6 Advanced Socket API (RFC 3542)
- Platforms that don’t support atomic operations (via compiler or library)
- Linux without NPTL (Native POSIX Thread Library)
- Platforms on which
libuv
cannot be compiled
2.7. Building BIND 9¶
To build on a Unix or Linux system, use:
$ autoreconf -fi ### (only if building from the git repository)
$ ./configure
$ make
Several environment variables affect compilation, and they can be set
before running configure
. The most significant ones are:
Variable | Description |
---|---|
CC |
The C compiler to use. configure tries to
figure out the right one for supported systems. |
CFLAGS |
The C compiler flags. Defaults to include -g
and/or -O2 as supported by the compiler. Please
include -g if CFLAGS needs to be set. |
LDFLAGS |
The linker flags. Defaults to an empty string. |
Additional environment variables affecting the build are listed at the
end of the configure
help text, which can be obtained by running the
command:
$ ./configure --help
If using Emacs, the make tags
command may be helpful.
2.7.1. Required Libraries¶
To build BIND 9, the following packages must be installed:
libcrypto
,libssl
libuv
perl
pkg-config
/pkgconfig
/pkgconf
BIND 9.18 requires libuv
1.x or higher. On older systems, an updated
libuv
package needs to be installed from sources such as EPEL, PPA,
or other native sources. The other option is to build and install
libuv
from source.
OpenSSL 1.0.2e or newer is required. If the OpenSSL library is installed
in a nonstandard location, specify the prefix using
--with-openssl=<PREFIX>
on the configure
command line. To use a
PKCS#11 hardware service module for cryptographic operations,
engine_pkcs11
from the OpenSC project must be compiled and used.
To build BIND from the git repository, the following tools must also be installed:
autoconf
(includesautoreconf
)automake
libtool
2.7.2. Optional Features¶
To see a full list of configuration options, run configure --help
.
To improve performance, use of the jemalloc
library
(http://jemalloc.net/) is strongly recommended.
To support DNS over HTTPS (DoH), the server must be linked
with libnghttp2
(https://nghttp2.org/). If the library is
unavailable, --disable-doh
can be used to disable DoH support.
To support the HTTP statistics channel, the server must be linked with
at least one of the following libraries: libxml2
(http://xmlsoft.org) or json-c
(https://github.com/json-c/json-c).
If these are installed at a nonstandard location, then:
- for
libxml2
, specify the prefix using--with-libxml2=/prefix
, - for
json-c
, adjustPKG_CONFIG_PATH
.
To support compression on the HTTP statistics channel, the server must
be linked against zlib
(https://zlib.net/). If this is installed in
a nonstandard location, specify the prefix using
--with-zlib=/prefix
.
To support storing configuration data for runtime-added zones in an LMDB
database, the server must be linked with liblmdb
(https://github.com/LMDB/lmdb). If this is installed in a nonstandard
location, specify the prefix using --with-lmdb=/prefix
.
To support MaxMind GeoIP2 location-based ACLs, the server must be linked
with libmaxminddb
(https://maxmind.github.io/libmaxminddb/). This is
turned on by default if the library is found; if the library is
installed in a nonstandard location, specify the prefix using
--with-maxminddb=/prefix
. GeoIP2 support can be switched off with
--disable-geoip
.
For DNSTAP packet logging, libfstrm
(https://github.com/farsightsec/fstrm) and libprotobuf-c
(https://developers.google.com/protocol-buffers) must be installed, and
BIND must be configured with --enable-dnstap
.
To support internationalized domain names in dig
, libidn2
(https://www.gnu.org/software/libidn/#libidn2) must be installed. If the
library is installed in a nonstandard location, specify the prefix using
--with-libidn2=/prefix
or adjust PKG_CONFIG_PATH
.
For line editing in nsupdate
and nslookup
, either the
readline
(https://tiswww.case.edu/php/chet/readline/rltop.html) or
the libedit
library (https://www.thrysoee.dk/editline/) must be
installed. If these are installed at a nonstandard location, adjust
PKG_CONFIG_PATH
. readline
is used by default, and libedit
can be explicitly requested using --with-readline=libedit
.
Certain compiled-in constants and default settings can be decreased to
values better suited to small machines, e.g. OpenWRT boxes, by
specifying --with-tuning=small
on the configure
command line.
This decreases memory usage by using smaller structures, but degrades
performance.
On Linux, process capabilities are managed in user space using the
libcap
library
(https://git.kernel.org/pub/scm/libs/libcap/libcap.git/), which can be
installed on most Linux systems via the libcap-dev
or
libcap-devel
package. Process capability support can also be
disabled by configuring with --disable-linux-caps
.
On some platforms it is necessary to explicitly request large file
support to handle files bigger than 2GB. This can be done by using
--enable-largefile
on the configure
command line.
Support for the “fixed” RRset-order option can be enabled or disabled by
specifying --enable-fixed-rrset
or --disable-fixed-rrset
on the
configure
command line. By default, fixed RRset-order is disabled to
reduce memory footprint.
The --enable-querytrace
option causes named
to log every step
while processing every query. The --enable-singletrace
option turns
on the same verbose tracing, but allows an individual query to be
separately traced by setting its query ID to 0. These options should
only be enabled when debugging, because they have a significant negative
impact on query performance.
make install
installs named
and the various BIND 9 libraries. By
default, installation is into /usr/local, but this can be changed with
the --prefix
option when running configure
.
The option --sysconfdir
can be specified to set the directory where
configuration files such as named.conf
go by default;
--localstatedir
can be used to set the default parent directory of
run/named.pid
. --sysconfdir
defaults to $prefix/etc
and
--localstatedir
defaults to $prefix/var
.
2.7.3. macOS¶
Building on macOS assumes that the “Command Tools for Xcode” are
installed. These can be downloaded from
https://developer.apple.com/download/more/ or, if Xcode is already
installed, simply run xcode-select --install
. (Note that an Apple ID
may be required to access the download page.)
3. Name Server Configuration¶
In this chapter we provide some suggested configurations, along with guidelines for their use. We suggest reasonable values for certain option settings.
3.1. Sample Configurations¶
3.1.1. A Caching-only Name Server¶
The following sample configuration is appropriate for a caching-only
name server for use by clients internal to a corporation. All queries
from outside clients are refused using the allow-query
option.
The same effect can be achieved using suitable firewall
rules.
// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {
allow-query { corpnets; };
};
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify no;
};
3.1.2. An Authoritative-only Name Server¶
This sample configuration is for an authoritative-only server that is
the primary server for example.com
and a secondary server for the subdomain
eng.example.com
.
options {
// Do not allow access to cache
allow-query-cache { none; };
// This is the default
allow-query { any; };
// Do not provide recursive service
recursion no;
};
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify no;
};
// We are the primary server for example.com
zone "example.com" {
type primary;
file "example.com.db";
// IP addresses of secondary servers allowed to
// transfer example.com
allow-transfer {
192.168.4.14;
192.168.5.53;
};
};
// We are a secondary server for eng.example.com
zone "eng.example.com" {
type secondary;
file "eng.example.com.bk";
// IP address of eng.example.com primary server
primaries { 192.168.4.12; };
};
3.2. Load Balancing¶
A primitive form of load balancing can be achieved in the DNS by using multiple records (such as multiple A records) for one name.
For example, assuming three HTTP servers with network addresses of 10.0.0.1, 10.0.0.2, and 10.0.0.3, a set of records such as the following means that clients will connect to each machine one-third of the time:
Name | TTL | CLASS | TYPE | Resource Record (RR) Data |
www | 600 | IN | A | 10.0.0.1 |
600 | IN | A | 10.0.0.2 | |
600 | IN | A | 10.0.0.3 |
When a resolver queries for these records, BIND rotates them and responds to the query with the records in a different order. In the example above, clients randomly receive records in the order 1, 2, 3; 2, 3, 1; and 3, 1, 2. Most clients use the first record returned and discard the rest.
For more detail on ordering responses, check the rrset-order
sub-statement in the options
statement; see RRset Ordering.
3.3. Name Server Operations¶
3.3.1. Tools for Use With the Name Server Daemon¶
This section describes several indispensable diagnostic, administrative, and monitoring tools available to the system administrator for controlling and debugging the name server daemon.
3.3.1.1. Diagnostic Tools¶
The dig
, host
, and nslookup
programs are all command-line
tools for manually querying name servers. They differ in style and
output format.
dig
dig
is the most versatile and complete of these lookup tools. It has two modes: simple interactive mode for a single query, and batch mode, which executes a query for each in a list of several query lines. All query options are accessible from the command line.dig [@server] domain [query-type][query-class][+query-option][-dig-option][%comment]
The usual simple use of
dig
takes the formdig @server domain query-type query-class
For more information and a list of available commands and options, see the
dig
man page.host
The
host
utility emphasizes simplicity and ease of use. By default, it converts between host names and Internet addresses, but its functionality can be extended with the use of options.host [-aCdlnrsTwv][-c class][-N ndots][-t type][-W timeout][-R retries] [-m flag][-4][-6] hostname [server]
For more information and a list of available commands and options, see the
host
man page.nslookup
nslookup
has two modes: interactive and non-interactive. Interactive mode allows the user to query name servers for information about various hosts and domains, or to print a list of hosts in a domain. Non-interactive mode is used to print just the name and requested information for a host or domain.nslookup [-option][ [host-to-find]|[-[server]] ]
Interactive mode is entered when no arguments are given (the default name server is used) or when the first argument is a hyphen (
-
) and the second argument is the host name or Internet address of a name server.Non-interactive mode is used when the name or Internet address of the host to be looked up is given as the first argument. The optional second argument specifies the host name or address of a name server.
Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the use of
nslookup
. Usedig
instead.
3.3.1.2. Administrative Tools¶
Administrative tools play an integral part in the management of a server.
named-checkconf
The
named-checkconf
program checks the syntax of anamed.conf
file.named-checkconf [-jvz][-t directory][filename]
named-checkzone
The
named-checkzone
program checks a zone file for syntax and consistency.named-checkzone [-djqvD][-c class][-o output][-t directory][-w directory] [-k (ignore|warn|fail)][-n (ignore|warn|fail)][-W (ignore|warn)] zone [filename]
named-compilezone
- This tool is similar to
named-checkzone,
but it always dumps the zone content to a specified file (typically in a different format). rndc
The remote name daemon control (
rndc
) program allows the system administrator to control the operation of a name server. Ifrndc
is run without any options, it displays a usage message as follows:rndc [-c config][-s server][-p port][-y key] command [command...]
See rndc - name server control utility for details of the available
rndc
commands.rndc
requires a configuration file, since all communication with the server is authenticated with digital signatures that rely on a shared secret, and there is no way to provide that secret other than with a configuration file. The default location for therndc
configuration file is/etc/rndc.conf
, but an alternate location can be specified with the-c
option. If the configuration file is not found,rndc
also looks in/etc/rndc.key
(or whateversysconfdir
was defined when the BIND build was configured). Therndc.key
file is generated by runningrndc-confgen -a
as described in controls Statement Definition and Usage.The format of the configuration file is similar to that of
named.conf
, but is limited to only four statements: theoptions
,key
,server
, andinclude
statements. These statements are what associate the secret keys to the servers with which they are meant to be shared. The order of statements is not significant.The
options
statement has three clauses:default-server
,default-key
, anddefault-port
.default-server
takes a host name or address argument and represents the server that is contacted if no-s
option is provided on the command line.default-key
takes the name of a key as its argument, as defined by akey
statement.default-port
specifies the port to whichrndc
should connect if no port is given on the command line or in aserver
statement.The
key
statement defines a key to be used byrndc
when authenticating withnamed
. Its syntax is identical to thekey
statement innamed.conf
. The keywordkey
is followed by a key name, which must be a valid domain name, though it need not actually be hierarchical; thus, a string likerndc_key
is a valid name. Thekey
statement has two clauses:algorithm
andsecret
. While the configuration parser accepts any string as the argument toalgorithm
, currently only the stringshmac-md5
,hmac-sha1
,hmac-sha224
,hmac-sha256
,hmac-sha384
, andhmac-sha512
have any meaning. The secret is a Base64-encoded string as specified in RFC 3548.The
server
statement associates a key defined using thekey
statement with a server. The keywordserver
is followed by a host name or address. Theserver
statement has two clauses:key
andport
. Thekey
clause specifies the name of the key to be used when communicating with this server, and theport
clause can be used to specify the portrndc
should connect to on the server.A sample minimal configuration file is as follows:
key rndc_key { algorithm "hmac-sha256"; secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K"; }; options { default-server 127.0.0.1; default-key rndc_key; };
This file, if installed as
/etc/rndc.conf
, allows the command:$ rndc reload
to connect to 127.0.0.1 port 953 and causes the name server to reload, if a name server on the local machine is running with the following controls statements:
controls { inet 127.0.0.1 allow { localhost; } keys { rndc_key; }; };
and it has an identical key statement for
rndc_key
.Running the
rndc-confgen
program conveniently creates anrndc.conf
file, and also displays the correspondingcontrols
statement needed to add tonamed.conf
. Alternatively, it is possible to runrndc-confgen -a
to set up anrndc.key
file and not modifynamed.conf
at all.
3.3.2. Signals¶
Certain Unix signals cause the name server to take specific actions, as
described in the following table. These signals can be sent using the
kill
command.
SIGHUP |
Causes the server to read named.conf and reload
the database. |
SIGTERM |
Causes the server to clean up and exit. |
SIGINT |
Causes the server to clean up and exit. |
3.4. Plugins¶
Plugins are a mechanism to extend the functionality of named
using
dynamically loadable libraries. By using plugins, core server
functionality can be kept simple for the majority of users; more complex
code implementing optional features need only be installed by users that
need those features.
The plugin interface is a work in progress, and is expected to evolve as more plugins are added. Currently, only “query plugins” are supported; these modify the name server query logic. Other plugin types may be added in the future.
The only plugin currently included in BIND is filter-aaaa.so
, which
replaces the filter-aaaa
feature that previously existed natively as
part of named
. The code for this feature has been removed from
named
and can no longer be configured using standard named.conf
syntax, but linking in the filter-aaaa.so
plugin provides identical
functionality.
3.4.1. Configuring Plugins¶
A plugin is configured with the plugin
statement in named.conf
:
plugin query "library.so" {
parameters
};
In this example, file library.so
is the plugin library. query
indicates that this is a query plugin.
Multiple plugin
statements can be specified, to load different
plugins or multiple instances of the same plugin.
parameters
are passed as an opaque string to the plugin’s initialization
routine. Configuration syntax differs depending on the module.
3.4.2. Developing Plugins¶
Each plugin implements four functions:
plugin_register
to allocate memory, configure a plugin instance, and attach to hook points withinnamed
,plugin_destroy
to tear down the plugin instance and free memory,plugin_version
to check that the plugin is compatible with the current version of the plugin API,plugin_check
to test syntactic correctness of the plugin parameters.
At various locations within the named
source code, there are “hook
points” at which a plugin may register itself. When a hook point is
reached while named
is running, it is checked to see whether any
plugins have registered themselves there; if so, the associated “hook
action” - a function within the plugin library - is called. Hook
actions may examine the runtime state and make changes: for example,
modifying the answers to be sent back to a client or forcing a query to
be aborted. More details can be found in the file
lib/ns/include/ns/hooks.h
.
4. BIND 9 Configuration Reference¶
4.1. Configuration File Elements¶
Following is a list of elements used throughout the BIND configuration file documentation:
acl_name
- The name of an
address_match_list
as defined by theacl
statement. address_match_list
- A list of one or more
ip_addr
,ip_prefix
,key_id
, oracl_name
elements; see Address Match Lists. remoteserver_list
- A named list of one or more
ip_addr
with optionaltls_id
,key_id
and/orip_port
. Aremoteserver_list
may include otherremoteserver_list
. domain_name
- A quoted string which is used as a DNS name; for example.
my.test.domain
. namelist
- A list of one or more
domain_name
elements. dotted_decimal
- One to four integers valued 0 through 255 separated by dots (
.
), such as123.45.67
or89.123.45.67
. ip4_addr
- An IPv4 address with exactly four elements in
dotted_decimal
notation. ip6_addr
- An IPv6 address, such as
2001:db8::1234
. IPv6-scoped addresses that have ambiguity on their scope zones must be disambiguated by an appropriate zone ID with the percent character (%
) as a delimiter. It is strongly recommended to use string zone names rather than numeric identifiers, to be robust against system configuration changes. However, since there is no standard mapping for such names and identifier values, only interface names as link identifiers are supported, assuming one-to-one mapping between interfaces and links. For example, a link-local addressfe80::1
on the link attached to the interfacene0
can be specified asfe80::1%ne0
. Note that on most systems link-local addresses always have ambiguity and need to be disambiguated. ip_addr
- An
ip4_addr
orip6_addr
. ip_dscp
- A
number
between 0 and 63, used to select a differentiated services code point (DSCP) value for use with outgoing traffic on operating systems that support DSCP. ip_port
- An IP port
number
. Thenumber
is limited to 0 through 65535, with values below 1024 typically restricted to use by processes running as root. In some cases, an asterisk (*
) character can be used as a placeholder to select a random high-numbered port. ip_prefix
- An IP network specified as an
ip_addr
, followed by a slash (/
) and then the number of bits in the netmask. Trailing zeros in an``ip_addr`` may be omitted. For example,127/8
is the network127.0.0.0``with netmask ``255.0.0.0
and1.2.3.0/28
is network1.2.3.0
with netmask255.255.255.240
. When specifying a prefix involving a IPv6-scoped address, the scope may be omitted. In that case, the prefix matches packets from any scope. key_id
- A
domain_name
representing the name of a shared key, to be used for transaction security. key_list
- A list of one or more
key_id
, separated by semicolons and ending with a semicolon. tls_id
- A string representing a TLS configuration object, including a key and certificate.
number
- A non-negative 32-bit integer (i.e., a number between 0 and 4294967295, inclusive). Its acceptable value might be further limited by the context in which it is used.
fixedpoint
- A non-negative real number that can be specified to the nearest one-hundredth. Up to five digits can be specified before a decimal point, and up to two digits after, so the maximum value is 99999.99. Acceptable values might be further limited by the contexts in which they are used.
path_name
- A quoted string which is used as a pathname, such as
zones/master/my.test.domain
. port_list
- A list of an
ip_port
or a port range. A port range is specified in the form ofrange
followed by twoip_port``s, ``port_low
andport_high
, which represents port numbers fromport_low
throughport_high
, inclusive.port_low
must not be larger thanport_high
. For example,range 1024 65535
represents ports from 1024 through 65535. In either case an asterisk (*
) character is not allowed as a validip_port
. size_spec
- A 64-bit unsigned integer, or the keywords
unlimited
ordefault
. Integers may take values 0 <= value <= 18446744073709551615, though certain parameters (such asmax-journal-size
) may use a more limited range within these extremes. In most cases, setting a value to 0 does not literally mean zero; it means “undefined” or “as big as possible,” depending on the context. See the explanations of particular parameters that usesize_spec
for details on how they interpret its use. Numeric values can optionally be followed by a scaling factor:K
ork
for kilobytes,M
orm
for megabytes, andG
org
for gigabytes, which scale by 1024, 1024*1024, and 1024*1024*1024 respectively.unlimited
generally means “as big as possible,” and is usually the best way to safely set a very large number.default
uses the limit that was in force when the server was started. size_or_percent
- A
size_spec
or integer value followed by%
to represent percent. The behavior is exactly the same assize_spec
, butsize_or_percent
also allows specifying a positive integer value followed by the%
sign to represent percent. yes_or_no
- Either
yes
orno
. The wordstrue
andfalse
are also accepted, as are the numbers1
and0
. dialup_option
- One of
yes
,no
,notify
,notify-passive
,refresh
, orpassive
. When used in a zone,notify-passive
,refresh
, andpassive
are restricted to secondary and stub zones.
4.1.1. Address Match Lists¶
4.1.1.1. Syntax¶
address_match_list = address_match_list_element ; ...
address_match_list_element = [ ! ] ( ip_address | ip_prefix |
key key_id | acl_name | { address_match_list } )
4.1.1.2. Definition and Usage¶
Address match lists are primarily used to determine access control for
various server operations. They are also used in the listen-on
and
sortlist
statements. The elements which constitute an address match
list can be any of the following:
- an IP address (IPv4 or IPv6)
- an IP prefix (in
/
notation) - a key ID, as defined by the
key
statement - the name of an address match list defined with the
acl
statement - a nested address match list enclosed in braces
Elements can be negated with a leading exclamation mark (!
), and the
match list names “any”, “none”, “localhost”, and “localnets” are
predefined. More information on those names can be found in the
description of the acl
statement.
The addition of the key clause made the name of this syntactic element something of a misnomer, since security keys can be used to validate access without regard to a host or network address. Nonetheless, the term “address match list” is still used throughout the documentation.
When a given IP address or prefix is compared to an address match list, the comparison takes place in approximately O(1) time. However, key comparisons require that the list of keys be traversed until a matching key is found, and therefore may be somewhat slower.
The interpretation of a match depends on whether the list is being used
for access control, defining listen-on
ports, or in a sortlist
,
and whether the element was negated.
When used as an access control list, a non-negated match allows access
and a negated match denies access. If there is no match, access is
denied. The clauses allow-notify
, allow-recursion
,
allow-recursion-on
, allow-query
, allow-query-on
,
allow-query-cache
, allow-query-cache-on
, allow-transfer
,
allow-update
, allow-update-forwarding
, blackhole
, and
keep-response-order
all use address match lists. Similarly, the
listen-on
option causes the server to refuse queries on any of
the machine’s addresses which do not match the list.
Order of insertion is significant. If more than one element in an ACL is
found to match a given IP address or prefix, preference is given to
the one that came first in the ACL definition. Because of this
first-match behavior, an element that defines a subset of another
element in the list should come before the broader element, regardless
of whether either is negated. For example, in 1.2.3/24; ! 1.2.3.13;
the 1.2.3.13 element is completely useless because the algorithm
matches any lookup for 1.2.3.13 to the 1.2.3/24 element. Using
! 1.2.3.13; 1.2.3/24
fixes that problem by blocking 1.2.3.13
via the negation, but all other 1.2.3.* hosts pass through.
4.1.2. Comment Syntax¶
The BIND 9 comment syntax allows comments to appear anywhere that whitespace may appear in a BIND configuration file. To appeal to programmers of all kinds, they can be written in the C, C++, or shell/perl style.
4.1.2.1. Syntax¶
/* This is a BIND comment as in C */
// This is a BIND comment as in C++
# This is a BIND comment as in common Unix shells
# and perl
4.1.2.2. Definition and Usage¶
Comments may appear anywhere that whitespace may appear in a BIND configuration file.
C-style comments start with the two characters /* (slash, star) and end with */ (star, slash). Because they are completely delimited with these characters, they can be used to comment only a portion of a line or to span multiple lines.
C-style comments cannot be nested. For example, the following is not valid because the entire comment ends with the first */:
/* This is the start of a comment.
This is still part of the comment.
/* This is an incorrect attempt at nesting a comment. */
This is no longer in any comment. */
C++-style comments start with the two characters // (slash, slash) and continue to the end of the physical line. They cannot be continued across multiple physical lines; to have one logical comment span multiple lines, each line must use the // pair. For example:
// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.
Shell-style (or perl-style) comments start with the
character #
(number sign) and continue to the end of the physical
line, as in C++ comments. For example:
# This is the start of a comment. The next line
# is a new comment, even though it is logically
# part of the previous comment.
Warning
The semicolon (;
) character cannot start a comment, unlike
in a zone file. The semicolon indicates the end of a
configuration statement.
4.2. Configuration File Grammar¶
A BIND 9 configuration consists of statements and comments. Statements end with a semicolon; statements and comments are the only elements that can appear without enclosing braces. Many statements contain a block of sub-statements, which are also terminated with a semicolon.
The following statements are supported:
acl
- Defines a named IP address matching list, for access control and other uses.
controls
- Declares control channels to be used by the
rndc
utility.dnssec-policy
- Describes a DNSSEC key and signing policy for zones. See dnssec-policy Grammar for details.
include
- Includes a file.
key
- Specifies key information for use in authentication and authorization using TSIG.
logging
- Specifies what information the server logs and where the log messages are sent.
masters
- Synonym for
primaries
.options
- Controls global server configuration options and sets defaults for other statements.
parental-agents
- Defines a named list of servers for inclusion in primary and secondary zones’
parental-agents
lists.primaries
- Defines a named list of servers for inclusion in stub and secondary zones’
primaries
oralso-notify
lists. (Note: this is a synonym for the original keywordmasters
, which can still be used, but is no longer the preferred terminology.)server
- Sets certain configuration options on a per-server basis.
statistics-channels
- Declares communication channels to get access to
named
statistics.tls
- Specifies configuration information for a TLS connection, including a
key-file
,cert-file
,dhparam-file
,ciphers
,protocols
,prefer-server-ciphers
, andsession-tickets
.http
- Specifies configuration information for an HTTP connection, including
endponts
,listener-clients
andstreams-per-connection
.trust-anchors
- Defines DNSSEC trust anchors: if used with the
initial-key
orinitial-ds
keyword, trust anchors are kept up-to-date using RFC 5011 trust anchor maintenance; if used withstatic-key
orstatic-ds
, keys are permanent.managed-keys
- Is identical to
trust-anchors
; this option is deprecated in favor oftrust-anchors
with theinitial-key
keyword, and may be removed in a future release.trusted-keys
- Defines permanent trusted DNSSEC keys; this option is deprecated in favor of
trust-anchors
with thestatic-key
keyword, and may be removed in a future release.view
- Defines a view.
zone
- Defines a zone.
The logging
and options
statements may only occur once per
configuration.
4.2.1. acl
Statement Grammar¶
acl <string> { <address_match_element>; ... };
4.2.2. acl
Statement Definition and Usage¶
The acl
statement assigns a symbolic name to an address match list.
It gets its name from one of the primary uses of address match lists: Access
Control Lists (ACLs).
The following ACLs are built-in:
any
- Matches all hosts.
none
- Matches no hosts.
localhost
- Matches the IPv4 and IPv6 addresses of all network interfaces on the system. When addresses are added or removed, the
localhost
ACL element is updated to reflect the changes.localnets
- Matches any host on an IPv4 or IPv6 network for which the system has an interface. When addresses are added or removed, the
localnets
ACL element is updated to reflect the changes. Some systems do not provide a way to determine the prefix lengths of local IPv6 addresses; in such cases,localnets
only matches the local IPv6 addresses, just likelocalhost
.
4.2.3. controls
Statement Grammar¶
controls {
inet ( <ipv4_address> | <ipv6_address> |
* ) [ port ( <integer> | * ) ] allow
{ <address_match_element>; ... } [
keys { <string>; ... } ] [ read-only
<boolean> ];
unix <quoted_string> perm <integer>
owner <integer> group <integer> [
keys { <string>; ... } ] [ read-only
<boolean> ];
};
4.2.4. controls
Statement Definition and Usage¶
The controls
statement declares control channels to be used by
system administrators to manage the operation of the name server. These
control channels are used by the rndc
utility to send commands to
and retrieve non-DNS results from a name server.
An inet
control channel is a TCP socket listening at the specified
ip_port
on the specified ip_addr
, which can be an IPv4 or IPv6
address. An ip_addr
of *
(asterisk) is interpreted as the IPv4
wildcard address; connections are accepted on any of the system’s
IPv4 addresses. To listen on the IPv6 wildcard address, use an
ip_addr
of ::
. If rndc
is only used on the local host,
using the loopback address (127.0.0.1
or ::1
) is recommended for
maximum security.
If no port is specified, port 953 is used. The asterisk *
cannot
be used for ip_port
.
The ability to issue commands over the control channel is restricted by
the allow
and keys
clauses. Connections to the control channel
are permitted based on the address_match_list
. This is for simple IP
address-based filtering only; any key_id
elements of the
address_match_list
are ignored.
A unix
control channel is a Unix domain socket listening at the
specified path in the file system. Access to the socket is specified by
the perm
, owner
, and group
clauses. Note that on some platforms
(SunOS and Solaris), the permissions (perm
) are applied to the parent
directory as the permissions on the socket itself are ignored.
The primary authorization mechanism of the command channel is the
key_list
, which contains a list of key_id``s. Each ``key_id
in
the key_list
is authorized to execute commands over the control
channel. See Administrative Tools for information about
configuring keys in rndc
.
If the read-only
clause is enabled, the control channel is limited
to the following set of read-only commands: nta -dump
, null
,
status
, showzone
, testgen
, and zonestatus
. By default,
read-only
is not enabled and the control channel allows read-write
access.
If no controls
statement is present, named
sets up a default
control channel listening on the loopback address 127.0.0.1 and its IPv6
counterpart, ::1. In this case, and also when the controls
statement
is present but does not have a keys
clause, named
attempts
to load the command channel key from the file /etc/rndc.key
.
To create an rndc.key
file, run rndc-confgen -a
.
To disable the command channel, use an empty controls
statement:
controls { };
.
4.2.5. include
Statement Grammar¶
include filename;
4.2.6. include
Statement Definition and Usage¶
The include
statement inserts the specified file (or files if a valid glob
expression is detected) at the point where the include
statement is
encountered. The include
statement facilitates the administration of
configuration files by permitting the reading or writing of some things but not
others. For example, the statement could include private keys that are readable
only by the name server.
4.2.7. key
Statement Grammar¶
key <string> {
algorithm <string>;
secret <string>;
};
4.2.8. key
Statement Definition and Usage¶
The key
statement defines a shared secret key for use with TSIG (see
TSIG) or the command channel (see controls Statement Definition and Usage).
The key
statement can occur at the top level of the configuration
file or inside a view
statement. Keys defined in top-level key
statements can be used in all views. Keys intended for use in a
controls
statement (see controls Statement Definition and Usage)
must be defined at the top level.
The key_id
, also known as the key name, is a domain name that uniquely
identifies the key. It can be used in a server
statement to cause
requests sent to that server to be signed with this key, or in address
match lists to verify that incoming requests have been signed with a key
matching this name, algorithm, and secret.
The algorithm_id
is a string that specifies a security/authentication
algorithm. The named
server supports hmac-md5
, hmac-sha1
,
hmac-sha224
, hmac-sha256
, hmac-sha384
, and hmac-sha512
TSIG authentication. Truncated hashes are supported by appending the
minimum number of required bits preceded by a dash, e.g.,
hmac-sha1-80
. The secret_string
is the secret to be used by the
algorithm, and is treated as a Base64-encoded string.
4.2.9. logging
Statement Grammar¶
logging {
category <string> { <string>; ... };
channel <string> {
buffered <boolean>;
file <quoted_string> [ versions ( unlimited | <integer> ) ]
[ size <size> ] [ suffix ( increment | timestamp ) ];
null;
print-category <boolean>;
print-severity <boolean>;
print-time ( iso8601 | iso8601-utc | local | <boolean> );
severity <log_severity>;
stderr;
syslog [ <syslog_facility> ];
};
};
4.2.10. logging
Statement Definition and Usage¶
The logging
statement configures a wide variety of logging options
for the name server. Its channel
phrase associates output methods,
format options, and severity levels with a name that can then be used
with the category
phrase to select how various classes of messages
are logged.
Only one logging
statement is used to define as many channels and
categories as desired. If there is no logging
statement, the
logging configuration is:
logging {
category default { default_syslog; default_debug; };
category unmatched { null; };
};
If named
is started with the -L
option, it logs to the specified
file at startup, instead of using syslog. In this case the logging
configuration is:
logging {
category default { default_logfile; default_debug; };
category unmatched { null; };
};
The logging configuration is only established when the entire
configuration file has been parsed. When the server starts up, all
logging messages regarding syntax errors in the configuration file go to
the default channels, or to standard error if the -g
option was
specified.
4.2.10.1. The channel
Phrase¶
All log output goes to one or more channels
; there is no limit to
the number of channels that can be created.
Every channel definition must include a destination clause that says
whether messages selected for the channel go to a file, go to a particular
syslog facility, go to the standard error stream, or are discarded. The definition can
optionally also limit the message severity level that is accepted
by the channel (the default is info
), and whether to include a
named
-generated time stamp, the category name, and/or the severity level
(the default is not to include any).
The null
destination clause causes all messages sent to the channel
to be discarded; in that case, other options for the channel are
meaningless.
The file
destination clause directs the channel to a disk file. It
can include additional arguments to specify how large the file is
allowed to become before it is rolled to a backup file (size
), how
many backup versions of the file are saved each time this happens
(versions
), and the format to use for naming backup versions
(suffix
).
The size
option is used to limit log file growth. If the file ever
exceeds the specified size, then named
stops writing to the file
unless it has a versions
option associated with it. If backup
versions are kept, the files are rolled as described below. If there is
no versions
option, no more data is written to the log until
some out-of-band mechanism removes or truncates the log to less than the
maximum size. The default behavior is not to limit the size of the file.
File rolling only occurs when the file exceeds the size specified with
the size
option. No backup versions are kept by default; any
existing log file is simply appended. The versions
option specifies
how many backup versions of the file should be kept. If set to
unlimited
, there is no limit.
The suffix
option can be set to either increment
or
timestamp
. If set to timestamp
, then when a log file is rolled,
it is saved with the current timestamp as a file suffix. If set to
increment
, then backup files are saved with incrementing numbers as
suffixes; older files are renamed when rolling. For example, if
versions
is set to 3 and suffix
to increment
, then when
filename.log
reaches the size specified by size
,
filename.log.1
is renamed to filename.log.2
, filename.log.0
is renamed to filename.log.1
, and filename.log
is renamed to
filename.log.0
, whereupon a new filename.log
is opened.
Here is an example using the size
, versions
, and suffix
options:
channel an_example_channel {
file "example.log" versions 3 size 20m suffix increment;
print-time yes;
print-category yes;
};
The syslog
destination clause directs the channel to the system log.
Its argument is a syslog facility as described in the syslog
man
page. Known facilities are kern
, user
, mail
, daemon
,
auth
, syslog
, lpr
, news
, uucp
, cron
,
authpriv
, ftp
, local0
, local1
, local2
, local3
,
local4
, local5
, local6
, and local7
; however, not all
facilities are supported on all operating systems. How syslog
handles messages sent to this facility is described in the
syslog.conf
man page. On a system which uses a very old
version of syslog
, which only uses two arguments to the openlog()
function, this clause is silently ignored.
The severity
clause works like syslog
’s “priorities,” except
that they can also be used when writing straight to a file rather
than using syslog
. Messages which are not at least of the severity
level given are not selected for the channel; messages of higher
severity levels are accepted.
When using syslog
, the syslog.conf
priorities
also determine what eventually passes through. For example, defining a
channel facility and severity as daemon
and debug
, but only
logging daemon.warning
via syslog.conf
, causes messages of
severity info
and notice
to be dropped. If the situation were
reversed, with named
writing messages of only warning
or higher,
then syslogd
would print all messages it received from the channel.
The stderr
destination clause directs the channel to the server’s
standard error stream. This is intended for use when the server is
running as a foreground process, as when debugging a
configuration, for example.
The server can supply extensive debugging information when it is in
debugging mode. If the server’s global debug level is greater than zero,
debugging mode is active. The global debug level is set either
by starting the named
server with the -d
flag followed by a
positive integer, or by running rndc trace
. The global debug level
can be set to zero, and debugging mode turned off, by running rndc
notrace
. All debugging messages in the server have a debug level;
higher debug levels give more detailed output. Channels that specify a
specific debug severity, for example:
channel specific_debug_level {
file "foo";
severity debug 3;
};
get debugging output of level 3 or less any time the server is in
debugging mode, regardless of the global debugging level. Channels with
dynamic
severity use the server’s global debug level to determine
what messages to print.
print-time
can be set to yes
, no
, or a time format
specifier, which may be one of local
, iso8601
, or
iso8601-utc
. If set to no
, the date and time are not
logged. If set to yes
or local
, the date and time are logged in
a human-readable format, using the local time zone. If set to
iso8601
, the local time is logged in ISO 8601 format. If set to
iso8601-utc
, the date and time are logged in ISO 8601 format,
with time zone set to UTC. The default is no
.
print-time
may be specified for a syslog
channel, but it is
usually pointless since syslog
also logs the date and time.
If print-category
is requested, then the category of the message
is logged as well. Finally, if print-severity
is on, then the
severity level of the message is logged. The print-
options may
be used in any combination, and are always printed in the following
order: time, category, severity. Here is an example where all three
print-
options are on:
28-Feb-2000 15:05:32.863 general: notice: running
If buffered
has been turned on, the output to files is not
flushed after each log entry. By default all log messages are flushed.
There are four predefined channels that are used for named
’s default
logging, as follows. If named
is started with the -L
option, then a fifth
channel, default_logfile
, is added. How they are used is described in
The category Phrase.
channel default_syslog {
// send to syslog's daemon facility
syslog daemon;
// only send priority info and higher
severity info;
};
channel default_debug {
// write to named.run in the working directory
// Note: stderr is used instead of "named.run" if
// the server is started with the '-g' option.
file "named.run";
// log at the server's current debug level
severity dynamic;
};
channel default_stderr {
// writes to stderr
stderr;
// only send priority info and higher
severity info;
};
channel null {
// toss anything sent to this channel
null;
};
channel default_logfile {
// this channel is only present if named is
// started with the -L option, whose argument
// provides the file name
file "...";
// log at the server's current debug level
severity dynamic;
};
The default_debug
channel has the special property that it only
produces output when the server’s debug level is non-zero. It normally
writes to a file called named.run
in the server’s working directory.
For security reasons, when the -u
command-line option is used, the
named.run
file is created only after named
has changed to the
new UID, and any debug output generated while named
is starting -
and still running as root - is discarded. To capture this
output, run the server with the -L
option to specify a
default logfile, or the -g
option to log to standard error which can
be redirected to a file.
Once a channel is defined, it cannot be redefined. The built-in channels cannot be altered directly, but the default logging can be modified by pointing categories at defined channels.
4.2.10.2. The category
Phrase¶
There are many categories, so desired logs can be sent anywhere
while unwanted logs are ignored. If
a list of channels is not specified for a category, log messages in that
category are sent to the default
category instead. If no
default category is specified, the following “default default” is used:
category default { default_syslog; default_debug; };
If named
is started with the -L
option, the default category
is:
category default { default_logfile; default_debug; };
As an example, let’s say a user wants to log security events to a file, but also wants to keep the default logging behavior. They would specify the following:
channel my_security_channel {
file "my_security_file";
severity info;
};
category security {
my_security_channel;
default_syslog;
default_debug;
};
To discard all messages in a category, specify the null
channel:
category xfer-out { null; };
category notify { null; };
The following are the available categories and brief descriptions of the types of log information they contain. More categories may be added in future BIND releases.
client
- Processing of client requests.
cname
- Name servers that are skipped for being a CNAME rather than A/AAAA records.
config
- Configuration file parsing and processing.
database
- Messages relating to the databases used internally by the name server to store zone and cache data.
default
- Logging options for those categories where no specific configuration has been defined.
delegation-only
- Queries that have been forced to NXDOMAIN as the result of a delegation-only zone or a
delegation-only
in a forward, hint, or stub zone declaration. dispatch
- Dispatching of incoming packets to the server modules where they are to be processed.
dnssec
- DNSSEC and TSIG protocol processing.
dnstap
- The “dnstap” DNS traffic capture system.
edns-disabled
Log queries that have been forced to use plain DNS due to timeouts. This is often due to the remote servers not being RFC 1034-compliant (not always returning FORMERR or similar to EDNS queries and other extensions to the DNS when they are not understood). In other words, this is targeted at servers that fail to respond to DNS queries that they don’t understand.
Note: the log message can also be due to packet loss. Before reporting servers for non-RFC 1034 compliance they should be re-tested to determine the nature of the non-compliance. This testing should prevent or reduce the number of false-positive reports.
Note: eventually
named
will have to stop treating such timeouts as due to RFC 1034 non-compliance and start treating it as plain packet loss. Falsely classifying packet loss as due to RFC 1034 non-compliance impacts DNSSEC validation, which requires EDNS for the DNSSEC records to be returned.general
- A catch-all for many things that still are not classified into categories.
lame-servers
- Misconfigurations in remote servers, discovered by BIND 9 when trying to query those servers during resolution.
network
- Network operations.
notify
- The NOTIFY protocol.
nsid
- NSID options received from upstream servers.
queries
A location where queries should be logged.
At startup, specifying the category
queries
also enables query logging unless thequerylog
option has been specified.The query log entry first reports a client object identifier in @0x<hexadecimal-number> format. Next, it reports the client’s IP address and port number, and the query name, class, and type. Next, it reports whether the Recursion Desired flag was set (+ if set, - if not set), whether the query was signed (S), whether EDNS was in use along with the EDNS version number (E(#)), whether TCP was used (T), whether DO (DNSSEC Ok) was set (D), whether CD (Checking Disabled) was set (C), whether a valid DNS Server COOKIE was received (V), and whether a DNS COOKIE option without a valid Server COOKIE was present (K). After this, the destination address the query was sent to is reported. Finally, if any CLIENT-SUBNET option was present in the client query, it is included in square brackets in the format [ECS address/source/scope].
client 127.0.0.1#62536 (www.example.com):
query: www.example.com IN AAAA +SE
client ::1#62537 (www.example.net):
query: www.example.net IN AAAA -SE
The first part of this log message, showing the client address/port number and query name, is repeated in all subsequent log messages related to the same query.
query-errors
- Information about queries that resulted in some failure.
rate-limit
Start, periodic, and final notices of the rate limiting of a stream of responses that are logged at
info
severity in this category. These messages include a hash value of the domain name of the response and the name itself, except when there is insufficient memory to record the name for the final notice. The final notice is normally delayed until about one minute after rate limiting stops. A lack of memory can hurry the final notice, which is indicated by an initial asterisk (*). Various internal events are logged at debug level 1 and higher.Rate limiting of individual requests is logged in the
query-errors
category.resolver
- DNS resolution, such as the recursive lookups performed on behalf of clients by a caching name server.
rpz
- Information about errors in response policy zone files, rewritten responses, and, at the highest
debug
levels, mere rewriting attempts. rpz-passthru
- Information about RPZ PASSTHRU policy activity. This category allows pre-approved policy activity to be logged into a dedicated channel.
security
- Approval and denial of requests.
serve-stale
- Indication of whether a stale answer is used following a resolver failure.
spill
- Queries that have been terminated, either by dropping or responding with SERVFAIL, as a result of a fetchlimit quota being exceeded.
sslkeylog
- TLS pre-master secrets (for debugging purposes).
trust-anchor-telemetry
- Trust-anchor-telemetry requests received by
named
. unmatched
- Messages that
named
was unable to determine the class of, or for which there was no matchingview
. A one-line summary is also logged to theclient
category. This category is best sent to a file or stderr; by default it is sent to thenull
channel. update
- Dynamic updates.
update-security
- Approval and denial of update requests.
xfer-in
- Zone transfers the server is receiving.
xfer-out
- Zone transfers the server is sending.
zoneload
- Loading of zones and creation of automatic empty zones.
4.2.10.3. The query-errors
Category¶
The query-errors
category is used to indicate why and how specific queries
resulted in responses which indicate an error. Normally, these messages are
logged at debug
logging levels; note, however, that if query logging is
active, some are logged at info
. The logging levels are described below:
At debug
level 1 or higher - or at info
when query logging is
active - each response with the rcode of SERVFAIL is logged as follows:
client 127.0.0.1#61502: query failed (SERVFAIL) for www.example.com/IN/AAAA at query.c:3880
This means an error resulting in SERVFAIL was detected at line 3880 of source
file query.c
. Log messages of this level are particularly helpful in identifying
the cause of SERVFAIL for an authoritative server.
At debug
level 2 or higher, detailed context information about recursive
resolutions that resulted in SERVFAIL is logged. The log message looks
like this:
fetch completed at resolver.c:2970 for www.example.com/A
in 10.000183: timed out/success [domain:example.com,
referral:2,restart:7,qrysent:8,timeout:5,lame:0,quota:0,neterr:0,
badresp:1,adberr:0,findfail:0,valfail:0]
The first part before the colon shows that a recursive resolution for
AAAA records of www.example.com completed in 10.000183 seconds, and the
final result that led to the SERVFAIL was determined at line 2970 of
source file resolver.c
.
The next part shows the detected final result and the latest result of DNSSEC validation. The latter is always “success” when no validation attempt was made. In this example, this query probably resulted in SERVFAIL because all name servers are down or unreachable, leading to a timeout in 10 seconds. DNSSEC validation was probably not attempted.
The last part, enclosed in square brackets, shows statistics collected for this
particular resolution attempt. The domain
field shows the deepest zone that
the resolver reached; it is the zone where the error was finally detected. The
meaning of the other fields is summarized in the following list.
referral
- The number of referrals the resolver received throughout the resolution process. In the above
example.com
there are two. restart
- The number of cycles that the resolver tried remote servers at the
domain
zone. In each cycle, the resolver sends one query (possibly resending it, depending on the response) to each known name server of thedomain
zone. qrysent
- The number of queries the resolver sent at the
domain
zone. timeout
- The number of timeouts the resolver received since the last response.
lame
- The number of lame servers the resolver detected at the
domain
zone. A server is detected to be lame either by an invalid response or as a result of lookup in BIND 9’s address database (ADB), where lame servers are cached. quota
- The number of times the resolver was unable to send a query because it had exceeded the permissible fetch quota for a server.
neterr
- The number of erroneous results that the resolver encountered in sending queries at the
domain
zone. One common case is when the remote server is unreachable and the resolver receives an “ICMP unreachable” error message. badresp
- The number of unexpected responses (other than
lame
) to queries sent by the resolver at thedomain
zone. adberr
- Failures in finding remote server addresses of the``domain`` zone in the ADB. One common case of this is that the remote server’s name does not have any address records.
findfail
- Failures to resolve remote server addresses. This is a total number of failures throughout the resolution process.
valfail
- Failures of DNSSEC validation. Validation failures are counted throughout the resolution process (not limited to the
domain
zone), but should only happen indomain
.
At debug
level 3 or higher, the same messages as those at
debug
level 1 are logged for errors other than
SERVFAIL. Note that negative responses such as NXDOMAIN are not errors, and are
not logged at this debug level.
At debug
level 4 or higher, the detailed context information logged at
debug
level 2 is logged for errors other than SERVFAIL and for negative
responses such as NXDOMAIN.
4.2.11. parental-agents
Statement Grammar¶
parental-agents <string> [ port <integer> ] [
dscp <integer> ] { ( <remote-servers> |
<ipv4_address> [ port <integer> ] |
<ipv6_address> [ port <integer> ] ) [ key
<string> ] [ tls <string> ]; ... };
4.2.12. parental-agents
Statement Definition and Usage¶
parental-agents
lists allow for a common set of parental agents to be easily
used by multiple primary and secondary zones in their parental-agents
lists.
A parental agent is the entity that the zone has a relationship with to
change its delegation information (defined in RFC 7344).
4.2.13. primaries
Statement Grammar¶
primaries <string> [ port <integer> ] [ dscp
<integer> ] { ( <remote-servers> |
<ipv4_address> [ port <integer> ] |
<ipv6_address> [ port <integer> ] ) [ key
<string> ] [ tls <string> ]; ... };
4.2.14. primaries
Statement Definition and Usage¶
primaries
lists allow for a common set of primary servers to be easily
used by multiple stub and secondary zones in their primaries
or
also-notify
lists. (Note: primaries
is a synonym for the original
keyword masters
, which can still be used, but is no longer the
preferred terminology.)
To force the zone transfer requests to be sent over TLS, use tls
keyword,
e.g. primaries { 192.0.2.1 tls tls-configuration-name; };
,
where tls-configuration-name
refers to a previously defined
tls statement.
Warning
Please note that TLS connections to primaries are currently not authenticated. This mode provides protection from passive observers but does not protect from man-in-the-middle attacks on zone transfers.
4.2.15. options
Statement Grammar¶
This is the grammar of the options
statement in the named.conf
file:
options {
allow-new-zones <boolean>;
allow-notify { <address_match_element>; ... };
allow-query { <address_match_element>; ... };
allow-query-cache { <address_match_element>; ... };
allow-query-cache-on { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
allow-recursion { <address_match_element>; ... };
allow-recursion-on { <address_match_element>; ... };
allow-transfer [ port <integer> ] [ transport <string> ] {
<address_match_element>; ... };
allow-update { <address_match_element>; ... };
allow-update-forwarding { <address_match_element>; ... };
also-notify [ port <integer> ] [ dscp <integer> ] { (
<remote-servers> | <ipv4_address> [ port <integer> ] |
<ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls
<string> ]; ... };
alt-transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * )
] [ dscp <integer> ];
alt-transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> |
* ) ] [ dscp <integer> ];
answer-cookie <boolean>;
attach-cache <string>;
auth-nxdomain <boolean>;
auto-dnssec ( allow | maintain | off );
automatic-interface-scan <boolean>;
avoid-v4-udp-ports { <portrange>; ... };
avoid-v6-udp-ports { <portrange>; ... };
bindkeys-file <quoted_string>;
blackhole { <address_match_element>; ... };
catalog-zones { zone <string> [ default-primaries [ port <integer>
] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [
port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key
<string> ] [ tls <string> ]; ... } ] [ zone-directory
<quoted_string> ] [ in-memory <boolean> ] [ min-update-interval
<duration> ]; ... };
check-dup-records ( fail | warn | ignore );
check-integrity <boolean>;
check-mx ( fail | warn | ignore );
check-mx-cname ( fail | warn | ignore );
check-names ( primary | master |
secondary | slave | response ) (
fail | warn | ignore );
check-sibling <boolean>;
check-spf ( warn | ignore );
check-srv-cname ( fail | warn | ignore );
check-wildcard <boolean>;
clients-per-query <integer>;
cookie-algorithm ( aes | siphash24 );
cookie-secret <string>;
coresize ( default | unlimited | <sizeval> );
datasize ( default | unlimited | <sizeval> );
deny-answer-addresses { <address_match_element>; ... } [
except-from { <string>; ... } ];
deny-answer-aliases { <string>; ... } [ except-from { <string>; ...
} ];
dialup ( notify | notify-passive | passive | refresh | <boolean> );
directory <quoted_string>;
disable-algorithms <string> { <string>;
... };
disable-ds-digests <string> { <string>;
... };
disable-empty-zone <string>;
dns64 <netprefix> {
break-dnssec <boolean>;
clients { <address_match_element>; ... };
exclude { <address_match_element>; ... };
mapped { <address_match_element>; ... };
recursive-only <boolean>;
suffix <ipv6_address>;
};
dns64-contact <string>;
dns64-server <string>;
dnskey-sig-validity <integer>;
dnsrps-enable <boolean>;
dnsrps-options { <unspecified-text> };
dnssec-accept-expired <boolean>;
dnssec-dnskey-kskonly <boolean>;
dnssec-loadkeys-interval <integer>;
dnssec-must-be-secure <string> <boolean>;
dnssec-policy <string>;
dnssec-secure-to-insecure <boolean>;
dnssec-update-mode ( maintain | no-resign );
dnssec-validation ( yes | no | auto );
dnstap { ( all | auth | client | forwarder | resolver | update ) [
( query | response ) ]; ... };
dnstap-identity ( <quoted_string> | none | hostname );
dnstap-output ( file | unix ) <quoted_string> [ size ( unlimited |
<size> ) ] [ versions ( unlimited | <integer> ) ] [ suffix (
increment | timestamp ) ];
dnstap-version ( <quoted_string> | none );
dscp <integer>;
dual-stack-servers [ port <integer> ] { ( <quoted_string> [ port
<integer> ] [ dscp <integer> ] | <ipv4_address> [ port
<integer> ] [ dscp <integer> ] | <ipv6_address> [ port
<integer> ] [ dscp <integer> ] ); ... };
dump-file <quoted_string>;
edns-udp-size <integer>;
empty-contact <string>;
empty-server <string>;
empty-zones-enable <boolean>;
fetch-quota-params <integer> <fixedpoint> <fixedpoint> <fixedpoint>;
fetches-per-server <integer> [ ( drop | fail ) ];
fetches-per-zone <integer> [ ( drop | fail ) ];
files ( default | unlimited | <sizeval> );
flush-zones-on-shutdown <boolean>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address>
| <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
fstrm-set-buffer-hint <integer>;
fstrm-set-flush-timeout <integer>;
fstrm-set-input-queue-size <integer>;
fstrm-set-output-notify-threshold <integer>;
fstrm-set-output-queue-model ( mpsc | spsc );
fstrm-set-output-queue-size <integer>;
fstrm-set-reopen-interval <duration>;
geoip-directory ( <quoted_string> | none );
glue-cache <boolean>; // deprecated
heartbeat-interval <integer>;
hostname ( <quoted_string> | none );
http-listener-clients <integer>;
http-port <integer>;
http-streams-per-connection <integer>;
https-port <integer>;
interface-interval <duration>;
ipv4only-contact <string>;
ipv4only-enable <boolean>;
ipv4only-server <string>;
ixfr-from-differences ( primary | master | secondary | slave |
<boolean> );
keep-response-order { <address_match_element>; ... };
key-directory <quoted_string>;
lame-ttl <duration>;
listen-on [ port <integer> ] [ dscp
<integer> ] [ tls <string> ] [ http
<string> ] {
<address_match_element>; ... };
listen-on-v6 [ port <integer> ] [ dscp
<integer> ] [ tls <string> ] [ http
<string> ] {
<address_match_element>; ... };
lmdb-mapsize <sizeval>;
lock-file ( <quoted_string> | none );
managed-keys-directory <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
match-mapped-addresses <boolean>;
max-cache-size ( default | unlimited | <sizeval> | <percentage> );
max-cache-ttl <duration>;
max-clients-per-query <integer>;
max-ixfr-ratio ( unlimited | <percentage> );
max-journal-size ( default | unlimited | <sizeval> );
max-ncache-ttl <duration>;
max-records <integer>;
max-recursion-depth <integer>;
max-recursion-queries <integer>;
max-refresh-time <integer>;
max-retry-time <integer>;
max-rsa-exponent-size <integer>;
max-stale-ttl <duration>;
max-transfer-idle-in <integer>;
max-transfer-idle-out <integer>;
max-transfer-time-in <integer>;
max-transfer-time-out <integer>;
max-udp-size <integer>;
max-zone-ttl ( unlimited | <duration> );
memstatistics <boolean>;
memstatistics-file <quoted_string>;
message-compression <boolean>;
min-cache-ttl <duration>;
min-ncache-ttl <duration>;
min-refresh-time <integer>;
min-retry-time <integer>;
minimal-any <boolean>;
minimal-responses ( no-auth | no-auth-recursive | <boolean> );
multi-master <boolean>;
new-zones-directory <quoted_string>;
no-case-compress { <address_match_element>; ... };
nocookie-udp-size <integer>;
notify ( explicit | master-only | primary-only | <boolean> );
notify-delay <integer>;
notify-rate <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [
dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ]
[ dscp <integer> ];
notify-to-soa <boolean>;
nta-lifetime <duration>;
nta-recheck <duration>;
nxdomain-redirect <string>;
parental-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [
dscp <integer> ];
parental-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * )
] [ dscp <integer> ];
pid-file ( <quoted_string> | none );
port <integer>;
preferred-glue <string>;
prefetch <integer> [ <integer> ];
provide-ixfr <boolean>;
qname-minimization ( strict | relaxed | disabled | off );
query-source ( ( [ address ] ( <ipv4_address> | * ) [ port (
<integer> | * ) ] ) | ( [ [ address ] ( <ipv4_address> | * ) ]
port ( <integer> | * ) ) ) [ dscp <integer> ];
query-source-v6 ( ( [ address ] ( <ipv6_address> | * ) [ port (
<integer> | * ) ] ) | ( [ [ address ] ( <ipv6_address> | * ) ]
port ( <integer> | * ) ) ) [ dscp <integer> ];
querylog <boolean>;
random-device ( <quoted_string> | none );
rate-limit {
all-per-second <integer>;
errors-per-second <integer>;
exempt-clients { <address_match_element>; ... };
ipv4-prefix-length <integer>;
ipv6-prefix-length <integer>;
log-only <boolean>;
max-table-size <integer>;
min-table-size <integer>;
nodata-per-second <integer>;
nxdomains-per-second <integer>;
qps-scale <integer>;
referrals-per-second <integer>;
responses-per-second <integer>;
slip <integer>;
window <integer>;
};
recursing-file <quoted_string>;
recursion <boolean>;
recursive-clients <integer>;
request-expire <boolean>;
request-ixfr <boolean>;
request-nsid <boolean>;
require-server-cookie <boolean>;
reserved-sockets <integer>; // deprecated
resolver-nonbackoff-tries <integer>;
resolver-query-timeout <integer>;
resolver-retry-interval <integer>;
response-padding { <address_match_element>; ... } block-size
<integer>;
response-policy { zone <string> [ add-soa <boolean> ] [ log
<boolean> ] [ max-policy-ttl <duration> ] [ min-update-interval
<duration> ] [ policy ( cname | disabled | drop | given | no-op
| nodata | nxdomain | passthru | tcp-only <quoted_string> ) ] [
recursive-only <boolean> ] [ nsip-enable <boolean> ] [
nsdname-enable <boolean> ]; ... } [ add-soa <boolean> ] [
break-dnssec <boolean> ] [ max-policy-ttl <duration> ] [
min-update-interval <duration> ] [ min-ns-dots <integer> ] [
nsip-wait-recurse <boolean> ] [ nsdname-wait-recurse <boolean>
] [ qname-wait-recurse <boolean> ] [ recursive-only <boolean> ]
[ nsip-enable <boolean> ] [ nsdname-enable <boolean> ] [
dnsrps-enable <boolean> ] [ dnsrps-options { <unspecified-text>
} ];
root-delegation-only [ exclude { <string>; ... } ];
root-key-sentinel <boolean>;
rrset-order { [ class <string> ] [ type <string> ] [ name
<quoted_string> ] <string> <string>; ... };
secroots-file <quoted_string>;
send-cookie <boolean>;
serial-query-rate <integer>;
serial-update-method ( date | increment | unixtime );
server-id ( <quoted_string> | none | hostname );
servfail-ttl <duration>;
session-keyalg <string>;
session-keyfile ( <quoted_string> | none );
session-keyname <string>;
sig-signing-nodes <integer>;
sig-signing-signatures <integer>;
sig-signing-type <integer>;
sig-validity-interval <integer> [ <integer> ];
sortlist { <address_match_element>; ... };
stacksize ( default | unlimited | <sizeval> );
stale-answer-client-timeout ( disabled | off | <integer> );
stale-answer-enable <boolean>;
stale-answer-ttl <duration>;
stale-cache-enable <boolean>;
stale-refresh-time <duration>;
startup-notify-rate <integer>;
statistics-file <quoted_string>;
synth-from-dnssec <boolean>;
tcp-advertised-timeout <integer>;
tcp-clients <integer>;
tcp-idle-timeout <integer>;
tcp-initial-timeout <integer>;
tcp-keepalive-timeout <integer>;
tcp-listen-queue <integer>;
tcp-receive-buffer <integer>;
tcp-send-buffer <integer>;
tkey-dhkey <quoted_string> <integer>;
tkey-domain <quoted_string>;
tkey-gssapi-credential <quoted_string>;
tkey-gssapi-keytab <quoted_string>;
tls-port <integer>;
transfer-format ( many-answers | one-answer );
transfer-message-size <integer>;
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [
dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * )
] [ dscp <integer> ];
transfers-in <integer>;
transfers-out <integer>;
transfers-per-ns <integer>;
trust-anchor-telemetry <boolean>; // experimental
try-tcp-refresh <boolean>;
udp-receive-buffer <integer>;
udp-send-buffer <integer>;
update-check-ksk <boolean>;
use-alt-transfer-source <boolean>;
use-v4-udp-ports { <portrange>; ... };
use-v6-udp-ports { <portrange>; ... };
v6-bias <integer>;
validate-except { <string>; ... };
version ( <quoted_string> | none );
zero-no-soa-ttl <boolean>;
zero-no-soa-ttl-cache <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
4.2.16. options
Statement Definition and Usage¶
The options
statement sets up global options to be used by BIND.
This statement may appear only once in a configuration file. If there is
no options
statement, an options block with each option set to its
default is used.
attach-cache
This option allows multiple views to share a single cache database. Each view has its own cache database by default, but if multiple views have the same operational policy for name resolution and caching, those views can share a single cache to save memory, and possibly improve resolution efficiency, by using this option.
The
attach-cache
option may also be specified inview
statements, in which case it overrides the globalattach-cache
option.The
cache_name
specifies the cache to be shared. When thenamed
server configures views which are supposed to share a cache, it creates a cache with the specified name for the first view of these sharing views. The rest of the views simply refer to the already-created cache.One common configuration to share a cache is to allow all views to share a single cache. This can be done by specifying
attach-cache
as a global option with an arbitrary name.Another possible operation is to allow a subset of all views to share a cache while the others retain their own caches. For example, if there are three views A, B, and C, and only A and B should share a cache, specify the
attach-cache
option as a view of A (or B)’s option, referring to the other view name:view "A" { // this view has its own cache ... }; view "B" { // this view refers to A's cache attach-cache "A"; }; view "C" { // this view has its own cache ... };
Views that share a cache must have the same policy on configurable parameters that may affect caching. The current implementation requires the following configurable options be consistent among these views:
check-names
,dnssec-accept-expired
,dnssec-validation
,max-cache-ttl
,max-ncache-ttl
,max-stale-ttl
,max-cache-size
,min-cache-ttl
,min-ncache-ttl
, andzero-no-soa-ttl
.Note that there may be other parameters that may cause confusion if they are inconsistent for different views that share a single cache. For example, if these views define different sets of forwarders that can return different answers for the same question, sharing the answer does not make sense or could even be harmful. It is the administrator’s responsibility to ensure that configuration differences in different views do not cause disruption with a shared cache.
directory
This sets the working directory of the server. Any non-absolute pathnames in the configuration file are taken as relative to this directory. The default location for most server output files (e.g.,
named.run
) is this directory. If a directory is not specified, the working directory defaults to"."
, the directory from which the server was started. The directory specified should be an absolute path, and must be writable by the effective user ID of thenamed
process.The option takes effect only at the time that the configuration option is parsed; if other files are being included before or after specifying the new
directory
, thedirectory
option must be listed before any other directive (likeinclude
) that can work with relative files. The safest way to include files is to use absolute file names.dnstap
dnstap
is a fast, flexible method for capturing and logging DNS traffic. Developed by Robert Edmonds at Farsight Security, Inc., and supported by multiple DNS implementations,dnstap
useslibfstrm
(a lightweight high-speed framing library; see https://github.com/farsightsec/fstrm) to send event payloads which are encoded using Protocol Buffers (libprotobuf-c
, a mechanism for serializing structured data developed by Google, Inc.; see https://developers.google.com/protocol-buffers/).To enable
dnstap
at compile time, thefstrm
andprotobuf-c
libraries must be available, and BIND must be configured with--enable-dnstap
.The
dnstap
option is a bracketed list of message types to be logged. These may be set differently for each view. Supported types areclient
,auth
,resolver
,forwarder
, andupdate
. Specifying typeall
causes alldnstap
messages to be logged, regardless of type.Each type may take an additional argument to indicate whether to log
query
messages orresponse
messages; if not specified, both queries and responses are logged.Example: To log all authoritative queries and responses, recursive client responses, and upstream queries sent by the resolver, use:
dnstap { auth; client response; resolver query; };
Logged
dnstap
messages can be parsed using thednstap-read
utility (see dnstap-read - print dnstap data in human-readable form for details).For more information on
dnstap
, see http://dnstap.info.The fstrm library has a number of tunables that are exposed in
named.conf
, and can be modified if necessary to improve performance or prevent loss of data. These are:fstrm-set-buffer-hint
: The threshold number of bytes to accumulate in the output buffer before forcing a buffer flush. The minimum is 1024, the maximum is 65536, and the default is 8192.fstrm-set-flush-timeout
: The number of seconds to allow unflushed data to remain in the output buffer. The minimum is 1 second, the maximum is 600 seconds (10 minutes), and the default is 1 second.fstrm-set-output-notify-threshold
: The number of outstanding queue entries to allow on an input queue before waking the I/O thread. The minimum is 1 and the default is 32.fstrm-set-output-queue-model
: The queuing semantics to use for queue objects. The default ismpsc
(multiple producer, single consumer); the other option isspsc
(single producer, single consumer).fstrm-set-input-queue-size
: The number of queue entries to allocate for each input queue. This value must be a power of 2. The minimum is 2, the maximum is 16384, and the default is 512.fstrm-set-output-queue-size
: The number of queue entries to allocate for each output queue. The minimum is 2, the maximum is system-dependent and based onIOV_MAX
, and the default is 64.fstrm-set-reopen-interval
: The number of seconds to wait between attempts to reopen a closed output stream. The minimum is 1 second, the maximum is 600 seconds (10 minutes), and the default is 5 seconds. For convenience, TTL-style time-unit suffixes may be used to specify the value.
Note that all of the above minimum, maximum, and default values are set by the
libfstrm
library, and may be subject to change in future versions of the library. See thelibfstrm
documentation for more information.dnstap-output
This configures the path to which the
dnstap
frame stream is sent ifdnstap
is enabled at compile time and active.The first argument is either
file
orunix
, indicating whether the destination is a file or a Unix domain socket. The second argument is the path of the file or socket. (Note: when using a socket,dnstap
messages are only sent if another process such asfstrm_capture
(provided withlibfstrm
) is listening on the socket.)If the first argument is
file
, then up to three additional options can be added:size
indicates the size to which adnstap
log file can grow before being rolled to a new file;versions
specifies the number of rolled log files to retain; andsuffix
indicates whether to retain rolled log files with an incrementing counter as the suffix (increment
) or with the current timestamp (timestamp
). These are similar to thesize
,versions
, andsuffix
options in alogging
channel. The default is to allowdnstap
log files to grow to any size without rolling.dnstap-output
can only be set globally inoptions
. Currently, it can only be set once whilenamed
is running; once set, it cannot be changed byrndc reload
orrndc reconfig
.dnstap-identity
- This specifies an
identity
string to send indnstap
messages. If set tohostname
, which is the default, the server’s hostname is sent. If set tonone
, no identity string is sent. dnstap-version
- This specifies a
version
string to send indnstap
messages. The default is the version number of the BIND release. If set tonone
, no version string is sent. geoip-directory
- When
named
is compiled using the MaxMind GeoIP2 geolocation API, this specifies the directory containing GeoIP database files. By default, the option is set based on the prefix used to build thelibmaxminddb
module; for example, if the library is installed in/usr/local/lib
, then the defaultgeoip-directory
is/usr/local/share/GeoIP
. See acl Statement Definition and Usage for details aboutgeoip
ACLs. key-directory
- This is the directory where the public and private DNSSEC key files should be
found when performing a dynamic update of secure zones, if different
than the current working directory. (Note that this option has no
effect on the paths for files containing non-DNSSEC keys such as
bind.keys
,rndc.key
, orsession.key
.) lmdb-mapsize
When
named
is built with liblmdb, this option sets a maximum size for the memory map of the new-zone database (NZD) in LMDB database format. This database is used to store configuration information for zones added usingrndc addzone
. Note that this is not the NZD database file size, but the largest size that the database may grow to.Because the database file is memory-mapped, its size is limited by the address space of the
named
process. The default of 32 megabytes was chosen to be usable with 32-bitnamed
builds. The largest permitted value is 1 terabyte. Given typical zone configurations without elaborate ACLs, a 32 MB NZD file ought to be able to hold configurations of about 100,000 zones.managed-keys-directory
This specifies the directory in which to store the files that track managed DNSSEC keys (i.e., those configured using the
initial-key
orinitial-ds
keywords in atrust-anchors
statement). By default, this is the working directory. The directory must be writable by the effective user ID of thenamed
process.If
named
is not configured to use views, managed keys for the server are tracked in a single file calledmanaged-keys.bind
. Otherwise, managed keys are tracked in separate files, one file per view; each file name is the view name (or, if it contains characters that are incompatible with use as a file name, the SHA256 hash of the view name), followed by the extension.mkeys
.(Note: in earlier releases, file names for views always used the SHA256 hash of the view name. To ensure compatibility after upgrading, if a file using the old name format is found to exist, it is used instead of the new format.)
max-ixfr-ratio
This sets the size threshold (expressed as a percentage of the size of the full zone) beyond which
named
chooses to use an AXFR response rather than IXFR when answering zone transfer requests. See Incremental Zone Transfers (IXFR).The minimum value is
1%
. The keywordunlimited
disables ratio checking and allows IXFRs of any size. The default is100%
.new-zones-directory
- This specifies the directory in which to store the configuration
parameters for zones added via
rndc addzone
. By default, this is the working directory. If set to a relative path, it is relative to the working directory. The directory must be writable by the effective user ID of thenamed
process. qname-minimization
- This option controls QNAME minimization behavior in the BIND
resolver. When set to
strict
, BIND follows the QNAME minimization algorithm to the letter, as specified in RFC 7816. Setting this option torelaxed
causes BIND to fall back to normal (non-minimized) query mode when it receives either NXDOMAIN or other unexpected responses (e.g., SERVFAIL, improper zone cut, REFUSED) to a minimized query.disabled
disables QNAME minimization completely. The current default isrelaxed
, but it may be changed tostrict
in a future release. tkey-gssapi-keytab
- This is the KRB5 keytab file to use for GSS-TSIG updates. If this option is set and tkey-gssapi-credential is not set, updates are allowed with any key matching a principal in the specified keytab.
tkey-gssapi-credential
- This is the security credential with which the server should authenticate
keys requested by the GSS-TSIG protocol. Currently only Kerberos 5
authentication is available; the credential is a Kerberos
principal which the server can acquire through the default system key
file, normally
/etc/krb5.keytab
. The location of the keytab file can be overridden using thetkey-gssapi-keytab
option. Normally this principal is of the formDNS/server.domain
. To use GSS-TSIG,tkey-domain
must also be set if a specific keytab is not set withtkey-gssapi-keytab
. tkey-domain
- This domain is appended to the names of all shared keys generated with
TKEY
. When a client requests aTKEY
exchange, it may or may not specify the desired name for the key. If present, the name of the shared key isclient-specified part
+tkey-domain
. Otherwise, the name of the shared key israndom hex digits
+tkey-domain
. In most cases, thedomainname
should be the server’s domain name, or an otherwise nonexistent subdomain like_tkey.domainname
. If using GSS-TSIG, this variable must be defined, unless a specific keytab is specified usingtkey-gssapi-keytab
. tkey-dhkey
- This is the Diffie-Hellman key used by the server to generate shared keys
with clients using the Diffie-Hellman mode of
TKEY
. The server must be able to load the public and private keys from files in the working directory. In most cases, thekey_name
should be the server’s host name. dump-file
- This is the pathname of the file the server dumps the database to, when
instructed to do so with
rndc dumpdb
. If not specified, the default isnamed_dump.db
. memstatistics-file
- This is the pathname of the file the server writes memory usage statistics to
on exit. If not specified, the default is
named.memstats
. lock-file
This is the pathname of a file on which
named
attempts to acquire a file lock when starting for the first time; if unsuccessful, the server terminates, under the assumption that another server is already running. If not specified, the default isnone
.Specifying
lock-file none
disables the use of a lock file.lock-file
is ignored ifnamed
was run using the-X
option, which overrides it. Changes tolock-file
are ignored ifnamed
is being reloaded or reconfigured; it is only effective when the server is first started.pid-file
- This is the pathname of the file the server writes its process ID in. If not
specified, the default is
/named.pid
. The PID file is used by programs that send signals to the running name server. Specifyingpid-file none
disables the use of a PID file; no file is written and any existing one is removed. Note thatnone
is a keyword, not a filename, and therefore is not enclosed in double quotes. recursing-file
- This is the pathname of the file where the server dumps the queries that are
currently recursing, when instructed to do so with
rndc recursing
. If not specified, the default isnamed.recursing
. statistics-file
- This is the pathname of the file the server appends statistics to, when
instructed to do so using
rndc stats
. If not specified, the default isnamed.stats
in the server’s current directory. The format of the file is described in The Statistics File. bindkeys-file
- This is the pathname of a file to override the built-in trusted keys provided
by
named
. See the discussion ofdnssec-validation
for details. If not specified, the default is/etc/bind.keys
. secroots-file
- This is the pathname of the file the server dumps security roots to, when
instructed to do so with
rndc secroots
. If not specified, the default isnamed.secroots
. session-keyfile
- This is the pathname of the file into which to write a TSIG session key
generated by
named
for use bynsupdate -l
. If not specified, the default is/session.key
. (See Dynamic Update Policies, and in particular the discussion of theupdate-policy
statement’slocal
option, for more information about this feature.) session-keyname
- This is the key name to use for the TSIG session key. If not specified, the
default is
local-ddns
. session-keyalg
- This is the algorithm to use for the TSIG session key. Valid values are hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, hmac-sha512, and hmac-md5. If not specified, the default is hmac-sha256.
port
- This is the UDP/TCP port number the server uses to receive and send DNS protocol traffic. The default is 53. This option is mainly intended for server testing; a server using a port other than 53 is not able to communicate with the global DNS.
tls-port
- This is the TCP port number the server uses to receive and send DNS-over-TLS protocol traffic. The default is 853.
https-port
- This is the TCP port number the server uses to receive and send DNS-over-HTTPS protocol traffic. The default is 443.
http-port
- This is the TCP port number the server uses to receive and send unencrypted DNS traffic via HTTP (a configuration that may be useful when encryption is handled by third-party software or by a reverse proxy).
http-listener-clients
- This sets the hard quota on the number of active concurrent connections on a per-listener basis. The default value is 300; setting it to 0 removes the quota.
http-streams-per-connection
- This sets the hard limit on the number of active concurrent HTTP/2 streams on a per-connection basis. The default value is 100; setting it to 0 removes the limit. Once the limit is exceeded, the server finishes the HTTP session.
dscp
- This is the global Differentiated Services Code Point (DSCP) value to classify outgoing DNS traffic, on operating systems that support DSCP. Valid values are 0 through 63. It is not configured by default.
random-device
This specifies a source of entropy to be used by the server; it is a device or file from which to read entropy. If it is a file, operations requiring entropy will fail when the file has been exhausted.
Entropy is needed for cryptographic operations such as TKEY transactions, dynamic update of signed zones, and generation of TSIG session keys. It is also used for seeding and stirring the pseudo-random number generator which is used for less critical functions requiring randomness, such as generation of DNS message transaction IDs.
If
random-device
is not specified, or if it is set tonone
, entropy is read from the random number generation function supplied by the cryptographic library with which BIND was linked (i.e. OpenSSL or a PKCS#11 provider).The
random-device
option takes effect during the initial configuration load at server startup time and is ignored on subsequent reloads.preferred-glue
- If specified, the listed type (A or AAAA) is emitted before other glue in the additional section of a query response. The default is to prefer A records when responding to queries that arrived via IPv4 and AAAA when responding to queries that arrived via IPv6.
root-delegation-only
This turns on enforcement of delegation-only in TLDs (top-level domains) and root zones with an optional exclude list.
DS queries are expected to be made to and be answered by delegation-only zones. Such queries and responses are treated as an exception to delegation-only processing and are not converted to NXDOMAIN responses, provided a CNAME is not discovered at the query name.
If a delegation-only zone server also serves a child zone, it is not always possible to determine whether an answer comes from the delegation-only zone or the child zone. SOA NS and DNSKEY records are apex-only records and a matching response that contains these records or DS is treated as coming from a child zone. RRSIG records are also examined to see whether they are signed by a child zone, and the authority section is examined to see if there is evidence that the answer is from the child zone. Answers that are determined to be from a child zone are not converted to NXDOMAIN responses. Despite all these checks, there is still a possibility of false negatives when a child zone is being served.
Similarly, false positives can arise from empty nodes (no records at the name) in the delegation-only zone when the query type is not
ANY
.Note that some TLDs are not delegation-only; e.g., “DE”, “LV”, “US”, and “MUSEUM”. This list is not exhaustive.
options { root-delegation-only exclude { "de"; "lv"; "us"; "museum"; }; };
disable-algorithms
This disables the specified DNSSEC algorithms at and below the specified name. Multiple
disable-algorithms
statements are allowed. Only the best-matchdisable-algorithms
clause is used to determine the algorithms.If all supported algorithms are disabled, the zones covered by the
disable-algorithms
setting are treated as insecure.Configured trust anchors in
trust-anchors
(ormanaged-keys
ortrusted-keys
) that match a disabled algorithm are ignored and treated as if they were not configured.disable-ds-digests
This disables the specified DS digest types at and below the specified name. Multiple
disable-ds-digests
statements are allowed. Only the best-matchdisable-ds-digests
clause is used to determine the digest types.If all supported digest types are disabled, the zones covered by
disable-ds-digests
are treated as insecure.dnssec-must-be-secure
- This specifies hierarchies which must be or may not be secure (signed and
validated). If
yes
, thennamed
only accepts answers if they are secure. Ifno
, then normal DNSSEC validation applies, allowing insecure answers to be accepted. The specified domain must be defined as a trust anchor, for instance in atrust-anchors
statement, ordnssec-validation auto
must be active. dns64
This directive instructs
named
to return mapped IPv4 addresses to AAAA queries when there are no AAAA records. It is intended to be used in conjunction with a NAT64. Eachdns64
defines one DNS64 prefix. Multiple DNS64 prefixes can be defined.Compatible IPv6 prefixes have lengths of 32, 40, 48, 56, 64, and 96, per RFC 6052. Bits 64..71 inclusive must be zero, with the most significant bit of the prefix in position 0.
In addition, a reverse IP6.ARPA zone is created for the prefix to provide a mapping from the IP6.ARPA names to the corresponding IN-ADDR.ARPA names using synthesized CNAMEs.
dns64-server
anddns64-contact
can be used to specify the name of the server and contact for the zones. These can be set at the view/options level but not on a per-prefix basis.dns64
will also cause IPV4ONLY.ARPA to be created if not explicitly disabled usingipv4only-enable
.Each
dns64
supports an optionalclients
ACL that determines which clients are affected by this directive. If not defined, it defaults toany;
.Each
dns64
supports an optionalmapped
ACL that selects which IPv4 addresses are to be mapped in the corresponding A RRset. If not defined, it defaults toany;
.Normally, DNS64 does not apply to a domain name that owns one or more AAAA records; these records are simply returned. The optional
exclude
ACL allows specification of a list of IPv6 addresses that are ignored if they appear in a domain name’s AAAA records; DNS64 is applied to any A records the domain name owns. If not defined,exclude
defaults to ::ffff:0.0.0.0/96.An optional
suffix
can also be defined to set the bits trailing the mapped IPv4 address bits. By default these bits are set to::
. The bits matching the prefix and mapped IPv4 address must be zero.If
recursive-only
is set toyes
, the DNS64 synthesis only happens for recursive queries. The default isno
.If
break-dnssec
is set toyes
, the DNS64 synthesis happens even if the result, if validated, would cause a DNSSEC validation failure. If this option is set tono
(the default), the DO is set on the incoming query, and there are RRSIGs on the applicable records, then synthesis does not happen.acl rfc1918 { 10/8; 192.168/16; 172.16/12; }; dns64 64:FF9B::/96 { clients { any; }; mapped { !rfc1918; any; }; exclude { 64:FF9B::/96; ::ffff:0000:0000/96; }; suffix ::; };
dnssec-loadkeys-interval
- When a zone is configured with
auto-dnssec maintain;
, its key repository must be checked periodically to see if any new keys have been added or any existing keys’ timing metadata has been updated (see dnssec-keygen: DNSSEC key generation tool and dnssec-settime: set the key timing metadata for a DNSSEC key). Thednssec-loadkeys-interval
option sets the frequency of automatic repository checks, in minutes. The default is60
(1 hour), the minimum is1
(1 minute), and the maximum is1440
(24 hours); any higher value is silently reduced. dnssec-policy
- This specifies which key and signing policy (KASP) should be used for this
zone. This is a string referring to a
dnssec-policy
statement. There are three built-in policies:default
, which uses the default policy,insecure
, to be used when you want to gracefully unsign your zone, andnone
, which means no DNSSEC policy. The default isnone
. See dnssec-policy Grammar for more details. dnssec-update-mode
If this option is set to its default value of
maintain
in a zone of typeprimary
which is DNSSEC-signed and configured to allow dynamic updates (see Dynamic Update Policies), and ifnamed
has access to the private signing key(s) for the zone, thennamed
automatically signs all new or changed records and maintains signatures for the zone by regenerating RRSIG records whenever they approach their expiration date.If the option is changed to
no-resign
, thennamed
signs all new or changed records, but scheduled maintenance of signatures is disabled.With either of these settings,
named
rejects updates to a DNSSEC-signed zone when the signing keys are inactive or unavailable tonamed
. (A planned third option,external
, will disable all automatic signing and allow DNSSEC data to be submitted into a zone via dynamic update; this is not yet implemented.)nta-lifetime
This specifies the default lifetime, in seconds, for negative trust anchors added via
rndc nta
.A negative trust anchor selectively disables DNSSEC validation for zones that are known to be failing because of misconfiguration, rather than an attack. When data to be validated is at or below an active NTA (and above any other configured trust anchors),
named
aborts the DNSSEC validation process and treats the data as insecure rather than bogus. This continues until the NTA’s lifetime has elapsed. NTAs persist acrossnamed
restarts.For convenience, TTL-style time-unit suffixes can be used to specify the NTA lifetime in seconds, minutes, or hours. It also accepts ISO 8601 duration formats.
nta-lifetime
defaults to one hour; it cannot exceed one week.nta-recheck
This specifies how often to check whether negative trust anchors added via
rndc nta
are still necessary.A negative trust anchor is normally used when a domain has stopped validating due to operator error; it temporarily disables DNSSEC validation for that domain. In the interest of ensuring that DNSSEC validation is turned back on as soon as possible,
named
periodically sends a query to the domain, ignoring negative trust anchors, to find out whether it can now be validated. If so, the negative trust anchor is allowed to expire early.Validity checks can be disabled for an individual NTA by using
rndc nta -f
, or for all NTAs by settingnta-recheck
to zero.For convenience, TTL-style time-unit suffixes can be used to specify the NTA recheck interval in seconds, minutes, or hours. It also accepts ISO 8601 duration formats.
The default is five minutes. It cannot be longer than
nta-lifetime
, which cannot be longer than a week.max-zone-ttl
This specifies a maximum permissible TTL value in seconds. For convenience, TTL-style time-unit suffixes may be used to specify the maximum value. When loading a zone file using a
masterfile-format
oftext
orraw
, any record encountered with a TTL higher thanmax-zone-ttl
causes the zone to be rejected.This is useful in DNSSEC-signed zones because when rolling to a new DNSKEY, the old key needs to remain available until RRSIG records have expired from caches. The
max-zone-ttl
option guarantees that the largest TTL in the zone is no higher than the set value.The default value is
unlimited
. Amax-zone-ttl
of zero is treated asunlimited
.stale-answer-ttl
This specifies the TTL to be returned on stale answers. The default is 30 seconds. The minimum allowed is 1 second; a value of 0 is updated silently to 1 second.
For stale answers to be returned, they must be enabled, either in the configuration file using
stale-answer-enable
or viarndc serve-stale on
.serial-update-method
Zones configured for dynamic DNS may use this option to set the update method to be used for the zone serial number in the SOA record.
With the default setting of
serial-update-method increment;
, the SOA serial number is incremented by one each time the zone is updated.When set to
serial-update-method unixtime;
, the SOA serial number is set to the number of seconds since the Unix epoch, unless the serial number is already greater than or equal to that value, in which case it is simply incremented by one.When set to
serial-update-method date;
, the new SOA serial number is the current date in the form “YYYYMMDD”, followed by two zeroes, unless the existing serial number is already greater than or equal to that value, in which case it is incremented by one.zone-statistics
If
full
, the server collects statistical data on all zones, unless specifically turned off on a per-zone basis by specifyingzone-statistics terse
orzone-statistics none
in thezone
statement. The statistical data includes, for example, DNSSEC signing operations and the number of authoritative answers per query type. The default isterse
, providing minimal statistics on zones (including name and current serial number, but not query type counters).These statistics may be accessed via the
statistics-channel
or usingrndc stats
, which dumps them to the file listed in thestatistics-file
. See also The Statistics File.For backward compatibility with earlier versions of BIND 9, the
zone-statistics
option can also acceptyes
orno
;yes
has the same meaning asfull
. As of BIND 9.10,no
has the same meaning asnone
; previously, it was the same asterse
.
4.2.16.1. Boolean Options¶
automatic-interface-scan
If
yes
and supported by the operating system, this automatically rescans network interfaces when the interface addresses are added or removed. The default isyes
. This configuration option does not affect the time-basedinterface-interval
option; it is recommended to set the time-basedinterface-interval
to 0 when the operator confirms that automatic interface scanning is supported by the operating system.The
automatic-interface-scan
implementation uses routing sockets for the network interface discovery; therefore, the operating system must support the routing sockets for this feature to work.allow-new-zones
If
yes
, then zones can be added at runtime viarndc addzone
. The default isno
.Newly added zones’ configuration parameters are stored so that they can persist after the server is restarted. The configuration information is saved in a file called
viewname.nzf
(or, ifnamed
is compiled with liblmdb, in an LMDB database file calledviewname.nzd
). “viewname” is the name of the view, unless the view name contains characters that are incompatible with use as a file name, in which case a cryptographic hash of the view name is used instead.Configurations for zones added at runtime are stored either in a new-zone file (NZF) or a new-zone database (NZD), depending on whether
named
was linked with liblmdb at compile time. See rndc - name server control utility for further details aboutrndc addzone
.auth-nxdomain
- If
yes
, then theAA
bit is always set on NXDOMAIN responses, even if the server is not actually authoritative. The default isno
. memstatistics
- This writes memory statistics to the file specified by
memstatistics-file
at exit. The default isno
unless-m record
is specified on the command line, in which case it isyes
. dialup
If
yes
, then the server treats all zones as if they are doing zone transfers across a dial-on-demand dialup link, which can be brought up by traffic originating from this server. Although this setting has different effects according to zone type, it concentrates the zone maintenance so that everything happens quickly, once everyheartbeat-interval
, ideally during a single call. It also suppresses some normal zone maintenance traffic. The default isno
.If specified in the
view
andzone
statements, thedialup
option overrides the globaldialup
option.If the zone is a primary zone, the server sends out a NOTIFY request to all the secondaries (default). This should trigger the zone serial number check in the secondary (providing it supports NOTIFY), allowing the secondary to verify the zone while the connection is active. The set of servers to which NOTIFY is sent can be controlled by
notify
andalso-notify
.If the zone is a secondary or stub zone, the server suppresses the regular “zone up to date” (refresh) queries and only performs them when the
heartbeat-interval
expires, in addition to sending NOTIFY requests.Finer control can be achieved by using
notify
, which only sends NOTIFY messages;notify-passive
, which sends NOTIFY messages and suppresses the normal refresh queries;refresh
, which suppresses normal refresh processing and sends refresh queries when theheartbeat-interval
expires; andpassive
, which disables normal refresh processing.dialup mode normal refresh heart-beat refresh heart-beat notify no
(default)yes no no yes
no yes yes notify
yes no yes refresh
no yes no passive
no no no notify-passive
no no yes Note that normal NOTIFY processing is not affected by
dialup
.flush-zones-on-shutdown
- When the name server exits upon receiving SIGTERM, flush or do not
flush any pending zone writes. The default is
flush-zones-on-shutdown no
. root-key-sentinel
- If
yes
, respond to root key sentinel probes as described in draft-ietf-dnsop-kskroll-sentinel-08. The default isyes
. message-compression
- If
yes
, DNS name compression is used in responses to regular queries (not including AXFR or IXFR, which always use compression). Setting this option tono
reduces CPU usage on servers and may improve throughput. However, it increases response size, which may cause more queries to be processed using TCP; a server with compression disabled is out of compliance with RFC 1123 Section 6.1.3.2. The default isyes
. minimal-responses
This option controls the addition of records to the authority and additional sections of responses. Such records may be included in responses to be helpful to clients; for example, NS or MX records may have associated address records included in the additional section, obviating the need for a separate address lookup. However, adding these records to responses is not mandatory and requires additional database lookups, causing extra latency when marshalling responses.
minimal-responses
takes one of four values:no
: the server is as complete as possible when generating responses.yes
: the server only adds records to the authority and additional sections when such records are required by the DNS protocol (for example, when returning delegations or negative responses). This provides the best server performance but may result in more client queries.no-auth
: the server omits records from the authority section except when they are required, but it may still add records to the additional section.no-auth-recursive
: the same asno-auth
when recursion is requested in the query (RD=1), or the same asno
if recursion is not requested.
no-auth
andno-auth-recursive
are useful when answering stub clients, which usually ignore the authority section.no-auth-recursive
is meant for use in mixed-mode servers that handle both authoritative and recursive queries.The default is
no-auth-recursive
.glue-cache
When set to
yes
, a cache is used to improve query performance when adding address-type (A and AAAA) glue records to the additional section of DNS response messages that delegate to a child zone.The glue cache uses memory proportional to the number of delegations in the zone. The default setting is
yes
, which improves performance at the cost of increased memory usage for the zone. To avoid this, set it tono
.Note
This option is deprecated and its use is discouraged. The glue cache will be permanently enabled in a future release.
minimal-any
- If set to
yes
, the server replies with only one of the RRsets for the query name, and its covering RRSIGs if any, when generating a positive response to a query of type ANY over UDP, instead of replying with all known RRsets for the name. Similarly, a query for type RRSIG is answered with the RRSIG records covering only one type. This can reduce the impact of some kinds of attack traffic, without harming legitimate clients. (Note, however, that the RRset returned is the first one found in the database; it is not necessarily the smallest available RRset.) Additionally,minimal-responses
is turned on for these queries, so no unnecessary records are added to the authority or additional sections. The default isno
. notify
If set to
yes
(the default), DNS NOTIFY messages are sent when a zone the server is authoritative for changes; see Notify. The messages are sent to the servers listed in the zone’s NS records (except the primary server identified in the SOA MNAME field), and to any servers listed in thealso-notify
option.If set to
primary-only
(or the older keywordmaster-only
), notifies are only sent for primary zones. If set toexplicit
, notifies are sent only to servers explicitly listed usingalso-notify
. If set tono
, no notifies are sent.The
notify
option may also be specified in thezone
statement, in which case it overrides theoptions notify
statement. It would only be necessary to turn off this option if it caused secondary zones to crash.notify-to-soa
- If
yes
, do not check the name servers in the NS RRset against the SOA MNAME. Normally a NOTIFY message is not sent to the SOA MNAME (SOA ORIGIN), as it is supposed to contain the name of the ultimate primary server. Sometimes, however, a secondary server is listed as the SOA MNAME in hidden primary configurations; in that case, the ultimate primary should be set to still send NOTIFY messages to all the name servers listed in the NS RRset. recursion
- If
yes
, and a DNS query requests recursion, then the server attempts to do all the work required to answer the query. If recursion is off and the server does not already know the answer, it returns a referral response. The default isyes
. Note that settingrecursion no
does not prevent clients from getting data from the server’s cache; it only prevents new data from being cached as an effect of client queries. Caching may still occur as an effect of the server’s internal operation, such as NOTIFY address lookups. request-nsid
- If
yes
, then an empty EDNS(0) NSID (Name Server Identifier) option is sent with all queries to authoritative name servers during iterative resolution. If the authoritative server returns an NSID option in its response, then its contents are logged in thensid
category at levelinfo
. The default isno
. require-server-cookie
If
yes
, require a valid server cookie before sending a full response to a UDP request from a cookie-aware client. BADCOOKIE is sent if there is a bad or nonexistent server cookie.The default is
no
.Users wishing to test that DNS COOKIE clients correctly handle BADCOOKIE, or who are getting a lot of forged DNS requests with DNS COOKIES present, should set this to
yes
. Setting this toyes
results in a reduced amplification effect in a reflection attack, as the BADCOOKIE response is smaller than a full response, while also requiring a legitimate client to follow up with a second query with the new, valid, cookie.answer-cookie
When set to the default value of
yes
, COOKIE EDNS options are sent when applicable in replies to client queries. If set tono
, COOKIE EDNS options are not sent in replies. This can only be set at the global options level, not per-view.answer-cookie no
is intended as a temporary measure, for use whennamed
shares an IP address with other servers that do not yet support DNS COOKIE. A mismatch between servers on the same address is not expected to cause operational problems, but the option to disable COOKIE responses so that all servers have the same behavior is provided out of an abundance of caution. DNS COOKIE is an important security mechanism, and should not be disabled unless absolutely necessary.send-cookie
If
yes
, then a COOKIE EDNS option is sent along with the query. If the resolver has previously communicated with the server, the COOKIE returned in the previous transaction is sent. This is used by the server to determine whether the resolver has talked to it before. A resolver sending the correct COOKIE is assumed not to be an off-path attacker sending a spoofed-source query; the query is therefore unlikely to be part of a reflection/amplification attack, so resolvers sending a correct COOKIE option are not subject to response rate limiting (RRL). Resolvers which do not send a correct COOKIE option may be limited to receiving smaller responses via thenocookie-udp-size
option.The default is
yes
.stale-answer-enable
If
yes
, enable the returning of “stale” cached answers when the name servers for a zone are not answering and thestale-cache-enable
option is also enabled. The default is not to return stale answers.Stale answers can also be enabled or disabled at runtime via
rndc serve-stale on
orrndc serve-stale off
; these override the configured setting.rndc serve-stale reset
restores the setting to the one specified innamed.conf
. Note that if stale answers have been disabled byrndc
, they cannot be re-enabled by reloading or reconfiguringnamed
; they must be re-enabled withrndc serve-stale on
, or the server must be restarted.Information about stale answers is logged under the
serve-stale
log category.stale-answer-client-timeout
This option defines the amount of time (in milliseconds) that
named
waits before attempting to answer the query with a stale RRset from cache. If a stale answer is found,named
continues the ongoing fetches, attempting to refresh the RRset in cache until theresolver-query-timeout
interval is reached.This option is off by default, which is equivalent to setting it to
off
ordisabled
. It also has no effect ifstale-answer-enable
is disabled.The maximum value for this option is
resolver-query-timeout
minus one second. The minimum value,0
, causes a cached (stale) RRset to be immediately returned if it is available while still attempting to refresh the data in cache. RFC 8767 recommends a value of1800
(milliseconds).stale-cache-enable
- If
yes
, enable the retaining of “stale” cached answers. Defaultno
. stale-refresh-time
If the name servers for a given zone are not answering, this sets the time window for which
named
will promptly return “stale” cached answers for that RRSet being requested before a new attempt in contacting the servers is made. For convenience, TTL-style time-unit suffixes may be used to specify the value. It also accepts ISO 8601 duration formats.The default
stale-refresh-time
is 30 seconds, as RFC 8767 recommends that attempts to refresh to be done no more frequently than every 30 seconds. A value of zero disables the feature, meaning that normal resolution will take place first, if that fails only thennamed
will return “stale” cached answers.nocookie-udp-size
- This sets the maximum size of UDP responses that are sent to queries
without a valid server COOKIE. A value below 128 is silently
raised to 128. The default value is 4096, but the
max-udp-size
option may further limit the response size as the default formax-udp-size
is 1232. cookie-algorithm
- This sets the algorithm to be used when generating the server cookie; the options are “aes” or “siphash24”. The default is “siphash24”. The “aes” option remains for legacy purposes.
cookie-secret
If set, this is a shared secret used for generating and verifying EDNS COOKIE options within an anycast cluster. If not set, the system generates a random secret at startup. The shared secret is encoded as a hex string and needs to be 128 bits for either “siphash24” or “aes”.
If there are multiple secrets specified, the first one listed in
named.conf
is used to generate new server cookies. The others are only used to verify returned cookies.response-padding
The EDNS Padding option is intended to improve confidentiality when DNS queries are sent over an encrypted channel, by reducing the variability in packet sizes. If a query:
- contains an EDNS Padding option,
- includes a valid server cookie or uses TCP,
- is not signed using TSIG or SIG(0), and
- is from a client whose address matches the specified ACL,
then the response is padded with an EDNS Padding option to a multiple of
block-size
bytes. If these conditions are not met, the response is not padded.If
block-size
is 0 or the ACL isnone;
, this feature is disabled and no padding occurs; this is the default. Ifblock-size
is greater than 512, a warning is logged and the value is truncated to 512. Block sizes are ordinarily expected to be powers of two (for instance, 128), but this is not mandatory.trust-anchor-telemetry
This causes
named
to send specially formed queries once per day to domains for which trust anchors have been configured via, e.g.,trust-anchors
ordnssec-validation auto
.The query name used for these queries has the form
_ta-xxxx(-xxxx)(...).<domain>
, where each “xxxx” is a group of four hexadecimal digits representing the key ID of a trusted DNSSEC key. The key IDs for each domain are sorted smallest to largest prior to encoding. The query type is NULL.By monitoring these queries, zone operators are able to see which resolvers have been updated to trust a new key; this may help them decide when it is safe to remove an old one.
The default is
yes
.provide-ixfr
- See the description of
provide-ixfr
in server Statement Definition and Usage. request-ixfr
- See the description of
request-ixfr
in server Statement Definition and Usage. request-expire
- See the description of
request-expire
in server Statement Definition and Usage. match-mapped-addresses
If
yes
, then an IPv4-mapped IPv6 address matches any address-match list entries that match the corresponding IPv4 address.This option was introduced to work around a kernel quirk in some operating systems that causes IPv4 TCP connections, such as zone transfers, to be accepted on an IPv6 socket using mapped addresses. This caused address-match lists designed for IPv4 to fail to match. However,
named
now solves this problem internally. The use of this option is discouraged.ixfr-from-differences
When
yes
and the server loads a new version of a primary zone from its zone file or receives a new version of a secondary file via zone transfer, it compares the new version to the previous one and calculates a set of differences. The differences are then logged in the zone’s journal file so that the changes can be transmitted to downstream secondaries as an incremental zone transfer.By allowing incremental zone transfers to be used for non-dynamic zones, this option saves bandwidth at the expense of increased CPU and memory consumption at the primary server. In particular, if the new version of a zone is completely different from the previous one, the set of differences is of a size comparable to the combined size of the old and new zone versions, and the server needs to temporarily allocate memory to hold this complete difference set.
ixfr-from-differences
also acceptsprimary
andsecondary
at the view and options levels, which causesixfr-from-differences
to be enabled for all primary or secondary zones, respectively. It is off for all zones by default.Note: if inline signing is enabled for a zone, the user-provided
ixfr-from-differences
setting is ignored for that zone.multi-master
- This should be set when there are multiple primary servers for a zone and the
addresses refer to different machines. If
yes
,named
does not log when the serial number on the primary is less than whatnamed
currently has. The default isno
. auto-dnssec
Zones configured for dynamic DNS may use this option to allow varying levels of automatic DNSSEC key management. There are three possible settings:
auto-dnssec allow;
permits keys to be updated and the zone fully re-signed whenever the user issues the commandrndc sign zonename
.auto-dnssec maintain;
includes the above, but also automatically adjusts the zone’s DNSSEC keys on a schedule, according to the keys’ timing metadata (see dnssec-keygen: DNSSEC key generation tool and dnssec-settime: set the key timing metadata for a DNSSEC key). The commandrndc sign zonename
causesnamed
to load keys from the key repository and sign the zone with all keys that are active.rndc loadkeys zonename
causesnamed
to load keys from the key repository and schedule key maintenance events to occur in the future, but it does not sign the full zone immediately. Note: once keys have been loaded for a zone the first time, the repository is searched for changes periodically, regardless of whetherrndc loadkeys
is used. The recheck interval is defined bydnssec-loadkeys-interval
.auto-dnssec off;
does not allow for DNSSEC key management. This is the default setting.This option may only be activated at the zone level; if configured at the view or options level, it must be set to
off
.
dnssec-validation
This option enables DNSSEC validation in
named
.If set to
auto
, DNSSEC validation is enabled and a default trust anchor for the DNS root zone is used.If set to
yes
, DNSSEC validation is enabled, but a trust anchor must be manually configured using atrust-anchors
statement (or themanaged-keys
ortrusted-keys
statements, both deprecated). If there is no configured trust anchor, validation does not take place.If set to
no
, DNSSEC validation is disabled.The default is
auto
, unless BIND is built withconfigure --disable-auto-validation
, in which case the default isyes
.The default root trust anchor is stored in the file
bind.keys
.named
loads that key at startup ifdnssec-validation
is set toauto
. A copy of the file is installed along with BIND 9, and is current as of the release date. If the root key expires, a new copy ofbind.keys
can be downloaded from https://www.isc.org/bind-keys.(To prevent problems if
bind.keys
is not found, the current trust anchor is also compiled innamed
. Relying on this is not recommended, however, as it requiresnamed
to be recompiled with a new key when the root key expires.)Note
named
loads only the root key frombind.keys
. The file cannot be used to store keys for other zones. The root key inbind.keys
is ignored ifdnssec-validation auto
is not in use.Whenever the resolver sends out queries to an EDNS-compliant server, it always sets the DO bit indicating it can support DNSSEC responses, even if
dnssec-validation
is off.validate-except
- This specifies a list of domain names at and beneath which DNSSEC validation should not be performed, regardless of the presence of a trust anchor at or above those names. This may be used, for example, when configuring a top-level domain intended only for local use, so that the lack of a secure delegation for that domain in the root zone does not cause validation failures. (This is similar to setting a negative trust anchor except that it is a permanent configuration, whereas negative trust anchors expire and are removed after a set period of time.)
dnssec-accept-expired
- This accepts expired signatures when verifying DNSSEC signatures. The
default is
no
. Setting this option toyes
leavesnamed
vulnerable to replay attacks. querylog
Query logging provides a complete log of all incoming queries and all query errors. This provides more insight into the server’s activity, but with a cost to performance which may be significant on heavily loaded servers.
The
querylog
option specifies whether query logging should be active whennamed
first starts. Ifquerylog
is not specified, then query logging is determined by the presence of the logging categoryqueries
. Query logging can also be activated at runtime using the commandrndc querylog on
, or deactivated withrndc querylog off
.check-names
This option is used to restrict the character set and syntax of certain domain names in primary files and/or DNS responses received from the network. The default varies according to usage area. For
primary
zones the default isfail
. Forsecondary
zones the default iswarn
. For answers received from the network (response
), the default isignore
.The rules for legal hostnames and mail domains are derived from RFC 952 and RFC 821 as modified by RFC 1123.
check-names
applies to the owner names of A, AAAA, and MX records. It also applies to the domain names in the RDATA of NS, SOA, MX, and SRV records. It further applies to the RDATA of PTR records where the owner name indicates that it is a reverse lookup of a hostname (the owner name ends in IN-ADDR.ARPA, IP6.ARPA, or IP6.INT).check-dup-records
- This checks primary zones for records that are treated as different by
DNSSEC but are semantically equal in plain DNS. The default is to
warn
. Other possible values arefail
andignore
. check-mx
- This checks whether the MX record appears to refer to an IP address. The
default is to
warn
. Other possible values arefail
andignore
. check-wildcard
- This option is used to check for non-terminal wildcards. The use of
non-terminal wildcards is almost always as a result of a lack of
understanding of the wildcard matching algorithm (RFC 1034). This option
affects primary zones. The default (
yes
) is to check for non-terminal wildcards and issue a warning. check-integrity
This performs post-load zone integrity checks on primary zones. It checks that MX and SRV records refer to address (A or AAAA) records and that glue address records exist for delegated zones. For MX and SRV records, only in-zone hostnames are checked (for out-of-zone hostnames, use
named-checkzone
). For NS records, only names below top-of-zone are checked (for out-of-zone names and glue consistency checks, usenamed-checkzone
). The default isyes
.The use of the SPF record to publish Sender Policy Framework is deprecated, as the migration from using TXT records to SPF records was abandoned. Enabling this option also checks that a TXT Sender Policy Framework record exists (starts with “v=spf1”) if there is an SPF record. Warnings are emitted if the TXT record does not exist; they can be suppressed with
check-spf
.check-mx-cname
- If
check-integrity
is set, then fail, warn, or ignore MX records that refer to CNAMES. The default is towarn
. check-srv-cname
- If
check-integrity
is set, then fail, warn, or ignore SRV records that refer to CNAMES. The default is towarn
. check-sibling
- When performing integrity checks, also check that sibling glue
exists. The default is
yes
. check-spf
- If
check-integrity
is set, check that there is a TXT Sender Policy Framework record present (starts with “v=spf1”) if there is an SPF record present. The default iswarn
. zero-no-soa-ttl
- If
yes
, when returning authoritative negative responses to SOA queries, set the TTL of the SOA record returned in the authority section to zero. The default isyes
. zero-no-soa-ttl-cache
- If
yes
, when caching a negative response to an SOA query set the TTL to zero. The default isno
. update-check-ksk
When set to the default value of
yes
, check the KSK bit in each key to determine how the key should be used when generating RRSIGs for a secure zone.Ordinarily, zone-signing keys (that is, keys without the KSK bit set) are used to sign the entire zone, while key-signing keys (keys with the KSK bit set) are only used to sign the DNSKEY RRset at the zone apex. However, if this option is set to
no
, then the KSK bit is ignored; KSKs are treated as if they were ZSKs and are used to sign the entire zone. This is similar to thednssec-signzone -z
command-line option.When this option is set to
yes
, there must be at least two active keys for every algorithm represented in the DNSKEY RRset: at least one KSK and one ZSK per algorithm. If there is any algorithm for which this requirement is not met, this option is ignored for that algorithm.dnssec-dnskey-kskonly
When this option and
update-check-ksk
are both set toyes
, only key-signing keys (that is, keys with the KSK bit set) are used to sign the DNSKEY, CDNSKEY, and CDS RRsets at the zone apex. Zone-signing keys (keys without the KSK bit set) are used to sign the remainder of the zone, but not the DNSKEY RRset. This is similar to thednssec-signzone -x
command-line option.The default is
yes
. Ifupdate-check-ksk
is set tono
, this option is ignored.try-tcp-refresh
- If
yes
, try to refresh the zone using TCP if UDP queries fail. The default isyes
. dnssec-secure-to-insecure
This allows a dynamic zone to transition from secure to insecure (i.e., signed to unsigned) by deleting all of the DNSKEY records. The default is
no
. If set toyes
, and if the DNSKEY RRset at the zone apex is deleted, all RRSIG and NSEC records are removed from the zone as well.If the zone uses NSEC3, it is also necessary to delete the NSEC3PARAM RRset from the zone apex; this causes the removal of all corresponding NSEC3 records. (It is expected that this requirement will be eliminated in a future release.)
Note that if a zone has been configured with
auto-dnssec maintain
and the private keys remain accessible in the key repository, the zone will be automatically signed again the next timenamed
is started.synth-from-dnssec
This option enables support for RFC 8198, Aggressive Use of DNSSEC-Validated Cache. It allows the resolver to send a smaller number of queries when resolving queries for DNSSEC-signed domains by synthesizing answers from cached NSEC and other RRsets that have been proved to be correct using DNSSEC. The default is
yes
.Note
DNSSEC validation must be enabled for this option to be effective. This initial implementation only covers synthesis of answers from NSEC records; synthesis from NSEC3 is planned for the future. This will also be controlled by
synth-from-dnssec
.
4.2.16.2. Forwarding¶
The forwarding facility can be used to create a large site-wide cache on a few servers, reducing traffic over links to external name servers. It can also be used to allow queries by servers that do not have direct access to the Internet, but wish to look up exterior names anyway. Forwarding occurs only on those queries for which the server is not authoritative and does not have the answer in its cache.
forward
- This option is only meaningful if the forwarders list is not empty. A
value of
first
is the default and causes the server to query the forwarders first; if that does not answer the question, the server then looks for the answer itself. Ifonly
is specified, the server only queries the forwarders. forwarders
- This specifies a list of IP addresses to which queries are forwarded. The default is the empty list (no forwarding). Each address in the list can be associated with an optional port number and/or DSCP value, and a default port number and DSCP value can be set for the entire list.
Forwarding can also be configured on a per-domain basis, allowing for
the global forwarding options to be overridden in a variety of ways.
Particular domains can be set to use different forwarders, or have a
different forward only/first
behavior, or not forward at all; see
zone Statement Grammar.
4.2.16.3. Dual-stack Servers¶
Dual-stack servers are used as servers of last resort, to work around problems in reachability due to the lack of support for either IPv4 or IPv6 on the host machine.
dual-stack-servers
- This specifies host names or addresses of machines with access to both
IPv4 and IPv6 transports. If a hostname is used, the server must be
able to resolve the name using only the transport it has. If the
machine is dual-stacked, the
dual-stack-servers
parameter has no effect unless access to a transport has been disabled on the command line (e.g.,named -4
).
4.2.16.4. Access Control¶
Access to the server can be restricted based on the IP address of the requesting system. See Address Match Lists for details on how to specify IP address lists.
allow-notify
This ACL specifies which hosts may send NOTIFY messages to inform this server of changes to zones for which it is acting as a secondary server. This is only applicable for secondary zones (i.e., type
secondary
orslave
).If this option is set in
view
oroptions
, it is globally applied to all secondary zones. If set in thezone
statement, the global value is overridden.If not specified, the default is to process NOTIFY messages only from the configured
primaries
for the zone.allow-notify
can be used to expand the list of permitted hosts, not to reduce it.allow-query
This specifies which hosts are allowed to ask ordinary DNS questions.
allow-query
may also be specified in thezone
statement, in which case it overrides theoptions allow-query
statement. If not specified, the default is to allow queries from all hosts.Note
allow-query-cache
is used to specify access to the cache.allow-query-on
This specifies which local addresses can accept ordinary DNS questions. This makes it possible, for instance, to allow queries on internal-facing interfaces but disallow them on external-facing ones, without necessarily knowing the internal network’s addresses.
Note that
allow-query-on
is only checked for queries that are permitted byallow-query
. A query must be allowed by both ACLs, or it is refused.allow-query-on
may also be specified in thezone
statement, in which case it overrides theoptions allow-query-on
statement.If not specified, the default is to allow queries on all addresses.
Note
allow-query-cache
is used to specify access to the cache.allow-query-cache
- This specifies which hosts are allowed to get answers from the cache. If
allow-recursion
is not set, BIND checks to see if the following parameters are set, in order:allow-query-cache
andallow-query
(unlessrecursion no;
is set). If neither of those parameters is set, the default (localnets; localhost;) is used. allow-query-cache-on
- This specifies which local addresses can send answers from the cache. If
allow-query-cache-on
is not set, thenallow-recursion-on
is used if set. Otherwise, the default is to allow cache responses to be sent from any address. Note: bothallow-query-cache
andallow-query-cache-on
must be satisfied before a cache response can be sent; a client that is blocked by one cannot be allowed by the other. allow-recursion
- This specifies which hosts are allowed to make recursive queries through
this server. BIND checks to see if the following parameters are set, in
order:
allow-query-cache
andallow-query
. If neither of those parameters is set, the default (localnets; localhost;) is used. allow-recursion-on
- This specifies which local addresses can accept recursive queries. If
allow-recursion-on
is not set, thenallow-query-cache-on
is used if set; otherwise, the default is to allow recursive queries on all addresses. Any client permitted to send recursive queries can send them to any address on whichnamed
is listening. Note: bothallow-recursion
andallow-recursion-on
must be satisfied before recursion is allowed; a client that is blocked by one cannot be allowed by the other. allow-update
When set in the
zone
statement for a primary zone, this specifies which hosts are allowed to submit Dynamic DNS updates to that zone. The default is to deny updates from all hosts.Note that allowing updates based on the requestor’s IP address is insecure; see Dynamic Update Security for details.
In general, this option should only be set at the
zone
level. While a default value can be set at theoptions
orview
level and inherited by zones, this could lead to some zones unintentionally allowing updates.allow-update-forwarding
When set in the
zone
statement for a secondary zone, this specifies which hosts are allowed to submit Dynamic DNS updates and have them be forwarded to the primary. The default is{ none; }
, which means that no update forwarding is performed.To enable update forwarding, specify
allow-update-forwarding { any; };
in thezone
statement. Specifying values other than{ none; }
or{ any; }
is usually counterproductive; the responsibility for update access control should rest with the primary server, not the secondary.Note that enabling the update forwarding feature on a secondary server may expose primary servers to attacks if they rely on insecure IP-address-based access control; see Dynamic Update Security for more details.
In general this option should only be set at the
zone
level. While a default value can be set at theoptions
orview
level and inherited by zones, this can lead to some zones unintentionally forwarding updates.
allow-transfer
This specifies which hosts are allowed to receive zone transfers from the server.
allow-transfer
may also be specified in thezone
statement, in which case it overrides theallow-transfer
statement set inoptions
orview
. If not specified, the default is to allow transfers to all hosts.The transport level limitations can also be specified. In particular, zone transfers can be restricted to a specific port and/or DNS transport protocol by using the options
port
andtransport
. Either option can be specified; if both are used, both constraints must be satisfied in order for the transfer to be allowed. Zone transfers are currently only possible via the TCP and TLS transports.For example:
allow-transfer port 853 transport tls { any; };
allows outgoing zone transfers to any host using the TLS transport over port 853.
Warning
Please note that incoming TLS connections are currently not authenticated at the TLS level. Please use TSIG to authenticate requestors.
blackhole
- This specifies a list of addresses which the server does not accept queries
from or use to resolve a query. Queries from these addresses are not
responded to. The default is
none
. keep-response-order
- This specifies a list of addresses to which the server sends responses
to TCP queries, in the same order in which they were received. This
disables the processing of TCP queries in parallel. The default is
none
. no-case-compress
This specifies a list of addresses which require responses to use case-insensitive compression. This ACL can be used when
named
needs to work with clients that do not comply with the requirement in RFC 1034 to use case-insensitive name comparisons when checking for matching domain names.If left undefined, the ACL defaults to
none
: case-insensitive compression is used for all clients. If the ACL is defined and matches a client, case is ignored when compressing domain names in DNS responses sent to that client.This can result in slightly smaller responses; if a response contains the names “example.com” and “example.COM”, case-insensitive compression treats the second one as a duplicate. It also ensures that the case of the query name exactly matches the case of the owner names of returned records, rather than matches the case of the records entered in the zone file. This allows responses to exactly match the query, which is required by some clients due to incorrect use of case-sensitive comparisons.
Case-insensitive compression is always used in AXFR and IXFR responses, regardless of whether the client matches this ACL.
There are circumstances in which
named
does not preserve the case of owner names of records: if a zone file defines records of different types with the same name, but the capitalization of the name is different (e.g., “www.example.com/A” and “WWW.EXAMPLE.COM/AAAA”), then all responses for that name use the first version of the name that was used in the zone file. This limitation may be addressed in a future release. However, domain names specified in the rdata of resource records (i.e., records of type NS, MX, CNAME, etc.) always have their case preserved unless the client matches this ACL.resolver-query-timeout
This is the amount of time in milliseconds that the resolver spends attempting to resolve a recursive query before failing. The default and minimum is
10000
and the maximum is30000
. Setting it to0
results in the default being used.This value was originally specified in seconds. Values less than or equal to 300 are treated as seconds and converted to milliseconds before applying the above limits.
4.2.16.5. Interfaces¶
The interfaces, ports, and protocols that the server can use to answer
queries may be specified using the listen-on
and listen-on-v6
options.
listen-on
and listen-on-v6
statements can each take an optional
port, TLS configuration identifier, and/or HTTP configuration identifier,
in addition to an address_match_list
.
The address_match_list
in listen-on
specifies the IPv4 addresses
on which the server will listen. (IPv6 addresses are ignored, with a
logged warning.) The server listens on all interfaces allowed by the
address match list. If no listen-on
is specified, the default is
to listen for standard DNS queries on port 53 of all IPv4 interfaces.
listen-on-v6
takes an address_match_list
of IPv6 addresses.
The server listens on all interfaces allowed by the address match list.
If no listen-on-v6
is specified, the default is to listen for standard
DNS queries on port 53 of all IPv6 interfaces.
If a TLS configuration is specified, named
will listen for DNS-over-TLS
(DoT) connections, using the key and certificate specified in the
referenced tls
statement. If the name ephemeral
is used,
an ephemeral key and certificate created for the currently running
named
process will be used.
If an HTTP configuration is specified, named
will listen for
DNS-over-HTTPS (DoH) connections using the HTTP endpoint specified in the
referenced http
statement. If the name default
is used, then
named
will listen for connections at the default endpoint,
/dns-query
.
Use of an http
specification requires tls
to be specified
as well. If an unencrypted connection is desired (for example,
on load-sharing servers behind a reverse proxy), tls none
may be used.
If a port number is not specified, the default is 53 for standard DNS,
853 for DNS over TLS, 443 for DNS over HTTPS, and 80 for
DNS over HTTP (unencrypted). These defaults may be overridden using the
port
, tls-port
, https-port
and http-port
options.
Multiple listen-on
statements are allowed. For example:
listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };
listen-on port 8853 tls ephemeral { 4.3.2.1; };
listen-on port 8453 tls ephemeral http myserver { 8.7.6.5; };
The first two lines instruct the name server to listen for standard DNS
queries on port 53 of the IP address 5.6.7.8 and on port 1234 of an address
on the machine in net 1.2 that is not 1.2.3.4. The third line instructs the
server to listen for DNS-over-TLS connections on port 8853 of the IP
address 4.3.2.1 using the ephemeral key and certifcate. The fourth line
enables DNS-over-HTTPS connections on port 8453 of address 8.7.6.5, using
the ephemeral key and certificate, and the HTTP endpoint or endpoints
configured in an http
statement with the name myserver
.
Multiple listen-on-v6
options can be used. For example:
listen-on-v6 { any; };
listen-on-v6 port 1234 { !2001:db8::/32; any; };
listen-on port 8853 tls example-tls { 2001:db8::100; };
listen-on port 8453 tls example-tls http default { 2001:db8::100; };
listen-on port 8000 tls none http myserver { 2001:db8::100; };
The first two lines instruct the name server to listen for standard DNS
queries on port 53 of any IPv6 addresses, and on port 1234 of IPv6
addresses that are not in the prefix 2001:db8::/32. The third line
instructs the server to listen for for DNS-over-TLS connections on port
8853 of the address 2001:db8::100, using a TLS key and certificate specified
in the a tls
statement with the name example-tls
. The fourth
instructs the server to listen for DNS-over-HTTPS connections, again using
example-tls
, on the default HTTP endpoint. The fifth line, in which
the tls
parameter is set to none
, instructs the server to listen
for unencrypted DNS queries over HTTP at the endpoint specified in
myserver
..
To instruct the server not to listen on any IPv6 addresses, use:
listen-on-v6 { none; };
4.2.16.6. Query Address¶
If the server does not know the answer to a question, it queries other
name servers. query-source
specifies the address and port used for
such queries. For queries sent over IPv6, there is a separate
query-source-v6
option. If address
is *
(asterisk) or is
omitted, a wildcard IP address (INADDR_ANY
) is used.
If port
is *
or is omitted, a random port number from a
pre-configured range is picked up and used for each query. The
port range(s) is specified in the use-v4-udp-ports
(for IPv4)
and use-v6-udp-ports
(for IPv6) options, excluding the ranges
specified in the avoid-v4-udp-ports
and avoid-v6-udp-ports
options, respectively.
The defaults of the query-source
and query-source-v6
options
are:
query-source address * port *;
query-source-v6 address * port *;
If use-v4-udp-ports
or use-v6-udp-ports
is unspecified,
named
checks whether the operating system provides a programming
interface to retrieve the system’s default range for ephemeral ports. If
such an interface is available, named
uses the corresponding
system default range; otherwise, it uses its own defaults:
use-v4-udp-ports { range 1024 65535; };
use-v6-udp-ports { range 1024 65535; };
The defaults of the avoid-v4-udp-ports
and avoid-v6-udp-ports
options are:
avoid-v4-udp-ports {};
avoid-v6-udp-ports {};
Note
Make sure the ranges are sufficiently large for security. A
desirable size depends on several parameters, but we generally recommend
it contain at least 16384 ports (14 bits of entropy). Note also that the
system’s default range when used may be too small for this purpose, and
that the range may even be changed while named
is running; the new
range is automatically applied when named
is reloaded. Explicit
configuration of use-v4-udp-ports
and use-v6-udp-ports
is encouraged,
so that the ranges are sufficiently large and are reasonably
independent from the ranges used by other applications.
Note
The operational configuration where named
runs may prohibit
the use of some ports. For example, Unix systems do not allow
named
, if run without root privilege, to use ports less than 1024.
If such ports are included in the specified (or detected) set of query
ports, the corresponding query attempts will fail, resulting in
resolution failures or delay. It is therefore important to configure the
set of ports that can be safely used in the expected operational
environment.
Note
The address specified in the query-source
option is used for both
UDP and TCP queries, but the port applies only to UDP queries. TCP
queries always use a random unprivileged port.
Note
Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.
Warning
Specifying a single port is discouraged, as it removes a layer of protection against spoofing errors.
Warning
The configured port
must not be same as the listening port.
Note
See also transfer-source
, notify-source
and parental-source
.
4.2.16.7. Zone Transfers¶
BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load that transfers place on the system. The following options apply to zone transfers.
also-notify
This option defines a global list of IP addresses of name servers that are also sent NOTIFY messages whenever a fresh copy of the zone is loaded, in addition to the servers listed in the zone’s NS records. This helps to ensure that copies of the zones quickly converge on stealth servers. Optionally, a port may be specified with each
also-notify
address to send the notify messages to a port other than the default of 53. An optional TSIG key can also be specified with each address to cause the notify messages to be signed; this can be useful when sending notifies to multiple views. In place of explicit addresses, one or more namedprimaries
lists can be used.If an
also-notify
list is given in azone
statement, it overrides theoptions also-notify
statement. When azone notify
statement is set tono
, the IP addresses in the globalalso-notify
list are not sent NOTIFY messages for that zone. The default is the empty list (no global notification list).max-transfer-time-in
- Inbound zone transfers running longer than this many minutes are terminated. The default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).
max-transfer-idle-in
- Inbound zone transfers making no progress in this many minutes are terminated. The default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).
max-transfer-time-out
- Outbound zone transfers running longer than this many minutes are terminated. The default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).
max-transfer-idle-out
- Outbound zone transfers making no progress in this many minutes are terminated. The default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).
notify-rate
- This specifies the rate at which NOTIFY requests are sent during normal zone maintenance operations. (NOTIFY requests due to initial zone loading are subject to a separate rate limit; see below.) The default is 20 per second. The lowest possible rate is one per second; when set to zero, it is silently raised to one.
startup-notify-rate
- This is the rate at which NOTIFY requests are sent when the name server is first starting up, or when zones have been newly added to the name server. The default is 20 per second. The lowest possible rate is one per second; when set to zero, it is silently raised to one.
serial-query-rate
- Secondary servers periodically query primary servers to find out if
zone serial numbers have changed. Each such query uses a minute
amount of the secondary server’s network bandwidth. To limit the amount
of bandwidth used, BIND 9 limits the rate at which queries are sent.
The value of the
serial-query-rate
option, an integer, is the maximum number of queries sent per second. The default is 20 per second. The lowest possible rate is one per second; when set to zero, it is silently raised to one. transfer-format
- Zone transfers can be sent using two different formats,
one-answer
andmany-answers
. Thetransfer-format
option is used on the primary server to determine which format it sends.one-answer
uses one DNS message per resource record transferred.many-answers
packs as many resource records as possible into one message.many-answers
is more efficient; the default ismany-answers
.transfer-format
may be overridden on a per-server basis by using theserver
statement. transfer-message-size
This is an upper bound on the uncompressed size of DNS messages used in zone transfers over TCP. If a message grows larger than this size, additional messages are used to complete the zone transfer. (Note, however, that this is a hint, not a hard limit; if a message contains a single resource record whose RDATA does not fit within the size limit, a larger message will be permitted so the record can be transferred.)
Valid values are between 512 and 65535 octets; any values outside that range are adjusted to the nearest value within it. The default is
20480
, which was selected to improve message compression; most DNS messages of this size will compress to less than 16536 bytes. Larger messages cannot be compressed as effectively, because 16536 is the largest permissible compression offset pointer in a DNS message.This option is mainly intended for server testing; there is rarely any benefit in setting a value other than the default.
transfers-in
- This is the maximum number of inbound zone transfers that can run
concurrently. The default value is
10
. Increasingtransfers-in
may speed up the convergence of secondary zones, but it also may increase the load on the local system. transfers-out
- This is the maximum number of outbound zone transfers that can run
concurrently. Zone transfer requests in excess of the limit are
refused. The default value is
10
. transfers-per-ns
- This is the maximum number of inbound zone transfers that can concurrently
transfer from a given remote name server. The default value is
2
. Increasingtransfers-per-ns
may speed up the convergence of secondary zones, but it also may increase the load on the remote name server.transfers-per-ns
may be overridden on a per-server basis by using thetransfers
phrase of theserver
statement. transfer-source
transfer-source
determines which local address is bound to IPv4 TCP connections used to fetch zones transferred inbound by the server. It also determines the source IPv4 address, and optionally the UDP port, used for the refresh queries and forwarded dynamic updates. If not set, it defaults to a system-controlled value which is usually the address of the interface “closest to” the remote end. This address must appear in the remote end’sallow-transfer
option for the zone being transferred, if one is specified. This statement sets thetransfer-source
for all zones, but can be overridden on a per-view or per-zone basis by including atransfer-source
statement within theview
orzone
block in the configuration file.Note
Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.
Warning
Specifying a single port is discouraged, as it removes a layer of protection against spoofing errors.
Warning
The configured
port
must not be same as the listening port.transfer-source-v6
- This option is the same as
transfer-source
, except zone transfers are performed using IPv6. alt-transfer-source
This indicates an alternate transfer source if the one listed in
transfer-source
fails anduse-alt-transfer-source
is set.Note
To avoid using the alternate transfer source, set
use-alt-transfer-source
appropriately and do not depend upon getting an answer back to the first refresh query.alt-transfer-source-v6
- This indicates an alternate transfer source if the one listed in
transfer-source-v6
fails anduse-alt-transfer-source
is set. use-alt-transfer-source
- This indicates whether the alternate transfer sources should be used. If views are specified,
this defaults to
no
; otherwise, it defaults toyes
. notify-source
notify-source
determines which local source address, and optionally UDP port, is used to send NOTIFY messages. This address must appear in the secondary server’sprimaries
zone clause or in anallow-notify
clause. This statement sets thenotify-source
for all zones, but can be overridden on a per-zone or per-view basis by including anotify-source
statement within thezone
orview
block in the configuration file.Note
Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.
Warning
Specifying a single port is discouraged, as it removes a layer of protection against spoofing errors.
Warning
The configured
port
must not be same as the listening port.notify-source-v6
- This option acts like
notify-source
, but applies to notify messages sent to IPv6 addresses.
4.2.16.8. UDP Port Lists¶
use-v4-udp-ports
, avoid-v4-udp-ports
, use-v6-udp-ports
, and
avoid-v6-udp-ports
specify a list of IPv4 and IPv6 UDP ports that
are or are not used as source ports for UDP messages. See
Query Address about how the available ports are
determined. For example, with the following configuration:
use-v6-udp-ports { range 32768 65535; };
avoid-v6-udp-ports { 40000; range 50000 60000; };
UDP ports of IPv6 messages sent from named
are in one of the
following ranges: 32768 to 39999, 40001 to 49999, and 60001 to 65535.
avoid-v4-udp-ports
and avoid-v6-udp-ports
can be used to prevent
named
from choosing as its random source port a port that is blocked
by a firewall or a port that is used by other applications; if a
query went out with a source port blocked by a firewall, the answer
would not pass through the firewall and the name server would have to query
again. Note: the desired range can also be represented only with
use-v4-udp-ports
and use-v6-udp-ports
, and the avoid-
options are redundant in that sense; they are provided for backward
compatibility and to possibly simplify the port specification.
4.2.16.9. Operating System Resource Limits¶
The server’s usage of many system resources can be limited. Scaled
values are allowed when specifying resource limits. For example, 1G
can be used instead of 1073741824
to specify a limit of one
gigabyte. unlimited
requests unlimited use, or the maximum available
amount. default
uses the limit that was in force when the server was
started. See the description of size_spec
in Configuration File Elements.
The following options set operating system resource limits for the name server process. Some operating systems do not support some or any of the limits; on such systems, a warning is issued if an unsupported limit is used.
coresize
- This sets the maximum size of a core dump. The default is
default
. datasize
- This sets the maximum amount of data memory the server may use. The default is
default
. This is a hard limit on server memory usage; if the server attempts to allocate memory in excess of this limit, the allocation will fail, which may in turn leave the server unable to perform DNS service. Therefore, this option is rarely useful as a way to limit the amount of memory used by the server, but it can be used to raise an operating system data size limit that is too small by default. To limit the amount of memory used by the server, use themax-cache-size
andrecursive-clients
options instead. files
- This sets the maximum number of files the server may have open concurrently.
The default is
unlimited
. stacksize
- This sets the maximum amount of stack memory the server may use. The default is
default
.
4.2.16.10. Server Resource Limits¶
The following options set limits on the server’s resource consumption that are enforced internally by the server rather than by the operating system.
max-journal-size
This sets a maximum size for each journal file (see The Journal File), expressed in bytes or, if followed by an optional unit suffix (‘k’, ‘m’, or ‘g’), in kilobytes, megabytes, or gigabytes. When the journal file approaches the specified size, some of the oldest transactions in the journal are automatically removed. The largest permitted value is 2 gigabytes. Very small values are rounded up to 4096 bytes. It is possible to specify
unlimited
, which also means 2 gigabytes. If the limit is set todefault
or left unset, the journal is allowed to grow up to twice as large as the zone. (There is little benefit in storing larger journals.)This option may also be set on a per-zone basis.
max-records
- This sets the maximum number of records permitted in a zone. The default is zero, which means the maximum is unlimited.
recursive-clients
This sets the maximum number (a “hard quota”) of simultaneous recursive lookups the server performs on behalf of clients. The default is
1000
. Because each recursing client uses a fair bit of memory (on the order of 20 kilobytes), the value of therecursive-clients
option may have to be decreased on hosts with limited memory.recursive-clients
defines a “hard quota” limit for pending recursive clients; when more clients than this are pending, new incoming requests are not accepted, and for each incoming request a previous pending request is dropped.A “soft quota” is also set. When this lower quota is exceeded, incoming requests are accepted, but for each one, a pending request is dropped. If
recursive-clients
is greater than 1000, the soft quota is set torecursive-clients
minus 100; otherwise it is set to 90% ofrecursive-clients
.tcp-clients
- This is the maximum number of simultaneous client TCP connections that the
server accepts. The default is
150
.
clients-per-query
;max-clients-per-query
These set the initial value (minimum) and maximum number of recursive simultaneous clients for any given query (<qname,qtype,qclass>) that the server accepts before dropping additional clients.
named
attempts to self-tune this value and changes are logged. The default values are 10 and 100.This value should reflect how many queries come in for a given name in the time it takes to resolve that name. If the number of queries exceeds this value,
named
assumes that it is dealing with a non-responsive zone and drops additional queries. If it gets a response after dropping queries, it raises the estimate. The estimate is then lowered in 20 minutes if it has remained unchanged.If
clients-per-query
is set to zero, there is no limit on the number of clients per query and no queries are dropped.If
max-clients-per-query
is set to zero, there is no upper bound other than that imposed byrecursive-clients
.fetches-per-zone
This sets the maximum number of simultaneous iterative queries to any one domain that the server permits before blocking new queries for data in or beneath that zone. This value should reflect how many fetches would normally be sent to any one zone in the time it would take to resolve them. It should be smaller than
recursive-clients
.When many clients simultaneously query for the same name and type, the clients are all attached to the same fetch, up to the
max-clients-per-query
limit, and only one iterative query is sent. However, when clients are simultaneously querying for different names or types, multiple queries are sent andmax-clients-per-query
is not effective as a limit.Optionally, this value may be followed by the keyword
drop
orfail
, indicating whether queries which exceed the fetch quota for a zone are dropped with no response, or answered with SERVFAIL. The default isdrop
.If
fetches-per-zone
is set to zero, there is no limit on the number of fetches per query and no queries are dropped. The default is zero.The current list of active fetches can be dumped by running
rndc recursing
. The list includes the number of active fetches for each domain and the number of queries that have been passed (allowed) or dropped (spilled) as a result of thefetches-per-zone
limit. (Note: these counters are not cumulative over time; whenever the number of active fetches for a domain drops to zero, the counter for that domain is deleted, and the next time a fetch is sent to that domain, it is recreated with the counters set to zero.)fetches-per-server
This sets the maximum number of simultaneous iterative queries that the server allows to be sent to a single upstream name server before blocking additional queries. This value should reflect how many fetches would normally be sent to any one server in the time it would take to resolve them. It should be smaller than
recursive-clients
.Optionally, this value may be followed by the keyword
drop
orfail
, indicating whether queries are dropped with no response or answered with SERVFAIL, when all of the servers authoritative for a zone are found to have exceeded the per-server quota. The default isfail
.If
fetches-per-server
is set to zero, there is no limit on the number of fetches per query and no queries are dropped. The default is zero.The
fetches-per-server
quota is dynamically adjusted in response to detected congestion. As queries are sent to a server and either are answered or time out, an exponentially weighted moving average is calculated of the ratio of timeouts to responses. If the current average timeout ratio rises above a “high” threshold, thenfetches-per-server
is reduced for that server. If the timeout ratio drops below a “low” threshold, thenfetches-per-server
is increased. Thefetch-quota-params
options can be used to adjust the parameters for this calculation.fetch-quota-params
This sets the parameters to use for dynamic resizing of the
fetches-per-server
quota in response to detected congestion.The first argument is an integer value indicating how frequently to recalculate the moving average of the ratio of timeouts to responses for each server. The default is 100, meaning that BIND recalculates the average ratio after every 100 queries have either been answered or timed out.
The remaining three arguments represent the “low” threshold (defaulting to a timeout ratio of 0.1), the “high” threshold (defaulting to a timeout ratio of 0.3), and the discount rate for the moving average (defaulting to 0.7). A higher discount rate causes recent events to weigh more heavily when calculating the moving average; a lower discount rate causes past events to weigh more heavily, smoothing out short-term blips in the timeout ratio. These arguments are all fixed-point numbers with precision of 1/100; at most two places after the decimal point are significant.
reserved-sockets
- This option is deprecated and no longer has any effect.
max-cache-size
This sets the maximum amount of memory to use for an individual cache database and its associated metadata, in bytes or percentage of total physical memory. By default, each view has its own separate cache, which means the total amount of memory required for cache data is the sum of the cache database sizes for all views (unless the attach-cache option is used).
When the amount of data in a cache database reaches the configured limit,
named
starts purging non-expired records (following an LRU-based strategy).The default size limit for each individual cache is:
- 90% of physical memory for views with
recursion
set toyes
(the default), or - 2 MB for views with
recursion
set tono
.
Any positive value smaller than 2 MB is ignored and reset to 2 MB. The keyword
unlimited
, or the value0
, places no limit on the cache size; records are then purged from the cache only when they expire (according to their TTLs).Note
For configurations which define multiple views with separate caches and recursion enabled, it is recommended to set
max-cache-size
appropriately for each view, as using the default value of that option (90% of physical memory for each individual cache) may lead to memory exhaustion over time.Upon startup and reconfiguration, caches with a limited size preallocate a small amount of memory (less than 1% of
max-cache-size
for a given view). This preallocation serves as an optimization to eliminate extra latency introduced by resizing internal cache structures.On systems where detection of the amount of physical memory is not supported, percentage-based values fall back to
unlimited
. Note that the amount of physical memory available is only detected on startup, sonamed
does not adjust the cache size limits if the amount of physical memory is changed at runtime.- 90% of physical memory for views with
tcp-listen-queue
- This sets the listen-queue depth. The default and minimum is 10. If the kernel supports the accept filter “dataready”, this also controls how many TCP connections are queued in kernel space waiting for some data before being passed to accept. Non-zero values less than 10 are silently raised. A value of 0 may also be used; on most platforms this sets the listen-queue length to a system-defined default value.
tcp-initial-timeout
- This sets the amount of time (in units of 100 milliseconds) that the server waits on
a new TCP connection for the first message from the client. The
default is 300 (30 seconds), the minimum is 25 (2.5 seconds), and the
maximum is 1200 (two minutes). Values above the maximum or below the
minimum are adjusted with a logged warning. (Note: this value
must be greater than the expected round-trip delay time; otherwise, no
client will ever have enough time to submit a message.) This value
can be updated at runtime by using
rndc tcp-timeouts
. tcp-idle-timeout
- This sets the amount of time (in units of 100 milliseconds) that the server waits on
an idle TCP connection before closing it, when the client is not using
the EDNS TCP keepalive option. The default is 300 (30 seconds), the
maximum is 1200 (two minutes), and the minimum is 1 (one-tenth of a
second). Values above the maximum or below the minimum are
adjusted with a logged warning. See
tcp-keepalive-timeout
for clients using the EDNS TCP keepalive option. This value can be updated at runtime by usingrndc tcp-timeouts
. tcp-keepalive-timeout
- This sets the amount of time (in units of 100 milliseconds) that the server waits on
an idle TCP connection before closing it, when the client is using the
EDNS TCP keepalive option. The default is 300 (30 seconds), the
maximum is 65535 (about 1.8 hours), and the minimum is 1 (one-tenth
of a second). Values above the maximum or below the minimum are
adjusted with a logged warning. This value may be greater than
tcp-idle-timeout
because clients using the EDNS TCP keepalive option are expected to use TCP connections for more than one message. This value can be updated at runtime by usingrndc tcp-timeouts
. tcp-advertised-timeout
- This sets the timeout value (in units of 100 milliseconds) that the server sends
in responses containing the EDNS TCP keepalive option, which informs a
client of the amount of time it may keep the session open. The
default is 300 (30 seconds), the maximum is 65535 (about 1.8 hours),
and the minimum is 0, which signals that the clients must close TCP
connections immediately. Ordinarily this should be set to the same
value as
tcp-keepalive-timeout
. This value can be updated at runtime by usingrndc tcp-timeouts
.
4.2.16.11. Periodic Task Intervals¶
heartbeat-interval
- The server performs zone maintenance tasks for all zones marked
as
dialup
whenever this interval expires. The default is 60 minutes. Reasonable values are up to 1 day (1440 minutes). The maximum value is 28 days (40320 minutes). If set to 0, no zone maintenance for these zones occurs. interface-interval
- The server scans the network interface list every
interface-interval
minutes. The default is 60 minutes; the maximum value is 28 days (40320 minutes). If set to 0, interface scanning only occurs when the configuration file is loaded, or whenautomatic-interface-scan
is enabled and supported by the operating system. After the scan, the server begins listening for queries on any newly discovered interfaces (provided they are allowed by thelisten-on
configuration), and stops listening on interfaces that have gone away. For convenience, TTL-style time-unit suffixes may be used to specify the value. It also accepts ISO 8601 duration formats.
4.2.16.12. The sortlist
Statement¶
The response to a DNS query may consist of multiple resource records
(RRs) forming a resource record set (RRset). The name server
normally returns the RRs within the RRset in an indeterminate order (but
see the rrset-order
statement in RRset Ordering). The client resolver code should
rearrange the RRs as appropriate: that is, using any addresses on the
local net in preference to other addresses. However, not all resolvers
can do this or are correctly configured. When a client is using a local
server, the sorting can be performed in the server, based on the
client’s address. This only requires configuring the name servers, not
all the clients.
The sortlist
statement (see below) takes an address_match_list
and
interprets it in a special way. Each top-level statement in the sortlist
must itself be an explicit address_match_list
with one or two elements. The
first element (which may be an IP address, an IP prefix, an ACL name, or a nested
address_match_list
) of each top-level list is checked against the source
address of the query until a match is found. When the addresses in the first
element overlap, the first rule to match is selected.
Once the source address of the query has been matched, if the top-level statement contains only one element, the actual primitive element that matched the source address is used to select the address in the response to move to the beginning of the response. If the statement is a list of two elements, then the second element is interpreted as a topology preference list. Each top-level element is assigned a distance, and the address in the response with the minimum distance is moved to the beginning of the response.
In the following example, any queries received from any of the addresses of the host itself get responses preferring addresses on any of the locally connected networks. Next most preferred are addresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3/24 network, with no preference shown between these two networks. Queries received from a host on the 192.168.1/24 network prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24 networks. Queries received from a host on the 192.168.4/24 or the 192.168.5/24 network only prefer other addresses on their directly connected networks.
sortlist {
// IF the local host
// THEN first fit on the following nets
{ localhost;
{ localnets;
192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };
// IF on class C 192.168.1 THEN use .1, or .2 or .3
{ 192.168.1/24;
{ 192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };
// IF on class C 192.168.2 THEN use .2, or .1 or .3
{ 192.168.2/24;
{ 192.168.2/24;
{ 192.168.1/24; 192.168.3/24; }; }; };
// IF on class C 192.168.3 THEN use .3, or .1 or .2
{ 192.168.3/24;
{ 192.168.3/24;
{ 192.168.1/24; 192.168.2/24; }; }; };
// IF .4 or .5 THEN prefer that net
{ { 192.168.4/24; 192.168.5/24; };
};
};
The following example illlustrates reasonable behavior for the local host and hosts on directly connected networks. Responses sent to queries from the local host favor any of the directly connected networks. Responses sent to queries from any other hosts on a directly connected network prefer addresses on that same network. Responses to other queries are not sorted.
sortlist {
{ localhost; localnets; };
{ localnets; };
};
4.2.16.13. RRset Ordering¶
Note
While alternating the order of records in a DNS response between subsequent queries is a known load distribution technique, certain caveats apply (mostly stemming from caching) which usually make it a suboptimal choice for load balancing purposes when used on its own.
The rrset-order
statement permits configuration of the ordering of
the records in a multiple-record response. See also:
The sortlist Statement.
Each rule in an rrset-order
statement is defined as follows:
[class <class_name>] [type <type_name>] [name "<domain_name>"] order <ordering>
The default qualifiers for each rule are:
- If no
class
is specified, the default isANY
.- If no
type
is specified, the default isANY
.- If no
name
is specified, the default is*
(asterisk).
<domain_name>
only matches the name itself, not any of its
subdomains. To make a rule match all subdomains of a given name, a
wildcard name (*.<domain_name>
) must be used. Note that
*.<domain_name>
does not match <domain_name>
itself; to
specify RRset ordering for a name and all of its subdomains, two
separate rules must be defined: one for <domain_name>
and one for
*.<domain_name>
.
The legal values for <ordering>
are:
fixed
- Records are returned in the order they are defined in the zone file.
Note
The fixed
option is only available if BIND is configured with
--enable-fixed-rrset
at compile time.
random
- Records are returned in a random order.
cyclic
- Records are returned in a cyclic round-robin order, rotating by one record per query.
none
- Records are returned in the order they were retrieved from the database. This order is indeterminate, but remains consistent as long as the database is not modified.
The default RRset order used depends on whether any rrset-order
statements are present in the configuration file used by named
:
- If no
rrset-order
statement is present in the configuration file, the implicit default is to return all records inrandom
order.- If any
rrset-order
statements are present in the configuration file, but no ordering rule specified in these statements matches a given RRset, the default order for that RRset isnone
.
Note that if multiple rrset-order
statements are present in the
configuration file (at both the options
and view
levels), they
are not combined; instead, the more-specific one (view
) replaces
the less-specific one (options
).
If multiple rules within a single rrset-order
statement match a
given RRset, the first matching rule is applied.
Example:
rrset-order {
type A name "foo.isc.org" order random;
type AAAA name "foo.isc.org" order cyclic;
name "bar.isc.org" order fixed;
name "*.bar.isc.org" order random;
name "*.baz.isc.org" order cyclic;
};
With the above configuration, the following RRset ordering is used:
QNAME | QTYPE | RRset Order |
---|---|---|
foo.isc.org |
A |
random |
foo.isc.org |
AAAA |
cyclic |
foo.isc.org |
TXT |
none |
sub.foo.isc.org |
all | none |
bar.isc.org |
all | fixed |
sub.bar.isc.org |
all | random |
baz.isc.org |
all | none |
sub.baz.isc.org |
all | cyclic |
4.2.16.14. Tuning¶
lame-ttl
- This is always set to 0. More information is available in the security advisory for CVE-2021-25219.
servfail-ttl
This sets the number of seconds to cache a SERVFAIL response due to DNSSEC validation failure or other general server failure. If set to
0
, SERVFAIL caching is disabled. The SERVFAIL cache is not consulted if a query has the CD (Checking Disabled) bit set; this allows a query that failed due to DNSSEC validation to be retried without waiting for the SERVFAIL TTL to expire.The maximum value is
30
seconds; any higher value is silently reduced. The default is1
second.min-ncache-ttl
To reduce network traffic and increase performance, the server stores negative answers.
min-ncache-ttl
is used to set a minimum retention time for these answers in the server, in seconds. For convenience, TTL-style time-unit suffixes may be used to specify the value. It also accepts ISO 8601 duration formats.The default
min-ncache-ttl
is0
seconds.min-ncache-ttl
cannot exceed 90 seconds and is truncated to 90 seconds if set to a greater value.min-cache-ttl
This sets the minimum time for which the server caches ordinary (positive) answers, in seconds. For convenience, TTL-style time-unit suffixes may be used to specify the value. It also accepts ISO 8601 duration formats.
The default
min-cache-ttl
is0
seconds.min-cache-ttl
cannot exceed 90 seconds and is truncated to 90 seconds if set to a greater value.max-ncache-ttl
To reduce network traffic and increase performance, the server stores negative answers.
max-ncache-ttl
is used to set a maximum retention time for these answers in the server, in seconds. For convenience, TTL-style time-unit suffixes may be used to specify the value. It also accepts ISO 8601 duration formats.The default
max-ncache-ttl
is 10800 seconds (3 hours).max-ncache-ttl
cannot exceed 7 days and is silently truncated to 7 days if set to a greater value.max-cache-ttl
This sets the maximum time for which the server caches ordinary (positive) answers, in seconds. For convenience, TTL-style time-unit suffixes may be used to specify the value. It also accepts ISO 8601 duration formats.
The default
max-cache-ttl
is 604800 (one week). A value of zero may cause all queries to return SERVFAIL, because of lost caches of intermediate RRsets (such as NS and glue AAAA/A records) in the resolution process.max-stale-ttl
If retaining stale RRsets in cache is enabled, and returning of stale cached answers is also enabled,
max-stale-ttl
sets the maximum time for which the server retains records past their normal expiry to return them as stale records, when the servers for those records are not reachable. The default is 1 day. The minimum allowed is 1 second; a value of 0 is updated silently to 1 second.For stale answers to be returned, the retaining of them in cache must be enabled via the configuration option
stale-cache-enable
, and returning cached answers must be enabled, either in the configuration file using thestale-answer-enable
option or by callingrndc serve-stale on
.When
stale-cache-enable
is set tono
, setting themax-stale-ttl
has no effect, the value ofmax-cache-ttl
will be0
in such case.resolver-nonbackoff-tries
- This specifies how many retries occur before exponential backoff kicks in. The
default is
3
. resolver-retry-interval
- This sets the base retry interval in milliseconds. The default is
800
. sig-validity-interval
this specifies the upper bound of the number of days that RRSIGs generated by
named
are valid; the default is30
days, with a maximum of 3660 days (10 years). The optional second value specifies the minimum bound on those RRSIGs and also determines how long before expirynamed
starts regenerating those RRSIGs. The default value for the lower bound is 1/4 of the upper bound; it is expressed in days if the upper bound is greater than 7, and hours if it is less than or equal to 7 days.When new RRSIGs are generated, the length of time is randomly chosen between these two limits, to spread out the re-signing load. When RRSIGs are re-generated, the upper bound is used, with a small amount of jitter added. New RRSIGs are generated by a number of processes, including the processing of UPDATE requests (ref:dynamic_update), the addition and removal of records via in-line signing, and the initial signing of a zone.
The signature inception time is unconditionally set to one hour before the current time, to allow for a limited amount of clock skew.
The
sig-validity-interval
can be overridden for DNSKEY records by settingdnskey-sig-validity
.The
sig-validity-interval
should be at least several multiples of the SOA expire interval, to allow for reasonable interaction between the various timer and expiry dates.dnskey-sig-validity
- This specifies the number of days into the future when DNSSEC signatures
that are automatically generated for DNSKEY RRsets as a result of
dynamic updates (Dynamic Update) will expire.
If set to a non-zero value, this overrides the value set by
sig-validity-interval
. The default is zero, meaningsig-validity-interval
is used. The maximum value is 3660 days (10 years), and higher values are rejected. sig-signing-nodes
- This specifies the maximum number of nodes to be examined in each quantum,
when signing a zone with a new DNSKEY. The default is
100
. sig-signing-signatures
- This specifies a threshold number of signatures that terminates
processing a quantum, when signing a zone with a new DNSKEY. The
default is
10
. sig-signing-type
This specifies a private RDATA type to be used when generating signing-state records. The default is
65534
.This parameter may be removed in a future version, once there is a standard type.
Signing-state records are used internally by
named
to track the current state of a zone-signing process, i.e., whether it is still active or has been completed. The records can be inspected using the commandrndc signing -list zone
. Oncenamed
has finished signing a zone with a particular key, the signing-state record associated with that key can be removed from the zone by runningrndc signing -clear keyid/algorithm zone
. To clear all of the completed signing-state records for a zone, userndc signing -clear all zone
.min-refresh-time
;max-refresh-time
;min-retry-time
;max-retry-time
These options control the server’s behavior on refreshing a zone (querying for SOA changes) or retrying failed transfers. Usually the SOA values for the zone are used, up to a hard-coded maximum expiry of 24 weeks. However, these values are set by the primary, giving secondary server administrators little control over their contents.
These options allow the administrator to set a minimum and maximum refresh and retry time in seconds per-zone, per-view, or globally. These options are valid for secondary and stub zones, and clamp the SOA refresh and retry times to the specified values.
The following defaults apply:
min-refresh-time
300 seconds,max-refresh-time
2419200 seconds (4 weeks),min-retry-time
500 seconds, andmax-retry-time
1209600 seconds (2 weeks).edns-udp-size
This sets the maximum advertised EDNS UDP buffer size, in bytes, to control the size of packets received from authoritative servers in response to recursive queries. Valid values are 512 to 4096; values outside this range are silently adjusted to the nearest value within it. The default value is 1232.
The usual reason for setting
edns-udp-size
to a non-default value is to get UDP answers to pass through broken firewalls that block fragmented packets and/or block UDP DNS packets that are greater than 512 bytes.When
named
first queries a remote server, it advertises a UDP buffer size of 1232.Query timeouts observed for any given server affect the buffer size advertised in queries sent to that server. Depending on observed packet dropping patterns, the query is retried over TCP. Per-server EDNS statistics are only retained in memory for the lifetime of a given server’s ADB entry.
The
named
now sets the DON’T FRAGMENT flag on outgoing UDP packets. According to the measurements done by multiple parties this should not be causing any operational problems as most of the Internet “core” is able to cope with IP message sizes between 1400-1500 bytes, the 1232 size was picked as a conservative minimal number that could be changed by the DNS operator to a estimated path MTU minus the estimated header space. In practice, the smallest MTU witnessed in the operational DNS community is 1500 octets, the Ethernet maximum payload size, so a a useful default for maximum DNS/UDP payload size on reliable networks would be 1432.Any server-specific
edns-udp-size
setting has precedence over all the above rules.max-udp-size
This sets the maximum EDNS UDP message size that
named
sends, in bytes. Valid values are 512 to 4096; values outside this range are silently adjusted to the nearest value within it. The default value is 1232.This value applies to responses sent by a server; to set the advertised buffer size in queries, see
edns-udp-size
.The usual reason for setting
max-udp-size
to a non-default value is to allow UDP answers to pass through broken firewalls that block fragmented packets and/or block UDP packets that are greater than 512 bytes. This is independent of the advertised receive buffer (edns-udp-size
).Setting this to a low value encourages additional TCP traffic to the name server.
masterfile-format
This specifies the file format of zone files (see Additional File Formats for details). The default value is
text
, which is the standard textual representation, except for secondary zones, in which the default value israw
. Files in formats other thantext
are typically expected to be generated by thenamed-compilezone
tool, or dumped bynamed
.Note that when a zone file in a format other than
text
is loaded,named
may omit some of the checks which are performed for a file intext
format. For example,check-names
only applies when loading zones intext
format, andmax-zone-ttl
only applies totext
andraw
. Zone files in binary formats should be generated with the same check level as that specified in thenamed
configuration file.When configured in
options
, this statement sets themasterfile-format
for all zones, but it can be overridden on a per-zone or per-view basis by including amasterfile-format
statement within thezone
orview
block in the configuration file.masterfile-style
This specifies the formatting of zone files during dump, when the
masterfile-format
istext
. This option is ignored with any othermasterfile-format
.When set to
relative
, records are printed in a multi-line format, with owner names expressed relative to a shared origin. When set tofull
, records are printed in a single-line format with absolute owner names. Thefull
format is most suitable when a zone file needs to be processed automatically by a script. Therelative
format is more human-readable, and is thus suitable when a zone is to be edited by hand. The default isrelative
.max-recursion-depth
- This sets the maximum number of levels of recursion that are permitted at any one time while servicing a recursive query. Resolving a name may require looking up a name server address, which in turn requires resolving another name, etc.; if the number of recursions exceeds this value, the recursive query is terminated and returns SERVFAIL. The default is 7.
max-recursion-queries
- This sets the maximum number of iterative queries that may be sent while servicing a recursive query. If more queries are sent, the recursive query is terminated and returns SERVFAIL. The default is 100.
notify-delay
This sets the delay, in seconds, between sending sets of NOTIFY messages for a zone. Whenever a NOTIFY message is sent for a zone, a timer will be set for this duration. If the zone is updated again before the timer expires, the NOTIFY for that update will be postponed. The default is 5 seconds.
The overall rate at which NOTIFY messages are sent for all zones is controlled by
notify-rate
.max-rsa-exponent-size
- This sets the maximum RSA exponent size, in bits, that is accepted when validating. Valid values are 35 to 4096 bits. The default, zero, is also accepted and is equivalent to 4096.
prefetch
When a query is received for cached data which is to expire shortly,
named
can refresh the data from the authoritative server immediately, ensuring that the cache always has an answer available.prefetch
specifies the “trigger” TTL value at which prefetch of the current query takes place; when a cache record with a lower TTL value is encountered during query processing, it is refreshed. Valid trigger TTL values are 1 to 10 seconds. Values larger than 10 seconds are silently reduced to 10. Setting a trigger TTL to zero causes prefetch to be disabled. The default trigger TTL is2
.An optional second argument specifies the “eligibility” TTL: the smallest original TTL value that is accepted for a record to be eligible for prefetching. The eligibility TTL must be at least six seconds longer than the trigger TTL; if not,
named
silently adjusts it upward. The default eligibility TTL is9
.v6-bias
- When determining the next name server to try, this indicates by how many
milliseconds to prefer IPv6 name servers. The default is
50
milliseconds. tcp-receive-buffer
;udp-receive-buffer
- These options control the operating system’s receive buffer sizes
(
SO_RCVBUF
) for TCP and UDP sockets, respectively. Buffering at the operating system level can prevent packet drops during brief load spikes, but if the buffer size is set too high, a running server could get clogged with outstanding queries that have already timed out. The default is0
, which means the operating system’s default value should be used. The minimum configurable value is4096
; any nonzero value lower than that is silently raised. The maximum value is determined by the kernel, and values exceeding the maximum are silently reduced. tcp-send-buffer
;udp-send-buffer
- These options control the operating system’s send buffer sizes
(
SO_SNDBUF
) for TCP and UDP sockets, respectively. Buffering at the operating system level can prevent packet drops during brief load spikes, but if the buffer size is set too high, a running server could get clogged with outstanding queries that have already timed out. The default is0
, which means the operating system’s default value should be used. The minimum configurable value is4096
; any nonzero value lower than that is silently raised. The maximum value is determined by the kernel, and values exceeding the maximum are silently reduced.
4.2.16.15. Built-in Server Information Zones¶
The server provides some helpful diagnostic information through a number
of built-in zones under the pseudo-top-level-domain bind
in the
CHAOS
class. These zones are part of a built-in view
(see view Statement Grammar) of class CHAOS
, which is
separate from the default view of class IN
. Most global
configuration options (allow-query
, etc.) apply to this view,
but some are locally overridden: notify
, recursion
, and
allow-new-zones
are always set to no
, and rate-limit
is set
to allow three responses per second.
To disable these zones, use the options below or hide the
built-in CHAOS
view by defining an explicit view of class CHAOS
that matches all clients.
version
This is the version the server should report via a query of the name
version.bind
with typeTXT
and classCHAOS
. The default is the real version number of this server. Specifyingversion none
disables processing of the queries.Setting
version
to any value (includingnone
) also disables queries forauthors.bind TXT CH
.hostname
- This is the hostname the server should report via a query of the name
hostname.bind
with typeTXT
and classCHAOS
. This defaults to the hostname of the machine hosting the name server, as found by thegethostname()
function. The primary purpose of such queries is to identify which of a group of anycast servers is actually answering the queries. Specifyinghostname none;
disables processing of the queries. server-id
- This is the ID the server should report when receiving a Name Server
Identifier (NSID) query, or a query of the name
ID.SERVER
with typeTXT
and classCHAOS
. The primary purpose of such queries is to identify which of a group of anycast servers is actually answering the queries. Specifyingserver-id none;
disables processing of the queries. Specifyingserver-id hostname;
causesnamed
to use the hostname as found by thegethostname()
function. The defaultserver-id
isnone
.
4.2.16.16. Built-in Empty Zones¶
The named
server has some built-in empty zones, for SOA and NS records
only. These are for zones that should normally be answered locally and for
which queries should not be sent to the Internet’s root servers. The
official servers that cover these namespaces return NXDOMAIN responses
to these queries. In particular, these cover the reverse namespaces for
addresses from RFC 1918, RFC 4193, RFC 5737, and RFC 6598. They also
include the reverse namespace for the IPv6 local address (locally assigned),
IPv6 link local addresses, the IPv6 loopback address, and the IPv6
unknown address.
The server attempts to determine if a built-in zone already exists or is active (covered by a forward-only forwarding declaration) and does not create an empty zone if either is true.
The current list of empty zones is:
- 10.IN-ADDR.ARPA
- 16.172.IN-ADDR.ARPA
- 17.172.IN-ADDR.ARPA
- 18.172.IN-ADDR.ARPA
- 19.172.IN-ADDR.ARPA
- 20.172.IN-ADDR.ARPA
- 21.172.IN-ADDR.ARPA
- 22.172.IN-ADDR.ARPA
- 23.172.IN-ADDR.ARPA
- 24.172.IN-ADDR.ARPA
- 25.172.IN-ADDR.ARPA
- 26.172.IN-ADDR.ARPA
- 27.172.IN-ADDR.ARPA
- 28.172.IN-ADDR.ARPA
- 29.172.IN-ADDR.ARPA
- 30.172.IN-ADDR.ARPA
- 31.172.IN-ADDR.ARPA
- 168.192.IN-ADDR.ARPA
- 64.100.IN-ADDR.ARPA
- 65.100.IN-ADDR.ARPA
- 66.100.IN-ADDR.ARPA
- 67.100.IN-ADDR.ARPA
- 68.100.IN-ADDR.ARPA
- 69.100.IN-ADDR.ARPA
- 70.100.IN-ADDR.ARPA
- 71.100.IN-ADDR.ARPA
- 72.100.IN-ADDR.ARPA
- 73.100.IN-ADDR.ARPA
- 74.100.IN-ADDR.ARPA
- 75.100.IN-ADDR.ARPA
- 76.100.IN-ADDR.ARPA
- 77.100.IN-ADDR.ARPA
- 78.100.IN-ADDR.ARPA
- 79.100.IN-ADDR.ARPA
- 80.100.IN-ADDR.ARPA
- 81.100.IN-ADDR.ARPA
- 82.100.IN-ADDR.ARPA
- 83.100.IN-ADDR.ARPA
- 84.100.IN-ADDR.ARPA
- 85.100.IN-ADDR.ARPA
- 86.100.IN-ADDR.ARPA
- 87.100.IN-ADDR.ARPA
- 88.100.IN-ADDR.ARPA
- 89.100.IN-ADDR.ARPA
- 90.100.IN-ADDR.ARPA
- 91.100.IN-ADDR.ARPA
- 92.100.IN-ADDR.ARPA
- 93.100.IN-ADDR.ARPA
- 94.100.IN-ADDR.ARPA
- 95.100.IN-ADDR.ARPA
- 96.100.IN-ADDR.ARPA
- 97.100.IN-ADDR.ARPA
- 98.100.IN-ADDR.ARPA
- 99.100.IN-ADDR.ARPA
- 100.100.IN-ADDR.ARPA
- 101.100.IN-ADDR.ARPA
- 102.100.IN-ADDR.ARPA
- 103.100.IN-ADDR.ARPA
- 104.100.IN-ADDR.ARPA
- 105.100.IN-ADDR.ARPA
- 106.100.IN-ADDR.ARPA
- 107.100.IN-ADDR.ARPA
- 108.100.IN-ADDR.ARPA
- 109.100.IN-ADDR.ARPA
- 110.100.IN-ADDR.ARPA
- 111.100.IN-ADDR.ARPA
- 112.100.IN-ADDR.ARPA
- 113.100.IN-ADDR.ARPA
- 114.100.IN-ADDR.ARPA
- 115.100.IN-ADDR.ARPA
- 116.100.IN-ADDR.ARPA
- 117.100.IN-ADDR.ARPA
- 118.100.IN-ADDR.ARPA
- 119.100.IN-ADDR.ARPA
- 120.100.IN-ADDR.ARPA
- 121.100.IN-ADDR.ARPA
- 122.100.IN-ADDR.ARPA
- 123.100.IN-ADDR.ARPA
- 124.100.IN-ADDR.ARPA
- 125.100.IN-ADDR.ARPA
- 126.100.IN-ADDR.ARPA
- 127.100.IN-ADDR.ARPA
- 0.IN-ADDR.ARPA
- 127.IN-ADDR.ARPA
- 254.169.IN-ADDR.ARPA
- 2.0.192.IN-ADDR.ARPA
- 100.51.198.IN-ADDR.ARPA
- 113.0.203.IN-ADDR.ARPA
- 255.255.255.255.IN-ADDR.ARPA
- 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.IP6.ARPA
- 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.IP6.ARPA
- 8.B.D.0.1.0.0.2.IP6.ARPA
- D.F.IP6.ARPA
- 8.E.F.IP6.ARPA
- 9.E.F.IP6.ARPA
- A.E.F.IP6.ARPA
- B.E.F.IP6.ARPA
- EMPTY.AS112.ARPA
- HOME.ARPA
Empty zones can be set at the view level and only apply to views of class IN. Disabled empty zones are only inherited from options if there are no disabled empty zones specified at the view level. To override the options list of disabled zones, disable the root zone at the view level. For example:
disable-empty-zone ".";
If using the address ranges covered here, reverse zones covering the addresses should already be in place. In practice this appears to not be the case, with many queries being made to the infrastructure servers for names in these spaces. So many, in fact, that sacrificial servers had to be deployed to channel the query load away from the infrastructure servers.
Note
The real parent servers for these zones should disable all empty zones under the parent zone they serve. For the real root servers, this is all built-in empty zones. This enables them to return referrals to deeper in the tree.
empty-server
- This specifies the server name that appears in the returned SOA record for empty zones. If none is specified, the zone’s name is used.
empty-contact
- This specifies the contact name that appears in the returned SOA record for empty zones. If none is specified, “.” is used.
empty-zones-enable
- This enables or disables all empty zones. By default, they are enabled.
disable-empty-zone
- This disables individual empty zones. By default, none are disabled. This option can be specified multiple times.
4.2.16.17. Content Filtering¶
BIND 9 provides the ability to filter out responses from external
DNS servers containing certain types of data in the answer section.
Specifically, it can reject address (A or AAAA) records if the
corresponding IPv4 or IPv6 addresses match the given
address_match_list
of the deny-answer-addresses
option. It can
also reject CNAME or DNAME records if the “alias” name (i.e., the CNAME
alias or the substituted query name due to DNAME) matches the given
namelist
of the deny-answer-aliases
option, where “match” means
the alias name is a subdomain of one of the name_list
elements. If
the optional namelist
is specified with except-from
, records
whose query name matches the list are accepted regardless of the
filter setting. Likewise, if the alias name is a subdomain of the
corresponding zone, the deny-answer-aliases
filter does not apply;
for example, even if “example.com” is specified for
deny-answer-aliases
,
www.example.com. CNAME xxx.example.com.
returned by an “example.com” server is accepted.
In the address_match_list
of the deny-answer-addresses
option,
only ip_addr
and ip_prefix
are meaningful; any key_id
is
silently ignored.
If a response message is rejected due to the filtering, the entire message is discarded without being cached, and a SERVFAIL error is returned to the client.
This filtering is intended to prevent “DNS rebinding attacks,” in which an attacker, in response to a query for a domain name the attacker controls, returns an IP address within the user’s own network or an alias name within the user’s own domain. A naive web browser or script could then serve as an unintended proxy, allowing the attacker to get access to an internal node of the local network that could not be externally accessed otherwise. See the paper available at https://dl.acm.org/doi/10.1145/1315245.1315298 for more details about these attacks.
For example, with a domain named “example.net” and an internal network using an IPv4 prefix 192.0.2.0/24, an administrator might specify the following rules:
deny-answer-addresses { 192.0.2.0/24; } except-from { "example.net"; };
deny-answer-aliases { "example.net"; };
If an external attacker let a web browser in the local network look up an IPv4 address of “attacker.example.com”, the attacker’s DNS server would return a response like this:
attacker.example.com. A 192.0.2.1
in the answer section. Since the rdata of this record (the IPv4 address) matches the specified prefix 192.0.2.0/24, this response would be ignored.
On the other hand, if the browser looked up a legitimate internal web server “www.example.net” and the following response were returned to the BIND 9 server:
www.example.net. A 192.0.2.2
it would be accepted, since the owner name “www.example.net” matches the
except-from
element, “example.net”.
Note that this is not really an attack on the DNS per se. In fact, there is nothing wrong with having an “external” name mapped to an “internal” IP address or domain name from the DNS point of view; it might actually be provided for a legitimate purpose, such as for debugging. As long as the mapping is provided by the correct owner, it either is not possible or does not make sense to detect whether the intent of the mapping is legitimate within the DNS. The “rebinding” attack must primarily be protected at the application that uses the DNS. For a large site, however, it may be difficult to protect all possible applications at once. This filtering feature is provided only to help such an operational environment; turning it on is generally discouraged unless there is no other choice and the attack is a real threat to applications.
Care should be particularly taken if using this option for addresses within 127.0.0.0/8. These addresses are obviously “internal,” but many applications conventionally rely on a DNS mapping from some name to such an address. Filtering out DNS records containing this address spuriously can break such applications.
4.2.16.18. Response Policy Zone (RPZ) Rewriting¶
BIND 9 includes a limited mechanism to modify DNS responses for requests analogous to email anti-spam DNS rejection lists. Responses can be changed to deny the existence of domains (NXDOMAIN), deny the existence of IP addresses for domains (NODATA), or contain other IP addresses or data.
Response policy zones are named in the response-policy
option for
the view, or among the global options if there is no response-policy
option for the view. Response policy zones are ordinary DNS zones
containing RRsets that can be queried normally if allowed. It is usually
best to restrict those queries with something like
allow-query { localhost; };
.
A response-policy
option can support multiple policy zones. To
maximize performance, a radix tree is used to quickly identify response
policy zones containing triggers that match the current query. This
imposes an upper limit of 64 on the number of policy zones in a single
response-policy
option; more than that is a configuration error.
Rules encoded in response policy zones are processed after those defined in Access Control. All queries from clients which are not permitted access to the resolver are answered with a status code of REFUSED, regardless of configured RPZ rules.
Five policy triggers can be encoded in RPZ records.
RPZ-CLIENT-IP
IP records are triggered by the IP address of the DNS client. Client IP address triggers are encoded in records that have owner names that are subdomains of
rpz-client-ip
, relativized to the policy zone origin name, and that encode an address or address block. IPv4 addresses are represented asprefixlength.B4.B3.B2.B1.rpz-client-ip
. The IPv4 prefix length must be between 1 and 32. All four bytes - B4, B3, B2, and B1 - must be present. B4 is the decimal value of the least significant byte of the IPv4 address as in IN-ADDR.ARPA.IPv6 addresses are encoded in a format similar to the standard IPv6 text representation,
prefixlength.W8.W7.W6.W5.W4.W3.W2.W1.rpz-client-ip
. Each of W8,…,W1 is a one- to four-digit hexadecimal number representing 16 bits of the IPv6 address as in the standard text representation of IPv6 addresses, but reversed as in IP6.ARPA. (Note that this representation of IPv6 addresses is different from IP6.ARPA, where each hex digit occupies a label.) All 8 words must be present except when one set of consecutive zero words is replaced with.zz.
, analogous to double colons (::) in standard IPv6 text encodings. The IPv6 prefix length must be between 1 and 128.QNAME
- QNAME policy records are triggered by query names of requests and targets of CNAME records resolved to generate the response. The owner name of a QNAME policy record is the query name relativized to the policy zone.
RPZ-IP
- IP triggers are IP addresses in an A or AAAA record in the ANSWER
section of a response. They are encoded like client-IP triggers,
except as subdomains of
rpz-ip
. RPZ-NSDNAME
NSDNAME triggers match names of authoritative servers for the query name, a parent of the query name, a CNAME for the query name, or a parent of a CNAME. They are encoded as subdomains of
rpz-nsdname
, relativized to the RPZ origin name. NSIP triggers match IP addresses in A and AAAA RRsets for domains that can be checked against NSDNAME policy records. Thensdname-enable
phrase turns NSDNAME triggers off or on for a single policy zone or for all zones.If authoritative name servers for the query name are not yet known,
named
recursively looks up the authoritative servers for the query name before applying an RPZ-NSDNAME rule, which can cause a processing delay. To speed up processing at the cost of precision, thensdname-wait-recurse
option can be used; when set tono
, RPZ-NSDNAME rules are only applied when authoritative servers for the query name have already been looked up and cached. If authoritative servers for the query name are not in the cache, the RPZ-NSDNAME rule is ignored, but the authoritative servers for the query name are looked up in the background and the rule is applied to subsequent queries. The default isyes
, meaning RPZ-NSDNAME rules are always applied, even if authoritative servers for the query name need to be looked up first.RPZ-NSIP
NSIP triggers match the IP addresses of authoritative servers. They are encoded like IP triggers, except as subdomains of
rpz-nsip
. NSDNAME and NSIP triggers are checked only for names with at leastmin-ns-dots
dots. The default value ofmin-ns-dots
is 1, to exclude top-level domains. Thensip-enable
phrase turns NSIP triggers off or on for a single policy zone or for all zones.If a name server’s IP address is not yet known,
named
recursively looks up the IP address before applying an RPZ-NSIP rule, which can cause a processing delay. To speed up processing at the cost of precision, thensip-wait-recurse
option can be used; when set tono
, RPZ-NSIP rules are only applied when a name server’s IP address has already been looked up and cached. If a server’s IP address is not in the cache, the RPZ-NSIP rule is ignored, but the address is looked up in the background and the rule is applied to subsequent queries. The default isyes
, meaning RPZ-NSIP rules are always applied, even if an address needs to be looked up first.
The query response is checked against all response policy zones, so two
or more policy records can be triggered by a response. Because DNS
responses are rewritten according to at most one policy record, a single
record encoding an action (other than DISABLED
actions) must be
chosen. Triggers, or the records that encode them, are chosen for
rewriting in the following order:
- Choose the triggered record in the zone that appears first in the response-policy option.
- Prefer CLIENT-IP to QNAME to IP to NSDNAME to NSIP triggers in a single zone.
- Among NSDNAME triggers, prefer the trigger that matches the smallest name under the DNSSEC ordering.
- Among IP or NSIP triggers, prefer the trigger with the longest prefix.
- Among triggers with the same prefix length, prefer the IP or NSIP trigger that matches the smallest IP address.
When the processing of a response is restarted to resolve DNAME or CNAME records and a policy record set has not been triggered, all response policy zones are again consulted for the DNAME or CNAME names and addresses.
RPZ record sets are any types of DNS record, except DNAME or DNSSEC, that
encode actions or responses to individual queries. Any of the policies
can be used with any of the triggers. For example, while the
TCP-only
policy is commonly used with client-IP
triggers, it can
be used with any type of trigger to force the use of TCP for responses
with owner names in a zone.
PASSTHRU
- The auto-acceptance policy is specified by a CNAME whose target is
rpz-passthru
. It causes the response to not be rewritten and is most often used to “poke holes” in policies for CIDR blocks. DROP
- The auto-rejection policy is specified by a CNAME whose target is
rpz-drop
. It causes the response to be discarded. Nothing is sent to the DNS client. TCP-Only
- The “slip” policy is specified by a CNAME whose target is
rpz-tcp-only
. It changes UDP responses to short, truncated DNS responses that require the DNS client to try again with TCP. It is used to mitigate distributed DNS reflection attacks. NXDOMAIN
- The “domain undefined” response is encoded by a CNAME whose target is the root domain (.).
NODATA
- The empty set of resource records is specified by a CNAME whose target
is the wildcard top-level domain (
*.
). It rewrites the response to NODATA or ANCOUNT=0. Local Data
A set of ordinary DNS records can be used to answer queries. Queries for record types not in the set are answered with NODATA.
A special form of local data is a CNAME whose target is a wildcard such as *.example.com. It is used as if an ordinary CNAME after the asterisk (*) has been replaced with the query name. This special form is useful for query logging in the walled garden’s authoritative DNS server.
All of the actions specified in all of the individual records in a
policy zone can be overridden with a policy
clause in the
response-policy
option. An organization using a policy zone provided
by another organization might use this mechanism to redirect domains to
its own walled garden.
GIVEN
- The placeholder policy says “do not override but perform the action specified in the zone.”
DISABLED
- The testing override policy causes policy zone records to do nothing but log what they would have done if the policy zone were not disabled. The response to the DNS query is written (or not) according to any triggered policy records that are not disabled. Disabled policy zones should appear first, because they are often not logged if a higher-precedence trigger is found first.
PASSTHRU
;DROP
;TCP-Only
;NXDOMAIN
;NODATA
- These settings each override the corresponding per-record policy.
CNAME domain
- This causes all RPZ policy records to act as if they were “cname domain” records.
By default, the actions encoded in a response policy zone are applied
only to queries that ask for recursion (RD=1). That default can be
changed for a single policy zone, or for all response policy zones in a view,
with a recursive-only no
clause. This feature is useful for serving
the same zone files both inside and outside an RFC 1918 cloud and using
RPZ to delete answers that would otherwise contain RFC 1918 values on
the externally visible name server or view.
Also by default, RPZ actions are applied only to DNS requests that
either do not request DNSSEC metadata (DO=0) or when no DNSSEC records
are available for the requested name in the original zone (not the response
policy zone). This default can be changed for all response policy zones
in a view with a break-dnssec yes
clause. In that case, RPZ actions
are applied regardless of DNSSEC. The name of the clause option reflects
the fact that results rewritten by RPZ actions cannot verify.
No DNS records are needed for a QNAME or Client-IP trigger; the name or
IP address itself is sufficient, so in principle the query name need not
be recursively resolved. However, not resolving the requested name can
leak the fact that response policy rewriting is in use, and that the name
is listed in a policy zone, to operators of servers for listed names. To
prevent that information leak, by default any recursion needed for a
request is done before any policy triggers are considered. Because
listed domains often have slow authoritative servers, this behavior can
cost significant time. The qname-wait-recurse no
option overrides
the default and enables that behavior when recursion cannot change a
non-error response. The option does not affect QNAME or client-IP
triggers in policy zones listed after other zones containing IP, NSIP,
and NSDNAME triggers, because those may depend on the A, AAAA, and NS
records that would be found during recursive resolution. It also does
not affect DNSSEC requests (DO=1) unless break-dnssec yes
is in use,
because the response would depend on whether RRSIG records were
found during resolution. Using this option can cause error responses
such as SERVFAIL to appear to be rewritten, since no recursion is being
done to discover problems at the authoritative server.
The dnsrps-enable yes
option turns on the DNS Response Policy Service
(DNSRPS) interface, if it has been compiled in named
using
configure --enable-dnsrps
.
The dnsrps-options
block provides additional RPZ configuration
settings, which are passed through to the DNSRPS provider library.
Multiple DNSRPS settings in an dnsrps-options
string should be
separated with semi-colons (;). The DNSRPS provider, librpz, is passed a
configuration string consisting of the dnsrps-options
text,
concatenated with settings derived from the response-policy
statement.
Note: the dnsrps-options
text should only include configuration
settings that are specific to the DNSRPS provider. For example, the
DNSRPS provider from Farsight Security takes options such as
dnsrpzd-conf
, dnsrpzd-sock
, and dnzrpzd-args
(for details of
these options, see the librpz
documentation). Other RPZ
configuration settings could be included in dnsrps-options
as well,
but if named
were switched back to traditional RPZ by setting
dnsrps-enable
to “no”, those options would be ignored.
The TTL of a record modified by RPZ policies is set from the TTL of the
relevant record in the policy zone. It is then limited to a maximum value.
The max-policy-ttl
clause changes the maximum number of seconds from its
default of 5. For convenience, TTL-style time-unit suffixes may be used
to specify the value. It also accepts ISO 8601 duration formats.
For example, an administrator might use this option statement:
response-policy { zone "badlist"; };
and this zone statement:
zone "badlist" {type primary; file "primary/badlist"; allow-query {none;}; };
with this zone file:
$TTL 1H
@ SOA LOCALHOST. named-mgr.example.com (1 1h 15m 30d 2h)
NS LOCALHOST.
; QNAME policy records. There are no periods (.) after the owner names.
nxdomain.domain.com CNAME . ; NXDOMAIN policy
*.nxdomain.domain.com CNAME . ; NXDOMAIN policy
nodata.domain.com CNAME *. ; NODATA policy
*.nodata.domain.com CNAME *. ; NODATA policy
bad.domain.com A 10.0.0.1 ; redirect to a walled garden
AAAA 2001:2::1
bzone.domain.com CNAME garden.example.com.
; do not rewrite (PASSTHRU) OK.DOMAIN.COM
ok.domain.com CNAME rpz-passthru.
; redirect x.bzone.domain.com to x.bzone.domain.com.garden.example.com
*.bzone.domain.com CNAME *.garden.example.com.
; IP policy records that rewrite all responses containing A records in 127/8
; except 127.0.0.1
8.0.0.0.127.rpz-ip CNAME .
32.1.0.0.127.rpz-ip CNAME rpz-passthru.
; NSDNAME and NSIP policy records
ns.domain.com.rpz-nsdname CNAME .
48.zz.2.2001.rpz-nsip CNAME .
; auto-reject and auto-accept some DNS clients
112.zz.2001.rpz-client-ip CNAME rpz-drop.
8.0.0.0.127.rpz-client-ip CNAME rpz-drop.
; force some DNS clients and responses in the example.com zone to TCP
16.0.0.1.10.rpz-client-ip CNAME rpz-tcp-only.
example.com CNAME rpz-tcp-only.
*.example.com CNAME rpz-tcp-only.
RPZ can affect server performance. Each configured response policy zone requires the server to perform one to four additional database lookups before a query can be answered. For example, a DNS server with four policy zones, each with all four kinds of response triggers (QNAME, IP, NSIP, and NSDNAME), requires a total of 17 times as many database lookups as a similar DNS server with no response policy zones. A BIND 9 server with adequate memory and one response policy zone with QNAME and IP triggers might achieve a maximum queries-per-second (QPS) rate about 20% lower. A server with four response policy zones with QNAME and IP triggers might have a maximum QPS rate about 50% lower.
Responses rewritten by RPZ are counted in the RPZRewrites
statistics.
The log
clause can be used to optionally turn off rewrite logging
for a particular response policy zone. By default, all rewrites are
logged.
The add-soa
option controls whether the RPZ’s SOA record is added to
the section for traceback of changes from this zone.
This can be set at the individual policy zone level or at the
response-policy level. The default is yes
.
Updates to RPZ zones are processed asynchronously; if there is more than
one update pending they are bundled together. If an update to a RPZ zone
(for example, via IXFR) happens less than min-update-interval
seconds after the most recent update, the changes are not
carried out until this interval has elapsed. The default is 60
seconds. For convenience, TTL-style time-unit suffixes may be used to
specify the value. It also accepts ISO 8601 duration formats.
4.2.16.19. Response Rate Limiting¶
Excessive, almost-identical UDP responses can be controlled by
configuring a rate-limit
clause in an options
or view
statement. This mechanism keeps authoritative BIND 9 from being used to
amplify reflection denial-of-service (DoS) attacks. Short BADCOOKIE errors or
truncated (TC=1) responses can be sent to provide rate-limited responses to
legitimate clients within a range of forged, attacked IP addresses.
Legitimate clients react to dropped responses by retrying,
to BADCOOKIE errors by including a server cookie when retrying,
and to truncated responses by switching to TCP.
This mechanism is intended for authoritative DNS servers. It can be used on recursive servers, but can slow applications such as SMTP servers (mail receivers) and HTTP clients (web browsers) that repeatedly request the same domains. When possible, closing “open” recursive servers is better.
Response rate limiting uses a “credit” or “token bucket” scheme. Each
combination of identical response and client has a conceptual “account”
that earns a specified number of credits every second. A prospective
response debits its account by one. Responses are dropped or truncated
while the account is negative. Responses are tracked within a rolling
window of time which defaults to 15 seconds, but which can be configured with
the window
option to any value from 1 to 3600 seconds (1 hour). The
account cannot become more positive than the per-second limit or more
negative than window
times the per-second limit. When the specified
number of credits for a class of responses is set to 0, those responses
are not rate-limited.
The notions of “identical response” and “DNS client” for rate limiting
are not simplistic. All responses to an address block are counted as if
to a single client. The prefix lengths of address blocks are specified
with ipv4-prefix-length
(default 24) and ipv6-prefix-length
(default 56).
All non-empty responses for a valid domain name (qname) and record type
(qtype) are identical and have a limit specified with
responses-per-second
(default 0 or no limit). All empty (NODATA)
responses for a valid domain, regardless of query type, are identical.
Responses in the NODATA class are limited by nodata-per-second
(default responses-per-second
). Requests for any and all undefined
subdomains of a given valid domain result in NXDOMAIN errors, and are
identical regardless of query type. They are limited by
nxdomains-per-second
(default responses-per-second
). This
controls some attacks using random names, but can be relaxed or turned
off (set to 0) on servers that expect many legitimate NXDOMAIN
responses, such as from anti-spam rejection lists. Referrals or delegations
to the server of a given domain are identical and are limited by
referrals-per-second
(default responses-per-second
).
Responses generated from local wildcards are counted and limited as if they were for the parent domain name. This controls flooding using random.wild.example.com.
All requests that result in DNS errors other than NXDOMAIN, such as
SERVFAIL and FORMERR, are identical regardless of requested name (qname)
or record type (qtype). This controls attacks using invalid requests or
distant, broken authoritative servers. By default the limit on errors is
the same as the responses-per-second
value, but it can be set
separately with errors-per-second
.
Many attacks using DNS involve UDP requests with forged source
addresses. Rate limiting prevents the use of BIND 9 to flood a network
with responses to requests with forged source addresses, but could let a
third party block responses to legitimate requests. There is a mechanism
that can answer some legitimate requests from a client whose address is
being forged in a flood. Setting slip
to 2 (its default) causes
every other UDP request without a valid server cookie to be answered with
a small response. The small size and reduced frequency, and resulting lack of
amplification, of “slipped” responses make them unattractive for
reflection DoS attacks. slip
must be between 0 and 10. A value of 0
does not “slip”; no small responses are sent due to rate limiting. Rather,
all responses are dropped. A value of 1 causes every response to slip;
values between 2 and 10 cause every nth response to slip.
If the request included a client cookie, then a “slipped” response is
a BADCOOKIE error with a server cookie, which allows a legitimate client
to include the server cookie to be exempted from the rate limiting
when it retries the request.
If the request did not include a cookie, then a “slipped” response is
a truncated (TC=1) response, which prompts a legitimate client to
switch to TCP and thus be exempted from the rate limiting. Some error
responses, including REFUSED and SERVFAIL, cannot be replaced with
truncated responses and are instead leaked at the slip
rate.
(Note: dropped responses from an authoritative server may reduce the
difficulty of a third party successfully forging a response to a
recursive resolver. The best security against forged responses is for
authoritative operators to sign their zones using DNSSEC and for
resolver operators to validate the responses. When this is not an
option, operators who are more concerned with response integrity than
with flood mitigation may consider setting slip
to 1, causing all
rate-limited responses to be truncated rather than dropped. This reduces
the effectiveness of rate-limiting against reflection attacks.)
When the approximate query-per-second rate exceeds the qps-scale
value, the responses-per-second
, errors-per-second
,
nxdomains-per-second
, and all-per-second
values are reduced by
the ratio of the current rate to the qps-scale
value. This feature
can tighten defenses during attacks. For example, with
qps-scale 250; responses-per-second 20;
and a total query rate of
1000 queries/second for all queries from all DNS clients including via
TCP, then the effective responses/second limit changes to (250/1000)*20,
or 5. Responses to requests that included a valid server cookie,
and responses sent via TCP, are not limited but are counted to compute
the query-per-second rate.
Communities of DNS clients can be given their own parameters or no
rate limiting by putting rate-limit
statements in view
statements
instead of in the global option
statement. A rate-limit
statement
in a view replaces, rather than supplements, a rate-limit
statement among the main options. DNS clients within a view can be
exempted from rate limits with the exempt-clients
clause.
UDP responses of all kinds can be limited with the all-per-second
phrase. This rate limiting is unlike the rate limiting provided by
responses-per-second
, errors-per-second
, and
nxdomains-per-second
on a DNS server, which are often invisible to
the victim of a DNS reflection attack. Unless the forged requests of the
attack are the same as the legitimate requests of the victim, the
victim’s requests are not affected. Responses affected by an
all-per-second
limit are always dropped; the slip
value has no
effect. An all-per-second
limit should be at least 4 times as large
as the other limits, because single DNS clients often send bursts of
legitimate requests. For example, the receipt of a single mail message
can prompt requests from an SMTP server for NS, PTR, A, and AAAA records
as the incoming SMTP/TCP/IP connection is considered. The SMTP server
can need additional NS, A, AAAA, MX, TXT, and SPF records as it
considers the SMTP Mail From
command. Web browsers often repeatedly
resolve the same names that are duplicated in HTML <IMG> tags in a page.
all-per-second
is similar to the rate limiting offered by firewalls
but is often inferior. Attacks that justify ignoring the contents of DNS
responses are likely to be attacks on the DNS server itself. They
usually should be discarded before the DNS server spends resources making
TCP connections or parsing DNS requests, but that rate limiting must be
done before the DNS server sees the requests.
The maximum size of the table used to track requests and rate-limit
responses is set with max-table-size
. Each entry in the table is
between 40 and 80 bytes. The table needs approximately as many entries
as the number of requests received per second. The default is 20,000. To
reduce the cold start of growing the table, min-table-size
(default 500)
can set the minimum table size. Enable rate-limit
category
logging to monitor expansions of the table and inform choices for the
initial and maximum table size.
Use log-only yes
to test rate-limiting parameters without actually
dropping any requests.
Responses dropped by rate limits are included in the RateDropped
and
QryDropped
statistics. Responses that are truncated by rate limits are
included in RateSlipped
and RespTruncated
.
4.2.16.20. NXDOMAIN Redirection¶
named
supports NXDOMAIN redirection via two methods:
- Redirect zone (zone Statement Grammar)
- Redirect namespace
With either method, when named
gets an NXDOMAIN response it examines a
separate namespace to see if the NXDOMAIN response should be replaced
with an alternative response.
With a redirect zone (zone "." { type redirect; };
), the data used
to replace the NXDOMAIN is held in a single zone which is not part of
the normal namespace. All the redirect information is contained in the
zone; there are no delegations.
With a redirect namespace (option { nxdomain-redirect <suffix> };
),
the data used to replace the NXDOMAIN is part of the normal namespace
and is looked up by appending the specified suffix to the original
query name. This roughly doubles the cache required to process
NXDOMAIN responses, as both the original NXDOMAIN response and the
replacement data (or an NXDOMAIN indicating that there is no
replacement) must be stored.
If both a redirect zone and a redirect namespace are configured, the redirect zone is tried first.
4.2.17. server
Statement Grammar¶
server <netprefix> {
bogus <boolean>;
edns <boolean>;
edns-udp-size <integer>;
edns-version <integer>;
keys <server_key>;
max-udp-size <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [
dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ]
[ dscp <integer> ];
padding <integer>;
provide-ixfr <boolean>;
query-source ( ( [ address ] ( <ipv4_address> | * ) [ port (
<integer> | * ) ] ) | ( [ [ address ] ( <ipv4_address> | * ) ]
port ( <integer> | * ) ) ) [ dscp <integer> ];
query-source-v6 ( ( [ address ] ( <ipv6_address> | * ) [ port (
<integer> | * ) ] ) | ( [ [ address ] ( <ipv6_address> | * ) ]
port ( <integer> | * ) ) ) [ dscp <integer> ];
request-expire <boolean>;
request-ixfr <boolean>;
request-nsid <boolean>;
send-cookie <boolean>;
tcp-keepalive <boolean>;
tcp-only <boolean>;
transfer-format ( many-answers | one-answer );
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [
dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * )
] [ dscp <integer> ];
transfers <integer>;
};
4.2.18. server
Statement Definition and Usage¶
The server
statement defines characteristics to be associated with a
remote name server. If a prefix length is specified, then a range of
servers is covered. Only the most specific server clause applies,
regardless of the order in named.conf
.
The server
statement can occur at the top level of the configuration
file or inside a view
statement. If a view
statement contains
one or more server
statements, only those apply to the view and any
top-level ones are ignored. If a view contains no server
statements,
any top-level server
statements are used as defaults.
If a remote server is giving out bad data, marking it
as bogus prevents further queries to it. The default value of
bogus
is no
.
The provide-ixfr
clause determines whether the local server, acting
as primary, responds with an incremental zone transfer when the given
remote server, a secondary, requests it. If set to yes
, incremental
transfer is provided whenever possible. If set to no
, all
transfers to the remote server are non-incremental. If not set, the
value of the provide-ixfr
option in the view or global options block
is used as a default.
The request-ixfr
clause determines whether the local server, acting
as a secondary, requests incremental zone transfers from the given
remote server, a primary. If not set, the value of the request-ixfr
option in the view or global options block is used as a default. It may
also be set in the zone block; if set there, it overrides the
global or view setting for that zone.
IXFR requests to servers that do not support IXFR automatically
fall back to AXFR. Therefore, there is no need to manually list which
servers support IXFR and which ones do not; the global default of
yes
should always work. The purpose of the provide-ixfr
and
request-ixfr
clauses is to make it possible to disable the use of
IXFR even when both primary and secondary claim to support it: for example, if
one of the servers is buggy and crashes or corrupts data when IXFR is
used.
The request-expire
clause determines whether the local server, when
acting as a secondary, requests the EDNS EXPIRE value. The EDNS EXPIRE
value indicates the remaining time before the zone data expires and
needs to be refreshed. This is used when a secondary server transfers
a zone from another secondary server; when transferring from the
primary, the expiration timer is set from the EXPIRE field of the SOA
record instead. The default is yes
.
The edns
clause determines whether the local server attempts to
use EDNS when communicating with the remote server. The default is
yes
.
The edns-udp-size
option sets the EDNS UDP size that is advertised
by named
when querying the remote server. Valid values are 512 to
4096 bytes; values outside this range are silently adjusted to the
nearest value within it. This option is useful when
advertising a different value to this server than the value advertised
globally: for example, when there is a firewall at the remote site that
is blocking large replies. Note: currently, this sets a single UDP size
for all packets sent to the server; named
does not deviate from this
value. This differs from the behavior of edns-udp-size
in
options
or view
statements, where it specifies a maximum value.
The server
statement behavior may be brought into conformance with
the options
/view
behavior in future releases.
The edns-version
option sets the maximum EDNS VERSION that is
sent to the server(s) by the resolver. The actual EDNS version sent is
still subject to normal EDNS version-negotiation rules (see RFC 6891),
the maximum EDNS version supported by the server, and any other
heuristics that indicate that a lower version should be sent. This
option is intended to be used when a remote server reacts badly to a
given EDNS version or higher; it should be set to the highest version
the remote server is known to support. Valid values are 0 to 255; higher
values are silently adjusted. This option is not needed until
higher EDNS versions than 0 are in use.
The max-udp-size
option sets the maximum EDNS UDP message size
named
sends. Valid values are 512 to 4096 bytes; values outside
this range are silently adjusted. This option is useful when
there is a firewall that is blocking large replies from
named
.
The padding
option adds EDNS Padding options to outgoing messages,
increasing the packet size to a multiple of the specified block size.
Valid block sizes range from 0 (the default, which disables the use of
EDNS Padding) to 512 bytes. Larger values are reduced to 512, with a
logged warning. Note: this option is not currently compatible with no
TSIG or SIG(0), as the EDNS OPT record containing the padding would have
to be added to the packet after it had already been signed.
The tcp-only
option sets the transport protocol to TCP. The default
is to use the UDP transport and to fallback on TCP only when a truncated
response is received.
The tcp-keepalive
option adds EDNS TCP keepalive to messages sent
over TCP. Note that currently idle timeouts in responses are ignored.
The server supports two zone transfer methods. The first,
one-answer
, uses one DNS message per resource record transferred.
many-answers
packs as many resource records as possible into a single
message, which is more efficient.
It is possible to specify which method to use for a server via the
transfer-format
option; if not set there, the
transfer-format
specified by the options
statement is used.
transfers
is used to limit the number of concurrent inbound zone
transfers from the specified server. If no transfers
clause is
specified, the limit is set according to the transfers-per-ns
option.
The keys
clause identifies a key_id
defined by the key
statement, to be used for transaction security (see TSIG)
when talking to the remote server. When a request is sent to the remote
server, a request signature is generated using the key specified
here and appended to the message. A request originating from the remote
server is not required to be signed by this key.
Only a single key per server is currently supported.
The transfer-source
and transfer-source-v6
clauses specify the
IPv4 and IPv6 source address, respectively, to be used for zone transfer with the
remote server. For an IPv4 remote server, only
transfer-source
can be specified. Similarly, for an IPv6 remote
server, only transfer-source-v6
can be specified. For more details,
see the description of transfer-source
and transfer-source-v6
in
Zone Transfers.
The notify-source
and notify-source-v6
clauses specify the IPv4
and IPv6 source address, respectively, to be used for notify messages sent to remote
servers. For an IPv4 remote server, only notify-source
can be specified. Similarly, for an IPv6 remote server, only
notify-source-v6
can be specified.
The query-source
and query-source-v6
clauses specify the IPv4
and IPv6 source address, respectively, to be used for queries sent to remote servers.
For an IPv4 remote server, only query-source
can be
specified. Similarly, for an IPv6 remote server, only
query-source-v6
can be specified.
The request-nsid
clause determines whether the local server adds
an NSID EDNS option to requests sent to the server. This overrides
request-nsid
set at the view or option level.
The send-cookie
clause determines whether the local server adds
a COOKIE EDNS option to requests sent to the server. This overrides
send-cookie
set at the view or option level. The named
server
may determine that COOKIE is not supported by the remote server and not
add a COOKIE EDNS option to requests.
4.2.19. statistics-channels
Statement Grammar¶
statistics-channels {
inet ( <ipv4_address> | <ipv6_address> |
* ) [ port ( <integer> | * ) ] [
allow { <address_match_element>; ...
} ];
};
4.2.20. statistics-channels
Statement Definition and Usage¶
The statistics-channels
statement declares communication channels to
be used by system administrators to get access to statistics information
on the name server.
This statement is intended to be flexible to support multiple communication
protocols in the future, but currently only HTTP access is supported. It
requires that BIND 9 be compiled with libxml2 and/or json-c (also known
as libjson0); the statistics-channels
statement is still accepted
even if it is built without the library, but any HTTP access fails
with an error.
An inet
control channel is a TCP socket listening at the specified
ip_port
on the specified ip_addr
, which can be an IPv4 or IPv6
address. An ip_addr
of *
(asterisk) is interpreted as the IPv4
wildcard address; connections are accepted on any of the system’s
IPv4 addresses. To listen on the IPv6 wildcard address, use an
ip_addr
of ::
.
If no port is specified, port 80 is used for HTTP channels. The asterisk
(*
) cannot be used for ip_port
.
Attempts to open a statistics channel are restricted by the
optional allow
clause. Connections to the statistics channel are
permitted based on the address_match_list
. If no allow
clause is
present, named
accepts connection attempts from any address; since
the statistics may contain sensitive internal information, it is highly
recommended to restrict the source of connection requests appropriately.
If no statistics-channels
statement is present, named
does not
open any communication channels.
The statistics are available in various formats and views, depending on the URI used to access them. For example, if the statistics channel is configured to listen on 127.0.0.1 port 8888, then the statistics are accessible in XML format at http://127.0.0.1:8888/ or http://127.0.0.1:8888/xml. A CSS file is included, which can format the XML statistics into tables when viewed with a stylesheet-capable browser, and into charts and graphs using the Google Charts API when using a JavaScript-capable browser.
Broken-out subsets of the statistics can be viewed at http://127.0.0.1:8888/xml/v3/status (server uptime and last reconfiguration time), http://127.0.0.1:8888/xml/v3/server (server and resolver statistics), http://127.0.0.1:8888/xml/v3/zones (zone statistics), http://127.0.0.1:8888/xml/v3/net (network status and socket statistics), http://127.0.0.1:8888/xml/v3/mem (memory manager statistics), http://127.0.0.1:8888/xml/v3/tasks (task manager statistics), and http://127.0.0.1:8888/xml/v3/traffic (traffic sizes).
The full set of statistics can also be read in JSON format at http://127.0.0.1:8888/json, with the broken-out subsets at http://127.0.0.1:8888/json/v1/status (server uptime and last reconfiguration time), http://127.0.0.1:8888/json/v1/server (server and resolver statistics), http://127.0.0.1:8888/json/v1/zones (zone statistics), http://127.0.0.1:8888/json/v1/net (network status and socket statistics), http://127.0.0.1:8888/json/v1/mem (memory manager statistics), http://127.0.0.1:8888/json/v1/tasks (task manager statistics), and http://127.0.0.1:8888/json/v1/traffic (traffic sizes).
4.2.21. tls
Statement Grammar¶
tls <string> {
cert-file <quoted_string>;
ciphers <string>;
dhparam-file <quoted_string>;
key-file <quoted_string>;
prefer-server-ciphers <boolean>;
protocols { <string>; ... };
session-tickets <boolean>;
};
4.2.22. tls
Statement Definition and Usage¶
The tls
statement is used to configure a TLS connection; this
configuration can then be referenced by a listen-on
or listen-on-v6
statement to cause named
to listen for incoming requests via TLS,
or in the primaries
statement for a zone of type secondary
to
cause zone transfer requests to be sent via TLS.
tls
can only be set at the top level of named.conf
.
The following options can be specified in a tls
statement:
key-file
- Path to a file containing the private TLS key to be used for the connection.
cert-file
- Path to a file containing the TLS certificate to be used for the connection.
dhparam-file
- Path to a file containing Diffie-Hellman parameters, which is needed to enable the cipher suites depending on the Diffie-Hellman ephemeral key exchange (DHE). Having these parameters specified is essential for enabling perfect forward secrecy capable ciphers in TLSv1.2.
protocols
- Allowed versions of the TLS protocol. TLS version 1.2 and higher are supported, depending on the cryptographic library in use. Multiple versions might be specified (e.g.
protocols { TLSv1.2; TLSv1.3; };
).ciphers
- Cipher list which defines allowed ciphers, such as
HIGH:!aNULL:!MD5:!SHA1:!SHA256:!SHA384
. The string must be formed according to the rules specified in the OpenSSL documentation (see https://www.openssl.org/docs/man1.1.1/man1/ciphers.html for details).prefer-server-ciphers
- Specifies that server ciphers should be preferred over client ones.
session-tickets
- Enables or disables session resumption through TLS session tickets, as defined in RFC5077. Disabling the stateless session tickets might be required in the cases when forward secrecy is needed, or the TLS certificate and key pair is planned to be used across multiple BIND instances.
Warning
TLS configuration is subject to change and incompatible changes might be introduced in the future. Users of TLS are encouraged to carefully read release notes when upgrading.
The options described above are used to control different aspects of TLS functioning. Thus, most of them have no well-defined default values, as these depend on the cryptographic library version in use and system-wide cryptographic policy. On the other hand, by specifying the needed options one could have a uniform configuration deployable across a range of platforms.
An example of privacy-oriented, perfect forward secrecy enabled configuration can be found below. It can be used as a starting point.
tls local-tls {
key-file "/path/to/key.pem";
cert-file "/path/to/fullchain_cert.pem";
dhparam-file "/path/to/dhparam.pem";
ciphers "HIGH:!kRSA:!aNULL:!eNULL:!RC4:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS:!SHA1:!SHA256:!SHA384";
prefer-server-ciphers yes;
session-tickets no;
};
A Diffie-Hellman parameters file can be generated using e.g. OpenSSL, like follows:
openssl dhparam -out /path/to/dhparam.pem <3072_or_4096>
Ensure that it gets generated on a machine with enough entropy from external sources (e.g. the computer you work on should be fine, the remote virtual machine or server might be not). These files do not contain any sensitive data and can be shared if required.
There are two built-in TLS connection configurations: ephemeral
,
uses a temporary key and certificate created for the current named
session only, and none
, which can be used when setting up an HTTP
listener with no encryption.
4.2.23. http
Statement Grammar¶
http <string> {
endpoints { <quoted_string>; ... };
listener-clients <integer>;
streams-per-connection <integer>;
};
4.2.24. http
Statement Definition and Usage¶
The http
statement is used to configure HTTP endpoints on which
to listen for DNS-over-HTTPS (DoH) queries. This configuration can
then be referenced by a listen-on
or listen-on-v6
statement to
cause named
to listen for incoming requests over HTTPS.
http
can only be set at the top level of named.conf
.
The following options can be specified in an http
statement:
endpoints
A list of HTTP query paths on which to listen. This is the portion of an RFC 3986-compliant URI following the hostname; it must be an absolute path, beginning with “/”. The default value is
"/dns-query"
, if omitted.
listener-clients
The option specifies a per-listener quota for active connections.streams-per-connection
- The option specifies the hard limit on the number of concurrent HTTP/2 streams over an HTTP/2 connection.
Any of the options above could be omitted. In such a case, a global value
specified in the options
statement is used
(see http-listener-clients
, http-streams-per-connection
.
For example, the following configuration enables DNS-over-HTTPS queries on all local addresses:
http local {
endpoints { "/dns-query"; };
};
options {
....
listen-on tls ephemeral http local { any; };
listen-on-v6 tls ephemeral http local { any; };
};
4.2.25. trust-anchors
Statement Grammar¶
trust-anchors { <string> ( static-key |
initial-key | static-ds | initial-ds )
<integer> <integer> <integer>
<quoted_string>; ... };
4.2.26. trust-anchors
Statement Definition and Usage¶
The trust-anchors
statement defines DNSSEC trust anchors. DNSSEC is
described in DNSSEC.
A trust anchor is defined when the public key or public key digest for a non-authoritative zone is known but cannot be securely obtained through DNS, either because it is the DNS root zone or because its parent zone is unsigned. Once a key or digest has been configured as a trust anchor, it is treated as if it has been validated and proven secure.
The resolver attempts DNSSEC validation on all DNS data in subdomains of
configured trust anchors. Validation below specified names can be
temporarily disabled by using rndc nta
, or permanently disabled with
the validate-except
option.
All keys listed in trust-anchors
, and their corresponding zones, are
deemed to exist regardless of what parent zones say. Only keys
configured as trust anchors are used to validate the DNSKEY RRset for
the corresponding name. The parent’s DS RRset is not used.
trust-anchors
may be set at the top level of named.conf
or within
a view. If it is set in both places, the configurations are additive;
keys defined at the top level are inherited by all views, but keys
defined in a view are only used within that view.
The trust-anchors
statement can contain
multiple trust-anchor entries, each consisting of a
domain name, followed by an “anchor type” keyword indicating
the trust anchor’s format, followed by the key or digest data.
If the anchor type is static-key
or
initial-key
, then it is followed with the
key’s flags, protocol, and algorithm, plus the Base64 representation
of the public key data. This is identical to the text
representation of a DNSKEY record. Spaces, tabs, newlines, and
carriage returns are ignored in the key data, so the
configuration may be split into multiple lines.
If the anchor type is static-ds
or
initial-ds
, it is followed with the
key tag, algorithm, digest type, and the hexadecimal
representation of the key digest. This is identical to the
text representation of a DS record. Spaces, tabs, newlines,
and carriage returns are ignored.
Trust anchors configured with the
static-key
or static-ds
anchor types are immutable, while keys configured with
initial-key
or initial-ds
can be kept up-to-date automatically, without intervention from the resolver operator.
(static-key
keys are identical to keys configured using the
deprecated trusted-keys
statement.)
Suppose, for example, that a zone’s key-signing key was compromised, and
the zone owner had to revoke and replace the key. A resolver which had
the original key
configured using static-key
or
static-ds
would be unable to validate
this zone any longer; it would reply with a SERVFAIL response
code. This would continue until the resolver operator had
updated the trust-anchors
statement with
the new key.
If, however, the trust anchor had been configured using
initial-key
or initial-ds
instead, the zone owner could add a “stand-by” key to
the zone in advance. named
would store
the stand-by key, and when the original key was revoked,
named
would be able to transition smoothly
to the new key. It would also recognize that the old key had
been revoked and cease using that key to validate answers,
minimizing the damage that the compromised key could do.
This is the process used to keep the ICANN root DNSSEC key
up-to-date.
Whereas static-key
and
static-ds
trust anchors continue
to be trusted until they are removed from
named.conf
, an
initial-key
or initial-ds
is only trusted once: for as long as it
takes to load the managed key database and start the
RFC 5011 key maintenance process.
It is not possible to mix static with initial trust anchors for the same domain name.
The first time named
runs with an
initial-key
or initial-ds
configured in named.conf
, it fetches the
DNSKEY RRset directly from the zone apex,
and validates it
using the trust anchor specified in trust-anchors
.
If the DNSKEY RRset is validly signed by a key matching
the trust anchor, then it is used as the basis for a new
managed-keys database.
From that point on, whenever named
runs, it sees the initial-key
or initial-ds
listed in trust-anchors
, checks to make sure RFC 5011 key maintenance
has already been initialized for the specified domain, and if so,
simply moves on. The key specified in the trust-anchors
statement is
not used to validate answers; it is superseded by the key or keys stored
in the managed-keys database.
The next time named
runs after an initial-key
or initial-ds
has been removed
from the trust-anchors
statement (or changed to a static-key
or static-ds
), the
corresponding zone is removed from the managed-keys database, and
RFC 5011 key maintenance is no longer used for that domain.
In the current implementation, the managed-keys database is stored as a master-format zone file.
On servers which do not use views, this file is named
managed-keys.bind
. When views are in use, there is a separate
managed-keys database for each view; the filename is the view name
(or, if a view name contains characters which would make it illegal as a
filename, a hash of the view name), followed by the suffix .mkeys
.
When the key database is changed, the zone is updated. As with any other
dynamic zone, changes are written into a journal file, e.g.,
managed-keys.bind.jnl
or internal.mkeys.jnl
. Changes are
committed to the primary file as soon as possible afterward,
usually within 30 seconds. Whenever named
is using
automatic key maintenance, the zone file and journal file can be
expected to exist in the working directory. (For this reason, among
others, the working directory should be always be writable by
named
.)
If the dnssec-validation
option is set to auto
, named
automatically initializes an initial-key
for the root zone. The key
that is used to initialize the key-maintenance process is stored in
bind.keys
; the location of this file can be overridden with the
bindkeys-file
option. As a fallback in the event no bind.keys
can be found, the initializing key is also compiled directly into
named
.
4.2.27. dnssec-policy
Statement Grammar¶
dnssec-policy <string> {
dnskey-ttl <duration>;
keys { ( csk | ksk | zsk ) [ ( key-directory ) ] lifetime
<duration_or_unlimited> algorithm <string> [ <integer> ]; ... };
max-zone-ttl <duration>;
nsec3param [ iterations <integer> ] [ optout <boolean> ] [
salt-length <integer> ];
parent-ds-ttl <duration>;
parent-propagation-delay <duration>;
publish-safety <duration>;
purge-keys <duration>;
retire-safety <duration>;
signatures-refresh <duration>;
signatures-validity <duration>;
signatures-validity-dnskey <duration>;
zone-propagation-delay <duration>;
};
4.2.28. dnssec-policy
Statement Definition and Usage¶
The dnssec-policy
statement defines a key and signing policy (KASP)
for zones.
A KASP determines how one or more zones are signed with DNSSEC. For example, it specifies how often keys should roll, which cryptographic algorithms to use, and how often RRSIG records need to be refreshed.
Keys are not shared among zones, which means that one set of keys per zone is generated even if they have the same policy. If multiple views are configured with different versions of the same zone, each separate version uses the same set of signing keys.
Multiple key and signing policies can be configured. To attach a policy
to a zone, add a dnssec-policy
option to the zone
statement,
specifying the name of the policy that should be used.
Key rollover timing is computed for each key according to the key
lifetime defined in the KASP. The lifetime may be modified by zone TTLs
and propagation delays, to prevent validation failures. When a key
reaches the end of its lifetime, named
generates and publishes a new
key automatically, then deactivates the old key and activates the new
one; finally, the old key is retired according to a computed schedule.
Zone-signing key (ZSK) rollovers require no operator input. Key-signing key (KSK) and combined-signing key (CSK) rollovers require action to be taken to submit a DS record to the parent. Rollover timing for KSKs and CSKs is adjusted to take into account delays in processing and propagating DS updates.
There are two predefined dnssec-policy
names: none
and
default
. Setting a zone’s policy to none
is the same as not
setting dnssec-policy
at all; the zone is not signed. Policy
default
causes the zone to be signed with a single combined-signing
key (CSK) using algorithm ECDSAP256SHA256; this key has an unlimited
lifetime. (A verbose copy of this policy may be found in the source
tree, in the file doc/misc/dnssec-policy.default.conf
.)
Note
The default signing policy may change in future releases.
This could require changes to a signing policy when upgrading to a
new version of BIND. Check the release notes carefully when
upgrading to be informed of such changes. To prevent policy changes
on upgrade, use an explicitly defined dnssec-policy
, rather than
default
.
If a dnssec-policy
statement is modified and the server restarted or
reconfigured, named
attempts to change the policy smoothly from the
old one to the new. For example, if the key algorithm is changed, then
a new key is generated with the new algorithm, and the old algorithm is
retired when the existing key’s lifetime ends.
Note
Rolling to a new policy while another key rollover is already in progress is not yet supported, and may result in unexpected behavior.
The following options can be specified in a dnssec-policy
statement:
dnskey-ttl
- This indicates the TTL to use when generating DNSKEY resource records. The default is 1 hour (3600 seconds).
keys
This is a list specifying the algorithms and roles to use when generating keys and signing the zone. Entries in this list do not represent specific DNSSEC keys, which may be changed on a regular basis, but the roles that keys play in the signing policy. For example, configuring a KSK of algorithm RSASHA256 ensures that the DNSKEY RRset always includes a key-signing key for that algorithm.
Here is an example (for illustration purposes only) of some possible entries in a
keys
list:keys { ksk key-directory lifetime unlimited algorithm rsasha256 2048; zsk lifetime P30D algorithm 8; csk lifetime P6MT12H3M15S algorithm ecdsa256; };This example specifies that three keys should be used in the zone. The first token determines which role the key plays in signing RRsets. If set to
ksk
, then this is a key-signing key; it has the KSK flag set and is only used to sign DNSKEY, CDS, and CDNSKEY RRsets. If set tozsk
, this is a zone-signing key; the KSK flag is unset, and the key signs all RRsets except DNSKEY, CDS, and CDNSKEY. If set tocsk
, the key has the KSK flag set and is used to sign all RRsets.An optional second token determines where the key is stored. Currently, keys can only be stored in the configured
key-directory
. This token may be used in the future to store keys in hardware security modules or separate directories.The
lifetime
parameter specifies how long a key may be used before rolling over. In the example above, the first key has an unlimited lifetime, the second key may be used for 30 days, and the third key has a rather peculiar lifetime of 6 months, 12 hours, 3 minutes, and 15 seconds. A lifetime of 0 seconds is the same asunlimited
.Note that the lifetime of a key may be extended if retiring it too soon would cause validation failures. For example, if the key were configured to roll more frequently than its own TTL, its lifetime would automatically be extended to account for this.
The
algorithm
parameter specifies the key’s algorithm, expressed either as a string (“rsasha256”, “ecdsa384”, etc.) or as a decimal number. An optional second parameter specifies the key’s size in bits. If it is omitted, as shown in the example for the second and third keys, an appropriate default size for the algorithm is used. Each KSK/ZSK pair must have the same algorithm. A CSK combines the functionality of a ZSK and a KSK.purge-keys
This is the time after when DNSSEC keys that have been deleted from the zone can be removed from disk. If a key still determined to have presence (for example in some resolver cache),
named
will not remove the key files.The default is
P90D
(90 days). Set this option to0
to never purge deleted keys.publish-safety
- This is a margin that is added to the pre-publication interval in rollover timing calculations, to give some extra time to cover unforeseen events. This increases the time between when keys are published and when they become active. The default is
PT1H
(1 hour).retire-safety
- This is a margin that is added to the post-publication interval in rollover timing calculations, to give some extra time to cover unforeseen events. This increases the time a key remains published after it is no longer active. The default is
PT1H
(1 hour).signatures-refresh
- This determines how frequently an RRSIG record needs to be refreshed. The signature is renewed when the time until the expiration time is less than the specified interval. The default is
P5D
(5 days), meaning signatures that expire in 5 days or sooner are refreshed.signatures-validity
- This indicates the validity period of an RRSIG record (subject to inception offset and jitter). The default is
P2W
(2 weeks).signatures-validity-dnskey
- This is similar to
signatures-validity
, but for DNSKEY records. The default isP2W
(2 weeks).max-zone-ttl
Like the
max-zone-ttl
zone option, this specifies the maximum permissible TTL value, in seconds, for the zone.This is needed in DNSSEC-maintained zones because when rolling to a new DNSKEY, the old key needs to remain available until RRSIG records have expired from caches. The
max-zone-ttl
option guarantees that the largest TTL in the zone is no higher than the set value.The default value is
PT24H
(24 hours). Amax-zone-ttl
of zero is treated as if the default value were in use.nsec3param
Use NSEC3 instead of NSEC, and optionally set the NSEC3 parameters.
Here is an example of an
nsec3
configuration:nsec3param iterations 0 optout no salt-length 0;The default is to use NSEC. The
iterations
,optout
andsalt-length
parts are optional, but if not set, the values in the example above are the default NSEC3 parameters. Note that you don’t specify a specific salt string,named
will create a salt for you of the provided salt length.zone-propagation-delay
- This is the expected propagation delay from the time when a zone is first updated to the time when the new version of the zone is served by all secondary servers. The default is
PT5M
(5 minutes).parent-ds-ttl
- This is the TTL of the DS RRset that the parent zone uses. The default is
P1D
(1 day).parent-propagation-delay
- This is the expected propagation delay from the time when the parent zone is updated to the time when the new version is served by all of the parent zone’s name servers. The default is
PT1H
(1 hour).
4.2.28.1. Automated KSK Rollovers¶
BIND has mechanisms in place to facilitate automated KSK rollovers. It publishes CDS and CDNSKEY records that can be used by the parent zone to publish or withdraw the zone’s DS records. BIND will query the parental agents to see if the new DS is actually published before withdrawing the old DNSSEC key.
Note
The DS response is not validated so it is recommended to set up a trust relationship with the parental agent. For example, use TSIG to authenticate the parental agent, or point to a validating resolver.
The following options apply to DS queries sent to parental-agents
:
parental-source
parental-source
determines which local source address, and optionally UDP port, is used to send parental DS queries. This address must appear in the secondary server’sparental-agents
zone clause. This statement sets theparental-source
for all zones, but can be overridden on a per-zone or per-view basis by including aparental-source
statement within thezone
orview
block in the configuration file.Note
Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.
Warning
Specifying a single port is discouraged, as it removes a layer of protection against spoofing errors.
Warning
The configured
port
must not be same as the listening port.parental-source-v6
- This option acts like
parental-source
, but applies to parental DS queries sent to IPv6 addresses.
4.2.29. managed-keys
Statement Grammar¶
managed-keys { <string> ( static-key
| initial-key | static-ds |
initial-ds ) <integer> <integer>
<integer> <quoted_string>; ... };, deprecated
4.2.30. managed-keys
Statement Definition and Usage¶
The managed-keys
statement has been
deprecated in favor of trust-anchors Statement Grammar
with the initial-key
keyword.
4.2.31. trusted-keys
Statement Grammar¶
trusted-keys { <string> <integer>
<integer> <integer>
<quoted_string>; ... };, deprecated
4.2.32. trusted-keys
Statement Definition and Usage¶
The trusted-keys
statement has been deprecated in favor of
trust-anchors Statement Grammar with the static-key
keyword.
4.2.33. view
Statement Grammar¶
view view_name [ class ] {
match-clients { address_match_list } ;
match-destinations { address_match_list } ;
match-recursive-only yes_or_no ;
[ view_option ; ... ]
[ zone_statement ; ... ]
} ;
4.2.34. view
Statement Definition and Usage¶
The view
statement is a powerful feature of BIND 9 that lets a name
server answer a DNS query differently depending on who is asking. It is
particularly useful for implementing split DNS setups without having to
run multiple servers.
Each view
statement defines a view of the DNS namespace that is
seen by a subset of clients. A client matches a view if its source IP
address matches the address_match_list
of the view’s
match-clients
clause, and its destination IP address matches the
address_match_list
of the view’s match-destinations
clause. If
not specified, both match-clients
and match-destinations
default
to matching all addresses. In addition to checking IP addresses,
match-clients
and match-destinations
can also take keys
which provide an mechanism for the client to select the view. A view can
also be specified as match-recursive-only
, which means that only
recursive requests from matching clients match that view. The order
of the view
statements is significant; a client request is
resolved in the context of the first view
that it matches.
Zones defined within a view
statement are only accessible to
clients that match the view
. By defining a zone of the same name in
multiple views, different zone data can be given to different clients:
for example, “internal” and “external” clients in a split DNS setup.
Many of the options given in the options
statement can also be used
within a view
statement, and then apply only when resolving queries
with that view. When no view-specific value is given, the value in the
options
statement is used as a default. Also, zone options can have
default values specified in the view
statement; these view-specific
defaults take precedence over those in the options
statement.
Views are class-specific. If no class is given, class IN is assumed. Note that all non-IN views must contain a hint zone, since only the IN class has compiled-in default hints.
If there are no view
statements in the config file, a default view
that matches any client is automatically created in class IN. Any
zone
statements specified on the top level of the configuration file
are considered to be part of this default view, and the options
statement applies to the default view. If any explicit view
statements are present, all zone
statements must occur inside
view
statements.
Here is an example of a typical split DNS setup implemented using
view
statements:
view "internal" {
// This should match our internal networks.
match-clients { 10.0.0.0/8; };
// Provide recursive service to internal
// clients only.
recursion yes;
// Provide a complete view of the example.com
// zone including addresses of internal hosts.
zone "example.com" {
type primary;
file "example-internal.db";
};
};
view "external" {
// Match all clients not matched by the
// previous view.
match-clients { any; };
// Refuse recursive service to external clients.
recursion no;
// Provide a restricted view of the example.com
// zone containing only publicly accessible hosts.
zone "example.com" {
type primary;
file "example-external.db";
};
};
4.2.35. zone
Statement Grammar¶
zone <string> [ <class> ] {
type primary;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
allow-transfer [ port <integer> ] [ transport <string> ] { <address_match_element>; ... };
allow-update { <address_match_element>; ... };
also-notify [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
alt-transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
alt-transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
auto-dnssec ( allow | maintain | off );
check-dup-records ( fail | warn | ignore );
check-integrity <boolean>;
check-mx ( fail | warn | ignore );
check-mx-cname ( fail | warn | ignore );
check-names ( fail | warn | ignore );
check-sibling <boolean>;
check-spf ( warn | ignore );
check-srv-cname ( fail | warn | ignore );
check-wildcard <boolean>;
database <string>;
dialup ( notify | notify-passive | passive | refresh | <boolean> );
dlz <string>;
dnskey-sig-validity <integer>;
dnssec-dnskey-kskonly <boolean>;
dnssec-loadkeys-interval <integer>;
dnssec-policy <string>;
dnssec-secure-to-insecure <boolean>;
dnssec-update-mode ( maintain | no-resign );
file <quoted_string>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
inline-signing <boolean>;
ixfr-from-differences <boolean>;
journal <quoted_string>;
key-directory <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-ixfr-ratio ( unlimited | <percentage> );
max-journal-size ( default | unlimited | <sizeval> );
max-records <integer>;
max-transfer-idle-out <integer>;
max-transfer-time-out <integer>;
max-zone-ttl ( unlimited | <duration> );
notify ( explicit | master-only | primary-only | <boolean> );
notify-delay <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-to-soa <boolean>;
parental-agents [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
parental-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
parental-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
serial-update-method ( date | increment | unixtime );
sig-signing-nodes <integer>;
sig-signing-signatures <integer>;
sig-signing-type <integer>;
sig-validity-interval <integer> [ <integer> ];
update-check-ksk <boolean>;
update-policy ( local | { ( deny | grant ) <string> ( 6to4-self | external | krb5-self | krb5-selfsub | krb5-subdomain | krb5-subdomain-self-rhs | ms-self | ms-selfsub | ms-subdomain | ms-subdomain-self-rhs | name | self | selfsub | selfwild | subdomain | tcp-self | wildcard | zonesub ) [ <string> ] <rrtypelist>; ... };
zero-no-soa-ttl <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type secondary;
allow-notify { <address_match_element>; ... };
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
allow-transfer [ port <integer> ] [ transport <string> ] { <address_match_element>; ... };
allow-update-forwarding { <address_match_element>; ... };
also-notify [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
alt-transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
alt-transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
auto-dnssec ( allow | maintain | off );
check-names ( fail | warn | ignore );
database <string>;
dialup ( notify | notify-passive | passive | refresh | <boolean> );
dlz <string>;
dnskey-sig-validity <integer>;
dnssec-dnskey-kskonly <boolean>;
dnssec-loadkeys-interval <integer>;
dnssec-policy <string>;
dnssec-update-mode ( maintain | no-resign );
file <quoted_string>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
inline-signing <boolean>;
ixfr-from-differences <boolean>;
journal <quoted_string>;
key-directory <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-ixfr-ratio ( unlimited | <percentage> );
max-journal-size ( default | unlimited | <sizeval> );
max-records <integer>;
max-refresh-time <integer>;
max-retry-time <integer>;
max-transfer-idle-in <integer>;
max-transfer-idle-out <integer>;
max-transfer-time-in <integer>;
max-transfer-time-out <integer>;
min-refresh-time <integer>;
min-retry-time <integer>;
multi-master <boolean>;
notify ( explicit | master-only | primary-only | <boolean> );
notify-delay <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-to-soa <boolean>;
parental-agents [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
parental-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
parental-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
request-expire <boolean>;
request-ixfr <boolean>;
sig-signing-nodes <integer>;
sig-signing-signatures <integer>;
sig-signing-type <integer>;
sig-validity-interval <integer> [ <integer> ];
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
try-tcp-refresh <boolean>;
update-check-ksk <boolean>;
use-alt-transfer-source <boolean>;
zero-no-soa-ttl <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type mirror;
allow-notify { <address_match_element>; ... };
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
allow-transfer [ port <integer> ] [ transport <string> ] { <address_match_element>; ... };
allow-update-forwarding { <address_match_element>; ... };
also-notify [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
alt-transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
alt-transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
check-names ( fail | warn | ignore );
database <string>;
file <quoted_string>;
ixfr-from-differences <boolean>;
journal <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-ixfr-ratio ( unlimited | <percentage> );
max-journal-size ( default | unlimited | <sizeval> );
max-records <integer>;
max-refresh-time <integer>;
max-retry-time <integer>;
max-transfer-idle-in <integer>;
max-transfer-idle-out <integer>;
max-transfer-time-in <integer>;
max-transfer-time-out <integer>;
min-refresh-time <integer>;
min-retry-time <integer>;
multi-master <boolean>;
notify ( explicit | master-only | primary-only | <boolean> );
notify-delay <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
request-expire <boolean>;
request-ixfr <boolean>;
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
try-tcp-refresh <boolean>;
use-alt-transfer-source <boolean>;
zero-no-soa-ttl <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type hint;
check-names ( fail | warn | ignore );
delegation-only <boolean>;
file <quoted_string>;
};
zone <string> [ <class> ] {
type stub;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
check-names ( fail | warn | ignore );
database <string>;
delegation-only <boolean>;
dialup ( notify | notify-passive | passive | refresh | <boolean> );
file <quoted_string>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-records <integer>;
max-refresh-time <integer>;
max-retry-time <integer>;
max-transfer-idle-in <integer>;
max-transfer-time-in <integer>;
min-refresh-time <integer>;
min-retry-time <integer>;
multi-master <boolean>;
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
use-alt-transfer-source <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type static-stub;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
max-records <integer>;
server-addresses { ( <ipv4_address> | <ipv6_address> ); ... };
server-names { <string>; ... };
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type forward;
delegation-only <boolean>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
};
zone <string> [ <class> ] {
type redirect;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
dlz <string>;
file <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-records <integer>;
max-zone-ttl ( unlimited | <duration> );
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type delegation-only;
};
zone <string> [ <class> ] {
in-view <string>;
};
4.2.36. zone
Statement Definition and Usage¶
4.2.36.1. Zone Types¶
The type
keyword is required for the zone
configuration unless
it is an in-view
configuration. Its acceptable values are:
primary
(or master
), secondary
(or slave
), mirror
,
hint
, stub
, static-stub
, forward
, redirect
,
or delegation-only
.
primary
- A primary zone has a master copy of the data for the zone and is able
to provide authoritative answers for it. Type
master
is a synonym forprimary
. secondary
- A secondary zone is a replica of a primary zone. Type
slave
is a synonym forsecondary
. Theprimaries
list specifies one or more IP addresses of primary servers that the secondary contacts to update its copy of the zone. Primaries list elements can also be names of other primaries lists. By default, transfers are made from port 53 on the servers; this can be changed for all servers by specifying a port number before the list of IP addresses, or on a per-server basis after the IP address. Authentication to the primary can also be done with per-server TSIG keys. If a file is specified, then the replica is written to this file whenever the zone is changed, and reloaded from this file on a server restart. Use of a file is recommended, since it often speeds server startup and eliminates a needless waste of bandwidth. Note that for large numbers (in the tens or hundreds of thousands) of zones per server, it is best to use a two-level naming scheme for zone filenames. For example, a secondary server for the zoneexample.com
might place the zone contents into a file calledex/example.com
, whereex/
is just the first two letters of the zone name. (Most operating systems behave very slowly if there are 100000 files in a single directory.) mirror
A mirror zone is similar to a zone of type
secondary
, except its data is subject to DNSSEC validation before being used in answers. Validation is applied to the entire zone during the zone transfer process, and again when the zone file is loaded from disk upon restartingnamed
. If validation of a new version of a mirror zone fails, a retransfer is scheduled; in the meantime, the most recent correctly validated version of that zone is used until it either expires or a newer version validates correctly. If no usable zone data is available for a mirror zone, due to either transfer failure or expiration, traditional DNS recursion is used to look up the answers instead. Mirror zones cannot be used in a view that does not have recursion enabled.Answers coming from a mirror zone look almost exactly like answers from a zone of type
secondary
, with the notable exceptions that the AA bit (“authoritative answer”) is not set, and the AD bit (“authenticated data”) is.Mirror zones are intended to be used to set up a fast local copy of the root zone (see RFC 8806). A default list of primary servers for the IANA root zone is built into
named
, so its mirroring can be enabled using the following configuration:zone "." { type mirror; };
Mirror zone validation always happens for the entire zone contents. This ensures that each version of the zone used by the resolver is fully self-consistent with respect to DNSSEC. For incoming mirror zone IXFRs, every revision of the zone contained in the IXFR sequence is validated independently, in the order in which the zone revisions appear on the wire. For this reason, it might be useful to force use of AXFR for mirror zones by setting
request-ixfr no;
for the relevant zone (or view). Other, more efficient zone verification methods may be added in the future.To make mirror zone contents persist between
named
restarts, use the file option.Mirroring a zone other than root requires an explicit list of primary servers to be provided using the
primaries
option (see primaries Statement Grammar for details), and a key-signing key (KSK) for the specified zone to be explicitly configured as a trust anchor (see trust-anchors Statement Definition and Usage).When configuring NOTIFY for a mirror zone, only
notify no;
andnotify explicit;
can be used at the zone level; any othernotify
setting at the zone level is a configuration error. Using any othernotify
setting at theoptions
orview
level causes that setting to be overridden withnotify explicit;
for the mirror zone. The global default for thenotify
option isyes
, so mirror zones are by default configured withnotify explicit;
.Outgoing transfers of mirror zones are disabled by default but may be enabled using allow-transfer.
Note
Use of this zone type with any zone other than the root should be considered experimental and may cause performance issues, especially for zones that are large and/or frequently updated.
hint
- The initial set of root name servers is specified using a hint zone. When the server starts, it uses the root hints to find a root name server and get the most recent list of root name servers. If no hint zone is specified for class IN, the server uses a compiled-in default set of root servers hints. Classes other than IN have no built-in default hints.
stub
A stub zone is similar to a secondary zone, except that it replicates only the NS records of a primary zone instead of the entire zone. Stub zones are not a standard part of the DNS; they are a feature specific to the BIND implementation.
Stub zones can be used to eliminate the need for a glue NS record in a parent zone, at the expense of maintaining a stub zone entry and a set of name server addresses in
named.conf
. This usage is not recommended for new configurations, and BIND 9 supports it only in a limited way. If a BIND 9 primary, serving a parent zone, has child stub zones configured, all the secondary servers for the parent zone also need to have the same child stub zones configured.Stub zones can also be used as a way to force the resolution of a given domain to use a particular set of authoritative servers. For example, the caching name servers on a private network using RFC 1918 addressing may be configured with stub zones for
10.in-addr.arpa
to use a set of internal name servers as the authoritative servers for that domain.static-stub
A static-stub zone is similar to a stub zone, with the following exceptions: the zone data is statically configured, rather than transferred from a primary server; and when recursion is necessary for a query that matches a static-stub zone, the locally configured data (name server names and glue addresses) is always used, even if different authoritative information is cached.
Zone data is configured via the
server-addresses
andserver-names
zone options.The zone data is maintained in the form of NS and (if necessary) glue A or AAAA RRs internally, which can be seen by dumping zone databases with
rndc dumpdb -all
. The configured RRs are considered local configuration parameters rather than public data. Non-recursive queries (i.e., those with the RD bit off) to a static-stub zone are therefore prohibited and are responded to with REFUSED.Since the data is statically configured, no zone maintenance action takes place for a static-stub zone. For example, there is no periodic refresh attempt, and an incoming notify message is rejected with an rcode of NOTAUTH.
Each static-stub zone is configured with internally generated NS and (if necessary) glue A or AAAA RRs.
forward
- A forward zone is a way to configure forwarding on a per-domain basis.
A
zone
statement of typeforward
can contain aforward
and/orforwarders
statement, which applies to queries within the domain given by the zone name. If noforwarders
statement is present, or an empty list forforwarders
is given, then no forwarding is done for the domain, canceling the effects of any forwarders in theoptions
statement. Thus, to use this type of zone to change the behavior of the globalforward
option (that is, “forward first” to, then “forward only”, or vice versa), but use the same servers as set globally, re-specify the global forwarders. redirect
Redirect zones are used to provide answers to queries when normal resolution would result in NXDOMAIN being returned. Only one redirect zone is supported per view.
allow-query
can be used to restrict which clients see these answers.If the client has requested DNSSEC records (DO=1) and the NXDOMAIN response is signed, no substitution occurs.
To redirect all NXDOMAIN responses to 100.100.100.2 and 2001:ffff:ffff::100.100.100.2, configure a type
redirect
zone named “.”, with the zone file containing wildcard records that point to the desired addresses:*. IN A 100.100.100.2
and*. IN AAAA 2001:ffff:ffff::100.100.100.2
.As another example, to redirect all Spanish names (under .ES), use similar entries but with the names
*.ES.
instead of*.
. To redirect all commercial Spanish names (under COM.ES), use wildcard entries called*.COM.ES.
.Note that the redirect zone supports all possible types; it is not limited to A and AAAA records.
If a redirect zone is configured with a
primaries
option, then it is transferred in as if it were a secondary zone. Otherwise, it is loaded from a file as if it were a primary zone.Because redirect zones are not referenced directly by name, they are not kept in the zone lookup table with normal primary and secondary zones. To reload a redirect zone, use
rndc reload -redirect
; to retransfer a redirect zone configured as a secondary, userndc retransfer -redirect
. When usingrndc reload
without specifying a zone name, redirect zones are reloaded along with other zones.delegation-only
This zone type is used to enforce the delegation-only status of infrastructure zones (e.g., COM, NET, ORG). Any answer that is received without an explicit or implicit delegation in the authority section is treated as NXDOMAIN. This does not apply to the zone apex, and should not be applied to leaf zones.
delegation-only
has no effect on answers received from forwarders.See caveats in root-delegation-only.
in-view
When using multiple views, a
primary
orsecondary
zone configured in one view can be referenced in a subsequent view. This allows both views to use the same zone without the overhead of loading it more than once. This is configured using azone
statement, with anin-view
option specifying the view in which the zone is defined. Azone
statement containingin-view
does not need to specify a type, since that is part of the zone definition in the other view.See Multiple Views for more information.
4.2.36.2. Class¶
The zone’s name may optionally be followed by a class. If a class is not
specified, class IN
(for Internet
) is assumed. This is correct
for the vast majority of cases.
The hesiod
class is named for an information service from MIT’s
Project Athena. It was used to share information about various systems
databases, such as users, groups, printers, and so on. The keyword HS
is a synonym for hesiod.
Another MIT development is Chaosnet, a LAN protocol created in the
mid-1970s. Zone data for it can be specified with the CHAOS
class.
4.2.36.3. Zone Options¶
allow-notify
- See the description of
allow-notify
in Access Control. allow-query
- See the description of
allow-query
in Access Control. allow-query-on
- See the description of
allow-query-on
in Access Control. allow-transfer
- See the description of
allow-transfer
in Access Control. allow-update
- See the description of
allow-update
in Access Control. update-policy
- This specifies a “Simple Secure Update” policy. See Dynamic Update Policies.
allow-update-forwarding
- See the description of
allow-update-forwarding
in Access Control. also-notify
- This option is only meaningful if
notify
is active for this zone. The set of machines that receive aDNS NOTIFY
message for this zone is made up of all the listed name servers (other than the primary) for the zone, plus any IP addresses specified withalso-notify
. A port may be specified with eachalso-notify
address to send the notify messages to a port other than the default of 53. A TSIG key may also be specified to cause theNOTIFY
to be signed by the given key.also-notify
is not meaningful for stub zones. The default is the empty list. check-names
- This option is used to restrict the character set and syntax of
certain domain names in primary files and/or DNS responses received
from the network. The default varies according to zone type. For
primary
zones the default isfail
; forsecondary
zones the default iswarn
. It is not implemented forhint
zones. check-mx
- See the description of
check-mx
in Boolean Options. check-spf
- See the description of
check-spf
in Boolean Options. check-wildcard
- See the description of
check-wildcard
in Boolean Options. check-integrity
- See the description of
check-integrity
in Boolean Options. check-sibling
- See the description of
check-sibling
in Boolean Options. zero-no-soa-ttl
- See the description of
zero-no-soa-ttl
in Boolean Options. update-check-ksk
- See the description of
update-check-ksk
in Boolean Options. dnssec-loadkeys-interval
- See the description of
dnssec-loadkeys-interval
in options Statement Definition and Usage. dnssec-update-mode
- See the description of
dnssec-update-mode
in options Statement Definition and Usage. dnssec-dnskey-kskonly
- See the description of
dnssec-dnskey-kskonly
in Boolean Options. try-tcp-refresh
- See the description of
try-tcp-refresh
in Boolean Options. database
This specifies the type of database to be used to store the zone data. The string following the
database
keyword is interpreted as a list of whitespace-delimited words. The first word identifies the database type, and any subsequent words are passed as arguments to the database to be interpreted in a way specific to the database type.The default is
rbt
, BIND 9’s native in-memory red-black tree database. This database does not take arguments.Other values are possible if additional database drivers have been linked into the server. Some sample drivers are included with the distribution but none are linked in by default.
dialup
- See the description of
dialup
in Boolean Options. delegation-only
This flag only applies to forward, hint, and stub zones. If set to
yes
, then the zone is treated as if it is also a delegation-only type zone.See caveats in root-delegation-only.
file
- This sets the zone’s filename. In
primary
,hint
, andredirect
zones which do not haveprimaries
defined, zone data is loaded from this file. Insecondary
,mirror
,stub
, andredirect
zones which do haveprimaries
defined, zone data is retrieved from another server and saved in this file. This option is not applicable to other zone types. forward
- This option is only meaningful if the zone has a forwarders list. The
only
value causes the lookup to fail after trying the forwarders and getting no answer, whilefirst
allows a normal lookup to be tried. forwarders
- This is used to override the list of global forwarders. If it is not
specified in a zone of type
forward
, no forwarding is done for the zone and the global options are not used. journal
- This allows the default journal’s filename to be overridden. The default is
the zone’s filename with “
.jnl
” appended. This is applicable toprimary
andsecondary
zones. max-ixfr-ratio
- See the description of
max-ixfr-ratio
in options Statement Definition and Usage. max-journal-size
- See the description of
max-journal-size
in Server Resource Limits. max-records
- See the description of
max-records
in Server Resource Limits. max-transfer-time-in
- See the description of
max-transfer-time-in
in Zone Transfers. max-transfer-idle-in
- See the description of
max-transfer-idle-in
in Zone Transfers. max-transfer-time-out
- See the description of
max-transfer-time-out
in Zone Transfers. max-transfer-idle-out
- See the description of
max-transfer-idle-out
in Zone Transfers. notify
- See the description of
notify
in Boolean Options. notify-delay
- See the description of
notify-delay
in Tuning. notify-to-soa
- See the description of
notify-to-soa
in Boolean Options. zone-statistics
- See the description of
zone-statistics
in options Statement Definition and Usage. server-addresses
This option is only meaningful for static-stub zones. This is a list of IP addresses to which queries should be sent in recursive resolution for the zone. A non-empty list for this option internally configures the apex NS RR with associated glue A or AAAA RRs.
For example, if “example.com” is configured as a static-stub zone with 192.0.2.1 and 2001:db8::1234 in a
server-addresses
option, the following RRs are internally configured:example.com. NS example.com. example.com. A 192.0.2.1 example.com. AAAA 2001:db8::1234
These records are used internally to resolve names under the static-stub zone. For instance, if the server receives a query for “www.example.com” with the RD bit on, the server initiates recursive resolution and sends queries to 192.0.2.1 and/or 2001:db8::1234.
server-names
This option is only meaningful for static-stub zones. This is a list of domain names of name servers that act as authoritative servers of the static-stub zone. These names are resolved to IP addresses when
named
needs to send queries to these servers. For this supplemental resolution to be successful, these names must not be a subdomain of the origin name of the static-stub zone. That is, when “example.net” is the origin of a static-stub zone, “ns.example” and “master.example.com” can be specified in theserver-names
option, but “ns.example.net” cannot; it is rejected by the configuration parser.A non-empty list for this option internally configures the apex NS RR with the specified names. For example, if “example.com” is configured as a static-stub zone with “ns1.example.net” and “ns2.example.net” in a
server-names
option, the following RRs are internally configured:example.com. NS ns1.example.net. example.com. NS ns2.example.net.
These records are used internally to resolve names under the static-stub zone. For instance, if the server receives a query for “www.example.com” with the RD bit on, the server initiates recursive resolution, resolves “ns1.example.net” and/or “ns2.example.net” to IP addresses, and then sends queries to one or more of these addresses.
sig-validity-interval
- See the description of
sig-validity-interval
in Tuning. sig-signing-nodes
- See the description of
sig-signing-nodes
in Tuning. sig-signing-signatures
- See the description of
sig-signing-signatures
in Tuning. sig-signing-type
- See the description of
sig-signing-type
in Tuning. transfer-source
- See the description of
transfer-source
in Zone Transfers. transfer-source-v6
- See the description of
transfer-source-v6
in Zone Transfers. alt-transfer-source
- See the description of
alt-transfer-source
in Zone Transfers. alt-transfer-source-v6
- See the description of
alt-transfer-source-v6
in Zone Transfers. use-alt-transfer-source
- See the description of
use-alt-transfer-source
in Zone Transfers. notify-source
- See the description of
notify-source
in Zone Transfers. notify-source-v6
- See the description of
notify-source-v6
in Zone Transfers. min-refresh-time
;max-refresh-time
;min-retry-time
;max-retry-time
- See the descriptions in Tuning.
ixfr-from-differences
- See the description of
ixfr-from-differences
in Boolean Options. (Note that theixfr-from-differences
choices ofprimary
andsecondary
are not available at the zone level.) key-directory
- See the description of
key-directory
in options Statement Definition and Usage. auto-dnssec
- See the description of
auto-dnssec
in options Statement Definition and Usage. serial-update-method
- See the description of
serial-update-method
in options Statement Definition and Usage. inline-signing
- If
yes
, this enables “bump in the wire” signing of a zone, where an unsigned zone is transferred in or loaded from disk and a signed version of the zone is served with, possibly, a different serial number. This behavior is disabled by default. multi-master
- See the description of
multi-master
in Boolean Options. masterfile-format
- See the description of
masterfile-format
in Tuning. max-zone-ttl
- See the description of
max-zone-ttl
in options Statement Definition and Usage. dnssec-secure-to-insecure
- See the description of
dnssec-secure-to-insecure
in Boolean Options.
4.2.36.4. Dynamic Update Policies¶
BIND 9 supports two methods of granting clients the right to
perform dynamic updates to a zone, configured by the allow-update
or update-policy
options.
The allow-update
clause is a simple access control list. Any client
that matches the ACL is granted permission to update any record in the
zone.
The update-policy
clause allows more fine-grained control over which
updates are allowed. It specifies a set of rules, in which each rule
either grants or denies permission for one or more names in the zone to
be updated by one or more identities. Identity is determined by the key
that signed the update request, using either TSIG or SIG(0). In most
cases, update-policy
rules only apply to key-based identities. There
is no way to specify update permissions based on the client source address.
update-policy
rules are only meaningful for zones of type
primary
, and are not allowed in any other zone type. It is a
configuration error to specify both allow-update
and
update-policy
at the same time.
A pre-defined update-policy
rule can be switched on with the command
update-policy local;
. named
automatically
generates a TSIG session key when starting and stores it in a file;
this key can then be used by local clients to update the zone while
named
is running. By default, the session key is stored in the file
/session.key
, the key name is “local-ddns”, and the
key algorithm is HMAC-SHA256. These values are configurable with the
session-keyfile
, session-keyname
, and session-keyalg
options,
respectively. A client running on the local system, if run with
appropriate permissions, may read the session key from the key file and
use it to sign update requests. The zone’s update policy is set to
allow that key to change any record within the zone. Assuming the key
name is “local-ddns”, this policy is equivalent to:
update-policy { grant local-ddns zonesub any; };
with the additional restriction that only clients connecting from the local system are permitted to send updates.
Note that only one session key is generated by named
; all zones
configured to use update-policy local
accept the same key.
The command nsupdate -l
implements this feature, sending requests to
localhost and signing them using the key retrieved from the session key
file.
Other rule definitions look like this:
( grant | deny ) identity ruletype name types
Each rule grants or denies privileges. Rules are checked in the order in
which they are specified in the update-policy
statement. Once a
message has successfully matched a rule, the operation is immediately
granted or denied, and no further rules are examined. There are 16 types
of rules; the rule type is specified by the ruletype
field, and the
interpretation of other fields varies depending on the rule type.
In general, a rule is matched when the key that signed an update request
matches the identity
field, the name of the record to be updated
matches the name
field (in the manner specified by the ruletype
field), and the type of the record to be updated matches the types
field. Details for each rule type are described below.
The identity
field must be set to a fully qualified domain name. In
most cases, this represents the name of the TSIG or SIG(0) key that
must be used to sign the update request. If the specified name is a
wildcard, it is subject to DNS wildcard expansion, and the rule may
apply to multiple identities. When a TKEY exchange has been used to
create a shared secret, the identity of the key used to authenticate the
TKEY exchange is used as the identity of the shared secret. Some
rule types use identities matching the client’s Kerberos principal (e.g,
"host/machine@REALM"
) or Windows realm (machine$@REALM
).
The name
field also specifies a fully qualified domain name. This often
represents the name of the record to be updated. Interpretation of this
field is dependent on rule type.
If no types
are explicitly specified, then a rule matches all types
except RRSIG, NS, SOA, NSEC, and NSEC3. Types may be specified by name,
including ANY
; ANY matches all types except NSEC and NSEC3, which can
never be updated. Note that when an attempt is made to delete all
records associated with a name, the rules are checked for each existing
record type.
If the type is immediately followed by a number in parentheses,
that number is the maximum number of records of that type permitted
to exist in the RRset after an update has been applied. For example,
PTR(1)
indicates that only one PTR record is allowed. If an
attempt is made to add two PTR records in an update, the second one
is silently discarded. If a PTR record already exists, both
new records are silently discarded.
If type ANY is specified with a limit, then that limit applies to
all types that are not otherwise specified. For example, A PTR(1)
ANY(2)
indicates that an unlimited number of A records can exist,
but only one PTR record, and no more than two of any other type.
Typical use with a rule grant * tcp-self . PTR(1);
in the zone
2.0.192.IN-ADDR.ARPA looks like this:
nsupdate -v <<EOF
local 192.0.2.1
del 1.2.0.192.IN-ADDR.ARPA PTR
add 1.2.0.192.IN-ADDR.ARPA 0 PTR EXAMPLE.COM
send
EOF
The ruletype field has 20 values: name
, subdomain
, zonesub
,
wildcard
, self
, selfsub
, selfwild
, ms-self
,
ms-selfsub
, ms-subdomain
, ms-subdomain-self-rhs
, krb5-self
,
krb5-selfsub
, krb5-subdomain
, krb5-subdomain-self-rhs
,
tcp-self
, 6to4-self
, and external
.
name
- With exact-match semantics, this rule matches when the name being updated is identical to the contents of the
name
field. subdomain
- This rule matches when the name being updated is a subdomain of, or identical to, the contents of the
name
field. zonesub
- This rule is similar to subdomain, except that it matches when the name being updated is a subdomain of the zone in which the
update-policy
statement appears. This obviates the need to type the zone name twice, and enables the use of a standardupdate-policy
statement in multiple zones without modification. When this rule is used, thename
field is omitted. wildcard
- The
name
field is subject to DNS wildcard expansion, and this rule matches when the name being updated is a valid expansion of the wildcard. self
- This rule matches when the name of the record being updated matches the contents of the
identity
field. Thename
field is ignored. To avoid confusion, it is recommended that this field be set to the same value as theidentity
field or to “.” Theself
rule type is most useful when allowing one key per name to update, where the key has the same name as the record to be updated. In this case, theidentity
field can be specified as*
(asterisk). selfsub
- This rule is similar to
self
, except that subdomains ofself
can also be updated. selfwild
- This rule is similar to
self
, except that only subdomains ofself
can be updated. ms-self
When a client sends an UPDATE using a Windows machine principal (for example,
machine$@REALM
), this rule allows records with the absolute name ofmachine.REALM
to be updated.The realm to be matched is specified in the
identity
field.The
name
field has no effect on this rule; it should be set to “.” as a placeholder.For example,
grant EXAMPLE.COM ms-self . A AAAA
allows any machine with a valid principal in the realmEXAMPLE.COM
to update its own address records.ms-selfsub
- This is similar to
ms-self
, except it also allows updates to any subdomain of the name specified in the Windows machine principal, not just to the name itself. ms-subdomain
When a client sends an UPDATE using a Windows machine principal (for example,
machine$@REALM
), this rule allows any machine in the specified realm to update any record in the zone or in a specified subdomain of the zone.The realm to be matched is specified in the
identity
field.The
name
field specifies the subdomain that may be updated. If set to “.” or any other name at or above the zone apex, any name in the zone can be updated.For example, if
update-policy
for the zone “example.com” includesgrant EXAMPLE.COM ms-subdomain hosts.example.com. AA AAAA
, any machine with a valid principal in the realmEXAMPLE.COM
is able to update address records at or belowhosts.example.com
.ms-subdomain-self-rhs
- This rule is similar to
ms-subdomain
, with an additional restriction that PTR and SRV target names must match the name of the machine identified in the principal. krb5-self
When a client sends an UPDATE using a Kerberos machine principal (for example,
host/machine@REALM
), this rule allows records with the absolute name ofmachine
to be updated, provided it has been authenticated by REALM. This is similar but not identical toms-self
, due to themachine
part of the Kerberos principal being an absolute name instead of an unqualified name.The realm to be matched is specified in the
identity
field.The
name
field has no effect on this rule; it should be set to “.” as a placeholder.For example,
grant EXAMPLE.COM krb5-self . A AAAA
allows any machine with a valid principal in the realmEXAMPLE.COM
to update its own address records.krb5-selfsub
- This is similar to
krb5-self
, except it also allows updates to any subdomain of the name specified in themachine
part of the Kerberos principal, not just to the name itself. krb5-subdomain
- This rule is identical to
ms-subdomain
, except that it works with Kerberos machine principals (i.e.,host/machine@REALM
) rather than Windows machine principals. krb5-subdomain-self-rhs
- This rule is similar to
krb5-subdomain
, with an additional restriction that PTR and SRV target names must match the name of the machine identified in the principal. tcp-self
This rule allows updates that have been sent via TCP and for which the standard mapping from the client’s IP address into the
in-addr.arpa
andip6.arpa
namespaces matches the name to be updated. Theidentity
field must match that name. Thename
field should be set to “.”. Note that, since identity is based on the client’s IP address, it is not necessary for update request messages to be signed.Note
It is theoretically possible to spoof these TCP sessions.
6to4-self
This allows the name matching a 6to4 IPv6 prefix, as specified in RFC 3056, to be updated by any TCP connection from either the 6to4 network or from the corresponding IPv4 address. This is intended to allow NS or DNAME RRsets to be added to the
ip6.arpa
reverse tree.The
identity
field must match the 6to4 prefix inip6.arpa
. Thename
field should be set to “.”. Note that, since identity is based on the client’s IP address, it is not necessary for update request messages to be signed.In addition, if specified for an
ip6.arpa
name outside of the2.0.0.2.ip6.arpa
namespace, the corresponding /48 reverse name can be updated. For example, TCP/IPv6 connections from 2001:DB8:ED0C::/48 can update records atC.0.D.E.8.B.D.0.1.0.0.2.ip6.arpa
.Note
It is theoretically possible to spoof these TCP sessions.
external
This rule allows
named
to defer the decision of whether to allow a given update to an external daemon.The method of communicating with the daemon is specified in the
identity
field, the format of which is “local:
path”, where “path” is the location of a Unix-domain socket. (Currently, “local” is the only supported mechanism.)Requests to the external daemon are sent over the Unix-domain socket as datagrams with the following format:
Protocol version number (4 bytes, network byte order, currently 1) Request length (4 bytes, network byte order) Signer (null-terminated string) Name (null-terminated string) TCP source address (null-terminated string) Rdata type (null-terminated string) Key (null-terminated string) TKEY token length (4 bytes, network byte order) TKEY token (remainder of packet)
The daemon replies with a four-byte value in network byte order, containing either 0 or 1; 0 indicates that the specified update is not permitted, and 1 indicates that it is.
4.2.36.5. Multiple Views¶
When multiple views are in use, a zone may be referenced by more than
one of them. Often, the views contain different zones with the same
name, allowing different clients to receive different answers for the
same queries. At times, however, it is desirable for multiple views to
contain identical zones. The in-view
zone option provides an
efficient way to do this; it allows a view to reference a zone that was
defined in a previously configured view. For example:
view internal {
match-clients { 10/8; };
zone example.com {
type primary;
file "example-external.db";
};
};
view external {
match-clients { any; };
zone example.com {
in-view internal;
};
};
An in-view
option cannot refer to a view that is configured later in
the configuration file.
A zone
statement which uses the in-view
option may not use any
other options, with the exception of forward
and forwarders
.
(These options control the behavior of the containing view, rather than
change the zone object itself.)
Zone-level ACLs (e.g., allow-query, allow-transfer), and other configuration details of the zone, are all set in the view the referenced zone is defined in. Be careful to ensure that ACLs are wide enough for all views referencing the zone.
An in-view
zone cannot be used as a response policy zone.
An in-view
zone is not intended to reference a forward
zone.
4.3. Zone File¶
4.3.1. Types of Resource Records and When to Use Them¶
This section, largely borrowed from RFC 1034, describes the concept of a Resource Record (RR) and explains when each type is used. Since the publication of RFC 1034, several new RRs have been identified and implemented in the DNS. These are also included.
4.3.1.1. Resource Records¶
A domain name identifies a node. Each node has a set of resource information, which may be empty. The set of resource information associated with a particular name is composed of separate RRs. The order of RRs in a set is not significant and need not be preserved by name servers, resolvers, or other parts of the DNS. However, sorting of multiple RRs is permitted for optimization purposes: for example, to specify that a particular nearby server be tried first. See The sortlist Statement and RRset Ordering.
The components of a Resource Record are:
- owner name
- The domain name where the RR is found.
- type
- An encoded 16-bit value that specifies the type of the resource record.
- TTL
- The time-to-live of the RR. This field is a 32-bit integer in units of seconds, and is primarily used by resolvers when they cache RRs. The TTL describes how long a RR can be cached before it should be discarded.
- class
- An encoded 16-bit value that identifies a protocol family or an instance of a protocol.
- RDATA
- The resource data. The format of the data is type- and sometimes class-specific.
For a complete list of types of valid RRs, including those that have been obsoleted, please refer to https://en.wikipedia.org/wiki/List_of_DNS_record_types.
The following classes of resource records are currently valid in the DNS:
- IN
- The Internet.
- CH
- Chaosnet, a LAN protocol created at MIT in the mid-1970s. It was rarely used for its historical purpose, but was reused for BIND’s built-in server information zones, e.g.,
version.bind
. - HS
- Hesiod, an information service developed by MIT’s Project Athena. It was used to share information about various systems databases, such as users, groups, printers, etc.
The owner name is often implicit, rather than forming an integral part of the RR. For example, many name servers internally form tree or hash structures for the name space, and chain RRs off nodes. The remaining RR parts are the fixed header (type, class, TTL), which is consistent for all RRs, and a variable part (RDATA) that fits the needs of the resource being described.
The TTL field is a time limit on how long an RR can be kept in a cache. This limit does not apply to authoritative data in zones; that also times out, but follows the refreshing policies for the zone. The TTL is assigned by the administrator for the zone where the data originates. While short TTLs can be used to minimize caching, and a zero TTL prohibits caching, the realities of Internet performance suggest that these times should be on the order of days for the typical host. If a change is anticipated, the TTL can be reduced prior to the change to minimize inconsistency, and then increased back to its former value following the change.
The data in the RDATA section of RRs is carried as a combination of binary strings and domain names. The domain names are frequently used as “pointers” to other data in the DNS.
4.3.1.2. Textual Expression of RRs¶
RRs are represented in binary form in the packets of the DNS protocol, and are usually represented in highly encoded form when stored in a name server or resolver. In the examples provided in RFC 1034, a style similar to that used in primary files was employed in order to show the contents of RRs. In this format, most RRs are shown on a single line, although continuation lines are possible using parentheses.
The start of the line gives the owner of the RR. If a line begins with a blank, then the owner is assumed to be the same as that of the previous RR. Blank lines are often included for readability.
Following the owner are listed the TTL, type, and class of the RR. Class and type use the mnemonics defined above, and TTL is an integer before the type field. To avoid ambiguity in parsing, type and class mnemonics are disjoint, TTLs are integers, and the type mnemonic is always last. The IN class and TTL values are often omitted from examples in the interest of clarity.
The resource data or RDATA section of the RR is given using knowledge of the typical representation for the data.
For example, the RRs carried in a message might be shown as:
ISI.EDU.
MX
10 VENERA.ISI.EDU.
MX
10 VAXA.ISI.EDU
VENERA.ISI.EDU
A
128.9.0.32
A
10.1.0.52
VAXA.ISI.EDU
A
10.2.0.27
A
128.9.0.33
The MX RRs have an RDATA section which consists of a 16-bit number followed by a domain name. The address RRs use a standard IP address format to contain a 32-bit Internet address.
The above example shows six RRs, with two RRs at each of three domain names.
Here is another possible example:
XX.LCS.MIT.EDU.
IN A
10.0.0.44
CH A
MIT.EDU. 2420
This shows two addresses for XX.LCS.MIT.EDU
, each of a
different class.
4.3.2. Discussion of MX Records¶
As described above, domain servers store information as a series of resource records, each of which contains a particular piece of information about a given domain name (which is usually, but not always, a host). The simplest way to think of an RR is as a typed pair of data, a domain name matched with a relevant datum and stored with some additional type information, to help systems determine when the RR is relevant.
MX records are used to control delivery of email. The data specified in the record is a priority and a domain name. The priority controls the order in which email delivery is attempted, with the lowest number first. If two priorities are the same, a server is chosen randomly. If no servers at a given priority are responding, the mail transport agent falls back to the next largest priority. Priority numbers do not have any absolute meaning; they are relevant only respective to other MX records for that domain name. The domain name given is the machine to which the mail is delivered. It must have an associated address record (A or AAAA); CNAME is not sufficient.
For a given domain, if there is both a CNAME record and an MX record, the MX record is in error and is ignored. Instead, the mail is delivered to the server specified in the MX record pointed to by the CNAME. For example:
example.com.
IN
MX
10
mail.example.com.
IN
MX
10
mail2.example.com.
IN
MX
20
mail.backup.org.
mail.example.com.
IN
A
10.0.0.1
mail2.example.com.
IN
A
10.0.0.2
Mail delivery is attempted to mail.example.com
and
mail2.example.com
(in any order); if neither of those succeeds,
delivery to mail.backup.org
is attempted.
4.3.3. Setting TTLs¶
The time-to-live (TTL) of the RR field is a 32-bit integer represented in units of seconds, and is primarily used by resolvers when they cache RRs. The TTL describes how long an RR can be cached before it should be discarded. The following three types of TTLs are currently used in a zone file.
- SOA
The last field in the SOA is the negative caching TTL. This controls how long other servers cache no-such-domain (NXDOMAIN) responses from this server.
The maximum time for negative caching is 3 hours (3h).
- $TTL
- The $TTL directive at the top of the zone file (before the SOA) gives a default TTL for every RR without a specific TTL set.
- RR TTLs
- Each RR can have a TTL as the second field in the RR, which controls how long other servers can cache it.
All of these TTLs default to units of seconds, though units can be
explicitly specified: for example, 1h30m
.
4.3.4. Inverse Mapping in IPv4¶
Reverse name resolution (that is, translation from IP address to name)
is achieved by means of the in-addr.arpa
domain and PTR records.
Entries in the in-addr.arpa domain are made in least-to-most significant
order, read left to right. This is the opposite order to the way IP
addresses are usually written. Thus, a machine with an IP address of
10.1.2.3 would have a corresponding in-addr.arpa name of
3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose
data field is the name of the machine or, optionally, multiple PTR
records if the machine has more than one name. For example, in the
example.com
domain:
$ORIGIN
2.1.10.in-addr.arpa
3
IN PTR foo.example.com.
Note
The $ORIGIN
line in this example is only to provide context;
it does not necessarily appear in the actual
usage. It is only used here to indicate that the example is
relative to the listed origin.
4.3.5. Other Zone File Directives¶
The DNS “master file” format was initially defined in RFC 1035 and has subsequently been extended. While the format itself is class-independent, all records in a zone file must be of the same class.
Master file directives include $ORIGIN
, $INCLUDE
, and $TTL.
4.3.5.1. The @
(at-sign)¶
When used in the label (or name) field, the asperand or at-sign (@)
symbol represents the current origin. At the start of the zone file, it
is the <zone_name
>, followed by a trailing dot (.).
4.3.5.2. The $ORIGIN
Directive¶
Syntax: $ORIGIN
domain-name [comment]
$ORIGIN
sets the domain name that is appended to any
unqualified records. When a zone is first read, there is an implicit
$ORIGIN
<zone_name
>``.``; note the trailing dot. The
current $ORIGIN
is appended to the domain specified in the
$ORIGIN
argument if it is not absolute.
$ORIGIN example.com.
WWW CNAME MAIN-SERVER
is equivalent to
WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.
4.3.5.3. The $INCLUDE
Directive¶
Syntax: $INCLUDE
filename [origin] [comment]
This reads and processes the file filename
as if it were included in the
file at this point. The filename
can be an absolute path, or a relative
path. In the latter case it is read from named
’s working directory. If
origin
is specified, the file is processed with $ORIGIN
set to that
value; otherwise, the current $ORIGIN
is used.
The origin and the current domain name revert to the values they had
prior to the $INCLUDE
once the file has been read.
4.3.6. BIND Primary File Extension: the $GENERATE
Directive¶
Syntax: $GENERATE
range lhs [ttl] [class] type rhs [comment]
$GENERATE
is used to create a series of resource records that only
differ from each other by an iterator. $GENERATE
can be used to
easily generate the sets of records required to support sub-/24 reverse
delegations described in RFC 2317.
$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 @ NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0
is equivalent to
0.0.0.192.IN-ADDR.ARPA. NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA. NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA. CNAME 1.0.0.0.192.IN-ADDR.ARPA.
2.0.0.192.IN-ADDR.ARPA. CNAME 2.0.0.0.192.IN-ADDR.ARPA.
...
127.0.0.192.IN-ADDR.ARPA. CNAME 127.0.0.0.192.IN-ADDR.ARPA.
Both generate a set of A and MX records. Note the MX’s right-hand side is a quoted string. The quotes are stripped when the right-hand side is processed.
$ORIGIN EXAMPLE.
$GENERATE 1-127 HOST-$ A 1.2.3.$
$GENERATE 1-127 HOST-$ MX "0 ."
is equivalent to
HOST-1.EXAMPLE. A 1.2.3.1
HOST-1.EXAMPLE. MX 0 .
HOST-2.EXAMPLE. A 1.2.3.2
HOST-2.EXAMPLE. MX 0 .
HOST-3.EXAMPLE. A 1.2.3.3
HOST-3.EXAMPLE. MX 0 .
...
HOST-127.EXAMPLE. A 1.2.3.127
HOST-127.EXAMPLE. MX 0 .
range
- This can be one of two forms: start-stop or start-stop/step. If the first form is used, then step is set to 1. “start”, “stop”, and “step” must be positive integers between 0 and (2^31)-1. “start” must not be larger than “stop”.
owner
This describes the owner name of the resource records to be created. Any single
$
(dollar sign) symbols within theowner
string are replaced by the iterator value. To get a$
in the output, escape the$
using a backslash\
, e.g.,\$
. The$
may optionally be followed by modifiers which change the offset from the iterator, field width, and base.Modifiers are introduced by a
{
(left brace) immediately following the$
, as in${offset[,width[,base]]}
. For example,${-20,3,d}
subtracts 20 from the current value and prints the result as a decimal in a zero-padded field of width 3. Available output forms are decimal (d
), octal (o
), hexadecimal (x
orX
for uppercase), and nibble (n
orN
for uppercase).The default modifier is
${0,0,d}
. If theowner
is not absolute, the current$ORIGIN
is appended to the name.In nibble mode, the value is treated as if it were a reversed hexadecimal string, with each hexadecimal digit as a separate label. The width field includes the label separator.
For compatibility with earlier versions,
$$
is still recognized as indicating a literal $ in the output.ttl
This specifies the time-to-live of the generated records. If not specified, this is inherited using the normal TTL inheritance rules.
class
andttl
can be entered in either order.class
This specifies the class of the generated records. This must match the zone class if it is specified.
class
andttl
can be entered in either order.type
- This can be any valid type.
rdata
- This is a string containing the RDATA of the resource record to be created. It may be quoted if there are spaces in the string; the quotation marks do not appear in the generated record.
The $GENERATE
directive is a BIND extension and not part of the
standard zone file format.
4.3.7. Additional File Formats¶
In addition to the standard text format, BIND 9 supports the ability to read or dump to zone files in other formats.
The raw
format is a binary representation of zone data in a manner
similar to that used in zone transfers. Since it does not require
parsing text, load time is significantly reduced.
For a primary server, a zone file in raw
format is expected
to be generated from a text zone file by the named-compilezone
command.
For a secondary server or a dynamic zone, the zone file is automatically
generated when named
dumps the zone contents after zone transfer or
when applying prior updates, if one of these formats is specified by the
masterfile-format
option.
If a zone file in raw
format needs manual modification, it first must
be converted to text
format by the named-compilezone
command,
then converted back after editing. For example:
named-compilezone -f raw -F text -o zonefile.text <origin> zonefile.raw
[edit zonefile.text]
named-compilezone -f text -F raw -o zonefile.raw <origin> zonefile.text
4.4. BIND 9 Statistics¶
BIND 9 maintains lots of statistics information and provides several interfaces for users to access those statistics. The available statistics include all statistics counters that are meaningful in BIND 9, and other information that is considered useful.
The statistics information is categorized into the following sections:
- Incoming Requests
- The number of incoming DNS requests for each OPCODE.
- Incoming Queries
- The number of incoming queries for each RR type.
- Outgoing Queries
- The number of outgoing queries for each RR type sent from the internal resolver, maintained per view.
- Name Server Statistics
- Statistics counters for incoming request processing.
- Zone Maintenance Statistics
- Statistics counters regarding zone maintenance operations, such as zone transfers.
- Resolver Statistics
- Statistics counters for name resolutions performed in the internal resolver, maintained per view.
- Cache DB RRsets
Statistics counters related to cache contents, maintained per view.
The “NXDOMAIN” counter is the number of names that have been cached as nonexistent. Counters named for RR types indicate the number of active RRsets for each type in the cache database.
If an RR type name is preceded by an exclamation point (!), it represents the number of records in the cache which indicate that the type does not exist for a particular name; this is also known as “NXRRSET”. If an RR type name is preceded by a hash mark (#), it represents the number of RRsets for this type that are present in the cache but whose TTLs have expired; these RRsets may only be used if stale answers are enabled. If an RR type name is preceded by a tilde (~), it represents the number of RRsets for this type that are present in the cache database but are marked for garbage collection; these RRsets cannot be used.
- Socket I/O Statistics
- Statistics counters for network-related events.
A subset of Name Server Statistics is collected and shown per zone for
which the server has the authority, when zone-statistics
is set to
full
(or yes
), for backward compatibility. See the description of
zone-statistics
in options Statement Definition and Usage for further details.
These statistics counters are shown with their zone and view names. The view name is omitted when the server is not configured with explicit views.
There are currently two user interfaces to get access to the statistics.
One is in plain-text format, dumped to the file specified by the
statistics-file
configuration option; the other is remotely
accessible via a statistics channel when the statistics-channels
statement is specified in the configuration file (see statistics-channels Statement Grammar.)
4.4.1. The Statistics File¶
The text format statistics dump begins with a line, like:
+++ Statistics Dump +++ (973798949)
The number in parentheses is a standard Unix-style timestamp, measured in seconds since January 1, 1970. Following that line is a set of statistics information, which is categorized as described above. Each section begins with a line, like:
++ Name Server Statistics ++
Each section consists of lines, each containing the statistics counter value followed by its textual description; see below for available counters. For brevity, counters that have a value of 0 are not shown in the statistics file.
The statistics dump ends with the line where the number is identical to the number in the beginning line; for example:
--- Statistics Dump --- (973798949)
4.4.2. Statistics Counters¶
The following lists summarize the statistics counters that BIND 9 provides. For each counter, the abbreviated symbol name is given; these symbols are shown in the statistics information accessed via an HTTP statistics channel. The description of the counter is also shown in the statistics file but, in this document, may be slightly modified for better readability.
4.4.2.1. Name Server Statistics Counters¶
Requestv4
- This indicates the number of IPv4 requests received. Note: this also counts non-query requests.
Requestv6
- This indicates the number of IPv6 requests received. Note: this also counts non-query requests.
ReqEdns0
- This indicates the number of requests received with EDNS(0).
ReqBadEDN SVer
- This indicates the number of requests received with an unsupported EDNS version.
ReqTSIG
- This indicates the number of requests received with TSIG.
ReqSIG0
- This indicates the number of requests received with SIG(0).
ReqBadSIG
- This indicates the number of requests received with an invalid (TSIG or SIG(0)) signature.
ReqTCP
- This indicates the number of TCP requests received.
AuthQryRej
- This indicates the number of rejected authoritative (non-recursive) queries.
RecQryRej
- This indicates the number of rejected recursive queries.
XfrRej
- This indicates the number of rejected zone transfer requests.
UpdateRej
- This indicates the number of rejected dynamic update requests.
Response
- This indicates the number of responses sent.
RespTruncated
- This indicates the number of truncated responses sent.
RespEDNS0
- This indicates the number of responses sent with EDNS(0).
RespTSIG
- This indicates the number of responses sent with TSIG.
RespSIG0
- This indicates the number of responses sent with SIG(0).
QrySuccess
- This indicates the number of queries that resulted in a successful answer, meaning queries which return a NOERROR response with at least one answer RR. This corresponds to the
success
counter of previous versions of BIND 9. QryAuthAns
- This indicates the number of queries that resulted in an authoritative answer.
QryNoauthAns
- This indicates the number of queries that resulted in a non-authoritative answer.
QryReferral
- This indicates the number of queries that resulted in a referral answer. This corresponds to the
referral
counter of previous versions of BIND 9. QryNxrrset
- This indicates the number of queries that resulted in NOERROR responses with no data. This corresponds to the
nxrrset
counter of previous versions of BIND 9. QrySERVFAIL
- This indicates the number of queries that resulted in SERVFAIL.
QryFORMERR
- This indicates the number of queries that resulted in FORMERR.
QryNXDOMAIN
- This indicates the number of queries that resulted in NXDOMAIN. This corresponds to the
nxdomain
counter of previous versions of BIND 9. QryRecursion
- This indicates the number of queries that caused the server to perform recursion in order to find the final answer. This corresponds to the
recursion
counter of previous versions of BIND 9. QryDuplicate
- This indicates the number of queries which the server attempted to recurse but for which it discovered an existing query with the same IP address, port, query ID, name, type, and class already being processed. This corresponds to the
duplicate
counter of previous versions of BIND 9. QryDropped
- This indicates the number of recursive queries for which the server discovered an excessive number of existing recursive queries for the same name, type, and class, and which were subsequently dropped. This is the number of dropped queries due to the reason explained with the
clients-per-query
andmax-clients-per-query
options (see clients-per-query). This corresponds to thedropped
counter of previous versions of BIND 9. QryFailure
- This indicates the number of query failures. This corresponds to the
failure
counter of previous versions of BIND 9. Note: this counter is provided mainly for backward compatibility with previous versions; normally, more fine-grained counters such asAuthQryRej
andRecQryRej
that would also fall into this counter are provided, so this counter is not of much interest in practice. QryNXRedir
- This indicates the number of queries that resulted in NXDOMAIN that were redirected.
QryNXRedirRLookup
- This indicates the number of queries that resulted in NXDOMAIN that were redirected and resulted in a successful remote lookup.
XfrReqDone
- This indicates the number of requested and completed zone transfers.
UpdateReqFwd
- This indicates the number of forwarded update requests.
UpdateRespFwd
- This indicates the number of forwarded update responses.
UpdateFwdFail
- This indicates the number of forwarded dynamic updates that failed.
UpdateDone
- This indicates the number of completed dynamic updates.
UpdateFail
- This indicates the number of failed dynamic updates.
UpdateBadPrereq
- This indicates the number of dynamic updates rejected due to a prerequisite failure.
RateDropped
- This indicates the number of responses dropped due to rate limits.
RateSlipped
- This indicates the number of responses truncated by rate limits.
RPZRewrites
- This indicates the number of response policy zone rewrites.
4.4.2.2. Zone Maintenance Statistics Counters¶
NotifyOutv4
- This indicates the number of IPv4 notifies sent.
NotifyOutv6
- This indicates the number of IPv6 notifies sent.
NotifyInv4
- This indicates the number of IPv4 notifies received.
NotifyInv6
- This indicates the number of IPv6 notifies received.
NotifyRej
- This indicates the number of incoming notifies rejected.
SOAOutv4
- This indicates the number of IPv4 SOA queries sent.
SOAOutv6
- This indicates the number of IPv6 SOA queries sent.
AXFRReqv4
- This indicates the number of requested IPv4 AXFRs.
AXFRReqv6
- This indicates the number of requested IPv6 AXFRs.
IXFRReqv4
- This indicates the number of requested IPv4 IXFRs.
IXFRReqv6
- This indicates the number of requested IPv6 IXFRs.
XfrSuccess
- This indicates the number of successful zone transfer requests.
XfrFail
- This indicates the number of failed zone transfer requests.
4.4.2.3. Resolver Statistics Counters¶
Queryv4
- This indicates the number of IPv4 queries sent.
Queryv6
- This indicates the number of IPv6 queries sent.
Responsev4
- This indicates the number of IPv4 responses received.
Responsev6
- This indicates the number of IPv6 responses received.
NXDOMAIN
- This indicates the number of NXDOMAINs received.
SERVFAIL
- This indicates the number of SERVFAILs received.
FORMERR
- This indicates the number of FORMERRs received.
OtherError
- This indicates the number of other errors received.
EDNS0Fail
- This indicates the number of EDNS(0) query failures.
Mismatch
- This indicates the number of mismatched responses received, meaning the DNS ID, response’s source address, and/or the response’s source port does not match what was expected. (The port must be 53 or as defined by the
port
option.) This may be an indication of a cache poisoning attempt. Truncated
- This indicates the number of truncated responses received.
Lame
- This indicates the number of lame delegations received.
Retry
- This indicates the number of query retries performed.
QueryAbort
- This indicates the number of queries aborted due to quota control.
QuerySockFail
- This indicates the number of failures in opening query sockets. One common reason for such failures is due to a limitation on file descriptors.
QueryTimeout
- This indicates the number of query timeouts.
GlueFetchv4
- This indicates the number of IPv4 NS address fetches invoked.
GlueFetchv6
- This indicates the number of IPv6 NS address fetches invoked.
GlueFetchv4Fail
- This indicates the number of failed IPv4 NS address fetches.
GlueFetchv6Fail
- This indicates the number of failed IPv6 NS address fetches.
ValAttempt
- This indicates the number of attempted DNSSEC validations.
ValOk
- This indicates the number of successful DNSSEC validations.
ValNegOk
- This indicates the number of successful DNSSEC validations on negative information.
ValFail
- This indicates the number of failed DNSSEC validations.
QryRTTnn
- This provides a frequency table on query round-trip times (RTTs). Each
nn
specifies the corresponding frequency. In the sequence ofnn_1
,nn_2
, …,nn_m
, the value ofnn_i
is the number of queries whose RTTs are betweennn_(i-1)
(inclusive) andnn_i
(exclusive) milliseconds. For the sake of convenience, we definenn_0
to be 0. The last entry should be represented asnn_m+
, which means the number of queries whose RTTs are equal to or greater thannn_m
milliseconds.
4.4.2.4. Socket I/O Statistics Counters¶
Socket I/O statistics counters are defined per socket type, which are
UDP4
(UDP/IPv4), UDP6
(UDP/IPv6), TCP4
(TCP/IPv4), TCP6
(TCP/IPv6), Unix
(Unix Domain), and FDwatch
(sockets opened
outside the socket module). In the following list, <TYPE>
represents
a socket type. Not all counters are available for all socket types;
exceptions are noted in the descriptions.
<TYPE>Open
- This indicates the number of sockets opened successfully. This counter does not apply to the
FDwatch
type. <TYPE>OpenFail
- This indicates the number of failures to open sockets. This counter does not apply to the
FDwatch
type. <TYPE>Close
- This indicates the number of closed sockets.
<TYPE>BindFail
- This indicates the number of failures to bind sockets.
<TYPE>ConnFail
- This indicates the number of failures to connect sockets.
<TYPE>Conn
- This indicates the number of connections established successfully.
<TYPE>AcceptFail
- This indicates the number of failures to accept incoming connection requests. This counter does not apply to the
UDP
andFDwatch
types. <TYPE>Accept
- This indicates the number of incoming connections successfully accepted. This counter does not apply to the
UDP
andFDwatch
types. <TYPE>SendErr
- This indicates the number of errors in socket send operations.
<TYPE>RecvErr
- This indicates the number of errors in socket receive operations, including errors of send operations on a connected UDP socket, notified by an ICMP error message.
5. Advanced DNS Features¶
5.1. Notify¶
DNS NOTIFY is a mechanism that allows primary servers to notify their
secondary servers of changes to a zone’s data. In response to a NOTIFY
from a primary server, the secondary checks to see that its version of
the zone is the current version and, if not, initiates a zone transfer.
For more information about DNS NOTIFY
, see the description of the
notify
option in Boolean Options and the
description of the zone option also-notify
in Zone Transfers.
The NOTIFY
protocol is specified in RFC 1996.
Note
As a secondary zone can also be a primary to other secondaries, named
, by
default, sends NOTIFY
messages for every zone it loads.
Specifying notify primary-only;
causes named
to only send
NOTIFY
for primary zones that it loads.
5.2. Dynamic Update¶
Dynamic update is a method for adding, replacing, or deleting records in a primary server by sending it a special form of DNS messages. The format and meaning of these messages is specified in RFC 2136.
Dynamic update is enabled by including an allow-update
or an
update-policy
clause in the zone
statement.
If the zone’s update-policy
is set to local
, updates to the zone
are permitted for the key local-ddns
, which is generated by
named
at startup. See Dynamic Update Policies for more details.
Dynamic updates using Kerberos-signed requests can be made using the
TKEY/GSS protocol, either by setting the tkey-gssapi-keytab
option
or by setting both the tkey-gssapi-credential
and
tkey-domain
options. Once enabled, Kerberos-signed requests are
matched against the update policies for the zone, using the Kerberos
principal as the signer for the request.
Updating of secure zones (zones using DNSSEC) follows RFC 3007: RRSIG, NSEC, and NSEC3 records affected by updates are automatically regenerated by the server using an online zone key. Update authorization is based on transaction signatures and an explicit server policy.
5.2.1. The Journal File¶
All changes made to a zone using dynamic update are stored in the zone’s
journal file. This file is automatically created by the server when the
first dynamic update takes place. The name of the journal file is formed
by appending the extension .jnl
to the name of the corresponding
zone file unless specifically overridden. The journal file is in a
binary format and should not be edited manually.
The server also occasionally writes (“dumps”) the complete contents
of the updated zone to its zone file. This is not done immediately after
each dynamic update because that would be too slow when a large zone is
updated frequently. Instead, the dump is delayed by up to 15 minutes,
allowing additional updates to take place. During the dump process,
transient files are created with the extensions .jnw
and
.jbk
; under ordinary circumstances, these are removed when the
dump is complete, and can be safely ignored.
When a server is restarted after a shutdown or crash, it replays the journal file to incorporate into the zone any updates that took place after the last zone dump.
Changes that result from incoming incremental zone transfers are also journaled in a similar way.
The zone files of dynamic zones cannot normally be edited by hand
because they are not guaranteed to contain the most recent dynamic
changes; those are only in the journal file. The only way to ensure
that the zone file of a dynamic zone is up-to-date is to run
rndc stop
.
To make changes to a dynamic zone manually, follow these steps:
first, disable dynamic updates to the zone using
rndc freeze zone
. This updates the zone file with the
changes stored in its .jnl
file. Then, edit the zone file. Finally, run
rndc thaw zone
to reload the changed zone and re-enable dynamic
updates.
rndc sync zone
updates the zone file with changes from the
journal file without stopping dynamic updates; this may be useful for
viewing the current zone state. To remove the .jnl
file after
updating the zone file, use rndc sync -clean
.
5.3. Incremental Zone Transfers (IXFR)¶
The incremental zone transfer (IXFR) protocol is a way for secondary servers to transfer only changed data, instead of having to transfer an entire zone. The IXFR protocol is specified in RFC 1995.
When acting as a primary server, BIND 9 supports IXFR for those zones where the
necessary change history information is available. These include primary
zones maintained by dynamic update and secondary zones whose data was
obtained by IXFR. For manually maintained primary zones, and for secondary
zones obtained by performing a full zone transfer (AXFR), IXFR is
supported only if the option ixfr-from-differences
is set to
yes
.
When acting as a secondary server, BIND 9 attempts to use IXFR unless it is
explicitly disabled. For more information about disabling IXFR, see the
description of the request-ixfr
clause of the server
statement.
When a secondary server receives a zone via AXFR, it creates a new copy of the
zone database and then swaps it into place; during the loading process, queries
continue to be served from the old database with no interference. When receiving
a zone via IXFR, however, changes are applied to the running zone, which may
degrade query performance during the transfer. If a server receiving an IXFR
request determines that the response size would be similar in size to an AXFR
response, it may wish to send AXFR instead. The threshold at which this
determination is made can be configured using the
max-ixfr-ratio
option.
5.4. Split DNS¶
Setting up different views of the DNS space to internal and external resolvers is usually referred to as a split DNS setup. There are several reasons an organization might want to set up its DNS this way.
One common reason to use split DNS is to hide “internal” DNS information from “external” clients on the Internet. There is some debate as to whether this is actually useful. Internal DNS information leaks out in many ways (via email headers, for example) and most savvy “attackers” can find the information they need using other means. However, since listing addresses of internal servers that external clients cannot possibly reach can result in connection delays and other annoyances, an organization may choose to use split DNS to present a consistent view of itself to the outside world.
Another common reason for setting up a split DNS system is to allow internal networks that are behind filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the Internet. Split DNS can also be used to allow mail from outside back into the internal network.
5.4.1. Example Split DNS Setup¶
Let’s say a company named Example, Inc. (example.com
) has several
corporate sites that have an internal network with reserved Internet
Protocol (IP) space and an external demilitarized zone (DMZ), or
“outside” section of a network, that is available to the public.
Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail with people on the outside. The company also wants its internal resolvers to have access to certain internal-only zones that are not available at all outside of the internal network.
To accomplish this, the company sets up two sets of name servers. One set is on the inside network (in the reserved IP space) and the other set is on bastion hosts, which are “proxy” hosts in the DMZ that can talk to both sides of its network.
The internal servers are configured to forward all queries, except
queries for site1.internal
, site2.internal
,
site1.example.com
, and site2.example.com
, to the servers in the
DMZ. These internal servers have complete sets of information for
site1.example.com
, site2.example.com
, site1.internal
, and
site2.internal
.
To protect the site1.internal
and site2.internal
domains, the
internal name servers must be configured to disallow all queries to
these domains from any external hosts, including the bastion hosts.
The external servers, which are on the bastion hosts, are configured
to serve the “public” version of the site1.example.com
and site2.example.com
zones. This could include things such as the host records for public
servers (www.example.com
and ftp.example.com
) and mail exchange
(MX) records (a.mx.example.com
and b.mx.example.com
).
In addition, the public site1.example.com
and site2.example.com
zones should
have special MX records that contain wildcard (*
) records pointing to
the bastion hosts. This is needed because external mail servers
have no other way of determining how to deliver mail to those internal
hosts. With the wildcard records, the mail is delivered to the
bastion host, which can then forward it on to internal hosts.
Here’s an example of a wildcard MX record:
* IN MX 10 external1.example.com.
Now that they accept mail on behalf of anything in the internal network, the bastion hosts need to know how to deliver mail to internal hosts. The resolvers on the bastion hosts need to be configured to point to the internal name servers for DNS resolution.
Queries for internal hostnames are answered by the internal servers, and queries for external hostnames are forwarded back out to the DNS servers on the bastion hosts.
For all of this to work properly, internal clients need to be configured to query only the internal name servers for DNS queries. This could also be enforced via selective filtering on the network.
If everything has been set properly, Example, Inc.’s internal clients are now able to:
- Look up any hostnames in the
site1.example.com
andsite2.example.com
zones. - Look up any hostnames in the
site1.internal
andsite2.internal
domains. - Look up any hostnames on the Internet.
- Exchange mail with both internal and external users.
Hosts on the Internet are able to:
- Look up any hostnames in the
site1.example.com
andsite2.example.com
zones. - Exchange mail with anyone in the
site1.example.com
andsite2.example.com
zones.
Here is an example configuration for the setup just described above. Note that this is only configuration information; for information on how to configure the zone files, see Sample Configurations.
Internal DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips-go-here; };
options {
...
...
forward only;
// forward to external servers
forwarders {
bastion-ips-go-here;
};
// sample allow-transfer (no one)
allow-transfer { none; };
// restrict query access
allow-query { internals; externals; };
// restrict recursion
allow-recursion { internals; };
...
...
};
// sample primary zone
zone "site1.example.com" {
type primary;
file "m/site1.example.com";
// do normal iterative resolution (do not forward)
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };
};
// sample secondary zone
zone "site2.example.com" {
type secondary;
file "s/site2.example.com";
primaries { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };
};
zone "site1.internal" {
type primary;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }
};
zone "site2.internal" {
type secondary;
file "s/site2.internal";
primaries { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }
};
External (bastion host) DNS server configuration:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips-go-here; };
options {
...
...
// sample allow-transfer (no one)
allow-transfer { none; };
// default query access
allow-query { any; };
// restrict cache access
allow-query-cache { internals; externals; };
// restrict recursion
allow-recursion { internals; externals; };
...
...
};
// sample secondary zone
zone "site1.example.com" {
type primary;
file "m/site1.foo.com";
allow-transfer { internals; externals; };
};
zone "site2.example.com" {
type secondary;
file "s/site2.foo.com";
primaries { another_bastion_host_maybe; };
allow-transfer { internals; externals; }
};
In the resolv.conf
(or equivalent) on the bastion host(s):
search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4
5.5. TSIG¶
TSIG (Transaction SIGnatures) is a mechanism for authenticating DNS messages, originally specified in RFC 2845. It allows DNS messages to be cryptographically signed using a shared secret. TSIG can be used in any DNS transaction, as a way to restrict access to certain server functions (e.g., recursive queries) to authorized clients when IP-based access control is insufficient or needs to be overridden, or as a way to ensure message authenticity when it is critical to the integrity of the server, such as with dynamic UPDATE messages or zone transfers from a primary to a secondary server.
This section is a guide to setting up TSIG in BIND. It describes the configuration syntax and the process of creating TSIG keys.
named
supports TSIG for server-to-server communication, and some of
the tools included with BIND support it for sending messages to
named
:
- nsupdate - dynamic DNS update utility supports TSIG via the
-k
,-l
, and-y
command-line options, or via thekey
command when running interactively.- dig - DNS lookup utility supports TSIG via the
-k
and-y
command-line options.
5.5.2. Loading a New Key¶
For a key shared between servers called host1
and host2
, the
following could be added to each server’s named.conf
file:
key "host1-host2." {
algorithm hmac-sha256;
secret "DAopyf1mhCbFVZw7pgmNPBoLUq8wEUT7UuPoLENP2HY=";
};
(This is the same key generated above using tsig-keygen
.)
Since this text contains a secret, it is recommended that either
named.conf
not be world-readable, or that the key
directive be
stored in a file which is not world-readable and which is included in
named.conf
via the include
directive.
Once a key has been added to named.conf
and the server has been
restarted or reconfigured, the server can recognize the key. If the
server receives a message signed by the key, it is able to verify
the signature. If the signature is valid, the response is signed
using the same key.
TSIG keys that are known to a server can be listed using the command
rndc tsig-list
.
5.5.3. Instructing the Server to Use a Key¶
A server sending a request to another server must be told whether to use a key, and if so, which key to use.
For example, a key may be specified for each server in the primaries
statement in the definition of a secondary zone; in this case, all SOA QUERY
messages, NOTIFY messages, and zone transfer requests (AXFR or IXFR)
are signed using the specified key. Keys may also be specified in
the also-notify
statement of a primary or secondary zone, causing NOTIFY
messages to be signed using the specified key.
Keys can also be specified in a server
directive. Adding the
following on host1
, if the IP address of host2
is 10.1.2.3, would
cause all requests from host1
to host2
, including normal DNS
queries, to be signed using the host1-host2.
key:
server 10.1.2.3 {
keys { host1-host2. ;};
};
Multiple keys may be present in the keys
statement, but only the
first one is used. As this directive does not contain secrets, it can be
used in a world-readable file.
Requests sent by host2
to host1
would not be signed, unless a
similar server
directive were in host2
’s configuration file.
When any server sends a TSIG-signed DNS request, it expects the response to be signed with the same key. If a response is not signed, or if the signature is not valid, the response is rejected.
5.5.4. TSIG-Based Access Control¶
TSIG keys may be specified in ACL definitions and ACL directives such as
allow-query
, allow-transfer
, and allow-update
. The above key
would be denoted in an ACL element as key host1-host2.
Here is an example of an allow-update
directive using a TSIG key:
allow-update { !{ !localnets; any; }; key host1-host2. ;};
This allows dynamic updates to succeed only if the UPDATE request comes
from an address in localnets
, and if it is signed using the
host1-host2.
key.
See Dynamic Update Policies for a
discussion of the more flexible update-policy
statement.
5.5.5. Errors¶
Processing of TSIG-signed messages can result in several errors:
- If a TSIG-aware server receives a message signed by an unknown key, the response will be unsigned, with the TSIG extended error code set to BADKEY.
- If a TSIG-aware server receives a message from a known key but with an invalid signature, the response will be unsigned, with the TSIG extended error code set to BADSIG.
- If a TSIG-aware server receives a message with a time outside of the allowed range, the response will be signed but the TSIG extended error code set to BADTIME, and the time values will be adjusted so that the response can be successfully verified.
In all of the above cases, the server returns a response code of NOTAUTH (not authenticated).
5.6. TKEY¶
TKEY (Transaction KEY) is a mechanism for automatically negotiating a shared secret between two hosts, originally specified in RFC 2930.
There are several TKEY “modes” that specify how a key is to be generated or assigned. BIND 9 implements only one of these modes: Diffie-Hellman key exchange. Both hosts are required to have a KEY record with algorithm DH (though this record is not required to be present in a zone).
The TKEY process is initiated by a client or server by sending a query of type TKEY to a TKEY-aware server. The query must include an appropriate KEY record in the additional section, and must be signed using either TSIG or SIG(0) with a previously established key. The server’s response, if successful, contains a TKEY record in its answer section. After this transaction, both participants have enough information to calculate a shared secret using Diffie-Hellman key exchange. The shared secret can then be used to sign subsequent transactions between the two servers.
TSIG keys known by the server, including TKEY-negotiated keys, can be
listed using rndc tsig-list
.
TKEY-negotiated keys can be deleted from a server using
rndc tsig-delete
. This can also be done via the TKEY protocol
itself, by sending an authenticated TKEY query specifying the “key
deletion” mode.
5.7. SIG(0)¶
BIND partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535 and RFC 2931. SIG(0) uses public/private keys to authenticate messages. Access control is performed in the same manner as with TSIG keys; privileges can be granted or denied in ACL directives based on the key name.
When a SIG(0) signed message is received, it is only verified if the key is known and trusted by the server. The server does not attempt to recursively fetch or validate the key.
SIG(0) signing of multiple-message TCP streams is not supported.
The only tool shipped with BIND 9 that generates SIG(0) signed messages
is nsupdate
.
5.8. DNSSEC¶
Cryptographic authentication of DNS information is possible through the DNS Security (“DNSSEC-bis”) extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the creation and use of DNSSEC signed zones.
In order to set up a DNSSEC secure zone, there are a series of steps
which must be followed. BIND 9 ships with several tools that are used in
this process, which are explained in more detail below. In all cases,
the -h
option prints a full list of parameters. Note that the DNSSEC
tools require the keyset files to be in the working directory or the
directory specified by the -d
option.
There must also be communication with the administrators of the parent
and/or child zone to transmit keys. A zone’s security status must be
indicated by the parent zone for a DNSSEC-capable resolver to trust its
data. This is done through the presence or absence of a DS
record at
the delegation point.
For other servers to trust data in this zone, they must be statically configured with either this zone’s zone key or the zone key of another zone above this one in the DNS tree.
5.8.1. Generating Keys¶
The dnssec-keygen
program is used to generate keys.
A secure zone must contain one or more zone keys. The zone keys
sign all other records in the zone, as well as the zone keys of any
secure delegated zones. Zone keys must have the same name as the zone, have a
name type of ZONE
, and be usable for authentication. It is
recommended that zone keys use a cryptographic algorithm designated as
“mandatory to implement” by the IETF. Currently there are two algorithms,
RSASHA256 and ECDSAP256SHA256; ECDSAP256SHA256 is recommended for
current and future deployments.
The following command generates an ECDSAP256SHA256 key for the
child.example
zone:
dnssec-keygen -a ECDSAP256SHA256 -n ZONE child.example.
Two output files are produced: Kchild.example.+013+12345.key
and
Kchild.example.+013+12345.private
(where 12345 is an example of a
key tag). The key filenames contain the key name (child.example.
),
the algorithm (5 is RSASHA1, 8 is RSASHA256, 13 is ECDSAP256SHA256, 15 is
ED25519, etc.), and the key tag (12345 in this case). The private key (in
the .private
file) is used to generate signatures, and the public
key (in the .key
file) is used for signature verification.
To generate another key with the same properties but with a different key tag, repeat the above command.
The dnssec-keyfromlabel
program is used to get a key pair from a
crypto hardware device and build the key files. Its usage is similar to
dnssec-keygen
.
The public keys should be inserted into the zone file by including the
.key
files using $INCLUDE
statements.
5.8.2. Signing the Zone¶
The dnssec-signzone
program is used to sign a zone.
Any keyset
files corresponding to secure sub-zones should be
present. The zone signer generates NSEC
, NSEC3
, and RRSIG
records for the zone, as well as DS
for the child zones if -g
is specified. If -g
is not specified, then DS RRsets for the
secure child zones need to be added manually.
By default, all zone keys which have an available private key are used
to generate signatures. The following command signs the zone, assuming
it is in a file called zone.child.example
:
dnssec-signzone -o child.example zone.child.example
One output file is produced: zone.child.example.signed
. This file
should be referenced by named.conf
as the input file for the zone.
dnssec-signzone
also produces keyset and dsset files. These are used
to provide the parent zone administrators with the DNSKEYs
(or their
corresponding DS
records) that are the secure entry point to the zone.
5.8.3. Configuring Servers for DNSSEC¶
To enable named
to validate answers received from other servers, the
dnssec-validation
option must be set to either yes
or auto
.
When dnssec-validation
is set to auto
, a trust anchor for the
DNS root zone is automatically used. This trust anchor is provided
as part of BIND and is kept up to date using RFC 5011 key management.
When dnssec-validation
is set to yes
, DNSSEC validation
only occurs if at least one trust anchor has been explicitly configured
in named.conf
, using a trust-anchors
statement (or the
managed-keys
and trusted-keys
statements, both deprecated).
When dnssec-validation
is set to no
, DNSSEC validation does not
occur.
The default is auto
unless BIND is built with
configure --disable-auto-validation
, in which case the default is
yes
.
The keys specified in trust-anchors
are copies of DNSKEY RRs for zones that are
used to form the first link in the cryptographic chain of trust. Keys configured
with the keyword static-key
or static-ds
are loaded directly into the
table of trust anchors, and can only be changed by altering the
configuration. Keys configured with initial-key
or initial-ds
are used
to initialize RFC 5011 trust anchor maintenance, and are kept up-to-date
automatically after the first time named
runs.
trust-anchors
is described in more detail later in this document.
BIND 9 does not verify signatures on load, so zone keys for authoritative zones do not need to be specified in the configuration file.
After DNSSEC is established, a typical DNSSEC configuration looks
something like the following. It has one or more public keys for the
root, which allows answers from outside the organization to be validated.
It also has several keys for parts of the namespace that the
organization controls. These are here to ensure that named
is immune
to compromised security in the DNSSEC components of parent zones.
trust-anchors {
/* Root Key */
"." initial-key 257 3 3 "BNY4wrWM1nCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwS
JxrGkxJWoZu6I7PzJu/E9gx4UC1zGAHlXKdE4zYIpRh
aBKnvcC2U9mZhkdUpd1Vso/HAdjNe8LmMlnzY3zy2Xy
4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ln5ZApjYg
hf+6fElrmLkdaz MQ2OCnACR817DF4BBa7UR/beDHyp
5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M/lUUVRbke
g1IPJSidmK3ZyCllh4XSKbje/45SKucHgnwU5jefMtq
66gKodQj+MiA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ
97S+LKUTpQcq27R7AT3/V5hRQxScINqwcz4jYqZD2fQ
dgxbcDTClU0CRBdiieyLMNzXG3";
/* Key for our organization's forward zone */
example.com. static-ds 54135 5 2 "8EF922C97F1D07B23134440F19682E7519ADDAE180E20B1B1EC52E7F58B2831D"
/* Key for our reverse zone. */
2.0.192.IN-ADDRPA.NET. static-key 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc
xOdNax071L18QqZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6c0tszYqbtvchm
gQC8CzKojM/W16i6MG/eafGU3
siaOdS0yOI6BgPsw+YZdzlYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB0lC7aOnsMyYKHHYeRvPxj
IQXmdqgOJGq+vsevG06zW+1xg
YJh9rCIfnm1GX/KMgxLPG2vXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk8j/iI8ib";
};
options {
...
dnssec-validation yes;
};
Note
None of the keys listed in this example are valid. In particular, the root key is not valid.
When DNSSEC validation is enabled and properly configured, the resolver rejects any answers from signed, secure zones which fail to validate, and returns SERVFAIL to the client.
Responses may fail to validate for any of several reasons, including missing, expired, or invalid signatures, a key which does not match the DS RRset in the parent zone, or an insecure response from a zone which, according to its parent, should have been secure.
Note
When the validator receives a response from an unsigned zone that has a signed parent, it must confirm with the parent that the zone was intentionally left unsigned. It does this by verifying, via signed and validated NSEC/NSEC3 records, that the parent zone contains no DS records for the child.
If the validator can prove that the zone is insecure, then the response is accepted. However, if it cannot, the validator must assume an insecure response to be a forgery; it rejects the response and logs an error.
The logged error reads “insecurity proof failed” and “got insecure response; parent indicates it should be secure.”
5.9. DNSSEC, Dynamic Zones, and Automatic Signing¶
5.9.1. Converting From Insecure to Secure¶
A zone can be changed from insecure to secure in three ways: using a
dynamic DNS update, via the auto-dnssec
zone option, or by setting a
DNSSEC policy for the zone with dnssec-policy
.
For any method, named
must be configured so that it can see
the K*
files which contain the public and private parts of the keys
that are used to sign the zone. These files are generated
by dnssec-keygen
, or created when needed by named
if
dnssec-policy
is used. Keys should be placed in the
key-directory, as specified in named.conf
:
zone example.net {
type primary;
update-policy local;
file "dynamic/example.net/example.net";
key-directory "dynamic/example.net";
};
If one KSK and one ZSK DNSKEY key have been generated, this configuration causes all records in the zone to be signed with the ZSK, and the DNSKEY RRset to be signed with the KSK. An NSEC chain is generated as part of the initial signing process.
With dnssec-policy
, it is possible to specify which keys should be
KSK and/or ZSK. To sign all records with a key, a CSK must be specified.
For example:
dnssec-policy csk {
keys {
csk lifetime unlimited algorithm 13;
};
};
5.9.2. Dynamic DNS Update Method¶
To insert the keys via dynamic update:
% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
> send
While the update request completes almost immediately, the zone is
not completely signed until named
has had time to “walk” the zone
and generate the NSEC and RRSIG records. The NSEC record at the apex
is added last, to signal that there is a complete NSEC chain.
To sign using NSEC3 instead of NSEC, add an NSEC3PARAM record to the initial update request. The OPTOUT bit in the NSEC3 chain can be set in the flags field of the NSEC3PARAM record.
% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
> update add example.net NSEC3PARAM 1 1 100 1234567890
> send
Again, this update request completes almost immediately; however,
the record does not show up until named
has had a chance to
build/remove the relevant chain. A private type record is created
to record the state of the operation (see below for more details), and
is removed once the operation completes.
While the initial signing and NSEC/NSEC3 chain generation is happening, other updates are possible as well.
5.9.3. Fully Automatic Zone Signing¶
To enable automatic signing, set a dnssec-policy
or add the
auto-dnssec
option to the zone statement in named.conf
.
auto-dnssec
has two possible arguments: allow
or maintain
.
With auto-dnssec allow
, named
can search the key directory for
keys matching the zone, insert them into the zone, and use them to sign
the zone. It does so only when it receives an
rndc sign <zonename>
.
auto-dnssec maintain
includes the above functionality, but also
automatically adjusts the zone’s DNSKEY records on a schedule according to
the keys’ timing metadata. (See dnssec-keygen: DNSSEC key generation tool and
dnssec-settime: set the key timing metadata for a DNSSEC key for more information.)
dnssec-policy
is similar to auto-dnssec maintain
, but
dnssec-policy
also automatically creates new keys when necessary. In
addition, any configuration related to DNSSEC signing is retrieved from the
policy, ignoring existing DNSSEC named.conf
options.
named
periodically searches the key directory for keys matching
the zone; if the keys’ metadata indicates that any change should be
made to the zone - such as adding, removing, or revoking a key - then that
action is carried out. By default, the key directory is checked for
changes every 60 minutes; this period can be adjusted with
dnssec-loadkeys-interval
, up to a maximum of 24 hours. The
rndc loadkeys
command forces named
to check for key updates immediately.
If keys are present in the key directory the first time the zone is
loaded, the zone is signed immediately, without waiting for an
rndc sign
or rndc loadkeys
command. Those commands can still be
used when there are unscheduled key changes.
When new keys are added to a zone, the TTL is set to match that of any
existing DNSKEY RRset. If there is no existing DNSKEY RRset, the
TTL is set to the TTL specified when the key was created (using the
dnssec-keygen -L
option), if any, or to the SOA TTL.
To sign the zone using NSEC3 instead of NSEC, submit an NSEC3PARAM record via dynamic update prior to the scheduled publication and activation of the keys. The OPTOUT bit for the NSEC3 chain can be set in the flags field of the NSEC3PARAM record. The NSEC3PARAM record does not appear in the zone immediately, but it is stored for later reference. When the zone is signed and the NSEC3 chain is completed, the NSEC3PARAM record appears in the zone.
Using the auto-dnssec
option requires the zone to be configured to
allow dynamic updates, by adding an allow-update
or
update-policy
statement to the zone configuration. If this has not
been done, the configuration fails.
5.9.4. Private Type Records¶
The state of the signing process is signaled by private type records (with a default type value of 65534). When signing is complete, those records with a non-zero initial octet have a non-zero value for the final octet.
If the first octet of a private type record is non-zero, the record indicates either that the zone needs to be signed with the key matching the record, or that all signatures that match the record should be removed. Here are the meanings of the different values of the first octet:
- algorithm (octet 1)
- key id in network order (octet 2 and 3)
- removal flag (octet 4)
- complete flag (octet 5)
Only records flagged as “complete” can be removed via dynamic update; attempts to remove other private type records are silently ignored.
If the first octet is zero (this is a reserved algorithm number that should never appear in a DNSKEY record), the record indicates that changes to the NSEC3 chains are in progress. The rest of the record contains an NSEC3PARAM record, while the flag field tells what operation to perform based on the flag bits:
0x01 OPTOUT
0x80 CREATE
0x40 REMOVE
0x20 NONSEC
5.9.5. DNSKEY Rollovers¶
As with insecure-to-secure conversions, DNSSEC keyrolls can be done
in two ways: using a dynamic DNS update, or via the auto-dnssec
zone
option.
5.9.6. Dynamic DNS Update Method¶
To perform key rollovers via a dynamic update, the K*
files for the new keys must be added so that named
can find them.
The new DNSKEY RRs can then be added via dynamic update. named
then causes the
zone to be signed with the new keys; when the signing is complete, the
private type records are updated so that the last octet is non-zero.
If this is for a KSK, the parent and any trust anchor repositories of the new KSK must be informed.
The maximum TTL in the zone must expire before removing the old DNSKEY. If it is a KSK that is being updated, the DS RRset in the parent must also be updated and its TTL allowed to expire. This ensures that all clients are able to verify at least one signature when the old DNSKEY is removed.
The old DNSKEY can be removed via UPDATE, taking care to specify the
correct key. named
cleans out any signatures generated by the
old key after the update completes.
5.9.7. Automatic Key Rollovers¶
When a new key reaches its activation date (as set by dnssec-keygen
or dnssec-settime
), and if the auto-dnssec
zone option is set to
maintain
, named
automatically carries out the key rollover.
If the key’s algorithm has not previously been used to sign the zone,
then the zone is fully signed as quickly as possible. However, if
the new key replaces an existing key of the same algorithm, the
zone is re-signed incrementally, with signatures from the old key
replaced with signatures from the new key as their signature
validity periods expire. By default, this rollover completes in 30 days,
after which it is safe to remove the old key from the DNSKEY RRset.
5.9.8. NSEC3PARAM Rollovers via UPDATE¶
The new NSEC3PARAM record can be added via dynamic update. When the new NSEC3 chain has been generated, the NSEC3PARAM flag field is set to zero. At that point, the old NSEC3PARAM record can be removed. The old chain is removed after the update request completes.
5.9.9. Converting From NSEC to NSEC3¶
Add a nsec3param
option to your dnssec-policy
and
run rndc reconfig
.
Or use nsupdate
to add an NSEC3PARAM record.
In both cases, the NSEC3 chain is generated and the NSEC3PARAM record is added before the NSEC chain is destroyed.
5.9.10. Converting From NSEC3 to NSEC¶
To do this, remove the nsec3param
option from the dnssec-policy
and
run rndc reconfig
.
Or use nsupdate
to remove all NSEC3PARAM records with a
zero flag field. The NSEC chain is generated before the NSEC3 chain
is removed.
5.9.11. Converting From Secure to Insecure¶
To convert a signed zone to unsigned using dynamic DNS, delete all the
DNSKEY records from the zone apex using nsupdate
. All signatures,
NSEC or NSEC3 chains, and associated NSEC3PARAM records are removed
automatically. This takes place after the update request completes.
This requires the dnssec-secure-to-insecure
option to be set to
yes
in named.conf
.
In addition, if the auto-dnssec maintain
zone statement is used, it
should be removed or changed to allow
instead; otherwise it will re-sign.
5.9.12. Periodic Re-signing¶
In any secure zone which supports dynamic updates, named
periodically re-signs RRsets which have not been re-signed as a result of
some update action. The signature lifetimes are adjusted to
spread the re-sign load over time rather than all at once.
5.9.13. NSEC3 and OPTOUT¶
named
only supports creating new NSEC3 chains where all the NSEC3
records in the zone have the same OPTOUT state. named
supports
UPDATES to zones where the NSEC3 records in the chain have mixed OPTOUT
state. named
does not support changing the OPTOUT state of an
individual NSEC3 record; if the
OPTOUT state of an individual NSEC3 needs to be changed, the entire chain must be changed.
5.10. Dynamic Trust Anchor Management¶
BIND is able to maintain DNSSEC trust anchors using RFC 5011 key
management. This feature allows named
to keep track of changes to
critical DNSSEC keys without any need for the operator to make changes
to configuration files.
5.10.1. Validating Resolver¶
To configure a validating resolver to use RFC 5011 to maintain a trust
anchor, configure the trust anchor using a trust-anchors
statement and
the initial-key
keyword. Information about this can be found in
trust-anchors Statement Definition and Usage.
5.10.2. Authoritative Server¶
To set up an authoritative zone for RFC 5011 trust anchor maintenance, generate two (or more) key signing keys (KSKs) for the zone. Sign the zone with one of them; this is the “active” KSK. All KSKs which do not sign the zone are “stand-by” keys.
Any validating resolver which is configured to use the active KSK as an RFC 5011-managed trust anchor takes note of the stand-by KSKs in the zone’s DNSKEY RRset, and stores them for future reference. The resolver rechecks the zone periodically; after 30 days, if the new key is still there, the key is accepted by the resolver as a valid trust anchor for the zone. Anytime after this 30-day acceptance timer has completed, the active KSK can be revoked, and the zone can be “rolled over” to the newly accepted key.
The easiest way to place a stand-by key in a zone is to use the “smart
signing” features of dnssec-keygen
and dnssec-signzone
. If a key
exists with a publication date in the past, but an activation date which is
unset or in the future, dnssec-signzone -S
includes the
DNSKEY record in the zone but does not sign with it:
$ dnssec-keygen -K keys -f KSK -P now -A now+2y example.net
$ dnssec-signzone -S -K keys example.net
To revoke a key, use the command dnssec-revoke
. This
adds the REVOKED bit to the key flags and regenerates the K*.key
and K*.private
files.
After revoking the active key, the zone must be signed with both the revoked KSK and the new active KSK. Smart signing takes care of this automatically.
Once a key has been revoked and used to sign the DNSKEY RRset in which it appears, that key is never again accepted as a valid trust anchor by the resolver. However, validation can proceed using the new active key, which was accepted by the resolver when it was a stand-by key.
See RFC 5011 for more details on key rollover scenarios.
When a key has been revoked, its key ID changes, increasing by 128 and
wrapping around at 65535. So, for example, the key
“Kexample.com.+005+10000
” becomes “Kexample.com.+005+10128
”.
If two keys have IDs exactly 128 apart and one is revoked, the two
key IDs will collide, causing several problems. To prevent this,
dnssec-keygen
does not generate a new key if another key
which may collide is present. This checking only occurs if the new keys are
written to the same directory that holds all other keys in use for that
zone.
Older versions of BIND 9 did not have this protection. Exercise caution if using key revocation on keys that were generated by previous releases, or if using keys stored in multiple directories or on multiple machines.
It is expected that a future release of BIND 9 will address this problem in a different way, by storing revoked keys with their original unrevoked key IDs.
5.11. PKCS#11 (Cryptoki) Support¶
Public Key Cryptography Standard #11 (PKCS#11) defines a platform-independent API for the control of hardware security modules (HSMs) and other cryptographic support devices.
PKCS#11 uses a “provider library”: a dynamically loadable library which provides a low-level PKCS#11 interface to drive the HSM hardware. The PKCS#11 provider library comes from the HSM vendor, and it is specific to the HSM to be controlled.
BIND 9 uses engine_pkcs11 for PKCS#11. engine_pkcs11 is an OpenSSL engine which is part of the OpenSC project. The engine is dynamically loaded into OpenSSL and the HSM is operated indirectly; any cryptographic operations not supported by the HSM can be carried out by OpenSSL instead.
5.11.1. Prerequisites¶
See the documentation provided by the HSM vendor for information about installing, initializing, testing, and troubleshooting the HSM.
5.11.1.1. Building SoftHSMv2¶
SoftHSMv2, the latest development version of SoftHSM, is available from https://github.com/opendnssec/SoftHSMv2. It is a software library developed by the OpenDNSSEC project (https://www.opendnssec.org) which provides a PKCS#11 interface to a virtual HSM, implemented in the form of an SQLite3 database on the local filesystem. It provides less security than a true HSM, but it allows users to experiment with native PKCS#11 when an HSM is not available. SoftHSMv2 can be configured to use either OpenSSL or the Botan library to perform cryptographic functions, but when using it for native PKCS#11 in BIND, OpenSSL is required.
By default, the SoftHSMv2 configuration file is prefix/etc/softhsm2.conf
(where prefix
is configured at compile time). This location can be
overridden by the SOFTHSM2_CONF environment variable. The SoftHSMv2
cryptographic store must be installed and initialized before using it
with BIND.
$ cd SoftHSMv2
$ configure --with-crypto-backend=openssl --prefix=/opt/pkcs11/usr
$ make
$ make install
$ /opt/pkcs11/usr/bin/softhsm-util --init-token 0 --slot 0 --label softhsmv2
5.11.2. OpenSSL-based PKCS#11¶
OpenSSL-based PKCS#11 uses engine_pkcs11 OpenSSL engine from libp11 project.
engine_pkcs11 tries to fit the PKCS#11 API within the engine API of OpenSSL. That is, it provides a gateway between PKCS#11 modules and the OpenSSL engine API. One has to register the engine with OpenSSL and one has to provide the path to the PKCS#11 module which should be gatewayed to. This can be done by editing the OpenSSL configuration file, by engine specific controls, or by using the p11-kit proxy module.
It is recommended, that libp11 >= 0.4.12 is used.
For more detailed howto including the examples, we recommend reading:
https://gitlab.isc.org/isc-projects/bind9/-/wikis/BIND-9-PKCS11
5.11.3. Using the HSM¶
The canonical documentation for configuring engine_pkcs11 is in the libp11/README.md, but here’s copy of working configuration for your convenience:
We are going to use our own custom copy of OpenSSL configuration, again it’s
driven by an environment variable, this time called OPENSSL_CONF. We are
going to copy the global OpenSSL configuration (often found in
etc/ssl/openssl.conf
) and customize it to use engines_pkcs11.
cp /etc/ssl/openssl.cnf /opt/bind9/etc/openssl.cnf
and export the environment variable:
export OPENSSL_CONF=/opt/bind9/etc/openssl.cnf
Now add following line at the top of file, before any sections (in square brackets) are defined:
openssl_conf = openssl_init
And make sure there are no other ‘openssl_conf = …’ lines in the file.
Add following lines at the bottom of the file:
[openssl_init]
engines=engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
engine_id = pkcs11
dynamic_path = <PATHTO>/pkcs11.so
MODULE_PATH = <FULL_PATH_TO_HSM_MODULE>
init = 0
5.11.4. Key Generation¶
HSM keys can now be created and used. We are going to assume that you already
have a BIND 9 installed, either from a package, or from the sources, and the
tools are readily available in the $PATH
.
For generating the keys, we are going to use pkcs11-tool
available from the
OpenSC suite. On both DEB-based and RPM-based distributions, the package is
called opensc.
We need to generate at least two RSA keys:
pkcs11-tool --module <FULL_PATH_TO_HSM_MODULE> -l -k --key-type rsa:2048 --label example.net-ksk --pin <PIN>
pkcs11-tool --module <FULL_PATH_TO_HSM_MODULE> -l -k --key-type rsa:2048 --label example.net-zsk --pin <PIN>
Remember that each key should have unique label and we are going to use that label to reference the private key.
Convert the RSA keys stored in the HSM into a format that BIND 9 understands.
The dnssec-keyfromlabel
tool from BIND 9 can link the raw keys stored in the
HSM with the K<zone>+<alg>+<id>
files. You’ll need to provide the OpenSSL
engine name (pkcs11
), the algorithm (RSASHA256
) and the PKCS#11 label
that specify the token (we asume that it has been initialized as bind9), the
name of the PKCS#11 object (called label when generating the keys using
pkcs11-tool
) and the HSM PIN.
Convert the KSK:
dnssec-keyfromlabel -E pkcs11 -a RSASHA256 -l "token=bind9;object=example.net-ksk;pin-value=0000" -f KSK example.net
and ZSK:
dnssec-keyfromlabel -E pkcs11 -a RSASHA256 -l "token=bind9;object=example.net-zsk;pin-value=0000" example.net
NOTE: you can use PIN stored on disk, by specifying pin-source=<path_to>/<file>
, f.e.:
(umask 0700 && echo -n 0000 > /opt/bind9/etc/pin.txt)
and then use in the label specification:
pin-source=/opt/bind9/etc/pin.txt
Confirm that you have one KSK and one ZSK present in the current directory:
ls -l K*
The output should look like this (the second number will be different):
Kexample.net.+008+31729.key
Kexample.net.+008+31729.private
Kexample.net.+008+42231.key
Kexample.net.+008+42231.private
A note on generating ECDSA keys: there is a bug in libp11 when looking up a key, that function compares keys only on their ID, not the label. So when looking up a key it returns the first key, rather than the matching key. The workaround for this is when creating ECDSA keys, you should specify a unique ID:
ksk=$(echo "example.net-ksk" | sha1sum - | awk '{print $1}')
zsk=$(echo "example.net-zsk" | sha1sum - | awk '{print $1}')
pkcs11-tool --module <FULL_PATH_TO_HSM_MODULE> -l -k --key-type EC:prime256v1 --id $ksk --label example.net-ksk --pin <PIN>
pkcs11-tool --module <FULL_PATH_TO_HSM_MODULE> -l -k --key-type EC:prime256v1 --id $zsk --label example.net-zsk --pin <PIN>
5.11.5. Specifying the Engine on the Command Line¶
When using OpenSSL-based PKCS#11, the “engine” to be used by OpenSSL can be
specified in named
and all of the BIND dnssec-*
tools by using the -E
<engine>
command line option. Specifying the engine is generally not necessary
unless a different OpenSSL engine is used.
The zone signing commences as usual, with only one small difference. We need to provide the name of the OpenSSL engine using the -E command line option.
dnssec-signzone -E pkcs11 -S -o example.net example.net
5.11.6. Running named
With Automatic Zone Re-signing¶
The zone can also be signed automatically by named. Again, we need to provide the name of the OpenSSL engine using the -E command line option.
named -E pkcs11 -c named.conf
and the logs should have lines like:
Fetching example.net/RSASHA256/31729 (KSK) from key repository.
DNSKEY example.net/RSASHA256/31729 (KSK) is now published
DNSKEY example.net/RSA256SHA256/31729 (KSK) is now active
Fetching example.net/RSASHA256/42231 (ZSK) from key repository.
DNSKEY example.net/RSASHA256/42231 (ZSK) is now published
DNSKEY example.net/RSA256SHA256/42231 (ZSK) is now active
For named
to dynamically re-sign zones using HSM keys,
and/or to sign new records inserted via nsupdate, named
must
have access to the HSM PIN. In OpenSSL-based PKCS#11, this is
accomplished by placing the PIN into the openssl.cnf
file (in the above
examples, /opt/pkcs11/usr/ssl/openssl.cnf
).
The location of the openssl.cnf file can be overridden by setting the
OPENSSL_CONF
environment variable before running named
.
Here is a sample openssl.cnf
:
openssl_conf = openssl_def
[ openssl_def ]
engines = engine_section
[ engine_section ]
pkcs11 = pkcs11_section
[ pkcs11_section ]
PIN = <PLACE PIN HERE>
This also allows the dnssec-\*
tools to access the HSM without PIN
entry. (The pkcs11-\*
tools access the HSM directly, not via OpenSSL, so
a PIN is still required to use them.)
5.12. Dynamically Loadable Zones (DLZ)¶
Dynamically Loadable Zones (DLZ) are an extension to BIND 9 that allows zone data to be retrieved directly from an external database. There is no required format or schema. DLZ modules exist for several different database backends, including MySQL and LDAP, and can be written for any other.
The DLZ module provides data to named
in text
format, which is then converted to DNS wire format by named
. This
conversion, and the lack of any internal caching, places significant
limits on the query performance of DLZ modules. Consequently, DLZ is not
recommended for use on high-volume servers. However, it can be used in a
hidden primary configuration, with secondaries retrieving zone updates via
AXFR. Note, however, that DLZ has no built-in support for DNS notify;
secondary servers are not automatically informed of changes to the zones in the
database.
5.12.1. Configuring DLZ¶
A DLZ database is configured with a dlz
statement in named.conf
:
dlz example {
database "dlopen driver.so args";
search yes;
};
This specifies a DLZ module to search when answering queries; the module
is implemented in driver.so
and is loaded at runtime by the dlopen
DLZ driver. Multiple dlz
statements can be specified; when answering
a query, all DLZ modules with search
set to yes
are queried
to see whether they contain an answer for the query name. The best
available answer is returned to the client.
The search
option in the above example can be omitted, because
yes
is the default value.
If search
is set to no
, this DLZ module is not searched
for the best match when a query is received. Instead, zones in this DLZ
must be separately specified in a zone statement. This allows users to
configure a zone normally using standard zone-option semantics, but
specify a different database backend for storage of the zone’s data.
For example, to implement NXDOMAIN redirection using a DLZ module for
backend storage of redirection rules:
dlz other {
database "dlopen driver.so args";
search no;
};
zone "." {
type redirect;
dlz other;
};
5.12.2. Sample DLZ Module¶
For guidance in the implementation of DLZ modules, the directory
contrib/dlz/example
contains a basic dynamically linkable DLZ
module - i.e., one which can be loaded at runtime by the “dlopen” DLZ
driver. The example sets up a single zone, whose name is passed to the
module as an argument in the dlz
statement:
dlz other {
database "dlopen driver.so example.nil";
};
In the above example, the module is configured to create a zone “example.nil”, which can answer queries and AXFR requests and accept DDNS updates. At runtime, prior to any updates, the zone contains an SOA, NS, and a single A record at the apex:
example.nil. 3600 IN SOA example.nil. hostmaster.example.nil. (
123 900 600 86400 3600
)
example.nil. 3600 IN NS example.nil.
example.nil. 1800 IN A 10.53.0.1
The sample driver can retrieve information about the querying client and alter its response on the basis of this information. To demonstrate this feature, the example driver responds to queries for “source-addr.``zonename``>/TXT” with the source address of the query. Note, however, that this record will not be included in AXFR or ANY responses. Normally, this feature is used to alter responses in some other fashion, e.g., by providing different address records for a particular name depending on the network from which the query arrived.
Documentation of the DLZ module API can be found in
contrib/dlz/example/README
. This directory also contains the header
file dlz_minimal.h
, which defines the API and should be included by
any dynamically linkable DLZ module.
5.13. Dynamic Database (DynDB)¶
Dynamic Database, or DynDB, is an extension to BIND 9 which, like DLZ (see Dynamically Loadable Zones (DLZ)), allows zone data to be retrieved from an external database. Unlike DLZ, a DynDB module provides a full-featured BIND zone database interface. Where DLZ translates DNS queries into real-time database lookups, resulting in relatively poor query performance, and is unable to handle DNSSEC-signed data due to its limited API, a DynDB module can pre-load an in-memory database from the external data source, providing the same performance and functionality as zones served natively by BIND.
A DynDB module supporting LDAP has been created by Red Hat and is available from https://pagure.io/bind-dyndb-ldap.
A sample DynDB module for testing and developer guidance is included
with the BIND source code, in the directory
bin/tests/system/dyndb/driver
.
5.13.1. Configuring DynDB¶
A DynDB database is configured with a dyndb
statement in
named.conf
:
dyndb example "driver.so" {
parameters
};
The file driver.so
is a DynDB module which implements the full DNS
database API. Multiple dyndb
statements can be specified, to load
different drivers or multiple instances of the same driver. Zones
provided by a DynDB module are added to the view’s zone table, and are
treated as normal authoritative zones when BIND responds to
queries. Zone configuration is handled internally by the DynDB module.
The parameters are passed as an opaque string to the DynDB module’s initialization routine. Configuration syntax differs depending on the driver.
5.13.2. Sample DynDB Module¶
For guidance in the implementation of DynDB modules, the directory
bin/tests/system/dyndb/driver
contains a basic DynDB module. The
example sets up two zones, whose names are passed to the module as
arguments in the dyndb
statement:
dyndb sample "sample.so" { example.nil. arpa. };
In the above example, the module is configured to create a zone, “example.nil”, which can answer queries and AXFR requests and accept DDNS updates. At runtime, prior to any updates, the zone contains an SOA, NS, and a single A record at the apex:
example.nil. 86400 IN SOA example.nil. example.nil. (
0 28800 7200 604800 86400
)
example.nil. 86400 IN NS example.nil.
example.nil. 86400 IN A 127.0.0.1
When the zone is updated dynamically, the DynDB module determines whether the updated RR is an address (i.e., type A or AAAA); if so, it automatically updates the corresponding PTR record in a reverse zone. Note that updates are not stored permanently; all updates are lost when the server is restarted.
5.14. Catalog Zones¶
A “catalog zone” is a special DNS zone that contains a list of other zones to be served, along with their configuration parameters. Zones listed in a catalog zone are called “member zones.” When a catalog zone is loaded or transferred to a secondary server which supports this functionality, the secondary server creates the member zones automatically. When the catalog zone is updated (for example, to add or delete member zones, or change their configuration parameters), those changes are immediately put into effect. Because the catalog zone is a normal DNS zone, these configuration changes can be propagated using the standard AXFR/IXFR zone transfer mechanism.
Catalog zones’ format and behavior are specified as an Internet draft for interoperability among DNS implementations. The latest revision of the DNS catalog zones draft can be found here: https://datatracker.ietf.org/doc/draft-toorop-dnsop-dns-catalog-zones/ .
5.14.1. Principle of Operation¶
Normally, if a zone is to be served by a secondary server, the
named.conf
file on the server must list the zone, or the zone must
be added using rndc addzone
. In environments with a large number of
secondary servers, and/or where the zones being served are changing
frequently, the overhead involved in maintaining consistent zone
configuration on all the secondary servers can be significant.
A catalog zone is a way to ease this administrative burden: it is a DNS zone that lists member zones that should be served by secondary servers. When a secondary server receives an update to the catalog zone, it adds, removes, or reconfigures member zones based on the data received.
To use a catalog zone, it must first be set up as a normal zone on both the
primary and secondary servers that are configured to use it. It
must also be added to a catalog-zones
list in the options
or
view
statement in named.conf
. This is comparable to the way a
policy zone is configured as a normal zone and also listed in a
response-policy
statement.
To use the catalog zone feature to serve a new member zone:
- Set up the member zone to be served on the primary as normal. This
can be done by editing
named.conf
or by runningrndc addzone
. - Add an entry to the catalog zone for the new member zone. This can
be done by editing the catalog zone’s zone file and running
rndc reload
, or by updating the zone usingnsupdate
.
The change to the catalog zone is propagated from the primary to all
secondaries using the normal AXFR/IXFR mechanism. When the secondary receives the
update to the catalog zone, it detects the entry for the new member
zone, creates an instance of that zone on the secondary server, and points
that instance to the primaries
specified in the catalog zone data. The
newly created member zone is a normal secondary zone, so BIND
immediately initiates a transfer of zone contents from the primary. Once
complete, the secondary starts serving the member zone.
Removing a member zone from a secondary server requires only
deleting the member zone’s entry in the catalog zone; the change to the
catalog zone is propagated to the secondary server using the normal
AXFR/IXFR transfer mechanism. The secondary server, on processing the
update, notices that the member zone has been removed, stops
serving the zone, and removes it from its list of configured zones.
However, removing the member zone from the primary server must be done
by editing the configuration file or running
rndc delzone
.
5.14.2. Configuring Catalog Zones¶
Catalog zones are configured with a catalog-zones
statement in the
options
or view
section of named.conf
. For example:
catalog-zones {
zone "catalog.example"
default-primaries { 10.53.0.1; }
in-memory no
zone-directory "catzones"
min-update-interval 10;
};
This statement specifies that the zone catalog.example
is a catalog
zone. This zone must be properly configured in the same view. In most
configurations, it would be a secondary zone.
The options following the zone name are not required, and may be specified in any order.
default-masters
- Synonym for
default-primaries
. default-primaries
- This option defines the default primaries for member zones listed in a catalog zone, and can be overridden by options within a catalog zone. If no such options are included, then member zones transfer their contents from the servers listed in this option.
in-memory
- This option, if set to
yes
, causes member zones to be stored only in memory. This is functionally equivalent to configuring a secondary zone without afile
option. The default isno
; member zones’ content is stored locally in a file whose name is automatically generated from the view name, catalog zone name, and member zone name. zone-directory
- This option causes local copies of member zones’ zone files to be
stored in the specified directory, if
in-memory
is not set toyes
. The default is to store zone files in the server’s working directory. A non-absolute pathname inzone-directory
is assumed to be relative to the working directory. min-update-interval
- This option sets the minimum interval between updates to catalog
zones, in seconds. If an update to a catalog zone (for example, via
IXFR) happens less than
min-update-interval
seconds after the most recent update, the changes are not carried out until this interval has elapsed. The default is 5 seconds.
Catalog zones are defined on a per-view basis. Configuring a non-empty
catalog-zones
statement in a view automatically turns on
allow-new-zones
for that view. This means that rndc addzone
and rndc delzone
also work in any view that supports catalog
zones.
5.14.3. Catalog Zone Format¶
A catalog zone is a regular DNS zone; therefore, it must have a single
SOA
and at least one NS
record.
A record stating the version of the catalog zone format is also required. If the version number listed is not supported by the server, then a catalog zone may not be used by that server.
catalog.example. IN SOA . . 2016022901 900 600 86400 1
catalog.example. IN NS nsexample.
version.catalog.example. IN TXT "1"
Note that this record must have the domain name
version.catalog-zone-name
. The data
stored in a catalog zone is indicated by the domain name label
immediately before the catalog zone domain.
Catalog zone options can be set either globally for the whole catalog zone or for a single member zone. Global options override the settings in the configuration file, and member zone options override global options.
Global options are set at the apex of the catalog zone, e.g.:
primaries.catalog.example. IN AAAA 2001:db8::1
BIND currently supports the following options:
A simple
primaries
definition:primaries.catalog.example. IN A 192.0.2.1
This option defines a primary server for the member zones, which can be either an A or AAAA record. If multiple primaries are set, the order in which they are used is random.
Note:
masters
can be used as a synonym forprimaries
.A
primaries
with a TSIG key defined:label.primaries.catalog.example. IN A 192.0.2.2 label.primaries.catalog.example. IN TXT "tsig_key_name"
This option defines a primary server for the member zone with a TSIG key set. The TSIG key must be configured in the configuration file.
label
can be any valid DNS label.Note:
masters
can be used as a synonym forprimaries
.allow-query
andallow-transfer
ACLs:allow-query.catalog.example. IN APL 1:10.0.0.1/24 allow-transfer.catalog.example. IN APL !1:10.0.0.1/32 1:10.0.0.0/24
These options are the equivalents of
allow-query
andallow-transfer
in a zone declaration in thenamed.conf
configuration file. The ACL is processed in order; if there is no match to any rule, the default policy is to deny access. For the syntax of the APL RR, see RFC 3123.
A member zone is added by including a PTR
resource record in the
zones
sub-domain of the catalog zone. The record label is a
SHA-1
hash of the member zone name in wire format. The target of the
PTR record is the member zone name. For example, to add the member zone
domain.example
:
5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN PTR domain.example.
The hash is necessary to identify options for a specific member zone. The member zone-specific options are defined the same way as global options, but in the member zone subdomain:
primaries.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN A 192.0.2.2
label.primaries.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN AAAA 2001:db8::2
label.primaries.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN TXT "tsig_key"
allow-query.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN APL 1:10.0.0.0/24
Options defined for a specific zone override the
global options defined in the catalog zone. These in turn override the
global options defined in the catalog-zones
statement in the
configuration file.
Note that none of the global records for an option are inherited if any
records are defined for that option for the specific zone. For example,
if the zone had a primaries
record of type A but not AAAA, it
would not inherit the type AAAA record from the global option.
5.15. IPv6 Support in BIND 9¶
BIND 9 fully supports all currently defined forms of IPv6 name-to-address and address-to-name lookups. It also uses IPv6 addresses to make queries when running on an IPv6-capable system.
For forward lookups, BIND 9 supports only AAAA records. RFC 3363 deprecated the use of A6 records, and client-side support for A6 records was accordingly removed from BIND 9. However, authoritative BIND 9 name servers still load zone files containing A6 records correctly, answer queries for A6 records, and accept zone transfer for a zone containing A6 records.
For IPv6 reverse lookups, BIND 9 supports the traditional “nibble”
format used in the ip6.arpa
domain, as well as the older, deprecated
ip6.int
domain. Older versions of BIND 9 supported the “binary label”
(also known as “bitstring”) format, but support of binary labels has
been completely removed per RFC 3363. Many applications in BIND 9 do not
understand the binary label format at all anymore, and return an
error if one is given. In particular, an authoritative BIND 9 name server will
not load a zone file containing binary labels.
5.15.1. Address Lookups Using AAAA Records¶
The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the deprecated A6 record, specifies the entire IPv6 address in a single record. For example:
$ORIGIN example.com.
host 3600 IN AAAA 2001:db8::1
Use of IPv4-in-IPv6 mapped addresses is not recommended. If a host has
an IPv4 address, use an A record, not a AAAA, with
::ffff:192.168.42.1
as the address.
5.15.2. Address-to-Name Lookups Using Nibble Format¶
When looking up an address in nibble format, the address components are
simply reversed, just as in IPv4, and ip6.arpa.
is appended to the
resulting name. For example, the following commands produce a reverse name
lookup for a host with address 2001:db8::1
:
$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR (
host.example.com. )
6. BIND 9 Security Considerations¶
6.1. Access Control Lists¶
Access Control Lists (ACLs) are address match lists that can be set up
and nicknamed for future use in allow-notify
, allow-query
,
allow-query-on
, allow-recursion
, blackhole
,
allow-transfer
, match-clients
, etc.
ACLs give users finer control over who can access the name server, without cluttering up configuration files with huge lists of IP addresses.
It is a good idea to use ACLs, and to control access. Limiting access to the server by outside parties can help prevent spoofing and denial of service (DoS) attacks against the server.
ACLs match clients on the basis of up to three characteristics: 1) The client’s IP address; 2) the TSIG or SIG(0) key that was used to sign the request, if any; and 3) an address prefix encoded in an EDNS Client-Subnet option, if any.
Here is an example of ACLs based on client addresses:
// Set up an ACL named "bogusnets" that blocks
// RFC1918 space and some reserved space, which is
// commonly used in spoofing attacks.
acl bogusnets {
0.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3;
10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16;
};
// Set up an ACL called our-nets. Replace this with the
// real IP numbers.
acl our-nets { x.x.x.x/24; x.x.x.x/21; };
options {
...
...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...
};
zone "example.com" {
type primary;
file "m/example.com";
allow-query { any; };
};
This allows authoritative queries for example.com
from any address,
but recursive queries only from the networks specified in our-nets
,
and no queries at all from the networks specified in bogusnets
.
In addition to network addresses and prefixes, which are matched against
the source address of the DNS request, ACLs may include key
elements, which specify the name of a TSIG or SIG(0) key.
When BIND 9 is built with GeoIP support, ACLs can also be used for
geographic access restrictions. This is done by specifying an ACL
element of the form: geoip db database field value
.
The field
parameter indicates which field to search for a match. Available fields
are country
, region
, city
, continent
, postal
(postal code),
metro
(metro code), area
(area code), tz
(timezone), isp
,
asnum
, and domain
.
value
is the value to search for within the database. A string may be quoted
if it contains spaces or other special characters. An asnum
search for
autonomous system number can be specified using the string “ASNNNN” or the
integer NNNN. If a country
search is specified with a string that is two characters
long, it must be a standard ISO-3166-1 two-letter country code; otherwise,
it is interpreted as the full name of the country. Similarly, if
region
is the search term and the string is two characters long, it is treated as a
standard two-letter state or province abbreviation; otherwise, it is treated as the
full name of the state or province.
The database
field indicates which GeoIP database to search for a match. In
most cases this is unnecessary, because most search fields can only be found in
a single database. However, searches for continent
or country
can be
answered from either the city
or country
databases, so for these search
types, specifying a database
forces the query to be answered from that
database and no other. If a database
is not specified, these queries
are first answered from the city
database if it is installed, and then from the country
database if it is installed. Valid database names are country
,
city
, asnum
, isp
, and domain
.
Some example GeoIP ACLs:
geoip country US;
geoip country JP;
geoip db country country Canada;
geoip region WA;
geoip city "San Francisco";
geoip region Oklahoma;
geoip postal 95062;
geoip tz "America/Los_Angeles";
geoip org "Internet Systems Consortium";
ACLs use a “first-match” logic rather than “best-match”; if an address
prefix matches an ACL element, then that ACL is considered to have
matched even if a later element would have matched more specifically.
For example, the ACL { 10/8; !10.0.0.1; }
would actually match a
query from 10.0.0.1, because the first element indicates that the query
should be accepted, and the second element is ignored.
When using “nested” ACLs (that is, ACLs included or referenced within other ACLs), a negative match of a nested ACL tells the containing ACL to continue looking for matches. This enables complex ACLs to be constructed, in which multiple client characteristics can be checked at the same time. For example, to construct an ACL which allows a query only when it originates from a particular network and only when it is signed with a particular key, use:
allow-query { !{ !10/8; any; }; key example; };
Within the nested ACL, any address that is not in the 10/8 network
prefix is rejected, which terminates the processing of the ACL.
Any address that is in the 10/8 network prefix is accepted, but
this causes a negative match of the nested ACL, so the containing ACL
continues processing. The query is accepted if it is signed by
the key example
, and rejected otherwise. The ACL, then, only
matches when both conditions are true.
6.2. Chroot
and Setuid
¶
On Unix servers, it is possible to run BIND in a chrooted environment
(using the chroot()
function) by specifying the -t
option for
named
. This can help improve system security by placing BIND in a
“sandbox,” which limits the damage done if a server is compromised.
Another useful feature in the Unix version of BIND is the ability to run
the daemon as an unprivileged user (-u
user). We suggest running
as an unprivileged user when using the chroot
feature.
Here is an example command line to load BIND in a chroot
sandbox,
/var/named
, and to run named
setuid
to user 202:
/usr/local/sbin/named -u 202 -t /var/named
6.2.1. The chroot
Environment¶
For a chroot
environment to work properly in a particular
directory (for example, /var/named
), the
environment must include everything BIND needs to run. From BIND’s
point of view, /var/named
is the root of the filesystem;
the values of options like directory
and pid-file
must be adjusted to account for this.
Unlike with earlier versions of BIND,
named
does not typically need to be compiled statically, nor do shared libraries need to be installed under the new
root. However, depending on the operating system, it may be necessary to set
up locations such as /dev/zero
, /dev/random
, /dev/log
, and
/etc/localtime
.
6.2.2. Using the setuid
Function¶
Prior to running the named
daemon, use the touch
utility (to
change file access and modification times) or the chown
utility (to
set the user id and/or group id) on files where BIND should
write.
Note
If the named
daemon is running as an unprivileged user, it
cannot bind to new restricted ports if the server is
reloaded.
6.3. Dynamic Update Security¶
Access to the dynamic update facility should be strictly limited. In
earlier versions of BIND, the only way to do this was based on the IP
address of the host requesting the update, by listing an IP address or
network prefix in the allow-update
zone option. This method is
insecure, since the source address of the update UDP packet is easily
forged. Also note that if the IP addresses allowed by the
allow-update
option include the address of a secondary server which
performs forwarding of dynamic updates, the primary can be trivially
attacked by sending the update to the secondary, which forwards it to
the primary with its own source IP address - causing the primary to approve
it without question.
For these reasons, we strongly recommend that updates be
cryptographically authenticated by means of transaction signatures
(TSIG). That is, the allow-update
option should list only TSIG key
names, not IP addresses or network prefixes. Alternatively, the
update-policy
option can be used.
Some sites choose to keep all dynamically updated DNS data in a subdomain and delegate that subdomain to a separate zone. This way, the top-level zone containing critical data, such as the IP addresses of public web and mail servers, need not allow dynamic updates at all.
7. Troubleshooting¶
7.1. Common Problems¶
7.1.1. It’s Not Working; How Can I Figure Out What’s Wrong?¶
The best solution to installation and configuration issues is to take preventive measures by setting up logging files beforehand. The log files provide hints and information that can be used to identify anything that went wrong and fix the problem.
7.1.2. EDNS Compliance Issues¶
EDNS (Extended DNS) is a standard that was first specified in 1999. It is required for DNSSEC validation, DNS COOKIE options, and other features. There are broken and outdated DNS servers and firewalls still in use which misbehave when queried with EDNS; for example, they may drop EDNS queries rather than replying with FORMERR. BIND and other recursive name servers have traditionally employed workarounds in this situation, retrying queries in different ways and eventually falling back to plain DNS queries without EDNS.
Such workarounds cause unnecessary resolution delays, increase code complexity, and prevent deployment of new DNS features. In February 2019, all major DNS software vendors removed these workarounds; see https://dnsflagday.net/2019 for further details. This change was implemented in BIND as of release 9.14.0.
As a result, some domains may be non-resolvable without manual
intervention. In these cases, resolution can be restored by adding
server
clauses for the offending servers, or by specifying edns no
or
send-cookie no
, depending on the specific noncompliance.
To determine which server
clause to use, run the following commands
to send queries to the authoritative servers for the broken domain:
dig soa <zone> @<server> +dnssec
dig soa <zone> @<server> +dnssec +nocookie
dig soa <zone> @<server> +noedns
If the first command fails but the second succeeds, the server most
likely needs send-cookie no
. If the first two fail but the third
succeeds, then the server needs EDNS to be fully disabled with
edns no
.
Please contact the administrators of noncompliant domains and encourage them to upgrade their broken DNS servers.
7.1.3. Inspecting Encrypted DNS Traffic¶
Note
This feature requires support from the cryptographic library that
BIND 9 is built against. For OpenSSL, version 1.1.1 or newer is
required (use named -V
to check).
By definition, TLS-encrypted traffic (e.g. DNS over TLS, DNS over HTTPS)
is opaque to packet sniffers, which makes debugging problems with
encrypted DNS close to impossible. However, Wireshark offers a
solution to this problem by being able to read key log files. In order
to make named
prepare such a file, set the SSLKEYLOGFILE
environment variable to either:
the string
config
(SSLKEYLOGFILE=config
); this requires defining alogging
channel which will handle messages belonging to thesslkeylog
category,the path to the key file to write (
SSLKEYLOGFILE=/path/to/file
); this is equivalent to the followinglogging
stanza:channel default_sslkeylogfile { file "${SSLKEYLOGFILE}" versions 10 size 100m suffix timestamp; }; category sslkeylog { default_sslkeylogfile; };
Note
When using SSLKEYLOGFILE=config
, augmenting the log channel
output using options like print-time
or print-severity
is
strongly discouraged as it will likely make the key log file
unusable.
When the SSLKEYLOGFILE
environment variable is set, each TLS
connection established by named
(both incoming and outgoing) causes
about 1 kilobyte of data to be written to the key log file.
Warning
Due to the limitations of the current logging code in BIND 9,
enabling TLS pre-master secret logging adversely affects named
performance.
7.2. Incrementing and Changing the Serial Number¶
Zone serial numbers are just numbers — they are not date-related. However, many people set them to a number that represents a date, usually of the form YYYYMMDDRR. Occasionally they make a mistake and set the serial number to a date in the future, then try to correct it by setting it to the current date. This causes problems because serial numbers are used to indicate that a zone has been updated. If the serial number on the secondary server is lower than the serial number on the primary, the secondary server attempts to update its copy of the zone.
Setting the serial number to a lower number on the primary server than the one on the secondary server means that the secondary will not perform updates to its copy of the zone.
The solution to this is to add 2147483647 (2^31-1) to the number, reload the zone and make sure all secondaries have updated to the new zone serial number, then reset it to the desired number and reload the zone again.
7.3. Where Can I Get Help?¶
The BIND-users mailing list, at https://lists.isc.org/mailman/listinfo/bind-users, is an excellent resource for peer user support. In addition, ISC maintains a Knowledgebase of helpful articles at https://kb.isc.org.
Internet Systems Consortium (ISC) offers annual support agreements for BIND 9, ISC DHCP, and Kea DHCP. All paid support contracts include advance security notifications; some levels include service level agreements (SLAs), premium software features, and increased priority on bug fixes and feature requests.
Please contact info@isc.org or visit https://www.isc.org/contact/ for more information.
Release Notes¶
Contents
Introduction¶
BIND 9.18 is a stable branch, suitable for production use. This document summarizes significant changes since the last production release on that branch.
Supported Platforms¶
See the Supported Platforms section in the BIND Resource Requirements chapter.
Download¶
The latest versions of BIND 9 software can always be found at https://www.isc.org/download/. There you will find additional information about each release, and source code.
Notes for BIND 9.18.1¶
Security Fixes¶
The rules for acceptance of records into the cache have been tightened to prevent the possibility of poisoning if forwarders send records outside the configured bailiwick. (CVE-2021-25220)
ISC would like to thank Xiang Li, Baojun Liu, and Chaoyi Lu from Network and Information Security Lab, Tsinghua University, and Changgen Zou from Qi An Xin Group Corp. for bringing this vulnerability to our attention. #2950
TCP connections with
keep-response-order
enabled could leave the TCP sockets in theCLOSE_WAIT
state when the client did not properly shut down the connection. (CVE-2022-0396) #3112Lookups involving a DNAME could trigger an assertion failure when
synth-from-dnssec
was enabled (which is the default). (CVE-2022-0635)ISC would like to thank Vincent Levigneron from AFNIC for bringing this vulnerability to our attention. #3158
When chasing DS records, a timed-out or artificially delayed fetch could cause
named
to crash while resuming a DS lookup. (CVE-2022-0667) #3129
Feature Changes¶
- The DLZ API has been updated: EDNS Client-Subnet (ECS) options sent by a client are now included in the client information sent to DLZ modules when processing queries. #3082
- DEBUG(1)-level messages were added when starting and ending the BIND 9 task-exclusive mode that stops normal DNS operation (e.g. for reconfiguration, interface scans, and other events that require exclusive access to a shared resource). #3137
- The limit on the number of simultaneously processed pipelined DNS queries received over TCP has been removed. Previously, it was capped at 23 queries processed at the same time. #3141
Bug Fixes¶
- A failed view configuration during a
named
reconfiguration procedure could cause inconsistencies in BIND internal structures, causing a crash or other unexpected errors. This has been fixed. #3060 - Previously,
named
logged a “quota reached” message when it hit its hard quota on the number of connections. That message was accidentally removed but has now been restored. #3125 - The
max-transfer-time-out
andmax-transfer-idle-out
options were not implemented when the BIND 9 networking stack was refactored in 9.16. The missing functionality has been re-implemented and outgoing zone transfers now time out properly when not progressing. #1897 - TCP connections could hang indefinitely if the other party did not
read sent data, causing the TCP write buffers to fill. This has been
fixed by adding a “write” timer. Connections that are hung while
writing now time out after the
tcp-idle-timeout
period has elapsed. #3132 - Client TCP connections are now closed immediately when data received cannot be parsed as a valid DNS request. #3149
- The statistics counter representing the current number of clients
awaiting recursive resolution results (
RecursClients
) could be miscalculated in certain resolution scenarios, potentially causing the value of the counter to drop below zero. This has been fixed. #3147 - An error in the processing of the
blackhole
ACL could cause some DNS requests sent bynamed
to fail - for example, zone transfer requests and SOA refresh queries - if the destination address or prefix was specifically excluded from the ACL using!
, or if the ACL was set tonone
. This has now been fixed.blackhole
worked correctly when it was left unset, or if only positive-match elements were included. #3157 - Build errors were introduced in some DLZ modules due to an incomplete change in the previous release. This has been fixed. #3111
Notes for BIND 9.18.0¶
Note
This section only lists changes since BIND 9.16.25, the most recent release on the previous stable branch of BIND before the publication of BIND 9.18.0.
Known Issues¶
rndc
has been updated to use the new BIND network manager API. As the network manager currently has no support for UNIX-domain sockets, those cannot now be used withrndc
. This will be addressed in a future release, either by restoring UNIX-domain socket support or by formally declaring them to be obsolete in the control channel. #1759
New Features¶
named
now supports securing DNS traffic using Transport Layer Security (TLS). TLS is used by both DNS over TLS (DoT) and DNS over HTTPS (DoH).named
can use either a certificate provided by the user or an ephemeral certificate generated automatically upon startup. The tls statement allows fine-grained control over TLS parameters. #1840 #2795 #2796For debugging purposes,
named
logs TLS pre-master secrets when theSSLKEYLOGFILE
environment variable is set. This enables troubleshooting of issues with encrypted traffic. #2723Support for DNS over TLS (DoT) has been added to
named
. Network interfaces for DoT are configured using the existing listen-on directive, while TLS parameters are configured using the new tls statement. #1840named
supports zone transfers over TLS (XFR-over-TLS, XoT) for both incoming and outgoing zone transfers.Incoming zone transfers over TLS are enabled by adding the
tls
keyword, followed by either the name of a previously configured tls statement or the stringephemeral
, to the addresses included in primaries lists. #2392Similarly, the allow-transfer option was extended to accept additional
port
andtransport
parameters, to further restrict outgoing zone transfers to a particular port and/or DNS transport protocol. #2776Note that zone transfers over TLS (XoT) require the
dot
Application-Layer Protocol Negotiation (ALPN) token to be selected in the TLS handshake, as required by RFC 9103 section 7.1. This might cause issues with non-compliant XoT servers. #2794The
dig
tool is now able to send DoT queries (+tls
option). #1840There is currently no support for forwarding DNS queries via DoT.
Support for DNS over HTTPS (DoH) has been added to
named
. Both TLS-encrypted and unencrypted connections are supported (the latter may be used to offload encryption to other software). Network interfaces for DoH are configured using the existing listen-on directive, while TLS parameters are configured using the new tls statement and HTTP parameters are configured using the new http statement. #1144 #2472Server-side quotas on both the number of concurrent DoH connections and the number of active HTTP/2 streams per connection can be configured using the global
http-listener-clients
andhttp-streams-per-connection
options, or thelistener-clients
andstreams-per-connection
parameters in an http statement. #2809The
dig
tool is now able to send DoH queries (+https
option). #1641There is currently no support for forwarding DNS queries via DoH.
DoH support can be disabled at compile time using a new build-time option,
--disable-doh
. This allows BIND 9 to be built without the libnghttp2 library. #2478A new logging category,
rpz-passthru
, was added, which allows RPZ passthru actions to be logged into a separate channel. #54A new option,
nsdname-wait-recurse
, has been added to theresponse-policy
clause in the configuration file. When set tono
, RPZ NSDNAME rules are only applied if the authoritative nameservers for the query name have been looked up and are present in the cache. If this information is not present, the RPZ NSDNAME rules are ignored, but the information is looked up in the background and applied to subsequent queries. The default isyes
, meaning that RPZ NSDNAME rules should always be applied, even if the information needs to be looked up first. #1138Support for HTTPS and SVCB record types now also includes ADDITIONAL section processing for these record types. #1132
New configuration options,
tcp-receive-buffer
,tcp-send-buffer
,udp-receive-buffer
, andudp-send-buffer
, have been added. These options allow the operator to fine-tune the receiving and sending buffers in the operating system. On busy servers, increasing the size of the receive buffers can prevent the server from dropping packets during short traffic spikes, and decreasing it can prevent the server from becoming clogged with queries that are too old and have already timed out. #2313New finer-grained
update-policy
rule types,krb5-subdomain-self-rhs
andms-subdomain-self-rhs
, were added. These rule types restrict updates to SRV and PTR records so that their content can only match the machine name embedded in the Kerberos principal making the change. #481Per-type record count limits can now be specified in
update-policy
statements, to limit the number of records of a particular type that can be added to a domain name via dynamic update. #1657Support for OpenSSL 3.0 APIs was added. #2843 #3057
Extended DNS Error Code 18 - Prohibited (see RFC 8914 section 4.19) is now set if query access is denied to the specific client. #1836
ipv4only.arpa
is now served when DNS64 is configured. #385dig
can now report the DNS64 prefixes in use (+dns64prefix
). This is useful when the host on whichdig
is run is behind an IPv6-only link, using DNS64/NAT64 or 464XLAT for IPv4aaS (IPv4 as a Service). #1154dig
output now includes the transport protocol used (UDP, TCP, TLS, HTTPS). #1144 #1816dig +qid=<num>
allows the user to specify a particular query ID for testing purposes. #1851
Removed Features¶
Support for the
map
zone file format (masterfile-format map;
) has been removed. Users relying on themap
format are advised to convert their zones to theraw
format withnamed-compilezone
and change the configuration appropriately prior to upgrading BIND 9. #2882Old-style Dynamically Loadable Zones (DLZ) drivers that had to be enabled in
named
at build time have been removed. New-style DLZ modules should be used as a replacement. #2814Support for compiling and running BIND 9 natively on Windows has been completely removed. The last stable release branch that has working Windows support is BIND 9.16. #2690
Native PKCS#11 support has been removed. #2691
When built against OpenSSL 1.x, BIND 9 now uses engine_pkcs11 for PKCS#11. engine_pkcs11 is an OpenSSL engine which is part of the OpenSC project.
As support for so-called “engines” was deprecated in OpenSSL 3.x, compiling BIND 9 against an OpenSSL 3.x build which does not retain support for deprecated APIs makes it impossible to use PKCS#11 in BIND 9. A replacement for engine_pkcs11 which employs the new “provider” approach introduced in OpenSSL 3.x is in the making. #2843
The utilities
dnssec-checkds
,dnssec-coverage
, anddnssec-keymgr
have been removed from the BIND distribution, as well as theisc
Python package. DNSSEC features formerly provided by these utilities are now integrated intonamed
. See the dnssec-policy configuration option for more details.An archival version of the Python utilities has been moved to the repository https://gitlab.isc.org/isc-projects/dnssec-keymgr/. Please note these tools are no longer supported by ISC.
Since the old socket manager API has been removed, “socketmgr” statistics are no longer reported by the statistics channel. #2926
The
glue-cache
option has been marked as deprecated. The glue cache feature still works and will be permanently enabled in a future release. #2146A number of non-working configuration options that had been marked as obsolete in previous releases have now been removed completely. Using any of the following options is now considered a configuration failure:
acache-cleaning-interval
,acache-enable
,additional-from-auth
,additional-from-cache
,allow-v6-synthesis
,cleaning-interval
,dnssec-enable
,dnssec-lookaside
,filter-aaaa
,filter-aaaa-on-v4
,filter-aaaa-on-v6
,geoip-use-ecs
,lwres
,max-acache-size
,nosit-udp-size
,queryport-pool-ports
,queryport-pool-updateinterval
,request-sit
,sit-secret
,support-ixfr
,use-queryport-pool
,use-ixfr
. #1086The
dig
option+unexpected
has been removed. #2140IPv6 sockets are now explicitly restricted to sending and receiving IPv6 packets only. As this breaks the
+mapped
option fordig
, the option has been removed. #3093Disable and disallow static linking of BIND 9 binaries and libraries as BIND 9 modules require
dlopen()
support and static linking also prevents using security features like read-only relocations (RELRO) or address space layout randomization (ASLR) which are important for programs that interact with the network and process arbitrary user input. #1933The
--with-gperftools-profiler
configure
option was removed. To use the gperftools profiler, theHAVE_GPERFTOOLS_PROFILER
macro now needs to be manually set inCFLAGS
and-lprofiler
needs to be present inLDFLAGS
. !4045
Feature Changes¶
- Aggressive Use of DNSSEC-Validated Cache (
synth-from-dnssec
, see RFC 8198) is now enabled by default again, after having been disabled in BIND 9.14.8. The implementation of this feature was reworked to achieve better efficiency and tuned to ignore certain types of broken NSEC records. Negative answer synthesis is currently only supported for zones using NSEC. #1265 - The default NSEC3 parameters for
dnssec-policy
were updated to no extra SHA-1 iterations and no salt (NSEC3PARAM 1 0 0 -
). This change is in line with the latest NSEC3 recommendations. #2956 - The default for
dnssec-dnskey-kskonly
was changed toyes
. This means that DNSKEY, CDNSKEY, and CDS RRsets are now only signed with the KSK by default. The additional signatures prepared using the ZSK when the option is set tono
add to the DNS response payload without offering added value. #1316 dnssec-cds
now only generates SHA-2 DS records by default and avoids copying deprecated SHA-1 records from a child zone to its delegation in the parent. If the child zone does not publish SHA-2 CDS records,dnssec-cds
will generate them from the CDNSKEY records. The-a algorithm
option now affects the process of generating DS digest records from both CDS and CDNSKEY records. Thanks to Tony Finch. #2871- Previously,
named
accepted FORMERR responses both with and without an OPT record, as an indication that a given server did not support EDNS. To implement full compliance with RFC 6891, only FORMERR responses without an OPT record are now accepted. This intentionally breaks communication with servers that do not support EDNS and that incorrectly echo back the query message with the RCODE field set to FORMERR and the QR bit set to 1. #2249 - The question section is now checked when processing AXFR, IXFR, and SOA replies while transferring a zone in. #1683
- DNS Flag Day 2020: the EDNS buffer size probing code, which made the
resolver adjust the EDNS buffer size used for outgoing queries based
on the successful query responses and timeouts observed, was removed.
The resolver now always uses the EDNS buffer size set in
edns-udp-size
for all outgoing queries. #2183 - Keeping stale answers in cache (
stale-cache-enable
) has been disabled by default. #1712 - Overall memory use by
named
has been optimized and significantly reduced, especially for resolver workloads. #2398 #3048 - Memory allocation is now based on the memory allocation API provided by the jemalloc library, on platforms where it is available. Use of this library is now recommended when building BIND 9; although it is optional, it is enabled by default. #2433
- Internal data structures maintained for each cache database are now grown incrementally when they need to be expanded. This helps maintain a steady response rate on a loaded resolver while these internal data structures are resized. #2941
- The interface handling code has been refactored to use fewer resources, which should lead to less memory fragmentation and better startup performance. #2433
- When reporting zone types in the statistics channel, the terms
primary
andsecondary
are now used instead ofmaster
andslave
, respectively. #1944 - The
rndc nta -dump
andrndc secroots
commands now both includevalidate-except
entries when listing negative trust anchors. These are indicated by the keywordpermanent
in place of the expiry date. #1532 - The output of
rndc serve-stale status
has been clarified. It now explicitly reports whether retention of stale data in the cache is enabled (stale-cache-enable
), and whether returning such data in responses is enabled (stale-answer-enable
). #2742 - Previously, using
dig +bufsize=0
had the side effect of disabling EDNS, and there was no way to test the remote server’s behavior when it had received a packet with EDNS0 buffer size set to 0. This is no longer the case;dig +bufsize=0
now sends a DNS message with EDNS version 0 and buffer size set to 0. To disable EDNS, usedig +noedns
. #2054 - BIND 9 binaries which are neither daemons nor administrative programs
were moved to
$bindir
. Onlyddns-confgen
,named
,rndc
,rndc-confgen
, andtsig-confgen
were left in$sbindir
. #1724 - The BIND 9 build system has been changed to use a typical
autoconf+automake+libtool stack. This should not make any difference
for people building BIND 9 from release tarballs, but when building
BIND 9 from the Git repository,
autoreconf -fi
needs to be run first. Extra attention is also needed when using non-standardconfigure
options. #4
License¶
BIND 9 is open source software licensed under the terms of the Mozilla Public
License, version 2.0 (see the COPYING
file for the full text).
Those wishing to discuss license compliance may contact ISC at https://www.isc.org/contact/.
End of Life¶
BIND 9.18 is a stable branch, suitable for production use. After it has been in production use for a while it will be designated as an Extended Support Version (ESV). Until then, the current ESV is BIND 9.16, which will be supported until at least December 2023. See https://kb.isc.org/docs/aa-00896 for details of ISC’s software support policy.
DNSSEC Guide¶
Preface¶
Organization¶
This document provides introductory information on how DNSSEC works, how to configure BIND 9 to support some common DNSSEC features, and some basic troubleshooting tips. The chapters are organized as follows:
Introduction covers the intended audience for this document, assumed background knowledge, and a basic introduction to the topic of DNSSEC.
Getting Started covers various requirements before implementing DNSSEC, such as software versions, hardware capacity, network requirements, and security changes.
Validation walks through setting up a validating resolver, and gives both more information on the validation process and some examples of tools to verify that the resolver is properly validating answers.
Signing explains how to set up a basic signed authoritative zone, details the relationship between a child and a parent zone, and discusses ongoing maintenance tasks.
Basic DNSSEC Troubleshooting provides some tips on how to analyze and diagnose DNSSEC-related problems.
Advanced Discussions covers several topics, including key generation, key storage, key management, NSEC and NSEC3, and some disadvantages of DNSSEC.
Recipes provides several working examples of common DNSSEC solutions, with step-by-step details.
Commonly Asked Questions lists some commonly asked questions and answers about DNSSEC.
Acknowledgements¶
This document was originally authored by Josh Kuo of DeepDive Networking. He can be reached at josh.kuo@gmail.com.
Thanks to the following individuals (in no particular order) who have helped in completing this document: Jeremy C. Reed, Heidi Schempf, Stephen Morris, Jeff Osborn, Vicky Risk, Jim Martin, Evan Hunt, Mark Andrews, Michael McNally, Kelli Blucher, Chuck Aurora, Francis Dupont, Rob Nagy, Ray Bellis, Matthijs Mekking, and Suzanne Goldlust.
Special thanks goes to Cricket Liu and Matt Larson for their selflessness in knowledge sharing.
Thanks to all the reviewers and contributors, including John Allen, Jim Young, Tony Finch, Timothe Litt, and Dr. Jeffry A. Spain.
The sections on key rollover and key timing metadata borrowed heavily from the Internet Engineering Task Force draft titled “DNSSEC Key Timing Considerations” by S. Morris, J. Ihren, J. Dickinson, and W. Mekking, subsequently published as RFC 7583.
Icons made by Freepik and SimpleIcon from Flaticon, licensed under Creative Commons BY 3.0.
Introduction¶
Who Should Read this Guide?¶
This guide is intended as an introduction to DNSSEC for the DNS administrator who is already comfortable working with the existing BIND and DNS infrastructure. He or she might be curious about DNSSEC, but may not have had the time to investigate DNSSEC, to learn whether DNSSEC should be a part of his or her environment, and understand what it means to deploy it in the field.
This guide provides basic information on how to configure DNSSEC using BIND 9.16.0 or later. Most of the information and examples in this guide also apply to versions of BIND later than 9.9.0, but some of the key features described here were only introduced in version 9.16.0. Readers are assumed to have basic working knowledge of the Domain Name System (DNS) and related network infrastructure, such as concepts of TCP/IP. In-depth knowledge of DNS and TCP/IP is not required. The guide assumes no prior knowledge of DNSSEC or related technology such as public key cryptography.
Who May Not Want to Read this Guide?¶
If you are already operating a DNSSEC-signed zone, you may not learn much from the first half of this document, and you may want to start with Advanced Discussions. If you want to learn about details of the protocol extension, such as data fields and flags, or the new record types, this document can help you get started but it does not include all the technical details.
If you are experienced in DNSSEC, you may find some of the concepts in this document to be overly simplified for your taste, and some details are intentionally omitted at times for ease of illustration.
If you administer a large or complex BIND environment, this guide may not provide enough information for you, as it is intended to provide only basic, generic working examples.
If you are a top-level domain (TLD) operator, or administer zones under signed TLDs, this guide can help you get started, but it does not provide enough details to serve all of your needs.
If your DNS environment uses DNS products other than (or in addition to) BIND, this document may provide some background or overlapping information, but you should check each product’s vendor documentation for specifics.
Finally, deploying DNSSEC on internal or private networks is not covered in this document, with the exception of a brief discussion in DNSSEC on Private Networks.
What is DNSSEC?¶
The Domain Name System (DNS) was designed in a day and age when the Internet was a friendly and trusting place. The protocol itself provides little protection against malicious or forged answers. DNS Security Extensions (DNSSEC) addresses this need, by adding digital signatures into DNS data so that each DNS response can be verified for integrity (the answer did not change during transit) and authenticity (the data came from the true source, not an impostor). In the ideal world, when DNSSEC is fully deployed, every single DNS answer can be validated and trusted.
DNSSEC does not provide a secure tunnel; it does not encrypt or hide DNS data. It operates independently of an existing Public Key Infrastructure (PKI). It does not need SSL certificates or shared secrets. It was designed with backwards compatibility in mind, and can be deployed without impacting “old” unsecured domain names.
DNSSEC is deployed on the three major components of the DNS infrastructure:
- Recursive Servers: People use recursive servers to lookup external
domain names such as
www.example.com
. Operators of recursive servers need to enable DNSSEC validation. With validation enabled, recursive servers carry out additional tasks on each DNS response they receive to ensure its authenticity. - Authoritative Servers: People who publish DNS data on their name servers need to sign that data. This entails creating additional resource records, and publishing them to parent domains where necessary. With DNSSEC enabled, authoritative servers respond to queries with additional DNS data, such as digital signatures and keys, in addition to the standard answers.
- Applications: This component lives on every client machine, from web servers to smart phones. This includes resolver libraries on different operating systems, and applications such as web browsers.
In this guide, we focus on the first two components, Recursive Servers and Authoritative Servers, and only lightly touch on the third component. We look at how DNSSEC works, how to configure a validating resolver, how to sign DNS zone data, and other operational tasks and considerations.
What Does DNSSEC Add to DNS?¶
Note
Public Key Cryptography works on the concept of a pair of keys: one made available to the world publicly, and one kept in secrecy privately. Not surprisingly, they are known as a public key and a private key. If you are not familiar with the concept, think of it as a cleverly designed lock, where one key locks and one key unlocks. In DNSSEC, we give out the unlocking public key to the rest of the world, while keeping the locking key private. To learn how this is used to secure DNS messages, see How Are Answers Verified?.
DNSSEC introduces eight new resource record types:
- RRSIG (digital resource record signature)
- DNSKEY (public key)
- DS (parent-child)
- NSEC (proof of nonexistence)
- NSEC3 (proof of nonexistence)
- NSEC3PARAM (proof of nonexistence)
- CDS (child-parent signaling)
- CDNSKEY (child-parent signaling)
This guide does not go deep into the anatomy of each resource record type; the details are left for the reader to research and explore. Below is a short introduction on each of the new record types:
RRSIG: With DNSSEC enabled, just about every DNS answer (A, PTR, MX, SOA, DNSKEY, etc.) comes with at least one resource record signature, or RRSIG. These signatures are used by recursive name servers, also known as validating resolvers, to verify the answers received. To learn how digital signatures are generated and used, see How Are Answers Verified?.
DNSKEY: DNSSEC relies on public-key cryptography for data authenticity and integrity. There are several keys used in DNSSEC, some private, some public. The public keys are published to the world as part of the zone data, and they are stored in the DNSKEY record type.
In general, keys in DNSSEC are used for one or both of the following roles: as a Zone Signing Key (ZSK), used to protect all zone data; or as a Key Signing Key (KSK), used to protect the zone’s keys. A key that is used for both roles is referred to as a Combined Signing Key (CSK). We talk about keys in more detail in DNSSEC Keys.
DS: One of the critical components of DNSSEC is that the parent zone can “vouch” for its child zone. The DS record is verifiable information (generated from one of the child’s public keys) that a parent zone publishes about its child as part of the chain of trust. To learn more about the Chain of Trust, see Chain of Trust.
NSEC, NSEC3, NSEC3PARAM: These resource records all deal with a very interesting problem: proving that something does not exist. We look at these record types in more detail in Proof of Non-Existence (NSEC and NSEC3).
CDS, CDNSKEY: The CDS and CDNSKEY resource records apply to operational matters and are a way to signal to the parent zone that the DS records it holds for the child zone should be updated. This is covered in more detail in The CDS and CDNSKEY Resource Records.
How Does DNSSEC Change DNS Lookup?¶
Traditional (insecure) DNS lookup is simple: a recursive name server
receives a query from a client to lookup a name like www.isc.org
. The
recursive name server tracks down the authoritative name server(s)
responsible, sends the query to one of the authoritative name servers,
and waits for it to respond with the answer.
With DNSSEC validation enabled, a validating recursive name server (a.k.a. a validating resolver) asks for additional resource records in its query, hoping the remote authoritative name servers respond with more than just the answer to the query, but some proof to go along with the answer as well. If DNSSEC responses are received, the validating resolver performs cryptographic computation to verify the authenticity (the origin of the data) and integrity (that the data was not altered during transit) of the answers, and even asks the parent zone as part of the verification. It repeats this process of get-key, validate, ask-parent, and its parent, and its parent, all the way until the validating resolver reaches a key that it trusts. In the ideal, fully deployed world of DNSSEC, all validating resolvers only need to trust one key: the root key.
The 12-Step DNSSEC Validation Process (Simplified)¶
The following example shows the 12 steps of the DNSSEC validating process
at a very high level, looking up the name www.isc.org
:

Upon receiving a DNS query from a client to resolve
www.isc.org
, the validating resolver follows standard DNS protocol to track down the name server forisc.org
, and sends it a DNS query to ask for the A record ofwww.isc.org
. But since this is a DNSSEC-enabled resolver, the outgoing query has a bit set indicating it wants DNSSEC answers, hoping the name server that receives it is DNSSEC-enabled and can honor this secure request.The
isc.org
name server is DNSSEC-enabled, so it responds with both the answer (in this case, an A record) and a digital signature for verification purposes.The validating resolver requires cryptographic keys to be able to verify the digital signature, so it asks the
isc.org
name server for those keys.The
isc.org
name server responds with the cryptographic keys (and digital signatures of the keys) used to generate the digital signature that was sent in #2. At this point, the validating resolver can use this information to verify the answers received in #2.Let’s take a quick break here and look at what we’ve got so far… how can our server trust this answer? If a clever attacker had taken over the
isc.org
name server(s), or course she would send matching keys and signatures. We need to ask someone else to have confidence that we are really talking to the realisc.org
name server. This is a critical part of DNSSEC: at some point, the DNS administrators atisc.org
uploaded some cryptographic information to its parent,.org
, maybe through a secure web form, maybe through an email exchange, or perhaps in person. In any event, at some point some verifiable information about the child (isc.org
) was sent to the parent (.org
) for safekeeping.The validating resolver asks the parent (
.org
) for the verifiable information it keeps on its child,isc.org
.Verifiable information is sent from the
.org
server. At this point, the validating resolver compares this to the answer it received in #4; if the two of them match, it proves the authenticity ofisc.org
.Let’s examine this process. You might be thinking to yourself, what if the clever attacker that took over
isc.org
also compromised the.org
servers? Of course all this information would match! That’s why we turn our attention now to the.org
server, interrogate it for its cryptographic keys, and move one level up to.org
’s parent, root.The validating resolver asks the
.org
authoritative name server for its cryptographic keys, to verify the answers received in #6.The
.org
name server responds with the answer (in this case, keys and signatures). At this point, the validating resolver can verify the answers received in #6.The validating resolver asks root (
.org
’s parent) for the verifiable information it keeps on its child,.org
.The root name server sends back the verifiable information it keeps on
.org
. The validating resolver uses this information to verify the answers received in #8.So at this point, both
isc.org
and.org
check out. But what about root? What if this attacker is really clever and somehow tricked us into thinking she’s the root name server? Of course she would send us all matching information! So we repeat the interrogation process and ask for the keys from the root name server.The validating resolver asks the root name server for its cryptographic keys to verify the answer(s) received in #10.
The root name server sends its keys; at this point, the validating resolver can verify the answer(s) received in #10.
Chain of Trust¶
But what about the root server itself? Who do we go to verify root’s
keys? There’s no parent zone for root. In security, you have to trust
someone, and in the perfectly protected world of DNSSEC (we talk later
about the current imperfect state and ways to work around it),
each validating resolver would only have to trust one entity, that is,
the root name server. The validating resolver already has the root key
on file (we discuss later how we got the root key file). So
after the answer in #12 is received, the validating resolver compares it
to the key it already has on file. Providing one of the keys in the
answer matches the one on file, we can trust the answer from root. Thus
we can trust .org
, and thus we can trust isc.org
. This is known
as the “chain of trust” in DNSSEC.
We revisit this 12-step process again later in How Does DNSSEC Change DNS Lookup (Revisited)? with more technical details.
Why is DNSSEC Important? (Why Should I Care?)¶
You might be thinking to yourself: all this DNSSEC stuff sounds wonderful, but why should I care? Below are some reasons why you may want to consider deploying DNSSEC:
- Being a good netizen: By enabling DNSSEC validation (as described in Validation) on your DNS servers, you’re protecting your users and yourself a little more by checking answers returned to you; by signing your zones (as described in Signing), you are making it possible for other people to verify your zone data. As more people adopt DNSSEC, the Internet as a whole becomes more secure for everyone.
- Compliance: You may not even get a say in
implementing DNSSEC, if your organization is subject to compliance
standards that mandate it. For example, the US government set a
deadline in 2008 to have all
.gov
subdomains signed by December 2009 [1]. So if you operate a subdomain in.gov
, you must implement DNSSEC to be compliant. ICANN also requires that all new top-level domains support DNSSEC. - Enhanced Security: Okay, so the big lofty goal of “let’s be good” doesn’t appeal to you, and you don’t have any compliance standards to worry about. Here is a more practical reason why you should consider DNSSEC: in the event of a DNS-based security breach, such as cache poisoning or domain hijacking, after all the financial and brand damage done to your domain name, you might be placed under scrutiny for any preventive measure that could have been put in place. Think of this like having your website only available via HTTP but not HTTPS.
- New Features: DNSSEC brings not only enhanced security, but also a whole new suite of features. Once DNS can be trusted completely, it becomes possible to publish SSL certificates in DNS, or PGP keys for fully automatic cross-platform email encryption, or SSH fingerprints…. New features are still being developed, but they all rely on a trustworthy DNS infrastructure. To take a peek at these next-generation DNS features, check out Introduction to DANE.
[1] | The Office of Management and Budget (OMB) for the US government
published a memo in
2008,
requesting all .gov subdomains to be DNSSEC-signed by December
2009. This explains why .gov is the most-deployed DNSSEC domain
currently, with around 90% of subdomains
signed. |
How Does DNSSEC Change My Job as a DNS Administrator?¶
With this protocol extension, some of the things you were used to in DNS have changed. As the DNS administrator, you have new maintenance tasks to perform on a regular basis (as described in Maintenance Tasks); when there is a DNS resolution problem, you have new troubleshooting techniques and tools to use (as described in Basic DNSSEC Troubleshooting). BIND 9 tries its best to make these things as transparent and seamless as possible. In this guide, we try to use configuration examples that result in the least amount of work for BIND 9 DNS administrators.
Getting Started¶
Software Requirements¶
BIND Version¶
Most configuration examples given in this document require BIND version
9.16.0 or newer (although many do work with all versions of BIND
later than 9.9). To check the version of named
you have installed,
use the -v
switch as shown below:
# named -v
BIND 9.16.0 (Stable Release) <id:6270e602ea>
Some configuration examples are added in BIND version 9.17 and backported to 9.16. For example, NSEC3 configuration requires BIND version 9.16.9.
We recommend you run the latest stable version to get the most complete DNSSEC configuration, as well as the latest security fixes.
DNSSEC Support in BIND¶
All versions of BIND 9 since BIND 9.7 can support DNSSEC, as currently
deployed in the global DNS, so the BIND software you are running most
likely already supports DNSSEC. Run the command named -V
to see what flags it was built with. If it was built with OpenSSL
(--with-openssl
), then it supports DNSSEC. Below is an example
of the output from running named -V
:
$ named -V
BIND 9.16.0 (Stable Release) <id:6270e602ea>
running on Linux x86_64 4.9.0-9-amd64 #1 SMP Debian 4.9.168-1+deb9u4 (2019-07-19)
built by make with defaults
compiled by GCC 6.3.0 20170516
compiled with OpenSSL version: OpenSSL 1.1.0l 10 Sep 2019
linked to OpenSSL version: OpenSSL 1.1.0l 10 Sep 2019
compiled with libxml2 version: 2.9.4
linked to libxml2 version: 20904
compiled with json-c version: 0.12.1
linked to json-c version: 0.12.1
compiled with zlib version: 1.2.8
linked to zlib version: 1.2.8
threads support is enabled
default paths:
named configuration: /usr/local/etc/named.conf
rndc configuration: /usr/local/etc/rndc.conf
DNSSEC root key: /usr/local/etc/bind.keys
nsupdate session key: /usr/local/var/run/named/session.key
named PID file: /usr/local/var/run/named/named.pid
named lock file: /usr/local/var/run/named/named.lock
If the BIND 9 software you have does not support DNSSEC, you should upgrade it. (It has not been possible to build BIND without DNSSEC support since BIND 9.13, released in 2018.) As well as missing out on DNSSEC support, you are also missing a number of security fixes made to the software in recent years.
System Entropy¶
To deploy DNSSEC to your authoritative server, you need to generate cryptographic keys. The amount of time it takes to generate the keys depends on the source of randomness, or entropy, on your systems. On some systems (especially virtual machines) with insufficient entropy, it may take much longer than one cares to wait to generate keys.
There are software packages, such as haveged
for Linux, that
provide additional entropy for a system. Once installed, they
significantly reduce the time needed to generate keys.
The more entropy there is, the better pseudo-random numbers you get, and the stronger the keys that are generated. If you want or need high-quality random numbers, take a look at Hardware Security Modules (HSMs) for some of the hardware-based solutions.
Hardware Requirements¶
Recursive Server Hardware¶
Enabling DNSSEC validation on a recursive server makes it a validating resolver. The job of a validating resolver is to fetch additional information that can be used to computationally verify the answer set. Below are the areas that should be considered for possible hardware enhancement for a validating resolver:
- CPU: a validating resolver executes cryptographic functions on many of the answers returned, which usually leads to increased CPU usage, unless your recursive server has built-in hardware to perform cryptographic computations.
- System memory: DNSSEC leads to larger answer sets and occupies more memory space.
- Network interfaces: although DNSSEC does increase the amount of DNS traffic overall, it is unlikely that you need to upgrade your network interface card (NIC) on the name server unless you have some truly outdated hardware.
One factor to consider is the destinations of your current DNS
traffic. If your current users spend a lot of time visiting .gov
websites, you should expect a jump in all of the above
categories when validation is enabled, because .gov
is more than 90%
signed. This means that more than 90% of the time, your validating resolver
will be doing what is described in
How Does DNSSEC Change DNS Lookup?. However, if your users
only care about resources in the .com
domain, which, as of mid-2020,
is under 1.5% signed [2], your recursive name server is unlikely
to experience a significant load increase after enabling DNSSEC
validation.
Authoritative Server Hardware¶
On the authoritative server side, DNSSEC is enabled on a zone-by-zone basis. When a zone is DNSSEC-enabled, it is also known as “signed.” Below are the areas to consider for possible hardware enhancements for an authoritative server with signed zones:
- CPU: a DNSSEC-signed zone requires periodic re-signing, which is a cryptographic function that is CPU-intensive. If your DNS zone is dynamic or changes frequently, that also adds to higher CPU loads.
- System storage: A signed zone is definitely larger than an unsigned zone. How much larger? See Your Zone, Before and After DNSSEC for a comparison example. Roughly speaking, you should expect your zone file to grow by at least three times, and frequently more.
- System memory: Larger DNS zone files take up not only more storage space on the file system, but also more space when they are loaded into system memory.
- Network interfaces: While your authoritative name servers will begin sending back larger responses, it is unlikely that you need to upgrade your network interface card (NIC) on the name server unless you have some truly outdated hardware.
One factor to consider, but over which you really have no control, is the number of users who query your domain name who themselves have DNSSEC enabled. It was estimated in late 2014 that roughly 10% to 15% of the Internet DNS queries were DNSSEC-aware. Estimates by APNIC suggest that in 2020 about one-third of all queries are validating queries, although the percentage varies widely on a per-country basis. This means that more DNS queries for your domain will take advantage of the additional security features, which will result in increased system load and possibly network traffic.
[2] | https://rick.eng.br/dnssecstat |
Network Requirements¶
From a network perspective, DNS and DNSSEC packets are very similar; DNSSEC packets are just bigger, which means DNS is more likely to use TCP. You should test for the following two items to make sure your network is ready for DNSSEC:
- DNS over TCP: Verify network connectivity over TCP port 53, which may mean updating firewall policies or Access Control Lists (ACL) on routers. See Wait… DNS Uses TCP? for more details.
- Large UDP packets: Some network equipment, such as firewalls, may make assumptions about the size of DNS UDP packets and incorrectly reject DNS traffic that appears “too big.” Verify that the responses your name server generates are being seen by the rest of the world: see What’s EDNS All About (And Why Should I Care)? for more details.
Operational Requirements¶
Parent Zone¶
Before starting your DNSSEC deployment, check with your parent zone administrators to make sure they support DNSSEC. This may or may not be the same entity as your registrar. As you will see later in Working With the Parent Zone, a crucial step in DNSSEC deployment is establishing the parent-child trust relationship. If your parent zone does not yet support DNSSEC, contact that administrator to voice your concerns.
Security Requirements¶
Some organizations may be subject to stricter security requirements than others. Check to see if your organization requires stronger cryptographic keys be generated and stored, and how often keys need to be rotated. The examples presented in this document are not intended for high-value zones. We cover some of these security considerations in Advanced Discussions.
Validation¶
Easy-Start Guide for Recursive Servers¶
This section provides the basic information needed to set up a working DNSSEC-aware recursive server, also known as a validating resolver. A validating resolver performs validation for each remote response received, following the chain of trust to verify that the answers it receives are legitimate, through the use of public key cryptography and hashing functions.
Enabling DNSSEC Validation¶
So how do we turn on DNSSEC validation? It turns out that you may not need to reconfigure your name server at all, since the most recent versions of BIND 9 - including packages and distributions - have shipped with DNSSEC validation enabled by default. Before making any configuration changes, check whether you already have DNSSEC validation enabled by following the steps described in So You Think You Are Validating (How To Test A Recursive Server).
In earlier versions of BIND, including 9.11-ESV, DNSSEC
validation must be explicitly enabled. To do this, you only need to
add one line to the options
section of your configuration file:
options {
...
dnssec-validation auto;
...
};
Restart named
or run rndc reconfig
, and your recursive server is
now happily validating each DNS response. If this does not work for you,
and you have already verified DNSSEC support as described in
DNSSEC Support in BIND, you may have some other
network-related configurations that need to be adjusted. Take a look at
Network Requirements to make sure your network is ready for
DNSSEC.
Effects of Enabling DNSSEC Validation¶
Once DNSSEC validation is enabled, any DNS response that does not pass the validation checks results in a failure to resolve the domain name (often a SERVFAIL status seen by the client). If everything has been configured properly, this is the correct result; it means that an end user has been protected against a malicious attack.
However, if there is a DNSSEC configuration issue (sometimes outside of
the administrator’s control), a specific name or sometimes entire
domains may “disappear” from the DNS, and become unreachable
through that resolver. For the end user, the issue may manifest itself
as name resolution being slow or failing altogether; some parts of a URL
not loading; or the web browser returning an error message indicating
that the page cannot be displayed. For example, if root name
servers were misconfigured with the wrong information about .org
, it
could cause all validation for .org
domains to fail. To end
users, it would appear that all .org
web
sites were out of service [3]. Should you encounter DNSSEC-related problems, don’t be
tempted to disable validation; there is almost certainly a solution that
leaves validation enabled. A basic troubleshooting guide can be found in
Basic DNSSEC Troubleshooting.
[3] | Of course, something like this could happen for reasons other than
DNSSEC: for example, the root publishing the wrong addresses for the
.org nameservers. |
So You Think You Are Validating (How To Test A Recursive Server)¶
Now that you have reconfigured your recursive server and restarted it, how do you know that your recursive name server is actually verifying each DNS query? There are several ways to check, and we’ve listed a few of them below.
Using Web-Based Tools to Verify¶
For most people, the simplest way to check if a recursive name server is indeed validating DNS queries is to use one of the many web-based tools available.
Configure your client computer to use the newly reconfigured recursive server for DNS resolution; then use one of these web-based tests to confirm that it is in fact validating DNS responses.
Using dig
to Verify¶
Web-based DNSSEC-verification tools often employ JavaScript. If you don’t trust the JavaScript magic that the web-based tools rely on, you can take matters into your own hands and use a command-line DNS tool to check your validating resolver yourself.
While nslookup
is popular, partly because it comes pre-installed on
most systems, it is not DNSSEC-aware. dig
, on the other hand, fully
supports the DNSSEC standard and comes as a part of BIND. If you do not
have dig
already installed on your system, install it by downloading
it from ISC’s website. ISC provides pre-compiled
Windows versions on its website.
dig
is a flexible tool for interrogating DNS name servers. It
performs DNS lookups and displays the answers that are returned from the
name servers that were queried. Most seasoned DNS administrators use
dig
to troubleshoot DNS problems because of its flexibility, ease of
use, and clarity of output.
The example below shows how to use dig
to query the name server 10.53.0.1
for the A record for ftp.isc.org
when DNSSEC validation is enabled
(i.e. the default). The address 10.53.0.1 is only used as an example;
replace it with the actual address or host name of your
recursive name server.
$ dig @10.53.0.1 ftp.isc.org. A +dnssec +multiline
; <<>> DiG 9.16.0 <<>> @10.53.0.1 ftp.isc.org a +dnssec +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 48742
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: 29a9705c2160b08c010000005e67a4a102b9ae079c1b24c8 (good)
;; QUESTION SECTION:
;ftp.isc.org. IN A
;; ANSWER SECTION:
ftp.isc.org. 300 IN A 149.20.1.49
ftp.isc.org. 300 IN RRSIG A 13 3 300 (
20200401191851 20200302184340 27566 isc.org.
e9Vkb6/6aHMQk/t23Im71ioiDUhB06sncsduoW9+Asl4
L3TZtpLvZ5+zudTJC2coI4D/D9AXte1cD6FV6iS6PQ== )
;; Query time: 452 msec
;; SERVER: 10.53.0.1#53(10.53.0.1)
;; WHEN: Tue Mar 10 14:30:57 GMT 2020
;; MSG SIZE rcvd: 187
The important detail in this output is the presence of the ad
flag
in the header. This signifies that BIND has retrieved all related DNSSEC
information related to the target of the query (ftp.isc.org
) and that
the answer received has passed the validation process described in
How Are Answers Verified?. We can have confidence in the
authenticity and integrity of the answer, that ftp.isc.org
really
points to the IP address 149.20.1.49, and that it was not a spoofed answer
from a clever attacker.
Unlike earlier versions of BIND, the current versions of BIND always
request DNSSEC records (by setting the do
bit in the query they make
to upstream servers), regardless of DNSSEC settings. However, with
validation disabled, the returned signature is not checked. This can be
seen by explicitly disabling DNSSEC validation. To do this, add the line
dnssec-validation no;
to the “options” section of the configuration
file, i.e.:
options {
...
dnssec-validation no;
...
};
If the server is restarted (to ensure a clean cache) and the same
dig
command executed, the result is very similar:
$ dig @10.53.0.1 ftp.isc.org. A +dnssec +multiline
; <<>> DiG 9.16.0 <<>> @10.53.0.1 ftp.isc.org a +dnssec +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39050
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: a8dc9d1b9ec45e75010000005e67a8a69399741fdbe126f2 (good)
;; QUESTION SECTION:
;ftp.isc.org. IN A
;; ANSWER SECTION:
ftp.isc.org. 300 IN A 149.20.1.49
ftp.isc.org. 300 IN RRSIG A 13 3 300 (
20200401191851 20200302184340 27566 isc.org.
e9Vkb6/6aHMQk/t23Im71ioiDUhB06sncsduoW9+Asl4
L3TZtpLvZ5+zudTJC2coI4D/D9AXte1cD6FV6iS6PQ== )
;; Query time: 261 msec
;; SERVER: 10.53.0.1#53(10.53.0.1)
;; WHEN: Tue Mar 10 14:48:06 GMT 2020
;; MSG SIZE rcvd: 187
However, this time there is no ad
flag in the header. Although
dig
is still returning the DNSSEC-related resource records, it is
not checking them, and thus cannot vouch for the authenticity of the answer.
If you do carry out this test, remember to re-enable DNSSEC validation
(by removing the dnssec-validation no;
line from the configuration
file) before continuing.
Verifying Protection From Bad Domain Names¶
It is also important to make sure that DNSSEC is protecting your network from
domain names that fail to validate; such failures could be caused by
attacks on your system, attempting to get it to accept false DNS
information. Validation could fail for a number of reasons: maybe the
answer doesn’t verify because it’s a spoofed response; maybe the
signature was a replayed network attack that has expired; or maybe the
child zone has been compromised along with its keys, and the parent
zone’s information tells us that things don’t add up. There is a
domain name specifically set up to fail DNSSEC validation,
www.dnssec-failed.org
.
With DNSSEC validation enabled (the default), an attempt to look up that name fails:
$ dig @10.53.0.1 www.dnssec-failed.org. A
; <<>> DiG 9.16.0 <<>> @10.53.0.1 www.dnssec-failed.org. A
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 22667
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 69c3083144854587010000005e67bb57f5f90ff2688e455d (good)
;; QUESTION SECTION:
;www.dnssec-failed.org. IN A
;; Query time: 2763 msec
;; SERVER: 10.53.0.1#53(10.53.0.1)
;; WHEN: Tue Mar 10 16:07:51 GMT 2020
;; MSG SIZE rcvd: 78
On the other hand, if DNSSEC validation is disabled (by adding the
statement dnssec-validation no;
to the options
clause in the
configuration file), the lookup succeeds:
$ dig @10.53.0.1 www.dnssec-failed.org. A
; <<>> DiG 9.16.0 <<>> @10.53.0.1 www.dnssec-failed.org. A
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 54704
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 251eee58208917f9010000005e67bb6829f6dabc5ae6b7b9 (good)
;; QUESTION SECTION:
;www.dnssec-failed.org. IN A
;; ANSWER SECTION:
www.dnssec-failed.org. 7200 IN A 68.87.109.242
www.dnssec-failed.org. 7200 IN A 69.252.193.191
;; Query time: 439 msec
;; SERVER: 10.53.0.1#53(10.53.0.1)
;; WHEN: Tue Mar 10 16:08:08 GMT 2020
;; MSG SIZE rcvd: 110
Do not be tempted to disable DNSSEC validation just because some names are failing to resolve. Remember, DNSSEC protects your DNS lookup from hacking. The next section describes how to quickly check whether the failure to successfully look up a name is due to a validation failure.
How Do I Know I Have a Validation Problem?¶
Since all DNSSEC validation failures result in a general SERVFAIL
message, how do we know if it was really a validation error?
Fortunately, there is a flag in dig
, (+cd
, for “checking
disabled”) which tells the server to disable DNSSEC validation. If
you receive a SERVFAIL
message, re-run the query a second time
and set the +cd
flag. If the query succeeds with +cd
, but
ends in SERVFAIL
without it, you know you are dealing with a
validation problem. So using the previous example of
www.dnssec-failed.org
and with DNSSEC validation enabled in the
resolver:
$ dig @10.53.0.1 www.dnssec-failed.org A +cd
; <<>> DiG 9.16.0 <<>> @10.53.0.1 www.dnssec-failed.org. A +cd
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62313
;; flags: qr rd ra cd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 73ca1be3a74dd2cf010000005e67c8c8e6df64b519cd87fd (good)
;; QUESTION SECTION:
;www.dnssec-failed.org. IN A
;; ANSWER SECTION:
www.dnssec-failed.org. 7197 IN A 68.87.109.242
www.dnssec-failed.org. 7197 IN A 69.252.193.191
;; Query time: 0 msec
;; SERVER: 10.53.0.1#53(10.53.0.1)
;; WHEN: Tue Mar 10 17:05:12 GMT 2020
;; MSG SIZE rcvd: 110
For more information on troubleshooting, please see Basic DNSSEC Troubleshooting.
Validation Easy Start Explained¶
In Easy-Start Guide for Recursive Servers, we used one line of configuration to turn on DNSSEC validation: the act of chasing down signatures and keys, making sure they are authentic. Now we are going to take a closer look at what DNSSEC validation actually does, and some other options.
dnssec-validation
¶
options {
dnssec-validation auto;
};
This “auto” line enables automatic DNSSEC trust anchor configuration
using the managed-keys
feature. In this case, no manual key
configuration is needed. There are three possible choices for the
dnssec-validation
option:
- yes: DNSSEC validation is enabled, but a trust anchor must be manually configured. No validation actually takes place until at least one trusted key has been manually configured.
- no: DNSSEC validation is disabled, and the recursive server behaves in the “old-fashioned” way of performing insecure DNS lookups.
- auto: DNSSEC validation is enabled, and a default trust anchor
(included as part of BIND 9) for the DNS root zone is used. This is the
default; BIND automatically does this if there is no
dnssec-validation
line in the configuration file.
Let’s discuss the difference between yes and auto. If set to
yes, the trust anchor must be manually defined and maintained
using the trust-anchors
statement (with either the static-key
or
static-ds
modifier) in the configuration file; if set to
auto (the default, and as shown in the example), then no further
action should be required as BIND includes a copy [4] of the root key.
When set to auto, BIND automatically keeps the keys (also known as
trust anchors, discussed in Trust Anchors)
up-to-date without intervention from the DNS administrator.
We recommend using the default auto unless there is a good reason to require a manual trust anchor. To learn more about trust anchors, please refer to Trusted Keys and Managed Keys.
How Does DNSSEC Change DNS Lookup (Revisited)?¶
Now you’ve enabled validation on your recursive name server and
verified that it works. What exactly changed? In
How Does DNSSEC Change DNS Lookup? we looked at a very
high-level, simplified version of the 12 steps of the DNSSEC validation process. Let’s revisit
that process now and see what your validating resolver is doing in more
detail. Again, as an example we are looking up the A record for the
domain name www.isc.org
(see The 12-Step DNSSEC Validation Process (Simplified)):
- The validating resolver queries the
isc.org
name servers for the A record ofwww.isc.org
. This query has theDNSSEC OK
(do
) bit set to 1, notifying the remote authoritative server that DNSSEC answers are desired. - Since the zone
isc.org
is signed, and its name servers are DNSSEC-aware, it responds with the answer to the A record query plus the RRSIG for the A record. - The validating resolver queries for the DNSKEY for
isc.org
. - The
isc.org
name server responds with the DNSKEY and RRSIG records. The DNSKEY is used to verify the answers received in #2. - The validating resolver queries the parent (
.org
) for the DS record forisc.org
. - The
.org
name server is also DNSSEC-aware, so it responds with the DS and RRSIG records. The DS record is used to verify the answers received in #4. - The validating resolver queries for the DNSKEY for
.org
. - The
.org
name server responds with its DNSKEY and RRSIG. The DNSKEY is used to verify the answers received in #6. - The validating resolver queries the parent (root) for the DS record
for
.org
. - The root name server, being DNSSEC-aware, responds with DS and RRSIG records. The DS record is used to verify the answers received in #8.
- The validating resolver queries for the DNSKEY for root.
- The root name server responds with its DNSKEY and RRSIG. The DNSKEY is used to verify the answers received in #10.
After step #12, the validating resolver takes the DNSKEY received and compares it to the key or keys it has configured, to decide whether the received key can be trusted. We talk about these locally configured keys, or trust anchors, in Trust Anchors.
With DNSSEC, every response includes not just the answer, but a digital signature (RRSIG) as well, so the validating resolver can verify the answer received. That is what we look at in the next section, How Are Answers Verified?.
How Are Answers Verified?¶
Note
Keep in mind, as you read this section, that although words like “encryption” and “decryption” are used here from time to time, DNSSEC does not provide privacy. Public key cryptography is used to verify data authenticity (who sent it) and data integrity (it did not change during transit), but any eavesdropper can still see DNS requests and responses in clear text, even when DNSSEC is enabled.
So how exactly are DNSSEC answers verified? Let’s first see how verifiable information is generated. On the authoritative server, each DNS record (or message) is run through a hash function, and this hashed value is then encrypted by a private key. This encrypted hash value is the digital signature.
When the validating resolver queries for the resource record, it receives both the plain-text message and the digital signature(s). The validating resolver knows the hash function used (it is listed in the digital signature record itself), so it can take the plain-text message and run it through the same hash function to produce a hashed value, which we’ll call hash value X. The validating resolver can also obtain the public key (published as DNSKEY records), decrypt the digital signature, and get back the original hashed value produced by the authoritative server, which we’ll call hash value Y. If hash values X and Y are identical, and the time is correct (more on what this means below), the answer is verified, meaning this answer came from the authoritative server (authenticity), and the content remained intact during transit (integrity).
Take the A record ftp.isc.org
, for example. The plain text is:
ftp.isc.org. 4 IN A 149.20.1.49
The digital signature portion is:
ftp.isc.org. 300 IN RRSIG A 13 3 300 (
20200401191851 20200302184340 27566 isc.org.
e9Vkb6/6aHMQk/t23Im71ioiDUhB06sncsduoW9+Asl4
L3TZtpLvZ5+zudTJC2coI4D/D9AXte1cD6FV6iS6PQ== )
When a validating resolver queries for the A record ftp.isc.org
, it
receives both the A record and the RRSIG record. It runs the A record
through a hash function (in this example, SHA256 as
indicated by the number 13, signifying ECDSAP256SHA256) and produces
hash value X. The resolver also fetches the appropriate DNSKEY record to
decrypt the signature, and the result of the decryption is hash value Y.
But wait, there’s more! Just because X equals Y doesn’t mean everything is good. We still have to look at the time. Remember we mentioned a little earlier that we need to check if the time is correct? Look at the two timestamps in our example above:
- Signature Expiration: 20200401191851
- Signature Inception: 20200302184340
This tells us that this signature was generated UTC March 2nd, 2020, at 6:43:40 PM (20200302184340), and it is good until UTC April 1st, 2020, 7:18:51 PM (20200401191851). The validating resolver’s current system time needs to fall between these two timestamps. If it does not, the validation fails, because it could be an attacker replaying an old captured answer set from the past, or feeding us a crafted one with incorrect future timestamps.
If the answer passes both the hash value check and the timestamp check, it is
validated and the authenticated data (ad
) bit is set, and the response
is sent to the client; if it does not verify, a SERVFAIL is returned to
the client.
[4] | BIND technically includes two copies of the root key: one is in
bind.keys.h and is built into the executable, and one is in
bind.keys as a trust-anchors statement. The two copies of the
key are identical. |
Trust Anchors¶
A trust anchor is a key that is placed into a validating resolver, so that the validator can verify the results of a given request with a known or trusted public key (the trust anchor). A validating resolver must have at least one trust anchor installed to perform DNSSEC validation.
How Trust Anchors are Used¶
In the section How Does DNSSEC Change DNS Lookup (Revisited)?, we walked through the 12 steps of the DNSSEC lookup process. At the end of the 12 steps, a critical comparison happens: the key received from the remote server and the key we have on file are compared to see if we trust it. The key we have on file is called a trust anchor, sometimes also known as a trust key, trust point, or secure entry point.
The 12-step lookup process describes the DNSSEC lookup in the ideal world, where every single domain name is signed and properly delegated, and where each validating resolver only needs to have one trust anchor - that is, the root’s public key. But there is no restriction that the validating resolver must only have one trust anchor. In fact, in the early stages of DNSSEC adoption, it was not unusual for a validating resolver to have more than one trust anchor.
For instance, before the root zone was signed (in July 2010), some
validating resolvers that wished to validate domain names in the .gov
zone needed to obtain and install the key for .gov
. A sample lookup
process for www.fbi.gov
at that time would have been eight steps rather
than 12:

- The validating resolver queried
fbi.gov
name server for the A record ofwww.fbi.gov
. - The FBI’s name server responded with the answer and its RRSIG.
- The validating resolver queried the FBI’s name server for its DNSKEY.
- The FBI’s name server responded with the DNSKEY and its RRSIG.
- The validating resolver queried a
.gov
name server for the DS record offbi.gov
. - The
.gov
name server responded with the DS record and the associated RRSIG forfbi.gov
. - The validating resolver queried the
.gov
name server for its DNSKEY. - The
.gov
name server responded with its DNSKEY and the associated RRSIG.
This all looks very similar, except it’s shorter than the 12 steps that
we saw earlier. Once the validating resolver receives the DNSKEY file in
#8, it recognizes that this is the manually configured trusted key
(trust anchor), and never goes to the root name servers to ask for the
DS record for .gov
, or ask the root name servers for their DNSKEY.
In fact, whenever the validating resolver receives a DNSKEY, it checks to see if this is a configured trusted key to decide whether it needs to continue chasing down the validation chain.
Trusted Keys and Managed Keys¶
Since the resolver is validating, we must have at least one key (trust anchor) configured. How did it get here, and how do we maintain it?
If you followed the recommendation in
Easy-Start Guide for Recursive Servers, by setting
dnssec-validation
to auto, there is nothing left to do.
BIND already includes a copy of the root key (in the file
bind.keys
), and automatically updates it when the root key
changes. [5] It looks something like this:
trust-anchors {
# This key (20326) was published in the root zone in 2017.
. initial-key 257 3 8 "AwEAAaz/tAm8yTn4Mfeh5eyI96WSVexTBAvkMgJzkKTOiW1vkIbzxeF3
+/4RgWOq7HrxRixHlFlExOLAJr5emLvN7SWXgnLh4+B5xQlNVz8Og8kv
ArMtNROxVQuCaSnIDdD5LKyWbRd2n9WGe2R8PzgCmr3EgVLrjyBxWezF
0jLHwVN8efS3rCj/EWgvIWgb9tarpVUDK/b58Da+sqqls3eNbuv7pr+e
oZG+SrDK6nWeL3c6H5Apxz7LjVc1uTIdsIXxuOLYA4/ilBmSVIzuDWfd
RUfhHdY6+cn8HFRm+2hM8AnXGXws9555KrUB5qihylGa8subX2Nn6UwN
R1AkUTV74bU=";
};
You can, of course, decide to manage this key manually yourself.
First, you need to make sure that dnssec-validation
is set
to yes rather than auto:
options {
dnssec-validation yes;
};
Then, download the root key manually from a trustworthy source, such as
https://www.isc.org/bind-keys. Finally, take the root key you
manually downloaded and put it into a trust-anchors
statement as
shown below:
trust-anchors {
# This key (20326) was published in the root zone in 2017.
. static-key 257 3 8 "AwEAAaz/tAm8yTn4Mfeh5eyI96WSVexTBAvkMgJzkKTOiW1vkIbzxeF3
+/4RgWOq7HrxRixHlFlExOLAJr5emLvN7SWXgnLh4+B5xQlNVz8Og8kv
ArMtNROxVQuCaSnIDdD5LKyWbRd2n9WGe2R8PzgCmr3EgVLrjyBxWezF
0jLHwVN8efS3rCj/EWgvIWgb9tarpVUDK/b58Da+sqqls3eNbuv7pr+e
oZG+SrDK6nWeL3c6H5Apxz7LjVc1uTIdsIXxuOLYA4/ilBmSVIzuDWfd
RUfhHdY6+cn8HFRm+2hM8AnXGXws9555KrUB5qihylGa8subX2Nn6UwN
R1AkUTV74bU=";
};
While this trust-anchors
statement and the one in the bind.keys
file appear similar, the definition of the key in bind.keys
has the
initial-key
modifier, whereas in the statement in the configuration
file, that is replaced by static-key
. There is an important
difference between the two: a key defined with static-key
is always
trusted until it is deleted from the configuration file. With the
initial-key
modified, keys are only trusted once: for as long as it
takes to load the managed key database and start the key maintenance
process. Thereafter, BIND uses the managed keys database
(managed-keys.bind.jnl
) as the source of key information.
Warning
Remember, if you choose to manage the keys on your own, whenever the
key changes (which, for most zones, happens on a periodic basis),
the configuration needs to be updated manually. Failure to do so will
result in breaking nearly all DNS queries for the subdomain of the
key. So if you are manually managing .gov
, all domain names in
the .gov
space may become unresolvable; if you are manually
managing the root key, you could break all DNS requests made to your
recursive name server.
Explicit management of keys was common in the early days of DNSSEC, when neither the root zone nor many top-level domains were signed. Since then, over 90% of the top-level domains have been signed, including all the largest ones. Unless you have a particular need to manage keys yourself, it is best to use the BIND defaults and let the software manage the root key.
[5] | The root zone was signed in July 2010 and, as at the time of this writing (mid-2020), the key has been changed once, in October 2018. The intention going forward is to roll the key once every five years. |
What’s EDNS All About (And Why Should I Care)?¶
EDNS Overview¶
Traditional DNS responses are typically small in size (less than 512 bytes) and fit nicely into a small UDP packet. The Extension mechanism for DNS (EDNS, or EDNS(0)) offers a mechanism to send DNS data in larger packets over UDP. To support EDNS, both the DNS server and the network need to be properly prepared to support the larger packet sizes and multiple fragments.
This is important for DNSSEC, since the +do
bit that signals
DNSSEC-awareness is carried within EDNS, and DNSSEC responses are larger
than traditional DNS ones. If DNS servers and the network environment cannot
support large UDP packets, it will cause retransmission over TCP, or the
larger UDP responses will be discarded. Users will likely experience
slow DNS resolution or be unable to resolve certain names at all.
Note that EDNS applies regardless of whether you are validating DNSSEC, because BIND has DNSSEC enabled by default.
Please see Network Requirements for more information on what DNSSEC expects from the network environment.
EDNS on DNS Servers¶
For many years, BIND has had EDNS enabled by default,
and the UDP packet size is set to a maximum of 4096 bytes. The DNS
administrator should not need to perform any reconfiguration. You can
use dig
to verify that your server supports EDNS and see the UDP packet
size it allows with this dig
command:
$ dig @10.53.0.1 www.isc.org. A +dnssec +multiline
; <<>> DiG 9.16.0 <<>> @10.53.0.1 ftp.isc.org a +dnssec +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 48742
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: 29a9705c2160b08c010000005e67a4a102b9ae079c1b24c8 (good)
;; QUESTION SECTION:
;ftp.isc.org. IN A
;; ANSWER SECTION:
ftp.isc.org. 300 IN A 149.20.1.49
ftp.isc.org. 300 IN RRSIG A 13 3 300 (
20200401191851 20200302184340 27566 isc.org.
e9Vkb6/6aHMQk/t23Im71ioiDUhB06sncsduoW9+Asl4
L3TZtpLvZ5+zudTJC2coI4D/D9AXte1cD6FV6iS6PQ== )
;; Query time: 452 msec
;; SERVER: 10.53.0.1#53(10.53.0.1)
;; WHEN: Tue Mar 10 14:30:57 GMT 2020
;; MSG SIZE rcvd: 187
There is a helpful testing tool available (provided by DNS-OARC) that you can use to verify resolver behavior regarding EDNS support: https://www.dns-oarc.net/oarc/services/replysizetest/ .
Once you’ve verified that your name servers have EDNS enabled, that should be the end of the story, right? Unfortunately, EDNS is a hop-by-hop extension to DNS. This means the use of EDNS is negotiated between each pair of hosts in a DNS resolution process, which in turn means if one of your upstream name servers (for instance, your ISP’s recursive name server that your name server forwards to) does not support EDNS, you may experience DNS lookup failures or be unable to perform DNSSEC validation.
Support for Large Packets on Network Equipment¶
If both your recursive name server and your ISP’s name servers support EDNS, we are all good here, right? Not so fast. Since these large packets have to traverse the network, the network infrastructure itself must allow them to pass.
When data is physically transmitted over a network, it has to be broken down into chunks. The size of the data chunk is known as the Maximum Transmission Unit (MTU), and it can differ from network to network. IP fragmentation occurs when a large data packet needs to be broken down into chunks smaller than the MTU; these smaller chunks then need to be reassembled back into the large data packet at their destination. IP fragmentation is not necessarily a bad thing, and it most likely occurs on your network today.
Some network equipment, such as a firewall, may make assumptions about DNS traffic. One of these assumptions may be how large each DNS packet is. When a firewall sees a larger DNS packet than it expects, it may either reject the large packet or drop its fragments because the firewall thinks it’s an attack. This configuration probably didn’t cause problems in the past, since traditional DNS packets are usually pretty small in size. However, with DNSSEC, these configurations need to be updated, since DNSSEC traffic regularly exceeds 1500 bytes (a common MTU value). If the configuration is not updated to support a larger DNS packet size, it often results in the larger packets being rejected, and to the end user it looks like the queries go unanswered. Or in the case of fragmentation, only a part of the answer makes it to the validating resolver, and your validating resolver may need to re-ask the question again and again, creating the appearance for end users that the DNS/network is slow.
While you are updating the configuration on your network equipment, make sure TCP port 53 is also allowed for DNS traffic.
Wait… DNS Uses TCP?¶
Yes. DNS uses TCP port 53 as a fallback mechanism, when it cannot use UDP to transmit data. This has always been the case, even long before the arrival of DNSSEC. Traditional DNS relies on TCP port 53 for operations such as zone transfer. The use of DNSSEC, or DNS with IPv6 records such as AAAA, increases the chance that DNS data will be transmitted via TCP.
Due to the increased packet size, DNSSEC may fall back to TCP more often than traditional (insecure) DNS. If your network blocks or filters TCP port 53 today, you may already experience instability with DNS resolution, before even deploying DNSSEC.
Signing¶
Easy-Start Guide for Signing Authoritative Zones¶
This section provides the basic information needed to set up a DNSSEC-enabled authoritative name server. A DNSSEC-enabled (or “signed”) zone contains additional resource records that are used to verify the authenticity of its zone information.
To convert a traditional (insecure) DNS zone to a secure one, we need to create some additional records (DNSKEY, RRSIG, and NSEC or NSEC3), and upload verifiable information (such as a DS record) to the parent zone to complete the chain of trust. For more information about DNSSEC resource records, please see What Does DNSSEC Add to DNS?.
Note
In this chapter, we assume all configuration files, key files, and
zone files are stored in /etc/bind
, and most examples show
commands run as the root user. This may not be ideal, but the point is
not to distract from what is important here: learning how to sign
a zone. There are many best practices for deploying a more secure
BIND installation, with techniques such as jailed process and
restricted user privileges, but those are not covered
in this document. We trust you, a responsible DNS
administrator, to take the necessary precautions to secure your
system.
For the examples below, we work with the assumption that
there is an existing insecure zone example.com
that we are
converting to a secure zone.
Enabling Automated DNSSEC Zone Maintenance and Key Generation¶
To sign a zone, add the following statement to its
zone
clause in the BIND 9 configuration file:
options {
directory "/etc/bind";
recursion no;
...
};
zone "example.com" in {
...
dnssec-policy default;
...
};
The dnssec-policy
statement causes the zone to be signed and turns
on automatic maintenance for the zone. This includes re-signing the zone
as signatures expire and replacing keys on a periodic basis. The value
default
selects the default policy, which contains values suitable
for most situations. We cover the creation of a custom policy in
Creating a Custom DNSSEC Policy, but for the moment we are accepting the
default values.
When the configuration file is updated, tell named
to
reload the configuration file by running rndc reconfig
:
# rndc reconfig
And that’s it - BIND signs your zone.
At this point, before you go away and merrily add dnssec-policy
statements to all your zones, we should mention that, like a number of
other BIND configuration options, its scope depends on where it is placed. In
the example above, we placed it in a zone
clause, so it applied only
to the zone in question. If we had placed it in a view
clause, it
would have applied to all zones in the view; and if we had placed it in
the options
clause, it would have applied to all zones served by
this instance of BIND.
Verification¶
The BIND 9 reconfiguration starts the process of signing the zone. First, it generates a key for the zone and includes it in the published zone. The log file shows messages such as these:
07-Apr-2020 16:02:55.045 zone example.com/IN (signed): reconfiguring zone keys
07-Apr-2020 16:02:55.045 reloading configuration succeeded
07-Apr-2020 16:02:55.046 keymgr: DNSKEY example.com/ECDSAP256SHA256/10376 (CSK) created for policy default
07-Apr-2020 16:02:55.046 Fetching example.com/ECDSAP256SHA256/10376 (CSK) from key repository.
07-Apr-2020 16:02:55.046 DNSKEY example.com/ECDSAP256SHA256/10376 (CSK) is now published
07-Apr-2020 16:02:55.046 DNSKEY example.com/ECDSAP256SHA256/10376 (CSK) is now active
07-Apr-2020 16:02:55.048 zone example.com/IN (signed): next key event: 07-Apr-2020 18:07:55.045
It then starts signing the zone. How long this process takes depends on the
size of the zone, the speed of the server, and how much activity is
taking place. We can check what is happening by using rndc
,
entering the command:
# rndc signing -list example.com
While the signing is in progress, the output is something like:
Signing with key 10376/ECDSAP256SHA256
and when it is finished:
Done signing with key 10376/ECDSAP256SHA256
When the second message appears, the zone is signed.
Before moving on to the next step of coordinating with the parent zone,
let’s make sure everything looks good using delv
. We want to
simulate what a validating resolver will check, by telling
delv
to use a specific trust anchor.
First, we need to make a copy of the key created by BIND. This
is in the directory you set with the directory
statement in
your configuration file’s options
clause, and is named something
like Kexample.com.+013.10376.key
:
# cp /etc/bind/Kexample.com.+013+10376.key /tmp/example.key
The original key file looks like this (with the actual key shortened for ease of display, and comments omitted):
# cat /etc/bind/Kexample.com.+013+10376.key
...
example.com. 3600 IN DNSKEY 257 3 13 6saiq99qDB...dqp+o0dw==
We want to edit the copy to be in the trust-anchors
format, so that
it looks like this:
# cat /tmp/example.key
trust-anchors {
example.com. static-key 257 3 13 "6saiq99qDB...dqp+o0dw==";
};
Now we can run the delv
command and instruct it to use this
trusted-key file to validate the answer it receives from the
authoritative name server 192.168.1.13:
$ delv @192.168.1.13 -a /tmp/example.key +root=example.com example.com. SOA +multiline
; fully validated
example.com. 600 IN SOA ns1.example.com. admin.example.com. (
2020040703 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
2419200 ; expire (4 weeks)
300 ; minimum (5 minutes)
)
example.com. 600 IN RRSIG SOA 13 2 600 (
20200421150255 20200407140255 10376 example.com.
jBsz92zwAcGMNV/yu167aKQZvFyC7BiQe1WEnlogdLTF
oq4yBQumOhO5WX61LjA17l1DuLWcd/ASwlUZWFGCYQ== )
Uploading Information to the Parent Zone¶
Once everything is complete on our name server, we need to generate some information to be uploaded to the parent zone to complete the chain of trust. The format and the upload methods are actually dictated by your parent zone’s administrator, so contact your registrar or parent zone administrator to find out what the actual format should be and how to deliver or upload the information to the parent zone.
What about your zone between the time you signed it and the time your parent zone accepts the upload? To the rest of the world, your zone still appears to be insecure, because if a validating resolver attempts to validate your domain name via your parent zone, your parent zone will indicate that you are not yet signed (as far as it knows). The validating resolver will then give up attempting to validate your domain name, and will fall back to the insecure DNS. Until you complete this final step with your parent zone, your zone remains insecure.
Note
Before uploading to your parent zone, verify that your newly signed zone has propagated to all of your name servers (usually via zone transfers). If some of your name servers still have unsigned zone data while the parent tells the world it should be signed, validating resolvers around the world cannot resolve your domain name.
Here are some examples of what you may upload to your parent zone, with the DNSKEY/DS data shortened for display. Note that no matter what format may be required, the end result is the parent zone publishing DS record(s) based on the information you upload. Again, contact your parent zone administrator(s) to find out the correct format for their system.
DS record format:
example.com. 3600 IN DS 10376 13 2 B92E22CAE0...33B8312EF0
DNSKEY format:
example.com. 3600 IN DNSKEY 257 3 13 6saiq99qDB...dqp+o0dw==
The DS record format may be generated from the DNSKEY using the
dnssec-dsfromkey
tool, which is covered in
DS Record Format. For more details and examples on how
to work with your parent zone, please see
Working With the Parent Zone.
So… What Now?¶
Congratulations! Your zone is signed, your secondary servers have
received the new zone data, and the parent zone has accepted your upload
and published your DS record. Your zone is now officially
DNSSEC-enabled. What happens next? That is basically it - BIND
takes care of everything else. As for updating your zone file, you can
continue to update it the same way as prior to signing your
zone; the normal work flow of editing a zone file and using the rndc
command to reload the zone still works as usual, and although you are
editing the unsigned version of the zone, BIND generates the signed
version automatically.
Curious as to what all these commands did to your zone file? Read on to Your Zone, Before and After DNSSEC and find out. If you are interested in how to roll this out to your existing primary and secondary name servers, check out DNSSEC Signing in the Recipes chapter.
Your Zone, Before and After DNSSEC¶
When we assigned the default DNSSEC policy to the zone, we provided the minimal amount of information to convert a traditional DNS zone into a DNSSEC-enabled zone. This is what the zone looked like before we started:
$ dig @192.168.1.13 example.com. AXFR +multiline +onesoa
; <<>> DiG 9.16.0 <<>> @192.168.1.13 example.com AXFR +multiline +onesoa
; (1 server found)
;; global options: +cmd
example.com. 600 IN SOA ns1.example.com. admin.example.com. (
2020040700 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
2419200 ; expire (4 weeks)
300 ; minimum (5 minutes)
)
example.com. 600 IN NS ns1.example.com.
ftp.example.com. 600 IN A 192.168.1.200
ns1.example.com. 600 IN A 192.168.1.1
web.example.com. 600 IN CNAME www.example.com.
www.example.com. 600 IN A 192.168.1.100
Below shows the test zone example.com
after reloading the
server configuration. Clearly, the zone grew in size, and the
number of records multiplied:
# dig @192.168.1.13 example.com. AXFR +multiline +onesoa
; <<>> DiG 9.16.0 <<>> @192.168.1.13 example.com AXFR +multiline +onesoa
; (1 server found)
;; global options: +cmd
example.com. 600 IN SOA ns1.example.com. admin.example.com. (
2020040703 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
2419200 ; expire (4 weeks)
300 ; minimum (5 minutes)
)
example.com. 300 IN RRSIG NSEC 13 2 300 (
20200413050536 20200407140255 10376 example.com.
drtV1rJbo5OMi65OJtu7Jmg/thgpdTWrzr6O3Pzt12+B
oCxMAv3orWWYjfP2n9w5wj0rx2Mt2ev7MOOG8IOUCA== )
example.com. 300 IN NSEC ftp.example.com. NS SOA RRSIG NSEC DNSKEY TYPE65534
example.com. 600 IN RRSIG NS 13 2 600 (
20200413130638 20200407140255 10376 example.com.
2ipmzm1Ei6vfE9OLowPMsxLBCbjrCpWPgWJ0ekwZBbux
MLffZOXn8clt0Ql2U9iCPdyoQryuJCiojHSE2d6nrw== )
example.com. 600 IN RRSIG SOA 13 2 600 (
20200421150255 20200407140255 10376 example.com.
jBsz92zwAcGMNV/yu167aKQZvFyC7BiQe1WEnlogdLTF
oq4yBQumOhO5WX61LjA17l1DuLWcd/ASwlUZWFGCYQ== )
example.com. 0 IN RRSIG TYPE65534 13 2 0 (
20200413050536 20200407140255 10376 example.com.
Xjkom24N6qeCJjg9BMUfuWf+euLeZB169DHvLYZPZNlm
GgM2czUDPio6VpQbUw6JE5DSNjuGjgpgXC5SipC42g== )
example.com. 3600 IN RRSIG DNSKEY 13 2 3600 (
20200421150255 20200407140255 10376 example.com.
maK75+28oUyDtci3V7wjTsuhgkLUZW+Q++q46Lea6bKn
Xj77kXcLNogNdUOr5am/6O6cnPeJKJWsnmTLISm62g== )
example.com. 0 IN TYPE65534 \# 5 ( 0D28880001 )
example.com. 3600 IN DNSKEY 257 3 13 (
6saiq99qDBb5b4G4cx13cPjFTrIvUs3NW44SvbbHorHb
kXwOzeGAWyPORN+pwEV/LP9+FHAF/JzAJYdqp+o0dw==
) ; KSK; alg = ECDSAP256SHA256 ; key id = 10376
example.com. 600 IN NS ns1.example.com.
ftp.example.com. 600 IN RRSIG A 13 3 600 (
20200413130638 20200407140255 10376 example.com.
UYo1njeUA49VhKnPSS3JO4G+/Xd2PD4m3Vaacnd191yz
BIoouEBAGPcrEM2BNrgR0op1EWSus9tG86SM1ZHGuQ== )
ftp.example.com. 300 IN RRSIG NSEC 13 3 300 (
20200413130638 20200407140255 10376 example.com.
rPADrAMAPIPSF3S45OSY8kXBTYMS3nrZg4Awj7qRL+/b
sOKy6044MbIbjg+YWL69dBjKoTSeEGSCSt73uIxrYA== )
ftp.example.com. 300 IN NSEC ns1.example.com. A RRSIG NSEC
ftp.example.com. 600 IN A 192.168.1.200
ns1.example.com. 600 IN RRSIG A 13 3 600 (
20200413130638 20200407140255 10376 example.com.
Yeojg7qrJmxL6uLTnALwKU5byNldZ9Ggj5XjcbpPvujQ
ocG/ovGBg6pdugXC9UxE39bCDl8dua1frjDcRCCZAA== )
ns1.example.com. 300 IN RRSIG NSEC 13 3 300 (
20200413130638 20200407140255 10376 example.com.
vukgQme6k7JwCf/mJOOzHXbE3fKtSro+Kc10T6dHMdsc
oM1/oXioZvgBZ9cKrQhIAUt7r1KUnrUwM6Je36wWFA== )
ns1.example.com. 300 IN NSEC web.example.com. A RRSIG NSEC
ns1.example.com. 600 IN A 192.168.1.1
web.example.com. 600 IN RRSIG CNAME 13 3 600 (
20200413130638 20200407140255 10376 example.com.
JXi4WYypofD5geUowVqlqJyHzvcRnsvU/ONhTBaUCw5Y
XtifKAXRHWrUL1HIwt37JYPLf5uYu90RfkWLj0GqTQ== )
web.example.com. 300 IN RRSIG NSEC 13 3 300 (
20200413130638 20200407140255 10376 example.com.
XF4Hsd58dalL+s6Qu99bG80PQyMf7ZrHEzDiEflRuykP
DfBRuf34z27vj70LO1lp2ZiX4BB1ahcEK2ae9ASAmA== )
web.example.com. 300 IN NSEC www.example.com. CNAME RRSIG NSEC
web.example.com. 600 IN CNAME www.example.com.
www.example.com. 600 IN RRSIG A 13 3 600 (
20200413050536 20200407140255 10376 example.com.
mACKXrDOF5JMWqncSiQ3pYWA6abyGDJ4wgGCumjLXhPy
0cMzJmKv2s7G6+tW3TsA6BK3UoMfv30oblY2Mnl4/A== )
www.example.com. 300 IN RRSIG NSEC 13 3 300 (
20200413050536 20200407140255 10376 example.com.
1YQ22odVt0TeP5gbNJwkvS684ipDmx6sEOsF0eCizhCv
x8osuOATdlPjIEztt+rveaErZ2nsoLor5k1nQAHsbQ== )
www.example.com. 300 IN NSEC example.com. A RRSIG NSEC
www.example.com. 600 IN A 192.168.1.100
But this is a really messy way to tell if the zone is set up properly with DNSSEC. Fortunately, there are tools to help us with that. Read on to How To Test Authoritative Zones to learn more.
How To Test Authoritative Zones¶
So we’ve activated DNSSEC and uploaded some data to our parent zone. How do we know our zone is signed correctly? Here are a few ways to check.
Look for Key Data in Your Zone¶
One way to see if your zone is signed is to check for the presence of DNSKEY record types. In our example, we created a single key, and we expect to see it returned when we query for it.
$ dig @192.168.1.13 example.com. DNSKEY +multiline
; <<>> DiG 9.16.0 <<>> @10.53.0.6 example.com DNSKEY +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18637
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: efe186423313fb66010000005e8c997e99864f7d69ed7c11 (good)
;; QUESTION SECTION:
;example.com. IN DNSKEY
;; ANSWER SECTION:
example.com. 3600 IN DNSKEY 257 3 13 (
6saiq99qDBb5b4G4cx13cPjFTrIvUs3NW44SvbbHorHb
kXwOzeGAWyPORN+pwEV/LP9+FHAF/JzAJYdqp+o0dw==
) ; KSK; alg = ECDSAP256SHA256 ; key id = 10376
Look for Signatures in Your Zone¶
Another way to see if your zone data is signed is to check for the presence of a signature. With DNSSEC, every record [6] now comes with at least one corresponding signature, known as an RRSIG.
$ dig @192.168.1.13 example.com. SOA +dnssec +multiline
; <<>> DiG 9.16.0 <<>> @10.53.0.6 example.com SOA +dnssec +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45219
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: 75adff4f4ce916b2010000005e8c99c0de47eabb7951b2f5 (good)
;; QUESTION SECTION:
;example.com. IN SOA
;; ANSWER SECTION:
example.com. 600 IN SOA ns1.example.com. admin.example.com. (
2020040703 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
2419200 ; expire (4 weeks)
300 ; minimum (5 minutes)
)
example.com. 600 IN RRSIG SOA 13 2 600 (
20200421150255 20200407140255 10376 example.com.
jBsz92zwAcGMNV/yu167aKQZvFyC7BiQe1WEnlogdLTF
oq4yBQumOhO5WX61LjA17l1DuLWcd/ASwlUZWFGCYQ== )
The serial number was automatically incremented from the old, unsigned
version. named
keeps track of the serial number of the signed version of
the zone independently of the unsigned version. If the unsigned zone is
updated with a new serial number that is higher than the one in the
signed copy, then the signed copy is increased to match it;
otherwise, the two are kept separate.
Examine the Zone File¶
Our original zone file example.com.db
remains untouched, and named
has
generated three additional files automatically for us (shown below). The
signed DNS data is stored in example.com.db.signed
and in the
associated journal file.
# cd /etc/bind
# ls
example.com.db example.com.db.jbk example.com.db.signed example.com.db.signed.jnl
A quick description of each of the files:
.jbk
: a transient file used bynamed
.signed
: the signed version of the zone in raw format.signed.jnl
: a journal file for the signed version of the zone
These files are stored in raw (binary) format for faster loading. To
reveal the human-readable version, use named-compilezone
as shown below. In the example below, we run the command on the
raw format zone example.com.db.signed
to produce a text version of
the zone example.com.text
:
# named-compilezone -f raw -F text -o example.com.text example.com example.com.db.signed
zone example.com/IN: loaded serial 2014112008 (DNSSEC signed)
dump zone to example.com.text...done
OK
Check the Parent¶
Although this is not strictly related to whether the zone is signed, a critical part of DNSSEC is the trust relationship between the parent and the child. Just because we, the child, have all the correctly signed records in our zone does not mean it can be fully validated by a validating resolver, unless our parent’s data agrees with ours. To check if our upload to the parent was successful, ask the parent name server for the DS record of our child zone; we should get back the DS record(s) containing the information we uploaded in Uploading Information to the Parent Zone:
$ dig example.com. DS
; <<>> DiG 9.16.0 <<>> example.com DS
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16954
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: db280d5b52576780010000005e8c9bf5b0d8de103d934e5d (good)
;; QUESTION SECTION:
;example.com. IN DS
;; ANSWER SECTION:
example.com. 61179 IN DS 10376 13 2 B92E22CAE0B41430EC38D3F7EDF1183C3A94F4D4748569250C15EE33B8312EF0
[6] | Well, almost every record: NS records and glue records for delegations do not have RRSIG records. If there are no delegations, then every record in your zone is signed and comes with its own RRSIG. |
External Testing Tools¶
We recommend two tools, below: Verisign DNSSEC Debugger and DNSViz. Others can be found via a simple online search. These excellent online tools are an easy way to verify that your domain name is fully secured.
Verisign DNSSEC Debugger¶
URL: https://dnssec-debugger.verisignlabs.com/
This tool shows a nice summary of checks performed on your domain name. You can expand it to view more details for each of the items checked, to get a detailed report.

Verisign DNSSEC Debugger
DNSViz¶
URL: https://dnsviz.net/
DNSViz provides a visual analysis of the DNSSEC authentication chain for a domain name and its resolution path in the DNS namespace.
Signing Easy Start Explained¶
Enable Automatic DNSSEC Maintenance Explained¶
Signing a zone requires a number of separate steps:
- Generation of the keys to sign the zone.
- Inclusion of the keys into the zone.
- Signing of the records in the file (including the generation of the NSEC or NSEC3 records).
Maintaining a signed zone comprises a set of ongoing tasks:
- Re-signing the zone as signatures approach expiration.
- Generation of new keys as the time approaches for a key roll.
- Inclusion of new keys into the zone when the rollover starts.
- Transition from signing the zone with the old set of keys to signing the zone with the new set of keys.
- Waiting the appropriate interval before removing the old keys from the zone.
- Deleting the old keys.
That is quite complex, and it is all handled in BIND 9 with the single
dnssec-policy default
statement. We will see later on (in the
Creating a Custom DNSSEC Policy section) how these actions can be tuned, by
setting up our own DNSSEC policy with customized parameters. However, in many
cases the defaults are adequate.
At the time of this writing (mid-2020), dnssec-policy
is still a
relatively new feature in BIND. Although it is the preferred
way to run DNSSEC in a zone, it is not yet able to automatically implement
all the features that are available
with a more “hands-on” approach to signing and key maintenance. For this
reason, we cover alternative signing techniques in
Alternate Ways of Signing a Zone.
Working With the Parent Zone¶
As mentioned in Uploading Information to the Parent Zone, the format of the information uploaded to your parent zone is dictated by your parent zone administrator. The two main formats are:
- DS record format
- DNSKEY format
Check with your parent zone to see which format they require.
But how can you get each of the formats from your existing data?
When named
turned on automatic
DNSSEC maintenance, essentially the first thing it did was to create
the DNSSEC keys and put them in the directory you specified in the
configuration file. If you look in that directory, you will see three
files with names like Kexample.com.+013+10376.key
,
Kexample.com.+013+10376.private
, and
Kexample.com.+013+10376.state
. The one we are interested in is the
one with the .key
suffix, which contains the zone’s public key. (The
other files contain the zone’s private key and the DNSSEC state
associated with the key.) This public key is used to generate the information we
need to pass to the parent.
DS Record Format¶
Below is an example of a DS record format generated from the KSK we
created earlier (Kexample.com.+013+10376.key
):
# cd /etc/bind
dnssec-dsfromkey Kexample.com.+013+10376.key
example.com. IN DS 10376 13 2 B92E22CAE0B41430EC38D3F7EDF1183C3A94F4D4748569250C15EE33B8312EF0
Some registrars ask their customers to manually specify the types of algorithm and digest used. In this example, 13 represents the algorithm used, and 2 represents the digest type (SHA-256). The key tag or key ID is 10376.
DNSKEY Format¶
Below is an example of the same key ID (10376) using DNSKEY format (with the actual key shortened for ease of display):
example.com. 3600 IN DNSKEY 257 3 13 (6saiq99qDB...dqp+o0dw==) ; key id = 10376
The key itself is easy to find (it’s difficult to miss that long base64 string) in the file.
# cd /etc/bind
# cat Kexample.com.+013+10376.key
; This is a key-signing key, keyid 10376, for example.com.
; Created: 20200407150255 (Tue Apr 7 16:02:55 2020)
; Publish: 20200407150255 (Tue Apr 7 16:02:55 2020)
; Activate: 20200407150255 (Tue Apr 7 16:02:55 2020)
example.com. 3600 IN DNSKEY 257 3 13 6saiq99qDB...dqp+o0dw==
Creating a Custom DNSSEC Policy¶
The remainder of this section describes the contents of a custom DNSSEC policy. Advanced Discussions describes the concepts involved here and the pros and cons of choosing particular values. If you are not already familiar with DNSSEC, it may be worth reading that chapter first.
Setting up your own DNSSEC policy means that you must include a
dnssec-policy
clause in the zone file. This sets values for the
various parameters that affect the signing of zones and the rolling of
keys. The following is an example of such a clause:
dnssec-policy standard {
dnskey-ttl 600;
keys {
ksk lifetime 365d algorithm ecdsap256sha256;
zsk lifetime 60d algorithm ecdsap256sha256;
};
max-zone-ttl 600;
parent-ds-ttl 600;
parent-propagation-delay 2h;
publish-safety 7d;
retire-safety 7d;
signatures-refresh 5d;
signatures-validity 15d;
signatures-validity-dnskey 15d;
zone-propagation-delay 2h;
};
The policy has multiple parts:
- The name must be specified. As each zone can use a different policy,
named
needs to be able to distinguish between policies. This is done by giving each policy a name, such asstandard
in the above example. - The
keys
clause lists all keys that should be in the zone, along with their associated parameters. In this example, we are using the conventional KSK/ZSK split, with the KSK changed every year and the ZSK changed every two months (thedefault
DNSSEC policy sets a CSK that is never changed). Keys are created using the ECDSAPS256SHA256 algorithm; each KSK/ZSK pair must have the same algorithm. A CSK combines the functionality of a ZSK and a KSK. - The parameters ending in
-ttl
are, as expected, the TTLs of the associated records. Remember that during a key rollover, we have to wait for records to expire from caches? The values here tell BIND 9 the maximum amount of time it has to wait for this to happen. Values can be set for the DNSKEY records in your zone, the non-DNSKEY records in your zone, and the DS records in the parent zone. - Another set of time-related parameters are those ending in
-propagation-delay
. These tell BIND how long it takes for a change in zone contents to become available on all secondary servers. (This may be non-negligible: for example, if a large zone is transferred over a slow link.) - The policy also sets values for the various signature parameters: how long the signatures on the DNSKEY and non-DNSKEY records are valid, and how often BIND should re-sign the zone.
- The parameters ending in
-safety
are there to give you a bit of leeway in case a key roll doesn’t go to plan. When introduced into the zone, thepublish-safety
time is the amount of additional time, over and above that calculated from the other parameters, during which the new key is in the zone but before BIND starts to sign records with it. Similarly, theretire-safety
is the amount of additional time, over and above that calculated from the other parameters, during which the old key is retained in the zone before being removed. - Finally, the
purge-keys
option allows you to clean up key files automatically after a period of time. If a key has been removed from the zone, this option will determine how long its key files will be retained on disk.
(You do not have to specify all the items listed above in your policy definition. Any that are not set simply take the default value.)
Usually, the exact timing of a key roll, or how long a signature remains valid, is not critical. For this reason, err on the side of caution when setting values for the parameters. It is better to have an operation like a key roll take a few days longer than absolutely required, than it is to have a quick key roll but have users get validation failures during the process.
Having defined a new policy called “standard”, we now need to tell
named
to use it. We do this by adding a dnssec-policy standard;
statement to the configuration file. Like many other configuration
statements, it can be placed in the options
statement (thus applying
to all zones on the server), a view
statement (applying to all zones
in the view), or a zone
statement (applying only to that zone). In
this example, we’ll add it to the zone
statement:
zone "example.net" in {
...
dnssec-policy standard;
...
};
Finally, tell named
to use the new policy:
# rndc reconfig
… and that’s it. named
now applies the “standard” policy to
your zone.
Maintenance Tasks¶
Zone data is signed and the parent zone has published your DS records: at this point your zone is officially secure. When other validating resolvers look up information in your zone, they are able to follow the 12-step process as described in How Does DNSSEC Change DNS Lookup (Revisited)? and verify the authenticity and integrity of the answers.
There is not that much left for you, as the DNS administrator, to do on an ongoing basis. Whenever you update your zone, BIND automatically re-signs your zone with new RRSIG and NSEC/NSEC3 records, and even increments the serial number for you. If you choose to split your keys into a KSK and ZSK, the rolling of the ZSK is completely automatic. Rolling of a KSK or CSK may require some manual intervention, though, so let’s examine two more DNSSEC-related resource records, CDS and CDNSKEY.
The CDS and CDNSKEY Resource Records¶
Passing the DS record to the organization running the parent zone has always been recognized as a bottleneck in the key rollover process. To automate the process, the CDS and CDNSKEY resource records were introduced.
The CDS and CDNSKEY records are identical to the DS and DNSKEY records, except in the type code and the name. When such a record appears in the child zone, it is a signal to the parent that it should update the DS it has for that zone. In essence, when the parent notices the presence of the CDS and/or CDNSKEY record(s) in the child zone, it checks these records to verify that they are signed by a valid key for the zone. If the record(s) successfully validate, the parent zone’s DS RRset for the child zone is changed to correspond to the CDS (or CDNSKEY) records. (For more information on how the signaling works and the issues surrounding it, please refer to RFC 7344 and RFC 8078.)
Working with the Parent Zone (2)¶
Once the zone is signed, the only required manual tasks are to monitor KSK or CSK key rolls and pass the new DS record to the parent zone. However, if the parent can process CDS or CDNSKEY records, you may not even have to do that [7].
When the time approaches for the roll of a KSK or CSK, BIND adds a CDS and a CDNSKEY record for the key in question to the apex of the zone. If your parent zone supports polling for CDS/CDNSKEY records, they are uploaded and the DS record published in the parent - at least ideally.
If BIND is configured with parental-agents
, it will check for the DS
presence. Let’s look at the following configuration excerpt:
parental-agents "net" {
10.53.0.11; 10.53.0.12;
};
zone "example.net" in {
...
dnssec-policy standard;
parental-agents { "net"; };
...
};
BIND will check for the presence of the DS record in the parent zone by querying its parental agents (defined in RFC 7344 to be the entities that the child zone has a relationship with to change its delegation information). In the example above, The zone example.net is configured with two parental agents, at the addresses 10.53.0.11 and 10.53.0.12. These addresses are used as an example only. Both addresses will have to respond with a DS RRset that includes the DS record identifying the key that is being rolled. If one or both don’t have the DS included yet the rollover is paused, and the check for DS presence is retried after an hour. The same applies for DS withdrawal.
Alternatively, you can use the rndc
tool to tell named
that the DS
record has been published or withdrawn. For example:
# rndc dnssec -checkds published example.net
If your parent zone doesn’t support CDS/CDNSKEY, you will have to supply
the DNSKEY or DS record to the parent zone manually when a new KSK appears in
your zone, presumably using the same mechanism you used to upload the
records for the first time. Again, you need to use the rndc
tool
to tell named
that the DS record has been published.
[7] | For security reasons, a parent zone that supports CDS/CDNSKEY may require the DS record to be manually uploaded when we first sign the zone. Until our zone is signed, the parent cannot be sure that a CDS or CDNSKEY record it finds by querying our zone really comes from our zone; thus, it needs to use some other form of secure transfer to obtain the information. |
Alternate Ways of Signing a Zone¶
Although use of the automatic dnssec-policy
is the preferred way to sign zones in
BIND, there are occasions where a more manual approach may be
needed, such as when external hardware is used to
generate and sign the zone. dnssec-policy
does not currently support
the use of external hardware, so if your security policy requires it, you
need to use one of the methods described here.
The idea of DNSSEC was first discussed in the 1990s and has been extensively developed over the intervening years. BIND has tracked the development of this technology, often being the first name server implementation to introduce new features. However, for compatibility reasons, BIND retained older ways of doing things even when new ways were added. This particularly applies to signing and maintaining zones, where different levels of automation are available.
The following is a list of the available methods of signing in BIND, in the order that they were introduced - and in order of decreasing complexity.
- Manual
“Manual” signing was the first method to be introduced into BIND and its name describes it perfectly: the user needs to do everything. In the more-automated methods, you load an unsigned zone file into
named
, which takes care of signing it. With manual signing, you have to provide a signed zone fornamed
to serve.In practice, this means creating an unsigned zone file as usual, then using the BIND-provided tools
dnssec-keygen
to create the keys anddnssec-signzone
to sign the zone. The signed zone is stored in another file and is the one you tell BIND to load. To update the zone (for example, to add a resource record), you update the unsigned zone, re-sign it, and tellnamed
to load the updated signed copy. The same goes for refreshing signatures or rolling keys; the user is responsible for providing the signed zone served bynamed
. (In the case of rolling keys, you are also responsible for ensuring that the keys are added and removed at the correct times.)Why would you want to sign your zone this way? You probably wouldn’t in the normal course of events, but as there may be circumstances in which it is required, the scripts have been left in the BIND distribution.
- Semi-Automatic
The first step in DNSSEC automation came with BIND 9.7, when the
auto-dnssec
option was added. This causesnamed
to periodically search the directory holding the key files (see Generate Keys for a description) and to use the information in them to both add and remove keys and sign the zone.Use of
auto-dnssec
alone requires that the zone be dynamic, something not suitable for a number of situations, so BIND 9.9 added theinline-signing
option. With this,named
essentially keeps the signed and unsigned copies of the zone separate. The signed zone is created from the unsigned one using the key information; when the unsigned zone is updated and the zone reloaded,named
detects the changes and updates the signed copy of the zone.This mode of signing has been termed “semi-automatic” in this document because keys still have to be manually created (and deleted when appropriate). Although not an onerous task, it is still additional work.
Why would anyone want to use this method when fully automated ones are available? At the time of this writing (mid-2020), the fully automatic methods cannot handle all scenarios, particularly that of having a single key shared among multiple zones. They also do not handle keys stored in Hardware Security Modules (HSMs), which are briefly covered in Hardware Security Modules (HSMs).
- Fully Automatic with
dnssec-keymgr
The next step in the automation of DNSSEC operations came with BIND 9.11, which introduced the
dnssec-keymgr
utility. This is a separate program and is expected to be run on a regular basis (probably viacron
). It reads a DNSSEC policy from its configuration file and reads timing information from the DNSSEC key files. With this information it creates new key files with timing information in them consistent with the policy.named
is run as usual, picking up the timing information in the key files to determine when to add and remove keys, and when to sign with them.In BIND 9.17.0 and later, this method of handling DNSSEC policies has been replaced by the
dnssec-policy
statement in the configuration file.- Fully Automatic with
dnssec-policy
- Introduced a BIND 9.16,
dnssec-policy
replacesdnssec-keymgr
from BIND 9.17 onwards and avoids the need to run a separate program. It also handles the creation of keys if a zone is added (dnssec-keymgr
requires an initial key) and deletes old key files as they are removed from the zone. This is the method described in Easy-Start Guide for Signing Authoritative Zones.
We now look at some of these methods in more detail. We cover
semi-automatic signing first, as that contains a lot of useful
information about keys and key timings. We then describe what
dnssec-keymgr
adds to semi-automatic signing. After that, we
touch on fully automatic signing with dnssec-policy
. Since this has
already been described in
Easy-Start Guide for Signing Authoritative Zones, we will just
mention a few additional points. Finally, we briefly describe manual signing.
Semi-Automatic Signing¶
As noted above, the term semi-automatic signing has been used in this
document to indicate the mode of signing enabled by the auto-dnssec
and inline-signing
keywords. named
signs the zone without any
manual intervention, based purely on the timing information in the
DNSSEC key files. The files, however, must be created manually.
By appropriately setting the key parameters and the timing information
in the key files, you can implement any DNSSEC policy you want for your
zones. But why manipulate the key information yourself rather than rely
on dnssec-keymgr
or dnssec-policy
to do it for you? The answer
is that semi-automatic signing allows you to do things that, at the time of this writing
(mid-2020), are currently not possible with one of the key managers: for
example, the ability to use an HSM to store keys, or the ability to use
the same key for multiple zones.
To convert a traditional (insecure) DNS zone to a secure one, we need to create various additional records (DNSKEY, RRSIG, NSEC/NSEC3) and, as with fully automatic signing, to upload verifiable information (such as a DS record) to the parent zone to complete the chain of trust.
Note
Again, we assume all configuration files, key
files, and zone files are stored in /etc/bind
, and most examples
show commands run
as the root user. This may not be ideal, but the point is not
to distract from what is important here: learning how to sign
a zone. There are many best practices for deploying a more secure
BIND installation, with techniques such as jailed process and
restricted user privileges, but those are not covered
in this document. We trust you, a responsible DNS
administrator, to take the necessary precautions to secure your
system.
For our examples below, we work with the assumption that
there is an existing insecure zone example.com
that we are
converting to a secure version. The secure version uses both a KSK
and a ZSK.
Generate Keys¶
Everything in DNSSEC centers around keys, so we begin by generating our own keys.
# cd /etc/bind
# dnssec-keygen -a RSASHA256 -b 1024 example.com
Generating key pair...........................+++++ ......................+++++
Kexample.com.+008+34371
# dnssec-keygen -a RSASHA256 -b 2048 -f KSK example.com
Generating key pair........................+++ ..................................+++
Kexample.com.+008+00472
This command generates four key files in /etc/bind/keys
:
- Kexample.com.+008+34371.key
- Kexample.com.+008+34371.private
- Kexample.com.+008+00472.key
- Kexample.com.+008+00472.private
The two files ending in .key
are the public keys. These contain the
DNSKEY resource records that appear in the zone. The two files
ending in .private
are the private keys, and contain the information
that named
actually uses to sign the zone.
Of the two pairs, one is the zone-signing key (ZSK), and one is the key-signing key (KSK). We can tell which is which by looking at the file contents (the actual keys are shortened here for ease of display):
# cat Kexample.com.+008+34371.key
; This is a zone-signing key, keyid 34371, for example.com.
; Created: 20200616104249 (Tue Jun 16 11:42:49 2020)
; Publish: 20200616104249 (Tue Jun 16 11:42:49 2020)
; Activate: 20200616104249 (Tue Jun 16 11:42:49 2020)
example.com. IN DNSKEY 256 3 8 AwEAAfel66...LqkA7cvn8=
# cat Kexample.com.+008+00472.key
; This is a key-signing key, keyid 472, for example.com.
; Created: 20200616104254 (Tue Jun 16 11:42:54 2020)
; Publish: 20200616104254 (Tue Jun 16 11:42:54 2020)
; Activate: 20200616104254 (Tue Jun 16 11:42:54 2020)
example.com. IN DNSKEY 257 3 8 AwEAAbCR6U...l8xPjokVU=
The first line of each file tells us what type of key it is. Also, by looking at the actual DNSKEY record, we can tell them apart: 256 is ZSK, and 257 is KSK.
The name of the file also tells us something about the contents. The file names are of the form:
K<zone-name>+<algorithm-id>+<keyid>
The “zone name” is self-explanatory. The “algorithm ID” is a number assigned to the algorithm used to construct the key: the number appears in the DNSKEY resource record. In our example, 8 means the algorithm RSASHA256. Finally, the “keyid” is essentially a hash of the key itself.
Make sure these files are readable by named
and make sure that the
.private
files are not readable by anyone else.
Refer to System Entropy for information on how to speed up the key generation process if your random number generator has insufficient entropy.
Setting Key Timing Information¶
You may remember that in the above description of this method, we said
that time information related to rolling keys is stored in the key
files. This is placed there by dnssec-keygen
when the file is
created, and it can be modified using dnssec-settime
. By default,
only a limited amount of timing information is included in the file, as
illustrated in the examples in the previous section.
All the dates are the same, and are the date and time that
dnssec-keygen
created the key. We can use dnssec-settime
to
modify the dates [8]. For example, to publish this key in
the zone on 1 July 2020, use it to sign records for a year starting on
15 July 2020, and remove it from the zone at the end of July 2021, we
can use the following command:
# dnssec-settime -P 20200701 -A 20200715 -I 20210715 -D 20210731 Kexample.com.+008+34371.key
./Kexample.com.+008+34371.key
./Kexample.com.+008+34371.private
which would set the contents of the key file to:
; This is a zone-signing key, keyid 34371, for example.com.
; Created: 20200616104249 (Tue Jun 16 11:42:49 2020)
; Publish: 20200701000000 (Wed Jul 1 01:00:00 2020)
; Activate: 20200715000000 (Wed Jul 15 01:00:00 2020)
; Inactive: 20210715000000 (Thu Jul 15 01:00:00 2021)
; Delete: 20210731000000 (Sat Jul 31 01:00:00 2021)
example.com. IN DNSKEY 256 3 8 AwEAAfel66...LqkA7cvn8=
(The actual key is truncated here to improve readability.)
Below is a complete list of each of the metadata fields, and how each one affects the signing of your zone:
- Created: This records the date on which the key was created. It is not used in calculations; it is useful simply for documentation purposes.
- Publish: This sets the date on which a key is to be published to the
zone. After that date, the key is included in the zone but is
not used to sign it. This allows validating resolvers to get a
copy of the new key in their cache before there are any resource
records signed with it. By default, if not specified at creation
time, this is set to the current time, meaning the key is
published as soon as
named
picks it up. - Activate: This sets the date on which the key is to be activated. After
that date, resource records are signed with the key. By default,
if not specified during creation time, this is set to the current
time, meaning the key is used to sign data as soon as
named
picks it up. - Revoke: This sets the date on which the key is to be revoked. After that date, the key is flagged as revoked, although it is still included in the zone and used to sign it. This is used to notify validating resolvers that this key is about to be removed or retired from the zone. (This state is not used in normal day-to-day operations. See RFC 5011 to understand the circumstances where it may be used.)
- Inactive: This sets the date on which the key is to become inactive. After that date, the key is still included in the zone, but it is no longer used to sign it. This sets the “expiration” or “retire” date for a key.
- Delete: This sets the date on which the key is to be deleted. After that date, the key is no longer included in the zone, but it continues to exist on the file system or key repository.
This can be summarized as follows:
Metadata | Included in Zone File? | Used to Sign Data? | Purpose |
---|---|---|---|
Created | No | No | Recording of key creation |
Publish | Yes | No | Introduction of a key soon to be active |
Activate | Yes | Yes | Activation date for new key |
Revoke | Yes | Yes | Notification of a key soon to be retired |
Inactive | Yes | No | Inactivation or retirement of a key |
Delete | No | No | Deletion or removal of a key from a zone |
The publication date is the date the key is introduced into the zone. Sometime later it is activated and is used to sign resource records. After a specified period, BIND stops using it to sign records, and at some other specified later time it is removed from the zone.
Finally, we should note that the dnssec-keygen
command supports the
same set of switches so we could have set the dates
when we created the key.
Reconfiguring BIND¶
Having created the keys with the appropriate timing information, the
next step is to turn on DNSSEC signing. Below is a very simple
named.conf
; in our example environment, this file is
/etc/bind/named.conf
.
options {
directory "/etc/bind";
recursion no;
minimal-responses yes;
};
zone "example.com" IN {
type primary;
file "example.com.db";
auto-dnssec maintain;
inline-signing yes;
};
Once the configuration file is updated, tell named
to
reload:
# rndc reload
server reload successful
Verifying That the Zone Is Signed Correctly¶
You should now check that the zone is signed. Follow the steps in Verification.
Uploading the DS Record to the Parent¶
As described in Uploading Information to the Parent Zone, we must now upload the new information to the parent zone. The format of the information and how to generate it is described in Working With the Parent Zone, although it is important to remember that you must use the contents of the KSK file that you generated above as part of the process.
When the DS record is published in the parent zone, your zone is fully signed.
Checking That Your Zone Can Be Validated¶
Finally, follow the steps in How To Test Authoritative Zones to confirm that a query recognizes the zone as properly signed and vouched for by the parent zone.
So… What Now?¶
Once the zone is signed, it must be monitored as described in Maintenance Tasks. However, as the time approaches for a key roll, you must create the new key. Of course, it is possible to create keys for the next fifty years all at once and set the key times appropriately. Whether the increased risk in having the private key files for future keys available on disk offsets the overhead of having to remember to create a new key before a rollover depends on your organization’s security policy.
Fully Automatic Signing With dnssec-keymgr
¶
dnssec-keymgr
is a program supplied with BIND (versions 9.11 to
9.16) to help with key rollovers. When run, it compares the timing
information for existing keys with the defined policy, and adjusts it if
necessary. It also creates additional keys as required.
dnssec-keymgr
is completely separate from named
. As we will see,
the policy states a coverage period; dnssec-keymgr
generates
enough key files to handle all rollovers in that period. However, it is
a good idea to schedule it to run on a regular basis; that way there is
no chance of forgetting to run it when the coverage period ends.
BIND should be set up exactly the same way as described in
Semi-Automatic Signing, i.e.,
with auto-dnssec
set to maintain
and inline-signing
set to
true
. Then a policy file must be created. The following is an
example of such a file:
# cat policy.conf
policy standard {
coverage 1y;
algorithm RSASHA256;
directory "/etc/bind";
keyttl 2h;
key-size ksk 4096;
roll-period ksk 1y;
pre-publish ksk 30d;
post-publish ksk 30d;
key-size zsk 2048;
roll-period zsk 90d;
pre-publish zsk 30d;
post-publish zsk 30d;
};
zone example.com {
policy standard;
};
zone example.net {
policy standard;
keyttl 300;
};
As can be seen, the syntax is similar to that of the named
configuration file.
In the example above, we define a DNSSEC policy called “standard”. Keys
are created using the RSASHA256 algorithm, assigned a TTL of two hours,
and placed in the directory /etc/bind
. KSKs have a key size of
4096 bits and are expected to roll once a year; the new key is added to the
zone 30 days before it becomes active, and is retained in the zone for
30 days after it is rolled. ZSKs have a key size of 2048 bits and roll
every 90 days; like the KSKs, the are added to the zone 30 days before
they are used for signing, and retained for 30 days after named
ceases signing with them.
The policy is applied to two zones, example.com
and example.net
.
The policy is applied unaltered to the former, but for the latter the
setting for the DNSKEY TTL has been overridden and set to 300 seconds.
To apply the policy, we need to run dnssec-keymgr
. Since this does
not read the named
configuration file, it relies on the presence of
at least one key file for a zone to tell it that the zone is
DNSSEC-enabled. If a key file does not already exist, we first need to create
one for each zone. We can do that either by running
dnssec-keygen
to create a key file for each zone [9], or by
specifying the zones in question on the command line. Here, we do the
latter:
# dnssec-keymgr -c policy.conf example.com example.net
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -L 7200 -a RSASHA256 -b 2048 example.net
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -L 7200 -fk -a RSASHA256 -b 4096 example.net
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20200915110318 -D 20201015110318 Kexample.net.+008+31339
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.net.+008+31339 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20201214110318 -D 20210113110318 Kexample.net.+008+14526
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.net.+008+14526 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20210314110318 -D 20210413110318 Kexample.net.+008+46069
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.net.+008+46069 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20210612110318 -D 20210712110318 Kexample.net.+008+13018
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.net.+008+13018 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20210617110318 -D 20210717110318 Kexample.net.+008+55237
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.net.+008+55237 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -L 7200 -a RSASHA256 -b 2048 example.com
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -L 7200 -fk -a RSASHA256 -b 4096 example.com
# /usr/local/sbin/dnssec-settime -K /etc/bind -P 20200617110318 -A 20200617110318 -I 20200915110318 -D 20201015110318 Kexample.com.+008+31168
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.com.+008+31168 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20201214110318 -D 20210113110318 Kexample.com.+008+24199
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.com.+008+24199 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20210314110318 -D 20210413110318 Kexample.com.+008+08728
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.com.+008+08728 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -I 20210612110318 -D 20210712110318 Kexample.com.+008+12874
# /usr/local/sbin/dnssec-keygen -q -K /etc/bind -S Kexample.com.+008+12874 -L 7200 -i 2592000
# /usr/local/sbin/dnssec-settime -K /etc/bind -P 20200617110318 -A 20200617110318 Kexample.com.+008+26186
This creates enough key files to last for the coverage period, set in
the policy file to be one year. The script should be run on a regular
basis (probably via cron
) to keep the reserve of key files topped
up. With the shortest roll period set to 90 days, every 30 days is
more than adequate.
At any time, you can check what key changes are coming up and whether
the keys and timings are correct by using dnssec-coverage
. For
example, to check coverage for the next 60 days:
# dnssec-coverage -d 2h -m 1d -l 60d -K /etc/bind/keys
PHASE 1--Loading keys to check for internal timing problems
PHASE 2--Scanning future key events for coverage failures
Checking scheduled KSK events for zone example.net, algorithm RSASHA256...
Wed Jun 17 11:03:18 UTC 2020:
Publish: example.net/RSASHA256/55237 (KSK)
Activate: example.net/RSASHA256/55237 (KSK)
Ignoring events after Sun Aug 16 11:47:24 UTC 2020
No errors found
Checking scheduled ZSK events for zone example.net, algorithm RSASHA256...
Wed Jun 17 11:03:18 UTC 2020:
Publish: example.net/RSASHA256/31339 (ZSK)
Activate: example.net/RSASHA256/31339 (ZSK)
Sun Aug 16 11:03:18 UTC 2020:
Publish: example.net/RSASHA256/14526 (ZSK)
Ignoring events after Sun Aug 16 11:47:24 UTC 2020
No errors found
Checking scheduled KSK events for zone example.com, algorithm RSASHA256...
Wed Jun 17 11:03:18 UTC 2020:
Publish: example.com/RSASHA256/26186 (KSK)
Activate: example.com/RSASHA256/26186 (KSK)
No errors found
Checking scheduled ZSK events for zone example.com, algorithm RSASHA256...
Wed Jun 17 11:03:18 UTC 2020:
Publish: example.com/RSASHA256/31168 (ZSK)
Activate: example.com/RSASHA256/31168 (ZSK)
Sun Aug 16 11:03:18 UTC 2020:
Publish: example.com/RSASHA256/24199 (ZSK)
Ignoring events after Sun Aug 16 11:47:24 UTC 2020
No errors found
The -d 2h
and -m 1d
on the command line specify the maximum TTL
for the DNSKEYs and other resource records in the zone: in this example
two hours and one day, respectively. dnssec-coverage
needs this
information when it checks that the zones will remain secure through key
rolls.
Fully Automatic Signing With dnssec-policy
¶
The latest development in DNSSEC key management appeared with BIND 9.16,
and is the full integration of key management into named
. Managing
the signing process and rolling of these keys has been described in
Easy-Start Guide for Signing Authoritative Zones and is not
repeated here. A few points are worth noting, though:
- The
dnssec-policy
statement in thenamed
configuration file describes all aspects of the DNSSEC policy, including the signing. Withdnssec-keymgr
, this is split between two configuration files and two programs. - When using
dnssec-policy
, there is no need to set theauto-dnssec
andinline-signing
options for a zone. The zone’spolicy
statement implicitly does this. - It is possible to manage some zones served by an instance of BIND
through
dnssec-policy
and others throughdnssec-keymgr
, but this is not recommended. Although it should work, if you modify the configuration files and inadvertently specify a zone to be managed by both systems, BIND will not operate properly.
Manual Signing¶
Manual signing of a zone was the first method of signing introduced into BIND and offers, as the name suggests, no automation. The user must handle everything: create the keys, sign the zone file with them, load the signed zone, periodically re-sign the zone, and manage key rolls, including interaction with the parent. A user certainly can do all this, but why not use one of the automated methods? Nevertheless, it may be useful for test purposes, so we cover it briefly here.
The first step is to create the keys as described in Generate Keys.
Then, edit the zone file to make sure
the proper DNSKEY entries are included in your zone file. Finally, use the
command dnssec-signzone
:
# cd /etc/bind/keys/example.com/
# dnssec-signzone -A -t -N INCREMENT -o example.com -f /etc/bind/db/example.com.signed.db \
> /etc/bind/db/example.com.db Kexample.com.+008+17694.key Kexample.com.+008+06817.key
Verifying the zone using the following algorithms: RSASHA256.
Zone fully signed:
Algorithm: RSASHA256: KSKs: 1 active, 0 stand-by, 0 revoked
ZSKs: 1 active, 0 stand-by, 0 revoked
/etc/bind/db/example.com.signed.db
Signatures generated: 17
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Signing time in seconds: 0.046
Signatures per second: 364.634
Runtime in seconds: 0.055
The -o switch explicitly defines the domain name (example.com
in
this case), while the -f switch specifies the output file name. The second line
has three parameters: the unsigned zone name
(/etc/bind/db/example.com.db
), the ZSK file name, and the KSK file name. This
also generates a plain text file /etc/bind/db/example.com.signed.db
,
which you can verify for correctness.
Finally, you’ll need to update named.conf
to load the signed version
of the zone, which looks something like this:
zone "example.com" IN {
type primary;
file "db/example.com.signed.db";
};
Once the rndc reconfig
command is issued, BIND serves a signed
zone. The file dsset-example.com
(created by dnssec-signzone
when it signed the example.com
zone) contains the DS record for the
zone’s KSK. You will need to pass that to the administrator of the parent
zone, to be placed in the zone.
Since this is a manual process, you will need to re-sign periodically, as well as every time the zone data changes. You will also need to manually roll the keys by adding and removing DNSKEY records (and interacting with the parent) at the appropriate times.
[8] | The dates can also be modified using an editor, but that is likely to
be more error-prone than using dnssec-settime . |
[9] | Only one key file - for either a KSK or ZSK - is needed to signal the
presence of the zone. dnssec-keygen creates files of both
types as needed. |
Basic DNSSEC Troubleshooting¶
In this chapter, we cover some basic troubleshooting techniques, some common DNSSEC symptoms, and their causes and solutions. This is not a comprehensive “how to troubleshoot any DNS or DNSSEC problem” guide, because that could easily be an entire book by itself.
Query Path¶
The first step in troubleshooting DNS or DNSSEC should be to determine the query path. Whenever you are working with a DNS-related issue, it is always a good idea to determine the exact query path to identify the origin of the problem.
End clients, such as laptop computers or mobile phones, are configured
to talk to a recursive name server, and the recursive name server may in
turn forward requests on to other recursive name servers before arriving at the
authoritative name server. The giveaway is the presence of the
Authoritative Answer (aa
) flag in a query response: when present, we know we are talking
to the authoritative server; when missing, we are talking to a recursive
server. The example below shows an answer to a query for
www.example.com
without the Authoritative Answer flag:
$ dig @10.53.0.3 www.example.com A
; <<>> DiG 9.16.0 <<>> @10.53.0.3 www.example.com a
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62714
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: c823fe302625db5b010000005e722b504d81bb01c2227259 (good)
;; QUESTION SECTION:
;www.example.com. IN A
;; ANSWER SECTION:
www.example.com. 60 IN A 10.1.0.1
;; Query time: 3 msec
;; SERVER: 10.53.0.3#53(10.53.0.3)
;; WHEN: Wed Mar 18 14:08:16 GMT 2020
;; MSG SIZE rcvd: 88
Not only do we not see the aa
flag, we see an ra
flag, which indicates Recursion Available. This indicates that the
server we are talking to (10.53.0.3 in this example) is a recursive name
server: although we were able to get an answer for
www.example.com
, we know that the answer came from somewhere else.
If we query the authoritative server directly, we get:
$ dig @10.53.0.2 www.example.com A
; <<>> DiG 9.16.0 <<>> @10.53.0.2 www.example.com a
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39542
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available
...
The aa
flag tells us that we are now talking to the
authoritative name server for www.example.com
, and that this is not a
cached answer it obtained from some other name server; it served this
answer to us right from its own database. In fact,
the Recursion Available (ra
) flag is not present, which means this
name server is not configured to perform recursion (at least not for
this client), so it could not have queried another name server to get
cached results.
Visible DNSSEC Validation Symptoms¶
After determining the query path, it is necessary to
determine whether the problem is actually related to DNSSEC
validation. You can use the +cd
flag in dig
to disable
validation, as described in
How Do I Know I Have a Validation Problem?.
When there is indeed a DNSSEC validation problem, the visible symptoms, unfortunately, are very limited. With DNSSEC validation enabled, if a DNS response is not fully validated, it results in a generic SERVFAIL message, as shown below when querying against a recursive name server at 192.168.1.7:
$ dig @10.53.0.3 www.example.org. A
; <<>> DiG 9.16.0 <<>> @10.53.0.3 www.example.org A
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 28947
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: d1301968aca086ad010000005e723a7113603c01916d136b (good)
;; QUESTION SECTION:
;www.example.org. IN A
;; Query time: 3 msec
;; SERVER: 10.53.0.3#53(10.53.0.3)
;; WHEN: Wed Mar 18 15:12:49 GMT 2020
;; MSG SIZE rcvd: 72
With delv
, a “resolution failed” message is output instead:
$ delv @10.53.0.3 www.example.org. A +rtrace
;; fetch: www.example.org/A
;; resolution failed: SERVFAIL
BIND 9 logging features may be useful when trying to identify DNSSEC errors.
Basic Logging¶
DNSSEC validation error messages show up in syslog
as a
query error by default. Here is an example of what it may look like:
validating www.example.org/A: no valid signature found
RRSIG failed to verify resolving 'www.example.org/A/IN': 10.53.0.2#53
Usually, this level of error logging is sufficient. Debug logging, described in BIND DNSSEC Debug Logging, gives information on how to get more details about why DNSSEC validation may have failed.
BIND DNSSEC Debug Logging¶
A word of caution: before you enable debug logging, be aware that this may dramatically increase the load on your name servers. Enabling debug logging is thus not recommended for production servers.
With that said, sometimes it may become necessary to temporarily enable
BIND debug logging to see more details of how and whether DNSSEC is
validating. DNSSEC-related messages are not recorded in syslog
by default,
even if query log is enabled; only DNSSEC errors show up in syslog
.
The example below shows how to enable debug level 3 (to see full DNSSEC
validation messages) in BIND 9 and have it sent to syslog
:
logging {
channel dnssec_log {
syslog daemon;
severity debug 3;
print-category yes;
};
category dnssec { dnssec_log; };
};
The example below shows how to log DNSSEC messages to their own file
(here, /var/log/dnssec.log
):
logging {
channel dnssec_log {
file "/var/log/dnssec.log";
severity debug 3;
};
category dnssec { dnssec_log; };
};
After turning on debug logging and restarting BIND, a large
number of log messages appear in
syslog
. The example below shows the log messages as a result of
successfully looking up and validating the domain name ftp.isc.org
.
validating ./NS: starting
validating ./NS: attempting positive response validation
validating ./DNSKEY: starting
validating ./DNSKEY: attempting positive response validation
validating ./DNSKEY: verify rdataset (keyid=20326): success
validating ./DNSKEY: marking as secure (DS)
validating ./NS: in validator_callback_dnskey
validating ./NS: keyset with trust secure
validating ./NS: resuming validate
validating ./NS: verify rdataset (keyid=33853): success
validating ./NS: marking as secure, noqname proof not needed
validating ftp.isc.org/A: starting
validating ftp.isc.org/A: attempting positive response validation
validating isc.org/DNSKEY: starting
validating isc.org/DNSKEY: attempting positive response validation
validating isc.org/DS: starting
validating isc.org/DS: attempting positive response validation
validating org/DNSKEY: starting
validating org/DNSKEY: attempting positive response validation
validating org/DS: starting
validating org/DS: attempting positive response validation
validating org/DS: keyset with trust secure
validating org/DS: verify rdataset (keyid=33853): success
validating org/DS: marking as secure, noqname proof not needed
validating org/DNSKEY: in validator_callback_ds
validating org/DNSKEY: dsset with trust secure
validating org/DNSKEY: verify rdataset (keyid=9795): success
validating org/DNSKEY: marking as secure (DS)
validating isc.org/DS: in fetch_callback_dnskey
validating isc.org/DS: keyset with trust secure
validating isc.org/DS: resuming validate
validating isc.org/DS: verify rdataset (keyid=33209): success
validating isc.org/DS: marking as secure, noqname proof not needed
validating isc.org/DNSKEY: in validator_callback_ds
validating isc.org/DNSKEY: dsset with trust secure
validating isc.org/DNSKEY: verify rdataset (keyid=7250): success
validating isc.org/DNSKEY: marking as secure (DS)
validating ftp.isc.org/A: in fetch_callback_dnskey
validating ftp.isc.org/A: keyset with trust secure
validating ftp.isc.org/A: resuming validate
validating ftp.isc.org/A: verify rdataset (keyid=27566): success
validating ftp.isc.org/A: marking as secure, noqname proof not needed
Note that these log messages indicate that the chain of trust has been
established and ftp.isc.org
has been successfully validated.
If validation had failed, you would see log messages indicating errors. We cover some of the most validation problems in the next section.
Common Problems¶
Security Lameness¶
Similar to lame delegation in traditional DNS, security lameness refers to the condition when the parent zone holds a set of DS records that point to something that does not exist in the child zone. As a result, the entire child zone may “disappear,” having been marked as bogus by validating resolvers.
Below is an example attempting to resolve the A record for a test domain
name www.example.net
. From the user’s perspective, as described in
How Do I Know I Have a Validation Problem?, only a SERVFAIL
message is returned. On the validating resolver, we see the
following messages in syslog
:
named[126063]: validating example.net/DNSKEY: no valid signature found (DS)
named[126063]: no valid RRSIG resolving 'example.net/DNSKEY/IN': 10.53.0.2#53
named[126063]: broken trust chain resolving 'www.example.net/A/IN': 10.53.0.2#53
This gives us a hint that it is a broken trust chain issue. Let’s take a look at the DS records that are published for the zone (with the keys shortened for ease of display):
$ dig @10.53.0.3 example.net. DS
; <<>> DiG 9.16.0 <<>> @10.53.0.3 example.net DS
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59602
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 7026d8f7c6e77e2a010000005e735d7c9d038d061b2d24da (good)
;; QUESTION SECTION:
;example.net. IN DS
;; ANSWER SECTION:
example.net. 256 IN DS 14956 8 2 9F3CACD...D3E3A396
;; Query time: 0 msec
;; SERVER: 10.53.0.3#53(10.53.0.3)
;; WHEN: Thu Mar 19 11:54:36 GMT 2020
;; MSG SIZE rcvd: 116
Next, we query for the DNSKEY and RRSIG of example.net
to see if
there’s anything wrong. Since we are having trouble validating, we
can use the +cd
option to temporarily disable checking and return
results, even though they do not pass the validation tests. The
+multiline
option tells dig
to print the type, algorithm type,
and key id for DNSKEY records. Again,
some long strings are shortened for ease of display:
$ dig @10.53.0.3 example.net. DNSKEY +dnssec +cd +multiline
; <<>> DiG 9.16.0 <<>> @10.53.0.3 example.net DNSKEY +cd +multiline +dnssec
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42980
;; flags: qr rd ra cd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: 4b5e7c88b3680c35010000005e73722057551f9f8be1990e (good)
;; QUESTION SECTION:
;example.net. IN DNSKEY
;; ANSWER SECTION:
example.net. 287 IN DNSKEY 256 3 8 (
AwEAAbu3NX...ADU/D7xjFFDu+8WRIn
) ; ZSK; alg = RSASHA256 ; key id = 35328
example.net. 287 IN DNSKEY 257 3 8 (
AwEAAbKtU1...PPP4aQZTybk75ZW+uL
6OJMAF63NO0s1nAZM2EWAVasbnn/X+J4N2rLuhk=
) ; KSK; alg = RSASHA256 ; key id = 27247
example.net. 287 IN RRSIG DNSKEY 8 2 300 (
20811123173143 20180101000000 27247 example.net.
Fz1sjClIoF...YEjzpAWuAj9peQ== )
example.net. 287 IN RRSIG DNSKEY 8 2 300 (
20811123173143 20180101000000 35328 example.net.
seKtUeJ4/l...YtDc1rcXTVlWIOw= )
;; Query time: 0 msec
;; SERVER: 10.53.0.3#53(10.53.0.3)
;; WHEN: Thu Mar 19 13:22:40 GMT 2020
;; MSG SIZE rcvd: 962
Here is the problem: the parent zone is telling the world that
example.net
is using the key 14956, but the authoritative server
indicates that it is using keys 27247 and 35328. There are several
potential causes for this mismatch: one possibility is that a malicious
attacker has compromised one side and changed the data. A more likely
scenario is that the DNS administrator for the child zone did not upload
the correct key information to the parent zone.
Incorrect Time¶
In DNSSEC, every record comes with at least one RRSIG, and each RRSIG contains two timestamps: one indicating when it becomes valid, and one when it expires. If the validating resolver’s current system time does not fall within the two RRSIG timestamps, error messages appear in the BIND debug log.
The example below shows a log message when the RRSIG appears to have expired. This could mean the validating resolver system time is incorrectly set too far in the future, or the zone administrator has not kept up with RRSIG maintenance.
validating example.com/DNSKEY: verify failed due to bad signature (keyid=19036): RRSIG has expired
The log below shows that the RRSIG validity period has not yet begun. This could mean the validation resolver’s system time is incorrectly set too far in the past, or the zone administrator has incorrectly generated signatures for this domain name.
validating example.com/DNSKEY: verify failed due to bad signature (keyid=4521): RRSIG validity period has not begun
Unable to Load Keys¶
This is a simple yet common issue. If the key files are present but
unreadable by named
for some reason, the syslog
returns clear error
messages, as shown below:
named[32447]: zone example.com/IN (signed): reconfiguring zone keys
named[32447]: dns_dnssec_findmatchingkeys: error reading key file Kexample.com.+008+06817.private: permission denied
named[32447]: dns_dnssec_findmatchingkeys: error reading key file Kexample.com.+008+17694.private: permission denied
named[32447]: zone example.com/IN (signed): next key event: 27-Nov-2014 20:04:36.521
However, if no keys are found, the error is not as obvious. Below shows
the syslog
messages after executing rndc
reload
with the key files missing from the key directory:
named[32516]: received control channel command 'reload'
named[32516]: loading configuration from '/etc/bind/named.conf'
named[32516]: reading built-in trusted keys from file '/etc/bind/bind.keys'
named[32516]: using default UDP/IPv4 port range: [1024, 65535]
named[32516]: using default UDP/IPv6 port range: [1024, 65535]
named[32516]: sizing zone task pool based on 6 zones
named[32516]: the working directory is not writable
named[32516]: reloading configuration succeeded
named[32516]: reloading zones succeeded
named[32516]: all zones loaded
named[32516]: running
named[32516]: zone example.com/IN (signed): reconfiguring zone keys
named[32516]: zone example.com/IN (signed): next key event: 27-Nov-2014 20:07:09.292
This happens to look exactly the same as if the keys were present and
readable, and appears to indicate that named
loaded the keys and signed the zone. It
even generates the internal (raw) files:
# cd /etc/bind/db
# ls
example.com.db example.com.db.jbk example.com.db.signed
If named
really loaded the keys and signed the zone, you should see
the following files:
# cd /etc/bind/db
# ls
example.com.db example.com.db.jbk example.com.db.signed example.com.db.signed.jnl
So, unless you see the *.signed.jnl
file, your zone has not been
signed.
Invalid Trust Anchors¶
In most cases, you never need to explicitly configure trust
anchors. named
supplies the current root trust anchor and,
with the default setting of dnssec-validation
, updates it on the
infrequent occasions when it is changed.
However, in some circumstances you may need to explicitly configure your own trust anchor. As we saw in the Trust Anchors section, whenever a DNSKEY is received by the validating resolver, it is compared to the list of keys the resolver explicitly trusts to see if further action is needed. If the two keys match, the validating resolver stops performing further verification and returns the answer(s) as validated.
But what if the key file on the validating resolver is misconfigured or missing? Below we show some examples of log messages when things are not working properly.
First of all, if the key you copied is malformed, BIND does not even start and you will likely find this error message in syslog:
named[18235]: /etc/bind/named.conf.options:29: bad base64 encoding
named[18235]: loading configuration: failure
If the key is a valid base64 string but the key algorithm is incorrect, or if the wrong key is installed, the first thing you will notice is that virtually all of your DNS lookups result in SERVFAIL, even when you are looking up domain names that have not been DNSSEC-enabled. Below shows an example of querying a recursive server 10.53.0.3:
$ dig @10.53.0.3 www.example.com. A
; <<>> DiG 9.16.0 <<>> @10.53.0.3 www.example.org A +dnssec
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 29586
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: ee078fc321fa1367010000005e73a58bf5f205ca47e04bed (good)
;; QUESTION SECTION:
;www.example.org. IN A
delv
shows a similar result:
$ delv @192.168.1.7 www.example.com. +rtrace
;; fetch: www.example.com/A
;; resolution failed: SERVFAIL
The next symptom you see is in the DNSSEC log messages:
managed-keys-zone: DNSKEY set for zone '.' could not be verified with current keys
validating ./DNSKEY: starting
validating ./DNSKEY: attempting positive response validation
validating ./DNSKEY: no DNSKEY matching DS
validating ./DNSKEY: no DNSKEY matching DS
validating ./DNSKEY: no valid signature found (DS)
These errors are indications that there are problems with the trust anchor.
Negative Trust Anchors¶
BIND 9.11 introduced Negative Trust Anchors (NTAs) as a means to temporarily disable DNSSEC validation for a zone when you know that the zone’s DNSSEC is misconfigured.
NTAs are added using the rndc
command, e.g.:
$ rndc nta example.com
Negative trust anchor added: example.com/_default, expires 19-Mar-2020 19:57:42.000
The list of currently configured NTAs can also be examined using
rndc
, e.g.:
$ rndc nta -dump
example.com/_default: expiry 19-Mar-2020 19:57:42.000
The default lifetime of an NTA is one hour, although by default, BIND
polls the zone every five minutes to see if the zone correctly
validates, at which point the NTA automatically expires. Both the
default lifetime and the polling interval may be configured via
named.conf
, and the lifetime can be overridden on a per-zone basis
using the -lifetime duration
parameter to rndc nta
. Both timer
values have a permitted maximum value of one week.
NSEC3 Troubleshooting¶
BIND includes a tool called nsec3hash
that runs through the same
steps as a validating resolver, to generate the correct hashed name
based on NSEC3PARAM parameters. The command takes the following
parameters in order: salt, algorithm, iterations, and domain. For
example, if the salt is 1234567890ABCDEF, hash algorithm is 1, and
iteration is 10, to get the NSEC3-hashed name for www.example.com
we
would execute a command like this:
$ nsec3hash 1234567890ABCEDF 1 10 www.example.com
RN7I9ME6E1I6BDKIP91B9TCE4FHJ7LKF (salt=1234567890ABCEDF, hash=1, iterations=10)
While it is unlikely you would construct a rainbow table of your own zone data, this tool may be useful when troubleshooting NSEC3 problems.
Advanced Discussions¶
Signature Validity Periods and Zone Re-Signing Intervals¶
In How Are Answers Verified?, we saw that record signatures have a validity period outside of which they are not valid. This means that at some point, a signature will no longer be valid and a query for the associated record will fail DNSSEC validation. But how long should a signature be valid for?
The maximum value for the validity period should be determined by the impact of a replay attack: if this is low, the period can be long; if high, the period should be shorter. There is no “right” value, but periods of between a few days to a month are common.
Deciding a minimum value is probably an easier task. Should something fail (e.g., a hidden primary distributing to secondary servers that actually answer queries), how long will it take before the failure is noticed, and how long before it is fixed? If you are a large 24x7 operation with operators always on-site, the answer might be less than an hour. In smaller companies, if the failure occurs just after everyone has gone home for a long weekend, the answer might be several days.
Again, there are no “right” values - they depend on your circumstances. The signature validity period you decide to use should be a value between the two bounds. At the time of this writing (mid-2020), the default policy used by BIND sets a value of 14 days.
To keep the zone valid, the signatures must be periodically refreshed since they expire - i.e., the zone must be periodically re-signed. The frequency of the re-signing depends on your network’s individual needs. For example, signing puts a load on your server, so if the server is very highly loaded, a lower re-signing frequency is better. Another consideration is the signature lifetime: obviously the intervals between signings must not be longer than the signature validity period. But if you have set a signature lifetime close to the minimum (see above), the signing interval must be much shorter. What would happen if the system failed just before the zone was re-signed?
Again, there is no single “right” answer; it depends on your circumstances. The BIND 9 default policy sets the signature refresh interval to 5 days.
Proof of Non-Existence (NSEC and NSEC3)¶
How do you prove that something does not exist? This zen-like question is an interesting one, and in this section we provide an overview of how DNSSEC solves the problem.
Why is it even important to have authenticated denial of existence in DNS? Couldn’t we just send back “hey, what you asked for does not exist,” and somehow generate a digital signature to go with it, proving it really is from the correct authoritative source? Aside from the technical challenge of signing something that doesn’t exist, this solution has flaws, one of which is it gives an attacker a way to create the appearance of denial of service by replaying this message on the network.
Let’s use a little story, told three different ways, to illustrate how proof of nonexistence works. In our story, we run a small company with three employees: Alice, Edward, and Susan. For reasons that are far too complicated to go into, they don’t have email accounts; instead, email for them is sent to a single account and a nameless intern passes the message to them. The intern has access to our private DNSSEC key to create signatures for their responses.
If we followed the approach of giving back the same answer no matter what was asked, when people emailed and asked for the message to be passed to “Bob,” our intern would simply answer “Sorry, that person doesn’t work here” and sign this message. This answer could be validated because our intern signed the response with our private DNSSEC key. However, since the signature doesn’t change, an attacker could record this message. If the attacker were able to intercept our email, when the next person emailed asking for the message to be passed to Susan, the attacker could return the exact same message: “Sorry, that person doesn’t work here,” with the same signature. Now the attacker has successfully fooled the sender into thinking that Susan doesn’t work at our company, and might even be able to convince all senders that no one works at this company.
To solve this problem, two different solutions were created. We will look at the first one, NSEC, next.
NSEC¶
The NSEC record is used to prove that something does not exist, by providing the name before it and the name after it. Using our tiny company example, this would be analogous to someone sending an email for Bob and our nameless intern responding with with: “I’m sorry, that person doesn’t work here. The name before the location where ‘Bob’ would be is Alice, and the name after that is Edward.” Let’s say another email was received for a non-existent person, this time Oliver; our intern would respond “I’m sorry, that person doesn’t work here. The name before the location where ‘Oliver’ would be is Edward, and the name after that is Susan.” If another sender asked for Todd, the answer would be: “I’m sorry, that person doesn’t work here. The name before the location where ‘Todd’ would be is Susan, and there are no other names after that.”
So we end up with four NSEC records:
example.com. 300 IN NSEC alice.example.com. A RRSIG NSEC
alice.example.com. 300 IN NSEC edward.example.com. A RRSIG NSEC
edward.example.com. 300 IN NSEC susan.example.com. A RRSIG NSEC
susan.example.com. 300 IN NSEC example.com. A RRSIG NSEC
What if the attacker tried to use the same replay method described earlier? If someone sent an email for Edward, none of the four answers would fit. If attacker replied with message #2, “I’m sorry, that person doesn’t work here. The name before it is Alice, and the name after it is Edward,” it is obviously false, since “Edward” is in the response; and the same goes for #3, Edward and Susan. As for #1 and #4, Edward does not fall in the alphabetical range before Alice or after Susan, so the sender can logically deduce that it was an incorrect answer.
When BIND signs your zone, the zone data is automatically sorted on the fly before generating NSEC records, much like how a phone directory is sorted.
The NSEC record allows for a proof of non-existence for record types. If you ask a signed zone for a name that exists but for a record type that doesn’t (for that name), the signed NSEC record returned lists all of the record types that do exist for the requested domain name.
NSEC records can also be used to show whether a record was generated as the result of a wildcard expansion. The details of this are not within the scope of this document, but are described well in RFC 7129.
Unfortunately, the NSEC solution has a few drawbacks, one of which is trivial “zone walking.” In our story, a curious person can keep sending emails, and our nameless, gullible intern keeps divulging information about our employees. Imagine if the sender first asked: “Is Bob there?” and received back the names Alice and Edward. Our sender could then email again: “Is Edwarda there?”, and will get back Edward and Susan. (No, “Edwarda” is not a real name. However, it is the first name alphabetically after “Edward” and that is enough to get the intern to reply with a message telling us the next valid name after Edward.) Repeat the process enough times and the person sending the emails eventually learns every name in our company phone directory. For many of you, this may not be a problem, since the very idea of DNS is similar to a public phone book: if you don’t want a name to be known publicly, don’t put it in DNS! Consider using DNS views (split DNS) and only display your sensitive names to a select audience.
The second drawback of NSEC is actually increased operational
overhead: there is no opt-out mechanism for insecure child zones. This generally
is a problem for parent-zone operators dealing with a lot of insecure
child zones, such as .com
. To learn more about opt-out, please see
NSEC3 Opt-Out.
NSEC3¶
NSEC3 adds two additional features that NSEC does not have:
- It offers no easy zone enumeration.
- It provides a mechanism for the parent zone to exclude insecure delegations (i.e., delegations to zones that are not signed) from the proof of non-existence.
Recall that in NSEC we provided a range of names to prove that something does not exist. But as it turns out, even disclosing these ranges of names becomes a problem: this made it very easy for the curious-minded to look at our entire zone. Not only that, unlike a zone transfer, this “zone walking” is more resource-intensive. So how do we disclose something without actually disclosing it?
The answer is actually quite simple: hashing functions, or one-way hashes. Without going into many details, think of it like a magical meat grinder. A juicy piece of ribeye steak goes in one end, and out comes a predictable shape and size of ground meat (hash) with a somewhat unique pattern. No matter how hard you try, you cannot turn the ground meat back into the ribeye steak: that’s what we call a one-way hash.
NSEC3 basically runs the names through a one-way hash before giving them out, so the recipients can verify the non-existence without any knowledge of the actual names.
So let’s tell our little story for the third time, this time with NSEC3. In this version, our intern is not given a list of actual names; he is given a list of “hashed” names. So instead of Alice, Edward, and Susan, the list he is given reads like this (hashes shortened for easier reading):
FSK5.... (produced from Edward)
JKMA.... (produced from Susan)
NTQ0.... (produced from Alice)
Then, an email is received for Bob again. Our intern takes the name Bob through a hash function, and the result is L8J2…, so he replies: “I’m sorry, that person doesn’t work here. The name before that is JKMA…, and the name after that is NTQ0…”. There, we proved Bob doesn’t exist, without giving away any names! To put that into proper NSEC3 resource records, they would look like this (again, hashes shortened for ease of display):
FSK5....example.com. 300 IN NSEC3 1 0 10 1234567890ABCDEF JKMA... A RRSIG
JKMA....example.com. 300 IN NSEC3 1 0 10 1234567890ABCDEF NTQ0... A RRSIG
NTQ0....example.com. 300 IN NSEC3 1 0 10 1234567890ABCDEF FSK5... A RRSIG
Note
Just because we employed one-way hash functions does not mean there is no way for a determined individual to figure out our zone data. Someone could still gather all of our NSEC3 records and hashed names and perform an offline brute-force attack by trying all possible combinations to figure out what the original name is. In our meat-grinder analogy, this would be like someone buying all available cuts of meat and grinding them up at home using the same model of meat grinder, and comparing the output with the meat you gave him. It is expensive and time-consuming (especially with real meat), but like everything else in cryptography, if someone has enough resources and time, nothing is truly private forever. If you are concerned about someone performing this type of attack on your zone data, read more about adding salt as described in NSEC3 Salt.
NSEC3PARAM¶
The above NSEC3 examples used four parameters: 1, 0, 10, and 1234567890ABCDEF. 1 represents the algorithm, 0 represents the opt-out flag, 10 represents the number of iterations, and 1234567890ABCDEF is the salt. Let’s look at how each one can be configured:
- Algorithm: The only currently defined value is 1 for SHA-1, so there is no configuration field for it.
- Opt-out: Set this to 1 for NSEC3 opt-out, which we discuss in NSEC3 Opt-Out.
- Iterations: Iterations defines the number of additional times to apply the algorithm when generating an NSEC3 hash. More iterations yield more secure results, but consume more resources for both authoritative servers and validating resolvers. The considerations here are similar to those seen in Key Sizes, of security versus resources.
- Salt: The salt cannot be configured explicitly, but you can provide
a salt length and
named
generates a random salt of the given length. We learn more about salt in NSEC3 Salt.
If you want to use these NSEC3 parameters for a zone, you can add the
following configuration to your dnssec-policy
. For example, to create an
NSEC3 chain using the SHA-1 hash algorithm, with no opt-out flag,
5 iterations, and a salt that is 8 characters long, use:
dnssec-policy "nsec3" {
...
nsec3param iterations 5 optout no salt-length 8;
};
To set the opt-out flag, 15 iterations, and no salt, use:
dnssec-policy "nsec3" {
...
nsec3param iterations 15 optout yes salt-length 0;
};
NSEC3 Opt-Out¶
One of the advantages of NSEC3 over NSEC is the ability for a parent zone to publish less information about its child or delegated zones. Why would you ever want to do that? If a significant number of your delegations are not yet DNSSEC-aware, meaning they are still insecure or unsigned, generating DNSSEC-records for their NS and glue records is not a good use of your precious name server resources.
The resources may not seem like a lot, but imagine that you are the
operator of busy top-level domains such as .com
or .net
, with
millions of insecure delegated domain names: it quickly
adds up. As of mid-2020, less than 1.5% of all .com
zones are
signed. Basically, without opt-out, with 1,000,000 delegations,
only 5 of which are secure, you still have to generate NSEC RRsets for
the other 999,995 delegations; with NSEC3 opt-out, you will have saved
yourself 999,995 sets of records.
For most DNS administrators who do not manage a large number of delegations, the decision whether to use NSEC3 opt-out is probably not relevant.
To learn more about how to configure NSEC3 opt-out, please see NSEC3 Opt-Out.
NSEC3 Salt¶
As described in NSEC3, while NSEC3 does not put your zone data in plain public display, it is still not difficult for an attacker to collect all the hashed names and perform an offline attack. All that is required is running through all the combinations to construct a database of plaintext names to hashed names, also known as a “rainbow table.”
There is one more feature NSEC3 gives us to provide additional protection: salt. Basically, salt gives us the ability to introduce further randomness into the hashed results. Whenever the salt is changed, any pre-computed rainbow table is rendered useless, and a new rainbow table must be re-computed. If the salt is changed periodically, it becomes difficult to construct a useful rainbow table, and thus difficult to walk the DNS zone data programmatically. How often you want to change your NSEC3 salt is up to you.
To learn more about the steps to take to change NSEC3, please see Changing the NSEC3 Salt.
NSEC or NSEC3?¶
So which one should you choose: NSEC or NSEC3? There is not a single right answer here that fits everyone; it comes down to your network’s needs or requirements.
If you prefer not to make your zone easily enumerable, implementing NSEC3 paired with a periodically changed salt provides a certain level of privacy protection. However, someone could still randomly guess the names in your zone (such as “ftp” or “www”), as in the traditional insecure DNS.
If you have many delegations and need to be able to opt-out to save resources, NSEC3 is for you.
In other situations, NSEC is typically a good choice for most zone administrators, as it relieves the authoritative servers of the additional cryptographic operations that NSEC3 requires, and NSEC is comparatively easier to troubleshoot than NSEC3.
NSEC3 in conjunction with dnssec-policy
is supported in BIND
as of version 9.16.9.
DNSSEC Keys¶
Types of Keys¶
Although DNSSEC documentation talks about three types of keys, they are all the same thing - but they have different roles. The roles are:
- Zone-Signing Key (ZSK)
- This is the key used to sign the zone. It signs all records in the zone apart from the DNSSEC key-related RRsets: DNSKEY, CDS, and CDNSKEY.
- Key-Signing Key (KSK)
- This is the key used to sign the DNSSEC key-related RRsets and is the key used to link the parent and child zones. The parent zone stores a digest of the KSK. When a resolver verifies the chain of trust it checks to see that the DS record in the parent (which holds the digest of a key) matches a key in the DNSKEY RRset, and that it is able to use that key to verify the DNSKEY RRset. If it can do that, the resolver knows that it can trust the DNSKEY resource records, and so can use one of them to validate the other records in the zone.
- Combined Signing Key (CSK)
- A CSK combines the functionality of a ZSK and a KSK. Instead of having one key for signing the zone and one for linking the parent and child zones, a CSK is a single key that serves both roles.
It is important to realize the terms ZSK, KSK, and CSK describe how the keys are used - all these keys are represented by DNSKEY records. The following examples are the DNSKEY records from a zone signed with a KSK and ZSK:
$ dig @192.168.1.12 example.com DNSKEY
; <<>> DiG 9.16.0 <<>> @192.168.1.12 example.com dnskey +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 54989
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 5258d7ed09db0d76010000005ea1cc8c672d8db27a464e37 (good)
;; QUESTION SECTION:
;example.com. IN DNSKEY
;; ANSWER SECTION:
example.com. 60 IN DNSKEY 256 3 13 (
tAeXLtIQ3aVDqqS/1UVRt9AE6/nzfoAuaT1Vy4dYl2CK
pLNcUJxME1Z//pnGXY+HqDU7Gr5HkJY8V0W3r5fzlw==
) ; ZSK; alg = ECDSAP256SHA256 ; key id = 63722
example.com. 60 IN DNSKEY 257 3 13 (
cxkNegsgubBPXSra5ug2P8rWy63B8jTnS4n0IYSsD9eW
VhiyQDmdgevKUhfG3SE1wbLChjJc2FAbvSZ1qk03Nw==
) ; KSK; alg = ECDSAP256SHA256 ; key id = 42933
… and a zone signed with just a CSK:
$ dig @192.168.1.13 example.com DNSKEY
; <<>> DiG 9.16.0 <<>> @192.168.1.13 example.com dnskey +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22628
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: bf19ee914b5df46e010000005ea1cd02b66c06885d274647 (good)
;; QUESTION SECTION:
;example.com. IN DNSKEY
;; ANSWER SECTION:
example.com. 60 IN DNSKEY 257 3 13 (
p0XM6AJ68qid2vtOdyGaeH1jnrdk2GhZeVvGzXfP/PNa
71wGtzR6jdUrTbXo5Z1W5QeeJF4dls4lh4z7DByF5Q==
) ; KSK; alg = ECDSAP256SHA256 ; key id = 1231
The only visible difference between the records (apart from the key data itself) is the value of the flags fields; this is 256 for a ZSK and 257 for a KSK or CSK. Even then, the flags field is only a hint to the software using it as to the role of the key: zones can be signed by any key. The fact that a CSK and KSK both have the same flags emphasizes this. A KSK usually only signs the DNSSEC key-related RRsets in a zone, whereas a CSK is used to sign all records in the zone.
The original idea of separating the function of the key into a KSK and ZSK was operational. With a single key, changing it for any reason is “expensive,” as it requires interaction with the parent zone (e.g., uploading the key to the parent may require manual interaction with the organization running that zone). By splitting it, interaction with the parent is required only if the KSK is changed; the ZSK can be changed as often as required without involving the parent.
The split also allows the keys to be of different lengths. So the ZSK, which is used to sign the record in the zone, can be of a (relatively) short length, lowering the load on the server. The KSK, which is used only infrequently, can be of a much longer length. The relatively infrequent use also allows the private part of the key to be stored in a way that is more secure but that may require more overhead to access, e.g., on an HSM (see Hardware Security Modules (HSMs)).
In the early days of DNSSEC, the idea of splitting the key went more or less unchallenged. However, with the advent of more powerful computers and the introduction of signaling methods between the parent and child zones (see The CDS and CDNSKEY Resource Records), the advantages of a ZSK/KSK split are less clear and, for many zones, a single key is all that is required.
As with many questions related to the choice of DNSSEC policy, the decision on which is “best” is not clear and depends on your circumstances.
Which Algorithm?¶
There are three algorithm choices for DNSSEC as of this writing (mid-2020):
- RSA
- Elliptic Curve DSA (ECDSA)
- Edwards Curve Digital Security Algorithm (EdDSA)
All are supported in BIND 9, but only RSA and ECDSA (specifically RSASHA256 and ECDSAP256SHA256) are mandatory to implement in DNSSEC. However, RSA is a little long in the tooth, and ECDSA/EdDSA are emerging as the next new cryptographic standards. In fact, the US federal government recommended discontinuing RSA use altogether by September 2015 and migrating to using ECDSA or similar algorithms.
For now, use ECDSAP256SHA256 but keep abreast of developments in this area. For details about rolling over DNSKEYs to a new algorithm, see Algorithm Rollovers.
Key Sizes¶
If using RSA keys, the choice of key sizes is a classic issue of finding the balance between performance and security. The larger the key size, the longer it takes for an attacker to crack the key; but larger keys also mean more resources are needed both when generating signatures (authoritative servers) and verifying signatures (recursive servers).
Of the two sets of keys, ZSK is used much more frequently. ZSK is used whenever zone data changes or when signatures expire, so performance certainly is of a bigger concern. As for KSK, it is used less frequently, so performance is less of a factor, but its impact is bigger because of its role in signing other keys.
In earlier versions of this guide, the following key lengths were chosen for each set, with the recommendation that they be rotated more frequently for better security:
- ZSK: RSA 1024 bits, rollover every year
- KSK: RSA 2048 bits, rollover every five years
These should be considered minimum RSA key sizes. At the time of this writing (mid-2020), the root zone and many TLDs are already using 2048 bit ZSKs. If you choose to implement larger key sizes, keep in mind that larger key sizes result in larger DNS responses, which this may mean more load on network resources. Depending on your network configuration, end users may even experience resolution failures due to the increased response sizes, as discussed in What’s EDNS All About (And Why Should I Care)?.
ECDSA key sizes can be much smaller for the same level of security, e.g., an ECDSA key length of 224 bits provides the same level of security as a 2048-bit RSA key. Currently BIND 9 sets a key size of 256 for all ECDSA keys.
Key Storage¶
Public Key Storage¶
The beauty of a public key cryptography system is that the public key portion can and should be distributed to as many people as possible. As the administrator, you may want to keep the public keys on an easily accessible file system for operational ease, but there is no need to securely store them, since both ZSK and KSK public keys are published in the zone data as DNSKEY resource records.
Additionally, a hash of the KSK public key is also uploaded to the parent zone (see Working With the Parent Zone for more details), and is published by the parent zone as DS records.
Private Key Storage¶
Ideally, private keys should be stored offline, in secure devices such as a smart card. Operationally, however, this creates certain challenges, since the private key is needed to create RRSIG resource records, and it is a hassle to bring the private key out of storage every time the zone file changes or signatures expire.
A common approach to strike the balance between security and practicality is to have two sets of keys: a ZSK set and a KSK set. A ZSK private key is used to sign zone data, and can be kept online for ease of use, while a KSK private key is used to sign just the DNSKEY (the ZSK); it is used less frequently, and can be stored in a much more secure and restricted fashion.
For example, a KSK private key stored on a USB flash drive that is kept in a fireproof safe, only brought online once a year to sign a new pair of ZSKs, combined with a ZSK private key stored on the network file system and available for routine use, may be a good balance between operational flexibility and security.
For more information on changing keys, please see Key Rollovers.
Hardware Security Modules (HSMs)¶
A Hardware Security Module (HSM) may come in different shapes and sizes, but as the name indicates, it is a physical device or devices, usually with some or all of the following features:
- Tamper-resistant key storage
- Strong random-number generation
- Hardware for faster cryptographic operations
Most organizations do not incorporate HSMs into their security practices due to cost and the added operational complexity.
BIND supports Public Key Cryptography Standard #11 (PKCS #11) for communication with HSMs and other cryptographic support devices. For more information on how to configure BIND to work with an HSM, please refer to the BIND 9 Administrator Reference Manual.
Rollovers¶
Key Rollovers¶
A key rollover is where one key in a zone is replaced by a new one. There are arguments for and against regularly rolling keys. In essence these are:
Pros:
- Regularly changing the key hinders attempts at determination of the private part of the key by cryptanalysis of signatures.
- It gives administrators practice at changing a key; should a key ever need to be changed in an emergency, they would not be doing it for the first time.
Cons:
- A lot of effort is required to hack a key, and there are probably easier ways of obtaining it, e.g., by breaking into the systems on which it is stored.
- Rolling the key adds complexity to the system and introduces the possibility of error. We are more likely to have an interruption to our service than if we had not rolled it.
Whether and when to roll the key is up to you. How serious would the damage be if a key were compromised without you knowing about it? How serious would a key roll failure be?
Before going any further, it is worth noting that if you sign your zone with either of the fully automatic methods (described in ref:signing_alternative_ways), you don’t really need to concern yourself with the details of a key rollover: BIND 9 takes care of it all for you. If you are doing a manual key roll or are setting up the keys for a semi-automatic key rollover, you do need to familiarize yourself with the various steps involved and the timing details.
Rolling a key is not as simple as replacing the DNSKEY statement in the
zone. That is an essential part of it, but timing is everything. For
example, suppose that we run the example.com
zone and that a friend
queries for the AAAA record of www.example.com
. As part of the
resolution process (described in
How Does DNSSEC Change DNS Lookup?), their recursive server
looks up the keys for the example.com
zone and uses them to verify
the signature associated with the AAAA record. We’ll assume that the
records validated successfully, so they can use the
address to visit example.com
’s website.
Let’s also assume that immediately after the lookup, we want to roll the ZSK
for example.com
. Our first attempt at this is to remove the old
DNSKEY record and signatures, add a new DNSKEY record, and re-sign the
zone with it. So one minute our server is serving the old DNSKEY and
records signed with the old key, and the next minute it is serving the
new key and records signed with it. We’ve achieved our goal - we are
serving a zone signed with the new keys; to check this is really the
case, we booted up our laptop and looked up the AAAA record
ftp.example.com
. The lookup succeeded so all must be well. Or is it?
Just to be sure, we called our friend and asked them to check. They
tried to lookup ftp.example.com
but got a SERVFAIL response from
their recursive server. What’s going on?
The answer, in a word, is “caching.” When our friend looked up
www.example.com
, their recursive server retrieved and cached
not only the AAAA record, but also a lot of other records. It cached
the NS records for com
and example.com
, as well as
the AAAA (and A) records for those name servers (and this action may, in turn, have
caused the lookup and caching of other NS and AAAA/A records). Most
importantly for this example, it also looked up and cached the DNSKEY
records for the root, com
, and example.com
zones. When a query
was made for ftp.example.com
, the recursive server believed it
already had most of the information
we needed. It knew what nameservers served example.com
and their
addresses, so it went directly to one of those to get the AAAA record for
ftp.example.com
and its associated signature. But when it tried to
validate the signature, it used the cached copy of the DNSKEY, and that
is when our friend had the problem. Their recursive server had a copy of
the old DNSKEY in its cache, but the AAAA record for ftp.example.com
was signed with the new key. So, not surprisingly, the signature could not
validate.
How should we roll the keys for example.com
? A clue to the
answer is to note that the problem came about because the DNSKEY records
were cached by the recursive server. What would have happened had our
friend flushed the DNSKEY records from the recursive server’s cache before
making the query? That would have worked; those records would have been
retrieved from example.com
’s nameservers at the same time that we
retrieved the AAAA record for ftp.example.com
. Our friend’s server would have
obtained the new key along with the AAAA record and associated signature
created with the new key, and all would have been well.
As it is obviously impossible for us to notify all recursive server operators to flush our DNSKEY records every time we roll a key, we must use another solution. That solution is to wait for the recursive servers to remove old records from caches when they reach their TTL. How exactly we do this depends on whether we are trying to roll a ZSK, a KSK, or a CSK.
ZSK Rollover Methods¶
The ZSK can be rolled in one of the following two ways:
Pre-Publication: Publish the new ZSK into zone data before it is actually used. Wait at least one TTL interval, so the world’s recursive servers know about both keys, then stop using the old key and generate a new RRSIG using the new key. Wait at least another TTL, so the cached old key data is expunged from the world’s recursive servers, and then remove the old key.
The benefit of the pre-publication approach is it does not dramatically increase the zone size; however, the duration of the rollover is longer. If insufficient time has passed after the new ZSK is published, some resolvers may only have the old ZSK cached when the new RRSIG records are published, and validation may fail. This is the method described in ZSK Rollover.
Double-Signature: Publish the new ZSK and new RRSIG, essentially doubling the size of the zone. Wait at least one TTL interval, and then remove the old ZSK and old RRSIG.
The benefit of the double-signature approach is that it is easier to understand and execute, but it causes a significantly increased zone size during a rollover event.
KSK Rollover Methods¶
Rolling the KSK requires interaction with the parent zone, so operationally this may be more complex than rolling ZSKs. There are three methods of rolling the KSK:
Double-KSK: Add the new KSK to the DNSKEY RRset, which is then signed with both the old and new keys. After waiting for the old RRset to expire from caches, change the DS record in the parent zone. After waiting a further TTL interval for this change to be reflected in caches, remove the old key from the RRset.
Basically, the new KSK is added first at the child zone and used to sign the DNSKEY; then the DS record is changed, followed by the removal of the old KSK. Double-KSK keeps the interaction with the parent zone to a minimum, but for the duration of the rollover, the size of the DNSKEY RRset is increased.
Double-DS: Publish the new DS record. After waiting for this change to propagate into caches, change the KSK. After a further TTL interval during which the old DNSKEY RRset expires from caches, remove the old DS record.
Double-DS is the reverse of Double-KSK: the new DS is published at the parent first, then the KSK at the child is updated, then the old DS at the parent is removed. The benefit is that the size of the DNSKEY RRset is kept to a minimum, but interactions with the parent zone are increased to two events. This is the method described in KSK Rollover.
Double-RRset: Add the new KSK to the DNSKEY RRset, which is then signed with both the old and new key, and add the new DS record to the parent zone. After waiting a suitable interval for the old DS and DNSKEY RRsets to expire from caches, remove the old DNSKEY and old DS record.
Double-RRset is the fastest way to roll the KSK (i.e., it has the shortest rollover time), but has the drawbacks of both of the other methods: a larger DNSKEY RRset and two interactions with the parent.
CSK Rollover Methods¶
Rolling the CSK is more complex than rolling either the ZSK or KSK, as the timing constraints relating to both the parent zone and the caching of records by downstream recursive servers must be taken into account. There are numerous possible methods that are a combination of ZSK rollover and KSK rollover methods. BIND 9 automatic signing uses a combination of ZSK Pre-Publication and Double-KSK rollover.
Emergency Key Rollovers¶
Keys are generally rolled on a regular schedule - if you choose to roll them at all. But sometimes, you may have to rollover keys out-of-schedule due to a security incident. The aim of an emergency rollover is to re-sign the zone with a new key as soon as possible, because when a key is suspected of being compromised, a malicious attacker (or anyone who has access to the key) could impersonate your server and trick other validating resolvers into believing that they are receiving authentic, validated answers.
During an emergency rollover, follow the same operational procedures described in Rollovers, with the added task of reducing the TTL of the current active (potentially compromised) DNSKEY RRset, in an attempt to phase out the compromised key faster before the new key takes effect. The time frame should be significantly reduced from the 30-days-apart example, since you probably do not want to wait up to 60 days for the compromised key to be removed from your zone.
Another method is to carry a spare key with you at all times. If you have a second key pre-published and that one is not compromised at the same time as the first key, you could save yourself some time by immediately activating the spare key if the active key is compromised. With pre-publication, all validating resolvers should already have this spare key cached, thus saving you some time.
With a KSK emergency rollover, you also need to consider factors related to your parent zone, such as how quickly they can remove the old DS records and publish the new ones.
As with many other facets of DNSSEC, there are multiple aspects to take into account when it comes to emergency key rollovers. For more in-depth considerations, please check out RFC 7583.
Algorithm Rollovers¶
From time to time, new digital signature algorithms with improved security are introduced, and it may be desirable for administrators to roll over DNSKEYs to a new algorithm, e.g., from RSASHA1 (algorithm 5 or 7) to RSASHA256 (algorithm 8). The algorithm rollover steps must be followed with care to avoid breaking DNSSEC validation.
If you are managing DNSSEC by using the dnssec-policy
configuration,
named
handles the rollover for you. Simply change the algorithm
for the relevant keys, and named
uses the new algorithm when the
key is next rolled. It performs a smooth transition to the new
algorithm, ensuring that the zone remains valid throughout rollover.
If you are using other methods to sign the zone, the administrator needs to do more work. As
with other key rollovers, when the zone is a primary zone, an algorithm
rollover can be accomplished using dynamic updates or automatic key
rollovers. For secondary zones, only automatic key rollovers are
possible, but the dnssec-settime
utility can be used to control the
timing.
In any case, the first step is to put DNSKEYs in place using the new algorithm.
You must generate the K*
files for the new algorithm and put
them in the zone’s key directory, where named
can access them. Take
care to set appropriate ownership and permissions on the keys. If the
auto-dnssec
zone option is set to maintain
, named
automatically signs the zone with the new keys, based on their timing
metadata when the dnssec-loadkeys-interval
elapses or when you issue the
rndc loadkeys
command. Otherwise, for primary zones, you can use
nsupdate
to add the new DNSKEYs to the zone; this causes named
to use them to sign the zone. For secondary zones, e.g., on a
“bump in the wire” signing server, nsupdate
cannot be used.
Once the zone has been signed by the new DNSKEYs (and you have waited for at least one TTL period), you must inform the parent zone and any trust anchor repositories of the new KSKs, e.g., you might place DS records in the parent zone through your DNS registrar’s website.
Before starting to remove the old algorithm from a zone, you must allow the maximum TTL on its DS records in the parent zone to expire. This assures that any subsequent queries retrieve the new DS records for the new algorithm. After the TTL has expired, you can remove the DS records for the old algorithm from the parent zone and any trust anchor repositories. You must then allow another maximum TTL interval to elapse so that the old DS records disappear from all resolver caches.
The next step is to remove the DNSKEYs using the old algorithm from your
zone. Again this can be accomplished using nsupdate
to delete the
old DNSKEYs (for primary zones only) or by automatic key rollover when
auto-dnssec
is set to maintain
. You can cause the automatic key
rollover to take place immediately by using the dnssec-settime
utility to set the Delete date on all keys to any time in the past.
(See the dnssec-settime -D <date/offset>
option.)
After adjusting the timing metadata, the rndc loadkeys
command
causes named
to remove the DNSKEYs and
RRSIGs for the old algorithm from the zone. Note also that with the
nsupdate
method, removing the DNSKEYs also causes named
to
remove the associated RRSIGs automatically.
Once you have verified that the old DNSKEYs and RRSIGs have been removed from the zone, the final (optional) step is to remove the key files for the old algorithm from the key directory.
Other Topics¶
DNSSEC and Dynamic Updates¶
Dynamic DNS (DDNS) is actually independent of DNSSEC. DDNS provides a mechanism, separate from editing the zone file or zone database, to edit DNS data. Most DNS clients and servers are able to handle dynamic updates, and DDNS can also be integrated as part of your DHCP environment.
When you have both DNSSEC and dynamic updates in your environment,
updating zone data works the same way as with traditional (insecure)
DNS: you can use rndc freeze
before editing the zone file, and
rndc thaw
when you have finished editing, or you can use the
command nsupdate
to add, edit, or remove records like this:
$ nsupdate
> server 192.168.1.13
> update add xyz.example.com. 300 IN A 1.1.1.1
> send
> quit
The examples provided in this guide make named
automatically
re-sign the zone whenever its content has changed. If you decide to sign
your own zone file manually, you need to remember to execute the
dnssec-signzone
command whenever your zone file has been updated.
As far as system resources and performance are concerned, be mindful that with a DNSSEC zone that changes frequently, every time the zone changes your system is executing a series of cryptographic operations to (re)generate signatures and NSEC or NSEC3 records.
DNSSEC on Private Networks¶
Let’s clarify what we mean: in this section, “private networks” really refers to a private or internal DNS view. Most DNS products offer the ability to have different versions of DNS answers, depending on the origin of the query. This feature is often called “DNS views” or “split DNS,” and is most commonly implemented as an “internal” versus an “external” setup.
For instance, your organization may have a version of example.com
that is offered to the world, and its names most likely resolve to
publicly reachable IP addresses. You may also have an internal version
of example.com
that is only accessible when you are on the company’s
private networks or via a VPN connection. These private networks typically
fall under 10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16 for IPv4.
So what if you want to offer DNSSEC for your internal version of
example.com
? This can be done: the golden rule is to use the same
key for both the internal and external versions of the zones. This
avoids problems that can occur when machines (e.g., laptops) move
between accessing the internal and external zones, when it is possible
that they may have cached records from the wrong zone.
Introduction to DANE¶
With your DNS infrastructure secured with DNSSEC, information can now be stored in DNS and its integrity and authenticity can be proved. One of the new features that takes advantage of this is the DNS-Based Authentication of Named Entities, or DANE. This improves security in a number of ways, including:
Disadvantages of DNSSEC¶
DNSSEC, like many things in this world, is not without its problems. Below are a few challenges and disadvantages that DNSSEC faces.
- Increased, well, everything: With DNSSEC, signed zones are larger, thus taking up more disk space; for DNSSEC-aware servers, the additional cryptographic computation usually results in increased system load; and the network packets are bigger, possibly putting more strains on the network infrastructure.
- Different security considerations: DNSSEC addresses many security concerns, most notably cache poisoning. But at the same time, it may introduce a set of different security considerations, such as amplification attack and zone enumeration through NSEC. These concerns are still being identified and addressed by the Internet community.
- More complexity: If you have read this far, you have probably already concluded this yourself. With additional resource records, keys, signatures, and rotations, DNSSEC adds many more moving pieces on top of the existing DNS machine. The job of the DNS administrator changes, as DNS becomes the new secure repository of everything from spam avoidance to encryption keys, and the amount of work involved to troubleshoot a DNS-related issue becomes more challenging.
- Increased fragility: The increased complexity means more opportunities for things to go wrong. Before DNSSEC, DNS was essentially “add something to the zone and forget it.” With DNSSEC, each new component - re-signing, key rollover, interaction with parent zone, key management - adds more opportunity for error. It is entirely possible that a failure to validate a name may come down to errors on the part of one or more zone operators rather than the result of a deliberate attack on the DNS.
- New maintenance tasks: Even if your new secure DNS infrastructure runs without any hiccups or security breaches, it still requires regular attention, from re-signing to key rollovers. While most of these can be automated, some of the tasks, such as KSK rollover, remain manual for the time being.
- Not enough people are using it today: While it’s estimated (as of
mid-2020) that roughly 30% of the global Internet DNS traffic is
validating [10] , that doesn’t mean that many of the DNS zones are
actually signed. What this means is, even if your company’s zone is
signed today, fewer than 30% of the Internet’s servers are taking
advantage of this extra security. It gets worse: with less than 1.5%
of the
.com
domains signed, even if your DNSSEC validation is enabled today, it’s not likely to buy you or your users a whole lot more protection until these popular domain names decide to sign their zones.
The last point may have more impact than you realize. Consider this:
HTTP and HTTPS make up the majority of traffic on the Internet. While you may have
secured your DNS infrastructure through DNSSEC, if your web hosting is
outsourced to a third party that does not yet support DNSSEC in its
own domain, or if your web page loads contents and components from
insecure domains, end users may experience validation problems when
trying to access your web page. For example, although you may have signed
the zone company.com
, the web address www.company.com
may actually be a
CNAME to foo.random-cloud-provider.com
. As long as
random-cloud-provider.com
remains an insecure DNS zone, users cannot
fully validate everything when they visit your web page and could be
redirected elsewhere by a cache poisoning attack.
[10] | Based on APNIC statistics at https://stats.labs.apnic.net/dnssec/XA |
Recipes¶
This chapter provides step-by-step “recipes” for some common DNSSEC configurations.
DNSSEC Signing¶
There are two recipes here: the first shows an example using DNSSEC signing on the primary server, which has been covered in this guide; the second shows how to setup a “bump in the wire” between a hidden primary and the secondary servers to seamlessly sign the zone “on the fly.”
Primary Server DNSSEC Signing¶
In this recipe, our servers are illustrated as shown in DNSSEC Signing Recipe #1: we have a primary server (192.168.1.1) and three secondary servers (192.168.1.2, 192.168.1.3, and 192.168.1.4) that receive zone transfers. To get the zone signed, we need to reconfigure the primary server. Once reconfigured, a signed version of the zone is generated on the fly; zone transfers take care of synchronizing the signed zone data to all secondary name servers, without configuration or software changes on them.
Using the method described in
Easy-Start Guide for Signing Authoritative Zones, we just need to
add a dnssec-policy
statement to the relevant zone clause. This is
what the named.conf
zone statement looks like on the primary server, 192.168.1.1:
zone "example.com" IN {
type primary;
file "db/example.com.db";
key-directory "keys/example.com";
dnssec-policy default;
allow-transfer { 192.168.1.2; 192.168.1.3; 192.168.1.4; };
};
We have chosen to use the default policy, storing the keys generated for
the zone in the directory keys/example.com
. To use a
custom policy, define the policy in the configuration
file and select it in the zone statement (as described in
Creating a Custom DNSSEC Policy).
On the secondary servers, named.conf
does not need to be updated,
and it looks like this:
zone "example.com" IN {
type secondary;
file "db/example.com.db";
primaries { 192.168.1.1; };
};
In fact, the secondary servers do not even need to be running BIND; they can run any DNS product that supports DNSSEC.
“Bump in the Wire” Signing¶
In this recipe, we take advantage of the power of automated signing by placing an additional name server (192.168.1.5) between the hidden primary (192.168.1.1) and the DNS secondaries (192.168.1.2, 192.168.1.3, and 192.168.1.4). The additional name server, 192.168.1.5, acts as a “bump in the wire,” taking an unsigned zone from the hidden primary, and sending out signed data on the other end to the secondary name servers. The steps described in this recipe may be used as part of a DNSSEC deployment strategy, since it requires only minimal changes made to the existing hidden DNS primary and DNS secondaries.
It is important to remember that 192.168.1.1 in this case is a hidden primary not exposed to the world, and it must not be listed in the NS RRset. Otherwise the world will get conflicting answers: unsigned answers from the hidden primary and signed answers from the other name servers.
The only configuration change needed on the hidden primary, 192.168.1.1, is to make sure it allows our middle box to perform a zone transfer:
zone "example.com" IN {
...
allow-transfer { 192.168.1.5; };
...
};
On the middle box, 192.168.1.5, all the tasks described in
Easy-Start Guide for Signing Authoritative Zones still need to be
performed, such as generating key pairs and uploading information to
the parent zone. This server is configured as secondary to the hidden
primary 192.168.1.1 to receive the unsigned data; then, using keys
accessible to this middle box, to sign data on the fly; and finally, to send out the
signed data via zone transfer to the other three DNS secondaries. Its
named.conf
zone statement looks like this:
zone example.com {
type secondary;
primaries { 192.168.1.1; };
file "db/example.com.db";
key-directory "keys/example.com";
dnssec-policy default;
allow-transfer { 192.168.1.2; 192.168.1.3; 192.168.1.4; };
};
(As before, the default policy has been selected here. See Creating a Custom DNSSEC Policy for instructions on how to define and use a custom policy.)
Finally, on the three secondary servers, the configuration should be updated
to receive a zone transfer from 192.168.1.5 (the middle box) instead of
from 192.168.1.1 (the hidden primary). If using BIND, the named.conf
file looks
like this:
zone "example.com" IN {
type secondary;
file "db/example.com.db";
primaries { 192.168.1.5; }; # this was 192.168.1.1 before!
};
Rollovers¶
If you are signing your zone using a dnssec-policy
statement, this
section is not really relevant to you. In the policy statement, you set how long
you want your keys to be valid for, the time
taken for information to propagate through your zone, the time it takes
for your parent zone to register a new DS record, etc., and that’s more
or less it. named
implements everything for you automatically, apart from
uploading the new DS records to your parent zone - which is covered in
Uploading Information to the Parent Zone. (Some
screenshots from a session where a KSK is uploaded to the parent zone
are presented here for convenience.) However, these recipes may be useful
in describing what happens
through the rollover process and what you should be monitoring.
ZSK Rollover¶
This recipe covers how to perform a ZSK rollover using what is known as the Pre-Publication method. For other ZSK rolling methods, please see ZSK Rollover Methods in Advanced Discussions.
Below is a sample timeline for a ZSK rollover to occur on January 1, 2021:
- December 1, 2020 (one month before rollover)
- Generate new ZSK
- Add DNSKEY for new ZSK to zone
- January 1, 2021 (day of rollover)
- New ZSK used to replace RRSIGs for the bulk of the zone
- February 1, 2021 (one month after rollover)
- Remove old ZSK DNSKEY RRset from zone
- DNSKEY signatures made with KSK are changed
The current active ZSK has the ID 17694 in the example below. For more information on key management and rollovers, please see Rollovers.
One Month Before ZSK Rollover¶
On December 1, 2020, a month before the example rollover, you (as administrator) should change the parameters on the current key (17694). Set it to become inactive on January 1, 2021 and be deleted from the zone on February 1, 2021; also, generate a successor key (51623):
# cd /etc/bind/keys/example.com/
# dnssec-settime -I 20210101 -D 20210201 Kexample.com.+008+17694
./Kexample.com.+008+17694.key/GoDaddy
./Kexample.com.+008+17694.private
# dnssec-keygen -S Kexample.com.+008+17694
Generating key pair..++++++ ...........++++++
Kexample.com.+008+51623
The first command gets us into the key directory
/etc/bind/keys/example.com/
, where keys for example.com
are
stored.
The second, dnssec-settime
, sets an inactive (-I
) date of January 1,
2021, and a deletion (-D
) date of February 1, 2021, for the current ZSK
(Kexample.com.+008+17694
).
The third command, dnssec-keygen
, creates a successor key, using
the exact same parameters (algorithms, key sizes, etc.) as the current
ZSK. The new ZSK created in our example is Kexample.com.+008+51623
.
Make sure the successor keys are readable by named
.
named
’s logging messages indicate when the next
key checking event is scheduled to occur, the frequency of which can be
controlled by dnssec-loadkeys-interval
. The log message looks like
this:
zone example.com/IN (signed): next key event: 01-Dec-2020 00:13:05.385
And you can check the publish date of the key by looking at the key file:
# cd /etc/bind/keys/example.com
# cat Kexample.com.+008+51623.key
; This is a zone-signing key, keyid 11623, for example.com.
; Created: 20201130160024 (Mon Dec 1 00:00:24 2020)
; Publish: 20201202000000 (Fri Dec 2 08:00:00 2020)
; Activate: 20210101000000 (Sun Jan 1 08:00:00 2021)
...
Since the publish date is set to the morning of December 2, and our example scenario takes place on December 1, the next morning you will notice that your zone has gained a new DNSKEY record, but the new ZSK is not yet being used to generate signatures. Below is the abbreviated output - with shortened DNSKEY and RRSIG - when querying the authoritative name server, 192.168.1.13:
$ dig @192.168.1.13 example.com. DNSKEY +dnssec +multiline
...
;; ANSWER SECTION:
example.com. 600 IN DNSKEY 257 3 8 (
AwEAAcWDps...lM3NRn/G/R
) ; KSK; alg = RSASHA256; key id = 6817
example.com. 600 IN DNSKEY 256 3 8 (
AwEAAbi6Vo...qBW5+iAqNz
) ; ZSK; alg = RSASHA256; key id = 51623
example.com. 600 IN DNSKEY 256 3 8 (
AwEAAcjGaU...0rzuu55If5
) ; ZSK; alg = RSASHA256; key id = 17694
example.com. 600 IN RRSIG DNSKEY 8 2 600 (
20210101000000 20201201230000 6817 example.com.
LAiaJM26T7...FU9syh/TQ= )
example.com. 600 IN RRSIG DNSKEY 8 2 600 (
20210101000000 20201201230000 17694 example.com.
HK4EBbbOpj...n5V6nvAkI= )
...
For good measure, let’s take a look at the SOA record and its signature for this zone. Notice the RRSIG is signed by the current ZSK, 17694. This will come in handy later when you want to verify whether the new ZSK is in effect:
$ dig @192.168.1.13 example.com. SOA +dnssec +multiline
...
;; ANSWER SECTION:
example.com. 600 IN SOA ns1.example.com. admin.example.com. (
2020120102 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
2419200 ; expire (4 weeks)
300 ; minimum (5 minutes)
)
example.com. 600 IN RRSIG SOA 8 2 600 (
20201230160109 20201130150109 17694 example.com.
YUTC8rFULaWbW+nAHzbfGwNqzARHevpryzRIJMvZBYPo
NAeejNk9saNAoCYKWxGJ0YBc2k+r5fYq1Mg4ll2JkBF5
buAsAYLw8vEOIxVpXwlArY+oSp9T1w2wfTZ0vhVIxaYX
6dkcz4I3wbDx2xmG0yngtA6A8lAchERx2EGy0RM= )
These are all the manual tasks you need to perform for a ZSK rollover.
If you have followed the configuration examples in this guide of using
inline-signing
and auto-dnssec
, everything else is automated for
you by BIND.
Day of ZSK Rollover¶
On the actual day of the rollover, although there is technically nothing for you to do, you should still keep an eye on the zone to make sure new signatures are being generated by the new ZSK (51623 in this example). The easiest way is to query the authoritative name server 192.168.1.13 for the SOA record as you did a month ago:
$ dig @192.168.1.13 example.com. SOA +dnssec +multiline
...
;; ANSWER SECTION:
example.com. 600 IN SOA ns1.example.com. admin.example.com. (
2020112011 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
2419200 ; expire (4 weeks)
300 ; minimum (5 minutes)
)
example.com. 600 IN RRSIG SOA 8 2 600 (
20210131000000 20201231230000 51623 example.com.
J4RMNpJPOmMidElyBugJp0RLqXoNqfvo/2AT6yAAvx9X
zZRL1cuhkRcyCSLZ9Z+zZ2y4u2lvQGrNiondaKdQCor7
uTqH5WCPoqalOCBjqU7c7vlAM27O9RD11nzPNpVQ7xPs
y5nkGqf83OXTK26IfnjU1jqiUKSzg6QR7+XpLk0= )
...
As you can see, the signature generated by the old ZSK (17694) has disappeared, replaced by a new signature generated from the new ZSK (51623).
Note
Not all signatures will disappear magically on the same day; it depends on when each one was generated. In the worst-case scenario, a new signature could have been signed by the old ZSK (17694) moments before it was deactivated, meaning that the signature could live for almost 30 more days, until just before February 1.
This is why it is important to keep the old ZSK in the zone and not delete it right away.
One Month After ZSK Rollover¶
Again, technically there is nothing you need to do on this day,
but it doesn’t hurt to verify that the old ZSK (17694) is now completely
gone from your zone. named
will not touch
Kexample.com.+008+17694.private
and Kexample.com.+008+17694.key
on your file system. Running the same dig
command for DNSKEY should
suffice:
$ dig @192.168.1.13 example.com. DNSKEY +multiline +dnssec
...
;; ANSWER SECTION:
example.com. 600 IN DNSKEY 257 3 8 (
AwEAAcWDps...lM3NRn/G/R
) ; KSK; alg = RSASHA256; key id = 6817
example.com. 600 IN DNSKEY 256 3 8 (
AwEAAdeCGr...1DnEfX+Xzn
) ; ZSK; alg = RSASHA256; key id = 51623
example.com. 600 IN RRSIG DNSKEY 8 2 600 (
20170203000000 20170102230000 6817 example.com.
KHY8P0zE21...Y3szrmjAM= )
example.com. 600 IN RRSIG DNSKEY 8 2 600 (
20170203000000 20170102230000 51623 example.com.
G2g3crN17h...Oe4gw6gH8= )
...
Congratulations, the ZSK rollover is complete! As for the actual key
files (the files ending in .key
and .private
), they may be deleted at this
point, but they do not have to be.
KSK Rollover¶
This recipe describes how to perform KSK rollover using the Double-DS method. For other KSK rolling methods, please see KSK Rollover Methods in Advanced Discussions. The registrar used in this recipe is GoDaddy. Also for this recipe, we are keeping the number of DS records down to just one per active set using just SHA-1, for the sake of better clarity, although in practice most zone operators choose to upload two DS records as shown in Working With the Parent Zone. For more information on key management and rollovers, please see Rollovers.
Below is a sample timeline for a KSK rollover to occur on January 1, 2021:
- December 1, 2020 (one month before rollover)
- Change timer on the current KSK
- Generate new KSK and DS records
- Add DNSKEY for the new KSK to zone
- Upload new DS records to parent zone
- January 1, 2021 (day of rollover)
- Use the new KSK to sign all DNSKEY RRsets, which generates new RRSIGs
- Add new RRSIGs to the zone
- Remove RRSIG for the old ZSK from zone
- Start using the new KSK to sign DNSKEY
- February 1, 2021 (one month after rollover)
- Remove the old KSK DNSKEY from zone
- Remove old DS records from parent zone
The current active KSK has the ID 24828, and this is the DS record that has already been published by the parent zone:
# dnssec-dsfromkey -a SHA-1 Kexample.com.+007+24828.key
example.com. IN DS 24828 7 1 D4A33E8DD550A9567B4C4971A34AD6C4B80A6AD3
One Month Before KSK Rollover¶
On December 1, 2020, a month before the planned rollover, you (as administrator) should change the parameters on the current key. Set it to become inactive on January 1, 2021, and be deleted from the zone on February 1st, 2021; also generate a successor key (23550). Finally, generate a new DS record based on the new key, 23550:
# cd /etc/bind/keys/example.com/
# dnssec-settime -I 20210101 -D 20210201 Kexample.com.+007+24828
./Kexample.com.+007+24848.key
./Kexample.com.+007+24848.private
# dnssec-keygen -S Kexample.com.+007+24848
Generating key pair.......................................................................................++ ...................................++
Kexample.com.+007+23550
# dnssec-dsfromkey -a SHA-1 Kexample.com.+007+23550.key
example.com. IN DS 23550 7 1 54FCF030AA1C79C0088FDEC1BD1C37DAA2E70DFB
The first command gets us into the key directory
/etc/bind/keys/example.com/
, where keys for example.com
are
stored.
The second, dnssec-settime
, sets an inactive (-I
) date of January 1,
2021, and a deletion (-D
) date of February 1, 2021 for the current KSK
(Kexample.com.+007+24848
).
The third command, dnssec-keygen
, creates a successor key, using
the exact same parameters (algorithms, key sizes, etc.) as the current
KSK. The new key pair created in our example is Kexample.com.+007+23550
.
The fourth and final command, dnssec-dsfromkey
, creates a DS record
from the new KSK (23550), using SHA-1 as the digest type. Again, in
practice most people generate two DS records for both supported digest
types (SHA-1 and SHA-256), but for our example here we are only using
one to keep the output small and hopefully clearer.
Make sure the successor keys are readable by named
.
The syslog
message indicates when the next key
checking event is. The log message looks like this:
zone example.com/IN (signed): next key event: 01-Dec-2020 00:13:05.385
You can check the publish date of the key by looking at the key file:
# cd /etc/bind/keys/example.com
# cat Kexample.com.+007+23550.key
; This is a key-signing key, keyid 23550, for example.com.
; Created: 20201130160024 (Thu Dec 1 00:00:24 2020)
; Publish: 20201202000000 (Fri Dec 2 08:00:00 2020)
; Activate: 20210101000000 (Sun Jan 1 08:00:00 2021)
...
Since the publish date is set to the morning of December 2, and our example scenario takes place on December 1, the next morning you will notice that your zone has gained a new DNSKEY record based on your new KSK, but with no corresponding RRSIG yet. Below is the abbreviated output - with shortened DNSKEY and RRSIG - when querying the authoritative name server, 192.168.1.13:
$ dig @192.168.1.13 example.com. DNSKEY +dnssec +multiline
...
;; ANSWER SECTION:
example.com. 300 IN DNSKEY 256 3 7 (
AwEAAdYqAc...TiSlrma6Ef
) ; ZSK; alg = NSEC3RSASHA1; key id = 29747
example.com. 300 IN DNSKEY 257 3 7 (
AwEAAeTJ+w...O+Zy9j0m63
) ; KSK; alg = NSEC3RSASHA1; key id = 24828
example.com. 300 IN DNSKEY 257 3 7 (
AwEAAc1BQN...Wdc0qoH21H
) ; KSK; alg = NSEC3RSASHA1; key id = 23550
example.com. 300 IN RRSIG DNSKEY 7 2 300 (
20201206125617 20201107115617 24828 example.com.
4y1iPVJOrK...aC3iF9vgc= )
example.com. 300 IN RRSIG DNSKEY 7 2 300 (
20201206125617 20201107115617 29747 example.com.
g/gfmPjr+y...rt/S/xjPo= )
...
Anytime after generating the DS record, you can upload it; it is not necessary to wait for the DNSKEY to be published in your zone, since this new KSK is not active yet. You can do it immediately after the new DS record has been generated on December 1, or you can wait until the next day after you have verified that the new DNSKEY record is added to the zone. Below are some screenshots from GoDaddy’s web-based interface, used to add a new DS record [11].
After logging in, click the green “Launch” button next to the domain name you want to manage.
Scroll down to the “DS Records” section and click “Manage.”
A dialog appears, displaying the current key (24828). Click “Add DS Record.”
Enter the Key ID, algorithm, digest type, and the digest, then click “Next.”
Address any errors and click “Finish.”
Both DS records are shown. Click “Save.”
Finally, let’s verify that the registrar has published the new DS record. This may take anywhere from a few minutes to a few days, depending on your parent zone. You can verify whether your parent zone has published the new DS record by querying for the DS record of your zone. In the example below, the Google public DNS server 8.8.8.8 is used:
$ dig @8.8.8.8 example.com. DS
...
;; ANSWER SECTION:
example.com. 21552 IN DS 24828 7 1 D4A33E8DD550A9567B4C4971A34AD6C4B80A6AD3
example.com. 21552 IN DS 23550 7 1 54FCF030AA1C79C0088FDEC1BD1C37DAA2E70DFB
You can also query your parent zone’s authoritative name servers
directly to see if these records have been published. DS records will
not show up on your own authoritative zone, so you cannot query your own
name servers for them. In this recipe, the parent zone is .com
, so
querying a few of the .com
name servers is another appropriate
verification.
Day of KSK Rollover¶
If you have followed the examples in this document, as described in Easy-Start Guide for Signing Authoritative Zones, there is technically nothing you need to do manually on the actual day of the rollover. However, you should still keep an eye on the zone to make sure new signature(s) are being generated by the new KSK (23550 in this example). The easiest way is to query the authoritative name server 192.168.1.13 for the same DNSKEY and signatures, as you did a month ago:
$ dig @192.168.1.13 example.com. DNSKEY +dnssec +multiline
...
;; ANSWER SECTION:
example.com. 300 IN DNSKEY 256 3 7 (
AwEAAdYqAc...TiSlrma6Ef
) ; ZSK; alg = NSEC3RSASHA1; key id = 29747
example.com. 300 IN DNSKEY 257 3 7 (
AwEAAeTJ+w...O+Zy9j0m63
) ; KSK; alg = NSEC3RSASHA1; key id = 24828
example.com. 300 IN DNSKEY 257 3 7 (
AwEAAc1BQN...Wdc0qoH21H
) ; KSK; alg = NSEC3RSASHA1; key id = 23550
example.com. 300 IN RRSIG DNSKEY 7 2 300 (
20210201074900 20210101064900 23550 mydnssecgood.org.
S6zTbBTfvU...Ib5eXkbtE= )
example.com. 300 IN RRSIG DNSKEY 7 2 300 (
20210105074900 20201206064900 29747 mydnssecgood.org.
VY5URQA2/d...OVKr1+KX8= )
...
As you can see, the signature generated by the old KSK (24828) has disappeared, replaced by a new signature generated from the new KSK (23550).
One Month After KSK Rollover¶
While the removal of the old DNSKEY from the zone should be automated by
named
, the removal of the DS record is manual. You should make sure
the old DNSKEY record is gone from your zone first, by querying for the
DNSKEY records of the zone; this time we expect not to see
the key with an ID of 24828:
$ dig @192.168.1.13 example.com. DNSKEY +dnssec +multiline
...
;; ANSWER SECTION:
example.com. 300 IN DNSKEY 256 3 7 (
AwEAAdYqAc...TiSlrma6Ef
) ; ZSK; alg = NSEC3RSASHA1; key id = 29747
example.com. 300 IN DNSKEY 257 3 7 (
AwEAAc1BQN...Wdc0qoH21H
) ; KSK; alg = NSEC3RSASHA1; key id = 23550
example.com. 300 IN RRSIG DNSKEY 7 2 300 (
20210208000000 20210105230000 23550 mydnssecgood.org.
Qw9Em3dDok...bNCS7KISw= )
example.com. 300 IN RRSIG DNSKEY 7 2 300 (
20210208000000 20210105230000 29747 mydnssecgood.org.
OuelpIlpY9...XfsKupQgc= )
...
Since the key with the ID 24828 is gone, you can now remove the old DS record for that key from our parent zone. Be careful to remove the correct DS record. If you accidentally remove the new DS record(s) with key ID 23550, it could lead to a problem called “security lameness,” as discussed in Security Lameness, and may cause users to be unable to resolve any names in the zone.
After logging in (again, GoDaddy.com in our example) and launching the domain, scroll down to the “DS Records” section and click Manage.
A dialog appears, displaying both keys (24828 and 23550). Use the far right-hand X button to remove key 24828.
Key 24828 now appears crossed out; click “Save” to complete the removal.
Congratulations, the KSK rollover is complete! As for the actual key
files (ending in .key
and .private
), they may be deleted at this
point, but they do not have to be.
[11] | The screenshots were taken from GoDaddy’s interface at the time the original version of this guide was published (2015). It may have changed since then. |
NSEC and NSEC3¶
Migrating from NSEC to NSEC3¶
This recipe describes how to transition from using NSEC to NSEC3, as described
in Proof of Non-Existence (NSEC and NSEC3). This recipe
assumes that the zones are already signed, and that named
is configured
according to the steps described in
Easy-Start Guide for Signing Authoritative Zones.
Warning
If your zone is signed with RSASHA1 (algorithm 5), you cannot migrate to NSEC3 without also performing an algorithm rollover to RSASHA1-NSEC3-SHA1 (algorithm 7), as described in Algorithm Rollovers. This ensures that older validating resolvers that do not understand NSEC3 will fall back to treating the zone as unsecured (rather than “bogus”), as described in Section 2 of RFC 5155.
To enable NSEC3, update your dnssec-policy
and add the desired NSEC3
parameters. The example below enables NSEC3 for zones with the standard
DNSSEC policy, using 10 iterations, no opt-out, and a random string that is
16 characters long:
dnssec-policy "standard" {
nsec3param iterations 10 optout no salt-length 16;
};
Then reconfigure the server with rndc
. You can tell that it worked if you
see the following debug log messages:
Oct 21 13:47:21 received control channel command 'reconfig'
Oct 21 13:47:21 zone example.com/IN (signed): zone_addnsec3chain(1,CREATE,10,1234567890ABCDEF)
You can also verify that it worked by querying for a name that you know does not exist, and checking for the presence of the NSEC3 record. For example:
$ dig @192.168.1.13 thereisnowaythisexists.example.com. A +dnssec +multiline
...
TOM10UQBL336NFAQB3P6MOO53LSVG8UI.example.com. 300 IN NSEC3 1 0 10 1234567890ABCDEF (
TQ9QBEGA6CROHEOC8KIH1A2C06IVQ5ER
NS SOA RRSIG DNSKEY NSEC3PARAM )
...
Our example used four parameters: 1, 0, 10, and 1234567890ABCDEF, in order. 1 represents the algorithm, 0 represents the opt-out flag, 10 represents the number of iterations, and 1234567890ABCDEF is the salt. To learn more about each of these parameters, please see NSEC3PARAM.
Migrating from NSEC3 to NSEC¶
Migrating from NSEC3 back to NSEC is easy; just remove the nsec3param
configuration option from your dnssec-policy
and reconfigure the name
server. You can tell that it worked if you see these messages in the log:
named[14093]: received control channel command 'reconfig'
named[14093]: zone example.com/IN: zone_addnsec3chain(1,REMOVE,10,1234567890ABCDEF)
You can also query for a name that you know does not exist, and you should no longer see any traces of NSEC3 records.
$ dig @192.168.1.13 reieiergiuhewhiouwe.example.com. A +dnssec +multiline
...
example.com. 300 IN NSEC aaa.example.com. NS SOA RRSIG NSEC DNSKEY
...
ns1.example.com. 300 IN NSEC web.example.com. A RRSIG NSEC
...
Changing the NSEC3 Salt¶
In NSEC3 Salt, we discuss the reasons why you may want to change your salt periodically for better privacy. In this recipe, we look at what command to execute to actually change the salt, and how to verify that it has been changed.
The dnssec-policy
currently has no easy way to re-salt using the
same salt length, so to change your NSEC3 salt you need to change the
salt-length
value and reconfigure your server. You should see
the following messages in the log, assuming your old salt was
“1234567890ABCDEF” and named
created “FEDCBA09” (salt length 8)
as the new salt:
named[15848]: zone example.com/IN: zone_addnsec3chain(1,REMOVE,10,1234567890ABCDEF)
named[15848]: zone example.com/IN: zone_addnsec3chain(1,CREATE|OPTOUT,10,FEDCBA0987654321)
To verify that it worked, you can query the name server (192.168.1.13 in our example) for a name that you know does not exist, and check the NSEC3 record returned:
$ dig @192.168.1.13 thereisnowaythisexists.example.com. A +dnssec +multiline
...
TOM10UQBL336NFAQB3P6MOO53LSVG8UI.example.com. 300 IN NSEC3 1 0 10 FEDCBA09 (
TQ9QBEGA6CROHEOC8KIH1A2C06IVQ5ER
NS SOA RRSIG DNSKEY NSEC3PARAM )
...
If you want to use the same salt length, you can repeat the above steps and go back to your original length value.
NSEC3 Opt-Out¶
This recipe discusses how to enable and disable NSEC3 opt-out, and how to show the results of each action. As discussed in NSEC3 Opt-Out, NSEC3 opt-out is a feature that can help conserve resources on parent zones with many delegations that have not yet been signed.
Because the NSEC3PARAM record does not keep track of whether opt-out is used,
it is hard to check whether changes need to be made to the NSEC3 chain if the flag
is changed. Similar to changing the NSEC3 salt, your best option is to change
the value of optout
together with another NSEC3 parameter, like
iterations
, and in a following step restore the iterations
value.
For this recipe we assume the zone example.com
has the following four entries (for this example, it is not relevant what
record types these entries are):
ns1.example.com
ftp.example.com
www.example.com
web.example.com
And the zone example.com
has five delegations to five subdomains, only one of
which is signed and has a valid DS RRset:
aaa.example.com
, not signedbbb.example.com
, signedccc.example.com
, not signedddd.example.com
, not signedeee.example.com
, not signed
Before enabling NSEC3 opt-out, the zone example.com
contains ten
NSEC3 records; below is the list with the plain text name before the actual
NSEC3 record:
- aaa.example.com: 9NE0VJGTRTMJOS171EC3EDL6I6GT4P1Q.example.com.
- bbb.example.com: AESO0NT3N44OOSDQS3PSL0HACHUE1O0U.example.com.
- ccc.example.com: SF3J3VR29LDDO3ONT1PM6HAPHV372F37.example.com.
- ddd.example.com: TQ9QBEGA6CROHEOC8KIH1A2C06IVQ5ER.example.com.
- eee.example.com: L16L08NEH48IFQIEIPS1HNRMQ523MJ8G.example.com.
- ftp.example.com: JKMAVHL8V7EMCL8JHIEN8KBOAB0MGUK2.example.com.
- ns1.example.com: FSK5TK9964BNE7BPHN0QMMD68IUDKT8I.example.com.
- web.example.com: D65CIIG0GTRKQ26Q774DVMRCNHQO6F81.example.com.
- www.example.com: NTQ0CQEJHM0S17POMCUSLG5IOQQEDTBJ.example.com.
- example.com: TOM10UQBL336NFAQB3P6MOO53LSVG8UI.example.com.
We can enable NSEC3 opt-out with the following configuration, changing
the optout
configuration value from no
to yes
:
dnssec-policy "standard" {
nsec3param iterations 10 optout yes salt-length 16;
};
After NSEC3 opt-out is enabled, the number of NSEC3 records is reduced.
Notice that the unsigned delegations aaa
, ccc
, ddd
, and
eee
no longer have corresponding NSEC3 records.
- bbb.example.com: AESO0NT3N44OOSDQS3PSL0HACHUE1O0U.example.com.
- ftp.example.com: JKMAVHL8V7EMCL8JHIEN8KBOAB0MGUK2.example.com.
- ns1.example.com: FSK5TK9964BNE7BPHN0QMMD68IUDKT8I.example.com.
- web.example.com: D65CIIG0GTRKQ26Q774DVMRCNHQO6F81.example.com.
- www.example.com: NTQ0CQEJHM0S17POMCUSLG5IOQQEDTBJ.example.com.
- example.com: TOM10UQBL336NFAQB3P6MOO53LSVG8UI.example.com.
To undo NSEC3 opt-out, change the configuration again:
dnssec-policy "standard" {
nsec3param iterations 10 optout no salt-length 16;
};
Note
NSEC3 hashes the plain text domain name, and we can compute our own
hashes using the tool nsec3hash
. For example, to compute the
hashed name for www.example.com
using the parameters we listed
above, we can execute this command:
# nsec3hash 1234567890ABCDEF 1 10 www.example.com.
NTQ0CQEJHM0S17POMCUSLG5IOQQEDTBJ (salt=1234567890ABCDEF, hash=1, iterations=10)
Reverting to Unsigned¶
This recipe describes how to revert from a signed zone (DNSSEC) back to an unsigned (DNS) zone.
Whether the world thinks your zone is signed is determined by the presence of DS records hosted by your parent zone; if there are no DS records, the world sees your zone as unsigned. So reverting to unsigned is as easy as removing all DS records from the parent zone.
Below is an example showing how to remove DS records using the GoDaddy web-based interface:
- After logging in, click the green “Launch” button next to the domain name you want to manage.
- Scroll down to the “DS Records” section and click Manage.
- A dialog appears, displaying all current keys. Use the far right-hand X button to remove each key.
- Click Save.
To be on the safe side, wait a while before actually deleting all signed data from your zone, just in case some validating resolvers have cached information. After you are certain that all cached information has expired (usually this means one TTL interval has passed), you may reconfigure your zone.
Here is what named.conf
looks like when it is signed:
zone "example.com" IN {
type primary;
file "db/example.com.db";
allow-transfer { any; };
dnssec-policy "default";
};
Change your dnssec-policy
line to indicate you want to revert to unsigned:
zone "example.com" IN {
type primary;
file "db/example.com.db";
allow-transfer { any; };
dnssec-policy "insecure";
};
Then use rndc reload
to reload the zone.
The “insecure” policy is a built-in policy (like “default”). It will make sure the zone is still DNSSEC maintained, to allow for a graceful transition to unsigned.
When the DS records have been removed from the parent zone, use
rndc dnssec -checkds -key <id> withdrawn example.com
to tell named
that
the DS is removed, and the remaining DNSSEC records will be removed in a timely
manner. Or if you have parental agents configured, the DNSSEC records will be
automatically removed after BIND has seen that the parental agents no longer
serves the DS RRset for this zone.
After a while, your zone is reverted back to the traditional, insecure DNS format. You can verify by checking that all DNSKEY and RRSIG records have been removed from the zone.
You can then remove the dnssec-policy
line from your named.conf
and
reload the zone. The zone will now no longer be subject to any DNSSEC
maintenance.
Commonly Asked Questions¶
No questions are too stupid to ask. Below are some common questions you may have and (hopefully) some answers that help.
- Do I need IPv6 to have DNSSEC?
- No. DNSSEC can be deployed without IPv6.
- Does DNSSEC encrypt my DNS traffic, so others cannot eavesdrop on my DNS queries?
- No. Although cryptographic keys and digital signatures are used in DNSSEC, they only provide authenticity and integrity, not privacy. Someone who sniffs network traffic can still see all the DNS queries and answers in plain text; DNSSEC just makes it very difficult for the eavesdropper to alter or spoof the DNS responses.
- Does DNSSEC protect the communication between my laptop and my name server?
- Unfortunately, not at the moment. DNSSEC is designed to protect the communication between end clients (laptop) and name servers; however, there are few applications or stub resolver libraries as of mid-2020 that take advantage of this capability. While enabling DNSSEC today does little to enhance the security of communications between a recursive server and its clients (commonly called the “last mile”), we hope that will change in the near future as more applications become DNSSEC-aware.
- Does DNSSEC secure zone transfers?
- No. You should consider using TSIG to secure zone transfers among your name servers.
- Does DNSSEC protect my network from malicious websites?
The answer in the early stages of DNSSEC deployment is, unfortunately, no. DNSSEC is designed to provide confidence that when you receive a DNS response for www.company.com over port 53, it really came from Company’s name servers and the answers are authentic. But that does not mean the web server a user visits over port 80 or port 443 is necessarily safe. Furthermore, 98.5% of domain name operators (as of this writing in mid-2020) have not yet signed their zones, so DNSSEC cannot even validate their answers.
The answer for sometime in the future is that, as more zones are signed and more recursive servers validate, DNSSEC will make it much more difficult for attackers to spoof DNS responses or perform cache poisoning. It will still not protect against users who visit a malicious website that an attacker owns and operates, or prevent users from mistyping a domain name; it will just become less likely that an attacker can hijack other domain names.
- If I enable DNSSEC validation, will it break DNS lookup, since most domain names do not yet use DNSSEC?
No, DNSSEC is backwards-compatible to “standard” DNS. As of this writing (in mid-2020), although 98.5% of the .com domains have yet to be signed, a DNSSEC-enabled validating resolver can still look up all of these domain names as it always has under standard DNS.
There are four (4) categories of responses (see RFC 4035):
- Secure:
- Domains that have DNSSEC deployed correctly.
- Insecure:
- Domains that have yet to deploy DNSSEC.
- Bogus:
- Domains that have deployed DNSSEC but have done it incorrectly.
- Indeterminate:
- Domains for which it is not possible to determine whether these domains use DNSSEC.
A DNSSEC-enabled validating resolver still resolves #1 and #2; only #3 and #4 result in a SERVFAIL. You may already be using DNSSEC validation without realizing it, since some ISPs have begun enabling DNSSEC validation on their recursive name servers. Google public DNS (8.8.8.8) also has enabled DNSSEC validation.
- Do I need to have special client software to use DNSSEC?
- No. DNSSEC only changes the communication behavior among DNS servers, not between a DNS server (validating resolver) and a client (stub resolver). With DNSSEC validation enabled on your recursive server, if a domain name does not pass the checks, an error message (typically SERVFAIL) is returned to clients; to most client software today, it appears that the DNS query has failed or that the domain name does not exist.
- Since DNSSEC uses public key cryptography, do I need Public Key Infrastructure (PKI) in order to use DNSSEC?
- No, DNSSEC does not depend on an existing PKI. Public keys are stored within the DNS hierarchy; the trustworthiness of each zone is guaranteed by its parent zone, all the way back to the root zone. A copy of the trust anchor for the root zone is distributed with BIND 9.
- Do I need to purchase SSL certificates from a Certificate Authority (CA) to use DNSSEC?
- No. With DNSSEC, you generate and publish your own keys, and sign your own data as well. There is no need to pay someone else to do it for you.
- My parent zone does not support DNSSEC; can I still sign my zone?
- Technically, yes, but you will not get the full benefit of DNSSEC, as other validating resolvers are not able to validate your zone data. Without the DS record(s) in your parent zone, other validating resolvers treat your zone as an insecure (traditional) zone, and no actual verification is carried out. To the rest of the world, your zone still appears to be insecure, and it will continue to be insecure until your parent zone can host the DS record(s) for you and tell the rest of the world that your zone is signed.
- Is DNSSEC the same thing as TSIG?
- No. TSIG is typically used between primary and secondary name servers to secure zone transfers, while DNSSEC secures DNS lookup by validating answers. Even if you enable DNSSEC, zone transfers are still not validated; to secure the communication between your primary and secondary name servers, consider setting up TSIG or similar secure channels.
- How are keys copied from primary to secondary server(s)?
- DNSSEC uses public cryptography, which results in two types of keys: public and private. The public keys are part of the zone data, stored as DNSKEY record types. Thus the public keys are synchronized from primary to secondary server(s) as part of the zone transfer. The private keys are not, and should not be, stored anywhere other than secured on the primary server. See Key Storage for more information on key storage options and considerations.
- Can I use the same key for multiple zones?
- Yes and no. Good security practice
suggests that you should use unique key pairs for each zone, just as
you should have different passwords for your email account, social
media login, and online banking credentials. On a technical level, it
is completely feasible to reuse a key, but multiple zones are at risk if one key
pair is compromised. However, if you have hundreds or thousands
of zones to administer, a single key pair for all might be
less error-prone to manage. You may choose to use the same approach as
with password management: use unique passwords for your bank accounts and
shopping sites, but use a standard password for your not-very-important
logins. First, categorize your zones: high-value zones (or zones that have
specific key rollover requirements) get their own key pairs, while other,
more “generic” zones can use a single key pair for easier management. Note that
at present (mid-2020), fully automatic signing (using the
dnssec-policy
clause in yournamed
configuration file) does not support reuse of keys except when the same zone appears in multiple views (see next question). To use the same key for multiple zones, sign your zones using semi-automatic signing. Each zone wishing to use the key should point to the same key directory. - How do I sign the different instances of a zone that appears in multiple views?
- Add a
dnssec-policy
statement to eachzone
definition in the configuration file. To avoid problems when a single computer accesses different instances of the zone while information is still in its cache (e.g., a laptop moving from your office to a customer site), you should sign all instances with the same key. This means setting the same DNSSEC policy for all instances of the zone, and making sure that the key directory is the same for all instances of the zone. - Will there be any problems if I change the DNSSEC policy for a zone?
- If you are using fully automatic signing, no. Just change the parameters in the
dnssec-policy
statement and reload the configuration file.named
makes a smooth transition to the new policy, ensuring that your zone remains valid at all times.
A Brief History of the DNS and BIND¶
Although the Domain Name System “officially” began in 1984 with the publication of RFC 920, the core of the new system was described in 1983 in RFC 882 and RFC 883. From 1984 to 1987, the ARPAnet (the precursor to today’s Internet) became a testbed of experimentation for developing the new naming/addressing scheme in a rapidly expanding, operational network environment. New RFCs were written and published in 1987 that modified the original documents to incorporate improvements based on the working model. RFC 1034, “Domain Names-Concepts and Facilities,” and RFC 1035, “Domain Names-Implementation and Specification,” were published and became the standards upon which all DNS implementations are built.
The first working domain name server, called “Jeeves,” was written in 1983-84 by Paul Mockapetris for operation on DEC Tops-20 machines located at the University of Southern California’s Information Sciences Institute (USC-ISI) and SRI International’s Network Information Center (SRI-NIC). A DNS server for Unix machines, the Berkeley Internet Name Domain (BIND) package, was written soon after by a group of graduate students at the University of California at Berkeley under a grant from the US Defense Advanced Research Projects Administration (DARPA).
Versions of BIND through 4.8.3 were maintained by the Computer Systems Research Group (CSRG) at UC Berkeley. Douglas Terry, Mark Painter, David Riggle, and Songnian Zhou made up the initial BIND project team. After that, additional work on the software package was done by Ralph Campbell. Kevin Dunlap, a Digital Equipment Corporation employee on loan to the CSRG, worked on BIND for 2 years, from 1985 to 1987. Many other people also contributed to BIND development during that time: Doug Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss, Jim Bloom, and Mike Schwartz. BIND maintenance was subsequently handled by Mike Karels and Øivind Kure.
BIND versions 4.9 and 4.9.1 were released by Digital Equipment Corporation (which became Compaq Computer Corporation and eventually merged with Hewlett-Packard). Paul Vixie, then a DEC employee, became BIND’s primary caretaker. He was assisted by Phil Almquist, Robert Elz, Alan Barrett, Paul Albitz, Bryan Beecher, Andrew Partan, Andy Cherenson, Tom Limoncelli, Berthold Paffrath, Fuat Baran, Anant Kumar, Art Harkin, Win Treese, Don Lewis, Christophe Wolfhugel, and others.
In 1994, BIND version 4.9.2 was sponsored by Vixie Enterprises. Paul Vixie became BIND’s principal architect/programmer.
BIND versions from 4.9.3 onward have been developed and maintained by Internet Systems Consortium and its predecessor, the Internet Software Consortium, with support provided by ISC’s sponsors.
As co-architects/programmers, Bob Halley and Paul Vixie released the first production-ready version of BIND version 8 in May 1997.
BIND version 9 was released in September 2000 and is a major rewrite of nearly all aspects of the underlying BIND architecture.
BIND versions 4 and 8 are officially deprecated. No additional development is done on BIND version 4 or BIND version 8.
BIND development work is made possible today by the sponsorship of corporations who purchase professional support services from ISC (https://www.isc.org/contact/) and/or donate to our mission, and by the tireless efforts of numerous individuals.
General DNS Reference Information¶
Requests for Comment (RFCs)¶
Specification documents for the Internet protocol suite, including the DNS, are published as part of the Request for Comments (RFCs) series of technical notes. The standards themselves are defined by the Internet Engineering Task Force (IETF) and the Internet Engineering Steering Group (IESG). RFCs can be viewed online at: https://www.rfc-editor.org/.
While reading RFCs, please keep in mind that not all RFCs are standards, and also that the validity of documents does change over time. Every RFC needs to be interpreted in the context of other documents.
BIND 9 strives for strict compliance with IETF standards. To the best of our knowledge, BIND 9 complies with the following RFCs, with the caveats and exceptions listed in the numbered notes below. Many of these RFCs were written by current or former ISC staff members. The list is non-exhaustive.
Some of these RFCs, though DNS-related, are not concerned with implementing software.
Protocol Specifications¶
RFC 1034 - P. Mockapetris. Domain Names — Concepts and Facilities. November 1987.
RFC 1035 - P. Mockapetris. Domain Names — Implementation and Specification. November 1987. [1] [2]
RFC 1183 - C. F. Everhart, L. A. Mamakos, R. Ullmann, P. Mockapetris. New DNS RR Definitions. October 1990.
RFC 1706 - B. Manning and R. Colella. DNS NSAP Resource Records. October 1994.
RFC 1712 - C. Farrell, M. Schulze, S. Pleitner, and D. Baldoni. DNS Encoding of Geographical Location. November 1994.
RFC 1876 - C. Davis, P. Vixie, T. Goodwin, and I. Dickinson. A Means for Expressing Location Information in the Domain Name System. January 1996.
RFC 1982 - R. Elz and R. Bush. Serial Number Arithmetic. August 1996.
RFC 1995 - M. Ohta. Incremental Zone Transfer in DNS. August 1996.
RFC 1996 - P. Vixie. A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY). August 1996.
RFC 2136 - P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dynamic Updates in the Domain Name System (DNS UPDATE). April 1997.
RFC 2163 - A. Allocchio. Using the Internet DNS to Distribute MIXER Conformant Global Address Mapping (MCGAM). January 1998.
RFC 2181 - R. Elz and R. Bush. Clarifications to the DNS Specification. July 1997.
RFC 2230 - R. Atkinson. Key Exchange Delegation Record for the DNS. November 1997.
RFC 2308 - M. Andrews. Negative Caching of DNS Queries (DNS NCACHE). March 1998.
RFC 2539 - D. Eastlake, 3rd. Storage of Diffie-Hellman Keys in the Domain Name System (DNS). March 1999.
RFC 2782 - A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for Specifying the Location of Services (DNS SRV). February 2000.
RFC 2930 - D. Eastlake, 3rd. Secret Key Establishment for DNS (TKEY RR). September 2000.
RFC 2931 - D. Eastlake, 3rd. DNS Request and Transaction Signatures (SIG(0)s). September 2000. [3]
RFC 3007 - B. Wellington. Secure Domain Name System (DNS) Dynamic Update. November 2000.
RFC 3110 - D. Eastlake, 3rd. RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System (DNS). May 2001.
RFC 3123 - P. Koch. A DNS RR Type for Lists of Address Prefixes (APL RR). June 2001.
RFC 3225 - D. Conrad. Indicating Resolver Support of DNSSEC. December 2001.
RFC 3226 - O. Gudmundsson. DNSSEC and IPv6 A6 Aware Server/Resolver Message Size Requirements. December 2001.
RFC 3363 - R. Bush, A. Durand, B. Fink, O. Gudmundsson, and T. Hain. Representing Internet Protocol Version 6 (IPv6) Addresses in the Domain Name System (DNS). August 2002. [15]
RFC 3403 - M. Mealling. Dynamic Delegation Discovery System (DDDS). Part Three: The Domain Name System (DNS) Database. October 2002.
RFC 3492 - A. Costello. Punycode: A Bootstring Encoding of Unicode for Internationalized Domain Names in Applications (IDNA). March 2003.
RFC 3493 - R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens. Basic Socket Interface Extensions for IPv6. March 2003.
RFC 3496 - A. G. Malis and T. Hsiao. Protocol Extension for Support of Asynchronous Transfer Mode (ATM) Service Class-aware Multiprotocol Label Switching (MPLS) Traffic Engineering. March 2003.
RFC 3596 - S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. DNS Extensions to Support IP Version 6. October 2003.
RFC 3597 - A. Gustafsson. Handling of Unknown DNS Resource Record (RR) Types. September 2003.
RFC 3645 - S. Kwan, P. Garg, J. Gilroy, L. Esibov, J. Westhead, and R. Hall. Generic Security Service Algorithm for Secret Key Transaction Authentication for DNS (GSS-TSIG). October 2003.
RFC 4025 - M. Richardson. A Method for Storing IPsec Keying Material in DNS. March 2005.
RFC 4033 - R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and Requirements. March 2005.
RFC 4034 - R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource Records for the DNS Security Extensions. March 2005.
RFC 4035 - R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Modifications for the DNS Security Extensions. March 2005.
RFC 4255 - J. Schlyter and W. Griffin. Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints. January 2006.
RFC 4343 - D. Eastlake, 3rd. Domain Name System (DNS) Case Insensitivity Clarification. January 2006.
RFC 4398 - S. Josefsson. Storing Certificates in the Domain Name System (DNS). March 2006.
RFC 4470 - S. Weiler and J. Ihren. Minimally covering NSEC Records and DNSSEC On-line Signing. April 2006. [6]
RFC 4509 - W. Hardaker. Use of SHA-256 in DNSSEC Delegation Signer (DS) Resource Records (RRs). May 2006.
RFC 4592 - E. Lewis. The Role of Wildcards in the Domain Name System. July 2006.
RFC 4635 - D. Eastlake, 3rd. HMAC SHA (Hashed Message Authentication Code, Secure Hash Algorithm) TSIG Algorithm Identifiers. August 2006.
RFC 4701 - M. Stapp, T. Lemon, and A. Gustafsson. A DNS Resource Record (RR) for Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID RR). October 2006.
RFC 4955 - D. Blacka. DNS Security (DNSSEC) Experiments. July 2007. [7]
RFC 5001 - R. Austein. DNS Name Server Identifier (NSID) Option. August 2007.
RFC 5011 - M. StJohns. Automated Updates of DNS Security (DNSSEC) Trust Anchors.
RFC 5155 - B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS Security (DNSSEC) Hashed Authenticated Denial of Existence. March 2008.
RFC 5205 - P. Nikander and J. Laganier. Host Identity Protocol (HIP) Domain Name System (DNS) Extension. April 2008.
RFC 5452 - A. Hubert and R. van Mook. Measures for Making DNS More Resilient Against Forged Answers. January 2009. [8]
RFC 5702 - J. Jansen. Use of SHA-2 Algorithms with RSA in DNSKEY and RRSIG Resource Records for DNSSEC. October 2009.
RFC 5891 - J. Klensin. Internationalized Domain Names in Applications (IDNA): Protocol. August 2010
RFC 5936 - E. Lewis and A. Hoenes, Ed. DNS Zone Transfer Protocol (AXFR). June 2010.
RFC 5952 - S. Kawamura and M. Kawashima. A Recommendation for IPv6 Address Text Representation. August 2010.
RFC 6052 - C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li. IPv6 Addressing of IPv4/IPv6 Translators. October 2010.
RFC 6147 - M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum. DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers. April 2011. [9]
RFC 6604 - D. Eastlake, 3rd. xNAME RCODE and Status Bits Clarification. April 2012.
RFC 6605 - P. Hoffman and W. C. A. Wijngaards. Elliptic Curve Digital Signature Algorithm (DSA) for DNSSEC. April 2012. [10]
RFC 6672 - S. Rose and W. Wijngaards. DNAME Redirection in the DNS. June 2012.
RFC 6698 - P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. August 2012.
RFC 6725 - S. Rose. DNS Security (DNSSEC) DNSKEY Algorithm IANA Registry Updates. August 2012. [11]
RFC 6742 - RJ Atkinson, SN Bhatti, U. St. Andrews, and S. Rose. DNS Resource Records for the Identifier-Locator Network Protocol (ILNP). November 2012.
RFC 6840 - S. Weiler, Ed., and D. Blacka, Ed. Clarifications and Implementation Notes for DNS Security (DNSSEC). February 2013. [12]
RFC 6891 - J. Damas, M. Graff, and P. Vixie. Extension Mechanisms for DNS (EDNS(0)). April 2013.
RFC 7043 - J. Abley. Resource Records for EUI-48 and EUI-64 Addresses in the DNS. October 2013.
RFC 7050 - T. Savolainen, J. Korhonen, and D. Wing. Discovery of the IPv6 Prefix Used for IPv6 Address Synthesis. November 2013. [20]
RFC 7208 - S. Kitterman. Sender Policy Framework (SPF) for Authorizing Use of Domains in Email, Version 1. April 2014.
RFC 7314 - M. Andrews. Extension Mechanisms for DNS (EDNS) EXPIRE Option. July 2014.
RFC 7344 - W. Kumari, O. Gudmundsson, and G. Barwood. Automating DNSSEC Delegation Trust Maintenance. September 2014. [13]
RFC 7477 - W. Hardaker. Child-to-Parent Synchronization in DNS. March 2015.
RFC 7553 - P. Faltstrom and O. Kolkman. The Uniform Resource Identifier (URI) DNS Resource Record. June 2015.
RFC 7583 - S. Morris, J. Ihren, J. Dickinson, and W. Mekking. DNSSEC Key Rollover Timing Considerations. October 2015.
RFC 7766 - J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, and D. Wessels. DNS Transport over TCP - Implementation Requirements. March 2016.
RFC 7828 - P. Wouters, J. Abley, S. Dickinson, and R. Bellis. The edns-tcp-keepalive EDNS0 Option. April 2016.
RFC 7830 - A. Mayrhofer. The EDNS(0) Padding Option. May 2016. [14]
RFC 7858 - Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. Specification for DNS over Transport Layer Security (TLS). May 2016. [21]
RFC 7929 - P. Wouters. DNS-Based Authentication of Named Entities (DANE) Bindings for OpenPGP. August 2016.
RFC 8078 - O. Gudmundsson and P. Wouters. Managing DS Records from the Parent via CDS/CDNSKEY. March 2017. [22]
RFC 8080 - O. Sury and R. Edmonds. Edwards-Curve Digital Security Algorithm (EdDSA) for DNSSEC. February 2017.
RFC 8484 - P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). October 2018. [21]
RFC 8624 - P. Wouters and O. Sury. Algorithm Implementation Requirements and Usage Guidance for DNSSEC. June 2019.
RFC 8659 - P. Hallam-Baker, R. Stradling, and J. Hoffman-Andrews. DNS Certification Authority Authorization (CAA) Resource Record. November 2019.
RFC 8880 - S. Cheshire and D. Schinazi. Special Use Domain Name ‘ipv4only.arpa’. August 2020.
RFC 8945 - F. Dupont, S. Morris, P. Vixie, D. Eastlake 3rd, O. Gudmundsson, and B. Wellington. Secret Key Transaction Authentication for DNS (TSIG). November 2020.
RFC 9103 - W. Toorop, S. Dickinson, S. Sahib, P. Aras, and A. Mankin. DNS Zone Transfer over TLS. August 2021. [23]
Best Current Practice RFCs¶
RFC 2219 - M. Hamilton and R. Wright. Use of DNS Aliases for Network Services. October 1997.
RFC 2317 - H. Eidnes, G. de Groot, and P. Vixie. Classless IN-ADDR.ARPA Delegation. March 1998.
RFC 2606 - D. Eastlake, 3rd and A. Panitz. Reserved Top Level DNS Names. June 1999. [16]
RFC 3901 - A. Durand and J. Ihren. DNS IPv6 Transport Operational Guidelines. September 2004.
RFC 5625 - R. Bellis. DNS Proxy Implementation Guidelines. August 2009.
RFC 6303 - M. Andrews. Locally Served DNS Zones. July 2011.
RFC 7793 - M. Andrews. Adding 100.64.0.0/10 Prefixes to the IPv4 Locally-Served DNS Zones Registry. May 2016.
RFC 8906 - M. Andrews and R. Bellis. A Common Operational Problem in DNS Servers: Failure to Communicate. September 2020.
For Your Information¶
RFC 1101 - P. Mockapetris. DNS Encoding of Network Names and Other Types. April 1989.
RFC 1123 - R. Braden. Requirements for Internet Hosts - Application and Support. October 1989.
RFC 1535 - E. Gavron. A Security Problem and Proposed Correction With Widely Deployed DNS Software. October 1993.
RFC 1536 - A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. Common DNS Implementation Errors and Suggested Fixes. October 1993.
RFC 1912 - D. Barr. Common DNS Operational and Configuration Errors. February 1996.
RFC 2874 - M. Crawford and C. Huitema. DNS Extensions to Support IPv6 Address Aggregation and Renumbering. July 2000. [4]
RFC 3833 - D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS). August 2004.
RFC 4074 - Y. Morishita and T. Jinmei. Common Misbehavior Against DNS Queries for IPv6 Addresses. June 2005.
RFC 4431 - M. Andrews and S. Weiler. The DNSSEC Lookaside Validation (DLV) DNS Resource Record. February 2006. [5]
RFC 4892 - S. Woolf and D. Conrad. Requirements for a Mechanism Identifying a Name Server Instance. June 2007.
RFC 6781 - O. Kolkman, W. Mekking, and R. Gieben. DNSSEC Operational Practices, Version 2. December 2012.
RFC 7129 - R. Gieben and W. Mekking. Authenticated Denial of Existence in the DNS. February 2014.
RFC 8749 - W. Mekking and D. Mahoney. Moving DNSSEC Lookaside Validation (DLV) to Historic Status. March 2020.
Notes¶
[1] | Queries to zones that have failed to load return SERVFAIL rather than a non-authoritative response. This is considered a feature. |
[2] | CLASS ANY queries are not supported. This is considered a feature. |
[3] | When receiving a query signed with a SIG(0), the server is only able to verify the signature if it has the key in its local authoritative data; it cannot do recursion or validation to retrieve unknown keys. |
[4] | Compliance is with loading and serving of A6 records only. A6 records were moved to the experimental category by RFC 3363. |
[5] | Compliance is with loading and serving of DLV records only. DLV records were moved to the historic category by RFC 8749. |
[6] | Minimally Covering NSEC records are accepted but not generated. |
[7] | BIND 9 interoperates with correctly designed experiments. |
[8] | named only uses ports to extend the ID space; addresses are not
used. |
[9] | Section 5.5 does not match reality. named uses the presence
of DO=1 to detect if validation may be occurring. CD has no bearing
on whether validation occurs. |
[10] | Compliance is conditional on the OpenSSL library being linked against a supporting ECDSA. |
[11] | RSAMD5 support has been removed. See RFC 8624. |
[12] | Section 5.9 - Always set CD=1 on queries. This is not done, as it prevents DNSSEC from working correctly through another recursive server. When talking to a recursive server, the best algorithm is to send CD=0 and then send CD=1 iff SERVFAIL is returned, in case the recursive server has a bad clock and/or bad trust anchor. Alternatively, one can send CD=1 then CD=0 on validation failure, in case the recursive server is under attack or there is stale/bogus authoritative data. |
[13] | Updating of parent zones is not yet implemented. |
[14] | named does not currently encrypt DNS requests, so the PAD option
is accepted but not returned in responses. |
[15] | Section 4 is ignored. |
[16] | This does not apply to DNS server implementations. |
[17] | Only the Base 64 encoding specification is supported. |
[18] | BIND 9 requires --with-libidn2 to enable entry of IDN labels within
dig, host, and nslookup at compile time. ACE labels are supported
everywhere with or without --with-libidn2 . |
[19] | Section 5.1 - DNAME records are fully supported. |
[20] | RFC 7050 is updated by RFC 8880. |
[21] | (1, 2) Forwarding DNS queries over encrypted transports is not supported yet. |
[22] | Updating of parent zones is not yet implemented. |
[23] | Strict TLS and Mutual TLS authentication mechanisms are not supported yet. |
Internet Drafts¶
Internet Drafts (IDs) are rough-draft working documents of the Internet Engineering Task Force (IETF). They are, in essence, RFCs in the preliminary stages of development. Implementors are cautioned not to regard IDs as archival, and they should not be quoted or cited in any formal documents unless accompanied by the disclaimer that they are “works in progress.” IDs have a lifespan of six months, after which they are deleted unless updated by their authors.
Manual Pages¶
arpaname - translate IP addresses to the corresponding ARPA names¶
Synopsis¶
arpaname {ipaddress …}
Description¶
arpaname
translates IP addresses (IPv4 and IPv6) to the
corresponding IN-ADDR.ARPA or IP6.ARPA names.
See Also¶
BIND 9 Administrator Reference Manual.
delv - DNS lookup and validation utility¶
Synopsis¶
delv [@server] [ [-4] | [-6] ] [-a anchor-file] [-b address] [-c class] [-d level] [-i] [-m] [-p port#] [-q name] [-t type] [-x addr] [name] [type] [class] [queryopt…]
delv [-h]
delv [-v]
delv [queryopt…] [query…]
Description¶
delv
is a tool for sending DNS queries and validating the results,
using the same internal resolver and validator logic as named
.
delv
sends to a specified name server all queries needed to
fetch and validate the requested data; this includes the original
requested query, subsequent queries to follow CNAME or DNAME chains,
queries for DNSKEY, and DS records to establish a chain of trust for
DNSSEC validation. It does not perform iterative resolution, but
simulates the behavior of a name server configured for DNSSEC validating
and forwarding.
By default, responses are validated using the built-in DNSSEC trust anchor
for the root zone (“.”). Records returned by delv
are either fully
validated or were not signed. If validation fails, an explanation of the
failure is included in the output; the validation process can be traced
in detail. Because delv
does not rely on an external server to carry
out validation, it can be used to check the validity of DNS responses in
environments where local name servers may not be trustworthy.
Unless it is told to query a specific name server, delv
tries
each of the servers listed in /etc/resolv.conf
. If no usable server
addresses are found, delv
sends queries to the localhost
addresses (127.0.0.1 for IPv4, ::1 for IPv6).
When no command-line arguments or options are given, delv
performs an NS query for “.” (the root zone).
Simple Usage¶
A typical invocation of delv
looks like:
delv @server name type
where:
server
is the name or IP address of the name server to query. This can be an IPv4 address in dotted-decimal notation or an IPv6 address in colon-delimited notation. When the supplied
server
argument is a hostname,delv
resolves that name before querying that name server (note, however, that this initial lookup is not validated by DNSSEC).If no
server
argument is provided,delv
consults/etc/resolv.conf
; if an address is found there, it queries the name server at that address. If either of the-4
or-6
options is in use, then only addresses for the corresponding transport are tried. If no usable addresses are found,delv
sends queries to the localhost addresses (127.0.0.1 for IPv4, ::1 for IPv6).name
- is the domain name to be looked up.
type
- indicates what type of query is required - ANY, A, MX, etc.
type
can be any valid query type. If notype
argument is supplied,delv
performs a lookup for an A record.
Options¶
-a anchor-file
This option specifies a file from which to read DNSSEC trust anchors. The default is
/etc/bind.keys
, which is included with BIND 9 and contains one or more trust anchors for the root zone (“.”).Keys that do not match the root zone name are ignored. An alternate key name can be specified using the
+root=NAME
options.Note: When reading the trust anchor file,
delv
treatstrust-anchors
,initial-key
, andstatic-key
identically. That is, for a managed key, it is the initial key that is trusted; RFC 5011 key management is not supported.delv
does not consult the managed-keys database maintained bynamed
, which means that if either of the keys in/etc/bind.keys
is revoked and rolled over,/etc/bind.keys
must be updated to use DNSSEC validation indelv
.-b address
- This option sets the source IP address of the query to
address
. This must be a valid address on one of the host’s network interfaces, or0.0.0.0
, or::
. An optional source port may be specified by appending#<port>
-c class
- This option sets the query class for the requested data. Currently, only class
“IN” is supported in
delv
and any other value is ignored. -d level
- This option sets the systemwide debug level to
level
. The allowed range is from 0 to 99. The default is 0 (no debugging). Debugging traces fromdelv
become more verbose as the debug level increases. See the+mtrace
,+rtrace
, and+vtrace
options below for additional debugging details. -h
- This option displays the
delv
help usage output and exits. -i
- This option sets insecure mode, which disables internal DNSSEC validation. (Note,
however, that this does not set the CD bit on upstream queries. If the
server being queried is performing DNSSEC validation, then it does
not return invalid data; this can cause
delv
to time out. When it is necessary to examine invalid data to debug a DNSSEC problem, usedig +cd
.) -m
- This option enables memory usage debugging.
-p port#
- This option specifies a destination port to use for queries, instead of the standard DNS port number 53. This option is used with a name server that has been configured to listen for queries on a non-standard port number.
-q name
- This option sets the query name to
name
. While the query name can be specified without using the-q
option, it is sometimes necessary to disambiguate names from types or classes (for example, when looking up the name “ns”, which could be misinterpreted as the type NS, or “ch”, which could be misinterpreted as class CH). -t type
This option sets the query type to
type
, which can be any valid query type supported in BIND 9 except for zone transfer types AXFR and IXFR. As with-q
, this is useful to distinguish query-name types or classes when they are ambiguous. It is sometimes necessary to disambiguate names from types.The default query type is “A”, unless the
-x
option is supplied to indicate a reverse lookup, in which case it is “PTR”.-v
- This option prints the
delv
version and exits. -x addr
- This option performs a reverse lookup, mapping an address to a name.
addr
is an IPv4 address in dotted-decimal notation, or a colon-delimited IPv6 address. When-x
is used, there is no need to provide thename
ortype
arguments;delv
automatically performs a lookup for a name like11.12.13.10.in-addr.arpa
and sets the query type to PTR. IPv6 addresses are looked up using nibble format under the IP6.ARPA domain. -4
- This option forces
delv
to only use IPv4. -6
- This option forces
delv
to only use IPv6.
Query Options¶
delv
provides a number of query options which affect the way results
are displayed, and in some cases the way lookups are performed.
Each query option is identified by a keyword preceded by a plus sign
(+
). Some keywords set or reset an option. These may be preceded by
the string no
to negate the meaning of that keyword. Other keywords
assign values to options like the timeout interval. They have the form
+keyword=value
. The query options are:
+[no]cdflag
- This option controls whether to set the CD (checking disabled) bit in queries
sent by
delv
. This may be useful when troubleshooting DNSSEC problems from behind a validating resolver. A validating resolver blocks invalid responses, making it difficult to retrieve them for analysis. Setting the CD flag on queries causes the resolver to return invalid responses, whichdelv
can then validate internally and report the errors in detail. +[no]class
- This option controls whether to display the CLASS when printing a record. The default is to display the CLASS.
+[no]ttl
- This option controls whether to display the TTL when printing a record. The default is to display the TTL.
+[no]rtrace
This option toggles resolver fetch logging. This reports the name and type of each query sent by
delv
in the process of carrying out the resolution and validation process, including the original query and all subsequent queries to follow CNAMEs and to establish a chain of trust for DNSSEC validation.This is equivalent to setting the debug level to 1 in the “resolver” logging category. Setting the systemwide debug level to 1 using the
-d
option produces the same output, but affects other logging categories as well.+[no]mtrace
This option toggles message logging. This produces a detailed dump of the responses received by
delv
in the process of carrying out the resolution and validation process.This is equivalent to setting the debug level to 10 for the “packets” module of the “resolver” logging category. Setting the systemwide debug level to 10 using the
-d
option produces the same output, but affects other logging categories as well.+[no]vtrace
This option toggles validation logging. This shows the internal process of the validator as it determines whether an answer is validly signed, unsigned, or invalid.
This is equivalent to setting the debug level to 3 for the “validator” module of the “dnssec” logging category. Setting the systemwide debug level to 3 using the
-d
option produces the same output, but affects other logging categories as well.+[no]short
- This option toggles between verbose and terse answers. The default is to print the answer in a verbose form.
+[no]comments
- This option toggles the display of comment lines in the output. The default is to print comments.
+[no]rrcomments
- This option toggles the display of per-record comments in the output (for example, human-readable key information about DNSKEY records). The default is to print per-record comments.
+[no]crypto
- This option toggles the display of cryptographic fields in DNSSEC records. The
contents of these fields are unnecessary to debug most DNSSEC
validation failures and removing them makes it easier to see the
common failures. The default is to display the fields. When omitted,
they are replaced by the string
[omitted]
or, in the DNSKEY case, the key ID is displayed as the replacement, e.g.[ key id = value ]
. +[no]trust
- This option controls whether to display the trust level when printing a record. The default is to display the trust level.
+[no]split[=W]
- This option splits long hex- or base64-formatted fields in resource records into
chunks of
W
characters (whereW
is rounded up to the nearest multiple of 4).+nosplit
or+split=0
causes fields not to be split at all. The default is 56 characters, or 44 characters when multiline mode is active. +[no]all
- This option sets or clears the display options
+[no]comments
,+[no]rrcomments
, and+[no]trust
as a group. +[no]multiline
- This option prints long records (such as RRSIG, DNSKEY, and SOA records) in a
verbose multi-line format with human-readable comments. The default
is to print each record on a single line, to facilitate machine
parsing of the
delv
output. +[no]dnssec
- This option indicates whether to display RRSIG records in the
delv
output. The default is to do so. Note that (unlike indig
) this does not control whether to request DNSSEC records or to validate them. DNSSEC records are always requested, and validation always occurs unless suppressed by the use of-i
or+noroot
. +[no]root[=ROOT]
- This option indicates whether to perform conventional DNSSEC validation, and if so,
specifies the name of a trust anchor. The default is to validate using a
trust anchor of “.” (the root zone), for which there is a built-in key. If
specifying a different trust anchor, then
-a
must be used to specify a file containing the key. +[no]tcp
- This option controls whether to use TCP when sending queries. The default is to use UDP unless a truncated response has been received.
+[no]unknownformat
- This option prints all RDATA in unknown RR-type presentation format (RFC 3597). The default is to print RDATA for known types in the type’s presentation format.
+[no]yaml
- This option prints response data in YAML format.
dig - DNS lookup utility¶
Synopsis¶
dig [@server] [-b address] [-c class] [-f filename] [-k filename] [-m] [-p port#] [-q name] [-t type] [-v] [-x addr] [-y [hmac:]name:key] [ [-4] | [-6] ] [name] [type] [class] [queryopt…]
dig [-h]
dig [global-queryopt…] [query…]
Description¶
dig
is a flexible tool for interrogating DNS name servers. It
performs DNS lookups and displays the answers that are returned from the
name server(s) that were queried. Most DNS administrators use dig
to
troubleshoot DNS problems because of its flexibility, ease of use, and
clarity of output. Other lookup tools tend to have less functionality
than dig
.
Although dig
is normally used with command-line arguments, it also
has a batch mode of operation for reading lookup requests from a file. A
brief summary of its command-line arguments and options is printed when
the -h
option is given. The BIND 9
implementation of dig
allows multiple lookups to be issued from the
command line.
Unless it is told to query a specific name server, dig
tries each
of the servers listed in /etc/resolv.conf
. If no usable server
addresses are found, dig
sends the query to the local host.
When no command-line arguments or options are given, dig
performs an NS query for “.” (the root).
It is possible to set per-user defaults for dig
via
${HOME}/.digrc
. This file is read and any options in it are applied
before the command-line arguments. The -r
option disables this
feature, for scripts that need predictable behavior.
The IN and CH class names overlap with the IN and CH top-level domain
names. Either use the -t
and -c
options to specify the type and
class, use the -q
to specify the domain name, or use “IN.” and
“CH.” when looking up these top-level domains.
Simple Usage¶
A typical invocation of dig
looks like:
dig @server name type
where:
server
is the name or IP address of the name server to query. This can be an IPv4 address in dotted-decimal notation or an IPv6 address in colon-delimited notation. When the supplied
server
argument is a hostname,dig
resolves that name before querying that name server.If no
server
argument is provided,dig
consults/etc/resolv.conf
; if an address is found there, it queries the name server at that address. If either of the-4
or-6
options are in use, then only addresses for the corresponding transport are tried. If no usable addresses are found,dig
sends the query to the local host. The reply from the name server that responds is displayed.name
- is the name of the resource record that is to be looked up.
type
- indicates what type of query is required - ANY, A, MX, SIG, etc.
type
can be any valid query type. If notype
argument is supplied,dig
performs a lookup for an A record.
Options¶
-4
- This option indicates that only IPv4 should be used.
-6
- This option indicates that only IPv6 should be used.
-b address[#port]
- This option sets the source IP address of the query. The
address
must be a valid address on one of the host’s network interfaces, or “0.0.0.0” or “::”. An optional port may be specified by appending#port
. -c class
- This option sets the query class. The default
class
is IN; other classes are HS for Hesiod records or CH for Chaosnet records. -f file
- This option sets batch mode, in which
dig
reads a list of lookup requests to process from the givenfile
. Each line in the file should be organized in the same way it would be presented as a query todig
using the command-line interface. -k keyfile
- This option tells
named
to sign queries using TSIG using a key read from the given file. Key files can be generated usingtsig-keygen
. When using TSIG authentication withdig
, the name server that is queried needs to know the key and algorithm that is being used. In BIND, this is done by providing appropriatekey
andserver
statements innamed.conf
. -m
- This option enables memory usage debugging.
-p port
- This option sends the query to a non-standard port on the server, instead of the default port 53. This option is used to test a name server that has been configured to listen for queries on a non-standard port number.
-q name
- This option specifies the domain name to query. This is useful to distinguish the
name
from other arguments. -r
- This option indicates that options from
${HOME}/.digrc
should not be read. This is useful for scripts that need predictable behavior. -t type
This option indicates the resource record type to query, which can be any valid query type. If it is a resource record type supported in BIND 9, it can be given by the type mnemonic (such as
NS
orAAAA
). The default query type isA
, unless the-x
option is supplied to indicate a reverse lookup. A zone transfer can be requested by specifying a type of AXFR. When an incremental zone transfer (IXFR) is required, set thetype
toixfr=N
. The incremental zone transfer contains all changes made to the zone since the serial number in the zone’s SOA record wasN
.All resource record types can be expressed as
TYPEnn
, wherenn
is the number of the type. If the resource record type is not supported in BIND 9, the result is displayed as described in RFC 3597.-u
- This option indicates that print query times should be provided in microseconds instead of milliseconds.
-v
- This option prints the version number and exits.
-x addr
- This option sets simplified reverse lookups, for mapping addresses to names. The
addr
is an IPv4 address in dotted-decimal notation, or a colon-delimited IPv6 address. When the-x
option is used, there is no need to provide thename
,class
, andtype
arguments.dig
automatically performs a lookup for a name like94.2.0.192.in-addr.arpa
and sets the query type and class to PTR and IN respectively. IPv6 addresses are looked up using nibble format under the IP6.ARPA domain. -y [hmac:]keyname:secret
- This option signs queries using TSIG with the given authentication key.
keyname
is the name of the key, andsecret
is the base64-encoded shared secret.hmac
is the name of the key algorithm; valid choices arehmac-md5
,hmac-sha1
,hmac-sha224
,hmac-sha256
,hmac-sha384
, orhmac-sha512
. Ifhmac
is not specified, the default ishmac-md5
; if MD5 was disabled, the default ishmac-sha256
.
Note
Only the -k
option should be used, rather than the -y
option,
because with -y
the shared secret is supplied as a command-line
argument in clear text. This may be visible in the output from ps1
or
in a history file maintained by the user’s shell.
Query Options¶
dig
provides a number of query options which affect the way in which
lookups are made and the results displayed. Some of these set or reset
flag bits in the query header, some determine which sections of the
answer get printed, and others determine the timeout and retry
strategies.
Each query option is identified by a keyword preceded by a plus sign
(+
). Some keywords set or reset an option; these may be preceded by
the string no
to negate the meaning of that keyword. Other keywords
assign values to options, like the timeout interval. They have the form
+keyword=value
. Keywords may be abbreviated, provided the
abbreviation is unambiguous; for example, +cd
is equivalent to
+cdflag
. The query options are:
+[no]aaflag
- This option is a synonym for
+[no]aaonly
. +[no]aaonly
- This option sets the
aa
flag in the query. +[no]additional
- This option displays [or does not display] the additional section of a reply. The default is to display it.
+[no]adflag
- This option sets [or does not set] the AD (authentic data) bit in the query. This
requests the server to return whether all of the answer and authority
sections have been validated as secure, according to the security
policy of the server.
AD=1
indicates that all records have been validated as secure and the answer is not from a OPT-OUT range.AD=0
indicates that some part of the answer was insecure or not validated. This bit is set by default. +[no]all
- This option sets or clears all display flags.
+[no]answer
- This option displays [or does not display] the answer section of a reply. The default is to display it.
+[no]authority
- This option displays [or does not display] the authority section of a reply. The default is to display it.
+[no]badcookie
- This option retries the lookup with a new server cookie if a BADCOOKIE response is received.
+[no]besteffort
- This option attempts to display the contents of messages which are malformed. The default is to not display malformed answers.
+bufsize[=B]
- This option sets the UDP message buffer size advertised using EDNS0 to
B
bytes. The maximum and minimum sizes of this buffer are 65535 and 0, respectively.+bufsize
restores the default buffer size. +[no]cdflag
- This option sets [or does not set] the CD (checking disabled) bit in the query. This requests the server to not perform DNSSEC validation of responses.
+[no]class
- This option displays [or does not display] the CLASS when printing the record.
+[no]cmd
- This option toggles the printing of the initial comment in the output, identifying the
version of
dig
and the query options that have been applied. This option always has a global effect; it cannot be set globally and then overridden on a per-lookup basis. The default is to print this comment. +[no]comments
This option toggles the display of some comment lines in the output, with information about the packet header and OPT pseudosection, and the names of the response section. The default is to print these comments.
Other types of comments in the output are not affected by this option, but can be controlled using other command-line switches. These include
+[no]cmd
,+[no]question
,+[no]stats
, and+[no]rrcomments
.+[no]cookie=####
This option sends [or does not send] a COOKIE EDNS option, with an optional value. Replaying a COOKIE from a previous response allows the server to identify a previous client. The default is
+cookie
.+cookie
is also set when+trace
is set to better emulate the default queries from a nameserver.+[no]crypto
- This option toggles the display of cryptographic fields in DNSSEC records. The
contents of these fields are unnecessary for debugging most DNSSEC
validation failures and removing them makes it easier to see the
common failures. The default is to display the fields. When omitted,
they are replaced by the string
[omitted]
or, in the DNSKEY case, the key ID is displayed as the replacement, e.g.[ key id = value ]
. +[no]defname
- This option, which is deprecated, is treated as a synonym for
+[no]search
. +[no]dns64prefix
- Lookup IPV4ONLY.ARPA AAAA and print any DNS64 prefixes found.
+[no]dnssec
- This option requests that DNSSEC records be sent by setting the DNSSEC OK (DO) bit in the OPT record in the additional section of the query.
+domain=somename
- This option sets the search list to contain the single domain
somename
, as if specified in adomain
directive in/etc/resolv.conf
, and enables search list processing as if the+search
option were given. +dscp=value
- This option sets the DSCP code point to be used when sending the query. Valid DSCP code points are in the range [0…63]. By default no code point is explicitly set.
+[no]edns[=#]
- This option specifies the EDNS version to query with. Valid values are 0 to 255.
Setting the EDNS version causes an EDNS query to be sent.
+noedns
clears the remembered EDNS version. EDNS is set to 0 by default. +[no]ednsflags[=#]
- This option sets the must-be-zero EDNS flags bits (Z bits) to the specified value. Decimal, hex, and octal encodings are accepted. Setting a named flag (e.g., DO) is silently ignored. By default, no Z bits are set.
+[no]ednsnegotiation
- This option enables/disables EDNS version negotiation. By default, EDNS version negotiation is enabled.
+[no]ednsopt[=code[:value]]
- This option specifies the EDNS option with code point
code
and an optional payload ofvalue
as a hexadecimal string.code
can be either an EDNS option name (for example,NSID
orECS
) or an arbitrary numeric value.+noednsopt
clears the EDNS options to be sent. +[no]expire
- This option sends an EDNS Expire option.
+[no]fail
- This option indicates that
named
should try [or not try] the next server if a SERVFAIL is received. The default is to not try the next server, which is the reverse of normal stub resolver behavior. +[no]header-only
- This option sends a query with a DNS header without a question section. The default is to add a question section. The query type and query name are ignored when this is set.
+[no]https[=value]
This option indicates whether to use DNS over HTTPS (DoH) when querying name servers. When this option is in use, the port number defaults to 443. The HTTP POST request mode is used when sending the query.
If
value
is specified, it will be used as the HTTP endpoint in the query URI; the default is/dns-query
. So, for example,dig @example.com +https
will use the URIhttps://example.com/dns-query
.+[no]https-get[=value]
- Similar to
+https
, except that the HTTP GET request mode is used when sending the query. +[no]https-post[=value]
- Same as
+https
. +[no]http-plain[=value]
- Similar to
+https
, except that HTTP queries will be sent over a non-encrypted channel. When this option is in use, the port number defaults to 80 and the HTTP request mode is POST. +[no]http-plain-get[=value]
- Similar to
+http-plain
, except that the HTTP request mode is GET. +[no]http-plain-post[=value]
- Same as
+http-plain
. +[no]identify
- This option shows [or does not show] the IP address and port number that
supplied the answer, when the
+short
option is enabled. If short form answers are requested, the default is not to show the source address and port number of the server that provided the answer. +[no]idnin
This option processes [or does not process] IDN domain names on input. This requires
IDN SUPPORT
to have been enabled at compile time.The default is to process IDN input when standard output is a tty. The IDN processing on input is disabled when
dig
output is redirected to files, pipes, and other non-tty file descriptors.+[no]idnout
This option converts [or does not convert] puny code on output. This requires
IDN SUPPORT
to have been enabled at compile time.The default is to process puny code on output when standard output is a tty. The puny code processing on output is disabled when
dig
output is redirected to files, pipes, and other non-tty file descriptors.+[no]ignore
- This option ignores [or does not ignore] truncation in UDP responses instead of retrying with TCP. By default, TCP retries are performed.
+[no]keepalive
- This option sends [or does not send] an EDNS Keepalive option.
+[no]keepopen
- This option keeps [or does not keep] the TCP socket open between queries, and reuses it rather than
creating a new TCP socket for each lookup. The default is
+nokeepopen
. +[no]multiline
- This option prints [or does not print] records, like the SOA records, in a verbose multi-line format
with human-readable comments. The default is to print each record on
a single line to facilitate machine parsing of the
dig
output. +ndots=D
- This option sets the number of dots (
D
) that must appear inname
for it to be considered absolute. The default value is that defined using thendots
statement in/etc/resolv.conf
, or 1 if nondots
statement is present. Names with fewer dots are interpreted as relative names, and are searched for in the domains listed in thesearch
ordomain
directive in/etc/resolv.conf
if+search
is set. +[no]nsid
- When enabled, this option includes an EDNS name server ID request when sending a query.
+[no]nssearch
- When this option is set,
dig
attempts to find the authoritative name servers for the zone containing the name being looked up, and display the SOA record that each name server has for the zone. Addresses of servers that did not respond are also printed. +[no]onesoa
- When enabled, this option prints only one (starting) SOA record when performing an AXFR. The default is to print both the starting and ending SOA records.
+[no]opcode=value
- When enabled, this option sets (restores) the DNS message opcode to the specified value. The default value is QUERY (0).
+padding=value
- This option pads the size of the query packet using the EDNS Padding option to
blocks of
value
bytes. For example,+padding=32
causes a 48-byte query to be padded to 64 bytes. The default block size is 0, which disables padding; the maximum is 512. Values are ordinarily expected to be powers of two, such as 128; however, this is not mandatory. Responses to padded queries may also be padded, but only if the query uses TCP or DNS COOKIE. +qid=value
- This option specifies the query ID to use when sending queries.
+[no]qr
- This option toggles the display of the query message as it is sent. By default, the query is not printed.
+[no]question
- This option toggles the display of the question section of a query when an answer is returned. The default is to print the question section as a comment.
+[no]raflag
- This option sets [or does not set] the RA (Recursion Available) bit in the query. The
default is
+noraflag
. This bit is ignored by the server for QUERY. +[no]rdflag
- This option is a synonym for
+[no]recurse
. +[no]recurse
- This option toggles the setting of the RD (recursion desired) bit in the query.
This bit is set by default, which means
dig
normally sends recursive queries. Recursion is automatically disabled when the+nssearch
or+trace
query option is used. +retry=T
- This option sets the number of times to retry UDP and TCP queries to server to
T
instead of the default, 2. Unlike+tries
, this does not include the initial query. +[no]rrcomments
- This option toggles the display of per-record comments in the output (for example, human-readable key information about DNSKEY records). The default is not to print record comments unless multiline mode is active.
+[no]search
This option uses [or does not use] the search list defined by the searchlist or domain directive in
resolv.conf
, if any. The search list is not used by default.ndots
fromresolv.conf
(default 1), which may be overridden by+ndots
, determines whether the name is treated as relative and hence whether a search is eventually performed.+[no]short
- This option toggles whether a terse answer is provided. The default is to print the answer in a verbose form. This option always has a global effect; it cannot be set globally and then overridden on a per-lookup basis.
+[no]showbadcookie
- This option toggles whether to show the message containing the BADCOOKIE rcode before retrying the request or not. The default is to not show the messages.
+[no]showsearch
- This option performs [or does not perform] a search showing intermediate results.
+[no]sigchase
- This feature is now obsolete and has been removed; use
delv
instead. +split=W
- This option splits long hex- or base64-formatted fields in resource records into
chunks of
W
characters (whereW
is rounded up to the nearest multiple of 4).+nosplit
or+split=0
causes fields not to be split at all. The default is 56 characters, or 44 characters when multiline mode is active. +[no]stats
- This option toggles the printing of statistics: when the query was made, the size of the reply, etc. The default behavior is to print the query statistics as a comment after each lookup.
+[no]subnet=addr[/prefix-length]
This option sends [or does not send] an EDNS CLIENT-SUBNET option with the specified IP address or network prefix.
dig +subnet=0.0.0.0/0
, or simplydig +subnet=0
for short, sends an EDNS CLIENT-SUBNET option with an empty address and a source prefix-length of zero, which signals a resolver that the client’s address information must not be used when resolving this query.+[no]tcflag
- This option sets [or does not set] the TC (TrunCation) bit in the query. The default is
+notcflag
. This bit is ignored by the server for QUERY. +[no]tcp
- This option indicates whether to use TCP when querying name servers.
The default behavior is to use UDP unless a type
any
orixfr=N
query is requested, in which case the default is TCP. AXFR queries always use TCP. +timeout=T
- This option sets the timeout for a query to
T
seconds. The default timeout is 5 seconds. An attempt to setT
to less than 1 is silently set to 1. +[no]tls
- This option indicates whether to use DNS over TLS (DoT) when querying name servers. When this option is in use, the port number defaults to 853.
+[no]topdown
- This feature is related to
dig +sigchase
, which is obsolete and has been removed. Usedelv
instead. +[no]trace
This option toggles tracing of the delegation path from the root name servers for the name being looked up. Tracing is disabled by default. When tracing is enabled,
dig
makes iterative queries to resolve the name being looked up. It follows referrals from the root servers, showing the answer from each server that was used to resolve the lookup.If
@server
is also specified, it affects only the initial query for the root zone name servers.+dnssec
is also set when+trace
is set, to better emulate the default queries from a name server.+tries=T
- This option sets the number of times to try UDP and TCP queries to server to
T
instead of the default, 3. IfT
is less than or equal to zero, the number of tries is silently rounded up to 1. +trusted-key=####
- This option formerly specified trusted keys for use with
dig +sigchase
. This feature is now obsolete and has been removed; usedelv
instead. +[no]ttlid
- This option displays [or does not display] the TTL when printing the record.
+[no]ttlunits
- This option displays [or does not display] the TTL in friendly human-readable time
units of
s
,m
,h
,d
, andw
, representing seconds, minutes, hours, days, and weeks. This implies+ttlid
. +[no]unknownformat
- This option prints all RDATA in unknown RR type presentation format (RFC 3597). The default is to print RDATA for known types in the type’s presentation format.
+[no]vc
- This option uses [or does not use] TCP when querying name servers. This alternate
syntax to
+[no]tcp
is provided for backwards compatibility. Thevc
stands for “virtual circuit.” +[no]yaml
- When enabled, this option prints the responses (and, if
+qr
is in use, also the outgoing queries) in a detailed YAML format. +[no]zflag
- This option sets [or does not set] the last unassigned DNS header flag in a DNS query. This flag is off by default.
Multiple Queries¶
The BIND 9 implementation of dig
supports specifying multiple
queries on the command line (in addition to supporting the -f
batch
file option). Each of those queries can be supplied with its own set of
flags, options, and query options.
In this case, each query
argument represents an individual query in
the command-line syntax described above. Each consists of any of the
standard options and flags, the name to be looked up, an optional query
type and class, and any query options that should be applied to that
query.
A global set of query options, which should be applied to all queries,
can also be supplied. These global query options must precede the first
tuple of name, class, type, options, flags, and query options supplied
on the command line. Any global query options (except +[no]cmd
and
+[no]short
options) can be overridden by a query-specific set of
query options. For example:
dig +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr
shows how dig
can be used from the command line to make three
lookups: an ANY query for www.isc.org
, a reverse lookup of 127.0.0.1,
and a query for the NS records of isc.org
. A global query option of
+qr
is applied, so that dig
shows the initial query it made for
each lookup. The final query has a local query option of +noqr
which
means that dig
does not print the initial query when it looks up the
NS records for isc.org
.
IDN Support¶
If dig
has been built with IDN (internationalized domain name)
support, it can accept and display non-ASCII domain names. dig
appropriately converts character encoding of a domain name before sending
a request to a DNS server or displaying a reply from the server.
To turn off IDN support, use the parameters
+noidnin
and +noidnout
, or define the IDN_DISABLE
environment
variable.
Return Codes¶
dig
return codes are:
0
- DNS response received, including NXDOMAIN status
1
- Usage error
8
- Couldn’t open batch file
9
- No reply from server
10
- Internal error
Bugs¶
There are probably too many query options.
dnssec-cds - change DS records for a child zone based on CDS/CDNSKEY¶
Synopsis¶
dnssec-cds [-a alg…] [-c class] [-D] {-d dsset-file} {-f child-file} [-i**[extension]] [-s** start-time] [-T ttl] [-u] [-v level] [-V] {domain}
Description¶
The dnssec-cds
command changes DS records at a delegation point
based on CDS or CDNSKEY records published in the child zone. If both CDS
and CDNSKEY records are present in the child zone, the CDS is preferred.
This enables a child zone to inform its parent of upcoming changes to
its key-signing keys (KSKs); by polling periodically with dnssec-cds
, the
parent can keep the DS records up-to-date and enable automatic rolling
of KSKs.
Two input files are required. The -f child-file
option specifies a
file containing the child’s CDS and/or CDNSKEY records, plus RRSIG and
DNSKEY records so that they can be authenticated. The -d path
option
specifies the location of a file containing the current DS records. For
example, this could be a dsset-
file generated by
dnssec-signzone
, or the output of dnssec-dsfromkey
, or the
output of a previous run of dnssec-cds
.
The dnssec-cds
command uses special DNSSEC validation logic
specified by RFC 7344. It requires that the CDS and/or CDNSKEY records
be validly signed by a key represented in the existing DS records. This
is typically the pre-existing KSK.
For protection against replay attacks, the signatures on the child
records must not be older than they were on a previous run of
dnssec-cds
. Their age is obtained from the modification time of the
dsset-
file, or from the -s
option.
To protect against breaking the delegation, dnssec-cds
ensures that
the DNSKEY RRset can be verified by every key algorithm in the new DS
RRset, and that the same set of keys are covered by every DS digest
type.
By default, replacement DS records are written to the standard output;
with the -i
option the input file is overwritten in place. The
replacement DS records are the same as the existing records, when no
change is required. The output can be empty if the CDS/CDNSKEY records
specify that the child zone wants to be insecure.
Warning
Be careful not to delete the DS records when dnssec-cds
fails!
Alternatively, dnssec-cds -u
writes an nsupdate
script to the
standard output. The -u
and -i
options can be used together to
maintain a dsset-
file as well as emit an nsupdate
script.
Options¶
-a algorithm
When converting CDS records to DS records, this option specifies the acceptable digest algorithms. This option can be repeated, so that multiple digest types are allowed. If none of the CDS records use an acceptable digest type,
dnssec-cds
will try to use CDNSKEY records instead; if there are no CDNSKEY records, it reports an error.When converting CDNSKEY records to DS records, this option specifies the digest algorithm to use. It can be repeated, so that multiple DS records are created for each CDNSKEY records.
The algorithm must be one of SHA-1, SHA-256, or SHA-384. These values are case-insensitive, and the hyphen may be omitted. If no algorithm is specified, the default is SHA-256 only.
-c class
- This option specifies the DNS class of the zones.
-D
- This option generates DS records from CDNSKEY records if both CDS and CDNSKEY records are present in the child zone. By default CDS records are preferred.
-d path
This specifies the location of the parent DS records. The path can be the name of a file containing the DS records; if it is a directory,
dnssec-cds
looks for adsset-
file for the domain inside the directory.To protect against replay attacks, child records are rejected if they were signed earlier than the modification time of the
dsset-
file. This can be adjusted with the-s
option.-f child-file
This option specifies the file containing the child’s CDS and/or CDNSKEY records, plus its DNSKEY records and the covering RRSIG records, so that they can be authenticated.
The examples below describe how to generate this file.
-iextension
This option updates the
dsset-
file in place, instead of writing DS records to the standard output.There must be no space between the
-i
and the extension. If no extension is provided, the olddsset-
is discarded. If an extension is present, a backup of the olddsset-
file is kept with the extension appended to its filename.To protect against replay attacks, the modification time of the
dsset-
file is set to match the signature inception time of the child records, provided that it is later than the file’s current modification time.-s start-time
This option specifies the date and time after which RRSIG records become acceptable. This can be either an absolute or a relative time. An absolute start time is indicated by a number in YYYYMMDDHHMMSS notation; 20170827133700 denotes 13:37:00 UTC on August 27th, 2017. A time relative to the
dsset-
file is indicated with-N
, which is N seconds before the file modification time. A time relative to the current time is indicated withnow+N
.If no start-time is specified, the modification time of the
dsset-
file is used.-T ttl
- This option specifies a TTL to be used for new DS records. If not specified, the default is the TTL of the old DS records. If they had no explicit TTL, the new DS records also have no explicit TTL.
-u
This option writes an
nsupdate
script to the standard output, instead of printing the new DS reords. The output is empty if no change is needed.Note: The TTL of new records needs to be specified: it can be done in the original
dsset-
file, with the-T
option, or using thensupdate
ttl
command.-V
- This option prints version information.
-v level
- This option sets the debugging level. Level 1 is intended to be usefully verbose for general users; higher levels are intended for developers.
domain
- This indicates the name of the delegation point/child zone apex.
Exit Status¶
The dnssec-cds
command exits 0 on success, or non-zero if an error
occurred.
If successful, the DS records may or may not need to be changed.
Examples¶
Before running dnssec-signzone
, ensure that the delegations
are up-to-date by running dnssec-cds
on every dsset-
file.
To fetch the child records required by dnssec-cds
, invoke
dig
as in the script below. It is acceptable if the dig
fails, since
dnssec-cds
performs all the necessary checking.
for f in dsset-*
do
d=${f#dsset-}
dig +dnssec +noall +answer $d DNSKEY $d CDNSKEY $d CDS |
dnssec-cds -i -f /dev/stdin -d $f $d
done
When the parent zone is automatically signed by named
,
dnssec-cds
can be used with nsupdate
to maintain a delegation as follows.
The dsset-
file allows the script to avoid having to fetch and
validate the parent DS records, and it maintains the replay attack
protection time.
dig +dnssec +noall +answer $d DNSKEY $d CDNSKEY $d CDS |
dnssec-cds -u -i -f /dev/stdin -d $f $d |
nsupdate -l
dnssec-dsfromkey - DNSSEC DS RR generation tool¶
Synopsis¶
dnssec-dsfromkey [ -1 | -2 | -a alg ] [ -C ] [-T TTL] [-v level] [-K directory] {keyfile}
dnssec-dsfromkey [ -1 | -2 | -a alg ] [ -C ] [-T TTL] [-v level] [-c class] [-A] {-f file} [dnsname]
dnssec-dsfromkey [ -1 | -2 | -a alg ] [ -C ] [-T TTL] [-v level] [-c class] [-K directory] {-s} {dnsname}
dnssec-dsfromkey [ -h | -V ]
Description¶
The dnssec-dsfromkey
command outputs DS (Delegation Signer) resource records
(RRs), or CDS (Child DS) RRs with the -C
option.
By default, only KSKs are converted (keys with flags = 257). The
-A
option includes ZSKs (flags = 256). Revoked keys are never
included.
The input keys can be specified in a number of ways:
By default, dnssec-dsfromkey
reads a key file named in the format
Knnnn.+aaa+iiiii.key
, as generated by dnssec-keygen
.
With the -f file
option, dnssec-dsfromkey
reads keys from a zone
file or partial zone file (which can contain just the DNSKEY records).
With the -s
option, dnssec-dsfromkey
reads a keyset-
file,
as generated by dnssec-keygen
-C
.
Options¶
-1
- This option is an abbreviation for
-a SHA1
. -2
- This option is an abbreviation for
-a SHA-256
. -a algorithm
This option specifies a digest algorithm to use when converting DNSKEY records to DS records. This option can be repeated, so that multiple DS records are created for each DNSKEY record.
The algorithm must be one of SHA-1, SHA-256, or SHA-384. These values are case-insensitive, and the hyphen may be omitted. If no algorithm is specified, the default is SHA-256.
-A
- This option indicates that ZSKs are to be included when generating DS records. Without this option, only
keys which have the KSK flag set are converted to DS records and
printed. This option is only useful in
-f
zone file mode. -c class
- This option specifies the DNS class; the default is IN. This option is only useful in
-s
keyset or-f
zone file mode. -C
- This option generates CDS records rather than DS records.
-f file
This option sets zone file mode, in which the final dnsname argument of
dnssec-dsfromkey
is the DNS domain name of a zone whose master file can be read fromfile
. If the zone name is the same asfile
, then it may be omitted.If
file
is-
, then the zone data is read from the standard input. This makes it possible to use the output of thedig
command as input, as in:dig dnskey example.com | dnssec-dsfromkey -f - example.com
-h
- This option prints usage information.
-K directory
- This option tells BIND 9 to look for key files or
keyset-
files indirectory
. -s
- This option enables keyset mode, in which the final dnsname argument from
dnssec-dsfromkey
is the DNS domain name used to locate akeyset-
file. -T TTL
- This option specifies the TTL of the DS records. By default the TTL is omitted.
-v level
- This option sets the debugging level.
-V
- This option prints version information.
Example¶
To build the SHA-256 DS RR from the Kexample.com.+003+26160
keyfile,
issue the following command:
dnssec-dsfromkey -2 Kexample.com.+003+26160
The command returns something similar to:
example.com. IN DS 26160 5 2 3A1EADA7A74B8D0BA86726B0C227AA85AB8BBD2B2004F41A868A54F0C5EA0B94
Files¶
The keyfile can be designated by the key identification
Knnnn.+aaa+iiiii
or the full file name Knnnn.+aaa+iiiii.key
, as
generated by dnssec-keygen
.
The keyset file name is built from the directory
, the string
keyset-
, and the dnsname
.
Caveat¶
A keyfile error may return “file not found,” even if the file exists.
dnssec-importkey - import DNSKEY records from external systems so they can be managed¶
Synopsis¶
dnssec-importkey [-K directory] [-L ttl] [-P date/offset] [-P sync date/offset] [-D date/offset] [-D sync date/offset] [-h] [-v level] [-V] {keyfile}
dnssec-importkey {-f filename} [-K directory] [-L ttl] [-P date/offset] [-P sync date/offset] [-D date/offset] [-D sync date/offset] [-h] [-v level] [-V] [dnsname]
Description¶
dnssec-importkey
reads a public DNSKEY record and generates a pair
of .key/.private files. The DNSKEY record may be read from an
existing .key file, in which case a corresponding .private file is
generated, or it may be read from any other file or from the standard
input, in which case both .key and .private files are generated.
The newly created .private file does not contain private key data, and
cannot be used for signing. However, having a .private file makes it
possible to set publication (-P
) and deletion (-D
) times for the
key, which means the public key can be added to and removed from the
DNSKEY RRset on schedule even if the true private key is stored offline.
Options¶
-f filename
This option indicates the zone file mode. Instead of a public keyfile name, the argument is the DNS domain name of a zone master file, which can be read from
filename
. If the domain name is the same asfilename
, then it may be omitted.If
filename
is set to"-"
, then the zone data is read from the standard input.-K directory
- This option sets the directory in which the key files are to reside.
-L ttl
- This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL takes precedence. Setting the default TTL to
0
ornone
removes it from the key. -h
- This option emits a usage message and exits.
-v level
- This option sets the debugging level.
-V
- This option prints version information.
Timing Options¶
Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a +
or -
, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y
, mo
, w
, d
, h
, or mi
, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none
or never
.
-P date/offset
- This option sets the date on which a key is to be published to the zone. After that date, the key is included in the zone but is not used to sign it.
-P sync date/offset
- This option sets the date on which CDS and CDNSKEY records that match this key are to be published to the zone.
-D date/offset
- This option sets the date on which the key is to be deleted. After that date, the key is no longer included in the zone. (However, it may remain in the key repository.)
-D sync date/offset
- This option sets the date on which the CDS and CDNSKEY records that match this key are to be deleted.
Files¶
A keyfile can be designed by the key identification Knnnn.+aaa+iiiii
or the full file name Knnnn.+aaa+iiiii.key
, as generated by
dnssec-keygen
.
dnssec-keyfromlabel - DNSSEC key generation tool¶
Synopsis¶
dnssec-keyfromlabel {-l label} [-3] [-a algorithm] [-A date/offset] [-c class] [-D date/offset] [-D sync date/offset] [-E engine] [-f flag] [-G] [-I date/offset] [-i interval] [-k] [-K directory] [-L ttl] [-n nametype] [-P date/offset] [-P sync date/offset] [-p protocol] [-R date/offset] [-S key] [-t type] [-v level] [-V] [-y] {name}
Description¶
dnssec-keyfromlabel
generates a pair of key files that reference a
key object stored in a cryptographic hardware service module (HSM). The
private key file can be used for DNSSEC signing of zone data as if it
were a conventional signing key created by dnssec-keygen
, but the
key material is stored within the HSM and the actual signing takes
place there.
The name
of the key is specified on the command line. This must
match the name of the zone for which the key is being generated.
Options¶
-a algorithm
This option selects the cryptographic algorithm. The value of
algorithm
must be one of RSASHA1, NSEC3RSASHA1, RSASHA256, RSASHA512, ECDSAP256SHA256, ECDSAP384SHA384, ED25519, or ED448.If no algorithm is specified, RSASHA1 is used by default unless the
-3
option is specified, in which case NSEC3RSASHA1 is used instead. (If-3
is used and an algorithm is specified, that algorithm is checked for compatibility with NSEC3.)These values are case-insensitive. In some cases, abbreviations are supported, such as ECDSA256 for ECDSAP256SHA256 and ECDSA384 for ECDSAP384SHA384. If RSASHA1 is specified along with the
-3
option, then NSEC3RSASHA1 is used instead.Since BIND 9.12.0, this option is mandatory except when using the
-S
option, which copies the algorithm from the predecessory key. Previously, the default for newly generated keys was RSASHA1.-3
- This option uses an NSEC3-capable algorithm to generate a DNSSEC key. If this
option is used with an algorithm that has both NSEC and NSEC3
versions, then the NSEC3 version is used; for example,
dnssec-keygen -3a RSASHA1
specifies the NSEC3RSASHA1 algorithm. -E engine
This option specifies the cryptographic hardware to use.
When BIND 9 is built with OpenSSL, this needs to be set to the OpenSSL engine identifier that drives the cryptographic accelerator or hardware service module (usually
pkcs11
).-l label
This option specifies the label for a key pair in the crypto hardware.
When BIND 9 is built with OpenSSL-based PKCS#11 support, the label is an arbitrary string that identifies a particular key. It may be preceded by an optional OpenSSL engine name, followed by a colon, as in
pkcs11:keylabel
.-n nametype
- This option specifies the owner type of the key. The value of
nametype
must either be ZONE (for a DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY (for a key associated with a host (KEY)), USER (for a key associated with a user (KEY)), or OTHER (DNSKEY). These values are case-insensitive. -C
- This option enables compatibility mode, which generates an old-style key, without any metadata.
By default,
dnssec-keyfromlabel
includes the key’s creation date in the metadata stored with the private key; other dates may be set there as well, including publication date, activation date, etc. Keys that include this data may be incompatible with older versions of BIND; the-C
option suppresses them. -c class
- This option indicates that the DNS record containing the key should have the specified class. If not specified, class IN is used.
-f flag
- This option sets the specified flag in the
flag
field of the KEY/DNSKEY record. The only recognized flags are KSK (Key-Signing Key) and REVOKE. -G
- This option generates a key, but does not publish it or sign with it. This option is
incompatible with
-P
and-A
. -h
- This option prints a short summary of the options and arguments to
dnssec-keyfromlabel
. -K directory
- This option sets the directory in which the key files are to be written.
-k
- This option generates KEY records rather than DNSKEY records.
-L
ttl- This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL would take precedence. Setting
the default TTL to
0
ornone
removes it. -p protocol
- This option sets the protocol value for the key. The protocol is a number between 0 and 255. The default is 3 (DNSSEC). Other possible values for this argument are listed in RFC 2535 and its successors.
-S key
- This option generates a key as an explicit successor to an existing key. The name, algorithm, size, and type of the key are set to match the predecessor. The activation date of the new key is set to the inactivation date of the existing one. The publication date is set to the activation date minus the prepublication interval, which defaults to 30 days.
-t type
- This option indicates the type of the key.
type
must be one of AUTHCONF, NOAUTHCONF, NOAUTH, or NOCONF. The default is AUTHCONF. AUTH refers to the ability to authenticate data, and CONF to the ability to encrypt data. -v level
- This option sets the debugging level.
-V
- This option prints version information.
-y
- This option allows DNSSEC key files to be generated even if the key ID would collide with that of an existing key, in the event of either key being revoked. (This is only safe to enable if RFC 5011 trust anchor maintenance is not used with either of the keys involved.)
Timing Options¶
Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a +
or -
, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y
, mo
, w
, d
, h
, or mi
, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none
or never
.
-P date/offset
- This option sets the date on which a key is to be published to the zone. After
that date, the key is included in the zone but is not used
to sign it. If not set, and if the
-G
option has not been used, the default is the current date. -P sync date/offset
- This option sets the date on which CDS and CDNSKEY records that match this key are to be published to the zone.
-A date/offset
- This option sets the date on which the key is to be activated. After that date,
the key is included in the zone and used to sign it. If not set,
and if the
-G
option has not been used, the default is the current date. -R date/offset
- This option sets the date on which the key is to be revoked. After that date, the key is flagged as revoked. It is included in the zone and is used to sign it.
-I date/offset
- This option sets the date on which the key is to be retired. After that date, the key is still included in the zone, but it is not used to sign it.
-D date/offset
- This option sets the date on which the key is to be deleted. After that date, the key is no longer included in the zone. (However, it may remain in the key repository.)
-D sync date/offset
- This option sets the date on which the CDS and CDNSKEY records that match this key are to be deleted.
-i interval
This option sets the prepublication interval for a key. If set, then the publication and activation dates must be separated by at least this much time. If the activation date is specified but the publication date is not, the publication date defaults to this much time before the activation date; conversely, if the publication date is specified but not the activation date, activation is set to this much time after publication.
If the key is being created as an explicit successor to another key, then the default prepublication interval is 30 days; otherwise it is zero.
As with date offsets, if the argument is followed by one of the suffixes
y
,mo
,w
,d
,h
, ormi
, the interval is measured in years, months, weeks, days, hours, or minutes, respectively. Without a suffix, the interval is measured in seconds.
Generated Key Files¶
When dnssec-keyfromlabel
completes successfully, it prints a string
of the form Knnnn.+aaa+iiiii
to the standard output. This is an
identification string for the key files it has generated.
nnnn
is the key name.aaa
is the numeric representation of the algorithm.iiiii
is the key identifier (or footprint).
dnssec-keyfromlabel
creates two files, with names based on the
printed string. Knnnn.+aaa+iiiii.key
contains the public key, and
Knnnn.+aaa+iiiii.private
contains the private key.
The .key
file contains a DNS KEY record that can be inserted into a
zone file (directly or with an $INCLUDE statement).
The .private
file contains algorithm-specific fields. For obvious
security reasons, this file does not have general read permission.
dnssec-keygen: DNSSEC key generation tool¶
Synopsis¶
dnssec-keygen [-3] [-A date/offset] [-a algorithm] [-b keysize] [-C] [-c class] [-D date/offset] [-d bits] [-D sync date/offset] [-E engine] [-f flag] [-G] [-g generator] [-h] [-I date/offset] [-i interval] [-K directory] [-k policy] [-L ttl] [-l file] [-n nametype] [-P date/offset] [-P sync date/offset] [-p protocol] [-q] [-R date/offset] [-S key] [-s strength] [-T rrtype] [-t type] [-V] [-v level] {name}
Description¶
dnssec-keygen
generates keys for DNSSEC (Secure DNS), as defined in
RFC 2535 and RFC 4034. It can also generate keys for use with TSIG
(Transaction Signatures) as defined in RFC 2845, or TKEY (Transaction
Key) as defined in RFC 2930.
The name
of the key is specified on the command line. For DNSSEC
keys, this must match the name of the zone for which the key is being
generated.
Options¶
-3
- This option uses an NSEC3-capable algorithm to generate a DNSSEC key. If this
option is used with an algorithm that has both NSEC and NSEC3
versions, then the NSEC3 version is selected; for example,
dnssec-keygen -3a RSASHA1
specifies the NSEC3RSASHA1 algorithm. -a algorithm
This option selects the cryptographic algorithm. For DNSSEC keys, the value of
algorithm
must be one of RSASHA1, NSEC3RSASHA1, RSASHA256, RSASHA512, ECDSAP256SHA256, ECDSAP384SHA384, ED25519, or ED448. For TKEY, the value must be DH (Diffie-Hellman); specifying this value automatically sets the-T KEY
option as well.These values are case-insensitive. In some cases, abbreviations are supported, such as ECDSA256 for ECDSAP256SHA256 and ECDSA384 for ECDSAP384SHA384. If RSASHA1 is specified along with the
-3
option, NSEC3RSASHA1 is used instead.This parameter must be specified except when using the
-S
option, which copies the algorithm from the predecessor key.In prior releases, HMAC algorithms could be generated for use as TSIG keys, but that feature was removed in BIND 9.13.0. Use
tsig-keygen
to generate TSIG keys.-b keysize
This option specifies the number of bits in the key. The choice of key size depends on the algorithm used: RSA keys must be between 1024 and 4096 bits; Diffie-Hellman keys must be between 128 and 4096 bits. Elliptic curve algorithms do not need this parameter.
If the key size is not specified, some algorithms have pre-defined defaults. For example, RSA keys for use as DNSSEC zone-signing keys have a default size of 1024 bits; RSA keys for use as key-signing keys (KSKs, generated with
-f KSK
) default to 2048 bits.-C
- This option enables compatibility mode, which generates an old-style key, without any timing
metadata. By default,
dnssec-keygen
includes the key’s creation date in the metadata stored with the private key; other dates may be set there as well, including publication date, activation date, etc. Keys that include this data may be incompatible with older versions of BIND; the-C
option suppresses them. -c class
- This option indicates that the DNS record containing the key should have the specified class. If not specified, class IN is used.
-d bits
- This option specifies the key size in bits. For the algorithms RSASHA1, NSEC3RSASA1, RSASHA256, and RSASHA512 the key size must be between 1024 and 4096 bits; DH size is between 128 and 4096 bits. This option is ignored for algorithms ECDSAP256SHA256, ECDSAP384SHA384, ED25519, and ED448.
-E engine
This option specifies the cryptographic hardware to use, when applicable.
When BIND 9 is built with OpenSSL, this needs to be set to the OpenSSL engine identifier that drives the cryptographic accelerator or hardware service module (usually
pkcs11
).-f flag
- This option sets the specified flag in the flag field of the KEY/DNSKEY record. The only recognized flags are KSK (Key-Signing Key) and REVOKE.
-G
- This option generates a key, but does not publish it or sign with it. This option is
incompatible with
-P
and-A
. -g generator
- This option indicates the generator to use if generating a Diffie-Hellman key. Allowed values are 2 and 5. If no generator is specified, a known prime from RFC 2539 is used if possible; otherwise the default is 2.
-h
- This option prints a short summary of the options and arguments to
dnssec-keygen
. -K directory
- This option sets the directory in which the key files are to be written.
-k policy
This option creates keys for a specific
dnssec-policy
. If a policy uses multiple keys,dnssec-keygen
generates multiple keys. This also creates a “.state” file to keep track of the key state.This option creates keys according to the
dnssec-policy
configuration, hence it cannot be used at the same time as many of the other options thatdnssec-keygen
provides.-L ttl
- This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL takes precedence. If this
value is not set and there is no existing DNSKEY RRset, the TTL
defaults to the SOA TTL. Setting the default TTL to
0
ornone
is the same as leaving it unset. -l file
- This option provides a configuration file that contains a
dnssec-policy
statement (matching the policy set with-k
). -n nametype
- This option specifies the owner type of the key. The value of
nametype
must either be ZONE (for a DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY (for a key associated with a host (KEY)), USER (for a key associated with a user (KEY)), or OTHER (DNSKEY). These values are case-insensitive. The default is ZONE for DNSKEY generation. -p protocol
- This option sets the protocol value for the generated key, for use with
-T KEY
. The protocol is a number between 0 and 255. The default is 3 (DNSSEC). Other possible values for this argument are listed in RFC 2535 and its successors. -q
- This option sets quiet mode, which suppresses unnecessary output, including progress
indication. Without this option, when
dnssec-keygen
is run interactively to generate an RSA or DSA key pair, it prints a string of symbols tostderr
indicating the progress of the key generation. A.
indicates that a random number has been found which passed an initial sieve test;+
means a number has passed a single round of the Miller-Rabin primality test; and a space ( ) means that the number has passed all the tests and is a satisfactory key. -S key
- This option creates a new key which is an explicit successor to an existing key. The name, algorithm, size, and type of the key are set to match the existing key. The activation date of the new key is set to the inactivation date of the existing one. The publication date is set to the activation date minus the prepublication interval, which defaults to 30 days.
-s strength
- This option specifies the strength value of the key. The strength is a number between 0 and 15, and currently has no defined purpose in DNSSEC.
-T rrtype
- This option specifies the resource record type to use for the key.
rrtype
must be either DNSKEY or KEY. The default is DNSKEY when using a DNSSEC algorithm, but it can be overridden to KEY for use with SIG(0). -t type
- This option indicates the type of the key for use with
-T KEY
.type
must be one of AUTHCONF, NOAUTHCONF, NOAUTH, or NOCONF. The default is AUTHCONF. AUTH refers to the ability to authenticate data, and CONF to the ability to encrypt data. -V
- This option prints version information.
-v level
- This option sets the debugging level.
Timing Options¶
Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a +
or -
, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y
, mo
, w
, d
, h
, or mi
, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none
or never
.
-P date/offset
- This option sets the date on which a key is to be published to the zone. After
that date, the key is included in the zone but is not used
to sign it. If not set, and if the
-G
option has not been used, the default is the current date. -P sync date/offset
- This option sets the date on which CDS and CDNSKEY records that match this key are to be published to the zone.
-A date/offset
- This option sets the date on which the key is to be activated. After that date,
the key is included in the zone and used to sign it. If not set,
and if the
-G
option has not been used, the default is the current date. If set, and-P
is not set, the publication date is set to the activation date minus the prepublication interval. -R date/offset
- This option sets the date on which the key is to be revoked. After that date, the key is flagged as revoked. It is included in the zone and is used to sign it.
-I date/offset
- This option sets the date on which the key is to be retired. After that date, the key is still included in the zone, but it is not used to sign it.
-D date/offset
- This option sets the date on which the key is to be deleted. After that date, the key is no longer included in the zone. (However, it may remain in the key repository.)
-D sync date/offset
- This option sets the date on which the CDS and CDNSKEY records that match this key are to be deleted.
-i interval
This option sets the prepublication interval for a key. If set, then the publication and activation dates must be separated by at least this much time. If the activation date is specified but the publication date is not, the publication date defaults to this much time before the activation date; conversely, if the publication date is specified but not the activation date, activation is set to this much time after publication.
If the key is being created as an explicit successor to another key, then the default prepublication interval is 30 days; otherwise it is zero.
As with date offsets, if the argument is followed by one of the suffixes
y
,mo
,w
,d
,h
, ormi
, the interval is measured in years, months, weeks, days, hours, or minutes, respectively. Without a suffix, the interval is measured in seconds.
Generated Keys¶
When dnssec-keygen
completes successfully, it prints a string of the
form Knnnn.+aaa+iiiii
to the standard output. This is an
identification string for the key it has generated.
nnnn
is the key name.aaa
is the numeric representation of the algorithm.iiiii
is the key identifier (or footprint).
dnssec-keygen
creates two files, with names based on the printed
string. Knnnn.+aaa+iiiii.key
contains the public key, and
Knnnn.+aaa+iiiii.private
contains the private key.
The .key
file contains a DNSKEY or KEY record. When a zone is being
signed by named
or dnssec-signzone -S
, DNSKEY records are
included automatically. In other cases, the .key
file can be
inserted into a zone file manually or with an $INCLUDE
statement.
The .private
file contains algorithm-specific fields. For obvious
security reasons, this file does not have general read permission.
Example¶
To generate an ECDSAP256SHA256 zone-signing key for the zone
example.com
, issue the command:
dnssec-keygen -a ECDSAP256SHA256 example.com
The command prints a string of the form:
Kexample.com.+013+26160
In this example, dnssec-keygen
creates the files
Kexample.com.+013+26160.key
and Kexample.com.+013+26160.private
.
To generate a matching key-signing key, issue the command:
dnssec-keygen -a ECDSAP256SHA256 -f KSK example.com
dnssec-revoke - set the REVOKED bit on a DNSSEC key¶
Synopsis¶
dnssec-revoke [-hr] [-v level] [-V] [-K directory] [-E engine] [-f] [-R] {keyfile}
Description¶
dnssec-revoke
reads a DNSSEC key file, sets the REVOKED bit on the
key as defined in RFC 5011, and creates a new pair of key files
containing the now-revoked key.
Options¶
-h
- This option emits a usage message and exits.
-K directory
- This option sets the directory in which the key files are to reside.
-r
- This option indicates to remove the original keyset files after writing the new keyset files.
-v level
- This option sets the debugging level.
-V
- This option prints version information.
-E engine
This option specifies the cryptographic hardware to use, when applicable.
When BIND 9 is built with OpenSSL, this needs to be set to the OpenSSL engine identifier that drives the cryptographic accelerator or hardware service module (usually
pkcs11
).-f
- This option indicates a forced overwrite and causes
dnssec-revoke
to write the new key pair, even if a file already exists matching the algorithm and key ID of the revoked key. -R
- This option prints the key tag of the key with the REVOKE bit set, but does not revoke the key.
dnssec-settime: set the key timing metadata for a DNSSEC key¶
Synopsis¶
dnssec-settime [-f] [-K directory] [-L ttl] [-P date/offset] [-P ds date/offset] [-P sync date/offset] [-A date/offset] [-R date/offset] [-I date/offset] [-D date/offset] [-D ds date/offset] [-D sync date/offset] [-S key] [-i interval] [-h] [-V] [-v level] [-E engine] {keyfile} [-s] [-g state] [-d state date/offset] [-k state date/offset] [-r state date/offset] [-z state date/offset]
Description¶
dnssec-settime
reads a DNSSEC private key file and sets the key
timing metadata as specified by the -P
, -A
, -R
, -I
, and
-D
options. The metadata can then be used by dnssec-signzone
or
other signing software to determine when a key is to be published,
whether it should be used for signing a zone, etc.
If none of these options is set on the command line,
dnssec-settime
simply prints the key timing metadata already stored
in the key.
When key metadata fields are changed, both files of a key pair
(Knnnn.+aaa+iiiii.key
and Knnnn.+aaa+iiiii.private
) are
regenerated.
Metadata fields are stored in the private file. A human-readable description of the metadata is also placed in comments in the key file. The private file’s permissions are always set to be inaccessible to anyone other than the owner (mode 0600).
When working with state files, it is possible to update the timing metadata in
those files as well with -s
. With this option, it is also possible to update key
states with -d
(DS), -k
(DNSKEY), -r
(RRSIG of KSK), or -z
(RRSIG of ZSK). Allowed states are HIDDEN, RUMOURED, OMNIPRESENT, and
UNRETENTIVE.
The goal state of the key can also be set with -g
. This should be either
HIDDEN or OMNIPRESENT, representing whether the key should be removed from the
zone or published.
It is NOT RECOMMENDED to manipulate state files manually, except for testing purposes.
Options¶
-f
- This option forces an update of an old-format key with no metadata fields. Without
this option,
dnssec-settime
fails when attempting to update a legacy key. With this option, the key is recreated in the new format, but with the original key data retained. The key’s creation date is set to the present time. If no other values are specified, then the key’s publication and activation dates are also set to the present time. -K directory
- This option sets the directory in which the key files are to reside.
-L ttl
- This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL takes precedence. If this
value is not set and there is no existing DNSKEY RRset, the TTL
defaults to the SOA TTL. Setting the default TTL to
0
ornone
removes it from the key. -h
- This option emits a usage message and exits.
-V
- This option prints version information.
-v level
- This option sets the debugging level.
-E engine
This option specifies the cryptographic hardware to use, when applicable.
When BIND 9 is built with OpenSSL, this needs to be set to the OpenSSL engine identifier that drives the cryptographic accelerator or hardware service module (usually
pkcs11
).
Timing Options¶
Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a +
or -
, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y
, mo
, w
, d
, h
, or mi
, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none
or never
.
-P date/offset
- This option sets the date on which a key is to be published to the zone. After that date, the key is included in the zone but is not used to sign it.
-P ds date/offset
- This option sets the date on which DS records that match this key have been seen in the parent zone.
-P sync date/offset
- This option sets the date on which CDS and CDNSKEY records that match this key are to be published to the zone.
-A date/offset
- This option sets the date on which the key is to be activated. After that date, the key is included in the zone and used to sign it.
-R date/offset
- This option sets the date on which the key is to be revoked. After that date, the key is flagged as revoked. It is included in the zone and is used to sign it.
-I date/offset
- This option sets the date on which the key is to be retired. After that date, the key is still included in the zone, but it is not used to sign it.
-D date/offset
- This option sets the date on which the key is to be deleted. After that date, the key is no longer included in the zone. (However, it may remain in the key repository.)
-D ds date/offset
- This option sets the date on which the DS records that match this key have been seen removed from the parent zone.
-D sync date/offset
- This option sets the date on which the CDS and CDNSKEY records that match this key are to be deleted.
-S predecessor key
- This option selects a key for which the key being modified is an explicit successor. The name, algorithm, size, and type of the predecessor key must exactly match those of the key being modified. The activation date of the successor key is set to the inactivation date of the predecessor. The publication date is set to the activation date minus the prepublication interval, which defaults to 30 days.
-i interval
This option sets the prepublication interval for a key. If set, then the publication and activation dates must be separated by at least this much time. If the activation date is specified but the publication date is not, the publication date defaults to this much time before the activation date; conversely, if the publication date is specified but not the activation date, activation is set to this much time after publication.
If the key is being created as an explicit successor to another key, then the default prepublication interval is 30 days; otherwise it is zero.
As with date offsets, if the argument is followed by one of the suffixes
y
,mo
,w
,d
,h
, ormi
, the interval is measured in years, months, weeks, days, hours, or minutes, respectively. Without a suffix, the interval is measured in seconds.
Key State Options¶
To test dnssec-policy it may be necessary to construct keys with artificial state information; these options are used by the testing framework for that purpose, but should never be used in production.
Known key states are HIDDEN, RUMOURED, OMNIPRESENT, and UNRETENTIVE.
-s
- This option indicates that when setting key timing data, the state file should also be updated.
-g state
- This option sets the goal state for this key. Must be HIDDEN or OMNIPRESENT.
-d state date/offset
- This option sets the DS state for this key as of the specified date, offset from the current date.
-k state date/offset
- This option sets the DNSKEY state for this key as of the specified date, offset from the current date.
-r state date/offset
- This option sets the RRSIG (KSK) state for this key as of the specified date, offset from the current date.
-z state date/offset
- This option sets the RRSIG (ZSK) state for this key as of the specified date, offset from the current date.
Printing Options¶
dnssec-settime
can also be used to print the timing metadata
associated with a key.
-u
- This option indicates that times should be printed in Unix epoch format.
-p C/P/Pds/Psync/A/R/I/D/Dds/Dsync/all
- This option prints a specific metadata value or set of metadata values.
The
-p
option may be followed by one or more of the following letters or strings to indicate which value or values to print:C
for the creation date,P
for the publication date,Pds` for the DS publication date, ``Psync
for the CDS and CDNSKEY publication date,A
for the activation date,R
for the revocation date,I
for the inactivation date,D
for the deletion date,Dds
for the DS deletion date, andDsync
for the CDS and CDNSKEY deletion date. To print all of the metadata, useall
.
dnssec-signzone - DNSSEC zone signing tool¶
Synopsis¶
dnssec-signzone [-a] [-c class] [-d directory] [-D] [-E engine] [-e end-time] [-f output-file] [-g] [-h] [-i interval] [-I input-format] [-j jitter] [-K directory] [-k key] [-L serial] [-M maxttl] [-N soa-serial-format] [-o origin] [-O output-format] [-P] [-Q] [-q] [-R] [-S] [-s start-time] [-T ttl] [-t] [-u] [-v level] [-V] [-X extended end-time] [-x] [-z] [-3 salt] [-H iterations] [-A] {zonefile} [key…]
Description¶
dnssec-signzone
signs a zone; it generates NSEC and RRSIG records
and produces a signed version of the zone. The security status of
delegations from the signed zone (that is, whether the child zones are
secure) is determined by the presence or absence of a keyset
file for each child zone.
Options¶
-a
- This option verifies all generated signatures.
-c class
- This option specifies the DNS class of the zone.
-C
- This option sets compatibility mode, in which a
keyset-zonename
file is generated in addition todsset-zonename
when signing a zone, for use by older versions ofdnssec-signzone
. -d directory
- This option indicates the directory where BIND 9 should look for
dsset-
orkeyset-
files. -D
- This option indicates that only those record types automatically managed by
dnssec-signzone
, i.e., RRSIG, NSEC, NSEC3 and NSEC3PARAM records, should be included in the output. If smart signing (-S
) is used, DNSKEY records are also included. The resulting file can be included in the original zone file with$INCLUDE
. This option cannot be combined with-O raw
or serial-number updating. -E engine
This option specifies the hardware to use for cryptographic operations, such as a secure key store used for signing, when applicable.
When BIND 9 is built with OpenSSL, this needs to be set to the OpenSSL engine identifier that drives the cryptographic accelerator or hardware service module (usually
pkcs11
).-g
- This option indicates that DS records for child zones should be generated from a
dsset-
orkeyset-
file. Existing DS records are removed. -K directory
- This option specifies the directory to search for DNSSEC keys. If not specified, it defaults to the current directory.
-k key
- This option tells BIND 9 to treat the specified key as a key-signing key, ignoring any key flags. This option may be specified multiple times.
-M maxttl
- This option sets the maximum TTL for the signed zone. Any TTL higher than
maxttl
in the input zone is reduced tomaxttl
in the output. This provides certainty as to the largest possible TTL in the signed zone, which is useful to know when rolling keys. The maxttl is the longest possible time before signatures that have been retrieved by resolvers expire from resolver caches. Zones that are signed with this option should be configured to use a matchingmax-zone-ttl
innamed.conf
. (Note: This option is incompatible with-D
, because it modifies non-DNSSEC data in the output zone.) -s start-time
- This option specifies the date and time when the generated RRSIG records become
valid. This can be either an absolute or relative time. An absolute
start time is indicated by a number in YYYYMMDDHHMMSS notation;
20000530144500 denotes 14:45:00 UTC on May 30th, 2000. A relative
start time is indicated by
+N
, which is N seconds from the current time. If nostart-time
is specified, the current time minus 1 hour (to allow for clock skew) is used. -e end-time
- This option specifies the date and time when the generated RRSIG records expire. As
with
start-time
, an absolute time is indicated in YYYYMMDDHHMMSS notation. A time relative to the start time is indicated with+N
, which is N seconds from the start time. A time relative to the current time is indicated withnow+N
. If noend-time
is specified, 30 days from the start time is the default.end-time
must be later thanstart-time
. -X extended end-time
This option specifies the date and time when the generated RRSIG records for the DNSKEY RRset expire. This is to be used in cases when the DNSKEY signatures need to persist longer than signatures on other records; e.g., when the private component of the KSK is kept offline and the KSK signature is to be refreshed manually.
As with
end-time
, an absolute time is indicated in YYYYMMDDHHMMSS notation. A time relative to the start time is indicated with+N
, which is N seconds from the start time. A time relative to the current time is indicated withnow+N
. If noextended end-time
is specified, the value ofend-time
is used as the default. (end-time
, in turn, defaults to 30 days from the start time.)extended end-time
must be later thanstart-time
.-f output-file
- This option indicates the name of the output file containing the signed zone. The default
is to append
.signed
to the input filename. Ifoutput-file
is set to-
, then the signed zone is written to the standard output, with a default output format offull
. -h
- This option prints a short summary of the options and arguments to
dnssec-signzone
. -V
- This option prints version information.
-i interval
This option indicates that, when a previously signed zone is passed as input, records may be re-signed. The
interval
option specifies the cycle interval as an offset from the current time, in seconds. If a RRSIG record expires after the cycle interval, it is retained; otherwise, it is considered to be expiring soon and it is replaced.The default cycle interval is one quarter of the difference between the signature end and start times. So if neither
end-time
norstart-time
is specified,dnssec-signzone
generates signatures that are valid for 30 days, with a cycle interval of 7.5 days. Therefore, if any existing RRSIG records are due to expire in less than 7.5 days, they are replaced.-I input-format
- This option sets the format of the input zone file. Possible formats are
text
(the default), andraw
. This option is primarily intended to be used for dynamic signed zones, so that the dumped zone file in a non-text format containing updates can be signed directly. This option is not useful for non-dynamic zones. -j jitter
When signing a zone with a fixed signature lifetime, all RRSIG records issued at the time of signing expire simultaneously. If the zone is incrementally signed, i.e., a previously signed zone is passed as input to the signer, all expired signatures must be regenerated at approximately the same time. The
jitter
option specifies a jitter window that is used to randomize the signature expire time, thus spreading incremental signature regeneration over time.Signature lifetime jitter also, to some extent, benefits validators and servers by spreading out cache expiration, i.e., if large numbers of RRSIGs do not expire at the same time from all caches, there is less congestion than if all validators need to refetch at around the same time.
-L serial
- When writing a signed zone to “raw” format, this option sets the “source
serial” value in the header to the specified
serial
number. (This is expected to be used primarily for testing purposes.) -n ncpus
- This option specifies the number of threads to use. By default, one thread is started for each detected CPU.
-N soa-serial-format
This option sets the SOA serial number format of the signed zone. Possible formats are
keep
(the default),increment
,unixtime
, anddate
.- keep
- This format indicates that the SOA serial number should not be modified.
- increment
- This format increments the SOA serial number using RFC 1982 arithmetic.
- unixtime
- This format sets the SOA serial number to the number of seconds since the beginning of the Unix epoch, unless the serial number is already greater than or equal to that value, in which case it is simply incremented by one.
- date
- This format sets the SOA serial number to today’s date, in YYYYMMDDNN format, unless the serial number is already greater than or equal to that value, in which case it is simply incremented by one.
-o origin
- This option sets the zone origin. If not specified, the name of the zone file is assumed to be the origin.
-O output-format
- This option sets the format of the output file containing the signed
zone. Possible formats are
text
(the default), which is the standard textual representation of the zone;full
, which is text output in a format suitable for processing by external scripts; andraw
andraw=N
, which store the zone in binary formats for rapid loading bynamed
.raw=N
specifies the format version of the raw zone file: if N is 0, the raw file can be read by any version ofnamed
; if N is 1, the file can be read by release 9.9.0 or higher. The default is 1. -P
This option disables post-sign verification tests.
The post-sign verification tests ensure that for each algorithm in use there is at least one non-revoked self-signed KSK key, that all revoked KSK keys are self-signed, and that all records in the zone are signed by the algorithm. This option skips these tests.
-Q
This option removes signatures from keys that are no longer active.
Normally, when a previously signed zone is passed as input to the signer, and a DNSKEY record has been removed and replaced with a new one, signatures from the old key that are still within their validity period are retained. This allows the zone to continue to validate with cached copies of the old DNSKEY RRset. The
-Q
option forcesdnssec-signzone
to remove signatures from keys that are no longer active. This enables ZSK rollover using the procedure described in RFC 4641#4.2.1.1 (“Pre-Publish Key Rollover”).-q
- This option enables quiet mode, which suppresses unnecessary output. Without this option, when
dnssec-signzone
is run it prints three pieces of information to standard output: the number of keys in use; the algorithms used to verify the zone was signed correctly and other status information; and the filename containing the signed zone. With the option that output is suppressed, leaving only the filename. -R
This option removes signatures from keys that are no longer published.
This option is similar to
-Q
, except it forcesdnssec-signzone
to remove signatures from keys that are no longer published. This enables ZSK rollover using the procedure described in RFC 4641#4.2.1.2 (“Double Signature Zone Signing Key Rollover”).-S
This option enables smart signing, which instructs
dnssec-signzone
to search the key repository for keys that match the zone being signed, and to include them in the zone if appropriate.When a key is found, its timing metadata is examined to determine how it should be used, according to the following rules. Each successive rule takes priority over the prior ones:
If no timing metadata has been set for the key, the key is published in the zone and used to sign the zone.
If the key’s publication date is set and is in the past, the key is published in the zone.
If the key’s activation date is set and is in the past, the key is published (regardless of publication date) and used to sign the zone.
If the key’s revocation date is set and is in the past, and the key is published, then the key is revoked, and the revoked key is used to sign the zone.
If either the key’s unpublication or deletion date is set and in the past, the key is NOT published or used to sign the zone, regardless of any other metadata.
If the key’s sync publication date is set and is in the past, synchronization records (type CDS and/or CDNSKEY) are created.
If the key’s sync deletion date is set and is in the past, synchronization records (type CDS and/or CDNSKEY) are removed.
-T ttl
- This option specifies a TTL to be used for new DNSKEY records imported into the
zone from the key repository. If not specified, the default is the
TTL value from the zone’s SOA record. This option is ignored when
signing without
-S
, since DNSKEY records are not imported from the key repository in that case. It is also ignored if there are any pre-existing DNSKEY records at the zone apex, in which case new records’ TTL values are set to match them, or if any of the imported DNSKEY records had a default TTL value. In the event of a conflict between TTL values in imported keys, the shortest one is used. -t
- This option prints statistics at completion.
-u
- This option updates the NSEC/NSEC3 chain when re-signing a previously signed zone.
With this option, a zone signed with NSEC can be switched to NSEC3,
or a zone signed with NSEC3 can be switched to NSEC or to NSEC3 with
different parameters. Without this option,
dnssec-signzone
retains the existing chain when re-signing. -v level
- This option sets the debugging level.
-x
- This option indicates that BIND 9 should only sign the DNSKEY, CDNSKEY, and CDS RRsets with key-signing keys,
and should omit signatures from zone-signing keys. (This is similar to the
dnssec-dnskey-kskonly yes;
zone option innamed
.) -z
- This option indicates that BIND 9 should ignore the KSK flag on keys when determining what to sign. This causes
KSK-flagged keys to sign all records, not just the DNSKEY RRset.
(This is similar to the
update-check-ksk no;
zone option innamed
.) -3 salt
- This option generates an NSEC3 chain with the given hex-encoded salt. A dash (-) can be used to indicate that no salt is to be used when generating the NSEC3 chain.
-H iterations
- This option indicates that, when generating an NSEC3 chain, BIND 9 should use this many iterations. The default is 10.
-A
This option indicates that, when generating an NSEC3 chain, BIND 9 should set the OPTOUT flag on all NSEC3 records and should not generate NSEC3 records for insecure delegations.
Using this option twice (i.e.,
-AA
) turns the OPTOUT flag off for all records. This is useful when using the-u
option to modify an NSEC3 chain which previously had OPTOUT set.zonefile
- This option sets the file containing the zone to be signed.
key
- This option specifies which keys should be used to sign the zone. If no keys are specified, the zone is examined for DNSKEY records at the zone apex. If these records are found and there are matching private keys in the current directory, they are used for signing.
Example¶
The following command signs the example.com
zone with the
ECDSAP256SHA256 key generated by dnssec-keygen
(Kexample.com.+013+17247). Because the -S
option is not being used,
the zone’s keys must be in the master file (db.example.com
). This
invocation looks for dsset
files in the current directory, so that
DS records can be imported from them (-g
).
% dnssec-signzone -g -o example.com db.example.com \
Kexample.com.+013+17247
db.example.com.signed
%
In the above example, dnssec-signzone
creates the file
db.example.com.signed
. This file should be referenced in a zone
statement in the named.conf
file.
This example re-signs a previously signed zone with default parameters. The private keys are assumed to be in the current directory.
% cp db.example.com.signed db.example.com
% dnssec-signzone -o example.com db.example.com
db.example.com.signed
%
dnssec-verify - DNSSEC zone verification tool¶
Synopsis¶
dnssec-verify [-c class] [-E engine] [-I input-format] [-o origin] [-q] [-v level] [-V] [-x] [-z] {zonefile}
Description¶
dnssec-verify
verifies that a zone is fully signed for each
algorithm found in the DNSKEY RRset for the zone, and that the
NSEC/NSEC3 chains are complete.
Options¶
-c class
- This option specifies the DNS class of the zone.
-E engine
This option specifies the cryptographic hardware to use, when applicable.
When BIND 9 is built with OpenSSL, this needs to be set to the OpenSSL engine identifier that drives the cryptographic accelerator or hardware service module (usually
pkcs11
).-I input-format
- This option sets the format of the input zone file. Possible formats are
text
(the default) andraw
. This option is primarily intended to be used for dynamic signed zones, so that the dumped zone file in a non-text format containing updates can be verified independently. This option is not useful for non-dynamic zones. -o origin
- This option indicates the zone origin. If not specified, the name of the zone file is assumed to be the origin.
-v level
- This option sets the debugging level.
-V
- This option prints version information.
-q
- This option sets quiet mode, which suppresses output. Without this option, when
dnssec-verify
is run it prints to standard output the number of keys in use, the algorithms used to verify the zone was signed correctly, and other status information. With this option, all non-error output is suppressed, and only the exit code indicates success. -x
- This option verifies only that the DNSKEY RRset is signed with key-signing keys.
Without this flag, it is assumed that the DNSKEY RRset is signed
by all active keys. When this flag is set, it is not an error if
the DNSKEY RRset is not signed by zone-signing keys. This corresponds
to the
-x
option indnssec-signzone
. -z
This option indicates that the KSK flag on the keys should be ignored when determining whether the zone is correctly signed. Without this flag, it is assumed that there is a non-revoked, self-signed DNSKEY with the KSK flag set for each algorithm, and that RRsets other than DNSKEY RRset are signed with a different DNSKEY without the KSK flag set.
With this flag set, BIND 9 only requires that for each algorithm, there be at least one non-revoked, self-signed DNSKEY, regardless of the KSK flag state, and that other RRsets be signed by a non-revoked key for the same algorithm that includes the self-signed key; the same key may be used for both purposes. This corresponds to the
-z
option indnssec-signzone
.zonefile
- This option indicates the file containing the zone to be signed.
dnstap-read - print dnstap data in human-readable form¶
Synopsis¶
dnstap-read [-m] [-p] [-x] [-y] {file}
Description¶
dnstap-read
reads dnstap
data from a specified file and prints
it in a human-readable format. By default, dnstap
data is printed in
a short summary format, but if the -y
option is specified, a
longer and more detailed YAML format is used.
Options¶
-m
- This option indicates trace memory allocations, and is used for debugging memory leaks.
-p
- This option prints the text form of the DNS
message that was encapsulated in the
dnstap
frame, after printing thednstap
data. -x
- This option prints a hex dump of the wire form
of the DNS message that was encapsulated in the
dnstap
frame, after printing thednstap
data. -y
- This option prints
dnstap
data in a detailed YAML format.
See Also¶
named(8), rndc(8), BIND 9 Administrator Reference Manual.
filter-aaaa.so - filter AAAA in DNS responses when A is present¶
Synopsis¶
plugin query “filter-aaaa.so” [{ parameters }];
Description¶
filter-aaaa.so
is a query plugin module for named
, enabling
named
to omit some IPv6 addresses when responding to clients.
Until BIND 9.12, this feature was implemented natively in named
and
enabled with the filter-aaaa
ACL and the filter-aaaa-on-v4
and
filter-aaaa-on-v6
options. These options are now deprecated in
named.conf
but can be passed as parameters to the
filter-aaaa.so
plugin, for example:
plugin query "filter-aaaa.so" {
filter-aaaa-on-v4 yes;
filter-aaaa-on-v6 yes;
filter-aaaa { 192.0.2.1; 2001:db8:2::1; };
};
This module is intended to aid transition from IPv4 to IPv6 by withholding IPv6 addresses from DNS clients which are not connected to the IPv6 Internet, when the name being looked up has an IPv4 address available. Use of this module is not recommended unless absolutely necessary.
Note: This mechanism can erroneously cause other servers not to give AAAA records to their clients. If a recursing server with both IPv6 and IPv4 network connections queries an authoritative server using this mechanism via IPv4, it is denied AAAA records even if its client is using IPv6.
Options¶
filter-aaaa
- This option specifies a list of client addresses for which AAAA filtering is to
be applied. The default is
any
. filter-aaaa-on-v4
If set to
yes
, this option indicates that the DNS client is at an IPv4 address, infilter-aaaa
. If the response does not include DNSSEC signatures, then all AAAA records are deleted from the response. This filtering applies to all responses, not only authoritative ones.If set to
break-dnssec
, then AAAA records are deleted even when DNSSEC is enabled. As suggested by the name, this causes the response to fail to verify, because the DNSSEC protocol is designed to detect deletions.This mechanism can erroneously cause other servers not to give AAAA records to their clients. If a recursing server with both IPv6 and IPv4 network connections queries an authoritative server using this mechanism via IPv4, it is denied AAAA records even if its client is using IPv6.
filter-aaaa-on-v6
- This option is identical to
filter-aaaa-on-v4
, except that it filters AAAA responses to queries from IPv6 clients instead of IPv4 clients. To filter all responses, set both options toyes
.
See Also¶
BIND 9 Administrator Reference Manual.
host - DNS lookup utility¶
Synopsis¶
host [-aACdlnrsTUwv] [-c class] [-N ndots] [-p port] [-R number] [-t type] [-W wait] [-m flag] [ [-4] | [-6] ] [-v] [-V] {name} [server]
Description¶
host
is a simple utility for performing DNS lookups. It is normally
used to convert names to IP addresses and vice versa. When no arguments
or options are given, host
prints a short summary of its
command-line arguments and options.
name
is the domain name that is to be looked up. It can also be a
dotted-decimal IPv4 address or a colon-delimited IPv6 address, in which
case host
by default performs a reverse lookup for that address.
server
is an optional argument which is either the name or IP
address of the name server that host
should query instead of the
server or servers listed in /etc/resolv.conf
.
Options¶
-4
- This option specifies that only IPv4 should be used for query transport. See also the
-6
option. -6
- This option specifies that only IPv6 should be used for query transport. See also the
-4
option. -a
- The
-a
(“all”) option is normally equivalent to-v -t ANY
. It also affects the behavior of the-l
list zone option. -A
- The
-A
(“almost all”) option is equivalent to-a
, except that RRSIG, NSEC, and NSEC3 records are omitted from the output. -c class
- This option specifies the query class, which can be used to lookup HS (Hesiod) or CH (Chaosnet) class resource records. The default class is IN (Internet).
-C
- This option indicates that
named
should check consistency, meaning thathost
queries the SOA records for zonename
from all the listed authoritative name servers for that zone. The list of name servers is defined by the NS records that are found for the zone. -d
- This option prints debugging traces, and is equivalent to the
-v
verbose option. -l
This option tells
named
to list the zone, meaning thehost
command performs a zone transfer of zonename
and prints out the NS, PTR, and address records (A/AAAA).Together, the
-l -a
options print all records in the zone.-N ndots
- This option specifies the number of dots (
ndots
) that have to be inname
for it to be considered absolute. The default value is that defined using thendots
statement in/etc/resolv.conf
, or 1 if nondots
statement is present. Names with fewer dots are interpreted as relative names, and are searched for in the domains listed in thesearch
ordomain
directive in/etc/resolv.conf
. -p port
- This option specifies the port to query on the server. The default is 53.
-r
- This option specifies a non-recursive query; setting this option clears the RD (recursion
desired) bit in the query. This means that the name server
receiving the query does not attempt to resolve
name
. The-r
option enableshost
to mimic the behavior of a name server by making non-recursive queries, and expecting to receive answers to those queries that can be referrals to other name servers. -R number
- This option specifies the number of retries for UDP queries. If
number
is negative or zero, the number of retries is silently set to 1. The default value is 1, or the value of theattempts
option in/etc/resolv.conf
, if set. -s
- This option tells
named
not to send the query to the next nameserver if any server responds with a SERVFAIL response, which is the reverse of normal stub resolver behavior. -t type
This option specifies the query type. The
type
argument can be any recognized query type: CNAME, NS, SOA, TXT, DNSKEY, AXFR, etc.When no query type is specified,
host
automatically selects an appropriate query type. By default, it looks for A, AAAA, and MX records. If the-C
option is given, queries are made for SOA records. Ifname
is a dotted-decimal IPv4 address or colon-delimited IPv6 address,host
queries for PTR records.If a query type of IXFR is chosen, the starting serial number can be specified by appending an equals sign (=), followed by the starting serial number, e.g.,
-t IXFR=12345678
.-T
;-U
- This option specifies TCP or UDP. By default,
host
uses UDP when making queries; the-T
option makes it use a TCP connection when querying the name server. TCP is automatically selected for queries that require it, such as zone transfer (AXFR) requests. TypeANY
queries default to TCP, but can be forced to use UDP initially via-U
. -m flag
- This option sets memory usage debugging: the flag can be
record
,usage
, ortrace
. The-m
option can be specified more than once to set multiple flags. -v
- This option sets verbose output, and is equivalent to the
-d
debug option. Verbose output can also be enabled by setting thedebug
option in/etc/resolv.conf
. -V
- This option prints the version number and exits.
-w
- This option sets “wait forever”: the query timeout is set to the maximum possible. See
also the
-W
option. -W wait
This options sets the length of the wait timeout, indicating that
named
should wait for up towait
seconds for a reply. Ifwait
is less than 1, the wait interval is set to 1 second.By default,
host
waits for 5 seconds for UDP responses and 10 seconds for TCP connections. These defaults can be overridden by thetimeout
option in/etc/resolv.conf
.See also the
-w
option.
IDN Support¶
If host
has been built with IDN (internationalized domain name)
support, it can accept and display non-ASCII domain names. host
appropriately converts character encoding of a domain name before sending
a request to a DNS server or displaying a reply from the server.
To turn off IDN support, define the IDN_DISABLE
environment variable. IDN support is disabled if the variable is set
when host
runs.
Files¶
/etc/resolv.conf
See Also¶
dig(1), named(8).
mdig - DNS pipelined lookup utility¶
Synopsis¶
mdig {@server} [-f filename] [-h] [-v] [ [-4] | [-6] ] [-m] [-b address] [-p port#] [-c class] [-t type] [-i] [-x addr] [plusopt…]
mdig {-h}
mdig [@server] {global-opt…} { {local-opt…} {query} …}
Description¶
mdig
is a multiple/pipelined query version of dig
: instead of
waiting for a response after sending each query, it begins by sending
all queries. Responses are displayed in the order in which they are
received, not in the order the corresponding queries were sent.
mdig
options are a subset of the dig
options, and are divided
into “anywhere options,” which can occur anywhere, “global options,” which
must occur before the query name (or they are ignored with a warning),
and “local options,” which apply to the next query on the command line.
The @server
option is a mandatory global option. It is the name or IP
address of the name server to query. (Unlike dig
, this value is not
retrieved from /etc/resolv.conf
.) It can be an IPv4 address in
dotted-decimal notation, an IPv6 address in colon-delimited notation, or
a hostname. When the supplied server
argument is a hostname,
mdig
resolves that name before querying the name server.
mdig
provides a number of query options which affect the way in
which lookups are made and the results displayed. Some of these set or
reset flag bits in the query header, some determine which sections of
the answer get printed, and others determine the timeout and retry
strategies.
Each query option is identified by a keyword preceded by a plus sign
(+
). Some keywords set or reset an option. These may be preceded by
the string no
to negate the meaning of that keyword. Other keywords
assign values to options like the timeout interval. They have the form
+keyword=value
.
Anywhere Options¶
-f
- This option makes
mdig
operate in batch mode by reading a list of lookup requests to process from the filefilename
. The file contains a number of queries, one per line. Each entry in the file should be organized in the same way they would be presented as queries tomdig
using the command-line interface. -h
- This option causes
mdig
to print detailed help information, with the full list of options, and exit. -v
- This option causes
mdig
to print the version number and exit.
Global Options¶
-4
- This option forces
mdig
to only use IPv4 query transport. -6
- This option forces
mdig
to only use IPv6 query transport. -b address
- This option sets the source IP address of the query to
address
. This must be a valid address on one of the host’s network interfaces or “0.0.0.0” or “::”. An optional port may be specified by appending “#<port>” -m
- This option enables memory usage debugging.
-p port#
- This option is used when a non-standard port number is to be
queried.
port#
is the port number thatmdig
sends its queries to, instead of the standard DNS port number 53. This option is used to test a name server that has been configured to listen for queries on a non-standard port number.
The global query options are:
+[no]additional
- This option displays [or does not display] the additional section of a reply. The default is to display it.
+[no]all
- This option sets or clears all display flags.
+[no]answer
- This option displays [or does not display] the answer section of a reply. The default is to display it.
+[no]authority
- This option displays [or does not display] the authority section of a reply. The default is to display it.
+[no]besteffort
- This option attempts to display [or does not display] the contents of messages which are malformed. The default is to not display malformed answers.
+burst
- This option delays queries until the start of the next second.
+[no]cl
- This option displays [or does not display] the CLASS when printing the record.
+[no]comments
- This option toggles the display of comment lines in the output. The default is to print comments.
+[no]continue
- This option toggles continuation on errors (e.g. timeouts).
+[no]crypto
- This option toggles the display of cryptographic fields in DNSSEC records. The
contents of these fields are unnecessary to debug most DNSSEC
validation failures and removing them makes it easier to see the
common failures. The default is to display the fields. When omitted,
they are replaced by the string “[omitted]”; in the DNSKEY case, the
key ID is displayed as the replacement, e.g.,
[ key id = value ]
. +dscp[=value]
- This option sets the DSCP code point to be used when sending the query. Valid DSCP code points are in the range [0…63]. By default no code point is explicitly set.
+[no]multiline
- This option toggles printing of records, like the SOA records, in a verbose multi-line format
with human-readable comments. The default is to print each record on
a single line, to facilitate machine parsing of the
mdig
output. +[no]question
- This option prints [or does not print] the question section of a query when an answer is returned. The default is to print the question section as a comment.
+[no]rrcomments
- This option toggles the display of per-record comments in the output (for example, human-readable key information about DNSKEY records). The default is not to print record comments unless multiline mode is active.
+[no]short
- This option provides [or does not provide] a terse answer. The default is to print the answer in a verbose form.
+split=W
- This option splits long hex- or base64-formatted fields in resource records into
chunks of
W
characters (whereW
is rounded up to the nearest multiple of 4).+nosplit
or+split=0
causes fields not to be split. The default is 56 characters, or 44 characters when multiline mode is active. +[no]tcp
- This option uses [or does not use] TCP when querying name servers. The default behavior is to use UDP.
+[no]ttlid
- This option displays [or does not display] the TTL when printing the record.
+[no]ttlunits
- This option displays [or does not display] the TTL in friendly human-readable time units of “s”, “m”, “h”, “d”, and “w”, representing seconds, minutes, hours, days, and weeks. This implies +ttlid.
+[no]vc
- This option uses [or does not use] TCP when querying name servers. This alternate
syntax to
+[no]tcp
is provided for backwards compatibility. Thevc
stands for “virtual circuit”.
Local Options¶
-c class
- This option sets the query class to
class
. It can be any valid query class which is supported in BIND 9. The default query class is “IN”. -t type
- This option sets the query type to
type
. It can be any valid query type which is supported in BIND 9. The default query type is “A”, unless the-x
option is supplied to indicate a reverse lookup with the “PTR” query type. -x addr
- Reverse lookups - mapping addresses to names - are simplified by
this option.
addr
is an IPv4 address in dotted-decimal notation, or a colon-delimited IPv6 address.mdig
automatically performs a lookup for a query name like11.12.13.10.in-addr.arpa
and sets the query type and class to PTR and IN respectively. By default, IPv6 addresses are looked up using nibble format under the IP6.ARPA domain.
The local query options are:
+[no]aaflag
- This is a synonym for
+[no]aaonly
. +[no]aaonly
- This sets the
aa
flag in the query. +[no]adflag
- This sets [or does not set] the AD (authentic data) bit in the query. This requests the server to return whether all of the answer and authority sections have all been validated as secure, according to the security policy of the server. AD=1 indicates that all records have been validated as secure and the answer is not from a OPT-OUT range. AD=0 indicates that some part of the answer was insecure or not validated. This bit is set by default.
+bufsize=B
- This sets the UDP message buffer size advertised using EDNS0 to
B
bytes. The maximum and minimum sizes of this buffer are 65535 and 0 respectively. Values outside this range are rounded up or down appropriately. Values other than zero cause a EDNS query to be sent. +[no]cdflag
- This sets [or does not set] the CD (checking disabled) bit in the query. This requests the server to not perform DNSSEC validation of responses.
+[no]cookie=####
- This sends [or does not send] a COOKIE EDNS option, with an optional value. Replaying a COOKIE
from a previous response allows the server to identify a previous
client. The default is
+nocookie
. +[no]dnssec
- This requests that DNSSEC records be sent by setting the DNSSEC OK (DO) bit in the OPT record in the additional section of the query.
+[no]edns[=#]
- This specifies [or does not specify] the EDNS version to query with. Valid values are 0 to 255.
Setting the EDNS version causes an EDNS query to be sent.
+noedns
clears the remembered EDNS version. EDNS is set to 0 by default. +[no]ednsflags[=#]
- This sets the must-be-zero EDNS flag bits (Z bits) to the specified value. Decimal, hex, and octal encodings are accepted. Setting a named flag (e.g. DO) is silently ignored. By default, no Z bits are set.
+[no]ednsopt[=code[:value]]
- This specifies [or does not specify] an EDNS option with code point
code
and an optional payload ofvalue
as a hexadecimal string.+noednsopt
clears the EDNS options to be sent. +[no]expire
- This toggles sending of an EDNS Expire option.
+[no]nsid
- This toggles inclusion of an EDNS name server ID request when sending a query.
+[no]recurse
- This toggles the setting of the RD (recursion desired) bit in the query.
This bit is set by default, which means
mdig
normally sends recursive queries. +retry=T
- This sets the number of times to retry UDP queries to server to
T
instead of the default, 2. Unlike+tries
, this does not include the initial query. +[no]subnet=addr[/prefix-length]
- This sends [or does not send] an EDNS Client Subnet option with the specified IP address or network prefix.
mdig +subnet=0.0.0.0/0
, or simplymdig +subnet=0
- This sends an EDNS client-subnet option with an empty address and a source prefix-length of zero, which signals a resolver that the client’s address information must not be used when resolving this query.
+timeout=T
- This sets the timeout for a query to
T
seconds. The default timeout is 5 seconds for UDP transport and 10 for TCP. An attempt to setT
to less than 1 results in a query timeout of 1 second being applied. +tries=T
- This sets the number of times to try UDP queries to server to
T
instead of the default, 3. IfT
is less than or equal to zero, the number of tries is silently rounded up to 1. +udptimeout=T
- This sets the timeout between UDP query retries to
T
. +[no]unknownformat
- This prints [or does not print] all RDATA in unknown RR-type presentation format (see RFC 3597). The default is to print RDATA for known types in the type’s presentation format.
+[no]yaml
- This toggles printing of the responses in a detailed YAML format.
+[no]zflag
- This sets [or does not set] the last unassigned DNS header flag in a DNS query. This flag is off by default.
named-checkconf - named configuration file syntax checking tool¶
Synopsis¶
named-checkconf [-chjlvz] [-p [-x ]] [-t directory] {filename}
Description¶
named-checkconf
checks the syntax, but not the semantics, of a
named
configuration file. The file, along with all files included by it, is parsed and checked for syntax
errors. If no file is specified,
/etc/named.conf
is read by default.
Note: files that named
reads in separate parser contexts, such as
rndc.key
and bind.keys
, are not automatically read by
named-checkconf
. Configuration errors in these files may cause
named
to fail to run, even if named-checkconf
was successful.
However, named-checkconf
can be run on these files explicitly.
Options¶
-h
- This option prints the usage summary and exits.
-j
- When loading a zonefile, this option instructs
named
to read the journal if it exists. -l
- This option lists all the configured zones. Each line of output contains the zone name, class (e.g. IN), view, and type (e.g. primary or secondary).
-c
- This option specifies that only the “core” configuration should be checked. This suppresses the loading of
plugin modules, and causes all parameters to
plugin
statements to be ignored. -i
- This option ignores warnings on deprecated options.
-p
- This option prints out the
named.conf
and included files in canonical form if no errors were detected. See also the-x
option. -t directory
- This option instructs
named
to chroot todirectory
, so thatinclude
directives in the configuration file are processed as if run by a similarly chrootednamed
. -v
- This option prints the version of the
named-checkconf
program and exits. -x
- When printing the configuration files in canonical form, this option obscures
shared secrets by replacing them with strings of question marks
(
?
). This allows the contents ofnamed.conf
and related files to be shared - for example, when submitting bug reports - without compromising private data. This option cannot be used without-p
. -z
- This option performs a test load of all zones of type
primary
found innamed.conf
. filename
- This indicates the name of the configuration file to be checked. If not specified,
it defaults to
/etc/named.conf
.
Return Values¶
named-checkconf
returns an exit status of 1 if errors were detected
and 0 otherwise.
See Also¶
named(8), named-checkzone(8), BIND 9 Administrator Reference Manual.
named-checkzone, named-compilezone - zone file validity checking or converting tool¶
Synopsis¶
named-checkzone [-d] [-h] [-j] [-q] [-v] [-c class] [-f format] [-F format] [-J filename] [-i mode] [-k mode] [-m mode] [-M mode] [-n mode] [-l ttl] [-L serial] [-o filename] [-r mode] [-s style] [-S mode] [-t directory] [-T mode] [-w directory] [-D] [-W mode] {zonename} {filename}
named-compilezone [-d] [-j] [-q] [-v] [-c class] [-C mode] [-f format] [-F format] [-J filename] [-i mode] [-k mode] [-m mode] [-n mode] [-l ttl] [-L serial] [-r mode] [-s style] [-t directory] [-T mode] [-w directory] [-D] [-W mode] {-o filename} {zonename} {filename}
Description¶
named-checkzone
checks the syntax and integrity of a zone file. It
performs the same checks as named
does when loading a zone. This
makes named-checkzone
useful for checking zone files before
configuring them into a name server.
named-compilezone
is similar to named-checkzone
, but it always
dumps the zone contents to a specified file in a specified format.
It also applies stricter check levels by default, since the
dump output is used as an actual zone file loaded by named
.
When manually specified otherwise, the check levels must at least be as
strict as those specified in the named
configuration file.
Options¶
-d
- This option enables debugging.
-h
- This option prints the usage summary and exits.
-q
- This option sets quiet mode, which only sets an exit code to indicate successful or failed completion.
-v
- This option prints the version of the
named-checkzone
program and exits. -j
- When loading a zone file, this option tells
named
to read the journal if it exists. The journal file name is assumed to be the zone file name with the string.jnl
appended. -J filename
- When loading the zone file, this option tells
named
to read the journal from the given file, if it exists. This implies-j
. -c class
- This option specifies the class of the zone. If not specified,
IN
is assumed. -i mode
This option performs post-load zone integrity checks. Possible modes are
full
(the default),full-sibling
,local
,local-sibling
, andnone
.Mode
full
checks that MX records refer to A or AAAA records (both in-zone and out-of-zone hostnames). Modelocal
only checks MX records which refer to in-zone hostnames.Mode
full
checks that SRV records refer to A or AAAA records (both in-zone and out-of-zone hostnames). Modelocal
only checks SRV records which refer to in-zone hostnames.Mode
full
checks that delegation NS records refer to A or AAAA records (both in-zone and out-of-zone hostnames). It also checks that glue address records in the zone match those advertised by the child. Modelocal
only checks NS records which refer to in-zone hostnames or verifies that some required glue exists, i.e., when the name server is in a child zone.Modes
full-sibling
andlocal-sibling
disable sibling glue checks, but are otherwise the same asfull
andlocal
, respectively.Mode
none
disables the checks.-f format
- This option specifies the format of the zone file. Possible formats are
text
(the default), andraw
. -F format
This option specifies the format of the output file specified. For
named-checkzone
, this does not have any effect unless it dumps the zone contents.Possible formats are
text
(the default), which is the standard textual representation of the zone, andraw
andraw=N
, which store the zone in a binary format for rapid loading bynamed
.raw=N
specifies the format version of the raw zone file: ifN
is 0, the raw file can be read by any version ofnamed
; if N is 1, the file can only be read by release 9.9.0 or higher. The default is 1.-k mode
- This option performs
check-names
checks with the specified failure mode. Possible modes arefail
(the default fornamed-compilezone
),warn
(the default fornamed-checkzone
), andignore
. -l ttl
- This option sets a maximum permissible TTL for the input file. Any record with a
TTL higher than this value causes the zone to be rejected. This
is similar to using the
max-zone-ttl
option innamed.conf
. -L serial
- When compiling a zone to
raw
format, this option sets the “source serial” value in the header to the specified serial number. This is expected to be used primarily for testing purposes. -m mode
- This option specifies whether MX records should be checked to see if they are
addresses. Possible modes are
fail
,warn
(the default), andignore
. -M mode
- This option checks whether a MX record refers to a CNAME. Possible modes are
fail
,warn
(the default), andignore
. -n mode
- This option specifies whether NS records should be checked to see if they are
addresses. Possible modes are
fail
(the default fornamed-compilezone
),warn
(the default fornamed-checkzone
), andignore
. -o filename
- This option writes the zone output to
filename
. Iffilename
is-
, then the zone output is written to standard output. This is mandatory fornamed-compilezone
. -r mode
- This option checks for records that are treated as different by DNSSEC but are
semantically equal in plain DNS. Possible modes are
fail
,warn
(the default), andignore
. -s style
- This option specifies the style of the dumped zone file. Possible styles are
full
(the default) andrelative
. Thefull
format is most suitable for processing automatically by a separate script. The relative format is more human-readable and is thus suitable for editing by hand. Fornamed-checkzone
, this does not have any effect unless it dumps the zone contents. It also does not have any meaning if the output format is not text. -S mode
- This option checks whether an SRV record refers to a CNAME. Possible modes are
fail
,warn
(the default), andignore
. -t directory
- This option tells
named
to chroot todirectory
, so thatinclude
directives in the configuration file are processed as if run by a similarly chrootednamed
. -T mode
- This option checks whether Sender Policy Framework (SPF) records exist and issues a
warning if an SPF-formatted TXT record is not also present. Possible
modes are
warn
(the default) andignore
. -w directory
- This option instructs
named
to chdir todirectory
, so that relative filenames in master file$INCLUDE
directives work. This is similar to the directory clause innamed.conf
. -D
- This option dumps the zone file in canonical format. This is always enabled for
named-compilezone
. -W mode
- This option specifies whether to check for non-terminal wildcards. Non-terminal
wildcards are almost always the result of a failure to understand the
wildcard matching algorithm (RFC 1034). Possible modes are
warn
(the default) andignore
. zonename
- This indicates the domain name of the zone being checked.
filename
- This is the name of the zone file.
Return Values¶
named-checkzone
returns an exit status of 1 if errors were detected
and 0 otherwise.
named-journalprint - print zone journal in human-readable form¶
Synopsis¶
named-journalprint [-c serial] [-dux] {journal}
Description¶
named-journalprint
scans the contents of a zone journal file,
printing it in a human-readable form, or, optionally, converting it
to a different journal file format.
Journal files are automatically created by named
when changes are
made to dynamic zones (e.g., by nsupdate
). They record each addition
or deletion of a resource record, in binary format, allowing the changes
to be re-applied to the zone when the server is restarted after a
shutdown or crash. By default, the name of the journal file is formed by
appending the extension .jnl
to the name of the corresponding zone
file.
named-journalprint
converts the contents of a given journal file
into a human-readable text format. Each line begins with add
or del
,
to indicate whether the record was added or deleted, and continues with
the resource record in master-file format.
The -c
(compact) option provides a mechanism to reduce the size of
a journal by removing (most/all) transactions prior to the specified
serial number. Note: this option must not be used while named
is
running, and can cause data loss if the zone file has not been updated
to contain the data being removed from the journal. Use with extreme caution.
The -x
option causes additional data about the journal file to be
printed at the beginning of the output and before each group of changes.
The -u
(upgrade) and -d
(downgrade) options recreate the journal
file with a modified format version. The existing journal file is
replaced. -d
writes out the journal in the format used by
versions of BIND up to 9.16.11; -u
writes it out in the format used
by versions since 9.16.13. (9.16.12 is omitted due to a journal-formatting
bug in that release.) Note that these options must not be used while
named
is running.
See Also¶
named(8), nsupdate(1), BIND 9 Administrator Reference Manual.
named-nzd2nzf - convert an NZD database to NZF text format¶
Synopsis¶
named-nzd2nzf {filename}
Description¶
named-nzd2nzf
converts an NZD database to NZF format and prints it
to standard output. This can be used to review the configuration of
zones that were added to named
via rndc addzone
. It can also be
used to restore the old file format when rolling back from a newer
version of BIND to an older version.
Arguments¶
filename
- This is the name of the
.nzd
file whose contents should be printed.
See Also¶
BIND 9 Administrator Reference Manual.
named-rrchecker - syntax checker for individual DNS resource records¶
Synopsis¶
named-rrchecker [-h] [-o origin] [-p] [-u] [-C] [-T] [-P]
Description¶
named-rrchecker
reads a individual DNS resource record from standard
input and checks whether it is syntactically correct.
Options¶
-h
- This option prints out the help menu.
-o origin
- This option specifies the origin to be used when interpreting the record.
-p
- This option prints out the resulting record in canonical form. If there is no canonical form defined, the record is printed in unknown record format.
-u
- This option prints out the resulting record in unknown record form.
-C
,-T
, and-P
- These options print out the known class, standard type, and private type mnemonics, respectively.
named.conf - configuration file for named¶
Synopsis¶
named.conf
Description¶
named.conf
is the configuration file for named
. Statements are
enclosed in braces and terminated with a semi-colon. Clauses in the
statements are also semi-colon terminated. The usual comment styles are
supported:
C style: /* */
C++ style: // to end of line
Unix style: # to end of line
ACL¶
acl string { address_match_element; ... };
CONTROLS¶
controls {
inet ( ipv4_address | ipv6_address |
* ) [ port ( integer | * ) ] allow
{ address_match_element; ... } [
keys { string; ... } ] [ read-only
boolean ];
unix quoted_string perm integer
owner integer group integer [
keys { string; ... } ] [ read-only
boolean ];
};
DLZ¶
dlz string {
database string;
search boolean;
};
DNSSEC-POLICY¶
dnssec-policy string {
dnskey-ttl duration;
keys { ( csk | ksk | zsk ) [ ( key-directory ) ] lifetime
duration_or_unlimited algorithm string [ integer ]; ... };
max-zone-ttl duration;
nsec3param [ iterations integer ] [ optout boolean ] [
salt-length integer ];
parent-ds-ttl duration;
parent-propagation-delay duration;
publish-safety duration;
purge-keys duration;
retire-safety duration;
signatures-refresh duration;
signatures-validity duration;
signatures-validity-dnskey duration;
zone-propagation-delay duration;
};
DYNDB¶
dyndb string quoted_string {
unspecified-text };
HTTP¶
http string {
endpoints { quoted_string; ... };
listener-clients integer;
streams-per-connection integer;
};
KEY¶
key string {
algorithm string;
secret string;
};
LOGGING¶
logging {
category string { string; ... };
channel string {
buffered boolean;
file quoted_string [ versions ( unlimited | integer ) ]
[ size size ] [ suffix ( increment | timestamp ) ];
null;
print-category boolean;
print-severity boolean;
print-time ( iso8601 | iso8601-utc | local | boolean );
severity log_severity;
stderr;
syslog [ syslog_facility ];
};
};
MANAGED-KEYS¶
See DNSSEC-KEYS.
managed-keys { string ( static-key
| initial-key | static-ds |
initial-ds ) integer integer
integer quoted_string; ... };, deprecated
OPTIONS¶
options {
allow-new-zones boolean;
allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-cache { address_match_element; ... };
allow-query-cache-on { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-recursion { address_match_element; ... };
allow-recursion-on { address_match_element; ... };
allow-transfer [ port integer ] [ transport string ] {
address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [ port integer ] [ dscp integer ] { (
remote-servers | ipv4_address [ port integer ] |
ipv6_address [ port integer ] ) [ key string ] [ tls
string ]; ... };
alt-transfer-source ( ipv4_address | * ) [ port ( integer | * )
] [ dscp integer ];
alt-transfer-source-v6 ( ipv6_address | * ) [ port ( integer |
* ) ] [ dscp integer ];
answer-cookie boolean;
attach-cache string;
auth-nxdomain boolean;
auto-dnssec ( allow | maintain | off );
automatic-interface-scan boolean;
avoid-v4-udp-ports { portrange; ... };
avoid-v6-udp-ports { portrange; ... };
bindkeys-file quoted_string;
blackhole { address_match_element; ... };
catalog-zones { zone string [ default-primaries [ port integer
] [ dscp integer ] { ( remote-servers | ipv4_address [
port integer ] | ipv6_address [ port integer ] ) [ key
string ] [ tls string ]; ... } ] [ zone-directory
quoted_string ] [ in-memory boolean ] [ min-update-interval
duration ]; ... };
check-dup-records ( fail | warn | ignore );
check-integrity boolean;
check-mx ( fail | warn | ignore );
check-mx-cname ( fail | warn | ignore );
check-names ( primary | master |
secondary | slave | response ) (
fail | warn | ignore );
check-sibling boolean;
check-spf ( warn | ignore );
check-srv-cname ( fail | warn | ignore );
check-wildcard boolean;
clients-per-query integer;
cookie-algorithm ( aes | siphash24 );
cookie-secret string;
coresize ( default | unlimited | sizeval );
datasize ( default | unlimited | sizeval );
deny-answer-addresses { address_match_element; ... } [
except-from { string; ... } ];
deny-answer-aliases { string; ... } [ except-from { string; ...
} ];
dialup ( notify | notify-passive | passive | refresh | boolean );
directory quoted_string;
disable-algorithms string { string;
... };
disable-ds-digests string { string;
... };
disable-empty-zone string;
dns64 netprefix {
break-dnssec boolean;
clients { address_match_element; ... };
exclude { address_match_element; ... };
mapped { address_match_element; ... };
recursive-only boolean;
suffix ipv6_address;
};
dns64-contact string;
dns64-server string;
dnskey-sig-validity integer;
dnsrps-enable boolean;
dnsrps-options { unspecified-text };
dnssec-accept-expired boolean;
dnssec-dnskey-kskonly boolean;
dnssec-loadkeys-interval integer;
dnssec-must-be-secure string boolean;
dnssec-policy string;
dnssec-secure-to-insecure boolean;
dnssec-update-mode ( maintain | no-resign );
dnssec-validation ( yes | no | auto );
dnstap { ( all | auth | client | forwarder | resolver | update ) [
( query | response ) ]; ... };
dnstap-identity ( quoted_string | none | hostname );
dnstap-output ( file | unix ) quoted_string [ size ( unlimited |
size ) ] [ versions ( unlimited | integer ) ] [ suffix (
increment | timestamp ) ];
dnstap-version ( quoted_string | none );
dscp integer;
dual-stack-servers [ port integer ] { ( quoted_string [ port
integer ] [ dscp integer ] | ipv4_address [ port
integer ] [ dscp integer ] | ipv6_address [ port
integer ] [ dscp integer ] ); ... };
dump-file quoted_string;
edns-udp-size integer;
empty-contact string;
empty-server string;
empty-zones-enable boolean;
fetch-quota-params integer fixedpoint fixedpoint fixedpoint;
fetches-per-server integer [ ( drop | fail ) ];
fetches-per-zone integer [ ( drop | fail ) ];
files ( default | unlimited | sizeval );
flush-zones-on-shutdown boolean;
forward ( first | only );
forwarders [ port integer ] [ dscp integer ] { ( ipv4_address
| ipv6_address ) [ port integer ] [ dscp integer ]; ... };
fstrm-set-buffer-hint integer;
fstrm-set-flush-timeout integer;
fstrm-set-input-queue-size integer;
fstrm-set-output-notify-threshold integer;
fstrm-set-output-queue-model ( mpsc | spsc );
fstrm-set-output-queue-size integer;
fstrm-set-reopen-interval duration;
geoip-directory ( quoted_string | none );
glue-cache boolean;// deprecated
heartbeat-interval integer;
hostname ( quoted_string | none );
http-listener-clients integer;
http-port integer;
http-streams-per-connection integer;
https-port integer;
interface-interval duration;
ipv4only-contact string;
ipv4only-enable boolean;
ipv4only-server string;
ixfr-from-differences ( primary | master | secondary | slave |
boolean );
keep-response-order { address_match_element; ... };
key-directory quoted_string;
lame-ttl duration;
listen-on [ port integer ] [ dscp
integer ] [ tls string ] [ http
string ] {
address_match_element; ... };
listen-on-v6 [ port integer ] [ dscp
integer ] [ tls string ] [ http
string ] {
address_match_element; ... };
lmdb-mapsize sizeval;
lock-file ( quoted_string | none );
managed-keys-directory quoted_string;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
match-mapped-addresses boolean;
max-cache-size ( default | unlimited | sizeval | percentage );
max-cache-ttl duration;
max-clients-per-query integer;
max-ixfr-ratio ( unlimited | percentage );
max-journal-size ( default | unlimited | sizeval );
max-ncache-ttl duration;
max-records integer;
max-recursion-depth integer;
max-recursion-queries integer;
max-refresh-time integer;
max-retry-time integer;
max-rsa-exponent-size integer;
max-stale-ttl duration;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-udp-size integer;
max-zone-ttl ( unlimited | duration );
memstatistics boolean;
memstatistics-file quoted_string;
message-compression boolean;
min-cache-ttl duration;
min-ncache-ttl duration;
min-refresh-time integer;
min-retry-time integer;
minimal-any boolean;
minimal-responses ( no-auth | no-auth-recursive | boolean );
multi-master boolean;
new-zones-directory quoted_string;
no-case-compress { address_match_element; ... };
nocookie-udp-size integer;
notify ( explicit | master-only | primary-only | boolean );
notify-delay integer;
notify-rate integer;
notify-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
notify-source-v6 ( ipv6_address | * ) [ port ( integer | * ) ]
[ dscp integer ];
notify-to-soa boolean;
nta-lifetime duration;
nta-recheck duration;
nxdomain-redirect string;
parental-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
parental-source-v6 ( ipv6_address | * ) [ port ( integer | * )
] [ dscp integer ];
pid-file ( quoted_string | none );
port integer;
preferred-glue string;
prefetch integer [ integer ];
provide-ixfr boolean;
qname-minimization ( strict | relaxed | disabled | off );
query-source ( ( [ address ] ( ipv4_address | * ) [ port (
integer | * ) ] ) | ( [ [ address ] ( ipv4_address | * ) ]
port ( integer | * ) ) ) [ dscp integer ];
query-source-v6 ( ( [ address ] ( ipv6_address | * ) [ port (
integer | * ) ] ) | ( [ [ address ] ( ipv6_address | * ) ]
port ( integer | * ) ) ) [ dscp integer ];
querylog boolean;
random-device ( quoted_string | none );
rate-limit {
all-per-second integer;
errors-per-second integer;
exempt-clients { address_match_element; ... };
ipv4-prefix-length integer;
ipv6-prefix-length integer;
log-only boolean;
max-table-size integer;
min-table-size integer;
nodata-per-second integer;
nxdomains-per-second integer;
qps-scale integer;
referrals-per-second integer;
responses-per-second integer;
slip integer;
window integer;
};
recursing-file quoted_string;
recursion boolean;
recursive-clients integer;
request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
require-server-cookie boolean;
reserved-sockets integer;// deprecated
resolver-nonbackoff-tries integer;
resolver-query-timeout integer;
resolver-retry-interval integer;
response-padding { address_match_element; ... } block-size
integer;
response-policy { zone string [ add-soa boolean ] [ log
boolean ] [ max-policy-ttl duration ] [ min-update-interval
duration ] [ policy ( cname | disabled | drop | given | no-op
| nodata | nxdomain | passthru | tcp-only quoted_string ) ] [
recursive-only boolean ] [ nsip-enable boolean ] [
nsdname-enable boolean ]; ... } [ add-soa boolean ] [
break-dnssec boolean ] [ max-policy-ttl duration ] [
min-update-interval duration ] [ min-ns-dots integer ] [
nsip-wait-recurse boolean ] [ nsdname-wait-recurse boolean
] [ qname-wait-recurse boolean ] [ recursive-only boolean ]
[ nsip-enable boolean ] [ nsdname-enable boolean ] [
dnsrps-enable boolean ] [ dnsrps-options { unspecified-text
} ];
root-delegation-only [ exclude { string; ... } ];
root-key-sentinel boolean;
rrset-order { [ class string ] [ type string ] [ name
quoted_string ] string string; ... };
secroots-file quoted_string;
send-cookie boolean;
serial-query-rate integer;
serial-update-method ( date | increment | unixtime );
server-id ( quoted_string | none | hostname );
servfail-ttl duration;
session-keyalg string;
session-keyfile ( quoted_string | none );
session-keyname string;
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [ integer ];
sortlist { address_match_element; ... };
stacksize ( default | unlimited | sizeval );
stale-answer-client-timeout ( disabled | off | integer );
stale-answer-enable boolean;
stale-answer-ttl duration;
stale-cache-enable boolean;
stale-refresh-time duration;
startup-notify-rate integer;
statistics-file quoted_string;
synth-from-dnssec boolean;
tcp-advertised-timeout integer;
tcp-clients integer;
tcp-idle-timeout integer;
tcp-initial-timeout integer;
tcp-keepalive-timeout integer;
tcp-listen-queue integer;
tcp-receive-buffer integer;
tcp-send-buffer integer;
tkey-dhkey quoted_string integer;
tkey-domain quoted_string;
tkey-gssapi-credential quoted_string;
tkey-gssapi-keytab quoted_string;
tls-port integer;
transfer-format ( many-answers | one-answer );
transfer-message-size integer;
transfer-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
transfer-source-v6 ( ipv6_address | * ) [ port ( integer | * )
] [ dscp integer ];
transfers-in integer;
transfers-out integer;
transfers-per-ns integer;
trust-anchor-telemetry boolean; // experimental
try-tcp-refresh boolean;
udp-receive-buffer integer;
udp-send-buffer integer;
update-check-ksk boolean;
use-alt-transfer-source boolean;
use-v4-udp-ports { portrange; ... };
use-v6-udp-ports { portrange; ... };
v6-bias integer;
validate-except { string; ... };
version ( quoted_string | none );
zero-no-soa-ttl boolean;
zero-no-soa-ttl-cache boolean;
zone-statistics ( full | terse | none | boolean );
};
PARENTAL-AGENTS¶
parental-agents string [ port integer ] [
dscp integer ] { ( remote-servers |
ipv4_address [ port integer ] |
ipv6_address [ port integer ] ) [ key
string ] [ tls string ]; ... };
PLUGIN¶
plugin ( query ) string [ { unspecified-text
} ];
PRIMARIES¶
primaries string [ port integer ] [ dscp
integer ] { ( remote-servers |
ipv4_address [ port integer ] |
ipv6_address [ port integer ] ) [ key
string ] [ tls string ]; ... };
SERVER¶
server netprefix {
bogus boolean;
edns boolean;
edns-udp-size integer;
edns-version integer;
keys server_key;
max-udp-size integer;
notify-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
notify-source-v6 ( ipv6_address | * ) [ port ( integer | * ) ]
[ dscp integer ];
padding integer;
provide-ixfr boolean;
query-source ( ( [ address ] ( ipv4_address | * ) [ port (
integer | * ) ] ) | ( [ [ address ] ( ipv4_address | * ) ]
port ( integer | * ) ) ) [ dscp integer ];
query-source-v6 ( ( [ address ] ( ipv6_address | * ) [ port (
integer | * ) ] ) | ( [ [ address ] ( ipv6_address | * ) ]
port ( integer | * ) ) ) [ dscp integer ];
request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
send-cookie boolean;
tcp-keepalive boolean;
tcp-only boolean;
transfer-format ( many-answers | one-answer );
transfer-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
transfer-source-v6 ( ipv6_address | * ) [ port ( integer | * )
] [ dscp integer ];
transfers integer;
};
STATISTICS-CHANNELS¶
statistics-channels {
inet ( ipv4_address | ipv6_address |
* ) [ port ( integer | * ) ] [
allow { address_match_element; ...
} ];
};
TLS¶
tls string {
cert-file quoted_string;
ciphers string;
dhparam-file quoted_string;
key-file quoted_string;
prefer-server-ciphers boolean;
protocols { string; ... };
session-tickets boolean;
};
TRUST-ANCHORS¶
trust-anchors { string ( static-key |
initial-key | static-ds | initial-ds )
integer integer integer
quoted_string; ... };
TRUSTED-KEYS¶
Deprecated - see DNSSEC-KEYS.
trusted-keys { string integer
integer integer
quoted_string; ... };, deprecated
VIEW¶
view string [ class ] {
allow-new-zones boolean;
allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-cache { address_match_element; ... };
allow-query-cache-on { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-recursion { address_match_element; ... };
allow-recursion-on { address_match_element; ... };
allow-transfer [ port integer ] [ transport string ] {
address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [ port integer ] [ dscp integer ] { (
remote-servers | ipv4_address [ port integer ] |
ipv6_address [ port integer ] ) [ key string ] [ tls
string ]; ... };
alt-transfer-source ( ipv4_address | * ) [ port ( integer | * )
] [ dscp integer ];
alt-transfer-source-v6 ( ipv6_address | * ) [ port ( integer |
* ) ] [ dscp integer ];
attach-cache string;
auth-nxdomain boolean;
auto-dnssec ( allow | maintain | off );
catalog-zones { zone string [ default-primaries [ port integer
] [ dscp integer ] { ( remote-servers | ipv4_address [
port integer ] | ipv6_address [ port integer ] ) [ key
string ] [ tls string ]; ... } ] [ zone-directory
quoted_string ] [ in-memory boolean ] [ min-update-interval
duration ]; ... };
check-dup-records ( fail | warn | ignore );
check-integrity boolean;
check-mx ( fail | warn | ignore );
check-mx-cname ( fail | warn | ignore );
check-names ( primary | master |
secondary | slave | response ) (
fail | warn | ignore );
check-sibling boolean;
check-spf ( warn | ignore );
check-srv-cname ( fail | warn | ignore );
check-wildcard boolean;
clients-per-query integer;
deny-answer-addresses { address_match_element; ... } [
except-from { string; ... } ];
deny-answer-aliases { string; ... } [ except-from { string; ...
} ];
dialup ( notify | notify-passive | passive | refresh | boolean );
disable-algorithms string { string;
... };
disable-ds-digests string { string;
... };
disable-empty-zone string;
dlz string {
database string;
search boolean;
};
dns64 netprefix {
break-dnssec boolean;
clients { address_match_element; ... };
exclude { address_match_element; ... };
mapped { address_match_element; ... };
recursive-only boolean;
suffix ipv6_address;
};
dns64-contact string;
dns64-server string;
dnskey-sig-validity integer;
dnsrps-enable boolean;
dnsrps-options { unspecified-text };
dnssec-accept-expired boolean;
dnssec-dnskey-kskonly boolean;
dnssec-loadkeys-interval integer;
dnssec-must-be-secure string boolean;
dnssec-policy string;
dnssec-secure-to-insecure boolean;
dnssec-update-mode ( maintain | no-resign );
dnssec-validation ( yes | no | auto );
dnstap { ( all | auth | client | forwarder | resolver | update ) [
( query | response ) ]; ... };
dual-stack-servers [ port integer ] { ( quoted_string [ port
integer ] [ dscp integer ] | ipv4_address [ port
integer ] [ dscp integer ] | ipv6_address [ port
integer ] [ dscp integer ] ); ... };
dyndb string quoted_string {
unspecified-text };
edns-udp-size integer;
empty-contact string;
empty-server string;
empty-zones-enable boolean;
fetch-quota-params integer fixedpoint fixedpoint fixedpoint;
fetches-per-server integer [ ( drop | fail ) ];
fetches-per-zone integer [ ( drop | fail ) ];
forward ( first | only );
forwarders [ port integer ] [ dscp integer ] { ( ipv4_address
| ipv6_address ) [ port integer ] [ dscp integer ]; ... };
glue-cache boolean;// deprecated
ipv4only-contact string;
ipv4only-enable boolean;
ipv4only-server string;
ixfr-from-differences ( primary | master | secondary | slave |
boolean );
key string {
algorithm string;
secret string;
};
key-directory quoted_string;
lame-ttl duration;
lmdb-mapsize sizeval;
managed-keys { string (
static-key | initial-key
| static-ds | initial-ds
) integer integer
integer
quoted_string; ... };, deprecated
masterfile-format ( raw | text );
masterfile-style ( full | relative );
match-clients { address_match_element; ... };
match-destinations { address_match_element; ... };
match-recursive-only boolean;
max-cache-size ( default | unlimited | sizeval | percentage );
max-cache-ttl duration;
max-clients-per-query integer;
max-ixfr-ratio ( unlimited | percentage );
max-journal-size ( default | unlimited | sizeval );
max-ncache-ttl duration;
max-records integer;
max-recursion-depth integer;
max-recursion-queries integer;
max-refresh-time integer;
max-retry-time integer;
max-stale-ttl duration;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-udp-size integer;
max-zone-ttl ( unlimited | duration );
message-compression boolean;
min-cache-ttl duration;
min-ncache-ttl duration;
min-refresh-time integer;
min-retry-time integer;
minimal-any boolean;
minimal-responses ( no-auth | no-auth-recursive | boolean );
multi-master boolean;
new-zones-directory quoted_string;
no-case-compress { address_match_element; ... };
nocookie-udp-size integer;
notify ( explicit | master-only | primary-only | boolean );
notify-delay integer;
notify-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
notify-source-v6 ( ipv6_address | * ) [ port ( integer | * ) ]
[ dscp integer ];
notify-to-soa boolean;
nta-lifetime duration;
nta-recheck duration;
nxdomain-redirect string;
parental-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
parental-source-v6 ( ipv6_address | * ) [ port ( integer | * )
] [ dscp integer ];
plugin ( query ) string [ {
unspecified-text } ];
preferred-glue string;
prefetch integer [ integer ];
provide-ixfr boolean;
qname-minimization ( strict | relaxed | disabled | off );
query-source ( ( [ address ] ( ipv4_address | * ) [ port (
integer | * ) ] ) | ( [ [ address ] ( ipv4_address | * ) ]
port ( integer | * ) ) ) [ dscp integer ];
query-source-v6 ( ( [ address ] ( ipv6_address | * ) [ port (
integer | * ) ] ) | ( [ [ address ] ( ipv6_address | * ) ]
port ( integer | * ) ) ) [ dscp integer ];
rate-limit {
all-per-second integer;
errors-per-second integer;
exempt-clients { address_match_element; ... };
ipv4-prefix-length integer;
ipv6-prefix-length integer;
log-only boolean;
max-table-size integer;
min-table-size integer;
nodata-per-second integer;
nxdomains-per-second integer;
qps-scale integer;
referrals-per-second integer;
responses-per-second integer;
slip integer;
window integer;
};
recursion boolean;
request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
require-server-cookie boolean;
resolver-nonbackoff-tries integer;
resolver-query-timeout integer;
resolver-retry-interval integer;
response-padding { address_match_element; ... } block-size
integer;
response-policy { zone string [ add-soa boolean ] [ log
boolean ] [ max-policy-ttl duration ] [ min-update-interval
duration ] [ policy ( cname | disabled | drop | given | no-op
| nodata | nxdomain | passthru | tcp-only quoted_string ) ] [
recursive-only boolean ] [ nsip-enable boolean ] [
nsdname-enable boolean ]; ... } [ add-soa boolean ] [
break-dnssec boolean ] [ max-policy-ttl duration ] [
min-update-interval duration ] [ min-ns-dots integer ] [
nsip-wait-recurse boolean ] [ nsdname-wait-recurse boolean
] [ qname-wait-recurse boolean ] [ recursive-only boolean ]
[ nsip-enable boolean ] [ nsdname-enable boolean ] [
dnsrps-enable boolean ] [ dnsrps-options { unspecified-text
} ];
root-delegation-only [ exclude { string; ... } ];
root-key-sentinel boolean;
rrset-order { [ class string ] [ type string ] [ name
quoted_string ] string string; ... };
send-cookie boolean;
serial-update-method ( date | increment | unixtime );
server netprefix {
bogus boolean;
edns boolean;
edns-udp-size integer;
edns-version integer;
keys server_key;
max-udp-size integer;
notify-source ( ipv4_address | * ) [ port ( integer | *
) ] [ dscp integer ];
notify-source-v6 ( ipv6_address | * ) [ port ( integer
| * ) ] [ dscp integer ];
padding integer;
provide-ixfr boolean;
query-source ( ( [ address ] ( ipv4_address | * ) [ port
( integer | * ) ] ) | ( [ [ address ] (
ipv4_address | * ) ] port ( integer | * ) ) ) [
dscp integer ];
query-source-v6 ( ( [ address ] ( ipv6_address | * ) [
port ( integer | * ) ] ) | ( [ [ address ] (
ipv6_address | * ) ] port ( integer | * ) ) ) [
dscp integer ];
request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
send-cookie boolean;
tcp-keepalive boolean;
tcp-only boolean;
transfer-format ( many-answers | one-answer );
transfer-source ( ipv4_address | * ) [ port ( integer |
* ) ] [ dscp integer ];
transfer-source-v6 ( ipv6_address | * ) [ port (
integer | * ) ] [ dscp integer ];
transfers integer;
};
servfail-ttl duration;
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [ integer ];
sortlist { address_match_element; ... };
stale-answer-client-timeout ( disabled | off | integer );
stale-answer-enable boolean;
stale-answer-ttl duration;
stale-cache-enable boolean;
stale-refresh-time duration;
synth-from-dnssec boolean;
transfer-format ( many-answers | one-answer );
transfer-source ( ipv4_address | * ) [ port ( integer | * ) ] [
dscp integer ];
transfer-source-v6 ( ipv6_address | * ) [ port ( integer | * )
] [ dscp integer ];
trust-anchor-telemetry boolean; // experimental
trust-anchors { string ( static-key |
initial-key | static-ds | initial-ds
) integer integer integer
quoted_string; ... };
trusted-keys { string
integer integer
integer
quoted_string; ... };, deprecated
try-tcp-refresh boolean;
update-check-ksk boolean;
use-alt-transfer-source boolean;
v6-bias integer;
validate-except { string; ... };
zero-no-soa-ttl boolean;
zero-no-soa-ttl-cache boolean;
zone-statistics ( full | terse | none | boolean );
};
zone <string> [ <class> ] {
type primary;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
allow-transfer [ port <integer> ] [ transport <string> ] { <address_match_element>; ... };
allow-update { <address_match_element>; ... };
also-notify [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
alt-transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
alt-transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
auto-dnssec ( allow | maintain | off );
check-dup-records ( fail | warn | ignore );
check-integrity <boolean>;
check-mx ( fail | warn | ignore );
check-mx-cname ( fail | warn | ignore );
check-names ( fail | warn | ignore );
check-sibling <boolean>;
check-spf ( warn | ignore );
check-srv-cname ( fail | warn | ignore );
check-wildcard <boolean>;
database <string>;
dialup ( notify | notify-passive | passive | refresh | <boolean> );
dlz <string>;
dnskey-sig-validity <integer>;
dnssec-dnskey-kskonly <boolean>;
dnssec-loadkeys-interval <integer>;
dnssec-policy <string>;
dnssec-secure-to-insecure <boolean>;
dnssec-update-mode ( maintain | no-resign );
file <quoted_string>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
inline-signing <boolean>;
ixfr-from-differences <boolean>;
journal <quoted_string>;
key-directory <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-ixfr-ratio ( unlimited | <percentage> );
max-journal-size ( default | unlimited | <sizeval> );
max-records <integer>;
max-transfer-idle-out <integer>;
max-transfer-time-out <integer>;
max-zone-ttl ( unlimited | <duration> );
notify ( explicit | master-only | primary-only | <boolean> );
notify-delay <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-to-soa <boolean>;
parental-agents [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
parental-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
parental-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
serial-update-method ( date | increment | unixtime );
sig-signing-nodes <integer>;
sig-signing-signatures <integer>;
sig-signing-type <integer>;
sig-validity-interval <integer> [ <integer> ];
update-check-ksk <boolean>;
update-policy ( local | { ( deny | grant ) <string> ( 6to4-self | external | krb5-self | krb5-selfsub | krb5-subdomain | krb5-subdomain-self-rhs | ms-self | ms-selfsub | ms-subdomain | ms-subdomain-self-rhs | name | self | selfsub | selfwild | subdomain | tcp-self | wildcard | zonesub ) [ <string> ] <rrtypelist>; ... };
zero-no-soa-ttl <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type secondary;
allow-notify { <address_match_element>; ... };
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
allow-transfer [ port <integer> ] [ transport <string> ] { <address_match_element>; ... };
allow-update-forwarding { <address_match_element>; ... };
also-notify [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
alt-transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
alt-transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
auto-dnssec ( allow | maintain | off );
check-names ( fail | warn | ignore );
database <string>;
dialup ( notify | notify-passive | passive | refresh | <boolean> );
dlz <string>;
dnskey-sig-validity <integer>;
dnssec-dnskey-kskonly <boolean>;
dnssec-loadkeys-interval <integer>;
dnssec-policy <string>;
dnssec-update-mode ( maintain | no-resign );
file <quoted_string>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
inline-signing <boolean>;
ixfr-from-differences <boolean>;
journal <quoted_string>;
key-directory <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-ixfr-ratio ( unlimited | <percentage> );
max-journal-size ( default | unlimited | <sizeval> );
max-records <integer>;
max-refresh-time <integer>;
max-retry-time <integer>;
max-transfer-idle-in <integer>;
max-transfer-idle-out <integer>;
max-transfer-time-in <integer>;
max-transfer-time-out <integer>;
min-refresh-time <integer>;
min-retry-time <integer>;
multi-master <boolean>;
notify ( explicit | master-only | primary-only | <boolean> );
notify-delay <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-to-soa <boolean>;
parental-agents [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
parental-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
parental-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
request-expire <boolean>;
request-ixfr <boolean>;
sig-signing-nodes <integer>;
sig-signing-signatures <integer>;
sig-signing-type <integer>;
sig-validity-interval <integer> [ <integer> ];
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
try-tcp-refresh <boolean>;
update-check-ksk <boolean>;
use-alt-transfer-source <boolean>;
zero-no-soa-ttl <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type mirror;
allow-notify { <address_match_element>; ... };
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
allow-transfer [ port <integer> ] [ transport <string> ] { <address_match_element>; ... };
allow-update-forwarding { <address_match_element>; ... };
also-notify [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
alt-transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
alt-transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
check-names ( fail | warn | ignore );
database <string>;
file <quoted_string>;
ixfr-from-differences <boolean>;
journal <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-ixfr-ratio ( unlimited | <percentage> );
max-journal-size ( default | unlimited | <sizeval> );
max-records <integer>;
max-refresh-time <integer>;
max-retry-time <integer>;
max-transfer-idle-in <integer>;
max-transfer-idle-out <integer>;
max-transfer-time-in <integer>;
max-transfer-time-out <integer>;
min-refresh-time <integer>;
min-retry-time <integer>;
multi-master <boolean>;
notify ( explicit | master-only | primary-only | <boolean> );
notify-delay <integer>;
notify-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
notify-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
request-expire <boolean>;
request-ixfr <boolean>;
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
try-tcp-refresh <boolean>;
use-alt-transfer-source <boolean>;
zero-no-soa-ttl <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type forward;
delegation-only <boolean>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
};
zone <string> [ <class> ] {
type hint;
check-names ( fail | warn | ignore );
delegation-only <boolean>;
file <quoted_string>;
};
zone <string> [ <class> ] {
type redirect;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
dlz <string>;
file <quoted_string>;
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-records <integer>;
max-zone-ttl ( unlimited | <duration> );
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type static-stub;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
max-records <integer>;
server-addresses { ( <ipv4_address> | <ipv6_address> ); ... };
server-names { <string>; ... };
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type stub;
allow-query { <address_match_element>; ... };
allow-query-on { <address_match_element>; ... };
check-names ( fail | warn | ignore );
database <string>;
delegation-only <boolean>;
dialup ( notify | notify-passive | passive | refresh | <boolean> );
file <quoted_string>;
forward ( first | only );
forwarders [ port <integer> ] [ dscp <integer> ] { ( <ipv4_address> | <ipv6_address> ) [ port <integer> ] [ dscp <integer> ]; ... };
masterfile-format ( raw | text );
masterfile-style ( full | relative );
max-records <integer>;
max-refresh-time <integer>;
max-retry-time <integer>;
max-transfer-idle-in <integer>;
max-transfer-time-in <integer>;
min-refresh-time <integer>;
min-retry-time <integer>;
multi-master <boolean>;
primaries [ port <integer> ] [ dscp <integer> ] { ( <remote-servers> | <ipv4_address> [ port <integer> ] | <ipv6_address> [ port <integer> ] ) [ key <string> ] [ tls <string> ]; ... };
transfer-source ( <ipv4_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
transfer-source-v6 ( <ipv6_address> | * ) [ port ( <integer> | * ) ] [ dscp <integer> ];
use-alt-transfer-source <boolean>;
zone-statistics ( full | terse | none | <boolean> );
};
zone <string> [ <class> ] {
type delegation-only;
};
zone <string> [ <class> ] {
in-view <string>;
};
Files¶
/etc/named.conf
See Also¶
named(8), named-checkconf(8), rndc(8), rndc-confgen(8), tsig-keygen(8), BIND 9 Administrator Reference Manual.
named - Internet domain name server¶
Synopsis¶
named [ [-4] | [-6] ] [-c config-file] [-d debug-level] [-D string] [-E engine-name] [-f] [-g] [-L logfile] [-M option] [-m flag] [-n #cpus] [-p port] [-s] [-t directory] [-U #listeners] [-u user] [-v] [-V] [-X lock-file]
Description¶
named
is a Domain Name System (DNS) server, part of the BIND 9
distribution from ISC. For more information on the DNS, see RFC 1033,
RFC 1034, and RFC 1035.
When invoked without arguments, named
reads the default
configuration file /etc/named.conf
, reads any initial data, and
listens for queries.
Options¶
-4
- This option tells
named
to use only IPv4, even if the host machine is capable of IPv6.-4
and-6
are mutually exclusive. -6
- This option tells
named
to use only IPv6, even if the host machine is capable of IPv4.-4
and-6
are mutually exclusive. -c config-file
- This option tells
named
to useconfig-file
as its configuration file instead of the default,/etc/named.conf
. To ensure that the configuration file can be reloaded after the server has changed its working directory due to to a possibledirectory
option in the configuration file,config-file
should be an absolute pathname. -d debug-level
- This option sets the daemon’s debug level to
debug-level
. Debugging traces fromnamed
become more verbose as the debug level increases. -D string
- This option specifies a string that is used to identify a instance of
named
in a process listing. The contents ofstring
are not examined. -E engine-name
When applicable, this option specifies the hardware to use for cryptographic operations, such as a secure key store used for signing.
When BIND 9 is built with OpenSSL, this needs to be set to the OpenSSL engine identifier that drives the cryptographic accelerator or hardware service module (usually
pkcs11
).-f
- This option runs the server in the foreground (i.e., do not daemonize).
-g
- This option runs the server in the foreground and forces all logging to
stderr
. -L logfile
- This option sets the log to the file
logfile
by default, instead of the system log. -M option
- This option sets the default memory context options. If set to
external
, the internal memory manager is bypassed in favor of system-provided memory allocation functions. If set tofill
, blocks of memory are filled with tag values when allocated or freed, to assist debugging of memory problems.nofill
disables this behavior, and is the default unlessnamed
has been compiled with developer options. -m flag
- This option turns on memory usage debugging flags. Possible flags are
usage
,trace
,record
,size
, andmctx
. These correspond to theISC_MEM_DEBUGXXXX
flags described in<isc/mem.h>
. -n #cpus
- This option creates
#cpus
worker threads to take advantage of multiple CPUs. If not specified,named
tries to determine the number of CPUs present and creates one thread per CPU. If it is unable to determine the number of CPUs, a single worker thread is created. -p value
- This option specifies the port(s) on which the server will listen
for queries. If
value
is of the form<portnum>
ordns=<portnum>
, the server will listen for DNS queries onportnum
; if not not specified, the default is port 53. Ifvalue
is of the formtls=<portnum>
, the server will listen for TLS queries onportnum
; the default is 853. Ifvalue
is of the formhttps=<portnum>
, the server will listen for HTTPS queries onportnum
; the default is 443. Ifvalue
is of the formhttp=<portnum>
, the server will listen for HTTP queries onportnum
; the default is 80. -s
- This option writes memory usage statistics to
stdout
on exit.
Note
This option is mainly of interest to BIND 9 developers and may be removed or changed in a future release.
-S #max-socks
- This option is deprecated and no longer has any function.
Warning
This option should be unnecessary for the vast majority of users.
The use of this option could even be harmful, because the specified
value may exceed the limitation of the underlying system API. It
is therefore set only when the default configuration causes
exhaustion of file descriptors and the operational environment is
known to support the specified number of sockets. Note also that
the actual maximum number is normally slightly fewer than the
specified value, because named
reserves some file descriptors
for its internal use.
-t directory
- This option tells
named
to chroot todirectory
after processing the command-line arguments, but before reading the configuration file.
Warning
This option should be used in conjunction with the -u
option,
as chrooting a process running as root doesn’t enhance security on
most systems; the way chroot
is defined allows a process
with root privileges to escape a chroot jail.
-U #listeners
- This option tells
named
the number of#listeners
worker threads to listen on, for incoming UDP packets on each address. If not specified,named
calculates a default value based on the number of detected CPUs: 1 for 1 CPU, and the number of detected CPUs minus one for machines with more than 1 CPU. This cannot be increased to a value higher than the number of CPUs. If-n
has been set to a higher value than the number of detected CPUs, then-U
may be increased as high as that value, but no higher. -u user
- This option sets the setuid to
user
after completing privileged operations, such as creating sockets that listen on privileged ports.
Note
On Linux, named
uses the kernel’s capability mechanism to drop
all root privileges except the ability to bind
to a
privileged port and set process resource limits. Unfortunately,
this means that the -u
option only works when named
is run
on kernel 2.2.18 or later, or kernel 2.3.99-pre3 or later, since
previous kernels did not allow privileges to be retained after
setuid
.
-v
- This option reports the version number and exits.
-V
- This option reports the version number and build options, and exits.
-X lock-file
- This option acquires a lock on the specified file at runtime; this helps to
prevent duplicate
named
instances from running simultaneously. Use of this option overrides thelock-file
option innamed.conf
. If set tonone
, the lock file check is disabled.
Signals¶
In routine operation, signals should not be used to control the
nameserver; rndc
should be used instead.
- SIGHUP
- This signal forces a reload of the server.
- SIGINT, SIGTERM
- These signals shut down the server.
The result of sending any other signals to the server is undefined.
Configuration¶
The named
configuration file is too complex to describe in detail
here. A complete description is provided in the BIND 9 Administrator
Reference Manual.
named
inherits the umask
(file creation mode mask) from the
parent process. If files created by named
, such as journal files,
need to have custom permissions, the umask
should be set explicitly
in the script used to start the named
process.
Files¶
/etc/named.conf
- The default configuration file.
/named.pid
- The default process-id file.
nsec3hash - generate NSEC3 hash¶
Synopsis¶
nsec3hash {salt} {algorithm} {iterations} {domain}
nsec3hash -r {algorithm} {flags} {iterations} {salt} {domain}
Description¶
nsec3hash
generates an NSEC3 hash based on a set of NSEC3
parameters. This can be used to check the validity of NSEC3 records in a
signed zone.
If this command is invoked as nsec3hash -r
, it takes arguments in
order, matching the first four fields of an NSEC3 record followed by the
domain name: algorithm
, flags
, iterations
, salt
, domain
. This makes it
convenient to copy and paste a portion of an NSEC3 or NSEC3PARAM record
into a command line to confirm the correctness of an NSEC3 hash.
Arguments¶
salt
- This is the salt provided to the hash algorithm.
algorithm
- This is a number indicating the hash algorithm. Currently the only supported hash algorithm for NSEC3 is SHA-1, which is indicated by the number 1; consequently “1” is the only useful value for this argument.
flags
- This is provided for compatibility with NSEC3 record presentation format, but is ignored since the flags do not affect the hash.
iterations
- This is the number of additional times the hash should be performed.
domain
- This is the domain name to be hashed.
nslookup - query Internet name servers interactively¶
Synopsis¶
nslookup [-option] [name | -] [server]
Description¶
nslookup
is a program to query Internet domain name servers.
nslookup
has two modes: interactive and non-interactive. Interactive
mode allows the user to query name servers for information about various
hosts and domains or to print a list of hosts in a domain.
Non-interactive mode prints just the name and requested
information for a host or domain.
Arguments¶
Interactive mode is entered in the following cases:
- when no arguments are given (the default name server is used);
- when the first argument is a hyphen (-) and the second argument is the host name or Internet address of a name server.
Non-interactive mode is used when the name or Internet address of the host to be looked up is given as the first argument. The optional second argument specifies the host name or address of a name server.
Options can also be specified on the command line if they precede the arguments and are prefixed with a hyphen. For example, to change the default query type to host information, with an initial timeout of 10 seconds, type:
nslookup -query=hinfo -timeout=10
The -version
option causes nslookup
to print the version number
and immediately exit.
Interactive Commands¶
host [server]
This command looks up information for
host
using the current default server or usingserver
, if specified. Ifhost
is an Internet address and the query type is A or PTR, the name of the host is returned. Ifhost
is a name and does not have a trailing period (.
), the search list is used to qualify the name.To look up a host not in the current domain, append a period to the name.
server domain
|lserver domain
- These commands change the default server to
domain
;lserver
uses the initial server to look up information aboutdomain
, whileserver
uses the current default server. If an authoritative answer cannot be found, the names of servers that might have the answer are returned. root
- This command is not implemented.
finger
- This command is not implemented.
ls
- This command is not implemented.
view
- This command is not implemented.
help
- This command is not implemented.
?
- This command is not implemented.
exit
- This command exits the program.
set keyword[=value]
This command is used to change state information that affects the lookups. Valid keywords are:
all
- This keyword prints the current values of the frequently used options to
set
. Information about the current default server and host is also printed. class=value
This keyword changes the query class to one of:
IN
- the Internet class
CH
- the Chaos class
HS
- the Hesiod class
ANY
- wildcard
The class specifies the protocol group of the information. The default is
IN
; the abbreviation for this keyword iscl
.nodebug
- This keyword turns on or off the display of the full response packet, and any
intermediate response packets, when searching. The default for this keyword is
nodebug
; the abbreviation for this keyword is[no]deb
. nod2
- This keyword turns debugging mode on or off. This displays more about what
nslookup is doing. The default is
nod2
. domain=name
- This keyword sets the search list to
name
. nosearch
- If the lookup request contains at least one period, but does not end
with a trailing period, this keyword appends the domain names in the domain
search list to the request until an answer is received. The default is
search
. port=value
- This keyword changes the default TCP/UDP name server port to
value
from its default, port 53. The abbreviation for this keyword ispo
. querytype=value
|type=value
This keyword changes the type of the information query to
value
. The defaults are A and then AAAA; the abbreviations for these keywords areq
andty
.Please note that it is only possible to specify one query type. Only the default behavior looks up both when an alternative is not specified.
norecurse
- This keyword tells the name server to query other servers if it does not have
the information. The default is
recurse
; the abbreviation for this keyword is[no]rec
. ndots=number
- This keyword sets the number of dots (label separators) in a domain that disables searching. Absolute names always stop searching.
retry=number
- This keyword sets the number of retries to
number
. timeout=number
- This keyword changes the initial timeout interval to wait for a reply to
number
, in seconds. novc
- This keyword indicates that a virtual circuit should always be used when sending requests to the server.
novc
is the default. nofail
- This keyword tries the next nameserver if a nameserver responds with SERVFAIL or
a referral (nofail), or terminates the query (fail) on such a response. The
default is
nofail
.
Return Values¶
nslookup
returns with an exit status of 1 if any query failed, and 0
otherwise.
IDN Support¶
If nslookup
has been built with IDN (internationalized domain name)
support, it can accept and display non-ASCII domain names. nslookup
appropriately converts character encoding of a domain name before sending
a request to a DNS server or displaying a reply from the server.
To turn off IDN support, define the IDN_DISABLE
environment variable. IDN support is disabled if the variable is set
when nslookup
runs, or when the standard output is not a tty.
Files¶
/etc/resolv.conf
See Also¶
dig(1), host(1), named(8).
nsupdate - dynamic DNS update utility¶
Synopsis¶
nsupdate [-d] [-D] [-i] [-L level] [ [-g] | [-o] | [-l] | [-y [hmac:]keyname:secret] | [-k keyfile] ] [-t timeout] [-u udptimeout] [-r udpretries] [-v] [-T] [-P] [-V] [ [-4] | [-6] ] [filename]
Description¶
nsupdate
is used to submit Dynamic DNS Update requests, as defined in
RFC 2136, to a name server. This allows resource records to be added or
removed from a zone without manually editing the zone file. A single
update request can contain requests to add or remove more than one
resource record.
Zones that are under dynamic control via nsupdate
or a DHCP server
should not be edited by hand. Manual edits could conflict with dynamic
updates and cause data to be lost.
The resource records that are dynamically added or removed with
nsupdate
must be in the same zone. Requests are sent to the
zone’s primary server, which is identified by the MNAME field of the
zone’s SOA record.
Transaction signatures can be used to authenticate the Dynamic DNS updates. These use the TSIG resource record type described in RFC 2845, the SIG(0) record described in RFC 2535 and RFC 2931, or GSS-TSIG as described in RFC 3645.
TSIG relies on a shared secret that should only be known to nsupdate
and the name server. For instance, suitable key
and server
statements are added to /etc/named.conf
so that the name server
can associate the appropriate secret key and algorithm with the IP
address of the client application that is using TSIG
authentication. ddns-confgen
can generate suitable
configuration fragments. nsupdate
uses the -y
or -k
options
to provide the TSIG shared secret; these options are mutually exclusive.
SIG(0) uses public key cryptography. To use a SIG(0) key, the public key must be stored in a KEY record in a zone served by the name server.
GSS-TSIG uses Kerberos credentials. Standard GSS-TSIG mode is switched
on with the -g
flag. A non-standards-compliant variant of GSS-TSIG
used by Windows 2000 can be switched on with the -o
flag.
Options¶
-4
- This option sets use of IPv4 only.
-6
- This option sets use of IPv6 only.
-C
- Overrides the default resolv.conf file. This is only intended for testing.
-d
- This option sets debug mode, which provides tracing information about the update requests that are made and the replies received from the name server.
-D
- This option sets extra debug mode.
-i
- This option forces interactive mode, even when standard input is not a terminal.
-k keyfile
- This option indicates the file containing the TSIG authentication key. Keyfiles may be in
two formats: a single file containing a
named.conf
-formatkey
statement, which may be generated automatically byddns-confgen
; or a pair of files whose names are of the formatK{name}.+157.+{random}.key
andK{name}.+157.+{random}.private
, which can be generated bydnssec-keygen
. The-k
option can also be used to specify a SIG(0) key used to authenticate Dynamic DNS update requests. In this case, the key specified is not an HMAC-MD5 key. -l
- This option sets local-host only mode, which sets the server address to localhost
(disabling the
server
so that the server address cannot be overridden). Connections to the local server use a TSIG key found in/session.key
, which is automatically generated bynamed
if any localprimary
zone has setupdate-policy
tolocal
. The location of this key file can be overridden with the-k
option. -L level
- This option sets the logging debug level. If zero, logging is disabled.
-p port
- This option sets the port to use for connections to a name server. The default is 53.
-P
- This option prints the list of private BIND-specific resource record types whose
format is understood by
nsupdate
. See also the-T
option. -r udpretries
- This option sets the number of UDP retries. The default is 3. If zero, only one update request is made.
-t timeout
- This option sets the maximum time an update request can take before it is aborted. The default is 300 seconds. If zero, the timeout is disabled.
-T
This option prints the list of IANA standard resource record types whose format is understood by
nsupdate
.nsupdate
exits after the lists are printed. The-T
option can be combined with the-P
option.Other types can be entered using
TYPEXXXXX
whereXXXXX
is the decimal value of the type with no leading zeros. The rdata, if present, is parsed using the UNKNOWN rdata format, (<backslash> <hash> <space> <length> <space> <hexstring>).-u udptimeout
- This option sets the UDP retry interval. The default is 3 seconds. If zero, the interval is computed from the timeout interval and number of UDP retries.
-v
- This option specifies that TCP should be used even for small update requests. By default,
nsupdate
uses UDP to send update requests to the name server unless they are too large to fit in a UDP request, in which case TCP is used. TCP may be preferable when a batch of update requests is made. -V
- This option prints the version number and exits.
-y [hmac:]keyname:secret
This option sets the literal TSIG authentication key.
keyname
is the name of the key, andsecret
is the base64 encoded shared secret.hmac
is the name of the key algorithm; valid choices arehmac-md5
,hmac-sha1
,hmac-sha224
,hmac-sha256
,hmac-sha384
, orhmac-sha512
. Ifhmac
is not specified, the default ishmac-md5
, or if MD5 was disabled,hmac-sha256
.NOTE: Use of the
-y
option is discouraged because the shared secret is supplied as a command-line argument in clear text. This may be visible in the output from ps1 or in a history file maintained by the user’s shell.
Input Format¶
nsupdate
reads input from filename
or standard input. Each
command is supplied on exactly one line of input. Some commands are for
administrative purposes; others are either update instructions or
prerequisite checks on the contents of the zone. These checks set
conditions that some name or set of resource records (RRset) either
exists or is absent from the zone. These conditions must be met if the
entire update request is to succeed. Updates are rejected if the
tests for the prerequisite conditions fail.
Every update request consists of zero or more prerequisites and zero or
more updates. This allows a suitably authenticated update request to
proceed if some specified resource records are either present or missing from
the zone. A blank input line (or the send
command) causes the
accumulated commands to be sent as one Dynamic DNS update request to the
name server.
The command formats and their meanings are as follows:
server servername port
- This command sends all dynamic update requests to the name server
servername
. When no server statement is provided,nsupdate
sends updates to the primary server of the correct zone. The MNAME field of that zone’s SOA record identify the primary server for that zone.port
is the port number onservername
where the dynamic update requests are sent. If no port number is specified, the default DNS port number of 53 is used. local address port
- This command sends all dynamic update requests using the local
address
. When no local statement is provided,nsupdate
sends updates using an address and port chosen by the system.port
can also be used to force requests to come from a specific port. If no port number is specified, the system assigns one. zone zonename
- This command specifies that all updates are to be made to the zone
zonename
. If nozone
statement is provided,nsupdate
attempts to determine the correct zone to update based on the rest of the input. class classname
- This command specifies the default class. If no
class
is specified, the default class isIN
. ttl seconds
- This command specifies the default time-to-live, in seconds, for records to be added. The value
none
clears the default TTL. key hmac:keyname secret
- This command specifies that all updates are to be TSIG-signed using the
keyname
-secret
pair. Ifhmac
is specified, it sets the signing algorithm in use. The default ishmac-md5
; if MD5 was disabled, the default ishmac-sha256
. Thekey
command overrides any key specified on the command line via-y
or-k
. gsstsig
- This command uses GSS-TSIG to sign the updates. This is equivalent to specifying
-g
on the command line. oldgsstsig
- This command uses the Windows 2000 version of GSS-TSIG to sign the updates. This is
equivalent to specifying
-o
on the command line. realm [realm_name]
- When using GSS-TSIG, this command specifies the use of
realm_name
rather than the default realm inkrb5.conf
. If no realm is specified, the saved realm is cleared. check-names [yes_or_no]
- This command turns on or off check-names processing on records to be added. Check-names has no effect on prerequisites or records to be deleted. By default check-names processing is on. If check-names processing fails, the record is not added to the UPDATE message.
prereq nxdomain domain-name
- This command requires that no resource record of any type exist with the name
domain-name
. prereq yxdomain domain-name
- This command requires that
domain-name
exist (as at least one resource record, of any type). prereq nxrrset domain-name class type
- This command requires that no resource record exist of the specified
type
,class
, anddomain-name
. Ifclass
is omitted, IN (Internet) is assumed. prereq yxrrset domain-name class type
- This command requires that a resource record of the specified
type
,class
anddomain-name
exist. Ifclass
is omitted, IN (internet) is assumed. prereq yxrrset domain-name class type data
- With this command, the
data
from each set of prerequisites of this form sharing a commontype
,class
, anddomain-name
are combined to form a set of RRs. This set of RRs must exactly match the set of RRs existing in the zone at the giventype
,class
, anddomain-name
. Thedata
are written in the standard text representation of the resource record’s RDATA. update delete domain-name ttl class type data
- This command deletes any resource records named
domain-name
. Iftype
anddata
are provided, only matching resource records are removed. The Internet class is assumed ifclass
is not supplied. Thettl
is ignored, and is only allowed for compatibility. update add domain-name ttl class type data
- This command adds a new resource record with the specified
ttl
,class
, anddata
. show
- This command displays the current message, containing all of the prerequisites and updates specified since the last send.
send
- This command sends the current message. This is equivalent to entering a blank line.
answer
- This command displays the answer.
debug
- This command turns on debugging.
version
- This command prints the version number.
help
- This command prints a list of commands.
Lines beginning with a semicolon (;) are comments and are ignored.
Examples¶
The examples below show how nsupdate
can be used to insert and
delete resource records from the example.com
zone. Notice that the
input in each example contains a trailing blank line, so that a group of
commands is sent as one dynamic update request to the primary name
server for example.com
.
# nsupdate
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1
> send
Any A records for oldhost.example.com
are deleted, and an A record
for newhost.example.com
with IP address 172.16.1.1 is added. The
newly added record has a TTL of 1 day (86400 seconds).
# nsupdate
> prereq nxdomain nickname.example.com
> update add nickname.example.com 86400 CNAME somehost.example.com
> send
The prerequisite condition tells the name server to verify that there are
no resource records of any type for nickname.example.com
. If there
are, the update request fails. If this name does not exist, a CNAME for
it is added. This ensures that when the CNAME is added, it cannot
conflict with the long-standing rule in RFC 1034 that a name must not
exist as any other record type if it exists as a CNAME. (The rule has
been updated for DNSSEC in RFC 2535 to allow CNAMEs to have RRSIG,
DNSKEY, and NSEC records.)
Files¶
/etc/resolv.conf
- Used to identify the default name server
/session.key
- Sets the default TSIG key for use in local-only mode
K{name}.+157.+{random}.key
- Base-64 encoding of the HMAC-MD5 key created by
dnssec-keygen
. K{name}.+157.+{random}.private
- Base-64 encoding of the HMAC-MD5 key created by
dnssec-keygen
.
See Also¶
RFC 2136, RFC 3007, RFC 2104, RFC 2845, RFC 1034, RFC 2535, RFC 2931, named(8), dnssec-keygen(8), tsig-keygen(8).
Bugs¶
The TSIG key is redundantly stored in two separate files. This is a
consequence of nsupdate
using the DST library for its cryptographic
operations, and may change in future releases.
rndc-confgen - rndc key generation tool¶
Synopsis¶
rndc-confgen [-a] [-A algorithm] [-b keysize] [-c keyfile] [-h] [-k keyname] [-p port] [-s address] [-t chrootdir] [-u user]
Description¶
rndc-confgen
generates configuration files for rndc
. It can be
used as a convenient alternative to writing the rndc.conf
file and
the corresponding controls
and key
statements in named.conf
by hand. Alternatively, it can be run with the -a
option to set up a
rndc.key
file and avoid the need for a rndc.conf
file and a
controls
statement altogether.
Options¶
-a
This option sets automatic
rndc
configuration, which creates a file/etc/rndc.key
that is read by bothrndc
andnamed
on startup. Therndc.key
file defines a default command channel and authentication key allowingrndc
to communicate withnamed
on the local host with no further configuration.If a more elaborate configuration than that generated by
rndc-confgen -a
is required, for example if rndc is to be used remotely, runrndc-confgen
without the-a
option and set uprndc.conf
andnamed.conf
as directed.-A algorithm
- This option specifies the algorithm to use for the TSIG key. Available choices are: hmac-md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, and hmac-sha512. The default is hmac-sha256.
-b keysize
- This option specifies the size of the authentication key in bits. The size must be between 1 and 512 bits; the default is the hash size.
-c keyfile
- This option is used with the
-a
option to specify an alternate location forrndc.key
. -h
- This option prints a short summary of the options and arguments to
rndc-confgen
. -k keyname
- This option specifies the key name of the
rndc
authentication key. This must be a valid domain name. The default isrndc-key
. -p port
- This option specifies the command channel port where
named
listens for connections fromrndc
. The default is 953. -q
- This option prevets printing the written path in automatic configuration mode.
-s address
- This option specifies the IP address where
named
listens for command-channel connections fromrndc
. The default is the loopback address 127.0.0.1. -t chrootdir
- This option is used with the
-a
option to specify a directory wherenamed
runs chrooted. An additional copy of therndc.key
is written relative to this directory, so that it is found by the chrootednamed
. -u user
- This option is used with the
-a
option to set the owner of the generatedrndc.key
file. If-t
is also specified, only the file in the chroot area has its owner changed.
Examples¶
To allow rndc
to be used with no manual configuration, run:
rndc-confgen -a
To print a sample rndc.conf
file and the corresponding controls
and
key
statements to be manually inserted into named.conf
, run:
rndc-confgen
See Also¶
rndc(8), rndc.conf(5), named(8), BIND 9 Administrator Reference Manual.
rndc.conf - rndc configuration file¶
Synopsis¶
rndc.conf
Description¶
rndc.conf
is the configuration file for rndc
, the BIND 9 name
server control utility. This file has a similar structure and syntax to
named.conf
. Statements are enclosed in braces and terminated with a
semi-colon. Clauses in the statements are also semi-colon terminated.
The usual comment styles are supported:
C style: /* */
C++ style: // to end of line
Unix style: # to end of line
rndc.conf
is much simpler than named.conf
. The file uses three
statements: an options statement, a server statement, and a key
statement.
The options
statement contains five clauses. The default-server
clause is followed by the name or address of a name server. This host
is used when no name server is given as an argument to rndc
.
The default-key
clause is followed by the name of a key, which is
identified by a key
statement. If no keyid
is provided on the
rndc command line, and no key
clause is found in a matching
server
statement, this default key is used to authenticate the
server’s commands and responses. The default-port
clause is followed
by the port to connect to on the remote name server. If no port
option is provided on the rndc command line, and no port
clause is
found in a matching server
statement, this default port is used
to connect. The default-source-address
and
default-source-address-v6
clauses can be used to set the IPv4
and IPv6 source addresses respectively.
After the server
keyword, the server statement includes a string
which is the hostname or address for a name server. The statement has
three possible clauses: key
, port
, and addresses
. The key
name must match the name of a key statement in the file. The port number
specifies the port to connect to. If an addresses
clause is supplied,
these addresses are used instead of the server name. Each address
can take an optional port. If an source-address
or
source-address-v6
is supplied, it is used to specify the
IPv4 and IPv6 source address, respectively.
The key
statement begins with an identifying string, the name of the
key. The statement has two clauses. algorithm
identifies the
authentication algorithm for rndc
to use; currently only HMAC-MD5
(for compatibility), HMAC-SHA1, HMAC-SHA224, HMAC-SHA256 (default),
HMAC-SHA384, and HMAC-SHA512 are supported. This is followed by a secret
clause which contains the base-64 encoding of the algorithm’s
authentication key. The base-64 string is enclosed in double quotes.
There are two common ways to generate the base-64 string for the secret.
The BIND 9 program rndc-confgen
can be used to generate a random
key, or the mmencode
program, also known as mimencode
, can be
used to generate a base-64 string from known input. mmencode
does
not ship with BIND 9 but is available on many systems. See the Example
section for sample command lines for each.
Example¶
options {
default-server localhost;
default-key samplekey;
};
server localhost {
key samplekey;
};
server testserver {
key testkey;
addresses { localhost port 5353; };
};
key samplekey {
algorithm hmac-sha256;
secret "6FMfj43Osz4lyb24OIe2iGEz9lf1llJO+lz";
};
key testkey {
algorithm hmac-sha256;
secret "R3HI8P6BKw9ZwXwN3VZKuQ==";
};
In the above example, rndc
by default uses the server at
localhost (127.0.0.1) and the key called “samplekey”. Commands to the
localhost server use the “samplekey” key, which must also be defined
in the server’s configuration file with the same name and secret. The
key statement indicates that “samplekey” uses the HMAC-SHA256 algorithm
and its secret clause contains the base-64 encoding of the HMAC-SHA256
secret enclosed in double quotes.
If rndc -s testserver
is used, then rndc
connects to the server
on localhost port 5353 using the key “testkey”.
To generate a random secret with rndc-confgen
:
rndc-confgen
A complete rndc.conf
file, including the randomly generated key,
is written to the standard output. Commented-out key
and
controls
statements for named.conf
are also printed.
To generate a base-64 secret with mmencode
:
echo "known plaintext for a secret" | mmencode
Name Server Configuration¶
The name server must be configured to accept rndc connections and to
recognize the key specified in the rndc.conf
file, using the
controls statement in named.conf
. See the sections on the
controls
statement in the BIND 9 Administrator Reference Manual for
details.
See Also¶
rndc(8), rndc-confgen(8), mmencode(1), BIND 9 Administrator Reference Manual.
rndc - name server control utility¶
Synopsis¶
rndc [-b source-address] [-c config-file] [-k key-file] [-s server] [-p port] [-q] [-r] [-V] [-y key_id] [[-4] | [-6]] {command}
Description¶
rndc
controls the operation of a name server; it supersedes the
ndc
utility. If rndc
is
invoked with no command line options or arguments, it prints a short
summary of the supported commands and the available options and their
arguments.
rndc
communicates with the name server over a TCP connection,
sending commands authenticated with digital signatures. In the current
versions of rndc
and named
, the only supported authentication
algorithms are HMAC-MD5 (for compatibility), HMAC-SHA1, HMAC-SHA224,
HMAC-SHA256 (default), HMAC-SHA384, and HMAC-SHA512. They use a shared
secret on each end of the connection, which provides TSIG-style
authentication for the command request and the name server’s response.
All commands sent over the channel must be signed by a key_id known to
the server.
rndc
reads a configuration file to determine how to contact the name
server and decide what algorithm and key it should use.
Options¶
-4
- This option indicates use of IPv4 only.
-6
- This option indicates use of IPv6 only.
-b source-address
- This option indicates
source-address
as the source address for the connection to the server. Multiple instances are permitted, to allow setting of both the IPv4 and IPv6 source addresses. -c config-file
- This option indicates
config-file
as the configuration file instead of the default,/etc/rndc.conf
. -k key-file
- This option indicates
key-file
as the key file instead of the default,/etc/rndc.key
. The key in/etc/rndc.key
is used to authenticate commands sent to the server if the config-file does not exist. -s server
server
is the name or address of the server which matches a server statement in the configuration file forrndc
. If no server is supplied on the command line, the host named by the default-server clause in the options statement of therndc
configuration file is used.-p port
- This option instructs BIND 9 to send commands to TCP port
port
instead of its default control channel port, 953. -q
- This option sets quiet mode, where message text returned by the server is not printed unless there is an error.
-r
- This option instructs
rndc
to print the result code returned bynamed
after executing the requested command (e.g., ISC_R_SUCCESS, ISC_R_FAILURE, etc.). -V
- This option enables verbose logging.
-y key_id
- This option indicates use of the key
key_id
from the configuration file. For control message validation to succeed,key_id
must be known bynamed
with the same algorithm and secret string. If nokey_id
is specified,rndc
first looks for a key clause in the server statement of the server being used, or if no server statement is present for that host, then in the default-key clause of the options statement. Note that the configuration file contains shared secrets which are used to send authenticated control commands to name servers, and should therefore not have general read or write access.
Commands¶
A list of commands supported by rndc
can be seen by running rndc
without arguments.
Currently supported commands are:
addzone
zone [class [view]] configurationThis command adds a zone while the server is running. This command requires the
allow-new-zones
option to be set toyes
. The configuration string specified on the command line is the zone configuration text that would ordinarily be placed innamed.conf
.The configuration is saved in a file called
viewname.nzf
(or, ifnamed
is compiled with liblmdb, an LMDB database file calledviewname.nzd
).viewname
is the name of the view, unless the view name contains characters that are incompatible with use as a file name, in which case a cryptographic hash of the view name is used instead. Whennamed
is restarted, the file is loaded into the view configuration so that zones that were added can persist after a restart.This sample
addzone
command adds the zoneexample.com
to the default view:rndc addzone example.com '{ type primary; file "example.com.db"; };'
(Note the brackets around and semi-colon after the zone configuration text.)
See also
rndc delzone
andrndc modzone
.delzone
[-clean] zone [class [view]]This command deletes a zone while the server is running.
If the
-clean
argument is specified, the zone’s master file (and journal file, if any) are deleted along with the zone. Without the-clean
option, zone files must be deleted manually. (If the zone is of typesecondary
orstub
, the files needing to be removed are reported in the output of therndc delzone
command.)If the zone was originally added via
rndc addzone
, then it is removed permanently. However, if it was originally configured innamed.conf
, then that original configuration remains in place; when the server is restarted or reconfigured, the zone is recreated. To remove it permanently, it must also be removed fromnamed.conf
.See also
rndc addzone
andrndc modzone
.dnssec
( -status | -rollover -key id [-alg algorithm] [-when time] | -checkds [-key id [-alg algorithm]] [-when time] ( published | withdrawn )) zone [class [view]]This command allows you to interact with the “dnssec-policy” of a given zone.
rndc dnssec -status
show the DNSSEC signing state for the specified zone.rndc dnssec -rollover
allows you to schedule key rollover for a specific key (overriding the original key lifetime).rndc dnssec -checkds
will letnamed
know that the DS for the given key has been seen published into or withdrawn from the parent. This is required in order to complete a KSK rollover. If the-key id
argument is specified, look for the key with the given identifier, otherwise if there is only one key acting as a KSK in the zone, assume the DS of that key (if there are multiple keys with the same tag, use-alg algorithm
to select the correct algorithm). The time that the DS has been published or withdrawn is set to now, unless otherwise specified with the argument-when time
.dnstap
( -reopen | -roll [number] )- This command closes and re-opens DNSTAP output files.
rndc dnstap -reopen
allows the output file to be renamed externally, so thatnamed
can truncate and re-open it.rndc dnstap -roll
causes the output file to be rolled automatically, similar to log files. The most recent output file has “.0” appended to its name; the previous most recent output file is moved to “.1”, and so on. Ifnumber
is specified, then the number of backup log files is limited to that number. dumpdb
[-all | -cache | -zones | -adb | -bad | -expired | -fail] [view …]- This command dumps the server’s caches (default) and/or zones to the dump file for
the specified views. If no view is specified, all views are dumped.
(See the
dump-file
option in the BIND 9 Administrator Reference Manual.) flush
- This command flushes the server’s cache.
flushname
name [view]- This command flushes the given name from the view’s DNS cache and, if applicable, from the view’s nameserver address database, bad server cache, and SERVFAIL cache.
flushtree
name [view]- This command flushes the given name, and all of its subdomains, from the view’s DNS cache, address database, bad server cache, and SERVFAIL cache.
freeze
[zone [class [view]]]This command suspends updates to a dynamic zone. If no zone is specified, then all zones are suspended. This allows manual edits to be made to a zone normally updated by dynamic update, and causes changes in the journal file to be synced into the master file. All dynamic update attempts are refused while the zone is frozen.
See also
rndc thaw
.halt
[-p]This command stops the server immediately. Recent changes made through dynamic update or IXFR are not saved to the master files, but are rolled forward from the journal files when the server is restarted. If
-p
is specified,named
’s process ID is returned. This allows an external process to determine whennamed
has completed halting.See also
rndc stop
.loadkeys
[zone [class [view]]]This command fetches all DNSSEC keys for the given zone from the key directory. If they are within their publication period, they are merged into the zone’s DNSKEY RRset. Unlike
rndc sign
, however, the zone is not immediately re-signed by the new keys, but is allowed to incrementally re-sign over time.This command requires that the zone be configured with a
dnssec-policy
, or that theauto-dnssec
zone option be set tomaintain
, and also requires the zone to be configured to allow dynamic DNS. (See “Dynamic Update Policies” in the Administrator Reference Manual for more details.)managed-keys
(status | refresh | sync | destroy) [class [view]]This command inspects and controls the “managed-keys” database which handles RFC 5011 DNSSEC trust anchor maintenance. If a view is specified, these commands are applied to that view; otherwise, they are applied to all views.
When run with the
status
keyword, this prints the current status of the managed-keys database.When run with the
refresh
keyword, this forces an immediate refresh query to be sent for all the managed keys, updating the managed-keys database if any new keys are found, without waiting the normal refresh interval.When run with the
sync
keyword, this forces an immediate dump of the managed-keys database to disk (in the filemanaged-keys.bind
or (viewname.mkeys
). This synchronizes the database with its journal file, so that the database’s current contents can be inspected visually.When run with the
destroy
keyword, the managed-keys database is shut down and deleted, and all key maintenance is terminated. This command should be used only with extreme caution.Existing keys that are already trusted are not deleted from memory; DNSSEC validation can continue after this command is used. However, key maintenance operations cease until
named
is restarted or reconfigured, and all existing key maintenance states are deleted.Running
rndc reconfig
or restartingnamed
immediately after this command causes key maintenance to be reinitialized from scratch, just as if the server were being started for the first time. This is primarily intended for testing, but it may also be used, for example, to jumpstart the acquisition of new keys in the event of a trust anchor rollover, or as a brute-force repair for key maintenance problems.
modzone
zone [class [view]] configurationThis command modifies the configuration of a zone while the server is running. This command requires the
allow-new-zones
option to be set toyes
. As withaddzone
, the configuration string specified on the command line is the zone configuration text that would ordinarily be placed innamed.conf
.If the zone was originally added via
rndc addzone
, the configuration changes are recorded permanently and are still in effect after the server is restarted or reconfigured. However, if it was originally configured innamed.conf
, then that original configuration remains in place; when the server is restarted or reconfigured, the zone reverts to its original configuration. To make the changes permanent, it must also be modified innamed.conf
.See also
rndc addzone
andrndc delzone
.notify
zone [class [view]]- This command resends NOTIFY messages for the zone.
notrace
This command sets the server’s debugging level to 0.
See also
rndc trace
.nta
[( -class class | -dump | -force | -remove | -lifetime duration)] domain [view]This command sets a DNSSEC negative trust anchor (NTA) for
domain
, with a lifetime ofduration
. The default lifetime is configured innamed.conf
via thenta-lifetime
option, and defaults to one hour. The lifetime cannot exceed one week.A negative trust anchor selectively disables DNSSEC validation for zones that are known to be failing because of misconfiguration rather than an attack. When data to be validated is at or below an active NTA (and above any other configured trust anchors),
named
aborts the DNSSEC validation process and treats the data as insecure rather than bogus. This continues until the NTA’s lifetime has elapsed.NTAs persist across restarts of the
named
server. The NTAs for a view are saved in a file calledname.nta
, wherename
is the name of the view; if it contains characters that are incompatible with use as a file name, a cryptographic hash is generated from the name of the view.An existing NTA can be removed by using the
-remove
option.An NTA’s lifetime can be specified with the
-lifetime
option. TTL-style suffixes can be used to specify the lifetime in seconds, minutes, or hours. If the specified NTA already exists, its lifetime is updated to the new value. Settinglifetime
to zero is equivalent to-remove
.If
-dump
is used, any other arguments are ignored and a list of existing NTAs is printed. Note that this may include NTAs that are expired but have not yet been cleaned up.Normally,
named
periodically tests to see whether data below an NTA can now be validated (see thenta-recheck
option in the Administrator Reference Manual for details). If data can be validated, then the NTA is regarded as no longer necessary and is allowed to expire early. The-force
parameter overrides this behavior and forces an NTA to persist for its entire lifetime, regardless of whether data could be validated if the NTA were not present.The view class can be specified with
-class
. The default is classIN
, which is the only class for which DNSSEC is currently supported.All of these options can be shortened, i.e., to
-l
,-r
,-d
,-f
, and-c
.Unrecognized options are treated as errors. To refer to a domain or view name that begins with a hyphen, use a double-hyphen (–) on the command line to indicate the end of options.
querylog
[(on | off)]This command enables or disables query logging. For backward compatibility, this command can also be used without an argument to toggle query logging on and off.
Query logging can also be enabled by explicitly directing the
queries
category
to achannel
in thelogging
section ofnamed.conf
, or by specifyingquerylog yes;
in theoptions
section ofnamed.conf
.reconfig
- This command reloads the configuration file and loads new zones, but does not reload
existing zone files even if they have changed. This is faster than a
full
reload
when there is a large number of zones, because it avoids the need to examine the modification times of the zone files. recursing
This command dumps the list of queries
named
is currently recursing on, and the list of domains to which iterative queries are currently being sent.The first list includes all unique clients that are waiting for recursion to complete, including the query that is awaiting a response and the timestamp (seconds since the Unix epoch) of when named started processing this client query.
The second list comprises of domains for which there are active (or recently active) fetches in progress. It reports the number of active fetches for each domain and the number of queries that have been passed (allowed) or dropped (spilled) as a result of the
fetches-per-zone
limit. (Note: these counters are not cumulative over time; whenever the number of active fetches for a domain drops to zero, the counter for that domain is deleted, and the next time a fetch is sent to that domain, it is recreated with the counters set to zero).refresh
zone [class [view]]- This command schedules zone maintenance for the given zone.
reload
- This command reloads the configuration file and zones.
reload
zone [class [view]]- This command reloads the given zone.
retransfer
zone [class [view]]This command retransfers the given secondary zone from the primary server.
If the zone is configured to use
inline-signing
, the signed version of the zone is discarded; after the retransfer of the unsigned version is complete, the signed version is regenerated with new signatures.scan
- This command scans the list of available network interfaces for changes, without
performing a full
reconfig
or waiting for theinterface-interval
timer. secroots
[-] [view …]This command dumps the security roots (i.e., trust anchors configured via
trust-anchors
, or themanaged-keys
ortrusted-keys
statements [both deprecated], ordnssec-validation auto
) and negative trust anchors for the specified views. If no view is specified, all views are dumped. Security roots indicate whether they are configured as trusted keys, managed keys, or initializing managed keys (managed keys that have not yet been updated by a successful key refresh query).If the first argument is
-
, then the output is returned via therndc
response channel and printed to the standard output. Otherwise, it is written to the secroots dump file, which defaults tonamed.secroots
, but can be overridden via thesecroots-file
option innamed.conf
.See also
rndc managed-keys
.serve-stale
(on | off | reset | status) [class [view]]This command enables, disables, resets, or reports the current status of the serving of stale answers as configured in
named.conf
.If serving of stale answers is disabled by
rndc-serve-stale off
, then it remains disabled even ifnamed
is reloaded or reconfigured.rndc serve-stale reset
restores the setting as configured innamed.conf
.rndc serve-stale status
reports whether caching and serving of stale answers is currently enabled or disabled. It also reports the values ofstale-answer-ttl
andmax-stale-ttl
.showzone
zone [class [view]]This command prints the configuration of a running zone.
See also
rndc zonestatus
.sign
zone [class [view]]This command fetches all DNSSEC keys for the given zone from the key directory (see the
key-directory
option in the BIND 9 Administrator Reference Manual). If they are within their publication period, they are merged into the zone’s DNSKEY RRset. If the DNSKEY RRset is changed, then the zone is automatically re-signed with the new key set.This command requires that the zone be configured with a
dnssec-policy
, or that theauto-dnssec
zone option be set toallow
ormaintain
, and also requires the zone to be configured to allow dynamic DNS. (See “Dynamic Update Policies” in the BIND 9 Administrator Reference Manual for more details.)See also
rndc loadkeys
.signing
[(-list | -clear keyid/algorithm | -clear all | -nsec3param ( parameters | none ) | -serial value ) zone [class [view]]This command lists, edits, or removes the DNSSEC signing-state records for the specified zone. The status of ongoing DNSSEC operations, such as signing or generating NSEC3 chains, is stored in the zone in the form of DNS resource records of type
sig-signing-type
.rndc signing -list
converts these records into a human-readable form, indicating which keys are currently signing or have finished signing the zone, and which NSEC3 chains are being created or removed.rndc signing -clear
can remove a single key (specified in the same format thatrndc signing -list
uses to display it), or all keys. In either case, only completed keys are removed; any record indicating that a key has not yet finished signing the zone is retained.rndc signing -nsec3param
sets the NSEC3 parameters for a zone. This is the only supported mechanism for using NSEC3 withinline-signing
zones. Parameters are specified in the same format as an NSEC3PARAM resource record:hash algorithm
,flags
,iterations
, andsalt
, in that order.Currently, the only defined value for
hash algorithm
is1
, representing SHA-1. Theflags
may be set to0
or1
, depending on whether the opt-out bit in the NSEC3 chain should be set.iterations
defines the number of additional times to apply the algorithm when generating an NSEC3 hash. Thesalt
is a string of data expressed in hexadecimal, a hyphen (-‘) if no salt is to be used, or the keyword ``auto`, which causesnamed
to generate a random 64-bit salt.So, for example, to create an NSEC3 chain using the SHA-1 hash algorithm, no opt-out flag, 10 iterations, and a salt value of “FFFF”, use:
rndc signing -nsec3param 1 0 10 FFFF zone
. To set the opt-out flag, 15 iterations, and no salt, use:rndc signing -nsec3param 1 1 15 - zone
.rndc signing -nsec3param none
removes an existing NSEC3 chain and replaces it with NSEC.rndc signing -serial value
sets the serial number of the zone tovalue
. If the value would cause the serial number to go backwards, it is rejected. The primary use of this parameter is to set the serial number on inline signed zones.stats
- This command writes server statistics to the statistics file. (See the
statistics-file
option in the BIND 9 Administrator Reference Manual.) status
- This command displays the status of the server. Note that the number of zones includes
the internal
bind/CH
zone and the default./IN
hint zone, if there is no explicit root zone configured. stop
-pThis command stops the server, making sure any recent changes made through dynamic update or IXFR are first saved to the master files of the updated zones. If
-p
is specified,named(8)`'s process ID is returned. This allows an external process to determine when ``named
has completed stopping.See also
rndc halt
.sync
-clean [zone [class [view]]]- This command syncs changes in the journal file for a dynamic zone to the master file. If the “-clean” option is specified, the journal file is also removed. If no zone is specified, then all zones are synced.
tcp-timeouts
[initial idle keepalive advertised]- When called without arguments, this command displays the current values of the
tcp-initial-timeout
,tcp-idle-timeout
,tcp-keepalive-timeout
, andtcp-advertised-timeout
options. When called with arguments, these values are updated. This allows an administrator to make rapid adjustments when under a denial-of-service (DoS) attack. See the descriptions of these options in the BIND 9 Administrator Reference Manual for details of their use. thaw
[zone [class [view]]]This command enables updates to a frozen dynamic zone. If no zone is specified, then all frozen zones are enabled. This causes the server to reload the zone from disk, and re-enables dynamic updates after the load has completed. After a zone is thawed, dynamic updates are no longer refused. If the zone has changed and the
ixfr-from-differences
option is in use, the journal file is updated to reflect changes in the zone. Otherwise, if the zone has changed, any existing journal file is removed.See also
rndc freeze
.trace
- This command increments the server’s debugging level by one.
trace
levelThis command sets the server’s debugging level to an explicit value.
See also
rndc notrace
.tsig-delete
keyname [view]- This command deletes a given TKEY-negotiated key from the server. This does not apply to statically configured TSIG keys.
tsig-list
- This command lists the names of all TSIG keys currently configured for use by
named
in each view. The list includes both statically configured keys and dynamic TKEY-negotiated keys. validation
(on | off | status) [view …]``This command enables, disables, or checks the current status of DNSSEC validation. By default, validation is enabled.
The cache is flushed when validation is turned on or off to avoid using data that might differ between states.
zonestatus
zone [class [view]]This command displays the current status of the given zone, including the master file name and any include files from which it was loaded, when it was most recently loaded, the current serial number, the number of nodes, whether the zone supports dynamic updates, whether the zone is DNSSEC signed, whether it uses automatic DNSSEC key management or inline signing, and the scheduled refresh or expiry times for the zone.
See also
rndc showzone
.
rndc
commands that specify zone names, such as reload
,
retransfer
, or zonestatus
, can be ambiguous when applied to zones
of type redirect
. Redirect zones are always called .
, and can be
confused with zones of type hint
or with secondary copies of the root
zone. To specify a redirect zone, use the special zone name
-redirect
, without a trailing period. (With a trailing period, this
would specify a zone called “-redirect”.)
Limitations¶
There is currently no way to provide the shared secret for a key_id
without using the configuration file.
Several error messages could be clearer.
See Also¶
rndc.conf(5), rndc-confgen(8), named(8), named.conf(5), ndc(8), BIND 9 Administrator Reference Manual.
tsig-keygen, ddns-confgen - TSIG key generation tool¶
Synopsis¶
tsig-keygen [-a algorithm] [-h] [-r randomfile] [name]
ddns-confgen [-a algorithm] [-h] [-k keyname] [-q] [-r randomfile] [-s name] [-z zone]
Description¶
tsig-keygen
and ddns-confgen
are invocation methods for a
utility that generates keys for use in TSIG signing. The resulting keys
can be used, for example, to secure dynamic DNS updates to a zone, or for
the rndc
command channel.
When run as tsig-keygen
, a domain name can be specified on the
command line to be used as the name of the generated key. If no
name is specified, the default is tsig-key
.
When run as ddns-confgen
, the key name can specified using -k
parameter and defaults to ddns-key
. The generated key is accompanied
by configuration text and instructions that can be used with nsupdate
and named
when setting up dynamic DNS, including an example
update-policy
statement. (This usage is similar to the rndc-confgen
command for setting up command-channel security.)
Note that named
itself can configure a local DDNS key for use with
nsupdate -l
; it does this when a zone is configured with
update-policy local;
. ddns-confgen
is only needed when a more
elaborate configuration is required: for instance, if nsupdate
is to
be used from a remote system.
Options¶
-a algorithm
- This option specifies the algorithm to use for the TSIG key. Available choices are: hmac-md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, and hmac-sha512. The default is hmac-sha256. Options are case-insensitive, and the “hmac-” prefix may be omitted.
-h
- This option prints a short summary of options and arguments.
-k keyname
- This option specifies the key name of the DDNS authentication key. The
default is
ddns-key
when neither the-s
nor-z
option is specified; otherwise, the default isddns-key
as a separate label followed by the argument of the option, e.g.,ddns-key.example.com.
The key name must have the format of a valid domain name, consisting of letters, digits, hyphens, and periods. -q
(ddns-confgen
only)- This option enables quiet mode, which prints only the key, with no
explanatory text or usage examples. This is essentially identical to
tsig-keygen
. -s name
(ddns-confgen
only)- This option generates a configuration example to allow dynamic updates
of a single hostname. The example
named.conf
text shows how to set an update policy for the specified name using the “name” nametype. The default key name isddns-key.name
. Note that the “self” nametype cannot be used, since the name to be updated may differ from the key name. This option cannot be used with the-z
option. -z zone
(ddns-confgen
only)- This option generates a configuration example to allow
dynamic updates of a zone. The example
named.conf
text shows how to set an update policy for the specified zone using the “zonesub” nametype, allowing updates to all subdomain names within that zone. This option cannot be used with the-s
option.
See Also¶
nsupdate(1), named.conf(5), named(8), BIND 9 Administrator Reference Manual.