Code_Saturne
CFD tool
Functions/Subroutines
vericl.f90 File Reference

Check boundary condition code. More...

Functions/Subroutines

subroutine vericl (nvar, nscal, icodcl, dt, rtp, rtpa, propce, propfa, propfb, coefa, coefb, rcodcl)
 

Detailed Description

Check boundary condition code.

Function/Subroutine Documentation

◆ vericl()

subroutine vericl ( integer  nvar,
integer  nscal,
integer, dimension(nfabor,nvar)  icodcl,
double precision, dimension(ncelet)  dt,
double precision, dimension(ncelet,*)  rtp,
double precision, dimension(ncelet,*)  rtpa,
double precision, dimension(ncelet,*)  propce,
double precision, dimension(nfac,*)  propfa,
double precision, dimension(nfabor,*)  propfb,
double precision, dimension(nfabor,*)  coefa,
double precision, dimension(nfabor,*)  coefb,
double precision, dimension(nfabor,nvar,3)  rcodcl 
)
Parameters
[in]nvartotal number of variables
[in]nscaltotal number of scalars
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 2 Radiative outlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rought wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in]dttime step (per cell)
[in]rtp,rtpacalculated variables at cell centers (at current and previous time steps)
[in]propcephysical properties at cell centers
[in]propfaphysical properties at interior face centers
[in]propfbphysical properties at boundary face centers
[out]coefaexplicit boundary condition coefficient
[out]coefbimplicit boundary condition coefficient
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughtness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
Here is the call graph for this function: