Code_Saturne
CFD tool
Functions/Subroutines
inimas.f90 File Reference

This function adds $ \rho \vect{u} \cdot \vect{S}_\ij$ to the mass flux $ \dot{m}_\ij $ for the segregated algorithm on the velocity components. More...

Functions/Subroutines

subroutine inimas (nvar, nscal, ivar1, ivar2, ivar3, imaspe, itypfl, iflmb0, init, inc, imrgra, iccocg, nswrgu, imligu, iwarnu, nfecra, epsrgu, climgu, extrau, rom, romb, ux, uy, uz, coefax, coefay, coefaz, coefbx, coefby, coefbz, flumas, flumab)
 

Detailed Description

This function adds $ \rho \vect{u} \cdot \vect{S}_\ij$ to the mass flux $ \dot{m}_\ij $ for the segregated algorithm on the velocity components.

For the reconstruction, $ \grad \left(\rho \vect{u} \right) $ is computed with the following approximated boundary conditions:

For the mass flux at the boundary we have:

\[ \dot{m}_\ib = \left[ \rho_\fib \vect{A}_u + \rho_\fib \tens{B}_u \vect{u} + \tens{B}_u \left(\gradv \vect{u} \cdot \vect{\centi \centip}\right)\right] \cdot \vect{S}_\ij \]

The last equation uses some approximations detailed in the theory guide.

Function/Subroutine Documentation

◆ inimas()

subroutine inimas ( integer  nvar,
integer  nscal,
integer  ivar1,
integer  ivar2,
integer  ivar3,
integer  imaspe,
integer  itypfl,
integer  iflmb0,
integer  init,
integer  inc,
integer  imrgra,
integer  iccocg,
integer  nswrgu,
integer  imligu,
integer  iwarnu,
integer  nfecra,
double precision  epsrgu,
double precision  climgu,
double precision  extrau,
double precision, dimension(ncelet)  rom,
double precision, dimension(nfabor)  romb,
double precision, dimension(ncelet)  ux,
double precision, dimension(ncelet)  uy,
double precision, dimension(ncelet)  uz,
double precision, dimension(nfabor)  coefax,
double precision, dimension(nfabor)  coefay,
double precision, dimension(nfabor)  coefaz,
double precision, dimension(nfabor)  coefbx,
double precision, dimension(nfabor)  coefby,
double precision, dimension(nfabor)  coefbz,
double precision, dimension(nfac)  flumas,
double precision, dimension(nfabor)  flumab 
)
Parameters
[in]nvartotal number of variables
[in]nscaltotal number of scalars
[in]ivar1current variable in the x direction
[in]ivar2current variable in the y direction
[in]ivar3current variable in the z direction
[in]imaspeindicator
  • 1 if we deal with a vector field such as the velocity
  • 2 if we deal with a tensor field such as the Reynolds stresses
[in]itypflindicator (take rho into account or not)
  • 1 compute $f {u}{S} $ - 0 compute \$f \vect{u}\cdot\vect{S} $
[in]iflmb0the mass flux is set to 0 on walls and symmetries if = 1
[in]initthe mass flux is initialize to 0 if > 0
[in]incindicator
  • 0 solve an increment
  • 1 otherwise
[in]imrgraindicator
  • 0 iterative gradient
  • 1 least square gradient
[in]iccocgindicator
  • recompute the non-orthogonalities matrix cocg for the iterative gradients
  • 0 otherwise
[in]nswrgunumber of sweeps for the reconstruction of the gradients
[in]imliguclipping gradient method
  • < 0 no clipping
  • = 0 thank to neighbooring gradients
  • = 1 thank to the mean gradient
[in]iwarnuverbosity
[in]nfecraunit of the standard output file
[in]epsrgurelative precision for the gradient reconstruction
[in]climguclipping coeffecient for the computation of the gradient
[in]extraucoefficient for extrapolation of the gradient
[in]romcell density
[in]rombborder face density
[in]uxvariable in the x direction
[in]uyvariable in the y direction
[in]uzvariable in the z direction
[in]coefa*boundary condition array for the variable (Explicit part - for the component * )
[in]coefb*boundary condition array for the variable (Impplicit part - for the component *)
[in,out]flumasinterior mass flux $ \dot{m}_\fij $
[in,out]flumabborder mass flux $ \dot{m}_\fib $
Here is the call graph for this function: