Code_Saturne
CFD tool
Functions/Subroutines
clsyvt.f90 File Reference

Symmetry boundary conditions for vectors and tensors. More...

Functions/Subroutines

subroutine clsyvt (nvar, nscal, icodcl, dt, rtp, rtpa, propce, propfa, propfb, rcodcl, velipb, rijipb, coefa, coefb)
 

Detailed Description

Symmetry boundary conditions for vectors and tensors.

Correspond to the code icodcl(ivar) = 4.

Function/Subroutine Documentation

◆ clsyvt()

subroutine clsyvt ( integer  nvar,
integer  nscal,
integer, dimension(nfabor,nvar)  icodcl,
double precision, dimension(ncelet)  dt,
double precision, dimension(ncelet,*)  rtp,
double precision, dimension(ncelet,*)  rtpa,
double precision, dimension(ncelet,*)  propce,
double precision, dimension(nfac,*)  propfa,
double precision, dimension(nfabor,*)  propfb,
double precision, dimension(nfabor,nvar,3)  rcodcl,
double precision, dimension(nfabor,ndim)  velipb,
double precision, dimension(nfabor,6)  rijipb,
double precision, dimension(nfabor,*)  coefa,
double precision, dimension(nfabor,*)  coefb 
)
Parameters
[in]nvartotal number of variables
[in]nscaltotal number of scalars
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rought wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in]dttime step (per cell)
[in]rtp,rtpacalculated variables at cell centers (at current and previous time steps)
[in]propcephysical properties at cell centers
[in]propfaphysical properties at interior face centers
[in]propfbphysical properties at boundary face centers
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughtness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
[in]velipbvalue of the velocity at $ \centip $ of boundary cells
[in]rijipbvalue of $ R_{ij} $ at $ \centip $ of boundary cells
[out]coefaexplicit boundary condition coefficient
[out]coefbimplicit boundary condition coefficient
Here is the call graph for this function: