| v

ERLANG

crypto

Copyright © 1999-2017 Ericsson AB. All Rights Reserved.
crypto 3.5

March 2, 2017

Copyright © 1999-2017 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 2, 2017

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

Copyright (c) 1998-2011 The OpenSSL Project. Al rights reserved.

Redi stri bution and use in source and binary forms, with or w thout
nmodi fication, are permtted provided that the follow ng conditions
are net:

1. Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in
t he docunentation and/or other materials provided with the
di stribution.

3. Al advertising materials nentioning features or use of this
sof tware nust display the foll ow ng acknow edgnent :
"Thi s product includes software devel oped by the OpenSSL Proj ect
for use in the OpenSSL Tool kit. (http://ww. openssl.org/)"

4. The nanes "OpenSSL Tool kit" and "OpenSSL Project" nust not be used to
endorse or pronote products derived fromthis software wi thout
prior witten perm ssion. For witten perm ssion, please contact
openssl - cor e@penssl . or g.

5. Products derived fromthis software may not be called "OpenSSL"
nor may "QOpenSSL" appear in their nanes w thout prior witten
perm ssion of the OpenSSL Proj ect.

6. Redistributions of any form whatsoever nust retain the follow ng
acknow edgnent :
"Thi s product includes software devel oped by the OpenSSL Proj ect
for use in the OpenSSL Tool kit (http://ww. openssl.org/)"

¥ %k ok ok ok ok kR kR R 3k ok ok kR kR 3k ok ok Ok kR kR 3k ok ok Ok k% %k 3k ok Ok Ok *

THI S SOFTWARE | S PROVI DED BY THE QpenSSL PROJECT " "AS IS'' AND ANY

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

EXPRESSED OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPOSE ARE DI SCLAI MED. I N NO EVENT SHALL THE OpenSSL PRQJIECT OR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT

NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;

LOSS OF USE, DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON)

HONEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT,
STRICT LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE)

ARI SING IN ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED
OF THE PGSSI BI LI TY OF SUCH DAMAGE.

Thi s product includes cryptographic software witten by Eric Young
(eay@ryptsoft.com). This product includes software witten by Tim
Hudson (tjh@ryptsoft.com.

ok ok ok k% %k ok ok ok kX % % ok ok Ok

1.1.2 SSlLeay License

Copyright (C 1995-1998 Eric Young (eay@ryptsoft.com
Al'l rights reserved.

Thi s package is an SSL inplenmentation witten
by Eric Young (eay@ryptsoft.conj.
The inplenmentation was witten so as to conformw th Netscapes SSL.

This library is free for comrercial and non-commrerci al use as |ong as
the followi ng conditions are aheared to. The follow ng conditions
apply to all code found in this distribution, be it the RC4, RSA

| hash, DES, etc., code; not just the SSL code. The SSL documentati on
included with this distribution is covered by the same copyright ternms
except that the holder is TimHudson (tjh@ryptsoft.com.

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be renoved.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the formof a textual nmessage at program startup or

in docunentation (online or textual) provided with the package.

Redi stri bution and use in source and binary forns, with or without

nmodi fication, are permtted provided that the follow ng conditions

are net:

1. Redistributions of source code nust retain the copyright
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary formnust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunent ati on and/or other materials provided with the distribution.

3. Al advertising materials mentioning features or use of this software
must di splay the follow ng acknow edgenent :
"Thi s product includes cryptographic software witten by
Eri c Young (eay@ryptsoft.com"
The word 'cryptographic' can be left out if the rouines fromthe library
bei ng used are not cryptographic related :-).

4. |f you include any Wndows specific code (or a derivative thereof) from
the apps directory (application code) you nust include an acknow edgenent :
"Thi s product includes software witten by Ti m Hudson (tjh@ryptsoft.com"

THI'S SOFTWARE | S PROVI DED BY ERIC YOUNG ""AS |S'' AND
ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE

ok ok ok kR 3k sk ok ok ok %k 3k ok ok ok ok %k 3k ok ok ok k% ok k ok ok ok k% k% ok ok ok F X X

2 | Ericsson AB. All Rights Reserved.: crypto

1.1 Licenses

ok ok ok % %k 3k ok ok kX % % oF

I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE
ARE DI SCLAI MED. I N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
DAMAGES (| NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOCDS
OR SERVI CES; LOSS OF USE, DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON)
HOWNEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
LI ABI LI TY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY
QUT OF THE USE OF TH S SOFTWARE, EVEN | F ADVI SED OF THE PGSSI Bl LI TY OF
SUCH DAMAGE

The |licence and distribution terns for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot sinply be
copi ed and put under another distribution |icence

[including the GNU Public Licence.]

Ericsson AB. All Rights Reserved.: crypto | 3

1.1 Licenses

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

4 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto
Application

The purpose of the Crypto application isto provide an Erlang API to cryptographic functions, see crypto(3). Note that
the APl ison afairly low level and there are some corresponding API functionsavailable in public_key(3), on ahigher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES

The current crypto implementation uses nifs to interface OpenSSLs crypto library and requires OpenSSL package
version 0.9.8 or higher.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: crypto | 5

href

crypto

crypto

Erlang module

This module provides a set of cryptographic functions.

* Hashfunctions- Secure Hash Standard, The MD5 Message Digest Algorithm (RFC 1321) and The MD4
M essage Digest Algorithm (RFC 1320)

» Hmac functions- Keyed-Hashing for M essage Authentication (RFC 2104)
* Block ciphers- DESand AESin Block Cipher Modes- ECB, CBC, CFB, OFB and CTR
* RSA encryption RFC 1321

« Digital signatures Digital Signature Standard (DSS) and Elliptic Curve Digital Signature Algorithm
(ECDSA)

* Secure Remote Password Protocol (SRP - RFC 2945)
DATA TYPES
key_val ue() = integer() | binary()
Alwaysbi nar y() when used asreturn value
rsa_public() = [key_value()] =[E N
Where E is the public exponent and N is public modulus.
rsa_private() = [key_value()] =[E, N D | [EL N D, P1l, P2, El, E2, C

Where E is the public exponent, N is public modulus and D is the private exponent.The longer key format contains
redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first
and second exponents. C isthe CRT coefficient. Terminology is taken from RFC 3447.

dss_public() = [key_value()] =[P, Q G Y]

Where P, Q and G are the dss parameters and Y is the public key.
dss_private() = [key_value()] =[P, @ G X

Where P, Q and G are the dss parameters and X isthe private key.
srp_public() = key_val ue()

Whereis A or B from SRP design

srp_private() = key_val ue()

Whereisa or b from SRP design

6 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

Where Verifier isv, Generator isg and Primeis N, DerivedKey is X, and Scrambler isu (optiona will be generated

if not provided) from SRP design Version="'3'|'6' | '6a

dh_public() = key_val ue()

dh_private() = key_val ue()

dh_paranms() = [key_value()] =[P, G

ecdh_public() = key_val ue()

ecdh_private() = key_val ue()

ecdh_parans() =

ec_explicit_curve() =

{ec_field(), Prime :: key_value(), Point

ec_field() = {prinme_field, Prine :
{characteristic_two_field, M::

integer()} |

ec_basis() = {tpbasis, K:: non_neg_integer()} |
{ppbasis, K1 :: non_neg_integer(), K2 :
onbasi s

ec_naned_curve() ->
sect571r1| sect571k1l| sect409r1| sect 409kl
secpl92kl| secpl60r?2| secpl28r2| secpl28rl
sect 131r2| sect131r1| sect283r1| sect 283kl
secpll2r2| secpll2rl| sect113r2| sect113rl
secpl92ri

key_val ue(), Order

integer(), Basis ::

non_neg_i nteger(), K3 ::

ec_naned_curve() | ec_explicit_curve()

i nteger (), CoFactor

ec_basis()}

non_neg_i nteger()} |

secp521rl| secp384rl| secp224rl| secp224kl
sect 233r1| sect233kl| sect193r2| sect193rl
sect 163r2| secp256kl| secpl60kl| secpl60rl
sect 239k1| sect163r1| sect163kl| secp256r1l

br ai npool P160r 1| brai npool P160t 1| brai npool P192r 1| brai npool P192t 1| br ai npool P224r 1
br ai npool P224t 1| br ai npool P256r 1| brai npool P256t 1| brai npool P320r 1| br ai npool P320t 1
br ai npool P384r 1| brai npool P384t 1| brai npool P512r 1| brai npool P512t 1

Note that the sect curves are GF2m (characteristic two) curves and are only supported if the underlying OpenSSL has

support for them. See also crypto: supports/O

stream ci pher() = rc4 | aes_ctr

bl ock_ci pher() =

| des_ede3 | rc2_chbc

aes_chc128 | aes_cfhb8 | aes_cfbl28 | aes_ige256 | blowfish_cbc
bl owfi sh_cfb64 | des_cbc | des_cfb | des3 cbc

des3_chbf

Ericsson AB. All Rights Reserved.: crypto | 7

none |

i nteger ()

href

crypto

stream key() = aes_key() | rc4_key()
bl ock_key() = aes_key() | blowfish_key() | des_key()| des3_ key()

aes_key() = iodata()
Key length is 128, 192 or 256 bits
rc4_key() = iodata()
Variable key length from 8 bits up to 2048 bits (usually between 40 and 256)
bl owfi sh_key() = i odata()
Variable key length from 32 bits up to 448 bits
des_key() = iodata()
Key length is 64 bits (in CBC mode only 8 bits are used)
des3_key() = [binary(), binary(), binary()]
Each key part is 64 bits (in CBC mode only 8 bits are used)

digest_type() = md5 | sha | sha224 | sha256 | sha384 | sha512

hash_al gorithms() = md5 | ripendl60 | sha | sha224 | sha256 | sha384 | sha512

md4 isalso supported for hash_init/1 and hash/2. Note that both md4 and md5 are recommended only for compatibility
with existing applications.

ci pher_al gorithns() = des_cbc | des_cfb | des3 cbc | des3 cbf | des_ede3
bl owfi sh_cbc | blowfish _cfb64 | aes_cbcl128 | aes_cfb8 | aes cfbl28| aes _chc256 | aes_ige256 | rc2_chc | aes

public_key al gorithns() = rsa |dss | ecdsa | dh | ecdh | ec_gf2m

Note that ec_gf2m is not strictly a public key algorithm, but a restriction on what curves are supported with ecdsa
and ecdh.

Exports

bl ock_encrypt (Type, Key, lvec, PlainText) -> C pherText
Types.

Type = bl ock_ci pher ()

Key = bl ock_key()

8 | Ericsson AB. All Rights Reserved.: crypto

crypto

Pl ai nText = iodata()
I Vec = CipherText = binary()

Encrypt Pl ai nText according to Type block cipher. | Vec isan arbitrary initializing vector.
May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

bl ock_decrypt (Type, Key, lvec, CipherText) -> Pl ainText
Types:
Type = bl ock_ci pher ()
Key = bl ock_key()
Pl ai nText = i odata()
| Vec = CipherText = binary()
Decrypt Ci pher Text according to Type block cipher. | Vec isan arbitrary initializing vector.

May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

bytes to_integer(Bin) -> Integer

Types:
Bin = binary() - as returned by crypto functions
I nteger = integer()

Convert binary representation, of an integer, to an Erlang integer.

comput e_key(Type, O hersPublicKey, M/Key, Parans) -> SharedSecret
Types:
Type = dh | ecdh | srp
O hersPubl i ckey = dh_public() | ecdh_public() | srp_public()
MyKey = dh_private() | ecdh _private() | {srp_public(),srp_private()}
Paranms = dh_parans() | ecdh_paranms() | SrpUserParans | SrpHostParans

SrpUser Parans = {user, [DerivedKey::binary(), Prinme::binary(),
Cenerator::binary(), Version::aton() | [Scranbler:binary()]]}

SrpHost Paranms = {host, [Verifier::binary(), Prinme::binary(),
Version::atom() | [Scranbler::binary]]}

Shar edSecret = binary()
Computes the shared secret from the private key and the other party's public key. See also public_key:compute key/2

exor (Datal, Data2) -> Result
Types.
Datal, Data2 = iodata()
Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

generate_key(Type, Paranms) -> {PublicKey, PrivKeyQut}
gener ate_key(Type, Parans, PrivKeyln) -> {PublicKey, PrivKeyQut}
Types.

Type = dh | ecdh | srp

Ericsson AB. All Rights Reserved.: crypto | 9

crypto

Parans = dh_parans() | ecdh_parans() | SrpUserParans | SrpHostParans

SrpUser Paranms = {user, [Cenerator::binary(), Prine::binary(),
Version::atom()]}

SrpHost Parans = {host, [Verifier::binary(), Generator::binary(),
Prime::binary(), Version::atom()]}

Publ i cKey = dh_public() | ecdh_public() | srp_public()
PrivKeyln = undefined | dh_private() | srp_private()
PrivKeyQut = dh_private() | ecdh _private() | srp_private()

Generates public keys of type Type. See also public_key:generate key/1

hash(Type, Data) -> Di gest
Types:
Type = nmd4 | hash_al gorithns()
Data = iodata()
Di gest = binary()
Computes a message digest of type Ty pe from Dat a.
May throw exception not sup in case the chosen Ty pe is not supported by the underlying OpenSSL implementation.

hash_init(Type) -> Context
Types:
Type = nd4 | hash_al gorithns()
Initializesthe context for streaming hash operations. Ty pe determineswhich digest to use. Thereturned context should
be used as argument to hash_update.

May throw exception not sup in case the chosen Ty pe is not supported by the underlying OpenSSL implementation.

hash_updat e(Cont ext, Data) -> NewCont ext
Types:
Data = iodata()
Updates the digest represented by Cont ext using the given Dat a. Cont ext must have been generated using

hash_init or a previous call to this function. Dat a can be any length. NewCont ext must be passed into the next
call tohash_updat e or hash_final.

hash_fi nal (Context) -> Digest
Types:
Di gest = binary()

Finalizes the hash operation referenced by Cont ext returned from a previous call to hash_update. The size of
Di gest isdetermined by the type of hash function used to generate it.

hmac(Type, Key, Data) -> Mac

hmac(Type, Key, Data, MaclLength) -> Mac

Types.
Type = hash_al gorithms() - except ripendl60
Key = iodata()
Data = iodata()

10 | Ericsson AB. All Rights Reserved.: crypto

crypto

MacLength = integer()

Mac = binary()
ComputesaHMAC of type Ty pe from Dat a using Key as the authentication key.
MacLengt h will limit the size of the resultant Mac.

hmac_i nit (Type, Key) -> Context

Types:
Type = hash_al gorithms() - except ripendl60
Key = iodata()
Cont ext = binary()

Initializes the context for streaming HMAC operations. Ty pe determines which hash function to use in the HMAC
operation. Key isthe authentication key. The key can be any length.

hrmac_updat e(Cont ext, Data) -> NewCont ext
Types:
Cont ext = NewContext = binary()
Data = iodata()
Updates the HMAC represented by Cont ext using the given Dat a. Cont ext must have been generated using an

HMAC init function (such as hmac init). Dat a can be any length. NewCont ext must be passed into the next call
tohmac_updat e or to one of the functions hmac_final and hmac_final_n

Warning:

Do not use a Cont ext as argument in more than one call to hmac_update or hmac_final. The semantics of
reusing old contextsin any way is undefined and could even crash the VM in earlier releases. The reason for this
limitation is alack of support in the underlying OpenSSL API.

hmac_fi nal (Context) -> Mac
Types:
Context = Mac = binary()

Finalizes the HMAC operation referenced by Cont ext . The size of the resultant MAC is determined by the type of
hash function used to generateiit.

hmac_final _n(Context, HashLen) -> Mac
Types.

Cont ext Mac = binary()

HashLen = non_neg_i nteger()

Finalizes the HMAC operation referenced by Cont ext . HashLen must be greater than zero. Mac will be abinary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

info_lib() -> [{Name, Ver Num Ver Str}]
Types:

Ericsson AB. All Rights Reserved.: crypto | 11

crypto

Name = binary()
Ver Num = i nteger ()
VerStr = binary()
Provides the name and version of the libraries used by crypto.

Nane isthe name of the library. Ver Numis the numeric version according to the library's own versioning scheme.
Ver St r contains atext variant of the version.

> info_lib().
[{<<"OpenSSL" >>, 9469983, <<" OpenSSL 0. 9.8a 11 Cct 2005">>}]

Note:

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
openssl v. h) used when crypto was compiled. Thetext variant representsthe OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

nmod_pow(N, P, M -> Result
Types:
N, P, M= binary() | integer()
Result = binary() | error
Computes the function N*P nmod M

next iv(Type, Data) -> Nextl Vec
next _iv(Type, Data, |Vec) -> Nextl Vec

Types:
Type = des_cbc | des3_cbc | aes_chc | des_cfb
Data = iodata()

I Vec = NextlVec = binary()

Returnstheinitialization vector to be used in the next iteration of encrypt/decrypt of type Ty pe. Dat a isthe encrypted
data from the previous iteration step. The | Vec argument is only needed for des_cf b as the vector used in the
previous iteration step.

private_decrypt(Type, CipherText, PrivateKey, Padding) -> PlainText
Types:
Type = rsa
Ci pher Text = binary()
PrivateKey = rsa_private()
Paddi ng = rsa_pkcsl padding | rsa_pkcsl oaep_padding | rsa_no_paddi ng
Pl ai nText = binary()
Decryptsthe G pher Text , encrypted with public_encrypt/4 (or equivalent function) using the Pr i vat eKey, and

returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

12 | Ericsson AB. All Rights Reserved.: crypto

crypto

private_encrypt(Type, PlainText, PrivateKey, Padding) -> C pherText
Types.

Type = rsa

Pl ai nText = binary()

Thesizeof the Pl ai nText must belessthanbyt e_si ze(N) - 11 if rsa_pkcs1l_paddi ng isused, and
byte_size(N) ifrsa_no_paddi ng isused, where N is public modulus of the RSA key.

PrivateKey = rsa_private()
Paddi ng = rsa_pkcsl _padding | rsa_no_paddi ng
C pher Text = binary()

Encryptsthe Pl ai nText usingthe Pri vat eKey and returns the ciphertext. Thisisalow level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

publ i c_decrypt (Type, C pherText, PublicKey, Padding) -> Pl ainText
Types:
Type = rsa
Ci pher Text = binary()
Publ i cKey = rsa_public()
Paddi ng = rsa_pkcsl_padding | rsa_no_paddi ng
Pl ai nText = binary()
Decryptsthe Ci pher Text , encrypted with private_encrypt/4(or equivalent function) using the Pr i vat eKey, and

returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public_encrypt (Type, PlainText, PublicKey, Padding) -> C pherText
Types.

Type = rsa

Pl ai nText = binary()

Thesizeof the Pl ai nText must belessthanbyt e_si ze(N) - 11 if rsa_pkcs1l_paddi ng isused, and
byte_size(N) ifrsa_no_paddi ng isused, where N is public modulus of the RSA key.

Publ i cKey = rsa public()
Paddi ng = rsa_pkcsl padding | rsa_pkcsl_oaep_padding | rsa_no_paddi ng
Ci pher Text = binary()

Encryptsthe Pl ai nText (messagedigest) usingthePubl i cKey and returnsthe Ci pher Text . Thisisalow level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

rand_bytes(N) -> binary()
Types:
N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the cr ypt o library pseudo-
random number generator.

rand_seed(Seed) -> ok

Types:
Seed = binary()

Ericsson AB. All Rights Reserved.: crypto | 13

crypto

Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the
system you are running on does not have enough "randomness’ built in. Normally thisiswhen stong rand bytes/1
returns| ow_ent r opy

rand_uni form(Lo, H) -> N
Types:
Lo, H, N = integer()

Generate arandom number N, Lo =< N < Hi. Usesthecrypt o library pseudo-random number generator.
H must be larger than Lo.

sign(Al gorithm DigestType, Mg, Key) -> binary()
Types:

Algorithm= rsa | dss | ecdsa

Msg = binary() | {digest,binary()}

The msg is either the binary "cleartext" datato be signed or it is the hashed value of "cleartext” i.e. the digest
(plaintext).

Di gest Type = di gest _type()

Key = rsa_private() | dss_private() | [ecdh_private(), ecdh_parans()]
Creates adigital signature.
Algorithm dss can only be used together with digest type sha.
See also public_key:sign/3

start() -> ok

Equivalent to application:start(crypto).

stop() -> ok
Equivalent to application:stop(crypto).

strong_rand_bytes(N) -> binary()
Types:
N = integer()
Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng

seeded and periodically mixed with operating system provided entropy. By default thisisthe RAND byt es method
from OpenSSL.

May throw exception | ow_ent r opy in case the random generator failed due to lack of secure "randomness’.

stream.init(Type, Key) -> State
Types:
Type = rc4
State = opaque()
Key = iodata()
Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

14 | Ericsson AB. All Rights Reserved.: crypto

crypto

stream.init(Type, Key, IVec) -> State
Types.
Type = aes_ctr
State = opaque()
Key = iodata()
I Vec = binary()
Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must

be either 128, 192, or 256 btslong. | Vec isan arbitrary initializing vector of 128 bits (16 bytes). This stateisfor use
with stream_encrypt and stream_decrypt.

stream encrypt(State, PlainText) -> { NewState, G pherText}
Types:
Text = iodata()
Ci pher Text = binary()
Encrypts Pl ai nText according to the stream cipher Type specified in stream_init/3. Text can be any number

of bytes. The initial St ate is created using stream init. NewSt at e must be passed into the next call to
stream encrypt.

stream decrypt(State, G pherText) -> { NewState, PlainText }
Types:
Ci pher Text = iodata()
Pl ai nText = binary()
Decrypts G pher Text according to the stream cipher Type specified in stream_init/3. Pl ai nText can be any

number of bytes. The initial St at e is created using stream init. NewSt at e must be passed into the next call to
stream decrypt.

supports() -> Al gorithniist

Types:
Al gorithniist = [{hashs, [hash_algorithns()]}, {ciphers,
[cipher_algorithms()]}, {public_keys, [public_key algorithms()]}

Can be used to determine which crypto algorithms that are supported by the underlying OpenSSL library

ec_curves() -> EllipticCurveli st
Types:
EllipticCurveList = [ec_naned_curve()]
Can be used to determine which named elliptic curves are supported.

ec_curve(NanedCurve) -> EllipticCurve
Types:
NamedCurve = ec_naned_curve()
EllipticCurve = ec_explicit_curve()
Return the defining parameters of a elliptic curve.

Ericsson AB. All Rights Reserved.: crypto | 15

crypto

veri fy(A gorithm DigestType, Mg, Signature, Key) -> bool ean()
Types.
Algorithm=rsa | dss | ecdsa
Msg = binary() | {digest,binary()}
The msg is either the binary "cleartext” data or it is the hashed value of "cleartext” i.e. the digest (plaintext).
Di gest Type = di gest _type()
Si gnature = binary()
Key = rsa_public() | dss_public() | [ecdh_public(),ecdh_parans()]
Verifiesadigital signature
Algorithm dss can only be used together with digest type sha.
See also public_key:verify/4

16 | Ericsson AB. All Rights Reserved.: crypto

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	Reference Manual
	crypto
	crypto
	block_encrypt/4
	block_decrypt/4
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	info_lib/0
	mod_pow/3
	next_iv/2
	next_iv/3
	private_decrypt/4
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_bytes/1
	rand_seed/1
	rand_uniform/2
	sign/4
	start/0
	stop/0
	strong_rand_bytes/1
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	supports/0
	ec_curves/0
	ec_curve/1
	verify/5

